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Introduction

In the recent years a lot of effort has been spent in developing new technologies for

the video communications. As that electronic tecnology is advancing in producing

cheap, low-cost Digital Signal Processors (DSPs), new solutions in telecommuni-

cations became possible. Few examples include new standards in video coding,

from MPEG-1 (39) in the early nineties to the state-of-the-art H.264 (65) that,

in its latest extension, support 3D and multiview video; the availability of large

bandwith networks, such as xDSL or WiMax or 3G cellular networks. Such inno-

vations allow the raise of new services unexpected as far as ten-fifteen years ago.

Some examples are:

• video call;

• video conference;

• high speed internet connections;

• streaming services.

Most of the services are available both in fixed networks, and, in the recent few

years, in mobile networks.

This work is devoted to the study and the analysis of the problematics re-

garding a mobile video streaming system employing the novel video standard

ITU-T Rec. H.264, also known as ISO/IEC MPEG-4/Part 10-AVC (65). Mobile

streaming services are arising in the last few years thanks to the evolutions in the

mobile networks, such as 3G (UMTS), 3.5G and wifi networks. These networks

suffer of variable channel characteristics, due to the nature of the mobile/wireless

medium. The variability of the channel results in a variable bandwith with packet
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losses and delays. From the point of view of the video transmission this is highly

undesiderable, because only a single packet loss may results in several missed or

distorted frames.

This thesis explores some of the problematics regarding the trasmission and

playout of video content in a mobile environment. At first, after the introduction

of the main themes, the thesis deepens the topic of video rate control, i.e. tech-

niques employed at the encoder in order to have bitstreams with costant average

bit rate and uniform quality. A technique for selecting the proper kind of frame

is presented. The second topic is on error resilience/concealment techniques, the

former devoted to encode video so that, after packet losses, video can be recovered,

the latter devoted to hide errors due to losses in the transmission. The contribu-

tion is developing a novel scheme based on Multiple Description Coding (MDC)

that introduces a reliability measure to improve image quality after the decoding

stage. Third topic regards traffic models for a video streaming source; the study

focus on a source that performs bitstream switching using H.264 SP frames; a

process member of the Hidden Markov Model (HMM) family is introduced to

efficiently describe the statistical characteristics of the video source. Last topic

pertains the novel extension of H.264, Multiview Video Content (MVC), devoted

to encode efficiently multiview video, a new video content that is arising recently.

A traffic model for MVC source is also introduced.

The thesis is organized as follows: Chapter 1 introduces the main topics of

the work, Chapter 2 illustrate the problem of rate control, Chapter 3 regards

techniques of error resilience/concealment, whereas Chapter 4 describes a traffic

model for video streaming system. Finally, Chapter 5 is on Multiview Video

Content (MVC). Chapter 6 concludes the thesis.
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Chapter 1

Introduction

This chapter introduces how a video streaming system is composed and its char-

acteristics and issues. In Section 1.1 a brief description of the H.264 standard is

exposed, and in Section 1.2 a video streaming system is introduced. Sections 1.3,

1.4, 1.5 and 1.6 expose the main themes of the work. Section 1.7 concludes the

chapter.

1.1 H.264/AVC

The state-of-the-art of video coding ITU-T Rec. H.264, also known as ISO/IEC

MPEG-4/Part 10-AVC (65) has been defined by the joint effort of two groups, the

ISO MPEG group and the ITU VCEG group, that formed the Joint Video Team

(JVT) in 2001. The first version of H.264 was completed in 2003, from then some

extensions have been released, most notably the Scalable Video Coding (SVC) in

2007 and the Multiview Video Coding (MVC) in 2009.

H.264 is used in such applications as players for Blu-ray Discs, videos stream-

ing services, broadcast services for DVB and SBTVD, direct-broadcast satellite

television services, cable television services, HDTV and real-time videoconfer-

encing. This wide application field is guaranteed by the several novel technical

enhancemente introduced by H.264:

• intra spatial prediction;

• high freedom in motocompensation;
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1.1 H.264/AVC

• integer DCT-like transform;

• Context-Adaptive Binary Arithmetic Coding (CABAC) to efficiently com-

pressy data;

• definition of new kinds of frame for streaming applications.

The standard is separated in two layers: the first one, named Video Coding

Layer (VCL) is devoted to the encoding and decoding; whereas the second layer,

named Network Adaptation Layer (NAL) describes how to adapt the bitstream to

existing networks. In the next subsections we describe the characteristics above.

1.1.1 Video coding layer

In this section we describe the main innovations of H.264 regarding compression

efficiency.

1.1.1.1 Intra spatial prediction

H.264 is the first standard in video compression introducing a prediction in the

spatial domain by estimating a block from the surrounding pixels. The block

may be of different sizes: 4x4, 16x16. Large blocks are useful in predict smooth

areas of the image. The 4x4 blocks support four types of prediction: in Fig.1.1

are shown 5 types. The 16x16 blocks support 4 kind of prediction.

1.1.1.2 DCT-integer transform

One of the drawbacks of the DCT transform is the infinite precision required to

represent the content with no errors on different machines. H.264 uses a differ-

ent transform, based on DCT, that works only with integer numbers, avoiding

completely that issue. The transform works on 4x4 block, since different kind

of predictions (intra or inter) are employed in 4x4 blocks. In addiction, H.264

includes other two transforms, Hadamard transform for 2x2 and 4x4 blocks, to

efficiently encode DC coefficients of chromas and luma in a macroblock.

2



1.1 H.264/AVC

Figure 1.1: Five of the nine 4x4 Intra prediction mode (63).

Quantization is similar to previous standard, except for the relationship be-

tween QP and Qstep:

Qstep = 2(QP/6)

due to the some simplification involved in the DCT-integer transform. Fig.1.2

shows the difference between H.264 and H.263 on defining QP .

1.1.1.3 S frames

Switching frames are first introduced in H.264 (31). The S frames are divided in

two categories: SP frames (primaries and secondaries) and SI frames. Both are

used in the following tasks:

• bitstream switching;

• splicing and random access;

• error recovery;

• error resiliance.
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1.1 H.264/AVC

Figure 1.2: The relation between QP and Qstep (43).

The first item is discussed deeply in Section 1.2, here we briefly describe their

behavior. The main feature of SP frames is that identical SP frames can be

reconstructed even when different reference frames are used for their prediction.

A primary SP frame can replace a P frame in a bitstream and the encoder can

generate a secondary SP frame or a SI frame in corrispondence to the primary one.

The SI frame (I is for Intra) is an intra frame that, once decoded, is identical to the

primary SP frame. The secondary SP frame is predicted from different frames of

the primary one but it results identical, pixel per pixel, to the primary one, once

decoded, thanks to the motocompensation performed on the transformed domain

instead on the spatial domain. Two quantization parameters are employed for

selecting the better compromise between the sizes of the three frames. In Fig.1.5

the schemes for, respectively, decoding of secondary SP/SI frames, decoding of

primary SP frames, encoding of SP frames are shown.

The price for the flexibility is in the lower rate-distortion curve with respect

to classical I,P frames (50): primary SP costs more than a P frame, whereas sec-

ondary SP and SI frames are comparable to I frames. The gain consists in trans-

mitting primary SP frames more frequently than secondary SP and SI frames;

previous encoding schemes used I frames which cost is larger than primary SP.
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1.2 Video streaming system

Figure 1.3: Encoding and decoding schemes for S frames (31).

1.2 Video streaming system

In this section we introduce a modern video streaming system, its application

fields, the main characteristics and issues.

From a historical point of view, video transmission has been first encountered

in the framework of broadcasting and conversational services. Broadcasting is

characterized by large available bandwidth and medium-to-high required quality,

with loose coding delay requirements. On the contrary, conversational services

are characterized by significantly reduced bandwidth and quality, with severe

coding delay requirements.

Recently, video streaming is emerging as a promising application over fixed,

wireless, and heterogeneous networks. Video streaming services are characterized

by contemporary download and presentation of the video content, with short

initial buffering delay. The typical architecture for video streaming consists of

5



1.2 Video streaming system

Figure 1.4: A video streaming system.

a server that transmits data extracted from pre-encoded sequences to users that

have requested a video content. Fig.1.4 shows a typical video system architecture.

The pre-encoded sequences are typically stored along with meta-data, such

as packetization instructions or session description information (1), which are

exploited during the on-going streaming session. The peculiar requirements of

streaming services reflect into video traffic characteristics. First, video traffic

does not require a strict rate-control as for conversational services over circuit-

switched or packet-switched networks; rather, loose rate control mechanism are

envisaged, mainly attempting to comply with system requirements such as peak

and average bandwidth, decoding buffer size and decoder complexity. Second,

streaming takes place on channels that may vary due to physical channel changes,

to vertical handovers caused by user mobility among heterogeneous networks

or even to dynamical network re-configuration, as in Wireless Mesh Networks.

All these causes result into variations of the available average user bandwidth,

causing the server to react by adapting the rate of the transmitted video so as to

accommodate these variations.

In streaming services, rate adaptation should be achieved without encoding

6



1.2 Video streaming system

the sequences in real-time using different coding parameters, as it occurs in con-

versational services, but rather accessing to suitably previously encoded video

streams of different bandwidth and quality. Thus, the server should be able to

perform dynamic switching between previously encoded bitstreams to face varia-

tions of the bandwidth available to each user. At this aim, the encoded sequence

should provide random access point for bitstream switching, in a fashion resem-

bling that of Intra coded pictures in broadcasting services. This issue has been

explicitly accounted for in H.264. In fact SP frames, which enable perfect frame

reconstruction even using different reference frames for motion compensation (31)

can be exploited in video streaming applications during bitstream switching since

they provide random access points to the bitstreams, at a lower coding cost than

classical Intra coded pictures.

We now describe how a video streaming server employing H.264 SP frame

works. Let us assume that the video sequences to be transmitted are encoded

in L different bitstreams, each one at different average bit-rates ri, i = 1, . . . , L.

The server selects the proper sequence according to users’ feedback and network

conditions. The H.264 encoder places SP frames in each stream, so to provide

virtual access points in order to enable bitstream switching. Typically, the SP

frames are periodically inserted, so that each SP frame is followed by a fixed

number NGOP − 1 of encoded non-switching frames; then, the encoded bitstream

is constituted by GOPs beginning with an SP frame, in a fashion resembling the

MPEG-2 GOP structure beginning with an Intra coded frame. Each random

access frame is encoded by means of the so-called primary SP representation.

Besides, also different representations, the so-called secondary SP representations,

are encoded using reference frames belonging to different bitstreams for motion

compensation. Thanks to the SP coding syntax, the coded primary and secondary

representations result in exactly the same decoded frame. During the streaming,

the SP primary representation is sent to users that are continuously decoding

the i-th bitstream; the SP secondary representation is only needed by users that

performs switching from a different bitstream, and therefore start decoding the i-

th one using a different decoded sequence for motion compensation. The picture

decoded using the primary and the secondary SP frame is just the same, and

the bitstream switching is drift free; however, since motion compensation is used

7



1.2 Video streaming system

both for the primary and secondary SP frame, the encoding cost of a random

access frame is low compared with the cost that would have been required by

periodic insertion of Intra frames. Fig.1.5 illustrates an example of how bitstream

switching can be realized using the H.264 SP syntactic structures during a video

streaming session. With reference to the notations adopted in Fig.1.5, frame D is

decoded during continuous streaming of the same bitstream, if the data labeled as

{A, B, C, D (Primary SP)} are streamed, as well as after a bitstream switching,

if the data labeled as {1, 2, 3, 3-D (Secondary SP)} are streamed.

During continuous streaming of the i-th video bitstream at average rate ri, the

emitted GOPs begin with a primary SP; when switching is needed between the

i-th video bitstream at average rate ri and the j-th video bitstream at a different

average rate rj, a suitably coded secondary SP is sent, followed by NGOP − 1

non-switching frames. Then, we can classify GOPs into various classes, differing

in the kind of SP frame they begin with, and in the average rate at which they

are transmitted. Specifically, we identify L2 classes of GOPs, namely L classes

of GOP beginning with primary SP extracted from a stream at average rate

ri, i = 1, . . . , L, and L · (L − 1) classes of GOP beginning with secondary SP,

transmitted when a switching between the rates ri and rj, with i, j = 1, . . . , L and

j 6= i occurs. GOPs emitted by a real video source during video streaming satisfy

precise decoding constraints. In particular, switching between different rates is

realized by transmitting a GOP beginning with a secondary SP, since this latter

enables the decoder to perform motion compensation using the already received

frames without error-drift. Hence, GOP structures of different classes are not

generated in arbitrary order, but the class of each transmitted GOP depends on

the class of the previously generated GOP.

As exposed above, a video streaming service has started to be employed in

wireless networks, as 3G or 2.5G networks; since those networks exhibit non-

stationary behavior and provide a smaller bandwidth than fixed networks, several

issues arise. The aim of this work consists in analysing and solving those issues.

8



1.3 Improving compression efficiency

Figure 1.5: Example of H.264 video streaming session: frame D is decoded during

continuous streaming of the same bitstream, if the data labeled as {A, B, C, D

(Primary SP)} are streamed, as well as after a bitstream switching, if the data

labeled as {1, 2, 3, 3-D (Secondary SP)} are streamed.

1.3 Improving compression efficiency

In the phase of encoding the bitstream several decisions can be made in order

to maximize the visual quality of the whole video content still respecting the

constraints imposed by the system. In fact, in bitstream applications, loose rate

control is applied to the single streams in order to maintain an average bit-rate

without exceeding too much. Coversely, streaming applications with no adaption

of the stream to channel conditions use severe rate control techniques in order

to maintain a Costant Bit Rate (CBR) behavior. Under these constraints the

encoder can choose how allocate the budget (in terms of bits) among the frames

in a GOP or even among the macroblocks inside a single frame. Moreover, some

sort of flexibility can be allowed in selecting the kind of frame (macroblock), i.e.

if a frame is I, P, B, SP. Of course the best solution is using only B frame that

exhibit the best rate distortion efficiency, but in a streaming context, in case of

frame losses (not rare events), such decision may cause a severe degradation of

the visual quality. A typical rate control procedure follows the steps:

1. The bit budget for the GOP is divided among the frames according to a

rule depending on the innovation of the frames;

2. the bits are divided between macroblocks according to the visual relevance;

9



1.4 Improving error resiliance

3. A quantization parameter is chosen for each macroblock in order to have

the bit size selected in step 2.

