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Chapter 1

Introduction

The detection of elementary particles predicted by the theoretical mod-

els leads to the conception of always more powerful particles accelerators.

The next generation of electron-positron colliders will allow to explore a

new energy region in the multi TeV range beyond the capabilities of today’s

particle accelerators. It would provide significant fundamental physics infor-

mation complementary to the LHC and to lower-energy linear e+/e- collider,

as a result of its unique combination of high energy and experimental pre-

cision. These can be reached only with linear acceleration, since the high

synchrotron radiation emission limits the maximum energy achievable for

electron positron circular colliders. In order to reach this energies in a real-

istic and cost efficient scenario with linear acceleration (i.e. in a single beam

passage), the accelerating gradient has to be very high and, by consequence,

the RF power production for this high gradient has to be optimized.

In addition to colliders, next generation of linear particle accelerators

based light sources, such as Free Electron Lasers, represents a key instrument

to extend the limited range of conventional coherent light sources. Up to

date FEL sources can cover a wide range of wavelenghts, with remarkable

power and brightness. Such light sources would open new possibilities in pure

research fields, and in technological applications. A FEL driven by a photo-

injector is able to generate very short light pulses in the picosecond region at

a repetition rate that normally extends up to tens of Hertz. The quality of
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6 CHAPTER 1. INTRODUCTION

the light produced by these devices strictly depends on the parameters of the

electron beam, in terms of emittance, brightness, energy and energy spread,

produced by the linear accelerator and injected in the undulator.

Both the next generation of linear colliders and Free Electron Lasers need

an accurate study and optimization of the high power, high efficiency, low

cost RF power sources, and this means, at the required frequencies (UHF

and above), basically klystrons.

The klystron fundamental working principles are well known since tens of

years. Nevertheless, the design of a klystron, expecially at the level of power

and efficiency required by accelerator physics, is still a very complicated and

expensive process, and it is then privilege of a few laboratories and companies

around the world. The high output powers require high beam currents, at

the expense of efficiency and of a greater cathode complexity. The high

frequency devices (such as X-Band devices) present further issues due to the

small dimensions of the structures. In order to partially solve these problems,

new typologies of klystrons, like the sheet beam or the multibeam klystron,

have been proposed in the last years.

The design of always more elaborated klystrons lies on the intensive uti-

lization of simulation codes in both the phases of design and analysis and op-

timization of the device. The main simulation codes can be basically divided

in two main categories: the so called 1-D disk codes, that use a combination

of analytical formulae and electron dynamics and are used for a quick assess-

ment of the power and efficiency of the new klystron design in steady state.

The electron beam is divided in charged disks which can move only in the

longitudinal direction. They have the advantage of being extremely simple

to use and very fast to run, and are then widely used in the first phase of the

klystron “electronic design”. At the same time, they represent the klystron

cavities through their impedence, and so they don’t give accurate electromag-

netic information on the fields inside the structure, information that are very

useful while simulating a complicated device such as a multibeam klystron.

The other category of klystron simulation codes includes Particle In Cell
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2-D and 3-D codes, that simulate klystron performances using first principles

(electron dynamics and Maxwell’s equations). They give complete electro-

magnetic information both during the transient and after, and are increas-

ingly more accurate as they proceed from 2-D to 3-D. In the process, they

also become more time-consuming, and are then expecially used to simulate

the already designed device and verify its behaviour.

In the present work, we will present the development of a new simulation

code that is a compromise between the two typologies of codes. It is a 2-

D code based on the search of a steady state solution for the interaction

between the electron beam and the klystron cavities; the transient evolution

is not considered, but information on the steady state cavity fields and on

the beam focusing is given.

Chapter 2 is dedicated to a brief recall regarding the fundamental physics

at the base of the klystron’s operation. The first section is dedicated to

the fundamental equations that describe the velocity modulation process in

absence of space charge effects (the so called kinematic theory). These are

considered in section 2.4. Finally, a short overview on the main klystron

simulation code is presented.

In Chapter 3 the algorithm used to simulate the interaction between the

beam and the klystron RF cavities is described. It is based on the iterative

solution of the power balance equation in the structures and allows to de-

termine the amplitude and phase of the electromagnetic field starting from

the cavity mode field. This leads to a steady state 2-D code that can self-

consistently simulate the contribution of the cavity electromagnetic field on

the particles, and the action of the particles back to the field, giving electro-

magnetic information on the device without the complexity of a PIC code.

Chapter 4 is dedicated to the numerical methods to be used to integrate

the particle equations of motion in the algorithm, and chapter 5 presents

some results of the application of the method to simple cylindrical klystron

cavities and to a two cavity klystron in absence of space charge effects. These

are finally taken in account in chapter 6.
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Chapter 2

The klystron amplifier

2.1 The klystron: general principles

The idea of using of an high fequency electric field parallel to the direction

of an electron beam in order to group the particles in bunches can be dated

around the middle of the 30’s, when Mr. and Mrs. Heil were studying the

effect of the electron transit in the spaces between the electrodes of high

frequencies triods [1]. These devices had already some of the charateristics

of many longitudinal interaction tubes, like the two cavity klystron.

The klystron amplifier was invented by Bill Hansen and the Varian broth-

ers at Stanford in 1939 [2] [3]; it is a longitudinal interaction device composed

by:

1. an electron gun that generates and accelerates a continuous electron

beam;

2. a focusing system avoiding the beam spreading due to electron repul-

sion;

3. some RF cavities made to work on the TM010 resonant mode;

4. some drift tubes connecting the cavities and made in such a way that

the cavities electric fields do not propagate inside them;

9



10 CHAPTER 2. THE KLYSTRON AMPLIFIER

5. a collector where the electrons can dissipate their remaining energy

after the interaction with the last cavity.

Figure 2.1: Two cavity klystron amplifier.

The radiofrequency signal to be amplified is injected in the first cavity,

where it excites the TM010 mode and so it generates a longitudinal electric

field on the tube axis. This field produces a velocity modulation in the

electron beam: the electrons entering the cavity in different times leave the

cavity with different velocities depending on the phase of the electric field. In

the drift tube after the cavity this velocity modulation gives rise to a grouping

opposed by the Coulombian repulsion forces. The intensity of these forces

determines the speed by which the faster electrons reach the lowest ones of

the same RF cycle or the previous one. The resulting density modulation

is then a current modulation who can excite an electromagnetic field inside

the second cavity. This field can modulate again the particles velocity and

then the beam current. This modulation process repeats in each cavity. The
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gain for each cavity and the bunching quality strongly depend on the cavity

parameters, as the resonant frequency, the quality factor Q, the R/Q, etc. In

a high power klystron the intermediate cavities can be two, three or four. In a

klystron with three intermediate cavities, the two cavities immediately after

the first one are commonly called gain cavities because they contribuite the

most to the klystron total amplification. The penultimate cavities are usually

named as the bunching cavities, because they can significantly enhance the

electron grouping. The last cavity (output cavity) is designed in such a way

that the voltage induced inside can demodulate the beam and extract the

power that is then transferred to one or more waveguides.

The multicavity klystron usually has a gain of 10 or 15 dB for each cavity

in the saturation mode, while the maximum efficiency rarely exceed the 65

dB.

2.2 Klystron main parameters[20]

The design of a klystron usually starts from the choice of two important

parameters, the continuous voltage V0, that is the voltage who accelerates

the electrons emitted from the gun, and the perveance Pµ, that is related to

the beam current I0 by the equation:

Pµ =
I0

V
3
2
o

(2.1)

The perveance is strongly tied to the klystron electronic efficiency ηel,

given by:

ηel =
Pout

PµV
5
2

0

(2.2)

It is clear that one of the consequences of increasing the perveance for a fixed

frequency is the decaying of this efficiency. For the most part of klystrons, the

longitudinal magnetic focusing field is chosen in order to approach a confined

flux regime, and is then of the order of two or three times the Brillouin field
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[4]. The power needed by the electromagnets grows then with the perveance.

This is another reason for chosing a low perveance. Another reason is tied

to the working frequency and the drift tube radius. This has to be small

enough so that the cavity field, excited by the beam, cannot propagate.

This gives a constraint on the maximum drift tube radius, once that the

cavity frequency has been fixed. Furthermore, there is an optimal interaction

between the beam and the cavities when the beam filling factor b/a (where

b is the medium beam radius and a is the pipe radius) is of the order of 0.6

- 0.8. Since the beam radius b is then fixed from the frequency, we can then

determinate the diameter of the cathod and the medium current density that

can be obtained. These quantities are related to the gun convengence factor

Cc, defined by the ratio between the cathod surface and the beam surface at

the drift tube entrance, and expressed as a function of the beam current I0

and the perveance Pµ:

Cc =
PµV

3
2

0

πb2Jc
(2.3)

For a given average current density Jc, radius b and voltage V0 the conver-

gence grows then with the perveance. This corresponds to an increasing

of the cathode surface and requires a particular attention while designing a

klystron in order to avoid possible interceptions of the beam with the drift

tube before the first cavity.

2.2.1 Main electrical parameters

The electrical parameters of a klystrons include all the quantities re-

lated to the interaction between the electron beam and the resonant cavities.

These quantities can be divided in two categories: the ones related to the RF

cavities, and the ones who characterize the not modulated electron beam.

2.2.1.1 RF cavities parameters

The cavity mode who interacts with the beam in a klystron is the TM010.

If there is no external coupling, an RF cavity, whose working frequency is
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close to the resonant frequency of this mode, is characterized by the following

parameters:

• the resonant angolar frequency ω0;

• the quality factor Q0, defined by:

Q0 =
ωU

Pd
(2.4)

where U is the electromagnetic energy stored inside the cavity and Pd

is the average power loss on the walls;

• the R/Q ratio, defined by:

R

Q
=

V 2
c

2ωU
(2.5)

where Vc is the peak voltage at the cavity gap, and it is in general defined

by the integral of the longitudinal electric field along the axis of the cavity:

R

Q
=

V 2
c

2ωU
(2.6)

The cavity can be modeled, if we are close to the resonant frequency, with an

equivalent RLC parallel circuit. The impedence Zc of a not coupled cavity, in

absence of the electron beam (cold impedence) can be expressed as a function

of the three quantities ω0, Q0 and R/Q0:

Zc (ω) =
R

Q0

Q0

1 + jQ0

(
ω
ω0
− ω0

ω

) (2.7)

with:

• ω0 = 1√
LC

,

• Q0 = R
ω0L

= ω0RC,

• R
Q0

=
√

L
C

= 1
ω0C

.
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These quantities characterize the intermediate cavities of a klystron.

The input and the output cavities of a klystron are coupled to an external

waveguide or to a coaxial line. This coupling is characterized by an external

merit factor Qext, defined by:

Qext =
ωU

Pext
(2.8)

where Pext is the RF power who enters or exits from the cavity. It is possible

also to define a coupling coefficient β as:

β =
Pext
Pd

=
Q0

Qext

(2.9)

PL = Pl + Pext = (1 + β)Pd (2.10)

The total Q is then given by:

Q =
ωU

PL
(2.11)

So that we have the well known expression:

1

Q
=

1

Q0

+
1

Qext

=
1 + β

Q0

(2.12)

The impedence Zc of a resonant cavity can then be expressed as a function

of Q:

Zc (ω) =
R

Q

Q

1 + jQ
(
ω
ω0
− ω0

ω

) (2.13)

2.2.1.2 Beam parameters

The following parameters tie the angular frequency of the signal to be

amplified and the electronic characteristics of the RF cavities to the beam

features.
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• The electronic longitudinal propagation constant βe is defined as:

βe =
ω

v0

(2.14)

where v0 is the initial particles velocity. The length of a interaction

gap d, multiplied by βe is the transit angle βed;

• the electronic radial propagation constant γe is related to βe by the

relation: γe =
√
β2
e − k2

0, with k0 = ω/c and where c is the speed of

light. We have:

γe =
βe
γ0

(2.15)

where γ0 is the relativistic factor:

γ0 =

[
1−

(v0

c

)2
]− 1

2

(2.16)

and it is related to the beam voltage V0 by the energy conservation:

γ0 = 1− qeV0

m0c2
(2.17)

where me and qe are respectively the electron mass and charge;

• the longitudinal coupling coefficient between the beam and the cavity

Ml depends on the longitudinal electric field profile, on the interaction

gap length, on the working frequency and on the beam velocity;

• the radial coupling coefficient between the beam and the cavity Mr

depends on the radial electric field distribution. It is function of the

pipe radius a, the beam radius b, the working frequency and the beam

velocity;

• the total coupling coefficient is defined by the product of the longitu-

dinal and the radial coupling coefficients:
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M = MlMr (2.18)

These coupling coefficients characterize the effectiveness of the inter-

action between the electron beam and the cavity fields, and they are

usually calculated for simple field profiles;

• the plasma angular frequency ωp is defined as:

ωp =

√
qeρ0

m0ε0
(2.19)

where ρ0 is the electronic volume density. We also have, if we substitute

I0 = (πb2) |ρ0| v0:

ωp =
1

b

√
|qe| I0

πm0ε0v0

(2.20)

• the plasma reduction factor Rq is a corrective factor which takes in

account the presence of the beam pipe in the beam confinement. It is

a function of the pipe radius a, the beam radius b, the beam velocity

v0 and the working frequency ω;

• the reduced plasma angular frequency ωq is then given by the product

of the plasma angular frequency and the plasma reduction factor:

ωq = Rqωp (2.21)

• from these quantity it is also possible to define the reduced plasma

wavelength:

λq =
2π

βq
(2.22)
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In a small signal analysis, where the modulation voltages induced by the

beam are small with respect to the beam accelerating voltage V0, the previous

quantities allow to calculate the voltages and currents induced by the beam

in every cavity on the klystron axis. On the other hand, an analytic study of

the large signal regime is very complicated and the utilization of simulation

codes becomes indispensable.

2.3 The kinematic theory of velocity modu-

lation

In this section and in the next one we will present the main formulae used

in the design of klystron amplifiers [5]. The kinematic analysis does not take

in account the presence of the space charge forces between particles, and it

is the only large signal analytical treatment of klystrons. This means that

the small-signal approximation, which considers the RF components of the

electrons velocities and current densities much smaller with respect to the

DC components, is not employed beyond the first cavity. This theory will

lead to an expression of the current harmonics coefficients which contains

Bessel functions and to a calculation of two-cavity amplifier efficiency.

Let’s consider a simple klystron consisting of only two cavities, a ”buncher”

and a ”catcher”. Let a beam of electrons, which has been accelerated by a

potential V0 to a velocity v0 traverse the first pair of grids, where it is acted

upon by an RF voltage V1 sin (ωt), reduced by a ”coupling coefficient” M .

The electrons in the beam enter the gridded gap with energy:

1

2
mev

2
0 = qeV0 (2.23)

The electron energy is modified by the RF field at the gap and the following

relationship can be written for the exit velocity v:

1

2
mev

2 − 1

2
mev

2
0 = qemeV1 sin (ωt) (2.24)

From the above it follows that:
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v = v0

√
1 +

MV1

V0

sin (ωt) (2.25)

If one assumes that V1 << V0 (which is a good assumption for the first

cavity of a two-cavity klystron), then:

v ∼= v0

(
1 +

MV1

2V0

sin (ωt)

)
(2.26)

Let’s consider first the case for which the first interaction gap is very

narrow, such that the finite transit time of the entering electrons can be

neglected. The electrons then enter, and leave the first gap at time t1, then

drift for a distance l, and arrive at the center of the second gap at time t2.

Then (invoking the small-signal assumption V1
V0
<< 1):

t2 = t1 +
l

v
= t1 +

l

v0

(
1 + MV1

2V0
sin (ωt1)

) ∼= t1 +
l

v0

− lMV1

2v0V0

sin (ωt1) (2.27)

or, in terms of phase:

ωt2 = ωt1 + θ0 −X sin (ωt1) (2.28)

where θ0 = ωl
v0

, and the dimensionless quantity X = MV1θ0
2V0

is called the

”bunching parameter”. When X > 1, ωt2 is a multivalued function of ωt1

and there is electron overtaking, as it can be seen from figure (2.2).

