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Perché la vita è così. Procediamo a piccoli passi.
Rialziamo la testa e torniamo ad affrontare
il volto feroce e sorridente del mondo.
Pensiamo. Agiamo. Sentiamo.
Diamo il nostro piccolo contributo
alle maree del bene e del male,
che inondano e prosciugano la terra.
Trasciniamo le nostre croci ammantate d’ombra
nella speranza di una nuova notte.
Lanciamo i nostri cuori coraggiosi
nelle promesse di un nuovo giorno.
Con amore: l’appassionata ricerca
di una verità diversa dalla nostra.
Con struggimento: il puro,
ineffabile anelito di essere salvati.
Poiché fino a quando il destino ce lo consente,
continuiamo a vivere.
Che Dio ci aiuti. Che Dio ci perdoni.
Continuiamo a vivere.
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Introduction

From the late 1990s, stochastic volatility has been one of the most active areas of research in
empirical finance and time series econometrics. Given the importance of asset return variation on
a great number of practical financial management decisions, there have been extensive efforts to
provide good real time estimates and forecasts of current and future volatility. The development
of such a field requires a highly multidisciplinary knowledge, from the concepts of financial
economics and econometrics to the principles of probability theory, merging together to produce
methods and models which have aided our understanding of the realistic option pricing, efficient
asset allocation and accurate risk management. In particular, the dynamics of the spot volatility,
also known as the instantaneous volatility, is extremely important for modeling financial series.
However, the spot volatility itself is a latent variable, which is not directly observable. Therefore,
during the last decades, there has been considerable attention on which was the best method,
in terms of efficiency and consistency, to estimate a latent variable, such as the spot volatility.
Since option prices reflect expectations and rumors of economic agents on future movements of
the underlying asset, the implied volatility is widely believed to contain much more information
than the historical volatility. As a consequence, it is considered a more efficient forecast for
future realized volatility. Recently, Andersen, Fusari and Todorov [20] have developed consistent
estimators of the risk-neutral parameters vector and the dynamic realization of the state vector
which governs an option price dynamics, in a fully parametric framework.

The goal of the first part of this work is to propose a new estimation method of the spot
volatility, based on a semi-nonparametric model, which employs the information content of a
complete data set of European options, daily quoted in the market, under no arbitrage assump-
tions. The technique we propose is based on the idea of model-free implied volatility, developed
by Britten-Jones and Neuberger [49] in 2000, and exploits the observed VIX term structure to
make inference on the unobserved spot volatility. In 1993, the Chicago Board Options Exchange
introduced the volatility index, known as VIX, the first index to measure the aggregate volatility
of the US equity market. Nowadays, this index has become the premier benchmark for the
stock market volatility. Often defined as the “investor fear gauge”, the VIX measures market
expectations of 30-day volatility implied by equity index option prices. Hence, it is considered
one of the most issued financial indicators and it is widely followed by academics and quants,
especially after the financial turmoil started in 2008.

Let (Ω,E,P) ≡ Ω be a probability space endowed with a filtration (Ft)t≥0 and let (St)t≥0 ≡ St
be the logarithm of a financial equity asset price evolving in continuous time, whose quadratic
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variation [S, S]t is an adapted, increasing and càdlàg (i.e. with paths that are a.s. right contin-
uous with left limits) process. Hence, following Todorov and Tauchen [154] approach, the VIX
can be written as

V IXt = EQ [[S, S]T − [S, S]t | Ft] , T > t, (1)

where T > 0 is given and the expectation is taken under the risk-neutral distribution Q, whose
existence is guaranteed by no arbitrage assumptions. Then, if there are no jumps in the price
process St, the VIX obviously equals the familiar expected risk-neutral integrated variance, given
by

V IXt = EQ
[∫ T

t
σ2
sds

∣∣∣∣ Ft
]
. (2)

The theoretical foundations of the VIX refers to the concept of model-free implied volatility,
according to which the expected risk-neutral integrated return variance between two arbitrary
dates, say T1 and T2 with T1 < T2, is completely specified by the set of option prices expiring
on the two dates, that is

EQ
[∫ T2

T1

(
dSu
Su

)2]
= 2

∫ ∞
0

C(T2,K)− C(T1,K)
K2 dK, (3)

where EQ [·] denotes the expectation taken under the risk-neutral probability measure. Hence,
unlike the traditional concept of implied volatility, the model-free implied volatility is not based
on any specific option pricing model. Instead, it is derived entirely from no arbitrage conditions,
disregarding the underlying dynamics. This allows us to define the VIX as the risk-neutral
forecast of the instantaneous variance, whose value is equivalent to that of a portfolio of out-of-
the-money options weighted inversely proportional to the square of their strike prices.

Let r ∈ R be a real constant and let (βt)t≥0 be a measurable and locally bounded càdlàg (i.e.
with paths that are a.s. right continuous with left limits) process. We assume that the logarithm
of a financial asset price (St)t≥0 ≡ St is modeled by an Itô process and the instantaneous variance
(Vt)t≥0 ≡ Vt follows a mean-reverting process, that is

dSt = rdt+
√
VtdWt

dVt = κ(ω − Vt)dt+ βtdZt
, (4)

where κ ∈ R is the rate of mean reversion, ω ∈ R is the long-run mean level of Vt, (Wt)t≥0 ≡Wt

and (Zt)t≥0 ≡ Zt are two correlated Wiener processes, with correlation coefficient equal to ρ ∈
[−1, 1], thus introducing an asymmetric return-variance relation into the asset price dynamics.
Integrating the expected value EQ [Vt | Ft] with respect to time, we obtain

EQ
[∫ t

0
Vs ds

]
= V0

κ
(1− e−κt) + ωt− ω

κ
(1− e−κt). (5)

The last equation represents our theoretical model, which is semi-nonparametric since it does
not depend on βt, but only on the drift parameters.
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The inference from option prices can be complicated by the fact that these prices are often
observed with some error. Moreover, a continuum of strikes is not available, since generally
options are quoted in the market with discrete strikes. Thus, in order to take into account these
sources of uncertainty, we applied a Generalized Method of Moments approach, considering an
empirical approximation of the true value of the expected integrated risk-neutral variance, plus
the contribution of a random variable which represents the observation error on option prices.
Then, the VIX term structure obtained from market data can be fitted with our theoretical
model by minimizing the mean squared error, to obtain estimates of the parameters (κ, ω, V0).

Some advantages of this method can be outlined. Firstly, it is a very intuitive procedure,
which does not require heavy computational algorithms. Second, it allows us to relax the strong
parametric assumptions we find in the existent estimation methods (see Andersen, Fusari and
Todorov [20]). Indeed, our theoretical model is completely semi-nonparametric, since it does
not depend on βt, and it allows us to obtain a valid estimate of the spot volatility parameter
only by means of options market data. This approach should give more accurate estimates than
those obtained with high-frequency data (see Andersen, Fusari and Todorov [20]). Daily market
data are available in real time free from biases, in order to avoid any arbitrage opportunity.
On the contrary, estimation methods based on high-frequency data often use larger data sets,
composed by historical volatilities. As a consequence, even though they can reduce the variance
of an estimator, they surely present a much higher bias, since historical volatilities are well away
from the instantaneous volatility measure. Hence, this represents a clear theoretical advantage
of an options based methodology. Moreover, the estimation procedure described above can be
applied to a wide class of stochastic volatility models. For instance, the celebrate Heston [97]
model can be obtained with βt = σ

√
Vt, while the Luo and Zhang [120] model is a special case

with stochastic long-run mean level θ.
In order to study the finite sample properties of our estimator, we perform 1000 Monte Carlo

simulations based on the Heston [97] model. To construct the data set, we fix five maturities,
from two weeks to one year. Then, for each maturity, we compute option prices considering
four possible scenarios: a low number of quoted options, only 10, observed with low [resp. high]
error, that is 1% [resp. 5%], and then a higher number of options, say 50, observed with same
low and high errors. Simulation results clearly show that a larger sample of available options,
observed with same error, reduces uncertainty, while with same number of options, the higher
observation error increases the dispersion of the parameters distribution.

In the second part of this work, we focus on an option pricing problem. Despite the fact that
the financial literature concerning stochastic volatility models is quite plentiful, in quantitative
finance it is still open the long-lasting challenging problem to find a practical option pricing
model which, at the same time,

1. is guaranteed to be free of arbitrage opportunities;

2. provides fast algorithms for prices and greeks calculation;

3. is able to fit the quoted volatility surfaces, across both maturities and strikes;
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4. adequately describes price and volatility risk.

These four features are equally needful, but it is not possible to find an existent model which
satisfies them all together. For instance, arbitrage-free volatility interpolation can be achieved
with local volatility models (Derman and Kani [77] and Dupire [80]), as shown recently in
Andreasen and Huge [22] and Kahalé [109], among others. However, local volatility models
do not accommodate idiosyncratic volatility risk. On the other hand, the Heston [97] model
includes volatility risk in a mathematically convenient way, but it is not flexible enough to fit
the whole volatility surface. Similarly, the SABR (Hagan et al. [95]) model is almost arbitrage-
free and has an analytical pricing formula, but it can hardly reproduce volatility surfaces, if
parameters are not changed along with maturities. The goal of this chapter is to fill this gap,
introducing the Heston++ class of stochastic volatility models, which is compliant to the four
pillars mentioned above.

Consider the price of a non dividend-paying risky equity asset (St)t≥0 ≡ St, evolving in
continuous time. Under the risk-neutral probability measure Q, we assume that St follows the
general dynamics

dSt = rStdt+
√
VtStdW

S
t , (6)

Vt = vt + φt, (7)

dvt = κ(ω − vt)dt+ Λ
√
vtdW

v
t , (8)

where r, κ, ω and Λ ∈ R+ are constants, φt ≥ 0 is a smooth enough non-negative real function
integrable on closed intervals with φ0 = 0, and

(
WS
t

)
t≥0
≡ WS

t and (W v
t )t≥0 ≡ W v

t are cor-
related Wiener processes on Ω adapted to the filtration Ft, with time dependent instantaneous
risk-neutral correlation given by

corrQ
(
dWS

t , dW
v
t

)
= ρ

√
vt

vt + φt
, (9)

where ρ ∈ [−1, 1] is an additional constant.
Then, the one-factor model is specified by the risk-free rate, five parameters (κ, ω,Λ, ρ, v0)

and the deterministic function φt. The Heston++ model is an extension of the standard Heston
[97] model, obtained by adding a deterministic factor φt 6= 0 in the volatility process, meant to fit
the term structure of the at-the-money implied variances, without sacrificing the computational
advantages of the Heston model. We also present a two-factor and two-factor with jumps
Heston++ models, which we have developed by applying the idea of an additional deterministic
volatility factor to the original model proposed in Christoffersen, Heston and Jacobs [67], Bates
[37] and [38] and Duffie, Pan and Singleton [79].

The technique is borrowed from deterministic shift extension (Brigo and Mercurio [47]) and
its application to short rate models. The preliminary fit of the ATM term structure strongly
eases the fit of the whole volatility surface, since the model parameters are employed with
their full flexibility. The straightforward application of our model allows a fast and accurate
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arbitrage-free interpolation, as well as a sound extrapolation, of the volatility surface, which can
be used for market making or exotic pricing. Hence, the model we propose here unifies the ad-
vantages of local volatility models and those of stochastic volatility models. An approach similar
to the Heston++ model is represented by the Heston model with time-dependent parameters,
introduced by Mikhailov and Nögel [129] and then further deepened by Elices [83], in which
the constant parameters are replaced by deterministic functions. However, our model has an
inherently different specification and presents, in our view, several advantages. The difference
consists in the fact that in the Heston++ model the function φt can be interpreted as the lower
bound for the spot variance, as it is clear from Equation (4.25), while in the Heston model
with time-dependent parameters the lower bound for the local variance is still equal to 0. This
technical difference is harmless from a specification point of view, but it is crucial in making
the pricing of European vanilla options straightforward. Furthermore, the Heston model with
time-dependent parameters displays serious mathematical troubles, which are typically solved
by virtue of approximations based on Taylor expansions or using deterministic functions which
are piecewise constant1. Moreover, its extension to multi-factor models with jumps appears
cumbersome. Conversely, the Heston++ model has no additional mathematical and implemen-
tation complexity with respect to the traditional Heston model, providing simple formulas and
fast algorithms, and can be easily generalized to affine models, such as those in Bates [37], Bates
[38], Christoffersen et al. [67] and Duffie et al. [79], or to Wishart models, in the sense of Da
Fonseca et al. [72].

To illustrate the gain in terms of pricing, we calibrate the model on a time series of daily
option panels on FX rate EUR/USD from 2005 to 2012, for strikes up to 10∆ and 10 maturities
ranging from one week to two years. The Heston++ models are readily fitted, with no added
computational cost with respect to the standard versions, and obtain an average root mean
square error of 1.26%, in the best case.

This work has the following structure. The first chapter is a practical guide to the foreign
exchange option market, illustrating the various quote styles, deltas definitions and market
conventions, with plenty of examples. Then, we present the Vanna-Volga method and we propose
an interpretation of the procedure in the context of European plain vanilla options. In the second
chapter, we introduce the volatility index, presenting the generalized formula for its calculation,
and we describe its economic and theoretical interpretation. In the third chapter, we show
our new semi-nonparametric estimation method of the spot volatility, based on option prices.
Finally, in the last chapter, we briefly review the main properties of the Heston [97] model.
Next, we illustrate the proposed class of stochastic volatility models Heston++ and provide
the corresponding option pricing formulae. Then, we show empirical results of the Heston++
model, suitably calibrated to the foreign exchange option market.

1See Benhamou et al. [39] for a detailed discussion.
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Chapter 1

The Foreign Exchange Market

Nowadays, in the prevailing financial markets, options with different strikes or maturities are
usually priced with different implied volatilities. This stylized fact, commonly known as smile
effect, is often taken into account in specific models, with the goal of either pricing exotic
derivatives or inferring implied volatilities for non quoted strikes or maturities. While the former
task is typically achieved by introducing alternative dynamics for the underlying asset price, the
latter is often tackled by means of statistical adjustments or interpolations.

In this part of our work, we deal with the latter topic, in order to analyze a possible solution
in a foreign exchange (FX) option market setting. In such a market, three volatility quotes are
available, namely the at-the-money, the risk reversal and the strangle, thus arising the issue of
a consistent determination of the whole volatility surface. In particular, FX quants and market
makers address this problem by using an empirical procedure, called the Vanna-Volga (VV)
method, to construct the smile for a given maturity. Furthermore, volatilities are quoted in
terms of option deltas, for ranges from 5∆ put to 5∆ call.

In the following, we attempt to provide a general description of the FX option market,
illustrating the various quote styles and deltas definitions. Then, we extensively review market
conventions, with plenty of examples. Finally, we present the Vanna-Volga method and we
propose an interpretation of the procedure in the context of European plain vanilla options.

1.1 Introduction to the FX Option Market

A crucial ingredient to the Vanna-Volga method, that is often overlooked in the literature, is
the correct handling of the market data. In FX markets, the precise meaning of broker quotes
depends on the contract details. For instance, there are at least four different definitions of delta,
such as spot, spot percentage, forward and forward percentage. Using the wrong definition can
lead to significant errors in the construction of the smile. Therefore, before we begin to explore
the effectiveness of the Vanna-Volga technique, we present some of the relevant FX conventions.

The foreign exchange (FX) market, also called forex or currency market, is the landmark
for the global decentralized trading of international currencies. Its primary role is to determine
relative values of different currencies, in order to assist the international trade and investments
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by enabling currency conversion.
During the 1970s, after three decades of government restrictions on foreign exchange trans-

actions, countries gradually switched from the fixed exchange rate regime, previously established
by the Bretton Woods system, to floating exchange rates.