Typical measure for evaluating visual relevance are: Mean Square Error (MSE),

Sum of Absolute Difference (SAD), Mean Absolute Difference (MAD):

MSE :
1

MN

N−1∑

n=0

M−1∑

m=0

(x[m,n]− x̂[m,n])2

SAD :
N−1∑

n=0

M−1∑

m=0

|x[m,n]− x̂[m,n]|

MAD :SAD/MN

(1.1)

where x[m,n] is a frame (macroblock) and x̂[m,n] is its estimation, depending

on the prediction (intra, inter, which kind of inter). M and N are the dimensions

of the frame (macroblock).he

The rate control for H.264 is more difficult than those for other standards.

This is because the quantization parameters are used in both rate control al-

gorithm and rate distortion optimization (RDO) (64), resulting in the following

chicken and egg dilemma: to perform RDO for macroblocks (MBs) in the current

frame, a quantization parameter should be first determined for each MB by using

the mean absolute difference (MAD) of current frame or MB. Several techniques

have been developed to move around it (2).

1.4 Improving error resiliance

Video content is transmitted in packets, usually fixed-size ATM cells or variable

length RTP/UDP datagrams through the network. The tranmission may suffer of

error and losses: in fact video streaming in wireless networks may suffer of difficult

conditions due to the environment, resulting in packet losses (absence of signal),

several packet errors, large delays, etc. Moreover, buffer overflows and underflows

can cause other losses. Since error correcting techniques are not always capable

to recover packets, some data might not arrive to the video decoder, causing a

severe degradation of the video, because of the dependency of the encoded video

data (motocompensation,etc...).
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1.4 Improving error resiliance

Many techniques have been developed in order to mitigate the degradation

due to the losses. These techniques are divided in two main categories: error

resiliance and error concealment. The former includes strategies at the encoder

stage developed to fortify data in case of losses, e.g. sending two versions of the

same frame, partioning data in more packets, adding redundancy to data, etc,

the latter includes strategies at the decoder to hide errors, e.g. in case of frame

loss, replacing it with the last frame available. More sofisticates strategies include

estimation and prediction of loss data.

H.264 introduces some data structures in order to manage easily with the

error resiliance and concealment. The following structures are introduced:

• slice structure;

• random intra refresh (RIR);

• data partitioning;

• flexible macroblock ordering (FMO);

• arbitrary slice ordering;

• redundant slices.

The definition of slice is the only one defined in previous standard (H.263,

MPEG-4): a slice is a segment of frame usually of fixed size in terms of mac-

roblock, or rarely, in bytes. Each frame is divided in a fixed, integer number of

slice that are encoded independently so as, in case of slice loss, the other slice

can be still decoded. Usually each slice is sent in a single packet. The RIR is

an encoding strategy that forces a fixed number of macroblocks in each frame

to be intra encoded, so, in case of losses, the video content can be recovered

quickly. Macroblock selection is random; if the selection is not random but de-

pends on the video content the strategy is called Adaptive Intra Refresh (AIR).

Data partitioning consists in dividing slice data in three sets (partitions) accord-

ing to the relevance with respect to the decoding process. Partition A contains

header, motion vectors, macroblocks prediction modes. Partition B contains in-

tra coefficients and inter coefficients are in partition C. Data partitioning allows

11



1.5 Video traffic modeling for streaming application

Figure 1.6: Different kind of flexible macroblock ordering. Type #1 is used for

error resiliance.

to differentiate the resiliance strategies depending on the importance of the par-

tition. The arbitrary slice ordering is used to interleave data at the video content

level, making video transmission robust to burst errors. Of course, as in typi-

cal interleaving, the decoder have to wait the arrival of all the slices of a frame.

FMO allows to build slices using not adjacent macroblocks; in case of slice loss,

the macroblocks are spreaded in the whole frame and efficient error concealment

strategies can be employed to recover the frame. Fig.1.6 shows different kind of

FMO. The last one, redundant slice, is used to transmit a coarse version of a

slice. In case of loss the decoder can use the redundant slice to recover missing

data.

The drawback of the resiliance strategies is in a larger data to be transmitted:

in fact each strategy adds redundancy (in a different way) to the video content.

1.5 Video traffic modeling for streaming appli-

cation

The phase of network dimensioning is crucial for the system, in fact a wrong

dimensioning of the network resources can severely degrade the communication,

12



1.6 Improving user experience: Multiview Video Coding

Figure 1.7: Video streaming system with buffers.

or conversely, employ too many resource in the network. One of the most frequent

cases, is buffers size.In a video streaming system, as other systems, buffers are

employed for traffic shaping, de-jittering and other purposes. Fig.1.7 shows a

typical video streaming system with two buffer, the first one to shape traffic at

the channel entrance, the the second to decouple the network from the client

and provide data to the decoder at costant rate. Sometimes two buffers are

used to separate the two functionalities. In network resource allocation, buffer

dimensioning is really crucial, because a buffer overflow may occur resulting in

packet losses. In order to design in a proper way the buffers size, an accurate

analysis of the data traffic generated by the video encoder should be performed.

A useful tool for helping the network project manager is a statistical model of

the video source. In literature several studies pertain to analyse and characterize

video traffic, in the context of broadcast application or teleconferences. The

most straightforward application of a video source model consists in generating

a pseudo-random syntetic sequence, used for dimensioning network resources, so

there is no need to encode real video.

In Chapter 4 we present a video streaming traffic that efficiently mimic the

behavior of a real streaming source.

1.6 Improving user experience: Multiview Video

Coding

The final step of the work is the analysis of the newest extension of H.264, the

Multiview Video Coding (MVC). In this section we introduce the topic and de-
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scribe the main characteristics of MVC. In Chapter 5 a MVC video traffic model

is presented.

1.6.1 Introduction

In the recent years, due to the recent advances in technology, a number of new

applications involving the combination (e.g. 3D videos) of two of more video se-

quences are becoming to be accesible to the consumer. These applications include

3DTV, free-viewpoint applications, just to mention few examples. Although the

existing video coding standards (MPEG-4, H.264, etc.) may be employed to

encode them, a suitable standard turned entirely to encode and transmit these

applications is high desirable. The Joint Video Team (JVT) is developing an

extension of the widely spread video coding standard H.264/AVC in order to de-

fine a new encoding technique able to efficiently encoding and transmit the video

streams. Such extension is named Multiview Video Coding (MVC, H.264/MVC).

The chapter is organized as follows: in Sec.1.6.2 we describe the typical applica-

tion in which the MVC may be employed; in Sec.1.6.3 MVC is introduced. Sec.

5.4 concludes the chapter.

1.6.2 Applications

A typical MVC scenario consists in a scene recorded by several cameras with a

different angle, see Fig.1.8. The streams are called views, and are trasmitted to

the users.

The possible applications involving a multiview scenario can be grouped in

three main classes: free-viewpoint video, 3D TV, immersive teleconferencing (8).

We describe all these classes below.

1.6.2.1 Free-viewpoint video

The free-viewpoint video system allows the user to select an arbitrary point of

view for watching the video content. The selection of the point of view may be

static (determined only at the beginning of the transmission) or dynamic (the user

can switch among the points of views during the transmission). If a selected point
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Figure 1.8: Example of Multiview Scenario.

of view is not correspondent to a camera, more views are transmitted in order to

generate such point through suitable interpolation. A typical architecture of this

scenario consists in a server that transmits the view(s) requested by the user; the

set-top box will perform the interpolation. Other two possible architectures differ

in which views are transmitted to the user: i) the server transmits always all the

views and the set-top box selects only the views needed for the interpolation and

discard the others; ii) interpolation is performed at the server side that transmits

only the sequence actually watched by the user.

1.6.2.2 Interactive TV

A particolar case of free-viewpoint video is the interactive TV; the user can select

only one of the views per time, interpolation is not performed. The server can

transmit only requested views or all the views letting the selection to the set-top

box.
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1.6.2.3 3D TV

The 3D TV expands the concept of television in a 3D environment. The users,

using particular glasses or other means, have the feeling of watching a real 3D

scene. A minimum number of two views is needed to generate the 3D effect. In

this scenario the server transmits all the views to the users that, through partic-

ular tv equipment, are able to generate 3D content. A combination of 3D TV

with free-viewpoint video is possible: the users select (statically or dinamically)

a point of view to watch a 3D scene. The system architecture is a like the one in

free-viewpoint video.

1.6.2.4 Immersive teleconferencing

In a typical teleconference the users can see only a narrow area around the in-

terlocutors. Immersive teleconferencing, using more cameras, are able to show a

wider area.

1.6.3 Standard

Multiview Video Coding (MVC) is an extension of the widely-known video cod-

ing standard H.264. Its aim is in defining a video standard for new emerging

applications, such as free-viewpoint video, 3DTV, immersive teleconferencing,

interactive TV. MVC involves the encoding of several video sequences (views)

representing the same scene recorded simultaneously from multiple cameras. The

user, depending of the particular application may request either one view, either

more than one.

Since the data to be transmitted/stored is much larger than in the usual single-

view coding (SVC), the design of MVC has taken into account as primary issue

a high compression efficiency, achieved by exploiting the correlations among the

views: in MVC pictures from different view can be used as reference pictures for

the frame to be encoded. This kind of prediction is named interview prediction, an

example is given in Fig.5.1 in which the arrows denote the relations of dependency

among the pictures. Let us remark that the interview dependency is only among

pictures of the same istant. Letters I, P, B denote classic Intra, Predictive, and
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Figure 1.9: Typical GOP structure in MVC. I represents Intra Frame, P repre-

sents Predicted frames, B and b represent Bi-directional predicted frames.

Bi-directional predictive frames; the b letter denotes also Bi-directional predictive

pictures with the lower case remarking that in case of temporal scalability thay

are the first frames to be dropped (see below). The drawback of this strategy is

in a large con consumption of resources, such as processing, buffers size, amount

of data to be transmitted, etc.

The following aspects have been taken into account during the phase of MVC

standardization:

• Scalability

• Decoder complexity

• Parallel processing

• Random Access

• Robustness

In the following we describe i) the structure of H.264/MVC bitstream and its

innovation with respect to H.264/AVC; ii) how sub-bitstreams can be extracted
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from a main MVC stream; iii) decoding ordering of the stream; iv) parallel en-

coding of the views.

1.6.3.1 MVC bitstream

One of the design principles of MVC is the backward compatibility with H.264/AVC:

one of the views is encoded independently from the others, see Fig.5.1, camera

1. The bitstream is organized so as to a compliant H.264/AVC decoder is able

to extract the basis view and decode it correcly. In addiction to the NAL units

defined in H.264/AVC, MVC defines a new kind of NAL unit, named coded slice

of MVC extension, that carries the data pertaining MVC structure. When a

H.264/AVC compliant encoder reads this NAL, it simply discards them, since it

doesn’t recognize the header. It’s introduced the prefix NAL unit, already in the

H.264/SVC extension (Scalable Video Coding), that informs the MVC decoder

about temporal information not carried in base NAL. Backward compatibility is

still mantained because H.264/AVC decoder doesn’t recognize the prefix NAL.

MVC exploits Sequence Parameter Set (SPS) and Picture Parameter Set

(PPS) structures to carry information about prediction dependency between

views.

1.6.3.2 Stream extraction

MVC must provide synctactical structures to allow the extraction of sub-streams

from the main MVC including all the views and all the frames. In fact, depend-

ing on the application or on some scalability issue, not all the views or frames

need to be transmitted. Free-viewpoint or interactive TV needs only a subset of

all the views (that varies dinamically), whereas temporal scalability (i.e., frame

dropping) is needed to adjust the video bitrate. The syntax elements provided

by MVC are two, view id, which identify the view, and temporal id, that denotes

the rate belonging to frame. For example, in Fig.5.1 I frames have the lowest

temporal id, whereas b frames are the highest, in fact they are the first frames

to be dropped in case of temporal scalability.

Another syntax element is priority id. It provides a lightweight procedure

to extract the desiderated sub-stream from the main stream. At each prior-
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Figure 1.10: An example about how assigning a priority id to the stream.

ity id corresponds fixed values of temporal id and view id. To have a compliant

MVC stream just extracting all the NALs having priority id lower or equal to

the desidered priority id (i.e., view id and temporal id). An example is given in

Fig.1.10. The prority id is indicated with the capital letter P: P = 0 is the base

view at the lowest frame rate, P = 1 is 15 fps and view 0 and 1, P = 2 is 30 fps

and view 0, 1 and finally P = 3 is the entire main MVC stream, i.e. 30 fps and

all the views.

1.6.3.3 Decoding ordering of the stream

We call decoding order the ordered sequence of NAL units placed in the bit-

stream. With the respect to other video standards, MVC decoding order is more

complicated and more strategies can be adopted because of the two dimensions,

time and view. Principally, two kinds of ordering are considered: view-first and

time-first ordering. In the view-first ordering, frames of the same view are trans-
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mitted sequentially within a GOP. Coversely, in the time-first ordering frames

of different views but belonging to the same istant are transmitted sequentially

within a GOP. Fig.1.11 and1.12 show respectively the view-first ordering and the

time-first ordering.

Figure 1.11: View-first ordering.

1.6.3.4 Parallel encoding

Because of the interview dependency, frames belonging to different views need to

be decoded sequentially. This is a problem when all the views need to be decoded

simultaneously, because the decoder must be Nview faster than a baseline decoder.

To solve this is issue, i.e. parallelize the decoder procedure, in MVC is allowed

signalling by a special message which areas are used for motocompensation. See

Fig.5.1, view #0 is used as reference of view #1. The first row of view #1 is

predicted only by the two first rows of view #0, whereas the second row of view

#1 is predicted by the three first rows of view #0,
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Figure 1.12: Time-first ordering.