The quantity of charge leaving the buncher in the time interval t1 to

t1 + dt1 is I0dt1, at t1 = 0, where I0 is the beam DC current entering the

buncher. This charge, after drifting, enters the catcher in the interval t2 to

t2 + dt2. If It (total current, DC and RF) is the current transported by the

beam to the entrance to the catcher, then through conservation of charge:

I0dt1 = Itdt2 (2.29)

Differentiating eq. (2.28) yields:
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dt2
dt1

= 1−X cos (ωt1) (2.30)

which can be combined with eq. (2.29) to give:

It =
I0

(1−X cos (ωt1))
(2.31)

For X = 1 the current at the catcher becomes infinite (fig. 2.2), since the

finite charge transported from the buncher at t1 = 0 arrives at the catcher

in a zero time interval (dt2
dt1

= 0).

Figure 2.2: Electron arrival vs departure phase in a two cavity klystron, as
a function of the bunching parameter X.
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To calculate It, one must then sum the absolute values of all current

contributions to It from time segments t11, t12, etc, at the buncher, as follows:

It = I0

[
1

|1−X cos (ωt11)|
+

1

|1−X cos (ωt12)|
+ ...

]
(2.32)

The current waveforms at the buncher are shown in fig. 2.3. Note that

at the lower values of X they are almost sinusoidal, but they become rich in

harmonics at X = 1 and above.

Figure 2.3: Bunching waveforms as a function of X.

Since It is clearly a periodic function of ωt2, it can be expanded in a

Fourier series, as follows:

It = I0 +
∞∑
n=1

[an cos [n (ωt2 − θ0)] + bn sin [n (ωt2 − θ0)]] (2.33)

with coefficients given by:
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an =
1

π

∫ θ0+π

θ0−π
It cos [n (ωt2 − θ0)] d (ωt2) (2.34)

and:

bn =
1

π

∫ θ0+π

θ0−π
It sin [n (ωt2 − θ0)] d (ωt2) (2.35)

Substituting eq. (2.28) and eq. (2.29) into eq. (2.34) and eq. (2.35)

above, these become:

an =
I0

π

∫ π

−π
cos [n (ωt1 −X sin (ωt1))] d (ωt1) (2.36)

and:

bn =
I0

π

∫ π

−π
sin [n (ωt1 −X sin (ωt1))] d (ωt1) (2.37)

We can note that bn is identically equal to zero, since the integrand is an

odd function of ωt1. It turns out that the expression eq. (2.36) for the an

coefficients is also a representation of the Bessel functions of the first kind

and nth order as in:

an = 2I0Jn (nX) (2.38)

Therefore, the catcher RF current It can be written as the following series:

It = I0 + 2I0

∞∑
n=1

Jn (nX) cos [n (ωt1 − θ0)] (2.39)

The n = 1 harmonic (the fundamental) is simply:

I1 = 2I0J1 (X) cos (ωt1 − θ0) = <
[
2I0J1 (X) ej(ωt−θ0)

]
(2.40)

When X < 1, the series in eq. (2.39) converges for all values of t2. For

X = 1, and X > 1, there are discontinuities at various t2 values as shown

in fig. 2.3 (which would disappear if space charge were taken into account).



22 CHAPTER 2. THE KLYSTRON AMPLIFIER

The harmonic amplitudes correspond to the peaks of the Bessel functions

(fig 2.4).

Figure 2.4: The first 5 Bessel functions of the first kind.

One can now calculate the output power from the fundamental (n = 1),

using eq. (2.40) and the maximum value of J1 (X), which is 0.582 and occurs

at X = 1.84. The output power is the product of the RF current I1 and

the maximum voltage that can be developed across the output gap without

reflecting electrons, which is the beam voltage V0. Both are peak values, so:

Pout =
1.16I0√

2

V0√
2

= 0.58I0V0 = 0.58Pin (2.41)

Consequently, for the two-cavity klystron, without space charge and with

sinusoidal voltage modulation, the maximum efficiency is 58%.

The above derivation is completely valid, even when there is electron over-

taking. In order to arrive to the above result, the small-signal approxima-

tion has been used only to formulate the expressions to launch the velocity-
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modulated beam into the drift space, but it is not employed beyond the

buncher cavity.

However, the effects of space charge and a number of other issues force a

much lower efficiency in the two-cavity klystron case. On the other hand, it

has been shown by simulations and experiments in multiple cavity klystrons

that the use of higher harmonics cavities [6] [7], or multiple cavities properly

arranged [8] [9], can produce I1/I0 ratios as high as 1.8, and then, higher

efficiencies.

The velocity modulation kinematic treatment above was first published

(in the US) by D. L. Webster [10], a collaborator of Hansen and the Var-

ians at Stanford. His 1939 Journal of Applied Physics article included, in

addition to the ”bunching” theory, a brief theory of ”debunching” (i.e. -

accounting of the effects of space charge on the velocity modulation process).

Eugene Feenberg, a member of the wartime Sperry Gyroscope ”Tube Devel-

opment Laboratory”, developed the Webster theory into a considerably more

detailed mathematical treatise [11], which included the addition of a third

cavity to the original two-cavity klystron, and the first formulae for coupling

coefficients and beam-loading in gridded and ungridded klystron cavity gaps.

2.4 The space-charge wave theory

In kinematic theory, which was the earliest mathematical treatment de-

scribing beam interaction with microwave fields, the fields due to the beam’s

space charge were ignored and calculations were based only on the effects of

the fields in the interaction gap. Energy between cavities was transmitted

through ballistic electron motion. Kinematic theory does not provide the

tools necessary for a satisfactory analysis of multicavity klystrons. For this,

a small-signal space-charge wave theory is necessary. This was first developed

by Webster [12] and extended by Hahn [13] [14] and Ramo [15]. This theory

was later developed by Wessel Berg [16] [17] [18] for space charge waves in

extended interaction klystrons for not relativistic beams. In the following

section we will expose this theory with particular focusing on multicavity
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structures [20]; as a first step, we will write the electronic equations inside

a drift tube. Then the interaction with a RF field will be taken in account,

and finally, we will study the particular case of a chain of coupled cavities.

The following basic assumptions will be made [19]1:

1. We assume that the magnetic focusing field is strong enough so that

no electron motion or current is assumed to exist along any dimension,

other than the longitudinal one (z).

2. The transverse beam section is small with respect to the drift tube

radius. The electric cavity fields and the space charge fields are sup-

posed to be purely longitudinal and uniform over the beam section. In

this way the particles velocity and density fields depend only on the z

coordinate.

3. The emitted electron beam is mono-energetic: the initial velocity dis-

tribution is neglected (cold beam). This means that, if there is no

modulation (i.e. no input RF signal is injected in the first cavity), the

electron velocity and density are constant over all the tube length.

4. The electrons can be relativistic and the magnetic field generated by

the beam is negligible with respect to the focusing field. The electron

plasma frequency is small with respect to the working frequency.

5. The RF components of the velocities and the electron densities, de-

noted by ṽ and ρ̃ are considered as perturbations of the not-modulated

beam. The initial modulation is the result of the interaction between

the continuous beam and the RF field in the first cavity. The modulat-

ing voltage is small with respect to the accelerating voltage V0, and this

hypothesis is conserved inside the intermediate and the output cavities.

This small signal approximation allows to linearize the equations of the

velocity and density fields, which are always the superposition of a DC

and an RF component.

1The following, as well as sections 2.4.1, 2.4.2, 2.4.3, are based on [20]
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2.4.1 The electronic equations in the drift tubes

The fields evolution in the drift tubes region is governed only by the

space charge fields. The beam can be characterized by the velocity field,

the electrons density field and the convection current density field, which

can be found with the relativistic dynamic equation, the charge conservation

equation and the Gauss law. With the previous hypothesis (hip. 5), the

electrons velocity and the charge density can be written as:

vz (z, t) = v0 + <
(
ṽ (z) ejωt

)
(2.42)

ρ (z, t) = ρ0 + <
(
ρ̃ (z) ejωt

)
(2.43)

And, for the current density:

Jz (z, t) = J0 + <
(
J̃ (z) ejωt

)
(2.44)

where:

J0 = ρ0v0, J̃ (z) = ρ̃ (z) v0 + ρ0ṽ (z) (2.45)

2.4.1.1 Dynamic equation linearization

Particles travelling inside the pipe are subject to two fields: the space

charge fields ~Esc and ~Bsc due the other electrons, and the static focusing

magnetic field ~B0. The dynamic equation for a particle inside the drift tube

can be then written as:

d~p

dt
= qe

(
~Esc + ~v ×

(
~Bsc + ~B0

))
(2.46)

where ~p is the momentum:

~p = γm0~v (2.47)

We have:
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d (γ~v)

dt
=

qe
m0

(
~Esc + ~v ×

(
~Bsc + ~B0

))
(2.48)

It can be easily shown that the energy conservation can be written as:

d (γm0c
2)

dt
= ~v · d~p

dt
(2.49)

And so, by utilizing eq. (2.46):

d (γ)

dt
=

qe
m0c2

~v · ~Esc (2.50)

By developing the first member of eq. (2.48) we have that this can be written

as:

d (~v)

dt
=

qe
m0γ

(
~Esc + ~v ×

(
~Bsc + ~B0

)
− 1

c2

(
~v · ~Esc

)
~v

)
(2.51)

Eq. (2.51) can be projected on the z-axis:

d (vz)

dt
=

qe
m0γ

(
Esc,z + ~v⊥ ×

(
~Bsc,⊥

)
− 1

c2

(
~v · ~Esc

)
vz

)
(2.52)

We can then neglect the transverse space charge fields and velocities and

obtain:

dvz
dt

=
qe

m0γ3
Esc,z (2.53)

where:

γ ∼=
[
1−

(vz
c

)2
]− 1

2

(2.54)

Since we are performing an Eulerian description of the particles motion, it

is convenient to express the derivatives as the sum of a partial time derivative

plus a convective term:

d

dt
=

∂

∂t
+ ~v · ~∇ (2.55)
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Eq. (2.53) becomes:

(
∂

∂t
+ vz

∂

∂z

)
vz =

qe
m0γ3

Esc,z (2.56)

If we linearize the last equation, by using, for the RF quantities:

Esc,z (z, t) = <
[
Ẽsc (z) ejωt

]
(2.57)

we get:

(
jω + v0

∂

∂z

)
ṽ (z) =

qe
m0γ3

0

Ẽsc (z) (2.58)

where γ0 is a function of the longitudinal velocity v0. By using the longitudi-

nal electronic propagation constant βe we have that the velocity modulation

satisfies the following first order partial differential equation:

(
∂

∂z
+ jβe

)
ṽ (z) =

qe
m0v0γ3

0

Ẽsc (z) (2.59)

2.4.1.2 Continuity equation linearization

The continuity equation ties the local variation of the convection current

to the local temporal variation of the charge density:

∇ · ~J = −∂ρ
∂t

(2.60)

By neglecting the transverse current:

∂Jz
∂z

= −∂ρ
∂t

(2.61)

And, after linearization we have, for the RF components J̃ (z) and ρ̃ (z):

∂J̃

∂z
= −jωρ̃ (z) (2.62)
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2.4.1.3 Gauss law

The Gauss law relates the space charge field to the electron density:

∇ · ~Esc =
ρ

ε0
(2.63)

So, in our case:

∂Esc,z
∂z

=
ρ

ε0
(2.64)

And, linearizing:

∂Ẽsc,z
∂z

=
ρ̃ (z)

ε0
(2.65)

The previous equation does not take in account the finite transverse di-

mensions of the beam and the boundary condition that the space charge field

has to satisfy due to the presence of the metallic pipe. Eq. (2.64) is then

modified by the plasma reduction factor Rq [21]:

∂Ẽsc,z
∂z

= R2
q

ρ̃ (z)

ε0
(2.66)

2.4.1.4 Space charge waves in the drift tubes

By utilizing eq. (2.61) and eq. (2.64) we arrive to the following equation

for J̃(z) and Ẽsc(z):

∂

∂z

(
J̃ (z) + jω

ε0
R2
q

Ẽsc (z)

)
= 0 (2.67)

And so:

Ẽsc (z) =
j

ω

R2
q

ε0
J̃ (z) (2.68)

From the last relation, and from eq. (2.59) we have then the equation relating

ṽ(z) and J̃(z): (
∂

∂z
+ jβe

)
ṽ (z) =

j

ω

qeR
2
q

m0ε0v0γ3
0

J̃ (z) (2.69)
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The plasma reduced angular frequency ωp is given by:

ωp =

√
qeρ0

m0ε0γ3
0

(2.70)

and the longitudinal propagation constant:

βp =
ωp
v0

=

√
qeρ0

m0ε0v2
0γ

3
0

(2.71)

In the same way we can define the reduced quantities:

ωq = Rqωp (2.72)

βq =
ωq
v0

(2.73)

Eq. (2.67) can then be expressed by using these quantities:(
∂

∂z
+ jβe

)
ṽ (z) = j

β2
q

βeρ0

J̃ (z) (2.74)

We can obtain the relationship between ṽ(z) and J̃(z) also by multiplying

eq. (2.45) for jβe and by using eq. (2.62):(
∂

∂z
+ jβe

)
J̃ (z) = jβeρ0ṽ(z) (2.75)

Let’s now define the differential operator Lz as:

Lz =
∂2

∂z2
+ 2jβe

∂

∂z
−
(
β2
e − β2

q

)
(2.76)

This can be factorized as:

Lz =

(
∂

∂z
+ jβs

)(
∂

∂z
+ jβf

)
(2.77)

where βs and βf are defined by:

βs = βe + βq (2.78)
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βf = βe − βq (2.79)

The modulations ṽ(z) and J̃(z) satisfy the homogenous equations:

Lz (ṽ(z)) = 0 (2.80)

Lz
(
J̃(z)

)
= 0 (2.81)

where the solutions are linear combinations of the functions e−jβsz and e−jβf z.

We than have two plasma waves propagating in the electron beam with prop-

agation velocities above the beam velocity (fast wave, with propagating con-

stant βf ), and below the beam velocity (slow wave, with propagating constant

βs).

Equations (2.74) and (2.75) form a linear system of two first order differ-

ential equations whose solutions are:

ṽz(z) =
1

2

(
e−jβf (z−x0) + e−jβs(z−x0)

)
ṽ (x0) +

+

(
βq

2βeρ0

)(
e−jβf (z−x0) − e−jβs(z−x0)

)
J̃ (x0) (2.82)

J̃z(z) =
βeρ0

2βq

(
e−jβf (z−x0) − e−jβs(z−x0)

)
ṽ (x0) +

+

(
1

2

)(
e−jβf (z−x0) + e−jβs(z−x0)

)
J̃ (x0) (2.83)

or, in matrix form:

(
ṽ(z)

J̃(z)

)
= e−jβe(z−x0)(

cos (βq (z − x0)) j βq
βeρ0

sin (βq (z − x0))

j βeρ0
βq

sin (βq (z − x0)) cos (βq (z − x0))

)(
ṽ(x0)

J̃(x0)

)
(2.84)
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where ṽ(x0) and J̃(x0) are the initial velocity and current density modulations

in the point x0, longitudinal arbitrary coordinate along the z-axis of the drift

tube.

2.4.2 The electronic equations in presence of a RF field

Let’s now consider the modification of the electronic equations inside a

klystron cavity. The presence of a longitudinal RF field produces the addition

of a new term in the dynamic equation. Eq. (2.59) becomes then:(
∂

∂z
+ jβe

)
ṽ (z) =

qe
m0v0γ3

0

(
Ẽsc (z) + Ẽc (z)

)
(2.85)

where Ẽc is the complex amplitude of the longitudinal projection of the RF

cavity field.

Since equations (2.68) and (2.75) are not directly affected from the pres-

ence of the RF field, the new first order differential equation satisfied by

ṽ(z) as a function of J̃(z) and Ẽsc(z) can be obtained by replacing the space

charge field Ẽsc(z) in equation (2.85) with its expression as a function of J̃(z)

(eq. (2.68)): (
∂

∂z
+ jβe

)
ṽ (z) = j

β2
q

βeρ0

J̃ (z) +
qe

m0v0γ3
0

Ẽc(z) (2.86)

This expression is analogue to eq. (2.74).