Due to its specific characteristics, the FX market significantly differs from other financial
markets. In particular, some of these features are:

• its huge trading volume, representing the largest asset class in the world;

• its geographical dispersion;

• its 24-hour activity, except weekends;

• its direct influence on the international trade pattern of every country;

• the low margins of relative profit, compared with other markets;

• the intensive use of leverage to improve profit and loss margins.

It is the most liquid over the counter (OTC) financial market in the world and, despite currency
intervention by central banks, it is considered the closest market to the idea of perfect competi-
tion. At the same time, it is also the largest market for options. Traders include central banks,
governments, large banks, institutional investors, currency speculators, corporations, exporters
and importers, retail investors and other financial institutions.

The FX market comprises three different markets, with distinct functions, but still closely
related: the spot market, the futures market and the derivatives market. Currencies for imme-
diate delivery are traded on the spot market. For instance, the purchase of foreign currency at
the ‘bureau de change’, is the simplest spot market transaction possible.

Definition 1.1. For a currency pair quoted1 as ccy1ccy2, the spot rate St, at time t, is the
number of units of ccy2, known as the domestic currency, the terms currency or the quote
currency, required to buy one unit of ccy1, the foreign currency or the base currency.

Therefore, the spot rate is dimensionally equal to units of ccy2 per ccy1. The GBPUSD
quote is for US dollars per pound sterling, so if GBPUSD is 1.6011, then one British pound can
be bought for $1.6011 in the spot market. In other words, it is the cost of one pound sterling
in US dollars. The actual exchange of the two currencies, which is called settlement, is handled
through the banking system and occurs at the spot date, which is generally in a couple of days,
although some trades, such as exchanges of US dollars for Canadian dollars, are settled more
quickly.

To this type of transaction is associated the so-called foreign exchange settlement risk, which
occurs when one of the two payments does not go through. This is also known as the Herstatt
risk, from the German bank default on dollar payments in 1974.

1The use of abbreviations, such as ccy1 and ccy2, is standard among FX market practitioners.
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On the other hand, the FX forward market allows participants to lock in the actual exchange
rate in order to protect against currency risk, that is, the exposure to an unexpected variation
of the currency rate. In this case, the forward rate is fixed today and funds are going to be
transferred in the future. The prearranged date in which the settlement takes place is called the
delivery date.

Nevertheless, most of the FX trading occurs in the derivatives market. Currently, the various
traded products range from simple vanilla options and first-generation exotics, such as touch-like
and barriers options, to second-generation exotics, that is options with a fixing-date structure or
options with no available closed form value, and even third-generation exotics, hybrid products
between different asset classes.

Definition 1.2. A FX option, or currency option, is a financial derivative contract between
two parties, the holder and the writer, which gives the holder the right, but not the obligation,
to buy from ( call option) or sell to (put option) the writer a currency pair at a given exchange
rate, called strike price, within a predetermined date T , known as maturity or expiry date.

Since the option gives the holder a right with no obligation, she has to pay some money,
the so-called premium, on signing the contract. For instance, suppose that an economic agent
is structurally long in pounds sterling. To protect against depreciation of the sterling amount
until the delivery date, she can buy a put option on the GBPUSD exchange rate, that is, an
option to buy USD, or equivalently sell GBP, at a predetermined strike price.

Unlike other asset classes, in the FX market there is no natural numeraire currency. As a
result, there is no special reason to quote spot or forward rates for foreign currencies in any
particular order. Hence, the choice of which way a particular currency pair should be quoted
is purely market convention and seems to be quite arbitrary. For British pounds against US
dollars, with ISO2 codes of GBP and USD respectively, the market standard quote could be
GBPUSD, the price of 1 GBP in USD, or USDGBP, the price of 1 USD in GBP. By market
convention, the former is commonly used, as we can see in Figure 1.1, which shows some of the
most frequently traded currency pair quotations. The following hierarchy can be useful in order
to remember which currency tends to be considered the ccy1 most of times:

EUR >GBP >AUD>NZD>USD> CAD>CHF > JPY.

An interesting note is that the mainstream financial press, such as the Financial Times and the
Economist, report all currencies in the same quote terms, such as the value of one US dollar in
each of AUD, CAD, EUR, GBP, . . . , ZAR. While easier to understand, this is not the real way
in which currency pairs are quoted in FX markets.

Furthermore, as FX quotations are made to finite precision, the least significant digit of the
spot rate is called a pip. It represents the smallest usual price increment possible in the FX spot
market. On the other hand, a big figure is invariably 100 pips. For example, if the spot rate for
EURUSD is 1.4591, the big figure is 1.45 and there are 91 additional pips in the price.

2ISO 4217 code, from the International Organization for Standardization (www.iso.org).
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Figure 1.1: Currency Pair Quotation Conventions and Market Terminology

It is worth remembering that precious metals are quoted in the same way as currencies. In
particular, gold and silver have ISO codes XAU and XAG, respectively. Similarly, we have XPT
for platinum and XPD for palladium. Thus, a currency pair XAUUSD with spot rate equal to
1000.00 means that one ounce of gold is worth $1000.

1.2 Deltas and Market Conventions

Since FX volatility surfaces are specified in terms of volatilities corresponding to different deltas,
market participants need a clear understanding of which deltas are available, and this is where
the connection between deltas and market conventions arises. Price and volatility at different
delta are the main specifications of the options quoted in the FX market, thus, it is necessary
to analyze in detail the various types of FX delta.

Given the Black-Scholes [42] price for an option, it is possible to compute the variation of
that price with respect to infinitesimal changes in the underlying spot or forward exchange rate.
This clearly represents the concept of the option delta.

Definition 1.3. The delta of an option is defined as the instantaneous sensitivity of the option
price to infinitesimal changes in the underlying asset price.

In most asset classes other than FX, the delta is perfectly straightforward. This is not true
in FX markets, due to the existence of different quotation styles for prices, which leads to several
types of delta. Since the entire concept of the FX volatility smile is based on parametrization
with respect to delta, a deep study of the available deltas is of crucial importance. Therefore, in
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this section we introduce the fundamental market conventions commonly used in practice, with
the aim of providing a comprehensive description of all different types of delta encountered. We
then present the conditions that a volatility smile must satisfy in order to be consistent with
market volatilities, given a fixed maturity T .

In currency markets, as opposed to equity markets, four relative quote styles are available
for options, that is, domestic per foreign (d/f), foreign per domestic (f/d), percentage foreign
(%f) and percentage domestic (%d). Since currencies have economic purchasing power in their
respective home countries, whereas equities do not have this property anywhere, and since in
a typical currency exchange there are two notionals, investors in the FX market can have one
of two numeraires3. Therefore, a risk-neutral investor in the domestic currency can obtain a
domestic per domestic price or a domestic per foreign price. Similarly, a risk-neutral investor in
the foreign currency can obtain a foreign per foreign price or a foreign per domestic price.

Now, let S0 be the current spot exchange rate and let rd and rf be the continuous domestic
and foreign risk-free interest rates. Consider a European vanilla option, with maturity T and
strike K, whose value is denoted by Q. The standard Black-Scholes [42] formula4 for this option
is given by

Qd/f = φS0e
−rfTN (φd1)− φKe−rdTN (φd2) , (1.1)

where

d1,2 =
ln S0

K +
(
rd − rf ± 1

2σ
2
)
T

σ
√
T

, (1.2)

σ is the volatility process, N (x) is the cumulative density function of the normal distribution
and φ is the option indicator, equal to 1 for a call and to −1 for a put. Equation (1.1) represents
the value of an option, whether a call or a put, expressed in the domestic currency, since it gives
the right to exchange K units of domestic currency for 1 unit of foreign currency. Hence, we
can refer to Qd/f as the domestic/foreign price. Sometimes, it is also called the ccy2/ccy1 price
or the domestic pips price.

To obtain the percentage foreign price, we can merely take the d/f price above and convert
the domestic currency value into foreign currency terms, using the current spot exchange rate
S0, that is

Q%f =
Qd/f
S0

. (1.3)

Since Qd/f is the price in the domestic currency of an option with a unit notional in the
foreign currency, equivalently, it also represents the price in the domestic currency of an option
with a notional of K in the domestic currency. Hence, Equation (1.1) divided by K gives the
percentage domestic price:

Q%d =
Qd/f
K

. (1.4)

3 Note that true numeraires are money market accounts, in either currency. In accordance with the common
short dated FX market practice, we assume that discount factors are deterministic and can be removed from
expectations. Thus, we refer to ccy1 and ccy2 as numeraires, where we should really call it quasi-numeraires.

4The equivalent of the Black-Scholes model in the FX setting is the Garman-Kohlhagen [91] model, so whenever
in this work we refer to the Black-Scholes model, we mean the Garman-Kohlhagen model.
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From the last equation, the foreign/domestic price is obtained by converting the ccy2 value
of the option into ccy1. Since 1 unit of the domestic currency is worth 1/S0 units of the foreign
currency, the foreign/domestic price is equal to

Qf/d = Q%d
S0

=
Qd/f
S0K

. (1.5)

The four prices presented above are relative to a notional ofK in the domestic currency and to
a unit notional in the foreign currency. Now, we can obtain two absolute pricesQd (domestic) and
Qf (foreign), given actual notionals Nd and Nf in domestic and foreign currencies, respectively,
with Nd = K ×Nf . We then have

Qd = Nf ×Qd/f , (1.6)

Qf = Nf

S0
×Qd/f . (1.7)

All the possible quote styles are summarized below:

Qd/f = φ
[
S0e
−rfTN (φd1)−Ke−rdTN (φd2)

]
Q%f =

Qd/f
S0

Q%d =
Qd/f
K

Qf/d =
Qd/f
S0K

Qd = Nf ×Qd/f

Qf = Nf

S0
×Qd/f . (1.8)

It has to be stressed that this technique of constructing all these different quotation styles
works only when there are two notionals, in foreign and domestic currencies, with a fixed relation
between them known from the start. This is true for European and American vanilla options,
even in the presence of barriers, but it is definitely not true for digital options. Consider a
cash-or-nothing digital option, which pays one dollar if the EURUSD exchange rate is above a
prearranged level at a certain maturity. Clearly, the digital has a unit notional in USD, so we
can compute percentage domestic and foreign/domestic prices. However, there is no notional in
the foreign currency, then, the other two quotes are meaningless.

According to the law of one price, investors must agree on the Black-Scholes [42] price of an
FX option, regardless of which of the two currencies they consider domestic or foreign, as long as
they agree on market components, such as spot rate, volatility and interest rates. Nonetheless,
we have just seen above that there are several ways to quote prices of currency options. As a
consequence, there must be different corresponding ways to quote the option delta. This is not
surprising, because the delta is defined as the instantaneous derivative of the option price with
respect to changes in the underlying price. Therefore, if there exist various quote styles for the
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option price, then, there are several ways to construct the delta. In market jargon, this is called
the law of many deltas, opposed to the law of one price.

In order to derive deltas, first we recall some necessary technicalities:

∂d1
∂S0

= ∂d2
∂S0

= 1
σS0
√
T
,

and then
∂N(φdk)
∂S0

= φN ′(φdk)
∂dk
∂S0

= φ

σS0
√
T
N ′(φdk), k = 1, 2.

Furthermore, the following result holds in general:

N ′ (φd1) = N ′ (φd2) eφ2(rf−rd)T
(
K

S0

)φ2

.

Proof. Since

N (φdk) =
∫ φdk

−∞
f (u) du =

∫ φdk

−∞

1√
2π
e−

u2
2 du, k = 1, 2,

we have
N ′ (φd1) = 1√

2π
e−

(φd1)2
2 ,

and

N ′ (φd2) = 1√
2π
e−

(φd2)2
2

= 1√
2π
e−

φ2(d1−σ
√
T)2

2

= 1√
2π
e−

φ2d1
2 e−

φ2σ2T
2 eφ

2d1σ
√
T

= 1√
2π
e−

φ2d1
2 e−

φ2σ2T
2 eφ

2 ln S0
K eφ

2(rd−rf+ 1
2σ

2)T

= 1√
2π
e−

φ2d1
2 eφ

2(rd−rf)T
(
S0
K

)φ2

.

Hence,

N ′ (φd1) = N ′ (φd2) eφ2(rf−rd)T
(
K

S0

)φ2

,

which is the desired result.

In particular, we are only interested in |φ| = 1, for which φ2 = 1.
We start with the definition of the domestic/foreign spot delta, which is the ratio of the

change in the option price to the infinitesimal variation in the spot rate, both expressed in
domestic/foreign terms, that is

∆S;d/f = lim
∆S0→0

∆Qd/f
∆S0

=
∂Qd/f
∂S0

, (1.9)
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where ∆Qx = Qx (S0 + ∆S0) − Qx (S0), for any quotation style x. Now, taking the derivative
of Qd/f in (1.1) with respect to S0, we have

∆S;d/f = φe−r
fTN(φd1) + φS0e

−rfT ∂N(φd1)
∂S0

− φKe−rdT ∂N(φd2)
∂S0

= φe−r
fTN (φd1) + φ2

σ
√
T
e−r

fTN ′ (φd1)− φ2K

σS0
√
T
e−r

dTN ′ (φd2)

= φe−r
fTN (φd1) + φ2

σS0
√
T

(
S0e
−rfTN ′ (φd1)−Ke−rdTN ′ (φd2)

)
= φe−r

fTN (φd1) . (1.10)

Hence, the domestic/foreign spot delta (1.10) is the standard Black-Scholes [42] delta, up to a
factor e−rfT . It is also known as pips spot delta. To the end of hedging, the spot delta (1.10) is
the number of units of foreign currency we need to hold in order to hedge an option with a unit
notional of foreign currency and an equivalent notional of K units of domestic currency. Thus,
the spot delta is expressed as a percentage of the foreign currency.

On the other hand, the percentage spot delta is the ratio of the change in the option value
to the variation in the spot rate, both expressed in percentage foreign terms. We then have

∆S;% = lim
∆S0→0

∆Q%f
∆S0/S0

= S0
∂Q%f
∂S0

. (1.11)

Now, substituting (1.3) in (1.11), we obtain

∆S;% = S0
∂
(
Qd/f
S0

)
∂S0

= S0

(
∂Qd/f
∂S0

S0 −Qd/f
) 1
S2

0

=
∂Qd/f
∂S0

−
Qd/f
S0

. (1.12)

Hence, the percentage spot delta above represents the premium-adjusted pips spot delta, that
is, the domestic/foreign spot delta in (1.10) adjusted with the percentage foreign price of the
option:

∆S;% = ∆S;d/f −Q%f . (1.13)

In order to understand why premium adjustment should be required, consider the case of a
EURUSD call option. If the two counterparties are euro and US dollar based, respectively, then
they agree on the price, as stated by the law of one price. However, this price is expressed and
actually exchanged in only one of the two currencies, EUR or USD. Since the market convention
favors a premium in US dollars, in this case the premium itself is riskless for the dollar investor,
while it constitutes an extra source of currency risk for the euro investor. As a result, the euro
based investor wants to premium adjust the delta. In other words, a euro based investor can
either obtain premium-adjusted deltas for FX call options on the spot rate EURUSD or she can
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construct spot deltas, with no premium adjustment, for FX put options on the flipped spot rate
USDEUR.