1.7 Summary

In this chapter we have introduced the main topic of this thesis, mobile video

streaming. A brief summary of the state-of-the-art of video encoder, H.264, and

the introduction to the structural elements of a video streaming system are first

offered. Then the introductions to the most relevant issues, that are the aims

of this thesis are showed. In the next chapters we describe in more detail those

issues and present our contribution.
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Chapter 2

Improving Compression

Efficiency: a Game Theoretic

Approach

2.1 Introduction

Game theory is a branch of applied mathematics aimed at describing the behav-

ior in strategic contexts, where an individual’s success in making choices depends

on the others’ choices. Traditional applications of game theory try to find the

equilibrium point of the game, that is a set of choices for each player such that

none is likely to move from with an unilateral decision. A potential applica-

tion of this optimization approach is found in source coding, and in particular in

video coding, where a common bit budget is assigned and different visual data

cooperate to maximize the overall quality of the video sequence. The former ap-

plication of game theory in video coding is the work in (2), where the authors

optimize the perceptual quality of the decoded sequence while guaranteeing “fair-

ness” in bit allocation among macroblocks via a game theoretic approach. Since

the whole frame is an entity perceived by viewers, macroblocks represent play-

ers that compete cooperatively under the global objective of achieving the best

quality under the given bit constraint. This work has the merit to provide a

first relation between visual quality and the utility function of the game theoretic

approach. However, the work addresses a local spatial optimization of allocated
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coding resources, without considering the video sequence as a whole. In fact,

game theoretic approach can be also employed to optimize higher level system

constraints, such as random access points inter-distance and location or the video

output buffer occupation and so on. Here, we resort to game theory to optimize

not only the bit allocation between different frames of the video sequence, but

also the choice of the optimal frame coding mode. The coding mode affects both

the coding efficiency and the random access facilities of the coded video sequence.

We entail the optimization in the framework of video streaming by means of the

video coding standard ITU-T Rec. H.264, also known as ISO/IEC MPEG-4/Part

10-AVC.

State of the art works about video coding for bit-rate switching applications

are based on realizing new coding schemes so to reduce the coding cost for SP

frames. In (55) the authors propose a technique to improve the coding efficiency

of the SP frames by limiting the mismatch between the references prediction and

reconstruction. In (57) it is shown that by appropriately choosing reference pic-

tures, the size of secondary SP frames can be reduced by up to 40% and 2%

for random-access and rate-switching respectively, without affecting the PSNR.

However, the analysis of the SP frames rate distortion curves and the compar-

ison with analogous curves of Intra coded (I) and Predicted (P) frames show

that the choice of the proper frame coding mode itself significantly affects the

overall coding cost. As long as SP frames are concerned, due to the less favor-

able rate distortion characteristics, larger margins of bit saving - or, equivalently,

of quality improvements - are expected by optimizing their allocation along the

video sequence. In particular, given the maximum distance between SP frames,

that can be considered as a system constraint depending on the desired degree of

accessibility, there is still a degree of freedom on where to locate the SP frames

among the sequence. Such a circumstance is here exploited to improve the quality

of the overall encoded sequence by optimizing both the SP frames location and

the bit budget allocated to each frame. Let us observe that, once the optimal

frames budgets are allocated, the algorithm in (2) can be applied for individual

frame coding. Experimental results show the performance of the optimized cod-

ing strategy in a video streaming environment allowing bitstream switching. In
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2.2 Game theoretic approach to SP allocation

particular, the optimum resource allocation reduces the overall bitrate of the se-

quence still maintaining the same PSNR; moreover the number of bit per frame is

much more equalized using the optimal coding algorithm, so resulting in a better

utilization of the output buffer and in more equalized transmission delays.

The reminder of this chapter is organized as follows. Following the guidelines

in (2), in Sect.2.2 we formulate the problem of video coding for bitstream switch-

ing by representing the frames of a sequence as players and the overall sequence

quality as the objective function. The strategy of each player is the choice of the

coding mode and the allocated bits. Sect.2.3 illustrates the algorithm for finding

the optimum choice for the location of the SP frames, and for a fair distributions

of bits per frame; the described approach can be performed offline, in order to

provide pre-encoded sequence. Finally Sect.2.4 concludes the chapter.

2.2 Game theoretic approach to SP allocation

Game theory collects a set of analytical models with the goal of describing and

characterizing situations (games) where more parties (players) dynamical interact

to reach each one its own satisfaction (non cooperative game) or the collectivity

satisfaction (cooperative games). The principles of this mathematical tool may

apply in a great deal of fields as - for instance - social sciences (as economics),

biology, engineering, etc. Basic assumptions over the behavior of each player are

the following: i) a player acts so to maximize its own satisfaction (represented

by a suitable utility function), ii) in selecting its strategy, a player accounts for

the actions that the other players have chosen or are likely to choose.

In this contribution, we resort to a game theoretic optimization to address the

problem of video coding for bit-stream switching applications. We investigate how

the degree of freedom about the location of the SP frames in the encoded bit-

stream can be exploited to maximize the video quality of the encoded sequence

under a given bit budget.

Here we propose a game theoretic approach to drive this maximization. In de-

tails, following the approach in (2), we recast the problem of frame type selection

and bit allocation in terms of strategy selection in a cooperative game.

To cope with the system constraints on the desired degree of accessibility,
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2.2 Game theoretic approach to SP allocation

the maximum distance N between switching frames is assumed to be given as

a function of the maximum temporal distance τmax between SP frames and of

the video sequence frame rate f0, i.e. N = f0 · τmax. Hence, the overall video

sequence is divided in shorter sub-sequences of N frames. To satisfy the con-

straint on the maximum distance, in each sub-sequence at least one frame must

be a switching one. This partition extends the classical structure of Group of

Pictures (GOP) exploited in different video coding techniques to a more general

and flexible structure.

Let us consider coding a target bit-rate of R(bit/s) to encode the N frames

window. The overall bit budget available for the N frames is B = RN/f0(bit).

The game is described as follows:

• the players of the game are the N frames of the sub-sequence;

• the strategy of each player is given by its coding type and by the number

of bits allocated to itself;

• the utility of each player, representing its preference, is its visual quality

after decoding.

Let us denote by ci, i = 0, · · ·N − 1 the frame coding type, where ci takes

value in a finite set C representing all the NC coding modes provided by the video

encoder, and ri the number of bits allocated to itself. Due to coding constraints,

the set A of admissible coding mode N -ples is included in CN , and its cardinality

NA, representing the overall number of different coding mode configurations, is

smaller than NN
C . For example, in the case of ci representing a binary choice

between P coding mode and SP coding mode, and assuming that only one out of

N frames is a SP frame, in each window of N frames only N different SP frame

coding locations need to be considered and NA = N .

Finally, let ui = ui(ci, ri) denote the utility of the i-th player, i.e. the visual

quality of the i-th frame, i = 0, · · ·N − 1. Each player is characterized by the

initial utility u0
i , that represents the minimal visual quality that must be guar-

anteed, and by the corresponding number of allocated bits r0
i required to achieve

the quality u0
i . The tuples < u0, . . . , uN−1, u

0
0, . . . , u

0
N−1 > represent the game

settings.
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The so-called Nash Bargaining Solution (NBS) is a unique solution that sat-

isfies a set of axioms (efficiency, linearity, independency of irrelevant alternatives

and symmetry) (45). In the video coding framework the NBS can be found by

maximization of the following gain function (52):

G(c0, r0, · · · cN−1, rN−1) = ΠN−1
i=0

(
ui(ci, ri) − u0

i

)
(2.1)

with respect to ci, ri under the constraints:

ri ≥ r0
i , i = 0, · · ·N − 1

N−1∑

n=0

ri ≤ B

{c0, · · · , cN−1} ∈ A

(2.2)

The visual quality ui = ui(ci, ri) of the i-th frame is a value related to subjec-

tive perception, possibly affected by interaction between different media, and it

is therefore hardly captured by an analytical relation (see (25; 51) for a compre-

hensive survey on the subject). The approach in (2), imposing a linear relation

between the bit assigned to an image area, namely a macroblock, and its resulting

visual quality after decoding, has the merit of leading to an analytically tractable

solution for the maximization in (2.1). Hence, here we extend the relation for-

merly found in (2) by taking into account also the different coding efficiency

corresponding to different frame coding modes and define the visual quality of

the i-th frame as

ui(ci, ri) =
ri

K(ci) g(σi)
(2.3)

being σi the standard deviation of the innovation process between frame i and

frame i − 1, regarded as realizations of multidimensional random variables, and

g(σi) a non decreasing function1. The factor K(ci) represents the coding cost of

the coding mode option associated to the i-th frame.

For any fixed set of coding modes c0, · · · , cN−1, the values ri optimizing (2.1)

are proved to be (2):

ri = K(ci)g(σi)u
0
i +

1

N

(
B −

N−1∑

n=0

K(cn) g(σn)u
0
n

)
(2.4)

1(2) g(σi)
def= σα

i , α = 0.8.
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In assigning the minimal quality that must be guaranteed to each frame u0
i , i =

0, · · ·N − 1, different priors can be adopted. Let us suppose that, in order to

avoid annoying fluctuations of the frame visual quality, uniform minimal quality

all over the sequence is adopted, i.e. u0
i = umin, i = 0, · · ·N − 1. Then, let us

denote by i0, · · · , iN−1 the indexes of the N frames ordered by increasing standard

deviation of the innovation process, i.e.

σi0 ≤ · · · ≤ σiN−1

Let us consider the set of Nc admissible N -ples ci, i = 0, · · ·N − 1, and the

corresponding N -ples of coding costs K(ci), i = 0, · · ·N − 1. It is easily shown

that the gain in (2.1) is maximized by any admissible N -ple such that the coding

modes ci, i = 0, · · ·N − 1 satisfy the following ordered inequalities i.e.

{ci, i = 0, · · ·N − 1} such that K(ci0) ≥ · · · ≥ K(ciN−1
) (2.5)

This solution correspond to the intuitive choice of assigning the less efficient

coding modes to the frames with smaller standard deviations of the innovation

process. Finally, should different minimal qualities be required for the N frames,

the same criterion herein exposed applies to the indexes of the N frames ordered

by increasing weighed standard deviation of the innovation process, i.e.

wi0σi0 ≤ · · · ≤ wiN−1
σiN−1

being wi = u0
i /min(u0

i0
, · · ·u0

iN−1
). Since this maximization is found whatever the

effectively assigned bit budget is, the assignment of the coding mode can be made

independently on the evaluation of the allocated rates ri.

2.3 Optimal coding algorithm

In this section we present the coding algorithm optimized accoding to the criteria

exposed in Sect.2.2 by discussing also a few implementation details.

2.3.1 Sequence partitioning

The coding optimization algorithm is applied by first partitioning the overall

sequence in different shorter sequences of equal length N . In each sequence at
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least one SP frame shall be introduced. Since SP frames have less favourable

rate-distortion than P frames, unnecessary SP frames should not be introduced.

Hence, without loss of generality, we will assume that only one frame out of N is

an SP frame and its locations is chosen by performing the optimization on each

sequence, in different steps.

2.3.2 Innovation Process Variance Estimation

According to (2.5), the standard deviation σi of the innovation process of the

i-th frame is estimated as the standard deviation of the motion-compensation

residuals. We observe that the motion compensation residuals are generated

during the coding process and vary depending on the compression ratio. However,

we disregard the variations on the different range of compression ratios and we

estimate the variance on the original sequence. This choice is also motivated by

the fact that in realistic streaming system the primary SP frames of a sequence

should be set in all the coded version of the same sequence at the same temporal

index. Hence, in the following we will evaluate the standard deviation of the

motion-compensation residual on the frames of the original sequence.

2.3.3 Coding Mode Assignment

Once the standard deviation has been evaluated, according to (2.5) the SP cod-

ing mode is assigned to the frame with the minimum standard deviation of the

innovation process. The value of the parameter K(ci) can be estimated either by

rate distortion curves at a typical distortion value, or assigned through a priori

criterion.

2.3.4 Rate evaluation

After the choice of the coding mode of each frame, the preliminary matter as-

signment of the initial rates r0
i is performed, based on the initial assignment of

the qualities u0
i , i = 0, · · ·N − 1. Recent investigations on the theoretical and

experimental rate-distortion performance of SP and P frames have highlighted

that a given level of distortion is achieved by higher rate for SP frames than for

P frames (50). Hence, to equalize the initial quality, a large initial bit budget r0
i
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is assigned to the SP frame; the ri, i = 0, · · ·N − 1 are then straightforwardly

evaluated using (2.4).

2.3.4.1 Frame Coding

Given the frame bit budget ri obtained at the previous step, individual frame

coding can be performed resorting to state of the art optimization algorithms

as, for instance, the one presented in (2). It’s also possible to assign a single

quantization parameter value to the whole frame. In this case the quantization

parameter is chosen as the minimum integer value compatible with the assigned

value ri.

2.4 Summary

In this chapter we have illustrated a way to efficiently encode a video stream

with SP frames by means of game theory. We relaxed the usual assumption of

a fixed GOP by varying the position of the SP frame in the GOP. Using Nash

Bargaining Solution the SP is allocated in the frame exhibiting the minimum

innovation, and the bit budget is allocated according to a ”fair” distribution. We

lack of experimental results because we don’t have and heuristic procedure to

choose the correct QP per frame/macroblock in order to assign the bit budget to

every frame. In this sense, we could apply existing rate control techniques.
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Chapter 3

Improving Error Resilience: a

Multiple Description Coding

Approach

3.1 Introduction

Multiple description coding (MD Coding, or MDC) consists in providing different

coded description of the same data, and to send them using different transport

channels, achieving the transmission diversity needed for error resiliance. Surveys

on principles in designing MD video coders and on different MD compression al-

gorithms can be found in (23; 61). MDC algorithms descriptions are generated

by subsampling the data either in the spatial, temporal, or frequency domain. A

possibly lost description can be estimated from the others by exploiting spatial or

temporal adjacent video data samples correlation. In (21), two MDC algorithm

based on polyphase down-sampling are investigated and their performances over

unreliable networks assessed by numerical simulations. In (59) the authors an-

alyze a mathematical framework for pre- and post-processing two descriptions

of the original data, so as to implement the MDC paradigm by exploiting the

native directional correlation characteristics of the image. Specifically, in the

pre-processing stage the data splits into two subsets by means of a forward trans-

form, that are separately encoded and transmitted. At the receiver side, data

is recovered by an inverse transform making use only of the effectively available
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description. In (5; 60), MDC is achieved by originating four descriptions from

the spatially downsampled polyphase components of the original frames; each

description is independently H.264 coded, and concealment is applied at the de-

coder side in case of losses. In (32) a distributed video streaming framework using

unbalanced MDC and unequal error protection for wavelet-based coders is pro-

posed. In (54), a MDC technique based on the H.264/AVC slice group syntactic

structure (63) is described. Recently, in (58) a novel MDC technique has been

proposed, in the framework of H.264 coding. The coding algorithm exploits the

H.264 redundant slices; at the receiver side, the received compressed bitstream

must be pre-processed before being applied at the input of a standard compliant

decoder.

Figure 3.1: MDC scheme proposed.