Then second order partial differential equation for ṽ(z) can be obtained by

applying the operator
(
∂
∂z

+ jβe
)

to equation (2.86) and utilizing eq. (2.75):

Lz (ṽ (z)) =
qe

m0v0γ3
0

(
∂

∂z
+ jβe

)
Ẽc(z) (2.87)

In the same way, it is possible to obtain the equation for J̃(z):

Lz
(
J̃ (z)

)
= j

qeβeρ0

m0v0γ3
0

Ẽc(z) (2.88)

We can now express the constants on the right of the previous equations

as a function of the beam voltage V0 (defined positive). By applying the
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kinetic energy theorem to the emitted electrons we have (if we assume that

the electrons are emitted with zero velocity):

γ0 = 1− qeV0

m0c2
(2.89)

and so:

1

2
m0v

2
0 = − qeV0

γ3
0Γ0

(2.90)

where:

Γ0 =
2

γ0 (γ0 + 1)
(2.91)

Equations (2.87) and (2.88) can then be rewritten as:

Lz (ṽ (z)) = −v0Γ0

2V0

(
∂

∂z
+ jβe

)
Ẽc(z) (2.92)

Lz
(
J̃ (z)

)
= −j βeJ0Γ0

2V0

Ẽc(z) (2.93)

These second order inhomogeneous differential equations constitute a sys-

tem that can be solved with the method of the variation of constants or with

the spatial Laplace transform method. We have, in matrix form:

(
ṽ(z)

J̃(z)

)
= e−jβe(z−x1)(

cos (βq (z − x1)) j βq
βeρ0

sin (βq (z − x1))

j βeρ0
βq

sin (βq (z − x1)) cos (βq (z − x1))

)(
ṽ(x1)

J̃(x1)

)
+

− Γ0

2V0

(
v0C(z)

j βeJ0
βq
S(z)

)
(2.94)

where x1 is a longitudinal position on the axis before the first cavity so that

the circuit electric field is zero and the functions C(z) and S(z) determinate

the modulations due to the cavity field Ẽc and are defined as:
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C (z) =
1

2

(∫ z

x1

e−jβf (z−y)Ẽc (y) dy +

∫ z

x1

e−jβs(z−y)Ẽc (y) dy

)
(2.95)

S (z) =
1

2j

(∫ z

x1

e−jβf (z−y)Ẽc (y) dy −
∫ z

x1

e−jβs(z−y)Ẽc (y) dy

)
(2.96)

or:

C (z) =

∫ z

x1

cos (βq (z − y)) e−jβe(z−y)Ẽc (y) dy (2.97)

S (z) =

∫ z

x1

sin (βq (z − y)) e−jβe(z−y)Ẽc (y) dy (2.98)

A useful rapresentation of the previous solutions can be done by using the

voltage and current modulation; the normalized kinetic potential is defined

as:

Ṽkin(z) =
m0v0γ

3
0

qe
ṽ(z) (2.99)

while the current modulation is:

Ĩ(z) = SJ̃(z) (2.100)

where S is the beam section. We can also define the beam dynamic impedence

as:

Zf =
2βq
Γ0βe

V0

I0

(2.101)

where the beam current is defined positive as I0 = S |J0|. We finally obtain:

(
Ṽkin(z)

Ĩ(z)

)
= e−jβe(z−x1)

(
cos (βq (z − x1)) jZf sin (βq (z − x1))
j
Zf

sin (βq (z − x1)) cos (βq (z − x1))

)(
Ṽkin(x1)

Ĩ(x1)

)
+

+

( C(z)
j
Zf
S(z)

)
(2.102)
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The kinetic potential and the current modulation are the sum of two

contributions: the first is due to the initial modulations, the other one is

made by the cavity field.

2.4.3 The electronic equations in presence of a discrete
RF field

We will consider now the more complicated case of an extended interac-

tion structure. This can be represented by a sequence of coupled cylindric

cavities. We suppose that the coupling of these cavities across the drift spaces

is equal to zero, and the cavities resonate only on the TM010 mode. The dis-

cretization and the linearization of the interaction between the fields and the

beam allow us to express the modulations in a position z inside one of the

cavities (cavity j) gap as a sum of the contributions due to the initial mod-

ulation (i.e. the modulation produced by the cavities before the considered

structure), plus the ones due to the modulations produced in the cavities of

the structure before cavity j and to the modulation inside cavity j.

The current induced from the beam inside the cavity j is given by [20]:

Iind,j = − 1

αj

∫
Vj

~̃J (~r) · ~Ej (~r) dV (2.103)

where ~Ej (~r) is the normalized electric field and αj is a coefficient related to

the voltage definition. Since we made the hypothesis that the electric field is

uniform on the beam transverse section, we have that the previous expression

for induced current reduces to an integral of the field on the longitudinal axis:

Iind,j = − 1

αj

∫ xj+1

xj

Ĩ (z) · Ej (z) dz (2.104)

where Ej is the normalized longitudinal electric field and xj and xj+1 are the

coordinates between which we have this field. The complex amplitude of the

electric field in the cavity j is a function of the normalized field and of the

RF voltage:
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Ẽj(z) =
Vj
αj
Ej(z) (2.105)

where the RF voltage in the cavity gap is given by:

Vj = −ej
∫ xj+1

xj

Ej (z) dz (2.106)

and:

αj = −
∫ xj+1

xj

Ej (z) dz (2.107)

2.4.3.1 Calculation of voltage and current modulations

From the previous paragraphs we have that the kinetic potential in a

position z inside the cavity j is given by:

Ṽkin(z) = e−jβe(z−x1)
[
cos (βq(z − x1)) Ṽkin (x1) + jZf sin (βq(z − x1)) Ĩ (x1)

]
+

+ C(z)

(2.108)

And, for the current modulation:

Ĩ(z) = e−jβe(z−x1)

[
cos (βq(z − x1)) Ĩ (x1) +

j

Zf
sin (βq(z − x1)) Ṽkin (x1)

]
+

+
j

Zf
S(z)

(2.109)

where the integrals C(z) and S(z) are given respectively from equations (2.97)

and (2.98). Since we discretized the problem and we made the hypothesis of

linearity, the modulations of current and kinetic potential in one position z

inside the cavity j can be expressed as the sum of the contributions of every

cavity. Let’s suppose that the interaction gaps before the cavity j are all

short-circuited, except the one of cavity m. We have that the integrals C(z)

and S(z) can be written as:



36 CHAPTER 2. THE KLYSTRON AMPLIFIER

C(z) = VmCm,m+1(z) + VjCj(z) (2.110)

S(z) = VmSm,m+1(z) + VjSj(z) (2.111)

where the functions Cm,m+1(z) and Sm,m+1(z) are defined by:

Cm,m+1(z) =
1

αm

∫ xm+1

xm

cos (βq (z − y)) e−jβe(z−y)Em (y) dy (2.112)

Sm,m+1(z) =
1

αm

∫ xm+1

xm

sin (βq (z − y)) e−jβe(z−y)Em (y) dy (2.113)

and so:

Cm,m+1(z) =
1

2αm

(
e−jβf z + e−jβsz

)
∗ Em(z) (2.114)

Sm,m+1(z) =
1

2αm

(
e−jβf z − e−jβsz

)
∗ Em(z) (2.115)

The symbol ∗ represents the convolution product. The functions Cj(z)

and Sj(z) are defined by:

Cj(z) =
1

αj

∫ z

xj

cos (βq (z − y)) e−jβe(z−y)Ej (y) dy (2.116)

Sj(z) =
1

αj

∫ z

xj

sin (βq (z − y)) e−jβe(z−y)Ej (y) dy (2.117)

If we now take in account the action on the beam of all the cavities before

cavity j, we have, for a coordinate z inside the considered cavity:

C(z) =

j−1∑
m=1

VmCm,m+1 (z) + VjCj(z) (2.118)

S(z) =

j−1∑
m=1

VmSm,m+1 (z) + VjSj(z) (2.119)
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We can see that:

1

αm
e−jβσz ∗ Em(z) =

1

αm

∫ xm+1

xm

e−jβσ(z−y)Em (y) dy (2.120)

where σ = s or f . We can then define the longitudinal coupling coefficient of

the cavity m as the spatial Fourier transform of the longitudinal normalized

electric field:

Mm (βσ) = − 1

αm
e−jβσzm

∫ xm+1

xm

ejβσyEm (y) dy (2.121)

If dm is the interaction gap length we have that, for a cavity with the center

in the position zm, xm = zm− dm
2

and xm+1 = zm + dm
2

; if the electric field is

uniform, we then find the well-known expression:

Mm (βσ) =
sin
(
βσ

dm
2

)(
βσ

dm
2

) (2.122)

The definition of the coupling coefficient allows us to write:

1

αm
e−jβσz ∗ Em(z) = −e−jβσ(z−zm)Mm (βσ) (2.123)

so that the integrals (2.112) and (2.113) can be rewritten as:

Cm,m+1 (z) = −1

2

(
e−jβf (z−zm)Mm (βf ) + e−jβs(z−zm)Mm (βs)

)
(2.124)

Sm,m+1 (z) = − 1

2j

(
e−jβf (z−zm)Mm (βf )− e−jβs(z−zm)Mm (βs)

)
(2.125)

And, introducing:

Nσ,j (z) = − 1

αj
e
−jβσ

(
z−

dj
2

) ∫ z

xj

ejβσyEj (y) dy (2.126)

the functions Cj(z) and Sj(z) become:

Cj(z) = −1

2

(
e−jβf

dj
2 Nf,j(z) + e−jβs

dj
2 Ns,j(z)

)
(2.127)
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Sj(z) = − 1

2j

(
e−jβf

dj
2 Nf,j(z)− e−jβs

dj
2 Ns,j(z)

)
(2.128)

The modulations of the kinetic potential and RF current can be expressed

as functions of the coupling coefficients and RF voltages:

Ṽkin(z) = e−jβe(z−x1)
[
cos (βq (z − x1)) Ṽkin (x1) + jZf sin (βq (z − x1)) Ĩ (x1)

]
+

−
j−1∑
m=1

Vm
2

[
e−jβf (z−zm)Mm (βf ) + e−jβs(z−zm)Mm (βs)

]
+

− Vj
2

[
e−jβf

dj
2 Nf,j(z) + e−jβs

dj
2 Ns,j(z)

]
(2.129)

We can write:

Ṽkin(z) = Ṽkin,init(z) +

j−1∑
m=1

Ṽkin,inj,m(z) + Ṽkin,el(z) (2.130)

where:

Ṽkin,init(z) = e−jβe(z−x1)
[
cos (βq (z − x1)) Ṽkin (x1) + jZf sin (βq (z − x1)) Ĩ (x1)

]
(2.131)

Ṽkin,inj,m(z) = −Vm
2

[
e−jβf (z−zm)Mm (βf ) + e−jβs(z−zm)Mm (βs)

]
(2.132)

Ṽkin,inj,m(z) = −Vj
2

[
e−jβf

dj
2 Nf,j(z) + e−jβs

dj
2 Ns,j(z)

]
(2.133)

and:

Ĩ(z) = Ĩinit(z) +

j−1∑
m=1

Ĩinj,m(z) + Ĩel(z) (2.134)

where:



2.4. THE SPACE-CHARGE WAVE THEORY 39

Ĩinit(z) = e−jβe(z−x1)

[
cos (βq (z − x1)) Ĩ (x1) +

j

Zf
sin (βq (z − x1)) Ṽkin (x1)

]
(2.135)

Ĩinj,m(z) = − Vm
2Zf

[
e−jβf (z−zm)Mm (βf )− e−jβs(z−zm)Mm (βs)

]
(2.136)

Ĩel(z) = − Vj
2Zf

[
e−jβf

dj
2 Nf,j(z)− e−jβs

dj
2 Ns,j(z)

]
(2.137)

The modulations of the kinetic potential and of the current at the position

z are the sum of three contributions:

• one term (with subscript init) associated to the potential and current

modulations who take place before the considered cavity;

• a sum of terms (with subscript inj ) coming from the modulations pro-

duced by the electric fields of the cavities m of the structure, before

cavity j;

• one term (with subscript el) who represents the re-modulation of the

kinetic potential or of the current inside the considered cavity j.

2.4.3.2 Induced current from the beam in cavity j

In order to calculate the current induced by the beam in cavity j, given

by:

Ĩind,j(z) = − 1

αj

∫ xj+1

xj

Ĩ(z)Ej(z)dz (2.138)

we just need to integrate the three different terms of expression (2.134). Let’s

then define:

Iinit,j(z) = − 1

αj

∫ xj+1

xj

Ĩinit(z)Ej(z)dz (2.139)
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Iinj,j(z) = − 1

αj

∫ xj+1

xj

Ĩinj(z)Ej(z)dz (2.140)

Iel,j(z) = − 1

αj

∫ xj+1

xj

Ĩel(z)Ej(z)dz (2.141)

where Ĩinit,j(z), Ĩinj,j(z) and Ĩel,j(z) are given respectively from equations

(2.135),(2.136) and (2.137).

The first contribution Iinit,j(z) can be written as:

Iinit,j(z) = −

(
1

αj

∫ xj+1

xj

cos (βq (z − x1)) e−jβe(z−x1)Ej(z)dz

)
Ĩ (x1) +

+
j

Zf

(
− 1

αj

∫ xj+1

xj

sin (βq (z − x1)) e−jβe(z−x1)Ej(z)dz

)
Ṽkin (x1)

(2.142)

The two integrals on the right of eq. (2.142) are respectively [Cj,j+1 (x1)]∗ and

[Sj,j+1 (x1)]∗ and can be expressed as functions of the coupling coefficients of

cavity j, like in equations (2.124) and (2.125). We get:

Iinit,j(z) = λIj,1Ĩ (x1) + λVj,1Ṽkin (x1) (2.143)

where:

λIj,1 =
1

2

(
e−jβf (zj−x1) [Mj (βf )]

∗ + e−jβs(zj−x1) [Mj (βs)]
∗) (2.144)

λVj,1 =
1

2Zf

(
e−jβf (zj−x1) [Mj (βf )]

∗ − e−jβs(zj−x1) [Mj (βs)]
∗) (2.145)

The second contribution Iinj,j to the induced current is given by the in-

tegration of the Ĩinj,j,m(z):

Iinj,j,m = − 1

αj

∫ xj+1

xj

Ĩinj,m(z)Ej(z)dz (2.146)
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we have:

Iinj,j =

j−1∑
m=1

Iinj,j,m (2.147)

For eq. (2.146) we get:

Iinj,j,m =
Vm
2Zf

[
Mm (βf ) e

jβf zm

(
1

αj

∫ xj+1

xj

ejβf zEj(z)dz

)
+

− Mm (βs) e
jβszm

(
1

αj

∫ xj+1

xj

ejβszEj(z)dz

)] (2.148)

These two integrals are, with the exception of a phase factor, the conjugates

of Mj (βf ) and Mj (βs), so:

Iinj,j,m = −Ytrans,j,mVm (2.149)

where the transadmittance Ytrans,j,m associated to cavity m for cavity j is

defined by:

Ytrans,j,m =
1

2Zf

[
Mm (βf ) e

−jβf (zj−zm) [Mj (βf )]
∗ +

− Mm (βs) e
−jβs(zj−zm) [Mj (βs)]

∗] (2.150)

We then obtain:

Iinj,j = −
j−1∑
m=1

Ytrans,j,mVm (2.151)

The last contribution to the induced current inside cavity j is given by:

Iel,j = − 1

αj

∫ xj+1

xj

Ĩel(z)Ej(z)dz (2.152)

or:
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Iel,j =
Vj

2Zf

[
e−jβf

dj
2

(
1

αj

∫ xj+1

xj

Nf,jEj(z)dz

)
+

− e−jβs
dj
2

(
1

αj

∫ xj+1

xj

Ns,jEj(z)dz

)] (2.153)

where the coefficient Nj (βσ) is defined by:

Nj (βσ) =
1

α2
j

∫ xj+1

xj

∫ z

xj

e−jβσ(z−y)Ej(z)Ej(y)dzdy (2.154)

We have:

Iel,j = −Yel,jVj (2.155)

where the electronic charge admittance is defined by:

Yel,j =
1

2Zf
(Nj (βf )−Nj (βs)) (2.156)

It is now possible to express the electronic charge conductance Gel,j =

< [Yel,j] as a function of the coupling coefficients associated to cavity j. In

order to do this, let’s integrate by part expression (2.154):

Nj (βσ) =
1

α2
j

(∫ xj+1

xj

ejβσzEj(z)dz

)(∫ xj+1

xj

e−jβσzEj(y)dz

)
− [Nj (βσ)]∗

(2.157)

By comparing with eq. (2.121), and separating the real and the imaginary

part we get:

< [Nj (βσ)] =
1

2
|Mj (βσ)|2 (2.158)

= [Nj (βσ)] =
1

α2
j

∫ xj+1

xj

∫ z

xj

sin (βσ (y − z))Ej(z)Ej (y) dzdy (2.159)

and we obtain the following expression for the electronic charge conductance:
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Gel,j =
1

4Zf

(
|Mj (βf )|2 − |Mj (βs)|2

)
(2.160)

While, for the susceptance Bel,j = = [Yel,j]:

Bel,j =
1

2α2
jZf

[∫ xj+1

xj

∫ z

xj

cos (βf (y − z))Ej(z)Ej (y) dzdy +

−
∫ xj+1

xj

∫ z

xj

sin (βs (y − z))Ej(z)Ej (y) dzdy

] (2.161)

The RF current induced in cavity j is then the sum of three contributions:

Iind,j = Iinit,j + Iinj,j + Iel,j (2.162)

The first one Iinit,j is the result of the kinetic potential and RF current

modulations produced before the multicavity structure:

Iinit,j = λIj,1Ĩ (x1) + λVj,1Ṽkin (x1) (2.163)

The second Iinj,j is due to the modulations of cavities before cavity j:

Iinj,j = −
j−1∑
m=1

Ytrans,j,mVm (2.164)

And the third Iel,j is due to the modulations inside cavity j:

Iel,j = −Yel,jVj. (2.165)

This space charge theory is a small signal, one-dimensional theory. It can

be used to study the interaction between a modulated beam and a sequence

of cylindrical resonators by taking in account, at every longitudinal position

in a considered cavity, the different contributions to the beam modulations

given by the previous structures and by the considered one. The combination

of the electronic equations and the circuit equations can also be used to study

the oscillation conditions and the stability of the system [20].
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2.5 Klystron design and simulation

The kinematic and the space charge theory exposed in the previous sec-

tions are not sufficient to give a complete description of the interaction be-

tween the electromagnetic structure and the beam. The first one because it

does not take in account the effect of the Coulombian repulsion between par-

ticles; and the second because it is a one-dimensional, small signal theory. In

a klystron, and in general in all the devices based on the interaction between

an electron beam and a RF circuit, the full analysis of the device behaviour

requires the use of simulation programs.