The domestic/foreign forward delta is the ratio of the change in the future value of the option
to the infinitesimal variation in the forward exchange rate F0,T = S0e

(rd−rf )T , both quoted in
ccy2/ccy1 terms, that is

∆F ;d/f = lim
∆F0,T→0

∆
(
er
dTQd/f

)
∆F0,T

= er
dT ∂Qd/f
∂F0,T

= er
dT
(
∂F0,T
∂S0

)−1 ∂Qd/f
∂S0

= er
fT∆S;d/f = φN (φd1) . (1.14)

Now, if we consider the ratio of the change in the option future value to the change in the
relevant forward, both expressed in percentage foreign terms, we obtain the percentage forward
delta, given by

∆F ;% = lim
∆F0,T→0

∆
(
er
dTQ%f

)
∆F0,T /F0,T

= er
fT
(
∆S;d/f −Q%f

)
= er

fT∆S;%. (1.15)

Thus, substituting Equations (1.1) and (1.10) in (1.12), we obtain

∆S;% = φe−r
dT K

S0
N(φd2), (1.16)

∆F ;% = φ
K

F0,T
N (φd2) . (1.17)

The last delta we introduce is not a proper delta in the usual sense, but it is rather a
simplified measure of moneyness, intermediate between φN(φd1) and φN(φd2), used for ease of
computation instead of other deltas, when the construction of parametric functions of delta is
needed. This simple delta is given by

∆simple = φN (φd) , d = ln (F0,T /K)
σ
√
T

, (1.18)

where d is the arithmetic average of d1 and d2 in (1.2).

Remark 1.1. Note that the percentage spot delta (1.12) for an investor with ccy2 numeraire
is related to the domestic/foreign spot delta (1.10) for an investor with ccy1 numeraire, by a
negative constant multiple.
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Figure 1.2: Delta conventions for common currency pairs

Proof. For an investor whose numeraire is currency 1, the delta is equal to

∆S;f/d =
∂Qf/d

∂Ŝ0
=

∂Qf/d
∂ (1/S0)

= 1
∂ (1/S0)∂

(
Qd/f
S0K

)

= − 1
1/S2

0

1
K

 ∂Qd/f
∂S0

S0 −Qd/f
S2

0


= −S0

K

(
∂Qd/f
∂S0

−
Qd/f
S0

)
= −S0

K
∆S;%.

Hence, due to the duality among the two currencies and the change between domestic and
foreign risk-neutral measures, it is always possible to establish a clear relationship between the
two styles of delta, that is, domestic per foreign and premium-adjusted.

Since we have introduced several definitions of deltas, the choice of which one has to be
used depends on the circumstance. For instance, whether to apply the premium adjustment or
not completely depends on which currency pair we are dealing with and is determined by the
choice of the premium currency, see Table 1.2. Basically, if the premium currency is ccy2, then
no premium adjustment is applied, whereas if the premium currency is ccy1, then percentage
delta is considered. Typically, the premium currency is taken to be the more commonly traded
currency of the two, with the exception of JPY, which is rarely the premium currency by market
convention. Table 1.3 shows the choice of premium currency for various currency pairs.

Furthermore, since in 2008 the credit crunch has induced low levels of liquidity in short-term
interest rate products, it became unfeasible for banks to agree on spot deltas, which include
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Figure 1.3: Premium currency for major currency pairs

discount factors. As a consequence, market practice has largely shifted to the use of forward
deltas in the construction of FX smiles. Events of 2008 show how market conditions can cause
market conventions to evolve. Hence, it is always advisable to check current market practice, in
particular during or after extreme market conditions.

Summary

∆S;d/f = φe−r
fTN (φd1)

∆S;% = φe−r
dT K

S0
N(φd2)

∆F ;d/f = φN (φd1)

∆F ;% = φ
K

F0,T
N (φd2)

∆simple = φN (φd) . (1.19)

1.3 Market Volatility Surfaces

For historical reasons, the FX option market uses the so-called sticky delta rule to build volatility
smiles, which implies that volatilities are quoted as a function of delta rather than strikes value.
Practically, this means that when the underlying asset price moves and the option delta changes
accordingly, a different implied volatility has to be plugged into the pricing formula. The choice
of delta as a parameter to describe the volatility smile is reasonable, otherwise a strike that
might correspond to a considerably out-of-the-money option at a small maturity would be very
close to the at-the-money for a larger maturity. Therefore, the parametrization of the smile as
a function of deltas allows a better coverage of the volatility surface, given a known selection of
deltas.

Since the Black-Scholes [42] formula is inadequate to price options of all strikes and maturities
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EURUSD (spot reference 1.3940)
Maturity σATM σ25−RR σ25−MS σ10−RR σ25−MS

1W 20.37 0.24 0.64 0.47 2.20
2W 20.86 0.30 0.67 0.54 2.27
1M 24.15 0.40 0.71 0.69 2.68
2M 24.12 0.31 0.76 0.52 2.89
3M 23.74 0.24 0.83 0.40 3.19
6M 21.52 0.11 0.90 0.19 3.41
9M 20.26 0.01 0.94 0.03 3.58
1Y 19.32 -0.07 1.00 -0.09 3.76
18M 18.70 -0.11 1.00 -0.13 3.69
2Y 18.19 -0.14 0.90 -0.17 3.48

Table 1.1: Sample market volatility surface for EURUSD on 2008, 22 December

consistently with the market, it is necessary to construct a volatility smile σ(K) that assigns
a volatility value to each strike K. Malz [123] provides a good description, in terms of market
parameters, of the way in which market behavior deviates from the Black-Scholes prediction.
However, he does not clarify neither which delta has to be used nor how to identify the at-
the-money strike. Furthermore, the strangle definition he gives in his work refers to the smile
strangle, which does not correspond to the typical strangle observed and traded in the market,
known as the market strangle. In the rest of this chapter, we want to give a more complete and
thorough discussion about these topics.

In the FX option market, 25∆5 call and 25∆ put are commonly traded, for a given maturity
T . Thus, together with the at-the-money quote, they are considered benchmark strikes for
the construction of the FX volatility surface. If we prescribe volatilities at these three strikes,
we obtain the so-called three-point smile. Furthermore, a five-point smile can be constructed
combining these three strikes with 10∆ put and 10∆ call quotations, which are less liquid but
still available.

A particular property of the FX option market, which makes it different from other financial
markets, consists in the fact that market volatility surfaces are described by the measurement of
three components, for each maturity: the at-the-money (ATM), the risk reversal (RR) and the
market strangle (MS). These three quotes represent separate and nonoverlapping constraints on
the volatility smile, in order to be consistent with the market.

A clear example of a volatility surface in given by the market snapshot in Table 1.1, which
is collected on 2008, 22 December and describes market volatility quotations, expressed in per-
centage values. Before starting the smile construction, it is important to analyze the exact
characteristics of the quotes in Table 1.1. In particular, one has to identify first which delta
type and which at-the-money convention are used. It is obvious that smiles can have very dif-
ferent shapes, in particular for out-of-the-money and in-the-money options. Misunderstanding
the delta type, which the market data refers to, would lead to a wrong pricing of vanilla op-

5We drop the % sign after the level of the delta, in accordance with market jargon. Therefore, a 25∆ call
[resp. put] is an option whose delta is 0.25 [resp. -0.25].
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tions. For example, the quotes in the given market sample refer to a spot delta and delta neutral
straddle quotation is used for the at-the-money strike. In the next subsections, we explain which
information these quotes contain.

1.3.1 At-The-Money Conventions

As in the case of the delta, at-the-money (ATM) volatilities quoted by brokers can have various
interpretations depending on currency pairs. In particular, we find two definitions of the ATM
strike, denoted by KATM , used by practitioners.

The first is the at-the-money-forward (ATMF) strike, which is set equal to the forward price
F0,T = S0e

(rd−rf )T , for a given maturity T . We then have

KATM ≡ KATMF = F0,T . (1.20)

This convention is only used for currency pairs including a Latin American emerging market
currency.

A more natural way to define KATM is the strike corresponding to a delta-neutral straddle
(DNS). In this case, the ATM volatility is the value from the smile curve where the strike is
such that the delta of a long call equals, in absolute value, that of a long put, for every given
maturity. This has the advantage that no delta hedging is needed when the straddle6 is traded.
Furthermore, it is the purest way to buy volatility at a fairly central level of the strike price.
For these reasons, the delta-neutral straddle has become the standard choice of ATM strike for
many financial industries. Hence, the delta-neutral straddle strike KATM ≡ KDNS is given by
the solution of equation

∆(1, T,KDNS , σATM ) + ∆(−1, T,KDNS , σATM ) = 0. (1.21)

Note that, in order to solve Equation (1.21), it is irrelevant using spot or forward delta, since the
discount factor, if it appears, is just a constant. Consequently, only two deltas can be sensibly
considered, that is, the forward delta ∆F ;d/f and the premium-adjusted forward delta ∆F ;%.
Actually, we can solve (1.21) for K analytically in both cases.

The former implies solving

∆F ;d/f (1, T,KDNS , σATM ) + ∆F ;d/f (−1, T,KDNS , σATM ) = 0, (1.22)

the solution of which we denote by KDNS;d/f . By (1.14), ∆F ;d/f = φN (φd1). Then, we require
that N(d1) = N(−d1). From Equation (1.2), we have

d1 =
ln F0,T

K + 1
2σ

2T

σ
√
T

.

6In finance, a straddle is a non-directional options trading strategy, which involves a simultaneous purchase
(long straddle) or sale (short straddle) of both a call and a put, written on the same underlying asset and with
same strike and maturity.
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Hence,

N

(
lnF0,T − lnK + 1

2σ
2T

σ
√
T

)
= N

(
lnK − lnF0,T − 1

2σ
2T

σ
√
T

)
.

Since N (·) is monotonically increasing, we need K such that

lnF0,T − lnK + 1
2σ

2T

σ
√
T

=
lnK − lnF0,T − 1

2σ
2T

σ
√
T

.

Then, we obtain
2 lnK = 2 lnF0,T + σ2T,

which has the exact solution
KDNS;d/f = F0,T e

1
2σ

2T . (1.23)

On the other hand, the latter case implies the resolution for K of equation

∆F ;%(1, T,KDNS , σATM ) + ∆F ;%(−1, T,KDNS , σATM ) = 0. (1.24)

By (1.15), we have ∆F ;% = φ K
F0,T

N (φd2) and then, after canceling out K
F0,T

, we require that
N(d2) = N(−d2). Now, the algebra is almost the same as above, from which it easily follows
that the desired delta-neutral straddle strike is given by

KDNS;% = F0,T e
− 1

2σ
2T . (1.25)

Proposition 1.1. The at-the-money-forward strike in (1.20) is actually delta-neutral with re-
spect to the simple delta.

Proof. Suppose we try to find the strike KDNS;simple which is solution of (1.21), with respect
to the simple delta (1.18). We require that N(d) = N(−d), which gives lnF0,T − lnK =
lnK − lnF0,T . Then, we have

KDNS;simple = KATMF = F0,T .

Proposition 1.2 (Rule of thumb). For any currency pair, if the ATM strike is above [resp.
below] the forward price, the market convention states that deltas for that currency pair must be
quoted as domestic/foreign [resp. premium-adjusted].

Independently of the choice of σ(K), it has to be ensured that the volatility for the at-the-
money strike is σATM . Consequently, the construction procedure for σ(K) has to guarantee that
equation

σ(KATM ) = σATM , (1.26)

holds.
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1.3.2 Market Strangle

Suppose that we neglect the effect of volatility skew and assume that volatility is basically
symmetric, while not constant across strikes. The concept of market strangle implies that we
can buy an out-of-the-money put and an out-of-the-money call with strikes placed at a similar
distance away from the ATM strike, in moneyness terms. For the sake of clarity, we consider a
25∆ market strangle, though same conclusions can be drawn for any delta.

The idea underneath a market strangle is that, knowing nothing about the actual volatility
smile, we can estimate the volatility needed to price a market strangle instrument consistently
with the market, by adding a strangle (S) premium σ25−S to the ATM volatility, that is

σ25−MS = σATM + σ25−S . (1.27)

Given this single volatility, we can extract a call strike K25C−MS and a put strike K25P−MS

which, using σ25−MS as volatility value, yields a delta of 0.25 and -0.25, respectively. The
resulting strikes will then fulfill

∆ (1, T,K25C−MS , σ25−MS) = 0.25,
∆ (−1, T,K25P−MS , σ25−MS) = −0.25.

(1.28)

Given strikes K25C−MS and K25P−MS , one can compute the price of an option position,
which includes a long call with strike K25C−MS and volatility σ25−MS and a long put with strike
K25P−MS and the same volatility. The resulting price Q25−MS is

Q25−MS = Q (1, T,K25C−MS , σ25−MS) +Q (−1, T,K25P−MS , σ25−MS) . (1.29)

Figure 1.4 shows the market strangle as a spread to the ATM volatility. In the graph, the
long horizontal line represents the ATM volatility level, while the other two shorter horizontal
lines, at the same vertical level, show the market strangle volatility.

The important point to be stressed here is that, even if the volatility is not symmetric and
neither the call with strike K25C−MS nor the put with strike K25P−MS can actually be priced
with same volatility σ25−MS , the corresponding option prices at these strikes must add up to
Q25−MS . In other words, a market consistent volatility function σ(K) can have volatilities at
strikes K25C−MS and K25P−MS different from σ25−MS , but should guarantee that the aggregate
price of the two options is equal to Q25−MS . To summarize,

Q25−MS = Q (1, T,K25C−MS , σ(K25C−MS)) +Q (−1, T,K25P−MS , σ(K25P−MS)) . (1.30)

1.3.3 Risk Reversal

At-the-money and market strangle volatilities provide two degrees of freedom, which allow a
volatility smile to be described, but without a skew. In order to consider a market parameter
that describes the skew, we introduced the risk reversal (RR), as defined by Malz [123].
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Figure 1.4: Schematic illustration of the market strangle

Assume that a volatility smile of the form σ(K) exists and that each European option with
different strike K can be priced using this volatility smile σ(K), such that conditions (1.26) and
(1.30) are fulfilled. Now, given σ(K), our aim is to find 25∆ strike-volatility pairs for a call and
a put, which yield a delta of 0.25 and -0.25, respectively. Therefore, we need to solve7 for K

∆ (1, T,K25C , σ (K25C)) = 0.25,
∆ (−1, T,K25P , σ (K25P )) = −0.25.

(1.31)

Then, we set

σ25C = σ (K25C) ,

σ25P = σ (K25P ) .

Finally, the 25∆ risk reversal is quoted as the difference between these two implied volatilities:

σ25−RR = σ25C − σ25P . (1.32)

Positive values of the risk reversal mean that calls are favored with respect to puts, that is,
the market attributes higher implied volatilities to calls than to puts, while for negative risk
reversals the opposite is true.

Equations (1.26), (1.30) and (1.32) provide us with necessary conditions for σ(K) to be
consistent with the market, as parametrized by σATM , σ25−MS and σ25−RR. If other deltas are
quoted on the smile, most often 10∆, then conditions (1.30) and (1.32) are applied in the same
way as above, except using σ10−MS and σ10−RR.

7This can be achieved by using a standard root search algorithm.
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1.3.4 A Simplified Formula

Frequently, a simplified formula is stated in the literature to allow an easy calculation of the
25∆ volatilities, given market quotes.

Let σ25C be the call volatility corresponding to a delta of 0.25 and σ25P the -0.25 delta put
volatility. Let K25C and K25P denote the corresponding strikes. The simplified formula states
that

σ25C = σATM + σ25−S + 1
2σ25−RR,

σ25P = σATM + σ25−S − 1
2σ25−RR.