In this chapter we analyze an error resilient MDC scheme based on Polyphase

SubSampling (PSS MDC). The analyzed MDC scheme is shown in Fig.3.1. The

original video sequence is applied at the input of a spatial-temporal interleaving

stage that generates a synthetic sequence, in which each frame conveys a fixed

number of descriptions pertaining to different frames of the original sequence. The

synthetic sequence is applied at the input of a standard video encoder; the trans-

31



3.2 MD Generation

port channel diversity is achieved simply by mapping different encoded frames

into different transport packets. Let us observe that, since MDs are managed

only inside the interleaving stage, switching from a MDC scheme to a Single De-

scription (SD) coding one can be performed dynamically at the encoder input

at the expence of an interleaving delay, easily recoverable by suitable buffering

at the decoder side. At the receiver side, the synthetic sequence is decoded and

concealed using available MD and de-interleaving is applied to provide a coarse

reconstruction of the original video sequence.

Once this coarse estimate of the video sequence has been provided, a fast

restoration algorithm based on robust interpolation is applied. The interpolation

algorithm exploits the local image directionality feature as well as the information

on which descriptions have been correctly received and which have been concealed

and it effectively improves the decoded video sequence quality both from an ob-

jective and from a subjective point of view. The herein analyzed scheme presents

two interesting properties: the MDC technique employs a standard compliant

video coding stage, so that it can be implemented at a slightly increased compu-

tational cost; besides, it appears to the transport layer as a SD coded data flow,

and the increase of protocol overhead is limited, too.

The remainder of the chapter is organized as follows: in Sect.3.2 the over-

all MDC coding scheme is outlined, while in Sect.3.3 the standard compliant

encoding/decoding stages providing a coarse video sequence reconstruction are

described. Sect.3.4 describes the final restoration stage performing a robust edge-

preserving interpolation; the results of numerical simulations assessing the MDC

algorithm performance are shown in Sect.3.5. The paper is concluded in Sect.3.6.

3.2 MD Generation

PSS MDC generates descriptions of each single frame by subsampling it with

different initial phases in vertical and/or horizontal directions; each subsampled

image provides a simplified frame description, and the original frame is recovered

by suitably collecting different descriptions.

Benefits of PSS MDC are achieved when the different descriptions are trans-

mitted in diversity. However, independent MD encoding and transmission not

only results into heavier computational requirements due to encoding and decod-
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ing different descriptions, but also into increased protocol overhead and reduced

bandwidth efficiency1 Here, we describe how PSS MDC can be realized by an ap-

plication layer interleaving scheme operating at the input of a standard compliant

encoding module, so as to bound the computational requirement. Furthermore,

the interleaving generates a synthetic sequence in which each frame contains dif-

ferent subsampled descriptions pertaining to different frames of the original video

sequence; thus, diversity is straightforwardly achieved when each coded frame of

the interleaved sequence is mapped into at least one transport-layer packet.

Let us denote the l-th frame of the original video sequence, of dimensions

M × N by

I(l)[m,n], m = 0, · · · ,M − 1, n = 0, · · ·N − 1

and let us suppose that a K × K downsampling factor is employed in the PSS

stage, so that each frame is conveyed by K ×K descriptions. The j-th poliphase

subsampled description of the l-th frame, of size M/K × N/K, is given by

∆
(l)
j [m,n]

def
= I(l)[Km + mj,Kn + nj ], j = 0, · · ·K2 − 1

mj = jmodK, nj = bj/Kc,
m = 0, · · · ,M/K − 1, n = 0, · · ·N/K − 1.

(3.1)

The K2 descriptions can be juxtaposed into a single M × N frame, so as to

associate at the original video sequence a new spatially interleaved sequence:

I
(l)
SI [m + mj ∗ M/K,n + nj ∗ N/K]

def
= ∆

(l)
j [m,n],

m = 0, · · · ,M/K − 1, n = 0, · · ·N/K − 1, j = 0, · · ·K2 − 1,
(3.2)

The spatially interleaved sequence I
(l)
SI [m,n] exhibits more rapid luminance

variations than the original sequence I(l)[m,n], thus presenting a higher coding

cost. However, since in video coding intensive prediction techniques are used,

the overall coding cost is strongly related to interframe correlation, and a suit-

able temporal interleaving increases the coding efficiency. Then, on the spatially

interleaved sequence, a temporal interleaving is applied, aiming at

1In almost all the emerging video communication schemes, it is recommended a one-to-
one correspondence between application layer packets and transport packets (48), resulting in
protocol overhead in case of independent MD transmission.
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• assigning different descriptions of the j-th frame to different application

layer packets

• preserving the inter-frame correlation properties typical of natural video

sequences.

The spatio-temporal interleaved sequence is built as

I
(l)
MD[m + mj ∗ M/K,n + nj ∗ N/K] = ∆

(l+j)
j [m,n] (3.3)

for m = 0, · · · ,M/K − 1, n = 0, · · ·N/K − 1, j = 0, · · ·K2 − 1 From (3.3),

we recognize that the l-th frame of the interleaved sequence I
(l)
MD[m,n] conveys

K2 subsampled descriptions, with different sampling phases, pertaining to K2

different frames of the original sequence I(l)[m,n], namely l, l +1, · · · , l + K2 − 1

of the original sequence I(l)[m,n]; conversely, the K2 descriptions of each frame of

I(l)[m,n] are conveyed by K2 different frames of I
(l)
MD[m,n]. Thus, the interleaving

introduces diversity when each frame of the interleaved sequence I
(l)
MD[m,n] is

sent using a different transport packet; this condition is a minimal requirement

(48) that is expected to be satisfied by all video communication systems. Such

interleaving also preserves the inter-frame correlation, in fact each description

follows the correspondant description of the previous frame.

For instance, let us fix K = 2. Then, given the original sequence I(l)[m,n], the

PSS followed by the interleaving stage generates the MD sequence I
(l)
MD[m,n]:

...∆
(l−1)
0 ∆

(l)
1 ∆

(l)
0 ∆

(l+1)
1 ∆

(l+1)
0 ∆

(l+2)
1 ∆

(l+2)
0 ∆

(l+3)
1 ...

...∆
(l+1)
2 ∆

(l+2)
3 ∆

(l+2)
2 ∆

(l+3)
3 ∆

(l+3)
2 ∆

(l+4)
3 ∆

(l+4)
2 ∆

(l+5)
3 ...

⇑ ⇑ ⇑ ⇑
... frame l − 1, frame l, frame l + 1, frame l + 2, ...

whose l-th frame is built by juxtapposing the K2 = 4 descriptions ∆
(l)
0 ,∆

(l+1)
1 ,∆

(l+2)
2 ,∆

(l+3)
3

pertaining to the frames l, l + 1, l + 2, l + 3 of the original video sequence.

3.3 MD encoding and decoding

The MD sequence I
(l)
MD[m,n] is applied at the input of a standard video encoder,

and transmission diversity of MD is implicitly assured when each coded frame
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is mapped into at least one independent transport packet. From now on, and

without loss of generality, we will refer to a video communication scheme based

on the most recent Joint Video Team coding standard H.264 (65). In the H.264

framework, each frame can be coded in one or more Network Adaptation Layer

Unit (NALU), and each NALU can be coded in one or more transport packets.

In either case, coded video data pertaining to different frames are expected to be

conveyed by different transport packets when IETF recommended packetization

(62) is applied. Hence, from a technical point of view, the herein analyzed MDC

scheme has the merit to bound the visibility of MDC to the application layer

and to appear to the network as a unique media flow, so simplifying the protocol

architecture required for the video communication.

At the receiver side, the video stream is decoded; in case of channel errors,

data are lost and the decoder invokes error concealment procedures to provide

the decoded video sequence Î
(l)
MD[m,n]. In case of data loss, error concealment

may use the same algorithms adopted in SD coding or exploit the MDC paradigm

by searching in the decoder buffer for alternative descriptions of lost data. When

the loss occurs on less than K2 consecutive frames, the decoder can exploit the

availability of MD pertaining to the same frame of I(l)[m,n] to recover the loss;

otherwise it performs a generic concealment, for instance by exploiting descrip-

tions belonging to adjacent frames.

Once the sequence Î
(l)
MD[m,n] has been generated, de-interleaving is applied to

generate the decoded version Î(l)[m,n], which represents a coarse estimate of the

trasmitted sequence I(l)[m,n].

3.4 Video sequence restoration by means of ro-

bust edge preserving interpolation

After the decoding, error concealment and de-interleaving stages, the recon-

structed video sequence Î(l)[m,n] is available. The luminance values Î(l)[m,n]

may be error-free or affected by reconstruction errors, resulting from losses of

coded data pertaining to the l-th frame or from propagation of errors occurred

on preceding frames due to the employment of predictive coding. Moreover, the

amount of error varies from a pixel to another. In fact, at the output of the
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decoding and de-interleaving stage, in Î(l)[m,n] we can distinguish

• error-free pixels,

• pixels that have been concealed using at least one correctly received de-

scription pertaining to the same frame

• pixels that have been concealed in absence of alternative descriptions per-

taining to the same frame.

Hence, we recognize that the MDC concealment induces a fairly natural reliability

hierarchy in the luminance values of the pixels of the sequence Î(l)[m,n]. We

formalize this hierarchy by introducing three classes of pixels, namely Class I

(error-free), Class II (MD concealed), and Class III (SD concealed) and assigning

a different reliability r(l)[m,n] to pixels belonging to different classes. Then, the

decoding sequence quality can be improved by applying a restoration algorithm

that takes into account not only the local image edges but also the pixel reliability.

The restoration stage operates by replacing each concealed (Class II or Class III)

pixel in Î(l)[m,n] with a suitably interpolated estimate.

The herein presented interpolation technique extends the classical edge-detection

interpolation scheme Edge-based Line Average (ELA) into a Robust ELA (RELA)

to exploits the reliability of the descriptions available for interpolation. Namely,

for a given site (m,n), we define a 3 × 3 neighborhood η(m,n) as illustrated in

Fig.3.2. Then, for each site (m,n), four pairs of pixels belonging to η(m,n) are

individuated as: {(m + δv, n + δh), (m − δv, n − δh), δv, δh ∈ SELA} being SELA

defined as: SELA
def
={(1, 0), (0, 1), (1, 1), (1,−1)}. Each pair of pixels, indexed by

δv, δh, identifies a candidate direction for interpolation; ELA searches for the

direction of minimal luminance variation, i.e. for the pair (δv, δh) minimizing∣∣∣Î(l)[m+δv, n+δh]−Î(l)[m−δv, n−δh]
∣∣∣ and estimates the luminance in Î

(l)
ELA[m,n]

as the average between Î(l)[m + δv, n + δh] and Î(l)[m − δv, n − δh]. Since it has

been originally designed for fast upsampling of high quality images, the ELA

interpolation algorithm does not take into account possible errors affecting the

luminance of the pixels in η(m,n); thus, it performs quite well on reconstructing

missing pixels for error free descriptions, but it presents modest performances

when the descriptions are affected by residual errors after concealment.
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Figure 3.2: The considered neighborhood η(m,n) and the associated four pixel

pairs, indexed by (δv, δh) ∈ SELA .

SRELA =
{
(δv, δh) ∈ SELA, (δv, δh) s.t.

∣∣r(l)[m + δv, n + δh]
∣∣+
∣∣r(l)[m− δv, n − δh]

∣∣ > θ
}

(3.4)

(δ(RELA)
v , δ

(RELA)
h )= arg min

(δv,δh)∈SRELA

∣∣∣̂I(l)[m+δv, n+δh]−Î(l)[m−δv, n−δh]
∣∣∣ (3.5)

Î
(l)
RELA[m,n] =

Î(l)[m + δ
(RELA)
v , n + δ

(RELA)
h ] + Î(l)[m − δ

(RELA)
v , n − δ

(RELA)
h ]

2
(3.6)

We design here a robust edge driven interpolation algorithm (RELA) tak-

ing into account the measurements reliability. Specifically, let us assume that a

reliability measure r(l)[m,n] is associated to each pixel [m,n] of the l-th frame

after the concealment stage. This measure is used to operate a reduction of the

set of directions which are candidate for interpolation, by limiting to the set of

most reliable direction, i.e. the set SRELA as in (3.4), being θ a suitably defined

threshold. Then, the optimal interpolation direction is determined as in (3.5),

and estimates the luminance in (m,n) as in (3.6). From (3.6), we recognize that

the robust interpolation attempts to restore the concealed pixels by directional

smoothing, meanwhile using only the most reliable luminance values. Finally, we

observe that the described interpolation strategy estimates the luminance value

at the location (m,n) employing directional interpolation of pixels belonging to

η(m,n). The reformulation of this interpolation in terms of Bayesian interpola-

tion of Markov Random Fields is currently under investigation.
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3.5 Numerical Results

In this section we present a set of numerical simulation results assessing the

performance of PSS MDC technique using the robust RELA interpolation. The

experiments refer to the test sequences Foreman and News, CIF format, at 10

frames per second.. A number of K = 2 × 2 descriptions has been selected. The

RELA was realized by assigning r(l)[m,n] = 2 to Class I pixels, r(l)[m,n] = 1 to

Class II pixels, r(l)[m,n] = 0 to Class III pixels, and by setting θ = 1.

The interleaved sequences are encoded using the reference JM H.264 coder

version 11.0 (24), one NALU per frame. The GOP structure is given by a primary

SP frame followed by 9 P frames; in each frame, 40 macroblocks are INTRA

encoded for Random Intra Refresh purposes. The H.264 Video Coding Layer

encodes one slice per frame, and the Network Adaptation Layer followed by the

RTP packetizer using the so called simple packetization method maps each slice

into an RTP packet.

The first set of numerical simulations refers to the encoding of 100 frames of

the sequence News, at a bit-rate of 600 kbps. We analyze here in detail a run

characterized by PLP=13%. MDC using RELA reduces the visually relevant arti-

facts that are observed on the decoded video sequence in presence of transmission

errors. Fig.3.3 shows selected details of a few snapshots captured within the se-

quence decoded using ELA and RELA; the visual quality improvement achieved

by adopting MDC with RELA is clearly appreciated. The quality of the video se-

quences decoded in different conditions has been also evaluated in terms of Peak

to Signal Noise Ratio (PSNR), defined as: PSNR
def
= 2552/MSE, proving that the

RELA stage significantly improves the overall MDC performance, resulting into

a PSNR gain of 1.5 dB over MDC without interpolation and 1.1 dB over ELA.