The design of klystrons lies then on an intensive utilization of simulation

codes which allow to evaluate the complete interaction in the large signals

hypothesis. The tools used in klystron design are several, but they can be

divided in two main categories:

• the 1-D Disk codes ;

• the particle in cell (PIC) codes.

In the so called ”disk codes” the beam is discretized along its axis, and

the non-linear dynamics of disks with identical mass and charge is evaluated.

The most used of these codes is probably AJDisk, who is the more advanced

and modern version of the DOS/FORTRAN based code JPNDisk [22], writ-

ten in 1982 at the Stanford Linear Accelerator Center and inspired to the

works of T. Kageyama [23] and P.J. Tallerico [8]. The equations of motion of

every disk are solved at every time step by taking in account the interaction

with both the cavities RF fields and the space charge field [24]. Every cavity

is modelized by a RLC parallel circuit who is excited by the disks transit at

the interaction gap level. The result is an RF voltage across this gap. For

every disk, the Coulombian repulsion field is expressed in his own reference

system and it is then Lorentz transformed in order to obtain an analytical

expression of the space charge field. The calculation of currents and voltages

induced in the cavities is iterated to obtain a self-consistent solution of the
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problem. The code is then a steady state code, and it does not give informa-

tion about the system transient evolution. AJDisk is capable to simulate also

multigap and higher harmonics cavities, but it does not give any information

on the reflected fields from the input and output cavities. It is then not very

appropriate to simulate devices with more complicated shape cavities, such

as multibeam klystrons. The other limitation is that the transverse motion is

not taken into account, since the code is 1-D, and the focusing field can not

be simulated. Even with these limitations, it is one of the most important

simulation codes used in the klystron design phase, thanks to its reliability

and fast exacution time.

The PIC codes are a more complex class of codes, widely used for plasma

physics numerical simulations. They can use a wide range of algorithms, but

they usually includes some standard steps:

• the integration of the equations of motion ;

• the interpolation of charge and current source terms to the field mesh;

• the computation of the fields on mesh points;

• the interpolation of the fields from the mesh to the particle locations.

PIC codes represent the particles with a bunch of test particles or macropar-

ticles and solve simultaneously the Maxwell equations and the relativistic

dynamic equations on a mesh interval. The macroparticles have an assigned

mass and charge and they are characterized by their positions and velocities.

The number of real particles corresponding to a super-particle must be cho-

sen such that sufficient statistics can be collected on the particle motion. The

number of simulated particles is then usually very large (> 105), and often

the particle mover is the most time consuming part of a PIC code. Thus,

it is required to be of high accuracy and speed and much effort is spent on

optimizing the traking routine, which can be either implicit or explicit. The

Maxwell equations are solved with numerical methods that are usually Fi-

nite Difference Methods (FDM), Finite Element Methods (FEM), or spectral

methods, like the Fast Fourier Transform (FFT).
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With the FDM, the continuous domain is replaced with a discrete grid of

points, on which the electric and magnetic fields are calculated. Derivatives

are then approximated with differences between neighboring grid-point values

and thus partial differential equations are turned into algebraic equations.

Using FEM, the continuous domain is divided into a discrete mesh of ele-

ments. The partial differential equations are treated as an eigenvalue problem

and initially a trial solution is calculated using basis functions that are lo-

calized in each element. The final solution is then obtained by optimization

until the required accuracy is reached.

Also spectral methods transform the partial differential equations into

an eigenvalue problem, but this time the basis functions are high order and

defined globally over the whole domain. The domain itself is not discretized

in this case, it remains continuous. Again, a trial solution is found by insert-

ing the basis functions into the eigenvalue equation and then optimized to

determine the best values of the initial trial parameters.

PIC codes, like MAGIC [25] or CST Particle Studio [26], are the most

important simulation tools used to simulate complete klystron devices with

high accuracy. They are normally used after that the “electric project” has

been done with the faster Disk codes. The PIC codes goal is to mimic nature,

in order to verify that the designed device behaves as desired. Diagnostics

allow the researcher to observe the system, and interpret what is happening

in a physical sense: they give a 2-D or 3-D descriprion of the system and

complete information on the cavity fields, including the transient evolution.

At the same time they require the complete electromagnetic project of the

device to be simulated and also a considerable computational time, expecially

if we want to perform start-to-end simulations.

Among PIC codes, a particular mention has to go to the so called gun

codes, like the code MICHELLE: this is a general purpose two-dimensional

and three-dimensional charged particle beam optics code [27]. MICHELLE

has models for both equilibrium flow particle trajectories and initial-value

time-dependent beam trajectories. It self-consistently computes the emis-
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sion and transport of charged particles in the presence of electrostatic and

magnetostatic fields. The charged particles contribute to the static fields,

and the static fields act on the charged particles. The equilibrium flow parti-

cle model is also known as a steady-state static PIC code or a gun code. The

time-dependent model is an electrostatic time-domain particle-in-cell code.

The finite-element field solver computes the electrostatic and magneto-

static potentials, the latter a full vector potential in 3-D. The field solver

works with both multiblock structured grids and unstructured grids and it

is coupled with particle trackers for both mesh types.

The basic algorithm starts off by solving Laplace’s equation for the elec-

trostatic potential, since no particles exist in the problem on the very first

cycle [28]. Once the fields are solved to some accuracy, the Particle Track-

ing Algorithm begins. In this algorithm, particles are tracked in fixed fields,

and they are advanced at every time step. The system is then queried for

remaining particles. If particles remain in the system, those particles are ad-

vanced another time step. This continues until no particles remain, signaling

that the particle advance loop is completed. At this time, one complete cycle

(field solver followed by a complete particle tracking through the system) has

been completed, and a convergence test is done to determine if the calculation

should continue. If convergence has not been met, then the algorithm returns

to the field solution and starts another cycle, where the accumulated particle

sources are now used to solve Poisson’s equation. Then, in these updated

fields, the particles are traced once again, and a test for convergence done

once again. This cycle continues until convergence is met. The converged

solution will represent the equilibrium, steady-state self-consistent solution

of the system being modeled.

2.6 Subject of the present work

In the previous section we described the working algorithm implemented

in the code MICHELLE in order to obtain a steady-state self-consistent so-

lution for the system in presence of static fields. In the present work, we
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will develop a steady state and self-consistent algorithm valid also for RF

fields who can be applied to the case of klystron cavities, feeded or not.

This will be implemented to write a klystron simulation code who finds a

steady state solution for the device. The simulation algorithm is based on

the search of the steady state solution inside the RF cavities by iteratively

solving the power balance equation inside the resonator. The solution allows

to determine the amplitude and phase of the electromagnetic field inside the

structure starting from the fundamental cavity mode. The latter can be the

analytical pillbox field (as a first approximation), or can be imported by 2-

D electromagnetic simulation codes such as SUPERFISH [29], or from the

Finite Element Method based code developed at the Stanford Linear Accel-

erator Center by Prof. Sami Tantawi [30]. The fundamental theory necessary

to obtain the formulae used to develop the simulation algorithm is exposed

in chapter 3.

Chapter 4 is dedicated to the numerical method to be used to integrate

the particles equations of motion in the algorithm. It is known that nu-

merical methods such as the ordinary Runge-Kutta methods are not ideal

for integrating Hamiltonian systems, because the numerical approximation

to a Hamiltonian system obtained from an ordinary numerical method does

introduce a non-Hamiltonian perturbation. This problem has led to the intro-

duction of methods of symplectic integration for Hamiltonian systems, which

do preserve the features of the Hamiltonian structure by arranging that each

step of the integration be a canonical or symplectic transformation.

The application of the algorithm to simple examples in absence of space

charge effects and the check of the self-consistency of the method is treated

in Chapter 5, together with a comparison with the results obtained with the

kinematic theory and with the code AJDisk.

Chapter 6 is finally dedicated to the problem of the introduction in the

code of the effects of the space charge fields inside the drift tubes and an

iterative method for the steady state solution is presented.



Chapter 3

The cavity simulation algorithm

The first stage when writing a klystron simulation code is the study of

the non linear interaction between the electron beam and the electromagnetic

field inside an RF cavity.

In the following sections we will derive the self-consistent algorithm which

finds a steady state solution for the system composed by the electron beam

plus an electromagnetic resonator, either feeded (as it is for the klystron

input cavity), or not.

This will be done by using the complex power balance inside the res-

onator in order to determine the electromagnetic field taking in account also

the beam loading. We will then obtain an equation which expresses the am-

plitude and phase of the field as a function of the beam current density and

that can be solved iteratively in order to obtain a complete description of the

mutual interaction between the electron beam and the klystron resonators.

3.1 Cavity balance equation

Let’s consider a generic electromagnetic resonator, fed from a RF driver

and with an electron beam going through it.

49
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Figure 3.1: Generic klystron input cavity.

The field in the cavity is governed by Maxwell equations:

∇× ~E = −jωµ ~H (3.1)

∇× ~H = jωε ~E + ~J (3.2)

where ~J is the fundamental harmonic of the current density produced by the

electron beam inside the cavity and ω is the frequency of the cavity field.

Since the natural modes of a resonator form a complete and orthogonal set,

the cavity field can be expanded in terms of these natural modes:

~E =
∑
i

αi~ei (3.3)

~H =
∑
i

βi~hi (3.4)

where ~ei and ~hi satisfy Maxwell equations with the absence of the excitation

term ~J :

∇× ~ei = −jωiµ~hi (3.5)

∇× ~hi = jωiε~ei (3.6)



3.1. CAVITY BALANCE EQUATION 51

By substituting the expansions (3.3) and (3.4) in equation (3.1) we get:

∇×
∑
i

αi~ei = −jωµ
∑
i

βi~hi (3.7)

Then, inverting the curl with the sum, and by using the (3.5) and (3.6):

∑
i

αi(−jωiµ~ei) = −jωµ
∑
i

βi~hi (3.8)

Finally, multiplying by ~hi and integrating over the volume of the cavity, due

to mode orthogonality we get:

βi =
ωi
ω
αi (3.9)

The last relation is true, in general, only if the cavity is ideal, because in

this case it is right to invert the sum and the curl in equation (3.7); if the

cavity has losses, the series (3.3) and (3.4) are not uniformly convergent on

the cavity walls and we are not allowed to write eq. (3.8). Anyway, if the

cavity is driven at a frequency that is close to the resonant frequency of a

particular mode (i.e. the fundamental), and if the quality factor of that mode

is high enough, the amplitude of that mode will be large with respect to all

others. This case is very common for klystron cavities, so we can consider

only one mode in the expansions (3.3) and (3.4), and we can also use relation

(3.9). We have then:

~E ∼= α~e0 (3.10)

~H ∼= β ~h0 (3.11)

The field in the cavity is equal to the natural field of the design mode of

the structure, multiplied by a complex coefficient, α, to be determined in

amplitude and phase. To get an expression for this coefficient α, we can apply

the Poynting theorem [31]: the cavity has a volume V, and it is delimited by

a surface S, as in fig.(3.2):
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Figure 3.2: Generic coupled cavity.

1

2

∫
S

(
~E × ~H∗

)
· n̂dS = jω

(
1

2
ε

∫
V

~E · ~E∗dV − 1

2
µ

∫
V

~H · ~H∗dV
)

+

− 1

2

∫
V

~E · ~J∗beamdV

The surface S is just inside the cavity walls so that in the expression of the

current density we don’t have to consider the current flow on the metal, but

only the beam contribute. Let’s now consider each term of equation (3.12)

separately.

The first integral can be written as:

1

2

∫
S

(
~E × ~H∗

)
· n̂dS =

1

2

∫
S1

(
~E × ~H∗

)
· n̂dS +

1

2

∫
S2

(
~E × ~H∗

)
· n̂dS

(3.12)

The last term in eq. (3.12) represents the total power flux across the waveg-

uide aperture, and it can be written by using the transmission line formalism

[32]; so we have:

1

2

∫
S

(
~E × ~H∗

)
· n̂dS = −1

2

(
V + + V −

) (
I+ + I−

)∗
+

∫
S2

(
~E × ~H∗

)
· n̂dS

(3.13)
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The integral on the surface S2 is not zero for a lossy cavity; we can then use

the Leontovich-Schelkunoff condition for a good conductor [33] [34]:

n̂× ~E =
1 + j

σd

(
n̂× ~H

)
× Ê (3.14)

where σ is the conductivity and d is the skin depth; we are assuming that,

in the good conductor, the fields are parallel to the surface, and propagate

normally to it, with magnitudes that depend only on the tangential magnetic

field that exist just outside the surface. So we have that just outside the

surface there is a small tangential electric field given by eq. (3.14). In this

approximation there is also a small normal component of ~H just outside the

surface. The existence of a small tangential component of ~E outside the

surface (in addiction to the normal ~E and tangential ~H) means that there is

power flowing into the conductor.

The last integral in equation (3.13) becomes then:

1

2

∫
S2

(
~E × ~H∗

)
· n̂dS =

1

2

∫
S2

~H∗ ·
(
n̂× ~E

)
dS =

1

2

1 + j

σd

∫
S2

∣∣∣n̂× ~H
∣∣∣2 dS
(3.15)

On the surface S2 we can assume that the magnetic field is purely tangential

and approximate [35]:

n̂× ~H ∼= β ~H0 (3.16)

Eq.(3.15) becomes then:

1

2

∫
S2

(
~E × ~H∗

)
· n̂dS =

1

2

1 + j

σd

∫
S2

∣∣∣β ~h0

∣∣∣2 dS (3.17)

We can now express the right member of the last equation by using the

definition of the quality factor Q0 of the cavity:

1

2σd

∫
S2

∣∣∣β ~h0

∣∣∣2 dS =
ω0

Q0

|β|2 u (3.18)

where u = 1
2
ε0
∫
V
|~e0|2 dV . The integral over the surface S2 becomes then:
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1

2

∫
S2

(
~E × ~H∗

)
· n̂dS = (1 + j)

ω0

Q0

|β|2 u (3.19)

Substituting equations (3.13) and (3.19) in eq. (3.12) we have that the power

balance equation for the cavity is :

−1

2

(
V + + V −

) (
I+ + I−

)∗
= − (1 + j)

ω0

Q0

|β|2 u+ jω0 |α|2 uδ+

− 1

2
α

∫
V

~e0 · ~J∗beamdV

where δ = ω
ω0
− ω0

ω
.