(1.33)

Including the at-the-money volatility would result in a smile with three anchor points, which
can then be interpolated. In this case, no calibration procedure is needed. Note that

σ25C − σ25P = σ25−RR,

such that the 25∆ volatility difference automatically matches the quoted risk reversal.
The simplified formula can be reformulated to calculate σ25−S , given σ25C , σ25P and σATM

quotes. This yields
σ25−S = σ25C + σ25P

2 − σATM , (1.34)

which presents the strangle as a convexity parameter. However, the problem arises in the
matching of the market strangle, as given in Equation (1.29). Interpolating the smile from the
three anchor points given by the simplified formula and calculating the market strangle with the
corresponding volatilities at K25P−MS and K25C−MS does not necessary lead to the matching
of Q25−MS . If σ25−RR = 0, then by (1.32) we have σ25C = σ25P , hence σ25−S = σ25C − σATM =
σ25P − σATM . As a consequence, σ25−MS = σ25−S only in the case in which σ25−RR = 0,
otherwise the equality does not hold true. The discrepancy is most relevant for currency pairs
where the risk reversal is large in absolute value, typically greater than 1%.

Furthermore, the σ25−S value is in general not directly observable in FX markets. Instead,
quants usually communicate the σ25−MS . The difference between σ25−S and σ25−MS can be
at times confusing. Often for convenience one sets σ25−MS = σ25−S , as this greatly simplifies
the procedure to build up a smile curve. However, it leads to errors when applied to a steeply
skewed market.

Remark 1.2. Using the simplified smile construction procedure yields a market strangle consis-
tent smile setup only in case of a zero risk reversal. The other market matching requirements
are met by default. In any other case, the strangle price might not be matched, which leads to a
non market consistent setup of the volatility smile.

Nonetheless, the simplified formula can still be useful, even for large risk reversals, if σ25−S

is replaced by another parameter, known in literature as the smile strangle (SS). Assume that
volatilities σ(K25C) and σ(K25C) are given by the calibrated smile function σ(K). Then, we can
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Figure 1.5: Schematic illustration of the risk reversal and the smile strangle

compute the smile strangle via

σ25−SS = σ (K25C) + σ (K25P )
2 − σ(KATM ). (1.35)

Thus, the smile strangle measures the convexity of the calibrated smile function.
Figure 1.5 presents a smile volatility σ(K), obtained from the fit of 1Y EURUSD data seen in

Table 1.1. The 25∆ put and call strikes are shown with respect to their corresponding volatilities
on the smile, same as for the at-the-money strike. The horizontal dotted lines indicate volatility
levels at these three strikes. The graph depict the risk reversal as the difference between σ25C and
σ25P . On the other hand, the oblique dotted segment, which connects σ25C and σ25P points,
is bisected, so that the midpoint has a volatility equal to their average. Hence, the vertical
distance of that midpoint from the ATM level represents the smile strangle.

Note that the smile strangle construction is similar to Equation (1.34), but in (1.35) we are
using out-of-the-money volatilities obtained from the calibrated smile and not from the simplified
formula. Given σ25−SS , the simplified formula (1.33) can still be used, if the quoted strangle
volatility σ25−S is replaced by the smile strangle volatility σ25−SS . Clearly, σ25−SS is not known
a priori, but is obtained with the calibration of the smile function.

Figure 1.6 shows that, when the risk reversal is large, as is typically the case for the currency
pair USDJPY, strikes can be markedly different. This discrepancy between smile strangle and
market strangle strikes increases for large absolute value of the risk reversal.

To close this section, let us clarify another enigmatic concept of FX markets often used by
practitioners, the so-called vega-weighted strangle quote. This is an approximation for the value
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Figure 1.6: Highly skewed smile for the currency pair USDJPY

of σ25−MS . To show this, we start from equality

Q (1, T,K25C , σ25−MS) +Q (−1, T,K25P , σ25−MS) =

Q (1, T,K25C , σ (K25C)) +Q (−1, T,K25P , σ (K25P )) ,

and we develop both sides in a first order Taylor expansion in σ around σATM . Hence, we have

Q (1, T,K25C , σATM ) +Q (−1, T,K25P , σATM ) +

+ V (1, T,K25C , σATM ) (σ25MS − σATM ) +

+ V (−1, T,K25P , σATM ) (σ25−MS − σATM ) ≈

Q (1, T,K25C , σATM ) +Q (−1, T,K25P , σATM ) +

+ V (1, T,K25C , σATM ) (σ (K25C)− σATM ) +

+ V (−1, T,K25P , σATM ) (σ (K25P )− σATM ) ,

where V (φ, T,K, σ(K)) represents the Vega of the option, namely the sensitivity of the option
price with respect to a change of the implied volatility. Deleting repeating terms on the left and
right-hand side, we obtain

σ25−MS [V (1, T,K25C , σATM ) + V (−1, T,K25P , σATM )] ≈

V (1, T,K25C , σATM )σ (K25C) + V (−1, T,K25P , σATM )σ (K25P ) .

Solving for σ25−MS yields

σ25−MS ≈
V (1, T,K25C , σATM )σ (K25C) + V (−1, T,K25P , σATM )σ (K25P )

V (1, T,K25C , σATM ) + V (−1, T,K25P , σATM ) ,
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that is
σ25−MS ≈

V (1, T,K25C , σATM )σ25C + V (−1, T,K25P , σATM )σ25P
V (1, T,K25C , σATM ) + V (−1, T,K25P , σATM ) ,

which corresponds to the average of the call and put implied volatilities, weighted by Vega.
According to Castagna and Mercurio [60], practitioners also use the term Vega-weighted butterfly
for a structure where a strangle is bought and an amount of ATM straddle is sold, such that
the overall Vega of the strategy is zero.

1.4 The Vanna-Volga Method

While the Black-Scholes [42] model is an important market benchmark, it is widely recognized
that it presents several deficiencies when it comes to describe modern market phenomena. In
particular, the assumptions of constant interest rates and a single volatility, sufficient to price
options with different maturities and strikes, are inadequate to describe the more realistic and
highly volatile world of FX derivatives. Nowadays, the Black-Scholes [42] theoretical value is
only used as a reference quotation and provides a starting point for the development of advanced
models.

More realistic models should assume that the foreign/domestic interest rates and the FX
volatility follow stochastic processes. The choice of the stochastic process depends on empirical
observations, among other factors. For example, for long-dated options the effect of the interest
rate volatility can become as significant as that of the FX volatility. On the other hand, for short-
dated options, typically less than 1 year, assuming constant interest rates does not normally lead
to significant mispricing. Although stochastic volatility models can explain much more complex
markets, their main drawback is that they are computationally demanding and, in most cases,
they require a relatively great quantity of market data, which is not always readily available.

This has led FX brokers and market makers to introduce alternative empirical procedures,
that give fast results and are simpler to implement. Certainly, one useful approach is the Vanna-
Volga (VV) method, which allows to infer an implied volatility smile from three available market
quotes, for a given maturity. The terms Vanna and Volga are commonly used by practitioners
to denote partial derivatives of an option Vega, with respect to spot and volatility, respectively.
In technical terms, we have

V anna = ∂V ega

∂Spot
, V olga = ∂V ega

∂V ol
. (1.36)

This technique is based on the construction of a locally replicating portfolio, which is Vega-
neutral in the Black-Scholes world. In this way, hedging costs associated to this portfolio are
added to the corresponding Black-Scholes prices, in order to derive smile consistent values.
Besides being intuitive and easy to implement, this procedure has a clear financial interpretation,
which further supports its use in practice.

In the financial literature, the Vanna-Volga method seems to appear first in Lipton and
McGhee [118], who apply the adjustment of the Black-Scholes price with an hedging portfolio to
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double-no-touch options, and successively in Wystup [158], who describes its application to the
valuation of one-touch options. However, their analyses are rather informal and mostly based on
numerical examples. The first systematic formulation of the Vanna-Volga method was proposed
by Castagna and Mercurio [60], who derive some important results concerning the tractability
of the method and its robustness. In particular, they show that it can be used as a smile
interpolation tool to obtain a value of volatility for a given strike, while reproducing exactly
market quoted volatilities. Furthermore, Bossens et al. [43] and Fisher [87] introduce a number
of corrections to handle the pricing inconsistencies of the first-generation exotics. Finally, a
more rigorous and theoretical review is given by Shkolnikov [148], where the method is extended
to include interest rate risk, among other directions.

Now, consider the three basic options quoted in the FX market for a given maturity T , that
is, the 25∆ put, the ATM and the 25∆ call. Denote the corresponding strikes by Ki, i = 1, 2, 3,
such that K1 < K2 < K3, and set K = (K1,K2,K3)8. Market implied volatilities associated to
Ki are denoted by σi, i = 1, 2, 3. Moreover, market option prices QMKT (T,K1), QMKT (T,K2)
and QMKT (T,K3) are assumed to satisfy standard no arbitrage conditions.

The VV method is used to define an implied volatility smile, which is consistent with the
basic volatilities σi. The rationale behind it stems from a replication argument in a flat-smile
world, where the level of the constant implied volatility varies stochastically over time.

It is well known that in the Black-Scholes [42] model the payoff of a European call, with
maturity T and strike K, can be replicated by a dynamic delta-hedging strategy, whose initial
value matches, at every time 0 ≤ t < T , the option price QBSt (T,K), given by

QBSt (T,K) = Ste
−rf τN

 ln St
K +

(
rd − rf + 1

2σ
2
)
τ

σ
√
τ

+

−Ke−rdτN

 ln St
K +

(
rd − rf − 1

2σ
2
)
τ

σ
√
τ

 , (1.37)

where τ = T −t, St is the FX rate at time t, rd and rf are the domestic and foreign, respectively,
risk-free interest rates and σ is the constant implied volatility. In real financial markets, however,
volatility is stochastic and traders hedge the associated risk by constructing portfolios that are
Vega-neutral in a Black-Scholes world.

Denote by Πt the value of a risk-neutral replicating portfolio, composed of a long position
in a European call option with maturity T and strike K, whose price is QBSt (T,K) as in (1.37),
two short positions in ∆t units of the underlying asset St and xi units of three European calls
with strikes Ki and prices QBSt (T,Ki), i = 1, 2, 3. In a small interval of time dt, the value of
the portfolio Πt is subject to a variation, given by

dΠt = dQBSt (T,K)−∆tdSt −
3∑
i=1

xidQ
BS
t (T,Ki) . (1.38)

8K1, K2 and K3 replace K25P , KATM and K25C , respectively.
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Under diffusion dynamics for both St and σ = σt, by Itô’s lemma we have

dΠt =
[
∂QBSt (T,K)

∂t
−

3∑
i=1

xi
∂QBSt (T,Ki)

∂t

]
dt

+
[
∂QBSt (T,K)

∂St
−∆t −

3∑
i=1

xi
∂QBSt (T,Ki)

∂St

]
dSt

+
[
∂QBSt (T,K)

∂σt
−

3∑
i=1

xi
∂QBSt (T,Ki)

∂σt

]
dσt

+
[
∂2QBSt (T,K)

∂St∂σt
−

3∑
i=1

xi
∂2QBSt (T,Ki)

∂St∂σt

]
dStdσt

+ 1
2

[
∂2QBSt (T,K)

∂S2
t

−
3∑
i=1

xi
∂2QBSt (T,Ki)

∂S2
t

]
(dSt)2

+ 1
2

[
∂2QBSt (T,K)

∂σ2
t

−
3∑
i=1

xi
∂2QBSt (T,Ki)

∂σ2
t

]
(dσt)2 . (1.39)

By virtue of stochastic calculus rules, coefficients of the terms (dt)2, dtdσt and dtdSt vanish. On
the other hand, the following equation holds:

dΠt = rdΠtdt, (1.40)

based on the no arbitrage assumption. In order to obtain a locally hedging portfolio, we choose
∆t and xi so as to zero out the coefficients of dSt, dσt, (dσt)2 and dStdσt9. By construction of
the hedging portfolio Πt, we get rid of the risk associated with the fluctuations of the spot price
St and of the volatility σt. Hence, our portfolio is now locally risk-free at time t, that is, no
stochastic terms are involved in its differential.

Then, the amount ∆t of the underlying asset is given by

∆t = ∂QBSt (T,K)
∂St

−
3∑
i=1

xi
∂QBSt (T,Ki)

∂St
. (1.41)

Now, from Equation (1.39), we want to find time-t weights xi(K), i = 1, 2, 3, for which
the resulting portfolio of European call options with maturity T and strikes K1, K2 and K3,
respectively, hedges the price variations of the call with maturity T and strike K, up to the
second order in the underlying and the volatility. Assuming a delta-hedged position and given
that, in the Black-Scholes world, those portfolios of plain vanilla options with the same maturity
that are Vega neutral are also Gamma neutral, then, the weights x1(K), x2(K), and x3(K) can
be found by imposing that the replicating portfolio has the same Vega, Vanna and Volga as the

9The coefficient of (dSt)2 will be automatically zeroed out, due to the relation linking an option Gamma and
Vega in the Black-Scholes world.
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call with strike K, that is

∂QBSt (T,K)
∂σt

=
3∑
i=1

xi (K) ∂Q
BS
t (T,Ki)
∂σt

∂2QBSt (T,K)
∂St∂σt

=
3∑
i=1

xi (K) ∂
2QBSt (T,Ki)
∂St∂σt

. (1.42)

∂2QBSt (T,K)
∂σ2

t

=
3∑
i=1

xi (K) ∂
2QBSt (T,Ki)

∂σ2
t

Denoting by Vt (K) the Vega at time t of an option, with maturity T and strike K, we can
write (1.42) in a more compact matricial form as

Vx = A, (1.43)

where

x =


x1 (K)
x2 (K)
x3 (K)

 , (1.44)

A =


Vt (K)
∂Vt(K)
∂St

∂Vt(K)
∂σt

 =


∂QBSt (T,K)

∂σt
∂2QBSt (T,K)

∂St∂σt
∂2QBSt (T,K)

∂σ2
t

 , (1.45)

and

V =


Vt (K1) Vt (K2) Vt (K3)
∂Vt(K1)
∂St

∂Vt(K2)
∂St

∂Vt(K3)
∂St

∂Vt(K1)
∂σt

∂Vt(K2)
∂σt

∂Vt(K3)
∂σt

 =


∂QBSt (T,K1)

∂σt

∂QBSt (T,K2)
∂σt

∂QBSt (T,K3)
∂σt

∂2QBSt (T,K1)
∂St∂σt

∂2QBSt (T,K2)
∂St∂σt

∂2QBSt (T,K3)
∂St∂σt

∂2QBSt (T,K1)
∂σ2
t

∂2QBSt (T,K2)
∂σ2
t

∂2QBSt (T,K3)
∂σ2
t

 . (1.46)

Proposition 1.3. The system (1.43) admits a unique solution, which is given by

x1 (K) = Vt (K)
Vt (K1)

ln K2
K ln K3

K

ln K2
K1

ln K3
K1

x2 (K) = Vt (K)
Vt (K2)

ln K
K1

ln K3
K

ln K2
K1

ln K3
K2

. (1.47)

x3 (K) = Vt (K)
Vt (K3)

ln K
K1

ln K
K2

ln K3
K1

ln K3
K2

In particular, if K = Kj, then xi (K) = 1 for i = j and zero otherwise.
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Proof. We have

Vt (K) = ∂QBSt (T,K)
∂σt

= Ste
−rf τN ′ (d1) ∂d1

∂σt
−Ke−rdτN ′ (d2) ∂d2

∂σt

= Ste
−rf τ 1√

2π
e−

1
2d

2
1

σ
2
t τ
√
τ −

[
ln St

K +
(
rd − rf + 1

2σ
2
t

)
τ
]√

τ

σ2
t τ

+

−Ke−rdτ 1√
2π
e−

1
2d

2
1
St
K
e(rd−rf)τ

−σ
2
t τ
√
τ −

[
ln St

K +
(
rd − rf − 1

2σ
2
t

)
τ
]√

τ

σ2
t τ


= Ste

−rf τ 1√
2π
e−

1
2d

2
1

(
σ2
t τ
√
τ

σ2
t τ

)
= Ste

−rf τ√τN ′ (d1) .