The second set of numerical simulations refer to the encoding of 100 frames of

the sequence Foreman, at a bit-rate of 750 kbps. A transport channel character-

ized by a packet loss probability (PLP) equal to 10% has been simulated over 100

Montecarlo runs. The MDC scheme using RELA, ELA and MDC without inter-

polation have been compared, by evaluating the decoded sequence PSNR values

observed on each of the 100 frames, and by characterizing statistically the PSNR

values observed using the different schemes. Fig.3.4 reports the PSNR histograms

of the three schemes, while Table 3.1 reports selected parameters characterizing
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PSNR MDC using RELA MDC using ELA MDC w/out

interpolation

Mean 30.59 29.41 28.14

Standard Deviation 3.42 4.03 4.56

Median 31.03 29.41 27.63

Table 3.1: PSNR of the MD encoded sequences, decoded using R-ELA and ELA

interpolation, and without interpolation: Foreman sequence, CIF, 750 kbps, 100

encoded frames, 50 Montecarlo runs.

the PSNR distributions.

3.6 Summary

In this chapter, we have analyzed a PSS MDC scheme. The underlying assump-

tion of general MDC schemes is that each description is a tight approximation

of the others; in the particular case of PSS MDC, this is the consequence of the

correlation between the neighboring pixels of a natural image. In case of losses,

the availability of multiple descriptions is exploited to perform a more accurate

error concealment. The concealment induces a fairly natural pixel hierarchy that

can be exploited by a post-processing stage. Here, we analyze a fast restora-

tion stage that makes use not only of the local directionality information but

also of the reliability of the decoded pixes. The scheme effectively improves the

decoded video sequence quality on lossy channels both from an objective and

from a subjective point of view. The interesting performance of the interpolation

stage are related to the markovian nature of natural images; the relation between

the interpolation algorithm and markovian image interpolation (41) is currently

under investigation. The herein presented MDC scheme is realized in the form

of pre-processing and post-processing stage in H.264/AVC standard compliant

encoder and decoder pair; besides, transmission diversity is straightforwardly ob-

tained by mapping one application packet in at least one transport packet, while

maintaining a single transport data flow.
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Figure 3.3: Details for frame 46 of the sequences decoded using R-ELA and ELA

interpolation, News sequence, CIF, 600 kbps.

Figure 3.4: PSNR Histograms for the MD encoded sequences, decoded using R-

ELA and ELA interpolation, and without interpolation: Foreman sequence, CIF,

750 kbps, 100 encoded frames, 50 Montecarlo runs.

.
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Chapter 4

Improving network dimensioning:

a Markovian source model

4.1 Introduction

In this work, we address the modeling of a H.264 video streaming source that

performs bitstream switching using SP frames. Modeling of video data is useful

in many respects. For instance, since video is typically the most expensive media

in bandwidth allocation, proper simulations of the network load may require a

reasonably high number of video data traces, and such a huge measurement in a

variety of encoding conditions is a heavy task, especially when bandwidth adap-

tation is required. Conversely, having a compact video source model permits to

numerically generate a large amount of realistic data from only few parameters

or to elaborate those statistics of the video traffic having a major impact on the

network. Besides, a theoretical model of the video source offers a clear analyt-

ical framework for the design of call-admission-control procedures as well as of

cross-layer optimization strategies. Additionally, the model can be exploited to

optimize the resources’ allocation, especially in case of dynamic networks such as

wireless mesh networks or cognitive radio networks.

Video source modeling has been widely investigated, with particular refer-

ence to videoconferencing services, which employ strictly constrained Constant

Bit Rate (CBR) sources, or multicasting/broadcasting digital television oriented

services, which envolve loosely constrained or unconstrained Variable Bit Rate
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(VBR) sources. A survey on the subject is found in (28) where an overview of

different video source models is presented, and the so-called Markovian Trans-

form Expand Sample (TES) as well as self-similar models are investigated. Frame

level statistical descriptions are found in (27), (47), (68) where the authors use

a Markov chain to model the number of Asynchronous Transfer Mode (ATM)

cells per frame in videoconference service, being each chain state representative

of the number of cells. In (47), the frame size is modeled as the sum of three

processes, two of which are first order autoregressive (AR) processes modeling

the autocorrelation function at short lags, while the third process is the output of

a Markov chain modeling the scene changes; specifically, three states are present,

respectively modeling the first frame where scene change happens, the following

frame, and all the other frames. In (68) a switching Markov AR process mod-

els the frame sizes, but at each state change the memory of the AR process is

neglected; the model adopts a mixture of Gaussian densities for the pdf of the

frame size. In (42), the video source model consists in nested AR processes mo-

deling the mean and the fluctuations of the frame sizes in different scenes. Scene

length is modeled by a geometric distribution. In (3) a video sequence is de-

composed according to the motion/scene complexity and each part is described

by a self-similar process. Beta distribution is used to characterize the marginal

cumulative distribution of the self-similar processes. In (16), addressing cable

digital television services, an MPEG1 video source is synthesized by a compound

model involving three different discrete time AR processes, one for each kind of

frame (I, P and B) employed in the standard, and a Markov chain representing

the video activity. Models of H.264 video source have been considered in more

recent papers, such as (33) and (34), in which the authors analyze a Markovian

representation of an H.264 stream based on a Gamma like marginal frame size

distribution to fit the I, P, and B distribution. In (37), the authors investigate

about the marginal distribution of the frames and the scene changes, modeling

the scene duration as a geometric distribution while in (17) a representation of

an MPEG4 and H.264 VBR source is developed via a wavelet and time domain

combined method that addresses the correlation of the encoded data referring to

groups of consecutive frames beginning with a random access unit.

However, the aforementioned literature lacks of analysis of the dynamical be-

havior of the H.264 source performing bitstream switching; a few contributions
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on this issue can be found in (12)-(14). In (12), a Markov chain models the whole

frame sequence by representing a frame as a state in the chain. In (13), the au-

thors describe encoded data representing a group of consecutive frames beginning

with a random access unit (Group of Pictures, GOP) as the output of a switch-

ing autoregressive hidden Markov process whose states represent different kinds

of GOP. Instead, a low order autoregressive process is used in (14) to model the

correlation between the frames, whereas a Markov chain drives the global averages

at the GOP layer. Moreover, while the literature offers several Markovian mod-

els, the estimation of the model parameter set is often conducted in accordance

to specific criteria (least squares estimation, method of moments, etc.) designed

on a heuristic basis for the problem under consideration. A Markovian model

enabling parameter estimation via local maximization of the likelihood function

appears in (15). Herein, the preliminary results presented in (15) are extended

and the model is investigated more in depth.

This chapter aims at modeling the video streaming traffic generated by a H.264

video encoder, which dynamically varies its rate by means of bitstream switching;

furthermore, we are interested in designing an optimal strategy for parameter esti-

mation from a real video sequence in accordance to a Maximum Likelihood (ML)

estimation criterion. The herein analyzed model describes a random vector repre-

senting the sizes of the frames in a GOP. Since the bitstrem switches happens on

network/client feedbacks depending on the channel status, such model includes

implicitly a partial channel model. The basic idea is to provide a general-purpose

model, that is able to describe efficiently the video source on different channels.

At this aim, we assess the model employing an EDGE channel model (? ). Let us

remark we do not consider the EDGE channel model during the development of

the model. We model the video source by resorting to a Hidden Markov Process

(HMP) that describes the data vectors representing GOP frame sizes as the out-

put of an underlying Markov chain. Each state of the chain is representative of

a different kind of GOP, and the state-dependent conditional observation prob-

ability density function (pdf) is characterized by modulating the mean and the

covariance matrix of a multivariate white Gaussian process according to the state

parameters. We will show that this HMP turns out to be a Gaussian Mixture Pro-

cess with Markov dependence, for which stationarity and ergodicity are ensured

under mild assumptions on the underlying Markov chain. First and second order
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statistics of the HMP have been evaluated. Furthermore, we have outlined the

ML parameter estimation by application of the Expectation-Maximization (EM)

algorithm (18) to the case under study; thus, we have devised a procedure for

estimation of the HMP parameters from a finite set of measurements extracted

from a real video source, and in absence of a priori knowledge on the switching

source behavior. Finally, we have assessed the model performance by comparing

the traffic generated by an H.264 video source (in an EDGE system) with the

synthetic traffic generated by a HMP using parameters estimated by means of the

EM algorithm on a subset of the video data. We have also carried out compar-

isons of different statistics measured on the real video data with their expected

value analytically derived in accordance to the HMP models. Furthermore, we

have compared the buffer load, in terms of frame loss rate, for the real and the

synthetic source. The results show that, despite of a few simplifying modeling

assumptions, the HMP model well captures the statistical characteristics of the

source at a GOP Layer; meanwhile, the application of the EM algorithm to the

case under study provides a theoretically clear and technically sound framework

for the HMP parameters tuning stage.

The remainder of this chapter is organized as follows: in Sect.4.2 we model

the video source resorting to Hidden Markov Processes (HMPs) and in Sect.4.3

we devise a parameter set estimation procedure based on the EM algorithm. In

Sect.4.4, we present numerical simulations assessing the convergence of the EM

algorithm to the true HMP model parameters in a realistic scenario and we show

that the HMP model using estimated parameters achieves satisfying performance

in capturing the significant statistical characteristics of the data encoded by a

real H.264 source. Conclusion is drawn in Sect.4.6.

4.2 The Hidden Markov Process

HMPs are a family of stochastic processes describing a discrete-time finite-state

homogeneous Markov chain observed through a discrete-time memoryless invari-

ant channel, where the adjective “hidden” denotes that the state sequence is

never observed directly. These models have been deeply studied, and a review of

a variety of HMP can be found in (20), where different stationarity and ergodicity

conditions and algorithms for parameter estimation are also discussed.
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Let us denote by x[m] the size in bit of the m-th frame of the coded video

sequence, and by x[n] the NGOP-dimensional random variable

x[n]
def
=
[
x[n · NGOP], · · ·x[n · NGOP + NGOP − 1]

]T
(4.1)

representing the sizes, in bits, of the NGOP frames constituting the n-th GOP of

the coded video sequence. The transmission of a GOP is modeled as a realization

of the random variable x[n], observed at the output of a first-order homogeneous

Markov chain. The set of states of the chain Λs comprises as many states as the

number of different GOP kinds, i.e. Ns = L2, among which we recognize L states

Ri, i = 0, · · ·N − 1 representing GOPs emitted during streaming at an average

rate ri, and L2−L states Si,j, i, j = 0, · · ·N −1, i 6= j representing GOPs emitted

when an event of bitstream switching occurs.

The chain is described by the Ns × Ns transition matrix Π, whose generic

element πλµ represents the transition probability from the state λ to the state µ.

Let us observe that, due to decoding constraints on consecutive GOPs emitted

by a real video streaming source, not all the transitions are admitted in the HMP

model. Therefore, several elements of Π are equal to 0. An example of the model

for L = 2, Ns = 4 is shown in Fig.4.1.

Figure 4.1: Markov chain representing an H.264 video source operating at L = 2

different streaming rates. The number of states of the Markov chain is Ns = L2 =

4. The corresponding state transition probabilities are reported in Tab.4.1.

The statistical characteristics of the observed variable x[n] depend on the

actual state λn = λ of the Markov chain; specifically, we assume for x[n] the
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From \ To R1 R2 S12 S21

R1 1 − πr1⇒r2 0 πr1⇒r2 0

R2 0 1 − πr2⇒r1 0 πr2⇒r1

S12 0 1 − πr2⇒r1 0 πr2⇒r1

S21 1 − πr1⇒r2 0 πr1⇒r2 0

Table 4.1: State transition probabilities corresponding to the Ns = 4 markov

chain in Fig.4.1.

following generation model:

x[n] = Σλe[n] + cλ (4.2)

where e[n] is a realization of a white, Gaussian, NGOP-dimensional random pro-

cess independent on the sequence of states λn, with

E{e[n]}=0

E{e[n]e[n− m]T}=I · δ[m]

From the model (4.2), it stems out that the observation x[n] conditioned to the

state λn = λ is a normal random variable whose mean and covariance matrix

depend on the actual state λn = λ, i.e.

p(x[n]|λn = λ) = N (x[n], cλ,ΣλΣ
T

λ) (4.3)

The model identified by (4.3) belongs to the class of Gaussian Mixture (GM)

processes with Markov dependence (20). The GM-HMP, widely studied in (22;

35; 36), has found application in automatic speech recognition; its application

to video source modeling is novel under different respects. The first underlying

assumption in (4.2) is that while inter-frame correlation within one GOP is taken

into account by the matrix Σλ, inter-frame correlation between different GOPs

is taken into account by the Markov chain structure; this assumption represents

a novelty with respect to the literature, where AR models are rather employed

(13; 16). Moreover, the frame size pdf is assumed to be normally distributed,

whereas several works in literature assume heavily tailed pdfs such as Gamma

or Beta distribution. Under the aforementioned modeling assumptions, we have

derived the EM algorithm for estimation of the HMP parameters; in the following,
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we will show that the HMP driven by the parameters estimated by means of

the EM algorithm accurately captures various statistical characteristics of H.264

coded video data.

Ergodicity conditions for a GM-HMP reside only on the properties of the

hidden Markov chain: if the chain is stationary, irreducible and aperiodic, the

model is ergodic (20). It is straightforward to verify that the Markov chain

modeling the GOP sequence has indeed the properties listed above, and therefore

the resulting GM-HMP source model is ergodic.

Let us denote by pλ, λ = 1, · · · , Ns, the limit state probabilities of the Markov

chain. The mean vector and covariance matrix of the variate x[n] in (4.2), defined

as:

µx
def
= E {x[n]}

Rx [m]
def
= E{x[n]x[n− m]T}

(4.4)

take the following forms:

µx =
∑

λ

pλcλ

Rx [m]=
∑

λ1

∑

λ2

pλ1‖Πm‖λ1λ2 · cλ2c
T

λ1

+ δ[m]
∑

λ

pλΣλΣ
T

λ.

(4.5)

The compact model in (4.2) describes vectorial random variables modeling

the NGOP-uple generated by a video source during the encoding of a GOP, that

is it refers to the GOP layer. From the HMP model in (4.2) several statistics

referring to individual frame size can be inferred, a few examples of them being

reported in A. In the Section devoted to the experimental results, we will show

that the HMP in (4.2) provides a tight statistical model of the frame size sequence

measured on real H.264 encoded video sequences.