The left side of equation (3.20) contains the power flowing across the

waveguide aperture surface; the incoming wave V + is given by:

V + =
√

2Z0PINe
jΦ+

(3.20)

while V − is the outcoming wave, i.e. the wave that comes back toward the

generator from the cavity aperture, and it is given by the superposition of a

reflected wave and an emitted wave:

V − = Vrefl + Ve = ΓV+ + Ve (3.21)

If the cavity aperture is small enough we can assume that the reflection

coefficient Γ is equal to -1, and obtain:

V − = ΓV+ + Ve = −V + + Ve (3.22)

We then have that the first member of the balance equation becomes:

− 1

2

(
V + + V −

) (
I+ + I−

)∗
=

1

2Z0

VeV
∗
e −

VeV
+∗

Z0

(3.23)

with:

Pe =
ω0U

Qext

=
ω0 |α|2 u
Qext

(3.24)
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By substituting the previous expression in eq.(3.20) we have:

ω0 |α|2 u
Qext

− VeV
+∗

Z0

= − (1 + j)
ω0

Q0

|β|2 u+ jω0 |α|2 uδ −
1

2
α

∫
V

~e0 · ~J∗beamdV

(3.25)

To get an equation for the complex coefficient α we need now an expres-

sion for the emitted wave Ve. In order to do this, we can observe that the

amplitude of the emitted wave from the cavity depends only on the stored

energy, while, if there is no beam, its phase can be expressed as a function

of the phase of the incoming field V +; if there is also the beam, it depends

also on the phase of the field inside the cavity (i.e., on the phase of α) [36].

We can then start by getting Ve from equation (3.25) for Jbeam = 0.

Ve =
ω0 |α|2 uZ0

|V +|

(
1

Qext

+
x2

Q0

+ j

(
x2

Q0

− δ
))

ejΦ
+

(3.26)

where x = ω0

ω
and Φ+ is the phase of the incoming wave. Since from the

definition of the external Q we also have:

|Ve| =

√
2ω0 |α|2 uZ0

Qext

(3.27)

we can write (without the beam):

Ve =

√
2ω0 |α|2 uZ0

Qext

e
j

(
Φ++arctan

(
x2−Q0δ

Q0−Qextx2

))
(3.28)

And finally, if the beam is in the cavity, we have to take in account also the

phase of the field inside the cavity (phase of the coefficient α):

Ve = α

√
2ω0 |α|2 uZ0

Qext

e
j

(
Φ++arctan

(
x2−Q0δ

Q0−Qextx2

))
(3.29)

By substituting expression (3.29) in eq. (3.25) we have the final equation for

the coefficient α:
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α∗ =
2
√

ω0uPIN
Qext

e
j

(
Φ++arctan

(
x2−Q0δ

Q0−Qextx2

))
− 1

2

∫
V
~e0 · ~J∗beamdV

ω0u
(

1
Qext

+ x2

Q0
+ j

(
x2

Q0
− δ
)) (3.30)

We now have a complex expression for the amplitude and phase of the

electric field inside the klystron cavity. The magnetic field coefficient can

then be obtained from eq. (3.9).

The first term in eq.(3.30) is due to the input power coming from the

waveguide (PIN), while the last integral represents the interaction between

the cavity field and the current density due to the electron beam. This current

density can be represented by the sum of N individual electron currents:

~JBtot =
N∑
i=1

qi~viδ (~r − ~ri) (3.31)

where qi is the charge of particle i. The fundamental harmonic of this current

is given by:

~Jbeam =
2

T

(∫ T

0

~JBtote
−jωτdτ

)
ejωt =

=
2

T

(
N∑
i=1

qi

∫ T

0

~vi (τ) δ (~r − ~ri) e−jωτdτ

)
ejωt

(3.32)

The term representing the interaction between the electron beam and the

electric field in eq. (3.30) becomes then:

∫
V

~e0
∗ · ~Jbeam =

2

T

N∑
i=1

qi

∫ L

0

∫ R

0

∫ 2π

0

ejωt~e0
∗ (ρ, z, t) ·

·
∫ T

0

~vi (τ)
δ (ρ− ρi) δ (z − zi) δ (φ− φi)

ρi
e−jωτdτρdρdφdz

(3.33)

where ~e∗0 = ê0e
−jωt.
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Since we don’t know when an electron will leave the interaction region

(particles with different initial conditions spend different times inside the

cavity gap), but we know where it will leave, it is more suitable to evaluate the

velocities and positions of the electrons in terms of the longitudinal position

z. To this end we change the variables inside the δ function appearing in

equation (3.33) from t to z according to:

δ (z − zi) =
δ (t− ti)

dz
dt

(3.34)

Substituting into (3.33) we get:

∫
V

~e0
∗ · ~Jbeam =

2

T

N∑
i=1

qi

∫ L

0

ê0 (ρi, z) ·
∫ T

0

~vi (τ)

vzi (τ)
δ (τ − τi) e−jωτdτdz =

=
2

T

N∑
i=1

qi

∫ L

0

ê0 (ρi (z) , z) e−jωt(z) · ~vi (ti (z))

vzi (ti (z))
dz =

=
2

T

N∑
i=1

qi

∫ L

0

~e0
∗ (ρi (z) , ti (z) , z) · ~vi (ti (z))

vzi (ti (z))
dz

(3.35)

Equation (3.30) becomes then:

α∗ =
2
√

ω0uPIN
Qext

e
j

(
Φ++arctan

(
x2−Q0δ

Q0−Qextx2

))

ω0u
(

1
Qext

+ x2

Q0
+ j

(
x2

Q0
− δ
)) +

−
1
T

(∑N
i=1 qi

∫ L
0
~e0
∗ (ρi (z) , ti (z) , z) · ~vi(ti(z))

vzi(ti(z))
dz
)∗

ω0u
(

1
Qext

+ x2

Q0
+ j

(
x2

Q0
− δ
))

(3.36)

3.2 The simulation algorithm

Let’s now analyze equation (3.36): in order to get the value of the field

coefficient α we need to know the positions and the velocities of all the
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particles along all the cavity. This means that we have to solve the relativistic

equations of motion for all the N particles in presence of the electromagnetic

field given by eq (3.10) and (3.11). We can procede with the following steps:

1. assume an initial value α1 for the field coefficient;

2. integrate the equations of motion for each particle through the lenght

of the cavity ;

3. calculate the new value α2 of the field coefficient through eq. (3.36);

4. if α2 = α1 (within a certain tolerance) go to the next step; otherwise

assume a new value for α1 and go to step 2;

5. calculate the steady state solution for the electromagnetic field by

eq.(3.9), (3.10) and (3.11).

The next step is then to write the relativistic equations of motion in a

form suitable for numerical integration. This is done in the following chapter.



Chapter 4

The equations of motion

4.1 Hamiltonian systems

A dynamical system consists of an abstract phase space or state space,

whose coordinates describe the state at any instant, and a dynamical rule that

specifies the immediate future of all state variables, given only the present

values of those same state variables. Mathematically, a dynamical system

is described by an initial value problem. The implication is that there is a

notion of time and that a state at one time evolves to a state or possibly a

collection of states at a later time.

A dynamical system described by the following ordinary differential equa-

tions:

dqi
dt

=
∂H

∂Pi
(4.1)

dPi
dt

= −∂H
∂qi

(4.2)

or, in a more compact form:

dz

dt
= J∇zH (z, t) (4.3)

where the Hamiltonian H is a smooth scalar function of the extended phase

space variables z := {~q, ~P} and time t, and J is the 2d×2d canonical structure

matrix :

59
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J :=

[
0 +Id
−Id 0

]
(4.4)

is said to be Hamiltonian. If H does not depend on time (i.e. only time-

independent forces are acting), it is a constant of motion and the system

is autonomous. Similarly if the Hamiltonian is independent of one of the

configuration variables (the variable is ignorable), then the corresponding

canonical momentum is an invariant, or a first integral of motion.

Let’s now denote the solution of any differential equation ż = f (z)

through a given initial condition z0 by z (t, z0); assuming that this solution

is globally defined, we have that its value at any given point on the trajec-

tory determines the value at all later points on the trajectories; in effect, the

solution defines a mapping which take initial data to later points along the

trajectories:

Φt (z0) = z (t, z0) z0 ∈ Rk (4.5)

The map Φt is the flow map of the given system: in general, the flow map

cannot be written down explicitly but can only be approximated numeri-

cally. Each Hamiltonian system gives then rise to a family of flow maps

parametrized by time t; we have that, if we solve the differential equations

from a given point z0 up to a time t1, then we solve from the resulting point

forward t2 units of time, the effect is the same as solving the equations with

initial value z0 up to time t1+t2. In terms of the mapping, Φt1 ◦Φt2 = Φt1+t2 ,

and we say that the family of flow maps is closed under the composition op-

eration. The flow map Φ0 at t = 0 is the identity map, and every flow map

has evidently an inverse in the family:

Φ−t ◦Φt = Φ0 = id (4.6)

Much of the elegance of the Hamiltonian formulation stems from its geo-

metric structure, and in particular from the concept of symplecticness of its

flow maps and its implications for the solution behavior of an Hamiltonian
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system: we say that a smooth map Ψz on the phase space R2d is a symplectic

map with respect to the structure matrix J if its Jacobian Ψz (z) satisfies:

[Ψz (z)]T J−1Ψz (z) = J−1 (4.7)

for all z in the domain of definition of Ψ.

It can be shown that the flow map Φt of any Hamiltonian system is

symplectic [37].

The symplecticness of the flow map implies the existence of certain global

conservation laws or integral invariants related to the evolution of subsets

of phase space. In particular, it can be shown that symplecticness implies

preservation of volume (d > 1). This fact follows from Liouville’s theorem

and it implies severe and important restrictions on the possible solution be-

havior of Hamiltonian dynamical systems; in particular preservation of the

symplectic structure under numerical discratization is a very desirable prop-

erty for long term approximate integration of Hamiltonian systems.

4.2 The symplectic structure of phase space

The definition (4.7) is not always the most convenient approach to check

the symplecticness of a given map Ψ. This is true in particular if the map is

given implicitely, or of the definition involves additional variables that could,

in principle, be eliminated. In those cases, it is best to use implicit differen-

tiation combined with a definition of symplecticness in terms of differential

one- and two-forms.

Recall from differential geometry that a two-form on R2d is a skew-

symmetric bilinear function Ω (ξ, η) with arguments ξ and η in R2d. The

symplectic structure matrix:

J :=

[
0 +Id
−Id 0

]
(4.8)

introduce the symplectic two-form Ω on the phase space R2d:
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Ω (ξ, η) := ξTJ−1η ξ, η ∈ R2d (4.9)

From a geometric point of view, if we denote by ξ(i) and η(i) the projections

of ξ ∈ R2d and η ∈ R2d on the (qi, pi) coordinate planes, the two-form Ω (ξ, η),

for d > 1, is equivalent to the sum of the oriented areas of the parallelograms

spanned by the pair of vectors ξ(i) and η(i).

As we know from calculus, if f : Rm → R is a smooth function, then its

directional derivative along a vector ξ ∈ Rm, denoted here by df (ξ), is given

by:

df (ξ) =
∂f

∂z1

ξ1 +
∂f

∂z2

ξ2 + ...+
∂f

∂zm
ξm (4.10)

where the partial derivatives of f are computed at a fixed location z ∈ Rm.

The linear functional df (.) is called the differential of f at z and is an

example of a differential one-form. A particularly simple class of differentials

is provided by the coordinate functions f (z) = zi and we have:

dzi (ξ) = ξi, (4.11)

i = 1, ..,m.

Since:

df (ξ) =
∂f

∂z1

dz1 (ξ) +
∂f

∂z2

dz2 (ξ) + ...+
∂f

∂zm
dzm (ξ) , (4.12)

the set of al differentials at a point z ∈ Rm forms a linear space with

the differentials dzi as a basis. We now apply a coordinate transformation

Ψ : Rm → Rm and define:

ẑ = Ψ (z) (4.13)

as well as the transformed function:

f̂ (z) = f (ẑ) = f (Ψ (z)) (4.14)

Differentiating we obtain:
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df̂ =
∂f

∂ẑ1

dẑ1 +
∂f

∂ẑ2

dẑ2 + ...+
∂f

∂ẑm
dẑm (4.15)

in the new basis:

dẑj =
∑
i

∂Ψj

∂zi
dzi (4.16)

where Ψi is the ith component of the transformation Ψ.

To compactify the notation, we introduce the column vector of differential

one-forms:

dz = (dz1, dz2, ..., dzm)T (4.17)

with the property that dz (ξ) = ξ and hence:

df = fz · dz (4.18)

The transformation rule becomes:

dẑ = Ψz (z) dz (4.19)

and, consequentely:

dẑ (ξ) = Ψz (z) dz (ξ) = Ψz (z) ξ. (4.20)

Let us now coming back to symplectic transformations and a splitting of

variables z = (ξ, η) ∈ R2d with associated one-forms dqi, dpi, i = 1, ..., d.

Using the ordering of the two vectors ξ and η into a sequence of projections

down on to the (qi, pi) coordinate planes, the symplectic two-form defined by

(4.9) can be written as:

Ω (ξ, η) =
∑
i

[dpi (ξ) , dqi (η)− dqi (ξ) dpi (η)] . (4.21)

This suggest to introduce the wedge product of two differentials df and

dg via:
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(df ∧ dg) (ξ, η) := dg (ξ) df (η)− df (ξ) dg (η) (4.22)

and, in particular, to write, using vector notation:

Ω = dq ∧ dp (4.23)

Conservation of symplecticness, under a transformation:

q̂ = Ψ1 (q,p) (4.24)

p̂ = Ψ2 (q,p) (4.25)

reduces now to the statement that:

dq̂ ∧ dp̂ = dq ∧ dp (4.26)

In order to demonstrate (4.26) we first verify that:

dq̂ ∧ dp̂ =
1

2

(
J−1dz

)
∧ dz (4.27)

Indeed, we have:

(
J−1dz

)
∧ dz =

d∑
i=1

[dzi ∧ dzd+1 − dzd+1 ∧ dzi]

=
d∑
i=1

[dqi ∧ dpi − dpi ∧ dqi]

= 2dq ∧ dp

(4.28)

Hence (4.26) is equivalent to:

(
J−1dẑ

)
∧ dẑ =

(
J−1dz

)
∧ dz (4.29)

where

dẑ = Ψz (z) dz. (4.30)
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Applying the rule of matrix multiplication, we obtain:

(
J−1dẑ

)
∧ dẑ =

(
J−1Ψz (z) dz

)
∧ (Ψz (z) dz)

=
(
Ψz (z)T J−1Ψz (z) dz

)
∧ dz

(4.31)

and symplecticness of the map Ψ implies (4.29). The wedge product com-

bined with implicit differentiation is then a powerful tool to verify symplec-

ticness of an implicitely given transformation Ψ.

4.3 Geometric integrators

As we already said in the previous section, in general, the flow map of a

given system cannot be written down explicitely and exactly, but can only be

approximated numerically. We can say then that a numerical method Ψ∆t

can be seen as a mapping from one time level to another one which, via it-

eration, generates discrete approximations (qn,pn). Standard error analysis

can be used to demonstrate that a certain numerical method converges in

the limit of a small timestep, but in any simulation the ability to take small

timesteps is in direct conflict with the cost of a timestep and the need to

perform integrations on time intervals long enough to elicit relevant macro-

scopic behavior. The typical picture is a locally accurate approximation that

gradually drifts further from the true trajectory; the reducing of the stepsize

can reduce the rate of drift, but the qualitative picture does not change in

any significant way. Anyway it can be observed that certain methods show a

strong asymptotic stability property, if the stepsize is below some threshold

value [38] [39]. In order to better explain this concept, let’s consider a simple

harmonic oscillator:

dz

dt
= Az (4.32)

with:

A =

[
0 1
−ω2 0

]
(4.33)
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The solution at any time can be defined by a matrix (the fundamental

solution matrix), R (t):

z
(
t, z0

)
= R (t) z0, R (t) =

[
cosωt 1

ω
sinωt

−ω sinωt cosωt

]
(4.34)

which has eigenvalues µ1,2 = e±iωt, both of which lie on the unit circle. It is

also easy to verify that the determinant of R (t) is equal to one. Let’s try to

solve equations (4.32) by the one-step Eulero numerical method, defined by:

zn+1 = z + ∆tf (zn) (4.35)

The Euler’s method approximation leads to the mapping:

zn+1 = R̂ (∆t) zn, R̂ (∆t) =

[
1 ∆t

−∆tω2 1

]
(4.36)

where the propagation matrix R̂ (∆t) has the eigenvalues

λ̂1,2 = 1± i∆tω (4.37)

A numerical method is asymptotically stable if the growth of the solution

for a linear model problem is asymptotically bounded. A sufficient condition

for asymptotic stability is that the eigenvalues of the method are (i) in the

unit disk in the complex plane, and (ii) simple (not repeated) if in the unit

circle. The Euler’s method eigenvalues are both on modulus greater than one

and their powers grow exponentially fast; since the error is determined by

the powers of the eigenvalues of the matrix, this means that Euler’s method

is unstable. One manifestation of this is that the determinant of the Ja-

cobian of the transformation for one time step differs slightly from unity,

and thus the system will be damped or excited artificially. The most impor-

tant physical consequence of this fact is that the system Hamiltonian is not

preserved during the integration. The asymptotic stability does not contra-

dict the convergence of the method, since, fixing any time interval [0, T ] and
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simoultaneously driving the number of steps N to infinity as ∆t→ 0 so that

N∆t = T , we have:

lim
N→∞

(
λ̂1,2

)N
= lim

N→∞
(1± i∆tω)N = e±iωT +O (∆t) (4.38)

In some cases, it is possible to show that the eigenvalues of a numeri-

cal method applied to the harmonic oscillator lie on the unit circle in the

complex plane. This is, for example, the case of Störmer-Verlet method, or

Euler-B method. A related long-term stability property extends also to non-

linear models, and this is reflected in a qualitative agreement between the

numerical and exact solutions. This feature can be explained by making use

of the concept of symplecticity: we already seen that the symplectic prop-

erty of Hamiltonian systems carries with it geometric implications regarding

the way in which the flow map acts on sets of initial conditions. By impos-

ing the structural properties of the flow map of a Hamiltonian system on

the numerical integrator itself, we can then obtain an improved behavior in

simulations.