Computing the second order derivatives, we obtain

V anna = ∂Vt (K)
∂St

= e−r
f τ√τ

[
N ′ (d1)− St

1√
2π
e−

1
2d

2
1d1

∂d1
∂St

]
= e−r

f τ√τ
[
N ′ (d1)− St

1√
2π
e−

1
2d

2
1d1

1
Stσt
√
τ

]
= −e−rf τ

√
τN ′ (d1) d2

σt
√
τ

= −Vt (K)
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d2
σt
√
τ
,

and

V olga = ∂Vt (K)
∂σt

= −Ste−r
f τ√τ 1√

2π
e−

1
2d

2
1d1

∂d1
∂σt

= −Vt (K) d1

σ
2
t τ
√
τ −
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(
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τ
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τ

σt
√
τ

− σt
√
τ


= Vt (K)

σt
d1
(
d1 − σt

√
τ
)

= Vt (K)
σt

d1d2.
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From the system (1.43), straightforward algebra leads to

det (V) = Vt (K1) ∂Vt (K2)
∂St

∂Vt (K3)
∂σt

+ Vt (K2) ∂Vt (K3)
∂St

∂Vt (K1)
∂σt

+

+ Vt (K3) ∂Vt (K1)
∂St

∂Vt (K2)
∂σt

−
[
Vt (K3) ∂Vt (K2)

∂St

∂Vt (K1)
∂σt

+

+Vt (K1) ∂Vt (K3)
∂St

∂Vt (K2)
∂σt

+ Vt (K2) ∂Vt (K1)
∂St

∂Vt (K3)
∂σt

]
= −Vt (K1) Vt (K2)

Stσt
√
τ
d2 (K2) Vt (K3)

σt
d1 (K3) d2 (K3) +

− Vt (K2) Vt (K3)
Stσt
√
τ
d2 (K3) Vt (K1)

σt
d1 (K1) d2 (K1) +

− Vt (K3) Vt (K1)
Stσt
√
τ
d2 (K1) Vt (K2)

σt
d1 (K2) d2 (K2) +

+ Vt (K3) Vt (K2)
Stσt
√
τ
d2 (K2) Vt (K1)

σt
d1 (K1) d2 (K1) +

+ Vt (K1) Vt (K3)
Stσt
√
τ
d2 (K3) Vt (K2)

σt
d1 (K2) d2 (K2) +

+ Vt (K2) Vt (K1)
Stσt
√
τ
d2 (K1) Vt (K3)

σt
d1 (K3) d2 (K3)

= Vt (K1)Vt (K2)Vt (K3)
Stσ2

t

√
τ

[d2 (K2) d1 (K1) d2 (K1) + d2 (K3) d1 (K2) d2 (K2) +

+ d2 (K1) d1 (K3) d2 (K3)− d2 (K2) d1 (K3) d2 (K3) +

−d2 (K3) d1 (K1) d2 (K1)− d2 (K1) d1 (K2) d2 (K2)]

= Vt (K1)Vt (K2)Vt (K3)
Stσ5

t τ
2 ln K2

K1
ln K3
K1

ln K3
K2

,

which is strictly positive since K1 < K2 < K3. Hence, the system (1.43) admits a unique
solution and (1.47) follows from Cramer’s rule.

Therefore, when volatility is stochastic and options are valued with the Black-Scholes [42]
formula, we can still have a locally perfect hedge, provided that we hold suitable amounts of
three more options, in order to rule out the model risk. Note that the hedging strategy is
irrespective of the true asset and volatility dynamics, under the assumption of no jumps.

Remark 1.3. The validity of the previous replication argument may be questioned because no
stochastic volatility model can produce implied volatilities that are flat and stochastic at the same
time. The simultaneous presence of these features, though inconsistent from a theoretical point
of view, can be justified on empirical grounds. In fact, the practical advantages of the Black-
Scholes [42] paradigm are so clear that many FX option traders implement hedging strategies
based on a Black-Scholes flat smile model, with the ATM volatility being continuously updated
to the actual market level.
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Delta 2Y
25∆ Put 1.2714 11.73%
ATM 1.4112 10.93%

25∆ Call 1.5663 10.93%

Table 1.2: Strikes and volatilities corresponding to the three main quotes, as in December 25,
2008

1.4.1 The Vanna-Volga Option Price

Now, we can proceed to the definition of the option price resulting from the Vanna-Volga method,
which is consistent with market prices of the basic options.

The above replication argument shows that a portfolio, with xi units of an option with strike
Ki and ∆t units of the underlying asset, gives a local perfect hedge in a Black-Scholes world. The
hedging strategy, however, has to be implemented at prevailing market prices. This generates
an extra cost with respect to the Black-Scholes portfolio value. Thus, such a cost has to be
added to the Black-Scholes price (1.37), in order to satisfy no arbitrage conditions.

Hence, a smile consistent price for a call option, with strike K and maturity T , is obtained
by adding to the Black-Scholes price the cost of implementing the hedging strategy at prevailing
market prices. In order to lighten the notation, we consider t = 0, so that we can remove the
subscript for time t. We then have

QV V (T,K) = QBS (T,K) +
3∑
i=1

xi
[
QMKT (T,Ki)−QBS (T,Ki)

]
. (1.48)

The quantity QV V (T,K) in (1.48) is defined as the Vanna-Volga option price, implicitly assum-
ing that the replication error is also negligible for longer maturities. Moreover, the term

Q̃ =
3∑
i=1

xi
[
QMKT (T,Ki)−QBS (T,Ki)

]
, (1.49)

is known as the Vanna-Volga correction, or adjustment, or even overhedge, since it represents
the additional cost of the hedging portfolio, induced by market implied volatilities with respect
to the constant volatility10.

It is worth noting that calls and puts can be considered interchangeably, due to the put-call
parity. Using puts instead of calls only changes the value of ∆t, but does not affect xi values.

WhenK = Kj , we clearly have that QV V (T,Kj) = QMKT (T,Kj), since xi (K) = 1 for i = j

and zero otherwise. Therefore, Equation (1.48) defines a rule for either interpolating or extrap-
olating prices from the three option quotes QMKT (T,K1), QMKT (T,K2) and QMKT (T,K3).

A market implied volatility curve can then be constructed by inverting (1.48) through the
Black-Scholes [42] formula, for each K considered. An example of such a curve is provided in
Figure 1.7, where we plot implied volatilities against strikes, and the three market principal

10The Vanna-Volga price QV V (T,K) depends on the volatility parameter σ. In practice, the typical choice is
to set σ = σATM .
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Figure 1.7: EURUSD implied volatilities plotted against strikes as in September 10th, 2008

quotes are highlighted. Table 1.2 shows the data used.
For any given maturity T , the option price QV V (T,K), as a function of the strike K, satisfies

the following no arbitrage conditions:

1. QV V (T,K) ∈ C2 (0,+∞);

2. lim
K→0+

QV V (T,K) = S0e
−rfT , lim

K→+∞
QV V (T,K) = 0;

3. lim
K→0+

∂QV V (T,K)
∂K = −e−rdT , lim

K→+∞
K ∂QV V (T,K)

∂K = 0.

The second and third properties, which are trivially satisfied by QBS (T,K), follow from the
fact that, for each i, both xi (K) and ∂xi(K)

∂K go to zero for K → 0+ or K → +∞.
Furthermore, in order to avoid arbitrage opportunities, the option price QV V (T,K) should

also be a convex function of the strike K, that is

∂2QV V (T,K)
∂K2 > 0, ∀K > 0.

This property, which is not true in general, holds for typical market parameters, so that Equation
(1.48) leads to prices that are arbitrage free in practice.

Finally, if we consider all available maturities we can obtain the entire implied volatility
surface, as we can see in Figure 1.8.

Contrary to other interpolation schemes proposed in the financial literature, the Vanna-Volga
pricing formula (1.48) has several advantages:

1. its definition has a clear financial rationale supporting the analytical derivation, which is
based on the hedging argument;

2. since it is an explicit function of the main market quotes, it allows for an automatic
calibration to the daily volatility data;
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Figure 1.8: EURUSD implied volatility surface observed on September 10th, 2008.

3. it can be extended to any European style derivative.

4. furthermore, it allows to detect the entire volatility surface, simply starting from the three
basic market quotes.

Remark 1.4. It has to be stressed that, once obtained the whole volatility surface by using the
Vanna-Volga method, it is possible to price any option with any delta or strike, even those not
quoted in the market.

Note that, compared with the second order polynomial function in delta proposed by Malz
[123], the interpolation (1.48) perfectly fits the three basic quotes, but it boosts the volatility
value both for low and high extreme deltas, in accordance with typical market quotes.

Hence, the Vanna-Volga pricing formula (1.48) yields a very good approximation of the
smile induced, after calibration to strikes Ki, by the most celebrate stochastic volatility models
in the financial literature, in particular within the strikes range K = (K1,K2,K3). This is not
surprising, since the three strikes provide information on the second, third and fourth moments
of the marginal distribution of the underlying asset. Therefore, models agreeing on these three
points are likely to produce very similar smiles. As a confirmation of this statement, Castagna
and Mercurio [60] show a comparison between the Vanna-Volga implied volatility smile and the
one obtained from the SABR functional form of Hagan et al. [95], which is considered a standard
in the market, as far as the modeling of implied volatilities is concerned. The SABR and VV
curves tend to agree well in the range set by the two 10∆ options, departing from each other
only for very illiquid strikes. The advantage of the VV method over the SABR model, tough,
is that no calibration procedure is involved, since σ(K1), σ(K2) and σ(K3) are direct inputs of
(1.48).
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Chapter 2

The Volatility Term Structure

In 1993, the Chicago Board Options Exchange (CBOE) introduced the volatility index, known
as VIX, the first index to measure the aggregate volatility of the US equity market. Nowadays,
this index has become the premier benchmark for the stock market volatility. Often defined as
the “investor fear gauge”, the VIX measures market expectations of 30-day volatility implied by
equity index option prices. Hence, it is considered one of the most issued financial indicators
and it is widely followed by academics and quants, especially after the financial turmoil started
in 2008.

The VIX was originally based on the Black-Scholes [42] implied volatilities of at-the-money
options written on the S&P 100 index (OEX). Nonetheless, it is widely recognized that the
constant volatility assumption of the Black-Scholes [42] model is no longer sufficient to capture
modern market phenomena1. For this reason, on September 22, 2003, the CBOE updated the
VIX definition. The new VIX is computed directly from prices of out-of-the-money call and put
options, regardless of any model specification.

Given the explicit economic meaning of the new VIX and its direct link to a portfolio of
options, the launch of derivatives on this index becomes the natural step ahead. On March 26,
2004, the CBOE introduced the first exchange traded VIX futures. Two years later, on February
24, 2006, contracts on VIX options started market trading. The negative correlation of volatility
to equity market returns is well documented in the financial literature and suggests a diversifi-
cation advantage of including volatility in an investment portfolio. Hence, VIX derivatives are
designed to deliver pure volatility exposure in a single and more efficient package. Nowadays,
VIX options and futures are the most actively traded contracts at the CBOE and the CBOE
Futures Exchange (CFE).

In derivatives market, European options are normally quoted at different strike prices and,
most importantly, at different maturities. Since the current VIX measures expected implied
volatility over next 30 days only, it is evident the lack of an equivalent measure of market
expectations concerning investments with time to maturity other than one month. Even though

1Various empirical studies illustrate that the Black-Scholes [42] model has well-known pricing biases, see
Bakshi, Cao and Chen [27], Black and Scholes [41], Chance [61], Galai [90], Lauterbach and Schultz [113], MacBeth
and Merville [121], Rubinstein [141] and Shastri and Tandon [147], among others.
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the CBOE has recently launched a new SPX three-month volatility index2, by now it is widely
recognized that modeling the term structure of the VIX is a primary requirement. In this
chapter, our goal is to construct such a term structure of the VIX, starting from option prices
quoted in the market and applying the general CBOE formula for the calculation of the VIX to
any available maturity.

In recent years, the popularity of the VIX has generated a rapidly growing literature on the
importance of volatility trading in derivatives market. A recent attempt to study the VIX index
and VIX futures is Zhang and Zhu [161], who at a later stage of their work have extended their
model by allowing the long-term mean variance to be time-dependent, see Zhang and Zhu [162].
Brenner, Shu and Zhang [46] provide a comprehensive analysis of VIX futures market. Chen et
al. [63] show that investors can use VIX futures to improve their equity portfolio performance,
whereas Hilal et al. [98] use VIX futures to hedge the black swan risk. Lin [116] introduces an
affine jump-diffusion model with jumps in both index and volatility processes. Recently, Lian
and Zhu [115] provide an analytical formula for VIX futures. On the other hand, Albanese et al.
[9], Chung et al. [68], Cont and Kokholm [69], Daigler and Wang [73], Li [114], Lin and Chang
[117] and Sepp [145] focus on VIX options. In particular, Sepp [146] studies options on realized
volatility. Carr and Lee [54] provide a complete overview of the volatility derivatives market,
including volatility swaps and VIX futures and options.

Note that all this extensive literature only concerns the VIX with a single fixed 30-day
maturity. Some notable works concerning the volatility term structure are those of Stein [151],
who documents overreactions of long-term option prices to changes in short-term volatility,
Taylor and Xu [153], who describe movements in the term structure of implied volatilities of
foreign exchange options traded on the Philadelphia Stock Exchange, Campa and Chang [52],
who test the expectations hypothesis in the volatility term structure of foreign exchange options
and Huskaj and Nossman [102], who propose a term structure model for VIX futures.

In this chapter, we investigate features of the European options implied volatility along the
time to maturity dimension, which allows us to construct a daily VIX term structure. One
related study is that of Luo and Zhang [120], who analyze the term structure of the VIX, up to
15 months, and provide a two-factor model for the instantaneous squared VIX. Our theoretical
model covers a wide set of stochastic volatility models, including the Heston [97] model, affine
jump-models, one-factor and two-factor models, and also the Luo and Zhang [120] model, as a
special case with stochastic long-run mean level.

The rest of this chapter is organized as follows. In Section 2.1, we present the generalized
formula for the VIX calculation and we describe its economic and theoretical interpretation.
In Section 2.2, we show applications for one-factor and two-factor models. Finally, in the last
section, we draw some considerations about implementation problems.

2 On November 12, 2007, the CBOE launched the SPX three-month volatility with ticker symbol “VXV”,
which employs the same method used to calculate the VIX, but including options with a constant maturity of 93
calendar days.
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2.1 The VIX Index

The idea of a volatility index and financial instruments based on such an index was first developed
and described by Brenner and Galai [45] in 1989. The VIX was originally computed as an average
of the Black-Scholes [42] implied volatilities of near-the-money OEX American option prices.
In 2003, the CBOE updated the VIX definition and revised its methodology of calculation,
following the theoretical results of Carr and Madan [55] and Demeterfi et al. [75], who proposed
the original idea of replicating the realized variance by a static portfolio of out-of-the-money call
and put options.

The main differences between the two indices3 are that the new VIX is model-free and it
is based on the SPX European options. Furthermore, since the new VIX is an average of the
weighted prices of out-of-the-money SPX options, it is able to incorporate information from
the volatility smile, by using a wider range of strikes. This new methodology transformed the
VIX from an abstract concept into a practical standard for trading and hedging volatility, by
supplying the opportunity to replicate volatility exposure with a portfolio of SPX options.