Thanks to the model compactness, the behavior of the HMP in (4.2) is fully

determined by the model parameter set

Θ
def
={Π,Σ1, . . . ,ΣNs, c1, . . . , cNs}

The aim of the modeling procedure is to design a synthetic source statistically

similar to a real video source; then, the HMP shall be driven by a suitably
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4.3 HMP Parameter Set Estimation

designed parameter set. A basic design approach relies on observing a possibly

short trace of video traffic and adjusting the model parameters to best describe

the real data according to specifically selected criteria. In the following Section,

we devise a parameter set estimation procedure based on the EM algorithm.

4.3 HMP Parameter Set Estimation

The EM algorithm, originally developed by Dempster, Laird and Rubin (18),

allows to estimate the parameters of a HMP by local maximization of the like-

lihood function, and it has been applied in several fields of research, including

image classification (4), image restoration (66), image deconvolution (6); recently,

the EM algorithm has been employed to estimate the parameters of a switching

Markov AR process modeling surface electromyographic signals (9).

The EM algorithm iteratively alternates two steps: i) evaluating an auxiliary

log-likelihood function of the observations given a previous estimate of the un-

known parameter set; ii) maximizing the so found auxiliary function to evaluate

a new parameter set estimate. To outline the EM algorithm steps in detail, let

us compactly denote by

x0,N
def
={x[n], n = 0 · · ·N − 1}

the observation sequence constituted by N consecutive video GOPs; moreover,

let λ0,N
def
={λn, n = 0 · · ·N − 1} denote the unknown underlying state sequence

corresponding to the observed set x0,N .

Given the k-th estimated parameter set Θ(k), the expectation step (E-step)

computes the auxiliary likelihood function

Q(Θ,Θ(k))
def
=
∑

λ0,N

log
(
p (λ0,N ,x0,N ; Θ)

)
p
(
λ0,N |x0,N ; Θ(k)

)

The maximization step (M-step) maximizes the auxiliary likelihood function

Q(Θ,Θ(k)) with respect to the unknown parameter set Θ so as to provide the

(k + 1)-th step estimate:

Θ(k+1) = arg max
Θ

Q(Θ,Θ(k)). (4.6)
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4.3 HMP Parameter Set Estimation

The algorithm stops when the parameter set Θ(k) quits changing according to a

suitable distance measure or when some different stop criterion is met.

The maximization problem is solved resorting to standard constrained op-

timization techniques, and the solution is expressed in terms of the so-called

re-estimation formulas, which relate the maximization solution, i.e. the new es-

timate Θ(k+1), to the observations x0,N and to the conditional probabilities of

the unknown state sequence λ0,N given the observations x0,N and the previous

parameter set estimate Θ(k). For the model described in Sect.4.2, in which the

observation conditional density in the state λn is Gaussian, the re-estimation

formulas are evaluated as follows (20):

c
(k+1)
λ =

(
N−1∑

n=0

γn(λ;x0,N ,Θ(k))

)−1 N−1∑

n=0

γn(λ;x0,N ,Θ(k)) x[n] (4.7)

Σ
(k+1)
λ

(
Σ

(k+1)
λ

)T

=

(
N−1∑

n=0

γn(λ;x0,N ,Θ(k))

)−1

N−1∑

n=0

γn(λ;x0,N ,Θ(k))(x[n]− c
(k+1)
λ )(x[n]− c

(k+1)
λ )T

(4.8)

π
(k+1)
λ,µ =

(
N−2∑

n=0

γn(λ;x0,N ,Θ(k))

)−1 N−2∑

n=0

ξn(λ, µ;x0,N ,Θ(k)) (4.9)

where we have adopted the compact notation:

γn(λ;x0,N ,Θ(k))
def
= p

(
λn = λ| x0,N,Θ(k)

)

ξn(λ, µ;x0,N ,Θ(k))
def
= p

(
λn = λ, λn+1 = µ| x0,N,Θ(k)

)

Using the algorithm described in (20), and here reported in Tab.4.2 for reader’s

convenience, the terms γn(λ;x0,N ,Θ(k)), ξn(λ, µ;x0,N ,Θ(k)), which represent the

state conditional probabilities given the whole set of N observations x0,N , can

be recursively evaluated in terms of the conditional probabilities given a smaller

subset of n observations, that is

αn

(
λ;x0,N ,Θ(k)

) def
= p

(
λn = λ|x0,n,Θ

(k)
)

The probability αn

(
λ;x0,N ,Θ(k)

)
depends on the following observations’ con-

ditional pdf given the previously estimated Θ(k):

fn

(
x0,N;λ,Θ(k)

) def
= p

(
x[n]|λn = λ,Θ(k)

)
.
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4.4 Numerical Simulations

Different recursions for estimating αn

(
λ;x0,N,Θ(k)

)
appear in literature; the re-

sults shown in Sect.4.4 have been obtained by adopting the forward stable recur-

sion provided in (19; 40), and summarized in Tab.4.3.

γN−1(λ;x0,N ,Θ(k)) = αN−1

(
λ;x0,N ,Θ(k)

)

ξn(λ, µ;x0,N ,Θ(k)) = π
(k)
µλ γn+1(λ;x0,N ,Θ(k))αn

(
µ;x0,N,Θ(k)

)
·

∑

µ

π
(k)
µλ αn

(
µ;x0,N ,Θ(k)

)−1

γn(λ;x0,N ,Θ(k)) =
∑

µ

ξn(λ, µ;x0,N ,Θ(k))

n = N − 2, . . . , 0

Table 4.2: Algorithm for stable estimation of the observation conditional proba-

bilities γn(λ) and of the transition probabilities ξn(µ, λ).

Then, based on the aforementioned Gaussian Mixture HMP, we have analyti-

cally developed the parameter estimation procedure in the EM framework; the

resulting locally ML parameter estimation algorithm, to the best of the authors’

knowledge, appears here for the first time in the context of video source modeling,

where parameter estimation is typically performed resorting to heuristic criteria.

4.4 Numerical Simulations

In this Section, we first present numerical simulations results that illustrate the

convergence of the EM algorithm to the true HMP model parameters in a realistic

scenario of limited a priori information and reduced number of observations.

After having discussed the HMP parameter set estimation algorithm, we will

show that the HMP model using estimated parameters achieves satisfying perfor-

mance in capturing the significant statistical characteristics of the data encoded

by a real H.264 source. In particular, Subsect. 4.4.1 is devoted to the discussion
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4.4 Numerical Simulations

α0

(
λ;x0,N ,Θ(k)

)
= f0

(
x0,N ;λ,Θ(k)

)
π

(k)
λ ·

[∑

µ

π(k)
µ f0

(
x0,N;µ,Θ(k)

)
]−1

αn

(
λ;x0,N ,Θ(k)

)
=

fn

(
x0,N;λ,Θ(k)

)∑

µ

π
(k)
µλ αn−1

(
µ;x0,N ,Θ(k)

)
·

[∑

δ

fn

(
x0,N ; δ,Θ(k)

)∑

µ

π
(k)
µδ αn−1

(
µ;x0,N ,Θ(k)

)
]−1

n = 1, . . . , N − 1

Table 4.3: Algorithm for stable recursion of the state conditional probabilities

αn

(
λ;x0,N ,Θ(k)

)
.

of results of EM algorithm convergence, while Subsect. 4.5 is devoted to assess

the HMP model performance in mimicking a selected set of statistics observed

on video data encoded by a real H.264 source performing bitstream switching.

4.4.1 EM algorithm convergence

Since the likelihood function of an HMP has, in general, several local maxima,

the convergence of the EM algorithm is severely affected by the initial parameter

set estimate Θ(0). The EM algorithm convergence has been verified on HMPs

operating at different average bit-rates. Here, we present the results obtained by

assigning NGOP = 10 and nominal rates r1 = 20 kbps, r2 = 50 kbps; this choice is

motivated by the fact that these two nominal rates are close enough to stress the

EM algorithm in identifying the bitstreams; similar results have been obtained at

different nominal bit-rates. The state dependent parameters cλ and Σλ adopted

in the simulations are reported in Tab.4.4, where it can be observed that all the

P frames pertaining to the same state have been assigned equal first and second

order moments. The HMP transition probabilities πr1⇒r2 and πr2⇒r1 have been

set to 0.4 and 0.7. The algorithm operates after the observation of a sequence of
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4.4 Numerical Simulations

GOPs x[0], · · · ,x[N − 1], with N = 25.

State cλ Σλ

R1 [8413 1335 · · ·1335]T diag (802, 335, · · · , 335)

R2 [23514 3377 · · ·3377]T diag (1331, 675, · · · , 675)

S12 [31911 3377 · · ·3377]T diag (970, 675, · · · , 675)

S21 [11230 1335 · · ·1335]T diag (648, 335, · · · , 335)

Table 4.4: Parameter cλ and Σλ estimated by the EM algorithm.

EM algorithm needs a suitable initialization of the parameter set to begin the iter-

ations: the choice of this initial point is crucial in order to reach the global maxi-

mum of the likelihood function (18). To start in a point enabling the convergence

to the global maximum, while still exploiting the minimal a priori knowledge

about the nominal bit-rate and the transition matrix structure, we set the ele-

ments of the vector cλ and the matrix Σλ as a function of the nominal streaming

bit-rates r1, r2. Namely, with reference to the Markov chain in Fig.4.1, we ini-

tialize the elements of the vector cλ with a constant value related to the nominal

rate ri
1:

‖c(0)
λ ‖i = rλ · TGOP /NGOP, i = 0, . . . , NGOP − 1 (4.10)

being rλ = r1 for the states R1, S21 and rλ = r2 for the states R2, S12, and being

TGOP the GOP period. The matrix Σ
(0)
λ is assumed to be proportional to the

identity matrix and trace equal to the average GOP bit budget, namely:

Σ
(0)
λ =

(
1

L

L∑

λ=1

rλ · TGOP /NGOP

)
· I (4.11)

Finally, as far as the transition matrix Π is concerned, any element corresponding

to bitstream switching that is not allowed by the decoding constraints is set to

zero, while the non-zero transition probabilities are assumed to be all equal.

The iterative EM algorithm is applied in accordance to the general outline

given in Sect. 4.3; furthermore, at the k-th iteration of the algorithm, we impose

a diagonal structure to Σλ by setting equal to zero the extra diagonal entries and

1Let us observe that, in both cases, these constants exceed the true mean values on P-frames
and are less than the true mean value on SP-frame.
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4.4 Numerical Simulations

by straightforwardly evaluating its diagonal elements, representing the standard

deviation of the frames pertaining to a specific GOP kind, as follows:

‖Σ(k+1)
λ ‖ii =

√√√√√
∑N−1

n=0 γn(λ)
(
‖x[n]‖i − ‖c(k+1)

λ ‖i

)2

∑N−1
n=0 γn(λ)

,

i = 0, · · ·NGOP − 1

Convergence of the EM algorithm is illustrated in Figs.4.2-4.8, where estimated

and true parameters’ values are plotted versus the iteration number. Since the

algorithm estimates NGOP elements for each vector cλ, and NGOP for each matrix

Σλ matrices, while only two elements are needed each vector and matrix, for SP

frames we plot the following statistics:

‖c(k)
λ ‖0, ‖Σ(k)

λ ‖00, λ = 1, . . . , NS − 1

while for P frames we plot

‖c(k)
λ ‖i =

1

NGOP − 1

NGOP−1∑

i=1

‖c(k)
λ ‖i

‖Σ(k)
λ ‖ii =

1

NGOP − 1

NGOP−1∑

i=1

‖Σ(k)
λ ‖ii

(4.12)

being k the iteration number.

All the parameters converge to their true values after very few iterations of

the EM algorithm, although mean values and standard deviations of P frames in

the switching and non-switching GOPs are very similar; moreover, convergence

is quite robust under different initialization, and only underestimation of the

standard deviation parameters appearing in the matrix Σλ should be avoided,

since it directly affects the state sequence estimation implicitly performed by the

EM algorithm.

We observe that the compact form of the parameter space has beneficial effects

on the EM algorithm convergence, because it allows convergence after very few

iterations also in presence of a limited number of observed GOPs. On the other

hand, we will show that a satisfying approximation of the statistics of real traffic

is attained both in terms of autocorrelation and of corresponding loss and even

though the inter-frame intra-GOP correlation is neglected.
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4.4 Numerical Simulations

Figure 4.2: P frame mean value: true value at 20 kbps (plus), true value at 50 kbps

(diamond), estimation from non-switching state at 20 kbps (circle), estimation

from non-switching state at 50 kbps (cross), estimation from switching state at 20

kbps (triangle-up), estimation from switching state at 50 kbps (triangle-down).

Figure 4.3: Primary SP frame mean value: true value at 20 kbps (plus), true

value at 50 kbps (diamond), estimation at 20 kbps (circle), estimation at 50 kbps

(cross).
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4.4 Numerical Simulations

Figure 4.4: Secondary SP frame mean value: true value at 50-20 kbps (plus), true

value at 20-50 kbps (diamond), estimation at 50-20 kbps (triangle-up), estimation

at 20-50 kbps (triangle-down).

Figure 4.5: P frame standard deviation: true value at 20 kbps (plus), true value

at 50 kbps (diamond), estimation from non-switching state at 20 kbps (circle),

estimation from non-switching state at 50 kbps (cross), estimation from switch-

ing state at 20 kbps (triangle-up), estimation from switching state at 50 kbps

(triangle-down).
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Figure 4.6: Primary SP frame standard deviation: Primary SP frame mean value:

true value at 20 kbps (plus), true value at 50 kbps (diamond), estimation at 20

kbps (circle), estimation at 50 kbps (cross).

Figure 4.7: Secondary SP frame standard deviation: true value at 50-20 kbps

(plus), true value at 20-50 kbps (diamond), estimation at 50-20 kbps (triangle-

up), estimation at 20-50 kbps (triangle-down).
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4.4 Numerical Simulations

Figure 4.8: Transition probability estimation: true value πr1⇒r2 (plus), true value

πr2⇒r1 (diamond), estimation πr1⇒r2 (triangle-up), estimation πr2⇒r1 (circle).
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4.5 HMP model performances

4.5 HMP model performances

After having discussed the convergence of the EM algorithm, in this Section we

evaluate the performance of the herein analyzed Markov chain in modeling the

traffic generated by a real video source. We consider as case-study a transmission

into EDGE channel.