Recall that a map Ψ from R2d to R2d is symplectic if:

[
∂

∂z
Ψ (z)

]T
J−1

[
∂

∂z
Ψ (z)

]
= J−1 (4.39)

Equivalently, if we write

[
Q
P

]
= Ψ

([
q
p

])
, (4.40)

then the symplecticness of the map is summarized by the condition:

dQ ∧ dP = dq ∧ dp, (4.41)

in terms of the wedge product od differential one-forms. We can view a

numerical method as a mapping from one time level to another which, via

iteration, generates discrete approximations (qn,pn); any reasonable inte-

grator applied to the Hamiltonian system will preserve the symplecticness
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relation up to a certain error which is proportional to a power of the stepsize

∆t.

We will term a numerical method a symplectic integrator if the symplec-

ticess condition:

dqn+1 ∧ dpn+1 = dqn ∧ dpn, (4.42)

is preserved exactly. A symplectic integration step with a sufficiently small

step size generates a phase space portrait which is close to that of the original

system, without introducing artificial damping or excitation in the Hamilto-

nian. The problem is now to derive such symplectic integrators and to write

the equations of motion for the particles in a way suitable for them.

4.4 The integration of the equations of mo-

tion

The equations of motion for a particle moving in an electromagnetic field

can be derived from the following Hamiltonian [40]:

H =
∑
i

qiPi − L =

√
c2

∣∣∣~P − qe ~A (~q, t)
∣∣∣2 +m2c4 + qeΦ (~q, t) (4.43)

where ~P is the canonical momentum, given by:

~P = ~p− qe ~A (~q, t) (4.44)

qe is the particle charge and ~A and Φ are the vector and the scalar potential

that describe the electromagnetic field:

~E = α~e0 = −jωµ ~A−∇Φ (4.45)

~H =
ω0

ω
α~h0 = ∇× ~A (4.46)
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The equations of motion can be obtained from Hamiltonian (4.43) through

equations (4.1) and (4.2). Since the above Hamiltonian is explicitely depen-

dent on time, the system is not autonomous. Anyway it is possible to replace

the time-dependent problem with a ”pseudo time-independent” one by in-

troducing two more variables, τ and its related canonical momentum Pτ ; the

new set of variables is given by:

[
~q
τ

]
,

[
~P
Pτ

]
(4.47)

with ~q = {x, y, z} and ~P = {Px, Py, Pz}. We can then consider the following

modified Hamiltonian:

H̃ = H
(
~q, τ, ~P

)
+Pτ =

√
c2

∣∣∣~P − qe ~A (~q, τ)
∣∣∣2 +m2c4+qeΦ (~q, τ)+Pτ (4.48)

We obtain a set of 8 Hamilton’s equations:

dx

dt
=
∂H̃

∂Px
(4.49)

dy

dt
=
∂H̃

∂Py
(4.50)

dz

dt
=
∂H̃

∂Pz
(4.51)

dτ

dt
=
∂H̃

∂Pτ
(4.52)

dPx
dt

= −∂H̃
∂x

(4.53)

dPy
dt

= −∂H̃
∂y

(4.54)

dPz
dt

= −∂H̃
∂z

(4.55)
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dPτ
dt

= −∂H̃
∂τ

(4.56)

where eq. (4.52) yelds obviously τ = t. By using the following normalized

variables:

~qn =
x

λ
(4.57)

τn =
τ

T0

(4.58)

~Pn =
~P

mc
(4.59)

Pτn =
Pτ
mc2

(4.60)

tn =
t

T0

(4.61)

~An =
qe
mc

~A (4.62)

Φn =
qe
mc2

Φ (4.63)

and omitting the subscript n, we obtain, for the particle in the electromag-

netic field:

ẋ =
Px − Ax√

1 +
∣∣∣~P − ~A

∣∣∣2 (4.64)

ẏ =
Py − Ay√

1 +
∣∣∣~P − ~A

∣∣∣2 (4.65)

ż =
Pz − Az√

1 +
∣∣∣~P − ~A

∣∣∣2 (4.66)
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τ̇ = 1 (4.67)

Ṗx =

(
~P − ~A

)
√

1 +
∣∣∣~P − ~A

∣∣∣2 ·
∂ ~A

∂x
+
∂Φ

∂x
(4.68)

Ṗy =

(
~P − ~A

)
√

1 +
∣∣∣~P − ~A

∣∣∣2 ·
∂ ~A

∂y
+
∂Φ

∂y
(4.69)

Ṗz =

(
~P − ~A

)
√

1 +
∣∣∣~P − ~A

∣∣∣2 ·
∂ ~A

∂z
+
∂Φ

∂z
(4.70)

Ṗτ =

(
~P − ~A

)
√

1 +
∣∣∣~P − ~A

∣∣∣2 ·
∂ ~A

∂τ
+
∂Φ

∂τ
(4.71)

Another advantage from the introduction of the two new variables is that

the integration of equation (4.71) leads to the evaluation of the quantity
(~P− ~A)√
1+|~P− ~A|2

· ∂ ~A
∂τ

, that is proportional to the scalar product between the parti-

cle momentum and the cavity electric field. This allows us to calculate the

integral (3.33) needed to obtain the coefficient (3.30) directly while integrat-

ing the equations of motion.

The obtained equations of motion have then to be integrated numerically.

The Hamiltonian (4.48) is not separable (i.e. is not possible to write it in

the form H(~q, ~P , t) = T (~P ) + V (~q, t)). Symplectic integration methods for

general (not separable) Hamiltonians are implicit: this means that it is not

possible to calculate the state of the system at a later time directly from the

state of the system at the current time, but we have to find a solution by

solving an equation involving both the current state of the system and the

later one. A second-order implicit symplectic method is the implicit midpoint

method, defined as follows:
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zn+1 = zn + ∆tJ∇H
(
zn+ 1

2

)
(4.72)

with

zn+ 1
2 =

(zn+1 + zn)

2
(4.73)

This method is evidently implicit. For implementation purposes, it is useful

to write it as a composition of two ”half-steps”: an implicit Euler step

zn+ 1
2 = z +

1

2
∆tJ∇H

(
zn+ 1

2

)
(4.74)

followed by an explicit Euler step

zn+1 = zn+ 1
2 +

1

2
∆tJ∇H

(
zn+ 1

2

)
(4.75)

For implicit midpoint, the equation for dzn is equivalent to

dzn+1 = dzn + ∆tJHzz
dzn + dzn+1

2
(4.76)

Taking the wedge product with J−1dzn and J−1dzn+1, respectively, from the

left, we obtain:

J−1dzn+1 ∧ dzn = J−1dzn ∧ dzn + ∆tJ−1JHzz
dzn + dzn+1

2
∧ dzn

= J−1dzn ∧ dzn +
∆t

2
Hzzdz

n+1 ∧ dzn, (4.77)

and

J−1dzn+1 ∧ dzn+1 = J−1dzn ∧ dzn+1 + ∆tJ−1JHzz
dzn + dzn+1

2
∧ dzn+1

= J−1dzn+1 ∧ dzn − ∆t

2
Hzzdz

n+1 ∧ dzn. (4.78)

Here we have made use of the property of the wedge product:

dzn ∧Adzn = dzn+1 ∧Adzn+1 = 0 (4.79)
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for any symmetric matrix A ∈ R2d×2d. Summing up, we arrive at the equal-

ity:

J−1dzn+1 ∧ dzn+1 = J−1dzn ∧ dzn (4.80)

implying symplecticness of the scheme with respect to the sructure matrix

J. Observe that this argument required at no point that J be the canonical

structure matrix, but only that it be constant, skew-symmetric and invertible,

thus we have shown that the implicit midpoint method preserves any constant

symplectic structure.



74 CHAPTER 4. THE EQUATIONS OF MOTION



Chapter 5

The code

The routine described in section 3.2 has been implemented using Mathe-

matica (see Appendix A). In order to check the self-consistency of the algo-

rithm, the first step is to simulate the case of a simple pillbox input cavity

with a initially continuous beam flowing through it. In the considered case

the macro-particles will interact only with the TM010 cavity field, without

considering space charge; since we are just interested in a first check on

the consistance of the method, we can use an ideal cylindrical cavity with-

out beam pipe, so that we can employ the well-known analytic fields of the

TM010 mode.

5.1 Cavity parameters

We can start considering a cylindrical cavity driven by an input power of

250 W at 11.424 GHz and crossed by a 100 A - 100 kW continuous electron

beam. The main cavity parameters are summarized in table 5.1:

Since we are considering a cavity without beam pipe, we can use the

analytic expression of the vector potential for the TM010 cavity mode plus

the focusing field [32]:

~A = −B0

2
y~x0 +

B0

2
x~y0 + jA0Jo

(
χ0,1

√
x2 + y2

a

)
ejωt~z0 (5.1)

where χ0,1 is the first zero of the zero-order, first kind Bessel Function J0.

75
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Table 5.1: Cavity parameters

Driving frequency (GHz) f 11.424
Lenght (cm) L 0.5
Radius (cm) a 1.044

Quality factor (copper) Q0 5652
Focusing field (T) B0 0.093
Input power (W) PIN 250
Beam current (A) I0 100
Beam voltage (kV) V0 100
Beam radius (cm) Rb 0.375

The vector potential amplitude A0 is related to the field coefficient α, while

the focusing field amplitude B0 has been chosen equal to the Brillouin field√ √
2I0

ε0πa2η
3
2
√
V0

, with η = qe
m

.

The particles distribution has to be uniform in time and space to simulate

a continuous beam. In order to do this, we can then divide the RF period

in m time slots: since we have cylindrical symmetry we can choose, in every

time slot, a set of n macro-particles distribuited on the x-axis at decreasing

distances xi from the center:

xi =
R

2n
(2i− 1) i = 1, ..., n (5.2)

and with charge:

qi =
I0T

mπR2
π
(
r2
i − r2

i−1

)
i = 1, ..., n (5.3)

where:

ri =
R

n
i i = 0, ..., n (5.4)

and, obviously, nm = N is the total number of macro-particles.
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Figure 5.1: Charge of the macroparticles of a time slot as a function of the
initial x coordinate.

The two integers n and m have to be big enough so that the particle

distribution can be considered uniform. Pictures 5.2 and 5.3 show the vari-

ation of the normalized real and imaginary part of the field coefficient α as

a function of the number of time slots m, while in pictures 5.4 and 5.5 the

normalized real and imaginary part of the field coefficient α as a function of

the number of space slots n in shown.

Figure 5.2: Normalized real part of the field coefficient α as a function of the
number of time slots m.
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Figure 5.3: Normalized imaginary part of the field coefficient α as a function
of the number of time slots m.

Figure 5.4: Normalized real part of the field coefficient α as a function of the
number of space slots n.
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Figure 5.5: Normalized imaginary part of the field coefficient α as a function
of the number of space slots n.

In particular, we have that the simulation results have a strong depen-

dence on the number of space slots n (i.e. on the number of macro-particles

for every time-slot) if this number is chosen under a minimum value. In order

to optimize also the computation time we will set m = 5 and n = 12 for the

future simulations, unless otherwise specified.

We then have to choose a guess value for the field coefficient α to be used

as starting point for the algorithm described in section 3.2. A reasonable

guess can be obtained from expression (3.30) in the case of no beam current.

We obtain:

α∗ =
2
√

ω0uPIN
Qext

e
j

(
Φ++arctan

(
x2−Q0δ

Q0−Qextx2

))

ω0u
(

1
Qext

+ x2

Q0
+ j

(
x2

Q0
− δ
)) (5.5)

The input wave phase Φ+ can be set equal to zero, while the cavity resonant

angular frequency ω0 and the external quality factorQext, are parameters that

can be chosen in order to minimize the outcoming power at the entrance of

the cavity when the beam is inside. The outcoming power is given by:
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Poc =
1

2

∣∣Ve − V +
∣∣2 (5.6)

with:

Ve =

√
2ω0u

Qext

αe
j arctan

(
x2−Q0δ

Q0+Qextx
2

)
(5.7)

and:

V + =
√

2PIN (5.8)

We can first put Qext = Q0 and vary the ω0. The result is shown in fig.

5.6:

Figure 5.6: Outcoming power at the cavity entrance as a function of the
cavity resonant frequency f0 and for Qext = Q0 .

We have a minimum outcoming power for f0 = 11.450 GHz, correspond-

ing to Poc ∼= 234 W.

We can then set f0 = 11.450 GHz and vary the external Q: in this way we

can determine the optimum value for the coupling coefficient of the klystron

input resonator in order to have the mimimum outcoming power in presence

of both the beam and the RF power. The resulting curve shows a minimum

(∼= 0.01W ) in the outcoming power for Qext = 95 (fig. 5.7).
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Figure 5.7: Outcoming power at the cavity entrance as a function of the
external Q and for f0 = 11.445 GHz

.

5.2 Two cavity klystron

The second step is to verify the self-consistency of the algorithm when it

is applied to a cavity with no RF power coming from a driver. We can, for

example, simulate the passage of a velocity modulated beam into an output

klystron cavity. In this case the input power is set equal to zero and the

beam itself is responsible of the field excitation. No space charge field is

taken in account. The cavity is coupled with an output waveguide and in

this case the resonant frequency and the external Q have to be chosen in

order to maximize the outcoming power. The modulated beam can be, in

the simplest case, the beam coming from the input cavity followed by a drift

space. In this situation we have the basic case of a two cavity klystron. The

drift tube length is also a free parameter to be optimized.

Let’s then consider again the case of an ideal pillbox cavity (i.e. without

beam pipe). The main cavity parameters are the same of the input one but

this time we have that PIN = 0. As we did for the input cavity, we start

optimizing the cavity resonant frequency ω0. The results are summarized in
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fig. 5.8 for Qext = 100. The optimum resonant frequency is 11.364 GHz. The

beam current density is the one obtained with a drift tube length of 30 cm.

Figure 5.8: Output power from the second cavity as a function of the output
cavity resonant frequency f02 and for Qext2 = 100 GHz

.

In fig. 5.9 is then shown the value of the emitted power as a function of

the external Q and for f02 = 11.364 GHz.

Figure 5.9: Output power from the second cavity as a function of the external
Q and for f02 = 11.364 GHz

.
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Finally, the drift tube length can be chosen in order to maximize the

output power (i.e. the emitted power from the second cavity) and the total

efficiency of the two cavity klystron. We have the maximum for a drift length

of 30 cm:

Figure 5.10: Output power from the second cavity as a function of the drift
length.

The corrensponding efficiency of the device is given by:

η =
POUT
V0I0

= 30% (5.9)

Figure 5.11: Two cavity klystron efficiency as a function of the drift length.
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5.3 Comparison with other simulation tools

The previous results are a check of the self-consistency of the algorithm.