In contrast to equity indices, such as the SPX, which are calculated using prices of their
component stocks, the VIX is a volatility index computed with options rather than stocks,
with the price of each option reflecting the expectation of the market participants as for the
future volatility. Following conventional indices, though, the VIX employs rules for selecting
component options and a formula to compute index values.

Given a panel of European options with common maturity T > 0, the generalized formula
used to compute the VIX at time 0 ≤ t < T is

υ2
t = 2

T

∑
i

∆Ki

K2
i

erTQ(T,Ki)−
1
T

[
F

K0
− 1

]2
, (2.1)

where Ki is the strike of the ith out-of-the-money option considered, ∆Ki denotes the interval
between strike prices, defined as

∆Ki = (Ki+1 −Ki−1)
2 ,

that is, half the difference between the strike on either side4 of Ki, r is the risk-free interest
rate, Q(T,Ki) is the price of the out-of-the-money option with maturity T and strike Ki, F is
the forward index level derived from index option prices and K0 is the first strike immediately
below F .

To determine the forward index level F , let C(T, K̂i) and P (T, K̂i) be two options with same
strike K̂i, whose price difference is the smallest. Then, via the put-call parity relation, we have

F = erT
[
C(T, K̂i)− P (T, K̂i)

]
+ K̂i. (2.2)

3See Carr and Wu [57] for a detailed comparison between the two indices.
4At the extreme edges of any given strip of options, ∆Ki is simply the difference between Ki and the adjacent

strike price.
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Figure 2.1: VIX and S&P 500 Indices from January 2, 1990 to July 31, 2012

After choosing K0 as the first strike below F , the calculation involves all available out-of-the-
money puts with strikes Ki < K0, all out-of-the-money calls with strikes Ki > K0 and both the
put and the call with strike K0. Note that two options are selected at K0, while a single option,
either a put or a call, is used for every other strike price. Furthermore, since K0 < F , the mid-
price Q(T,K0) implies that one in-the-money call with strike K0 is used in the computation.
For this reason, the last term in Equation (2.1) represents the adjustment needed to convert
this in-the-money call into an out-of-the-money put, by virtue of the put-call parity relation. It
is worth noting that, as volatility rises and falls, the strikes range considered tends to expand
and contract. As a result, the number of options used to compute the VIX may vary from day
to day.

The CBOE uses Equation (2.1) to calculate υ2
t at the two closest available maturities before

and after 30 days, which are then interpolated by taking the weighted average. Finally, the
quoted VIX is given by

V IXt = 100× υt, (2.3)

and it represents the annualized volatility percentage over the upcoming 30 calendar days5.

2.1.1 Economic and Theoretical Interpretation

One of the most valuable features of the VIX is the existence of more than 20 years of historical
prices. This extensive data set provides investors with a useful perspective of how option prices
have behaved in response to a variety of market conditions. For instance, Figure 2.1 shows the
historical behavior of both VIX and SPX from January 2, 1990 to July 31, 2012. The highest
closing value of the VIX, equal to 80.86, was reached in November 20, 2008, in conjunction with
the uncertainty of the markets, affected by the recent tough financial crisis. From the graph,
some considerations are possible. Firstly, we can see that the VIX is more volatile that the SPX.

5All details of the computation are available at http://www.cboe.com/micro/vix/vixwhite.pdf.
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This means that the variability of the volatility itself, namely the vol of vol, is higher than the
volatility exhibited by the SPX. Furthermore, in certain periods the two indices tend to move in
opposite directions. In particular, we can see this inverse correlation in 2001, when the market
collapsed after the attack on the World Trade Center, and then in 2008, when quotations have
sharply fallen due to the global financial crisis.

Although the VIX is often called the “fear index”, a high VIX is not necessarily bearish for
stocks. Instead, the VIX is a measure of the volatility perceived by the market in either direction.
In practical terms, when investors anticipate large upside volatility, they are unwilling to sell
call options, unless they receive a large premium. On the other hand, call option buyers are
willing to pay such high premium only if their forecasts confirm an upside market movement.
As a consequence, the resulting aggregate increase in call option prices raises the VIX value. In
a similar way, the aggregate growth in the premiums of put options, that occurs when option
buyers and sellers anticipate a likely sharp downside market movement, has the same increasing
effect on the VIX index. When the market is believed as likely to soar as to plummet, writing
a call or a put option may look equally risky in the event of a sudden large movement in either
direction. Hence, high VIX values occur when investors anticipate that huge market moves are
likely to happen, whether downward or upward.

Theoretically, the VIX is based on a portfolio of short-maturity out-of-the-money SPX op-
tions over a continuum of strike prices, whose value equals that of a variance swap, see Britten-
Jones and Neuberger [49], Carr and Wu [58] and Jiang and Tian [107]. The latter is defined
as a forward contract, which allows to speculate on, or hedge, risks associated with the total
quadratic volatility of some underlying product, such as an exchange rate, an interest rate or a
stock index, over a fixed interval of time. In practice, at maturity the long side of the variance
swap contract receives the realized variance and pays a fixed variance rate, which is the variance
swap rate.

Let (Ω,E,P) ≡ Ω be a probability space endowed with a filtration (Ft)t≥0 and let (St)t≥0 ≡ St
be the logarithm of a financial equity asset price evolving in continuous time, whose quadratic
variation [S, S]t is an adapted, increasing and càdlàg (i.e. with paths that are a.s. right contin-
uous with left limits) process. Hence, following Todorov and Tauchen [154] approach, the VIX
can be written as

V IXt = EQ [[S, S]T − [S, S]t | Ft] , T > t, (2.4)

where T > 0 is given and the expectation is taken under the risk-neutral distribution Q, whose
existence is guaranteed by no arbitrage assumptions. The quadratic variation process [S, S]t can
be split into two components:

[S, S]t = [S, S]ct + [S, S]dt , (2.5)

which correspond to the quadratic variation of the continuous and discontinuous parts, respec-
tively, of the price process St. We assume absolute continuity of [S, S]ct , which is a standard
assumption in finance, that is

[S, S]ct =
∫ t

0
σ2
s ds, (2.6)
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Figure 2.2: Moneyness and Option Prices

where σ2
t is the spot variance of St, also known as instantaneous variance6.

Definition 2.1. The spot variance σ2
t is defined as the instantaneous increment to the quadratic

variation of the continuous martingale component of the asset price process St.

Then, if there are no jumps in the price process St, the VIX obviously equals the familiar
expected risk-neutral integrated variance, given by

V IXt = EQ
[∫ T

t
σ2
sds

∣∣∣∣ Ft
]
. (2.7)

The last expression is a well-known result and serves as a theoretical basis for the VIX index,
see Britten-Jones and Neuberger [49] and Jiang and Tian [107].

It is important to bear in mind the fundamental distinction between the observed VIX and the
unobserved spot variance. The observed VIX is the CBOE measurement of the 30-day expected
integrated volatility in (2.7). We use these observations to make inference about important
features of the random process for the spot variance. The inference is complicated by the fact
that the VIX is forward looking and its increments are generated by movements in variables
that influence the conditional expectation in (2.7). Moreover, we can only observe discrete
realizations of the VIX, meaning that we have to take into account some implementation errors
as we work in a continuous-time framework. This issue is deeply studied in the last section of
this chapter. Now, consider a portfolio Π of European call and put options, weighted inversely
proportional to the square of their strike prices. The value of Π at time t is given by

Πt (T,K0) =
∫ K0

0

P (T,K)
K2 dK +

∫ ∞
K0

C (T,K)
K2 dK, (2.8)

6We follow the convention of using the term variance for squared quantities and the term volatility for measures
of standard deviation. Of course, variance is easier to manage with mathematical instruments, while volatility is
easier to interpret because it is expressed in the same units as the data itself.
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where K0 ∈ (0,∞) is a real number, P (T,K) and C (T,K) are prices of put and call options,
respectively, at time t, with strike K and maturity T > t. Figure 2.2 shows that, relating all
the available strikes and option prices for a given maturity, the VIX value represents the area
under the curve of prices, which increases for put out-of-the-money options until K0 and then
decreases for out-of-the-money calls. In the following of this chapter, we present the model-free
relation between the VIX and option prices observed in the market.

2.1.2 Discontinuities in the Asset Price

The importance of considering jumps has long been stressed in the empirical option pricing
literature, such as Bakshi, Cao and Chen [27], Bates [38], Chernov and Ghysel [64], Duffie, Pan
and Singleton [79], Eraker [84] and Pan [134]. In light of this issue, we release the assumption
of absence of jumps in the price process St. Thus, the VIX expression (2.7) can be rewritten as

V IXt = EQ
[∫ T

t
σ2
s ds

∣∣∣∣ Ft
]

+ EQ
[
[S, S]dT − [S, S]dt | Ft

]
, (2.9)

where the first term is the risk-neutral expectation of the forward integrated variance previously
introduced, while the second is the risk-neutral expected contribution of the price jumps.

Furthermore, the spot volatility process itself can also be split into continuous and discon-
tinuous parts, that is

σt = σct + σdt .

Let σt− be the left-hand limit of the function σs as s approaches t from the left, that is, σt− =
lims→t σs. A jump discontinuity σdt − σdt− influences the entire trajectory EQ [σt+s | Ft], with
s ≥ 0, and thereby induces a jump discontinuity in the VIX, given Equation (2.9). Historically,
stochastic volatility models have assumed continuous spot volatility, that is σt ≡ σct . Recently,
there has been interest in pure jump stochastic volatility models, where σt ≡ σdt , see Barndorff-
Nielsen and Shephard [31]. Moreover, Duffie, Pan and Singleton [79] show that the two opposite
cases can be combined, as in the double-jump affine model.

Indeed, a joint consideration of both volatility and jump risk factors is expected to better
perform the dynamics of equity returns, as it could explain the observed phenomena of volatility
smile and smirk, and, as a result, improves the valuation of options. However, empirical results in
the literature appear to be mixed. For instance, Andersen, Benzoni and Lund [14] and Eraker,
Johannes and Polson [85] conclude that allowing jumps in prices can improve the fitting for
the time series of equity returns. On the other hand, Bakshi, Cao and Chen [27], Bates [38],
Eraker [84] and Pan [134] offer different and inconsistent results in terms of improvement on
option pricing. In their recent work, Luo and Zhang [120] have demonstrated that the jump
component in the dynamics of the SPX is negligible in modeling the VIX. Hence, in most cases
there is no joint significance in volatility and jump risk premium estimates.
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2.1.3 Model-free Implied Volatility

Now, we examine in depth the theoretical foundations of the VIX, within the broader context
of the model-free implied volatility. In other terms, we study the information content of the
options market, showing an alternative measure of implied volatility, other than the celebrate
Black-Scholes [42] one, which is independent of any option pricing model.

The idea underneath the model-free implied volatility stems from the development of variance
swaps and it is derived by Britten-Jones and Neuberger [49], building on the pioneering work
of Breeden and Litzenberger [44]. It is further refined by Carr and Madan [55], Carr and Wu
[57], Demeterfi et al. [76] and Jiang and Tian [107]. Unlike the traditional concept of implied
volatility, the model-free implied volatility is not based on any specific option pricing model.
Instead, it is derived entirely from no arbitrage conditions. In the following, we show that
the volatility measure underlying the VIX is theoretically equivalent to the model-free implied
volatility formulated in Britten-Jones and Neuberger [49].

Assume the existence of a complete set of European call options, with a continuum of strikes
K ≥ 0 and a continuum of maturities T ≥ 0. The price of an option at time 0 ≤ t < T is
denoted by C(T,K). Let (St)t≥0 ≡ St be the price of an underlying equity asset, following a
diffusion process with time-varying volatility. Under the risk-neutral probability measure Q, St
is a positive martingale and it can be expressed as

dSt
St

= σ (t, ·) dWt, (2.10)

where (Wt)t≥0 ≡ Wt is a standard Wiener process and the instantaneous volatility σ(t, ·) may
depend on St, the history of St or other unspecified state variables. For simplicity, but without
loss of generality, it is further assumed that the underlying asset does not make any interim
payments, such as dividends or interest, and the risk-free interest rate is zero. Under this
general setting, the following Proposition holds.

Proposition 2.1 (Britten-Jones and Neuberger [49]). The expected risk-neutral integrated re-
turn variance between two arbitrary dates, say T1 and T2 with T1 < T2, is completely specified
by the set of option prices expiring on the two dates, that is

EQ
[∫ T2

T1

(
dSu
Su

)2]
= 2

∫ ∞
0

C(T2,K)− C(T1,K)
K2 dK, (2.11)

where EQ [·] denotes the expectation taken under the risk-neutral probability measure.

Proof. For the diffusion process (2.10) to support prices C(T,K), it is required that

C(T,K) = EQ
[
(ST −K)+

]
, T,K ≥ 0,

where (ST −K)+ = max (ST −K, 0) is the option payoff function at maturity T . Let φ (St)
be the risk-neutral density of the asset price St, such as a log-normal distribution in the Black-
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Scholes [42] model. Then, we can write the above condition as

C(T,K) =
∫ ∞
K

(ST −K)φ (ST ) dST , T,K ≥ 0.

Differentiating with respect to K yields

∂C(T,K)
∂K

=
∫ ∞
K
−φ (ST ) dST , T,K ≥ 0,

and differentiating again, we have

∂2C(T,K)
∂K2 = φ (K) , T,K ≥ 0.

Thus, we can obtain the density by differentiating twice the call price with respect to the strike.
Now, consider the derivative of the call price with respect to maturity T , given by7

∂C(T,K)
∂T

=
EQ

[
∂ (ST −K)+

]
∂T

=
EQ

[
1ST≥K dST + 1

2δ (ST −K) (dST )2
]

∂T
.

Since ST is a martingale, the previous expression simplifies to

∂C(T,K)
∂T

= 1
2EQ

[
δ (ST −K)σ2(T, ·)S2

T

]
,

which can be rewritten as

∂C(T,K)
∂T

= 1
2

∫ ∞
0

∫ ∞
0

δ (ST −K)σ2(T, ·)S2
T φ (ST )φ (σ(T, ·) | ST ) dST dσ(T, ·),

where φ (ST )φ (σ(T, ·) | ST ) is the joint distribution of ST and σ(T, ·), given by the product
between the marginal distribution of ST and the distribution of σ(T, ·) conditional on ST . By
virtue of the property of the Dirac delta function∫ +∞

−∞
δ (x− x0) f (x) dx = f (x0) ,

we can evaluate the inner integral and we obtain

∂C(T,K)
∂T

= 1
2K

2φ (K)
∫ ∞

0
σ2(T, ·) φ (σ(T, ·) | ST = K) dσ(T, ·).

The last integral represents the expectation of the squared volatility conditional on the asset

7Thanks to the generalized Itô formula applied to the option payoff function (ST −K)+, we have

d (ST −K)+ = 1ST≥K dST + 1
2δ (ST −K) (dST )2 ,

where the first derivative of the payoff function with respect to ST is the indicator function 1ST≥K and the second
derivative again with respect to ST is the Dirac delta function δ (ST −K).
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price ST = K, that is

∂C(T,K)
∂T

= 1
2K

2φ (K) EQ
[
σ2(T, ·) | ST = K

]
.

Thus, inverting the previous equation, we can have a formal expression for the conditional
expected variance, given by

EQ
[
σ2(t, ·) | St = K

]
= 2
K2

1
φ (K)

∂C(t,K)
∂t

. (2.12)

In order to obtain an unconditional expectation of the instantaneous squared volatility, we need
to integrate across strikes the previous equation. Hence, we obtain

EQ
[
σ2(T, ·)

]
=
∫ ∞

0
EQ

[
σ2(T, ·) | ST = K

]
φ (K) dK.