4.5.1 EDGE Channel Model

The EDGE channel model is first introduced in (7) and used in (53), (29),(38)

The authors characterize the EDGE channel by a layered description. Two lay-

ers are presented: in the top level, users are divided into two groups, group 1

representing bad locations group and group 2 good locations group. These two

groups summarize the possible conditions that may happen due to intereference,

shadowing, low/high received signal power, etc. Not all the modulation/channel

scheme codings are possible in each group, only a subset characterized by the

states of a Markov chain, i.e. in group 1 users vary their channel/modulation

scheme according to a 3-state Markov chain of resp. 11.2 kbps, 14.8 kbps, and

17.6 kbps. In group 2, a 2-state Markov chain of 49.5 kbps and 59.2 kbps is

assumed. In Fig.4.9 the overall scheme is presented. Tab.4.5 shows parameter

values according to (29) and Tab.4.6 according to (53). Group changes happen

independently every second, but (53) assumes changes every 20 seconds. The

former hypothesis is assumed in the following. State changes happen every tenth

of second according to the group relative Markov chain.

Figure 4.9: EDGE channel model.
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4.5 HMP model performances

Users pg1 λ µ1 µ2

2 0.029 0.1 0.069 0.015

4 0.062 0.1 0.069 0.04

6 0.126 0.1 0.076 0.082

8 0.235 0.1 0.096 0.176

10 0.456 0.1 0.147 0.4

12 0.588 0.1 0.191 0.571

14 0.651 0.1 0.219 0.658

Table 4.5: Parameter values according to (29).

Users pg1 λ µ1 µ2

2 0.07 0.3 0.055 0.05

8 0.36 0.3 0.094 0.3

15 0.73 0.3 0.27 0.59

Table 4.6: Parameter values according to (53).

4.5.2 Simulation settings

The sequence is encoded using a loose rate control (reference encoder rate control

with the whole frame as basic unit, and SP frames encoded with QP minus 3 in

order to have similar PSNR with respects to P frames) so as to have 30 kbps and

110 kbps of average bit-rate. The GOP structure is SP-P-P-P-P-P-P-P-P-P. A

static assignment of two timeslots for the transmission is assumed, i.e. the rates

in the Markov chains are doubled. The analysis are limited in the more frequent

case of 14 users per cell (Jiang parameters). The server switches stream at every

group change. Model is trained by observing the server stream output by means

of the EM algorithm. Three different sequences are presented:

1. a QCIF compound sequence created by concatenating several test sequences

(see Tab.4.7 for details) and decimated at 10 fps (total: 3750 frames);

2. the last 25 minutes of the FIFA World Cup final match, resized at QCIF

and decimated at 10 fps (total: 12500 frames);

3. the entire movie ”Indagine su un cittadino al di sopra di ogni sospetto”resized

at QCIF and decimated at 10 fps (total: 55100 frames).

59
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Sequence Name total frames

akiyo 100

bridge close 2001

bridge far 2101

carphone 382

claire 494

coastguard 300

container 300

foreman 300

grandma 870

hall monitor 300

highway 2000

miss america 150

mobile 300

mother and daughter 300

news 300

salesman 449

silent 300

suzie 150

compound 11297

Table 4.7: Compound sequence composition.

4.6 Experimental Results

We have compared the autocorrelation function of the real sequence with the

expected value of the model, the histogram with the model pdf and the 2dpdf (at

lag NGOP and lag 1). Figs.4.10-4.23 show results for the three sequences.
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Figure 4.10: Autocorrelation for the compound sequence.
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Figure 4.11: Histogram for the compound sequence.
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Figure 4.12: Joint pdf (NGOP lag) for the compound sequence.
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Figure 4.13: Joint pdf (1 lag) for the compound sequence.

62



4.6 Experimental Results

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

lag

au
to

co
rr

el
at

io
n

real sequence
expected acf

Figure 4.14: Autocorrelation for the indagine sequence.
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Figure 4.15: Histogram for the indagine sequence.
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Figure 4.16: Joint pdf (NGOP lag) for the indagine sequence.
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Figure 4.17: Joint pdf (1 lag) for the indagine sequence.
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Figure 4.18: Autocorrelation for the world cup sequence.
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Figure 4.19: Histogram for the world cup sequence.

Figure 4.20: Joint pdf (NGOP lag) for the world cup sequence.
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Figure 4.21: Joint pdf (NGOP lag) for the world cup sequence.

Figure 4.22: Joint pdf (1 lag) for the world cup sequence.
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Figure 4.23: Joint pdf (1 lag) for the world cup sequence.

68



4.7 Summary

The previous analysis has shown that the HMP model mimics the statistical

characteristics of the encoded video data. Then, the model can be exploited to

predict the impact of a real video source traffic in terms of network load, by

replacing real traces of a bitstream switching H.264 video source, whose measure-

ment can be difficult and/or expensive, with synthetic traffic data generated by

the HMP model. To verify this claim, we have evaluated the loss rate of a trans-

mission buffer at whose input we have applied the H.264 coded sequence and a

synthetic sequence x[m] generated by the HMP source. The buffer continuously

transmits at rate r ∈ {r1, r2}, using a first-in first-out policy. The processes of

buffer filling and depleting are shown in Fig.5.2: the stepwise curve represents

the incoming data, written in group of x̃[m] or x[m] bits; the straight lines repre-

sents the outgoing data, and the channel rate determines the straight lines slope.1

The buffer output rate changes immediately according to the state of the EDGE

channel and the server switches in correspondance of the group in the layered

characterization of the channel. The x̃[m] or x[m] bits representing the m-th

frame of the natural or synthetic sequence is stored in the buffer if and only if

there is available space for it; otherwise, it is discarded. Figs.4.26,4.24,4.25 plot

the frame loss rate versus the buffer size B, observed on the real source traffic

x̃[m] and on the HMP output x[m]. Therefore, we recognize that the HMP model

well reproduces the characteristics of the data generated by the real video source

from the point of view of the traffic load offered to the network.

4.7 Summary

The H.264 video coding standard introduces novel encoding tools intended to

allow efficient rate adaptation in video streaming services. The tools enable fast

bitstream switching by means of the syntactic element Switching Pictures. In this

work a Hidden Markov Process, namely a Gaussian Mixture Markov Process, is

employed to model the size of the frames encoded by a H.264 source possibly per-

forming bit-rate adaptation using Switching Pictures. The model is compactly

parameterized and estimation of the model parameter set has been performed

via the EM algorithm. We have discussed the ability of the EM parameter esti-

1In more detail, the buffer is read by elementary units of C = 384 bits (corresponding to
the 48 bytes payload of an ATM cell) at a rate of ri/C cells per second.

69



4.7 Summary

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

buffer size (kbit)

fr
am

e 
lo

ss
 r

at
e

real sequence
synthetic sequence

Figure 4.24: Frame loss rate comparison for compound sequence.
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Figure 4.25: Frame loss rate comparison for indagine sequence.

mation algorithm to converge in presence of a small observation set and scarce

a priori information. The model performance have been assessed by comparing
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Figure 4.26: Frame loss rate comparison for sequence world cup.

first and second order HMP statistics with the corresponding sample statistics

measured at the output of a real H.264 source. Furthermore, the sources have

been compared in terms of the traffic offered to the network by evaluating the load

of a transmission buffer. Numerical simulations show that the herein described

Markovian model provides a compact and tight description of the behavior of a

real video source possibly performing bitstream switching, and can be exploited

for several purposes, ranging from optimization of network resource allocation to

definition of call-admission control strategies, or to design of cross-layer optimized

transmission algorithm.
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Chapter 5

Improving User Experience:

Multiview Video Coding

5.1 Introduction

Multiview Video Coding (MVC) is a new standard for the joint compression of

correlated video sequences (views) representing the same scene recorded simul-

taneously by multiple cameras (8). The large amount of data and its high rate

variability that are typical of MVC content necessitate accurate network dimen-

sioning and resource allocation for successful deployment of multiview applica-

tions. Furthermore, the multiple encoding dependencies between the different

views make allocating resources in an MVC system much more complex relative

to single view scenarios.

Video traffic modeling is an active research area aimed at characterizing the

behavior of compressed video content through statistical models. There is a

substantial amount of related work on video traffic modeling ranging from appli-

cations in teleconferencing (67) to video streaming (14). In this regard, different

stochastic models such as autoregressive processes (13), Transform Expanded

Sample (TES) processes (44), and HMMs (15) have been considered. The pro-

posed models are then typically applied to network dimensioning and provision-

ing, i.e., as a good aid for efficient and accurate allocation of network resources.

For instance, one straightforward application of a video model is for generating

a synthetic bitstream that is used afterwards to determine the proper size of a
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network buffer. Moreover, a video traffic model can also be used for deriving

procedures for network call-admission-control (69).

Because of the recent nature of multiview applications, there are still no sta-

tistical characterizations of MVC compressed content. The present chapter pro-

vides the first stochastic model that characterizes the frame size sequence of an

MVC compressed variable bit rate (VBR) multiview content. To this end, in

Section 5.2, we design a non-stationarity HMM with a Poisson state duration

distribution where the different states of the model represent different activity

levels of the video source. Having a non-geometric state occupancy distribution

allows us to more accurately model the scene activity duration in video content

(26), while the specific choice of Poisson distribution allows our model to have the

same complexity as a conventional HMM (20),(46). In Section 5.2, we also derive

a numerically stable maximum likelihood procedure for estimating the parameters

of the proposed model. Then, in Section 5.3 we demonstrate the high accuracy of

our model by comparing the histograms and the autocorrelation functions (acf)

of frame size sequences corresponding to real and synthetic multiview data gener-

ated by the model. Finally, we also show that the proposed model closely matches

the behaviour of an actual multiview source by examining their respective frame

loss rate in network buffer constrained MVC streaming applications.

5.2 MVC Source Modeling

5.2.1 Description of the video source

An MVC source is composed of different video sequences captured simultane-

ously by multiple cameras. We denote the number of views as NView. At each

time instant, the MVC video sequence is composed of NView pictures that may

be transmitted together or just a subset of them, depending on the specific mul-

tiview application and the end user’s needs. The video is organized into Groups

Of Pictures (GOP)s, the length of which is denoted NGOP, so that each GOP

comprises Nf
def
= NView ·NGOP pictures. We use the terms frame and picture syn-

onymously. The video is encoded using a fixed quantization step size without

any rate control mechanism so that the resulting bitstream is completely VBR

and its average bit-rate depends on the scene activity of the content. Our model

73



5.2 MVC Source Modeling

characterizes the frame size sequence generated by the video source for all views.

5.2.2 Poisson-Hidden Markov Model (P-HMM)

Due to the fixed quantization step size and the scene variability that is typical of

video content, the compressed multiview sequence does not represent a stationary

stochastic process. In order to account for this, we model the video scene activity

by means of a non-stationary HMM, in which the different states correspond to

different levels of video scene activity. A random vector x[n] is emitted in each

state, where x[n]
def
=[x0[n], . . . , xNf−1[n]] represents the set of frames in the n-th

GOP of the compressed multiview content. The non-stationarity of the state

sequence is achieved by modeling its state duration time via a probability mass

function (pmf ) different from the geometric distribution that in turn is typical

for stationary conventional HMMs. Our choice is supported by the study in (26),

where it is noted that the duration of video activity is not well described with a

geometric distribution. In our case, we employ a Poisson distribution to model

the state occupancy in order to maintain the same number of parameters (hence

complexity) as for conventional HMMs.

Now, let us denote the number of states (i.e. different video activity levels)

in our model as Ns and the state transition matrix as Π, where πij denotes the

probability of transition from state i to state j. We impose πii = 0 since in

our case the self-transition probabilities are governed by a (different) Poisson

distribution and are denoted by di[k]
def
=

e−λi λk
i

k!
. Given the current state of the

model, say i, a random vector x[n] is generated according to the pmf bi[x[n]].

The mass functions bi[·], i = 1, . . . , Ns, have varying number of bins depending

on the specific video frame to be generated (I, P, or B) in order to account better

for their different complexities. Finally, πi denotes the probability of the model

being in state i.

The generation of synthetic content according to our model is summarized

with the following steps:

1. A state is chosen according to the probability distribution π1, π2, . . . , πNs.

Assume state i is selected.

2. A state duration time, say k, is generated by the Poisson distribution con-

ditioned on the current state, i.e., di[k]
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3. The HMM stays in the state i for k time instances

4. k video frame vectors x[n] are generated according to bi[·]

5. A state transition is performed according to Π

6. Go back to step 2

5.2.3 Parameter Estimation

The stage of parameter estimation is crucial in order to have a model able to

describe an actual video source. Since the model is part of the HMM family,

we can resort to one of the estimation algorithms employed for such models.

In particular, an estimation procedure called Expectation-Maximization (EM)

algorithm (18) is widely used for HMMs in order to find the maximum likelihood

estimate of the parameter set.

In (49), a version of the EM algorithm for P-HMMs is introduced. Unfor-

tunately, for long data sequences, as in video content, this specific algorithm

becomes numerically unstable. For details, see (20; 46). Therefore, we derive a

different EM algorithm for parameter estimation that does not exhibit numerical

instability. Our algorithm is in major inspired by the work in (20) and repre-

sent its extension to the case of non-stationary hidden state duration. A brief

summary of the proposed EM algorithm is presented in the following.

Suppose that we observe a video sequence composed of N GOPs. Let xN−1
0

def
={x[n]}N−1

n=0

denote the observed video traffic and Θ ∈ Θ the parameter set of our model,

where Θ is the parameter space and Θ
def
={Π, λ1, b1[x], π1, . . . , λNs, bNs[x], πNs}.

The EM algorithm comprises two computational steps. The first one is an

expectation step that computes the auxiliary likelihood function Q(Θ|Θ(m)) =

E{log(Prob{S, x,Θ})|x,Θ(m)}, where S ∈ S represents a plausible state sequence

and Θ(m) is the current (m-th) estimate of the parameter set. Then, a maximiza-

tion step follows that maximizes the likelihood function, i.e.,

Θ(m+1) = arg max
Θ

Q(Θ|Θ(m)). (5.1)

The algorithm iterates between the two steps until convergence of the parameter

set Θ(m) is achieved.
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The specific computational steps of our EM algorithm, as applied to P-HMMs,

comprise

1. The following forward probabilities are defined:1





αn(i, k)
def
= P (sn = i, . . . , sn+k = i, sn+k+1 6= i|xn

0 ,Θ
(m))

αn(i)
def
= P (sn = i|xn

0 ,Θ
(m)).

These quantities are calculated for n = 0, . . . , N−1 and k = 0, . . . , N−n−1

by a recursive algorithm that is not included here due to space constraints.

This algorithm is similar to the one described in (20).