The simulations can be now compared to the results obtained from other

design tools. We will consider two different other methods: the first one is the

simple kinematic klystron analysis, which does not include the contribution

of the space charge fields. The second one will be the 1-D code AJDisk, a one

dimensional simulation tool for round and sheet beam klystrons developed

at the Stanford Lineear Accelerator Center and currently used to run fast

large signal design simulations with the inclusion of the space charge field.

5.3.1 The klystron kinematic analysis

The kinematic analysis below provides a simple description of the klystron

passive cavities by a parallel equivalent circuit. The input cavity is repre-

sented by a voltage V1 which modulates the particles momenta. We consider

that the interaction gaps are very narrow, and we neglect the finite transit

time of the entering electrons. The beam of electrons, which has been accel-

erated by a potential V0 to a momentum p0, traverses the first gap, where

it is acted by an RF voltage V1 cos (ωt), reduced by a “coupling coefficient”,

M (always less than 1). The latter modifies the gap voltage due to the finite

transit time, resulting in a lower effective voltage modulating the beam. The

expression for M is given by:

M (βe) =

∫ d
0
Ez (z) ejβezdz∫ d
0
Ez (z) dz

(5.10)

where d is the gap length, and βe = ωmγ
p0

is the beam propagation factor. The

electrons enter, and leave the first gap at time t0 with a modified momentum

p1, then drift for a distance l, and arrive at the second gap at time t1. We

have (using normalized variables):

t0i = idt i = 1, ..., N dt =
1

N
(5.11)

where N is the number of particles in every period,
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p1i = p0i +M1

√
1 + p2

0i

p0i

V1 cos (ωt0i) (5.12)

t1i = t0i +

√
1 + p2

1i

p1i

l (5.13)

The first harmonic component of the beam current at the second gap is

given by:

I1 = − I0

N

N∑
i=1

(
ejωt1i

)
eiωt (5.14)

This current induces a voltage V2 in the second cavity; the latter has an

impedence:

Z =

R
Q

1
Q

+ jδ
(5.15)

with δ = ω
ω0
− ω0

ω
. We have then:

V2 = ZI1 (5.16)

This voltage acts back on the beam, resulting in a modified momentum

p2 for all the particles:

p2i = p1i +M2

√
1 + p2

1i

p1i

<[ZI1] (5.17)

Similar equations can be written for all the klystron cavities, in order

to obtain informations on the beam current and on the induced voltage in

every cavity, and on the particles longitudinal phase space. The coupling

coefficient M can be easily calculated analitically if we use the ideal pillbox

field, or determined with the help of electromagnetic simulation codes like

SUPERFISH for more complicated cavity shapes.
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5.3.2 AJDisk

AJDisk is a one-dimensional code developed at SLAC during the past 8

years in order to create a robust, user friendly, and accurate version of the

already existing DOS/FORTRAN based code JPNDisk [22]. Today, AJDisk

is the primary code used for accurate one dimensional simulations of round

and sheet beam klystrons in SLAC’s klystron department. The code works

by splitting the beam into a series of disks (or plates for sheet beam devices)

and allowing them to move only in the direction of propagation. The disks

can then be acted on by both cavity fields and space charge forces. This

approach allows for accurate but simplified modeling of beam dynamics and

tube performance. The algorithm of AJDisk is fundamentally simple: a

simplified flow chart is shown in fig. 5.12 [24]:

AJDisk starts initializing the data such as beam loading admittance (Gb

and Bb), gap quality factors and impedances (Qn and Zn), etc. The input

voltage is then calculated from the desired input power, while all the other

voltages are set to zero. After these steps, the program is ready to move

the beam through the tunnel. To do this the electron beam is sliced into

a set of charged disks. The motion of each disk is governed by the space

charge from other disks and/or the electric field associed with each cavity.

The expressions for these fields are:

Es = − qdisk
πb22ε0

Ndisk∑
d=0

∞∑
i=0

4

[
J1

(
µi

b
a

)
µiJ1 (µi)

]2

e

(
−µi|z−z0|

γa

)
sign (z − z0) (5.18)

Ec = |Vn| f (z) cos (ωt+ θ) (5.19)

where Es is the space charge field from all the other disks and Ec is the

circuit field associated with a cavity. It should also be noted that µi is the

ith zero of the J0 Bessel function, γ is the radial propagation constant, and

a and b are the pipe radius and the beam radius.
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Figure 5.12: Simplified flow chart of AJDisk algorithm.

The space charge field can be broken down: the first part of the equa-

tion before the summation corresponds to the magnitude of the space-charge

electric field at the location of the disk (the maximum value). The second

summation simply corresponds to an exponential decay with axial distance

(the magnitude is equal to one at the location of the present disk). The

first summation just sums the fields from all the other disks. For further

discussion see Rowe [41].
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The cavity field is much simpler to understand: the field is described by

multiplying the gap voltage by the shape factor of the field f (z) and by an

oscillating term. The field oscillation is represented by the cosine term and

the field shape is given by the Gaussian approximation:

f (z) =
k√
π
e−k

2(z−zcenter)2 (5.20)

k can be chosen by fitting the Gaussian profile with the actual field (simulated

by SUPERFISH [29]), or it is possible to calculate M for a Gaussian cavity

field and then solve for k:

k =
1

2

βe√
− lnM

(5.21)

where β is the electron propagation constant.

Returning to the algorithm, AJDisk evaluates for each disk the equation

of motion based on the field E = Es + Ec. The induced current for each

cavity is then calculated:

Iind =

∫ ∞
−∞

ρ · v · f (z) · dz (5.22)

where ρ is the one dimensional charge density, v is the velocity found af-

ter the evaluation of the equations of motion and f (z) is used to represent

the coupling. The fundamental component of this current is calculated us-

ing a Fourier expansion, and the induced voltage is then given by the gap

impedance times the fundamental component of the induced current. The

evaluation of the equations of motion and the calculation of the induced

voltage are repeated until the resulting voltage from the last iteration is the

voltage from the present iteration to within some predefined percentage error.

The next step is then the calculation of the gain and efficiency.

AJDisk evaluates two kind of efficiencies; the kinetic efficiency is:

ηk = 1−

∑Ndisk
d=0

(
1−

(vexit,d
c

)2
)−1/2

− 1∑Ndisk
d=0

(
1−

(vinlet,d
c

)2
)−1/2

− 1

(5.23)
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where vexit is the velocity at the end of the output region and vinlet is the

velocity at the beginning of the output region. A simple way to look at this

equation is to break it down, into the form KEinlet−KEoutlet
KEinlet

.

The electronic efficiency is:

ηe = Re

[
VN · I∗ind,N
2 · V0 · I0

]
(5.24)

where N refers to the output cavity. This equation finds the percentage of

the beam power which is converted to RF power in the output gap.

The final step is to display the results. Fig. 5.14 shows an example of

the output plots given by AJDisk.

Figure 5.13: Example of the output given by AJDisk after the simulation of
the SLAC 5045 S-band klystron.

One of the major restrictions of AJDisk is that it does not allow to obtain

“electromagnetic” information: for example, it is not possible to obtain the

cavity fields in presence of the beam, or to calculate the reflected power at

the entrance of the input and output cavities.
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5.3.3 Main results

Let’s consider now the case of the first cavity of a klystron working at

11.424 GHz followed by a drift and by a second passive cavity. Since the

kinematic analysis does not consider the contribution of the space charge

fields, it can be interesting to start the comparison with the new code from

here. As a first example let’s consider the following parameters:

Table 5.2:

Driving frequency (GHz) f 11.424
Focusing field (only considered in the new code) (T) B0 0.093

Input power (W) PIN 250
Beam current (A) I0 10
Beam voltage (kV) V0 100
Beam radius (cm) Rb 0.375

First cavity lenght (cm) L1 0.3
First cavity resonant frequency (GHz) f1 11.424

First cavity quality factor Q0 3729.66
First cavity external Q Qe 95

Drift length (cm) L2 10
Second cavity lenght (cm) L1 0.5

Second cavity resonant frequency (GHz) f2 11.454
Second cavity quality factor Q0 5415.57

Second cavity external Q Qe ∞

The following graphics show the value of the particles normalized z-

momentum before and after the first cavity, and after the drift space (before

the second cavity) obtained with the kinematic analysis (blue dots) and with

the new code (pink dots).
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Figure 5.14: Particles normalized z-momentum as a function of the normal-
ized arrival time before the first cavity obtained with the klystron kinematic
theory (blue) and with the new code (pink).

Figure 5.15: Particles normalized z-momentum as a function of the normal-
ized arrival time after the first cavity obtained with the klystron kinematic
theory (blue) and with the new code (pink).
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Figure 5.16: Particles normalized z-momentum as a function of the normal-
ized arrival time after the drift space obtained with the klystron kinematic
theory (blue) and with the new code (pink).

The two methods show a good agreement if we consider that the klystron

kinematic analysis does not take in account the finite cavity length; this

explains the displacement between the two graphics on the horizontal axis.

Furthermore, the kinematic theory allows to consider only on-axis particles.

The other important difference is in the fact that the klystron kinematic

analysis calculates only the action of the first cavity field on the particles,

but it does not consider the effect of the beam back on the cavity, while in the

new code a steady state solution is found. These difference is more evident

if we look at the particles normalized z-momentum after the second cavity:
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Figure 5.17: Particles normalized z-momentum as a function of the normal-
ized arrival time after the second cavity obtained with the klystron kinematic
theory (blue) and with the new code (pink).

In this case the beam current induces a voltage in the second cavity; this

voltage acts again on the beam, modifying the current, and so the cavity field

itself is again affected. This effect is neglected in the kinematic analysis,

in which the voltage induced in the second cavity is calculated by simply

multiplying the beam current by the cavity impedence, while it is taken into

account in the research of the steady state solution in the new code; the more

evident difference is that the momentum spread between all the particles

obtained with the mathematica code is greater than the one obtained with

the ballistic theory.

Let’s now compare the results obtained with the ones from the code

AJDisk. Since the new code simulations made so far do not consider the

space charge fields contribution, we will consider only very low current cases.

The following table shows the main parameters.



94 CHAPTER 5. THE CODE

Table 5.3:

Driving frequency (GHz) f 11.424
Focusing field (only considered in the new code) (T) B0 0.093

Input power (W) PIN 250
Beam current (A) I0 5
Beam voltage (kV) V0 100
Beam radius (cm) Rb 0.375

First cavity lenght (cm) L1 0.3
First cavity resonant frequency (GHz) f1 11.424

First cavity quality factor Q0 3729.66
First cavity external Q Qe 95

Drift length (cm) L2 5
Second cavity lenght (cm) L1 0.5

Second cavity resonant frequency (GHz) f2 11.454
Second cavity quality factor Q0 5415.57

Second cavity external Q Qe ∞

The following graphics show the value of the particles longitudinal v/c as

a function of z obtained with the new code and with AJDisk respectively.

Figure 5.18: Particles v/c as a function of the longitudinal distance z.
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Figure 5.19: Particles v/c as a function of the longitudinal distance z.

Since we considered a low current and a short drift length, the results

show a good agreement. This is obviously not true anymore if we consider

an higher current, and if we let the particles drift for a longer distance before

the second cavity: in this case we have that the space charge fields create

oscillations in the beam that modify dramatically the beam dynamics. As an

example, we can consider the case of a higher current beam (25 A) drifting

for a 10 cm distance after the second cavity:

Figure 5.20: Particles v/c as a function of the longitudinal distance z.
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Figure 5.21: Particles v/c as a function of the longitudinal distance z.

As one can see from the AJDisk simulation, the space charge forces

strongly contribute to the velocity modulation process and to the maximum

velocity spread that can be reached inside the beam. This means, obviously,

that also the beam current, and the voltage induced in the second cavity will

be affected. The following plots show the maximum vz/c spread and the nor-

malized induced voltage into the second cavity as a function of the logarithm

of the beam current obtained with the three methods: the kinematic klystron

theory (green dots), the new code (blue dots) and AJDisk (red dots):

Figure 5.22: Maximum v/c spread after the second cavity as a function of
the beam current for a drift length of 10 cm.
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Figure 5.23: Particles v/c as a function of the beam current for a drift length
of 10 cm.

It is clear that, even for very low perveance klystrons, a realistic simula-

tion of the device requires to take in account the contribution of the space

charge fields, at least in the drift tubes. This problem will be treated in

the following chapter. Finally, the cavity fields analytic expression that we

used so far is not appropriate anymore if the klystron cavities have a more

complicated shape, as it is in the reality, expecially if we think to a multigap

output cavity; in this case the cavity fundamental mode field has to be im-

ported from an electromagnetic 2-D simulation code, such as SUPERFISH,

or the 2-D FEM based code developed by Prof. S. Tantawi at SLAC.
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Chapter 6

The space charge field

6.1 Introduction

The three dimensional calculation of the Coulomb repulsion between par-

ticles is one of the most complicated aspects in a particle interaction code.

Since the particles are moving it requires the solution of the wave equation

with boundary conditions which depend on the shape of the klystron’s cavi-

ties and pipe. Besides, these calculations have to be performed many times

in order to find the desired steady state solution.

An iterative method which uses the analytical expressions of the space

charge potentials will be treated in the following sections; it will become

soon evident that the analytical approach requires many approximations to

be done if we want to preserve the simplicity and the speed of the code.

However, the presented algorithm can be easily implemented also by using

the fields computed with numerical electromagnetic solvers and this could

definitely improve the precision and the speed of the simulations.

6.2 The space charge field

The space charge force on a test particle due to the potential generated by

the distribution of all the other particles at time t depends on the position of

all these particles at that instant of time. Let’s start by finding an expression

for the space charge potential generated by a distribution of point charges.
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A convenient approach to the calculation of the space charge potential

can be splitted in to three conceptual blocks: the first one is to find the

potential generated by a single particle inside the beam pipe in the particle

frame. This allows us to solve the static Poisson equation instead of the wave

equation.

In the second block we can then calculate the electromagnetic field in the

particle frame and perform a Lorentz transformation from the particle frame

to the laboratory frame, obtaining both an electric field and a magnetic field.

Finally, we have to sum the fields generated by all the particles.

Unfortunately, this process is still very complicated for several reasons:

first of all, the Lorentz transformation is not trivial if the domain’s boundaries

used to obtain the potentials are not longitudinally uniform, as it is if the

beam pass from the pipe to a complicated shape cavity and again to the pipe.

The first simplification that we will do is then to consider the space charge

forces only inside the drift tubes between the cavities. This approximation

can be justified by observing that the cavity length in a klystron is usually

small with respect to the one of the pipes. Furthermore, if the beam per-

veance is not too high (as we assume, if we want an high efficiency device)

we can neglect the effects of the space charge forces with respect to the RF

fields inside the klystron resonators. The main action of the space charge

fields can then be observed while the particles are drifting.

Unfortunately, this approximation is not sufficient to fully solve the prob-

lem. The second issue is that, if we decide to solve the Poisson equation only

inside the pipe (by somehow “neglecting” the discontinuity constitued by

the cavities), we have to solve the problem of finding the potential due to a

point charge inside an infinite conducting cylinder. This has been treated by

several authors [42] [43] and it will not be discussed here.

The important result is that the expression obtained when solving the

Poisson equation inside the infinite cylinder is given by an infinite sum which

contains Bessel functions, as shown in the following expression:
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G (~r, ~r′) =
∞∑
n=0

δn
2πε0b

∞∑
k=1

Jn (ξnkr/b) Jn (ξnkr
′/b)

ξnkJ2
1 (ξnk)

cos [n (φ− φ′)] e−ξnk
|z−z′|
b

(6.1)

where Jn(x) represents the Bessel function of order n, whose zeros are ordered

as ξnk, and Neumann’s symbol δn is defined as:

δn =

{
1 n = 1,

2 n = 2, 3, 4...
(6.2)

To make eq. (6.1) practical the summation must be performed to some

finite value of k. The following picture shows the value of the amplitude of

the longitudinal electric field (averaged over the transverse beam section) as

a function of the number of terms of the summation [24]:

Figure 6.1: Longitudinal electric field (averaged over the transverse beam
section) as a function of the number of terms of the summation over k in eq.
(6.1).