Substituting (2.12), we have

EQ
[
σ2 (T, ·)

]
=
∫ ∞

0

2
K2

1
φ (K)

∂C (T,K)
∂T

φ (K) dK

= 2
∫ ∞

0

1
K2

∂C (T,K)
∂T

dK.

Finally, we integrate with respect to time and we have

EQ
[∫ T2

T1
σ2(s, ·) ds

]
= 2

∫ ∞
0

C(T2,K)− C(T1,K)
K2 dK,

which is the desired result.

Proposition 2.1 implies that the risk-neutral equity return squared volatility can be obtained
from a set of option prices with different maturities, observed at a single point in time. Since
Equation (2.11) is derived without any specific assumption on the underlying stochastic process,
the risk-neutral return variance is totally model-free. As a consequence, the right-hand-side of
Equation (2.11) [resp. its square root] will be referred to as the model-free implied variance [resp.
model-free implied volatility]. It is worth noting that this method is internally consistent, prices
of options at all strikes are used in a theoretically coherent manner and nothing is assumed
about the asset price process except from continuity.

Since we are mostly interested in forecasting volatility from the present t = 0 to some future
date T > 0, a more useful special case of Equation (2.11) is given by

EQ
[∫ T

0

(
dSu
Su

)2]
= 2

∫ ∞
0

C(T,K)−max (S0 −K, 0)
K2 dK. (2.13)

In other words, the expression above provides the risk-neutral volatility forecast between 0 and
T only by means of the set of call options with maturity T .

Equation (2.13) is stated in spot prices. When applications require the use of forward prices
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some appropriate adjustments are needed. Consider the assumption of non zero deterministic
interest rates and let Ft = Ster(T−t) and CF (T,K) = C(T,K)er(T−t) be the forward asset price
and the forward option price at time t ∈ [0, T ], respectively. Now, substituting expressions for
Ft and CF (T,K) in (2.13), we have

EF
[∫ T

0

(
dFu
Fu

)2]
= 2

∫ ∞
0

CF (T,K)−max(F0 −K, 0)
K2 dK, (2.14)

where EF[·] is the expected value under the forward probability measure. The equation above
provides an alternative definition of the model-free implied squared volatility in forward prices.

A variance definition closely related to the model-free implied volatility is that of fair value
of future variance, the DDKZ variance hereafter, from Demeterfi, Derman, Kamal and Zou
[75], who developed this concept in 1999. Unlike the traditional ex-ante volatility measure,
such as the Black-Scholes [42] implied volatility, the DDKZ variance is determined from market
observables, usually option prices and interest rates, with no reference to any specific option
pricing model. In particular, the price of the underlying asset may follow any diffusion process.

Definition 2.2. The DDKZ variance is defined as

VDDKZ = 2
T

[
rT −

(
S0

Ŝ
erT − 1

)
− ln Ŝ

S0
+ erT

∫ Ŝ

0

P (T,K)
K2 dK + erT

∫ ∞
Ŝ

C(T,K)
K2 dK

]
,

(2.15)
where S0 is the current asset price, Ŝ is an arbitrary equity price, typically chosen close to the
forward price, P (T,K) and C(T,K) are put and call option prices, respectively, with maturity
T and strike K, and r is the risk-free interest rate.

Now, we show that the DDKZ variance is conceptually equal to the model-free variance of
Britten-Jones and Neuberger [49].

Proposition 2.2. The fair value of future variance VDDKZ developed by Demeterfi et al. [75]
is equivalent to the model-free implied variance introduced by Britten-Jones and Neuberger [49],
which is equal to

VBJN = 2
T

∫ ∞
0

CF (T,K)−max(F0 −K, 0)
K2 dK. (2.16)

Proof. From Equation (2.16), partitioning the integral into two segments at the forward price
F0 = S0erT , we have

VBJN = EF
[

1
T

∫ T

0

(
dFu
Fu

)2]

= 2
T

erT
[∫ F0

0

C(T,K)− S0 +Ke−rT

K2 dK +
∫ ∞
F0

C(T,K)
K2 dK

]
.

Then, by virtue of the put-call parity, a more compact expression of the model-free implied
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variance is given by

VBJN = 2
T

erT
[∫ F0

0

P (T,K)
K2 dK +

∫ ∞
F0

C(T,K)
K2 dK

]
. (2.17)

The above equation can be rewritten as

VBJN = 2
T

erT
[∫ Ŝ

0

P (T,K)
K2 dK +

∫ ∞
Ŝ

C(T,K)
K2 dK +

∫ F0

Ŝ

P (T,K)− C(T,K)
K2 dK

]
,

where Ŝ is an arbitrary equity price, such that Ŝ < F0. Using the put-call parity once again, we
have

VBJN = 2
T

erT
[∫ Ŝ

0

P (T,K)
K2 dK +

∫ ∞
Ŝ

C(T,K)
K2 dK +

∫ F0

Ŝ

Ke−rT − S0
K2 dK

]
.

Finally, solving the last integral inside the brackets, it holds

VBJN = 2
T

[
rT −

(
S0

Ŝ
erT − 1

)
− ln Ŝ

S0
+ erT

∫ Ŝ

0

P (T,K)
K2 dK + erT

∫ ∞
Ŝ

C(T,K)
K2 dK

]
.

This alternative expression for the model-free implied variance is exactly equal to the DDKZ
variance in Equation (2.15), which ends the proof.

Proposition 2.2 is an important result for two reasons. First, it provides a direct connection
between two concepts of variance, which have been developed separately for different purposes.
In fact, it merges key results in the studies concerning variance swaps and implied distribu-
tions. Hence, the theoretical foundation of the VIX is embedded in the broader context of the
model-free implied volatility. Second, Proposition 2.2 also implies that empirical findings on the
information content of the model-free implied volatility can be directly applied to the concept
of the DDKZ variance. As shown by Jiang and Tian [107], the model-free implied variance
subsumes all the information contained in the Black-Scholes [42] implied volatility as well as
in the historical variance. Thus, it is a more efficient forecast for the future realized volatility.
Since the VIX is based on the model-free implied squared volatility, it should be considered a
suitable indicator of the expectations of economic agents.

Proposition 2.3. The VIX represents the risk-neutral forecast of the instantaneous variance
and its value is equivalent to that of a portfolio of out-of-the-money options weighted inversely
proportional to the square of their strike prices. In mathematical terms, we have

V IXt = EQ
[∫ T

t
σ2
s ds

∣∣∣∣ Ft
]

= 2
∫ ∞

0

C(T,K)− C(t,K)
K2 dK. (2.18)

Clearly, the above Proposition provides an immediate link between the VIX and option prices
available in the market.
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2.2 Semi-nonparametric Model for the VIX Term Structure

So far, we have discussed the VIX calculation regardless of any specification about the variance
dynamics. Although the study of the VIX with a model-independent approach has its advan-
tages, now it is better to consider a specific model, in order to illustrate the analysis of the VIX
term structure. Hence, here we present a general semi-nonparametric stochastic volatility model,
at first introducing only one factor for the diffusion component and then extending the model to
two factors. The idea underneath this model highlights the importance of the forecasting power
and information content of option prices.

2.2.1 One-factor Model

Let (Ω,E,P) ≡ Ω be a probability space endowed with a filtration (Ft)t≥0, let r ∈ R be a real
constant and let (βt)t≥0 be a measurable and locally bounded càdlàg (i.e. with paths that are
a.s. right continuous with left limits) process. We assume that the logarithm of a financial asset
price (St)t≥0 ≡ St is modeled by an Itô process and the instantaneous variance (Vt)t≥0 ≡ Vt

follows a mean-reverting process, that is

dSt = rdt+
√
VtdWt

dVt = κ(ω − Vt)dt+ βtdZt
, (2.19)

where κ ∈ R is the rate of mean reversion, ω ∈ R is the long-run mean level of Vt, (Wt)t≥0 ≡Wt

and (Zt)t≥0 ≡ Zt are two correlated Wiener processes, with correlation coefficient equal to ρ ∈
[−1, 1], thus introducing an asymmetric return-variance relation into the asset price dynamics.

The mean-reverting process is one of several approaches used to model interest rates, currency
exchange rates, prices of commodities and, in particular, stochastic volatility, due to the presence
of its interesting characteristic known as mean reversion, that is, the tendency of a stochastic
process to remain near, or tend to return over time, to a long-run average value. From a
financial modeling perspective, mean-reverting refers to a linear pull-back term in the drift of
the stochastic process itself, or in the drift of some underlying of which the process is a function.

The Markov process Vt, given by

Vt = V0e−κt + ω(1− e−κt) + e−κt
∫ t

0
βseκsdZs, (2.20)

obtained from Equation (2.19) by virtue of the Itô’s lemma, is normally distributed, with con-
ditional expected value and variance equal to

EQ [Vt | Ft] = V0e−κt + ω(1− e−κt),

VarQ [Vt | Ft] = e−2κt
∫ t

0
β2
se2κs ds.
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Integrating the expected value EQ [Vt | Ft] with respect to time, we obtain

EQ
[∫ t

0
Vs ds

]
= V0

κ
(1− e−κt) + ωt− ω

κ
(1− e−κt). (2.21)

The last equation represents our theoretical model, which is semi-nonparametric since it does
not depend on βt, but only on the drift parameters.

Presence of Jumps

Several works examine equity price models with jumps in returns and stochastic volatility, see
Andersen, Benzoni, and Lund [14], Bakshi, Cao, and Chen [27], Bates [38] and Pan [134]. While
it is clear that both stochastic volatility and jumps in returns are important components, Bakshi,
Cao, and Chen [27], Bates [38] and Pan [134] find strong evidence of significant misspecification
in terms of internal consistency of a stochastic volatility model. In particular, Bakshi, Cao, and
Chen [27] demonstrate that each stochastic volatility model requires highly implausible levels of
return-volatility correlation and of volatility variation, in order to rationalize the negative skew-
ness and excess kurtosis implicit in option prices. Additionally, Bates [38] and Pan [134] show
that the higher moments of volatility changes are inconsistent with the diffusion specification.
These results point out the presence of an additional sharply moving factor driving conditional
volatility, which has a persistent component, unlike jumps in returns. Indeed, jumps in volatility
could provide such a factor.

As seen in Equation (2.9), when the dynamics of the underlying asset follows a jump-diffusion
process, a jump discontinuity contributes to the total variance. In order to identify the effect of
the presence of jumps in the asset price, we have to compare VIX expressions in the two different
settings, that is whether or not jumps are added into the dynamics of the underlying. Consider
a general jump-diffusion process for the equity asset price St under the risk-neutral measure Q,
given by

dSt
St−

= rdt+
√
VtdWt + (ex − 1) dNt − λEQ (ex − 1) dt, (2.22)

where St− is the value of St before a possible jump occurs, Nt is a pure jump process,assumed
to be independent of Wt, with intensity λ, x is the jump size of lnSt and the last term
λEQ (ex − 1) dt is used to compensate the jump innovation. Applying the Itô lemma with jumps
to Equation (2.22) gives the logarithmic process of St, that is

d lnSt =
[
r − 1

2Vt − λEQ (ex − 1)
]
dt+

√
VtdWt + xdNt. (2.23)

Since the jump component also affects the variance of St, the instantaneous total variance
becomes

σ2
t = Vt + EQ

(
λx2

)
, (2.24)

where the first term is diffusion variance and the second term is jump variance. Then, according
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to Equation(2.7), the VIX is given by

V̂ IXt = EQ
[

1
T

∫ T

t
σ2
s ds

]

= 1
T

∫ T

t
EQ

[
σ2
s

]
ds

= 1
T

∫ T

t
EQ

[
Vs + λx2

]
ds

= 1
T

∫ T

t
EQ [Vs] ds+ EQ

[
λx2

]
, (2.25)

where we use property of iterated expectations. On the other hand, as shown by Brenner, Shu
and Zhang [46], the VIX can also be computed using Equations (2.22) and (2.23), that is

Ṽ IXt = 2
T

EQ
[∫ T

t

dSu
Su
− d (lnSu)

]

= 2
T

EQ
[∫ T

t

(1
2Vu + λ (ex − 1− x)

)
du

]

= 1
T

∫ T

t
EQ [Vu] du+ EQ [2λ (ex − 1− x)] . (2.26)

Therefore, the difference between the two formulas (2.25) and (2.26) is given by

∆ = EQ
[
2λ (ex − 1− x)− λx2

]
≈ λEQ

[1
3x

3
]
. (2.27)

This difference is small for general jump parameter values. For instance, with λ = 0.4845 and
x = −0.0789, which are obtained in Chang, Zhang and Zhao [62], we have ∆ = −0.00008.
Thus, for a general value of the VIX at 20, we have V̂ IXt = 20.06 and Ṽ IXt = 20, which
corresponds to 0.3% overvalue by using Equation (2.25) instead of (2.26). In other words, the
difference between the jump components in (2.25) and (2.26) is negligible, and then both are
useful formulas to compute the VIX in the presence of jumps in returns.

Alternative models for the VIX are Brenner, Shu and Zhang [46], Huang and Zhang [99]
and Zhang and Zhu [161], where the dynamics of the asset price is given by a diffusion process.
Moreover, Broadie and Jain [51] consider the effect of jumps when the jump size is assumed to
be normally distributed.

So far, we discuss the effect of the presence of jumps by concentrating on the underlying asset
process, without any specification of the variance dynamics. Now, we analyze the contribution
of both price and variance jumps, with the support of our theoretical model (2.19). Let Y (S)

t

and Y (V )
t be two i.i.d. random variables taking values in R, with common distribution γ

Y
(S)
t

=

γ
Y

(V )
t

= γ and let
(
N

(S)
t

)
t≥0
≡ N (S)

t and
(
N

(V )
t

)
t≥0
≡ N (V )

t be two Poisson processes of constant

intensities λ(S) and λ(V ), respectively, independent of Y (S)
t and Y (V )

t .
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Allowing for jumps both in returns and volatility, our dynamics (2.19) becomes

dSt = r dt+
√
VtdWt + Y

(S)
t dN

(S)
t − λ(S)γdt

dVt = κ(ω − Vt)dt+ βtdZt + Y
(V )
t dN

(V )
t − λ(V )γY dt

, (2.28)

where r, κ and ω ∈ R, (Wt)t≥0 ≡Wt and (Zt)t≥0 ≡ Zt are two correlated Wiener processes and
Y

(S)
t and Y (V )

t represent the jump sizes in returns and volatility, respectively. The terms λ(S)γdt

and λ(V )γdt are used to center Poisson innovations, so that the compounded and compensated
Poisson process

J̃
(V )
t ≡

N
(V )
t∑
i=1

Y
(V )
i − λ(V )γt, (2.29)

has zero mean. It is worth noting that the presence of jumps both in returns and volatility
leaves Equation (2.21) unchanged.

Proof. Differentiating the stochastic differential equation

dVt = κ(ω − Vt)dt+ βtdZt + Y
(V )
t dN

(V )
t − λ(V )γdt,

we obtain

Vt = e−κt
(
V0 +

∫ t

0
κωeκds+

∫ t

0
βteκsdZs

)
+
∫ t

0
Y

(V )
t dN

(V )
t −

∫ t

0
λ(V )γds,

Vt = V0e−κt + ω(1− e−κt) + e−κt
∫ t

0
βteκsdWs +

N
(V )
t∑
i=1

Y
(V )
i − λ(V )γt,

Vt = V0e−κt + ω(1− e−κt) + e−κt
∫ t

0
βteκsdWs + J̃

(V )
t .