2. The a-posteriori probabilities:




γn(i, k)
def
= P (sn = i,

. . . , sn+k = i, sn+k+1 6= i|xN−1
0 ,Θ(m))

ξn(i, j, k)
def
= P (sn−1 = i, sn = j,

. . . , sn+k = j, sn+k+1 6= j|xN−1
0 ,Θ(m))

(5.2)

are calculated through a backward iteration similar to the one described in

(20).

3. Finally, the parameter set Θ(m+1) is calculated:

πi =
N−1∑

k=0

γ0(i, k) (5.3)

πij =

∑N−1
n=1

∑N−n−1
k=0 ξn(i, j, k)∑Ns

j=1
j 6=i

∑N−1
n=1

∑N−n−1
k=0 ξn(i, j, k)

(5.4)

bi[x] =

∑N−1
n=0

∑N−n−1
k=0 γn(i, k)δ

x[n]
x∑N−1

n=0

∑N−n−1
k=0 γn(i, k)

(5.5)

λi =

∑N−1
n=1

∑N−n−2
k=0

∑Ns
j=1
j 6=i

k ξn(j, i, k) +
∑N−1

k=0 k γ0(i, k)

∑N−1
n=1

∑N−n−2
k=0

∑Ns
j=1
j 6=i

ξn(j, i, k) +
∑N−1

k=0 γ0(i, k)
, (5.6)

where δ
x[n]
x denotes the delta function.

1Our definitions differ from (49) in order to avoid numerical instability.
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Figure 5.1: GOP and encoding structure. The arrows indicate the dependencies

between frames.

5.3 Model Assessment

In this section, we examine the performance of our model. The multiview con-

tent employed in our experiments represents a concatenation of 5 test sequences

(Akko & Kayo, Uli, Ballet, Breakdance, Pantomime) that exhibit different mo-

tion characteristics so that the concatenated content exhibits varying levels of

video scene activity. The concatenated sequence is encoded using the reference

encoder JMVC v.7.0 (30) at three different quantization levels Qs = 10, 20, 40

in order to have three encoded sequences at respectively high, medium, and low

quality. We have used the following encoding parameters: NGOP = 8, NView = 4,

N = 1016. The GOP encoding structure is shown in Fig.5.1. The assessment is

performed by comparing the real sequence to a synthetic one generated by the

P-HMM when its parameters are estimated from the actual concatenated video

content.

Because of the iterative nature of the EM algorithm employed for estimating

the parameter set of our P-HMM, we need an initial solution, i.e., an initial

estimate Θ(0). This quantity is crucial for the proper convergence of the EM

algorithm, as otherwise we may end up in a local maximum (20). We perform

the initial estimation stage in two steps. First, we estimate the most likely state

sequence of the P-HMM by assigning each GOP of the compressed content to
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one of the states according to the GOP’s average bit-rate. Then, we estimate

the P-HMM parameter set by time-averaging the multiview data associated with

each state according to the previously estimated state sequence.

5.3.1 Model validation

We have performed the assessment of our model by comparing the actual multi-

view sequence and a synthetic one generated according to the model. We compare

the two sequences by evaluating the histograms and the autocorrelation functions

(acf) of their frame size values. If the model is able to mimic the statistical char-

acteristics of the video source we expect to see the histogram and the acf of the

real and the synthetic sequences to be very similar. We expect to observe a larger

degree of similarity in the case of the acf, since the acf corresponds to an averaging

operation performed over the different histogram bins. Due to space limitations,

we have expressed the degree of statistical similarity by means of a percentage

error both for the acf and the histogram values. By way of an example, the

percentage error for the acf is calculated by the following expression:

percentage error
def
=

∑
k(ρr[k]− ρs[k])2

∑
k ρr[k]2

· 100%,

where ρr[k] and ρs[k] are respectively the acf for the real sequence and the syn-

thetic one. A similar expression is used for calculating the percentage error be-

tween the histograms.

The percentage errors for the three sequences are shown in Tab.5.1. We have

calculated the percentage errors by considering both the individual views as well

as all views together. First, we would like to remark that most of the percentage

errors are under 1%, which means a high degree of similarity between the actual

and the synthetic data is achieved. Only for the high quality sequence histograms

we have observed a slightly smaller degree of similarity. This is due to the fact

that we still employ the same number of histogram bins, as in the cases of low

and medium qualities, to sample the frame size values whose dynamic range has

increased now due to the finer quantization. In essence, the synthetic data pro-

vides a coarser approximation of the frame sizes in this case. Furthermore, as seen

from Tab.5.1 the acf percentage errors are generally lower than the corresponding

histogram percentage errors, as expected and explained earlier. In summary, we
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Qs = 40 Qs = 20 Qs = 10

Hist ACF Hist ACF Hist ACF

View 1 0.6% 0.4% 1% 0.06% 17% 0.5%

View 2 1% 3% 2% 0.03% 8% 0.4%

View 3 3% 3% 1% 0.02% 6% 0.2%

View 4 2% 3% 1% 0.02% 2% 0.2%

All Views 0.5% 0.5% 0.8% 0.03% 2% 0.5%

Table 5.1: Percentage errors for the acf and histograms of frame size sequences

according to real and synthetic data.

can conclude that the proposed P-HMM model is able to accurately represent the

statistical characteristics of the actual video source.

Figure 5.2: Buffer filling and depleting.

5.3.2 Buffer size dimensioning

In this section, we demonstrate that our model is able to reproduce the behaviour

of actual video content in the context of streaming. Suppose that the video source

is the input of a First In First Out (FIFO) network buffer of finite size B emptied

at a constant rate r̄, as shown in Fig.5.2.

One of the resources that should be determined in the stage of network di-

mensioning, in order to have the desired performance, is the appropriate size of

this buffer (67)-(69). We show now that using the real sequence is equivalent to

using the synthetic sequence for determining B. The buffer is fed with real or

synthetic data and read out at a constant bit-rate equal to the average bit-rate

of the real sequence. Then we compare the two sequences by means of the frame

loss rate (an incoming frame is dropped when it is too large to be placed into the
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Figure 5.3: Frame loss rate for the synthetic sequence (gray - triangle) and the

real sequence (black - circle), when all the views are transmitted.

buffer) as a function of the buffer size. We perform the test in two different cases:

in the first case all the views are transmitted together (typical of a 3DTV-like

application), in the second case the user watches a single view but he/she is able

to switch among the views at his/her will. In order to have a fair comparison, we

suppose that the view switching sequence that indicates the user’s requests for

view switching, is the same for both sequences (real or synthetic). Specifically,

the viewing trajectory starts from view 1 and then switches to view 3, and then

to view 2, and finally to view 1.

We remark that in the view-switching case, although the user watches only

a single view at a time, he still receives some (or all) frames of the other views

because they are needed for decoding the desired view. For this reason, network

dimensioning is more difficult in this case and therefore having an accurate source

model can be extremely useful. Fig.5.3 shows the results for the first case and

Fig.5.4 for the second case. In both cases, the synthetic sequences have nearly

the same frame loss rate as the real sequences. At high quality, we see a more

stepwise shape of the frame loss rate for the synthetic sequence because of the

smaller number of active bins of the pmf bi[·]. Still, a close resemblance to the

frame loss rate of the real sequence is again observed.

Finally, we also examined our model for the network scenario where the buffer

size is fixed and equals in size to 1000 ATM cells, while the output bit-rate is
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varying. Due to space constraints, we only show the results for the view-switching

scenario in Fig.5.5. It can be seen that again the synthetic sequence’s frame

loss rate matches closely that of the actual video content. Moreover, the bin

distribution of the pmf bi[·] has a smaller influence in this network setup, as seen

by the very close performances of the syntetic and real sequences in Fig.5.5 for

the high quality case (Qs = 10).

Figure 5.4: Frame loss rate for the synthetic sequence (gray - triangle) and the

real sequence (black - circle) in the interactive TV case.

5.4 Conclusions

Our work provides the first traffic model of MVC compressed content. To this

end, we have designed a non-stationary HMM in which each state corresponds to

a different level of video scene activity and the state duration times are modeled

with a Poisson distribution. We have derived, for the first time, a numerically sta-

ble version of the EM algorithm for estimating the parameters of a non-stationary

HMM. Our modeling framework accurately captures the statistical properties de-

scribed by histograms and the autocorrelation function of frame sizes in actual

MVC content, both for each of the individual views as well as across all the

views together. Furthermore, we have demonstrated that the proposed model

closely matches the behavior of a real multiview source in buffer-constrained

MVC streaming applications.
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Figure 5.5: Frame loss rate for the synthetic sequence (gray - triangle) and the

real sequence (black - circle) in the interactive TV case; fixed buffer size case.
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Chapter 6

Conclusion

In this thesis we have analysed the main aspects of a mobile video streaming

service, investigating the main issues and presenting a contribution for each one.

After an introduction to the topics of the work, we have analysed the issues re-

garding the rate control in video streaming services. We have proposed a fair,from

the point of view of the game theory, strategy to assign the coding mode and the

number of the bits to the frames so as to minimize the distortion constrained

to have a minimal required quality for each frame. Next, we have analyzed

a novel error resilience scheme employing a multiple description coding based

on polyphase subsampling and a robust edge-directed interpolation at the post-

processing scheme. The interpolation takes into account the possibly errors due

to channel transmission and defines a metric measuring the reliability. Simula-

tions show that this approach improves video quality, both in terms of PSNR

and perceptive quality. The other topic concerns a video traffic model for a video

streaming source that dinamically switches among bitstreams at different bit-

rates. The video model consists in a member of the family of Hidden Markov

Models, in which the (hidden) state sequence describes the sequence of kind of

GOPs, whereas state dependant multivariate Gaussian process models the frame

size distribution. Model is assessed by comparing the pdfs and other averages

to the respective of an actual observed source. Last topic of the contribution

regards the novel video coding standard H.264/MVC, in particular a non sta-

tionary model of the video source is presented. We explicity model the duration

time of the video activity, so as to obtain a non stationary model able to describe
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the video source. The Poisson distribution was chosen for the task, both for its

simplicity and for the good results obtained. A pmf is introduced to describe

the frame size distribution. Model validation shows that the model is able to

reproduce video source behavior in a leaky buffer context.
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Chapter 7

Appendices

A Frame layer statistics HMP

The compact model in (4.2), referring to the GOP layer, enables straightforward

analytical evaluation of several statistical descriptions of video data. In this

Appendix we summarize a few results which are of interest while describing the

statistical behavior of a video source. As a first example, we report here the

marginal frame size pdf. Let us denote by x[m] the random variable representing

the size in bits of the m-th frame of a video sequence obeying to the HMP

generation mode reported in (4.2). The pdf p(x[m]) resulting in accordance to

(4.2) turns out to be a mixture of normal distributions N
(
‖cλ‖i, ‖Σλ‖2

i,i

)
, each

extracted with probability pλ/NGOP, that is:

p(x[m]) =
1

NGOP

∑

λ

pλ

NGOP−1∑

i=0

1√
2π ‖Σλ‖i,i

exp

(
−(x[m]− ‖cλ‖i)

2

2 ‖Σλ‖2
i,i

)
(A.1)

In turn, according to (4.2), we have derived the bi-dimensional pdf p(x[m], x[m+

k]); the analytical expressions of p(x[m], x[m + k]) for k = 1 and k = NGOP are
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reported in (A.2)-(A.3).

p(x[m], x[m+ 1]) =
1

NGOP

Ns∑

λ=1

pλ

·
[NGOP−2∑

i=0

N
(
x[m], ‖cλ‖i, ‖Σλ‖2

ii

)
· N
(
x[m + 1], ‖cλ‖i+1, ‖Σλ‖2

i+1,i+1

)

+
Ns∑

µ=1

πλµ N
(
x[m], ‖cλ‖NGOP−1, ‖Σλ‖2

NGOP−1,NGOP−1

)
· N
(
x[m + 1], ‖cµ‖0, ‖Σµ‖2

0,0

) ]

(A.2)

p(x[m], x[m + NGOP]) =
1

NGOP

Ns∑

λ=1

pλ

Ns∑

µ=1

πλµ

·
NGOP−1∑

ı=0

N
(
x[m], ‖cλ‖i, ‖Σλ‖2

ii

)
N
(
x[m + 1], ‖cµ‖i, ‖Σµ‖2

i,i

)
(A.3)

Finally, we have considered the normalized autocorrelation:

ρx[k]
def
=

M−k−1∑

m=0

(x[m]− E {x[m]}) (x[m + k] − E {x[m]})

M−1∑

m=0

(x[m]− E {x[m]})2

(A.4)

and we have evaluated its asymptotical (large N) expected value, reported in

(A.5) where we have denoted κ
def
=(k + j)mod NGOP

.
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E{ρx[k]} '
[

NGOP−1∑

j=0

⌊
M−k−1
NGOP

⌋
−1

∑

n=0

(∥∥∥∥Rx

[⌊
k + j

NGOP

⌋]∥∥∥∥
κ,j

− 1

M

NGOP−1∑

p=0

M/NGOP−1∑

l=0

(
‖Rx [n − l]‖j,p +

∥∥∥∥Rx

[
n +

⌊
k + j

NGOP

⌋
− l

]∥∥∥∥
κ,p

))

+

(M−k−1)mod NGOP∑

j=0

(∥∥∥∥Rx

[⌊
k + j

NGOP

⌋]∥∥∥∥
κ,j

− 1

M

NGOP−1∑

p=0

M/NGOP−1∑

l=0

(∥∥∥∥Rx

[⌊
M − k − 1

NGOP

⌋
− l

]∥∥∥∥
j,p

+

∥∥∥∥Rx

[⌊
M − k − 1

NGOP

⌋
+

⌊
k + j

NGOP

⌋
− l

]∥∥∥∥
κ,p

))

+
M − k

M2

NGOP−1∑

j=0

M/NGOP−1∑

n=0

NGOP−1∑

p=0

M/NGOP−1∑

l=0

‖Rx [n − l]‖j,p

]

·


 M

NGOP

NGOP−1∑

i=0

‖Rx [0] ‖i,i −
1

M

M/NGOP−1∑

n=0

NGOP−1∑

i=0

M/NGOP−1∑

m=0

NGOP−1∑

j=0

‖Rx [n − m]‖i,j




−1

(A.5)
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In the Section devoted to numerical simulations, we have shown comparisons

of these statistics with the corresponding sample statistics evaluated on real video

traffic sources, thus assessing the adequateness of the HMP model to capture a

few statistical features of a real video traffic source.
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