The evaluation of expression (6.1) has to be performed for every particle

of the beam at every iteration. This would appreciably lengthen the com-

puting time for the simulation. Furthermore, equation (6.1) is singular on
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the transverse plane. For z = z0 the longitudinal electric field has to be

equal to zero, but this does not come out from equation (6.1). For all these

reasons we will consider, as a first step in the implementation of the space

charge routine, the simple expression of the scalar potential of a point charge

in the free space. This approximation will produce an error expecially on

the longitudinal component of the space charge field, as it is possible to see

in fig. (6.2) that shows the electric field lines between bunches in the case

of: a) and infinite beam; b) a finite beam in free space; c) a finite beam in

conducting cylinder. This error can be taken into account by introducing

some corrective factors, and it can be still a good compromise if we want to

obtain a code which is not extremely time consuming.

Figure 6.2: Weakening of the longitudinal fields between bunches due to the
presence of the drift tube.
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In the particle frame we then have that the potential generated from

particle i is:

V ′i (x′, y′, z′) =
qi

4πε
√

(x′ − x′i)
2 + (y′ − y′i)

2 + (z′ − z′i)
2

(6.3)

~A′i (x
′, y′, z′) = 0 (6.4)

where the superscript “ ′ ” indicates the particle frame quantities.

The electromagnetic field can then be obtained from:

~E ′ = −∇′V ′ − ∂ ~A′

∂t′
(6.5)

~B′ = ∇′ × ~A′ (6.6)

And it has then to be Lorentz transformed through [44] [45]:



~E‖ =
(
~E ′ − ~v × ~B′

)
‖

~E⊥ = γ
(
~E ′ − ~v × ~B′

)
⊥

~B‖ =
(
~B′ + ~v

c2
× ~E ′

)
‖

~B⊥ = γ
(
~B′ + ~v

c2
× ~E ′

)
⊥

(6.7)

where ~v is the particle velocity.
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Figure 6.3: Electric field of a charge moving with the constant speed v = 0.9c
(b), compared with the field of a charge at rest (a).

We then get, for particle i:

Exi (x, y, z) =
γqi (x− xi)

4πε
[
(x− xi)2 + (y − yi)2 + γ2 (z − zi)2] 3

2

(6.8)

Eyi (x, y, z) =
γqi (y − yi)

4πε
[
(x− xi)2 + (y − yi)2 + γ2 (z − zi)2] 3

2

(6.9)

Ezi (x, y, z) =
γqi (z − zi)

4πε
[
(x− xi)2 + (y − yi)2 + γ2 (z − zi)2] 3

2

(6.10)

Bxi (x, y, z) =
βγ

c

qi (y − yi)

4πε
[
(x− xi)2 + (y − yi)2 + γ2 (z − zi)2] 1

2

(6.11)

Byi (x, y, z) = −βγ
c

qi (x− xi)

4πε
[
(x− xi)2 + (y − yi)2 + γ2 (z − zi)2] 1

2

(6.12)

Bzi (x, y, z) = 0 (6.13)
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The total field is then given by the sum of the fields generated by all the

particles:

Ex (x, y, z) =
N∑
i=1

γqi (x− xi)

4πε
[
(x− xi)2 + (y − yi)2 + γ2 (z − zi)2] 3

2

(6.14)

Ey (x, y, z) =
N∑
i=1

γqi (y − yi)

4πε
[
(x− xi)2 + (y − yi)2 + γ2 (z − zi)2] 3

2

(6.15)

Ez (x, y, z) =
N∑
i=1

γqi (z − zi)

4πε
[
(x− xi)2 + (y − yi)2 + γ2 (z − zi)2] 3

2

(6.16)

Bx (x, y, z) =
N∑
i=1

βγ

c

qi (y − yi)

4πε
[
(x− xi)2 + (y − yi)2 + γ2 (z − zi)2] 1

2

(6.17)

By (x, y, z) = −
N∑
i=1

βγ

c

qi (x− xi)

4πε
[
(x− xi)2 + (y − yi)2 + γ2 (z − zi)2] 1

2

(6.18)

Bz (x, y, z) = 0 (6.19)

Once that we have the space charge field at the location of particle j

due to the presence of all the other particles in the laboratory frame, we can

integrate the equations of motion for the considered particle in presence of

the total (space charge and focusing) field.

6.3 The algorithm

The search of a steady state solution consists of an iterative application

of the two-steps routine composed by:

• the calculation of the total space charge potentials inside the drift tube

as a function of time t;
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• the particle tracking inside the drift tube in presence of these fields.

As we can see from the previous section, the solution of the Poisson

equation gives a potential who is not explicitely dependent on time: the

potential generated in a position (x, y, z) at every time t from a particle in

(x0, y0, z0) depends only on the distance from the two positions at that time.

For this reason, the choice of z as independent variable during the integration

of the equations of motion can introduce some difficulties. For example, the

potential at the step z∗ can depend on a particle who is in a position zi > z∗.

It is then evident that an addictional z to t transformation is required in

order to have a z-code. The easiest approach would then be to use the t

variable when calculating the space charge field, while leaving the z variable

inside the cavities, since this would allow us to achieve a higher speed while

integrating the equations in presence of the RF field over the same interval

for all the particles.

Let’s now describe the simulation algorithm more in detail. Fig. 6.4

shows a summarizing flow chart:

Figure 6.4: Flow chart for the steady state simulation with space charge.
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The first iteration consists of a simple tracking of the electrons through

the drift tube, without considering any kind of space charge field. The result

of this first integration will be a complete description of the particles phase

space as a function of time from the instant in which they enters into the

pipe to the one in which they go out towards the next cavity. We will obtain:

{x0
i (t), y

0
i (t), z

0
i (t), p

0
xi, p

0
yi, p

0
zi} i = 1, ..., N (6.20)

where N is the number of particles emitted in a RF period.

The initial integration time can be determined for every particle by using

the results of the integration of the equations of motion inside the previous

cavity, while the final time can be easily determined by knowing that the

particle longitudinal speed is not changing during the integration since no

RF or space charge field is applied.

After the first tracking with no space charge forces taken into account, we

can calculate the space charge potential generated by the previous particles

distribution in every point of the pipe and for every time t. This can be

done either analitically (by using the expressions reported in the previous

paragraph), or numerically, by solving the Poisson’s equation (in the particles

frame and then Lorentz transforming) with an electromagnetic solver.

The space charge fields inside the pipe will then be:

~E0(t) =
M∑
i=1

~Ei
(
x (t) , y (t) , z (t) , x0

i (t) , y0
i (t) , z0

i (t)
)

(6.21)

~B0(t) =
M∑
i=1

~Bi

(
x (t) , y (t) , z (t) , x0

i (t) , y0
i (t) , z0

i (t)
)

(6.22)

where the summation is made over all the particles that are closer than half

of the beam wavelength to (x, y, z) at time t.

These fields are then used to integrate the equations of motions during

the second iteration and obtain {x1
i (t), y

1
i (t), z

1
i (t), p

1
xi, p

1
yi, p

1
zi} for all the par-

ticles. The space charge fields can then be recalculated and the procedure

is iterated until it reaches the convergence. The check for convergence has
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to be done at every iteration; there are many possible ways to implement it:

the easiest is probably to do a control on particles phase space trajectories

between two subsequent iterations:

∣∣ξni − ξn−1
i

∣∣ ≤ ε (6.23)

where ξni is the generic normalized phase space coordinate of particle i after

iteration n and ε depends on the desired convergence accuracy.

6.3.1 Main development issues

We are interested in klystrons steady state simulations: this allows us

to study the evolution of only one set of particles distribuited over an RF

period, because the resulting trajectory and electromagnetic field reflect the

behaviour of the whole particle beam after the transient. At the same time,

special attention has to be payed to the space charge potential calculation: at

every time t∗, this is produced by all the particles that are in the considered

region of space, and not only by the ones emitted in the RF period taken

in account. A consequence of the steady state approach is that a particle,

who has at the time t∗ ± kT (with k = 0, 1, 2, ...) the same phase space

coordinates of another particle at the time t∗, will have the same evolution.

We can then simply integrate the equations of motion for every particle of

the set in presence of a space charge field that is, at time t∗, the sum of the

contributions of all the particles which are in the considered region of space

(±0.5 of the beam wavelength) at time t∗ and belong also to sets before or

after the considered one. The condition to be satisfied in order to evaluate

if they are in the considered region of space or not at t∗ is:

tini ≤ t∗ ± kT ≤ touti k = 0, 1, 2, ... (6.24)

where tini and touti are respectively the entrance and the exit times of particle

i into the region.

The contributions for k ≥ 3 can be neglected, since the condition (6.24)

would be, in that case, probably not satisfied. The space charge fields at
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time t will then be, omitting the iteration superscript:

~E(t) =
N∑
i=1

~Ei (x (t) , y (t) , z (t) , xi (t) , yi (t) , zi (t)) +

+
∑
k

(
N∑
i=1

σ+
i,k (t) ~Ei (x (t) , y (t) , z (t) , xi (t+ kT ) , yi (t+ kT ) , zi (t+ kT )) +

+
N∑
i=1

σ−i,k (t) ~Ei (x (t) , y (t) , z (t) , xi (t− kT ) , yi (t− kT ) , zi (t− kT ))

)
(6.25)

~B(t) =
N∑
i=1

~Bi (x (t) , y (t) , z (t) , xi (t) , yi (t) , zi (t)) +

+
∑
k

(
N∑
i=1

σ+
i,k (t) ~Bi (x (t) , y (t) , z (t) , xi (t+ kT ) , yi (t+ kT ) , zi (t+ kT )) +

+
N∑
i=1

σ−i,k (t) ~Bi (x (t) , y (t) , z (t) , xi (t− kT ) , yi (t− kT ) , zi (t− kT ))

)
(6.26)

where:

σ+
i,k (t) =

{
1 if tini ≤ t+ kT ≤ touti

0 if t+ kT ≤ tini or t+ kT ≥ touti

(6.27)

and:

σ−i,k (t) =

{
1 if tini ≤ t− kT ≤ touti

0 if t− kT ≤ tini or t− kT ≥ touti

(6.28)

The other important problem that has to be solved in order to properly

evaluate the space charge forces inside the klystron pipes is related to the

length of the region to be considered for the contibutions of particles to

the space charge field. Even if we are interested in finding the steady state
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solution in presence of space charge effects only inside the drift tubes, we

can’t limitate the sum in equations (6.25) and (6.25) just to particles inside

the pipe; in this case in fact, we will have a non physical longitudinal force

directed in the −z direction acting on particles at the beginning of the pipe,

generated by particles ahead in the drift space, and the same but opposite

problem will show up in the final part of the drift tube: particles inside the

pipe will contribute to the space charge potential, while particles situated

after the exit will not, and this will create a force directed in the +z direction

which is not real, as shown in the following picture for on-axis particles.

Figure 6.5: Normalized z momentum as a function of time for on-axis par-
ticles obtained considering only particles inside the drift space in the sums
(6.25) and (6.25).

To solve this problem we have to extend the sums (6.25) and (6.25) to

particles inside cavities and pipes before and after the drift space we are

interested in finding the steady state solution for. The particles outside the

considered drift tube will then be used as sources for the space charge fields

but their trajectories will not be modified during the iterative procedure,

since we already have the steady state solution for them. The described

procedure has finally been implemented in the code for the simple case of

the input klystron cavity characterized in table 5.1 followed by a 10 cm drift

tube. Next figure shows then the obtained normalized z-momentum for on-
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axis particles; the cavity action is shown too.

Figure 6.6: Normalized z momentum as a function of time for on-axis parti-
cles.

6.4 Final remarks

Space charge fialds play an important role in modifying the RF per-

formance of a klystron. Even for very low perveance klystrons, a realistic

simulation of the device requires to take in account the contribution of the

mutual repulsion between particles, at least in the drift tubes. The described

iterative method allows to evaluate the strength of these forces that cause

the electrons to oscillate back and forth in the reference frame at the plasma

frequency. The results we have derived apply to a finite radius beam drift-

ing in free space, but they could be easily extended to the case of a beam

inside a pipe by introducing corrective reduction coefficients for the plasma

wavelength [21] [46]. The method takes in account also the transverse space

charge forces and their contribution to the radial particles motion combined

to the one of the magnetic focusing field.
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Chapter 7

Conclusion

The design of klystron amplifiers widely lies on the intensive utilization of

simulation codes. These can be 1-D codes which are based on combination of

analytical formulae and electron dynamics equations and are used for a quick

assessment of the power and efficiency of the new klystron design in steady

state, or PIC codes, which are capable to perform very accurate simulations

of the device, at the expenses of a greater complexity and a larger simulation

time.

In the present work a steady state code which can self-consistently sim-

ulate the complete cavity-beam interaction has been presented. The code is

based on the search of the steady state solution inside the RF cavities by it-

eratively solving the power balance equation; the resonators can be coupled

(as it is for the klystron input and output cavities), or not. The solution

determines the amplitude and phase of the electromagnetic field inside the

structure starting from the cavity mode field. The latter can be the ana-

lytical pillbox field (as a first approximation), or can be imported by 2-D

electromagnetic simulation codes for more complicated cavity shapes. The

fundamental theory necessary to obtain the equations used to develop the

simulation algorithm has been exposed in chapter 3. The cavity total field

is first expanded in series of the cavity natural modes and then expressed as

the product of the fundamental mode field multiplied for a complex coeffi-

cient; the equation that ties the amplitude and phase of this coefficient with

113
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the cavity input power and with the beam current density is then obtained

from the total power balance of the system. This equation depends on the

beam current density that is a function of the particles velocities, and these

depend on the total cavity field. It has then to be solved iteratively. The

implemented solution algorithm is basically divided in two steps: the first

one is to solve the equations of motion for the particles moving inside the

structure; the second one is then to evaluate, from the obtained particles

trajectories in phase space, the beam current density in order to calculate

the complex field coefficient. This procedure is iterated until it reaches the

desired convergence.

Particular attention has been payed to the integration of the electrons

equations of motion. It is known that numerical integration methods such as

the ordinary Runge-Kutta methods are not ideal for integrating Hamiltonian

systems, because the numerical approximation to a Hamiltonian system ob-

tained from an ordinary numerical method does introduce a non-Hamiltonian

perturbation. This problem has led to the introduction of methods of sym-

plectic integration for Hamiltonian systems, which do preserve the features

of the Hamiltonian structure by arranging that each step of the integration

be a canonical or symplectic transformation. The main issues related to the

symplectic integration of Hamiltonian systems have been treated in Chapter

4, where the relativistic equations of motion for the particles have been writ-

ten in the form suitable for numerical integration. They have been obtained

from a “pseudo” time independent Hamiltonian, derived from the well known

Hamiltonian of a particle in an electromagnetic field through the addiction of

two more phase space variables. The dynamical system is then described by

a set of eight ordinary differential equations which can finally be integrated

with a symplectic implicit integration method.

The described algorithm has been implemented using Mathematica. The

self-consistency of the code has been tested on some simple situations in

absence of space charge effects; the case of presence of an external feeding

(pillbox input cavity) has been treated first, followed by the case of a two
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cavity klystron, where the beam itself is the power source in the output

cavity. Some important simulation parameters have been discussed, such as

the number of macroparticles to be simulated and their initial time and space

distribution. The results have then been compared to the ones obtained with

the simple calculations based on the klystron kinematic theory; these take

in account only the action of the cavity field on the particles, but do not

consider the effect of the beam back on the cavity. A second comparison

has been made with the results from the code AJDisk. The latter is a one

dimensional code that works by splitting the beam into a series of disks and

allowing them to move only in the direction of propagation. The disks can be

acted on by both cavity fields and space charge forces. The comparison gives

a good agreement in the case of low current beams, while higher current

simulations show differences due to fact that space charge effects had not

been taken in account yet in the new code.

The introduction of the space charge forces has been trated in Chapter

6. The repulsion forces between particles have been evaluated in the drift

tubes between cavities, where they have the more significant effects on the

velocity modulation process. The search of a steady state solution in this

case consists of an iterative application of the two-steps routine composed

by: i) the calculation of the total space charge potentials inside the drift tube

as a function of time t and ii) the particle tracking inside the considered tube

in presence of these fields. The first iteration consists of a simple tracking of

the electrons through the drift tube, without considering any kind of space

charge field: the result of this first integration will be a complete description

of the particles phase space as a function of time. The space charge potential

generated by the previous particles distribution in every point of the pipe and

for every time t can then be calculated and used during the next iteration to

track the particles through the drift tube. The procedure is repeated until

it reaches the convergence, and the check for convergence is done at every

iteration. The main development issues are finally presented at the end of

Chapter 6 together with their solution.
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Appendix A

The Mathematica code
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