Now, it is straightforward to compute the expectation of Vt, which is given by

EQ [Vt | Ft] = V0e−κt + ω(1− e−κt) + EQ
[
J̃

(V )
t | Ft

]
,

where J̃ (V )
t is a compounded and compensated Poisson process, whose mean is equal to zero.

Thus, we have
EQ [Vt | Ft] = V0e−κt + ω(1− e−κt),

and, as a consequence,

EQ
[∫ t

0
Vs ds

∣∣∣∣ Ft] = V0
κ

(1− e−κt) + ωt− ω

κ
(1− e−κt),

which is the desired result.
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2.2.2 Two-factor Model

Now, we consider a more general framework, where the return total variance is the sum of two
independent factors, modeled by mean-reverting processes. In particular, under the risk-neutral
probability measure Q, our two-factor dynamics is given by

dSt = r dt+
√
V

(1)
t dW

(1)
t +

√
V

(2)
t dW

(2)
t

dV
(1)
t = κ1(ω1 − V (1)

t )dt+ β
(1)
t dZ

(1)
t

dV
(2)
t = κ2(ω2 − V (2)

t )dt+ β
(2)
t dZ

(2)
t

, (2.30)

where
(
W

(i)
t

)
t≥0
≡ W

(i)
t and

(
Z

(i)
t

)
t≥0
≡ Z

(i)
t , i = 1, 2, are Wiener processes with correlation

defined as

d
〈
W

(1)
t ,W

(2)
t

〉
= d

〈
Z

(1)
t , Z

(2)
t

〉
= 0 and d

〈
W

(i)
t , Z

(i)
t

〉
= ρi dt, i = 1, 2.

Note that the return total variance is composed of the sum of the two diffusion processes, that
is

σ2
t = V

(1)
t + V

(2)
t . (2.31)

Hence, the VIX can be computed as stated in the following Proposition.

Proposition 2.4. Under the general dynamics in Equation (2.30), the VIX is given by

EQ
[∫ t

0
σ2
s ds

∣∣∣∣ Ft] = V
(1)

0
κ1

(1− e−κ1t) + ω1t−
ω1
κ1

(1− e−κ1t)+

+ V
(2)

0
κ2

(1− e−κ2t) + ω2t−
ω2
κ2

(1− e−κ2t). (2.32)

Proof. Since the return total variance is defined as (2.31), it holds that

EQ
[∫ t

0
σ2
s ds

∣∣∣∣ Ft] = EQ
[∫ t

0
(V (1)
s + V (2)

s ) ds
∣∣∣∣ Ft]

= EQ
[∫ t

0
V (1)
s ds

∣∣∣∣ Ft]+ EQ
[∫ t

0
V (2)
s ds

∣∣∣∣ Ft] .
From the dynamics described in Equation (2.30), we have

EQ
[∫ t

0
V (i)
s ds

∣∣∣∣ Ft] = V
(i)

0
κi

(1− e−κit) + ωit−
ωi
κi

(1− e−κit), i = 1, 2.

Hence, the sum of EQ
[∫ t

0 V
(i)
s ds | Ft

]
for i = 1, 2 fulfills Equation (2.32).

Remark 2.1. As shown in the previous section, the presence of compensated volatility jumps
does not affect the expression of our theoretical model (2.21). It holds true also in the case of a
two-factor model.
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Multifactor models have been extensively used in the option pricing literature, see among
others Adrian and Rosenberg [1], Bates [38], Brigo and Mercurio [47], Christoffersen et al. [67],
Taylor and Xu [153], Todorov and Tauchen [154] and Luo and Zhang [120]. While there is no
explicit confidence to support a multifactor stock index option model, evidence from currency
options shows that two-factor models can do better than one-factor models in explaining the
term structure of implied volatilities over time. Nonetheless, one risk is that considering too
many factors may overfit options data. Consequently, the appropriate number of factors should
be judged not only by how good is the fit of option prices but by other criteria, such as whether
using more factors modifies implicit conditional distributions or whether implicit factors appear
excessively noisy over time.

2.3 Implementation

The new VIX is conceptually more interesting than its predecessor with regard to the economic
interpretation, but, at the same time, the actual construction of the index is more complex.
This is clear from Equations (2.15) and (2.16), where the model-free implied variance is defined
as an integral of weighted option prices over an infinite range of strikes. Hence, some steps are
necessary in order to minimize the implementation errors, which are due to the major complexity
and the stochastic environment we work with. Nonetheless, as pointed out by Carr and Wu [58]
and Jiang and Tian [107], the actual procedure adopted by the CBOE for the construction of
the VIX does not seem to take these steps into account and, thus, it may lead to substantial
biases in the computed index values.

Clearly, direct economic consequences may result from any existent bias in the VIX value.
For instance, an underestimation [resp. overestimation] of the VIX leads to a corresponding
underpricing [resp. overpricing] of the variance swaps. In other words, the bias in the VIX
is translated into pricing errors of the variance swaps, consequently raising the possibility of
arbitrage opportunities. In addition, a bias in the VIX may also produce a misestimation of the
volatility risk premium, which measures the differences between the risk-neutral variance and the
realized variance. In their work, Carr and Wu [58] highlight that a correctly estimated volatility
risk premium is important for pricing and hedging derivative securities, written on underlying
assets with stochastic volatility. If the VIX is used as a proxy for the risk-neutral variance,
computation errors in the VIX are subsequently embedded in the volatility risk premium, which
will lead to biased empirical results.

Furthermore, the general VIX formula seen in Equation (2.1) may contain several approx-
imation errors, including truncation, discretization, observation, expansion and interpolation
errors. Some of these errors, such as the expansion error, can be considered negligible, since
they do not affect the robustness of the empirical results. On the other hand, it is important to
understand their impact on the estimated variance. In the following of this section, we identify
some of the inaccuracies present in the CBOE procedure to construct the new VIX and in its
implementation of the model-free implied volatility.
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The model-free implied volatility is defined by the integral of option prices over an infinite
range of strikes, as shown in Equation (2.14). If option prices are available for all strikes, the
required integral is straightforward to compute by means of numerical integration methods.
However, only a finite number of strike prices are actually traded in the market place.

Let [Kmin,Kmax] be the range of all strikes available for a given maturity. We require that
0 < Kmin < F0 < Kmax < ∞ to avoid trivial cases. We further assume that all strike prices in
the interval are available. Let I (K) be the integrand of Equation (2.14), that is

I (K) ≡ CF (T,K)−max(F0 −K, 0)
K2 . (2.33)

Truncation errors are present when we ignore the tails of the distribution and approximate the
right-hand side of Equation (2.14) by the following integral

∫ ∞
0

I (K) dK ≈
∫ Kmax

Kmin
I (K) dK. (2.34)

Hence, the size of the truncation error is given by

δtr =
∫ ∞

0
I (K) dK −

∫ Kmax

Kmin
I (K) dK

=
∫ Kmin

0
I (K) dK +

∫ ∞
Kmax

I (K) dK. (2.35)

Proposition 2.5. Beyond the strikes range [Kmin,Kmax], the right and left truncation errors
have the following upper bounds:

∫ ∞
Kmax

I (K) dK ≤ EQ
[(

FT −Kmax
Kmax

)2 ∣∣∣∣ FT > Kmax

]
, (2.36)

and ∫ Kmin

0
I (K) dK ≤ EQ

[(
FT −Kmin
Kmin

)2 ∣∣∣∣ FT < Kmin

]
, (2.37)

respectively.

Proof. We first consider the right truncation error (2.36). Applying integration by parts to the
left-hand side of Equation (2.36), we have

∫ ∞
Kmax

I (K) dK = −C
F (T,K)−max(F0 −K, 0)

K

∣∣∣∣∞
Kmax

+
∫ ∞
Kmax

(
∂CF (T,K)

∂K
+ 1F0>K

)
1
K
dK

= CF (T,Kmax)−max(F0 −Kmax, 0)
Kmax

+
∫ ∞
Kmax

(
∂CF (T,K)

∂K
+ 1F0>K

)
d lnK,

and, since
∂CF (T,K)

∂K
= EQ

[
∂max (FT −K, 0)

∂K

]
= −EQ [1FT>K ] ,
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the previous expression simplifies to

∫ ∞
Kmax

I (K) dK = CF (T,Kmax)−max(F0 −Kmax, 0)
Kmax

+

−EQ
[
max

(
ln FT
Kmax

, 0
)]

+ max
(

ln F0
Kmax

, 0
)
.

With Kmax > F0, we have∫ ∞
Kmax

I (K) dK =
∫ ∞
Kmax

[
FT −Kmax
Kmax

− ln
(

1 + FT −Kmax
Kmax

)]
φ (FT ) dFT ,

where φ (FT ) is the density of the forward price. By virtue of the properties of the Taylor series
expansion for the logarithm function, we obtain

∫ ∞
Kmax

I (K) dK ≤
∫ ∞
Kmax

(
FT −Kmax
Kmax

)2
φ (FT ) dFT ,

which is the upper bound for the right truncation error. The right-hand side of the last equation
can be rewritten as∫ ∞

Kmax

(
FT −Kmax
Kmax

)2
φ (FT ) dFT = EQ

[(
FT −Kmax
Kmax

)2 ∣∣∣∣ FT > Kmax

]
,

which provides Equation (2.36). The left truncation error (2.37) can be derived in a similar
way.

Both upper bounds are quite intuitive, as they reflect the local variations in the tails of the
equity asset return distribution. Although these upper bounds are shown subsequently to be
quite tight, they are not model-free. It is straightforward to derive model-free upper bounds
based on available option prices. In fact, invoking the monotonicity and convexity of option
prices, we have

∫ ∞
Kmax

I (K) dK ≤ CF (T,Kmax)
Kmax

,∫ ∞
Kmin

I (K) dK ≤ PF (T,Kmin)
Kmin

ln Kmin
K∗

+ ε (K∗) ,

where PF (T,K) is the forward put option price and K∗ is a sufficiently small positive number,
such that the quantity ε (K∗), given by

ε (K∗) =
∫ K∗

0
I (K) dK,

is negligible. However, the model-free upper bounds are not as tight as the ones in Equations
(2.36) and (2.37).

In the analysis of Jiang and Tian [107], it is shown that the truncation error declines mono-
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tonically and diminishes as the truncation points, Kmin and Kmax, move away from the spot
price S0. In particular, the left and right truncation errors are of similar magnitude and exhibit
nearly identical convergence properties when the return distribution is symmetric. In contrast,
the left truncation error is larger than the corresponding right truncation error when the return
distribution is skewed to the left. In this case, the left truncation error converges at a slower rate
than the right truncation error. With a fatter left tail, a larger range of strike prices is needed
on the left of S0 if we wish to have identical truncation errors from both sides. Nevertheless,
the differences between left and right truncation errors are relatively small and convergence is
rapid in all cases.

In general, the truncation error is negligible if the truncation points are more than two
standard deviations from S0. Furthermore, noting that the integrated variance is an increasing
function of maturity, hence, a larger range of strike prices is needed to control the truncation
errors for longer maturities.

A second source of approximation is represented by the discretization error, due to numerical
integration. The definition of the model-free implied volatility requires a continuum of strikes.
Since strike prices are listed for trading only in discrete increments, the integral in Equation
(2.14) is approximated by a discrete sum, that is

∫ ∞
0

CF (T,K)−max(F0 −K, 0)
K2 dK ≈

∑
i

∆Ki

K2
i

erTQ(T,Ki). (2.38)

Hence, the discretization error essentially derives from using a numerical integration method to
approximate an integral. The size of this error is given by

δdi =
∑
i

∆Ki

K2 erTQ (T,Ki)−
∫ Kmax

Kmin

CF (T,K)−max(F0 −K, 0)
K2 dK. (2.39)

Although the size and direction of the discretization error may depend on the shape of the
implied volatility function8, the practice of using the mid-price of call and put options tends to
induce a positive discretization error. Note that the discretization error can be easily minimized,
if we consider an extremely thin partition of the available strike prices.

A third approximation error is the expansion error, which is related to the last term in
Equation (2.1), that is

− 1
T

(
F0
K0
− 1

)2
.

This term derives from the Taylor series expansion of the logarithm function preceding the
integrals in Equation (2.15), given by

2
T

[
rT −

(
F0
K0
− 1

)
− log

(
K0
S0

)]
, (2.40)

8More precisely, the direction and magnitude of the discretization error depend on the shape of the integrand
function erTQ (T,K) /K2.
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which can be rewritten as

2
T

[
rT −

(
F0
K0
− 1

)
+ log

(
F0e−rT

K0

)]
= 2
T

[
log

(
F0
K0

)
−
(
F0
K0
− 1

)]
. (2.41)

Applying the Taylor series expansion of the logarithm function and ignoring terms higher than
the second order, we have

log
(
F0
K0

)
'
(
F0
K0
− 1

)
− 1

2

(
F0
K0
− 1

)2
.

Thus, substituting the previous expression into Equation (2.41), the following approximation
holds

2
T

[
rT −

(
F0
K0
− 1

)
− log

(
K0
S0

)]
' − 1

T

(
F0
K0
− 1

)2
.

Clearly, the size of this error is in the order of
(
F0
K0
− 1

)3
and it is in general negligible, as long

as K0 is chosen to be the strike closest to F0, with K0 ≤ F0.
Another different approximation error, known as interpolation error, is due to the interpo-

lation of maturities used in the CBOE procedure. The VIX is based on the model-free implied
volatility with a fixed 30-day maturity, but in general there are no options that expire exactly
in 30 calendar days. The solution is to consider two maturities, T1 and T2, which are closest to
the required 30-day maturity. The volatility measure is first computed for these two selected
maturities. Then, the model-free implied volatility with the 30-day maturity is linearly inter-
polated between the corresponding volatilities at the two selected maturities. Nevertheless, as
documented in the financial literature (see Taylor and Xu [153]), the implied volatility term
structure in neither linear nor monotonic in option maturity. Hence, linear interpolation leads
to a positive [resp. negative] error if the model-free implied volatility is a convex [resp. concave]
function of maturity.

The final approximation error is the observation error, whose presence is linked to the fact
that option prices, quoted in terms of the Black-Scholes [42] implied volatility, are observed with
error, that is

Ĉ(T,K) = C(T,K) + ε. (2.42)

If a limited set of options is included in the analysis, then, inference procedure for the model
parameters is only feasible under strict parametric assumptions regarding the error distribution.
This is problematic as we have little evidence pertaining to the nature of these price errors. In
contrast, a large cross section allows us to average out the errors and remain fully nonparametric
regarding their distribution. However, this error diversification only works if we can ensure that
the effect of the option price errors vanishes in a suitable manner.

Let Ψ be the difference between the true value of the VIX and its measure obtained from
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the data, that is

Ψ = 2
T

∫ ∞
0

CF (T,K)−max(F0 −K, 0)
K2 dK − 2

T

∫ Kmax

Kmin

ĈF (T,K)−max(F0 −K, 0)
K2 dK.

(2.43)
Now, we denote by I(K) and Î(K) the integrand of the first and second integrals, respectively.
Thus, adding and subtracting the same term from Equation (2.43), we have

Ψ = 2
T

[∫ ∞
0

I (K) dK −
∫ Kmax

Kmin
I (K) dK

]
︸ ︷︷ ︸

Truncation Error

+ 2
T

[∫ Kmax

Kmin
I (K) dK −

∫ ∞
0

Î (K) dK
]

︸ ︷︷ ︸
Observation Error

.

From the previous expression, we can see that the two error components, that substantially
affect the VIX estimation, are the truncation and the observation errors.
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Chapter 3

Spot Volatility Estimation from
Option Prices

The dynamics of the spot volatility is extremely important for modeling financial series. However,
the spot volatility itself is a latent variable, which is not directly observable. Therefore, during
the last decades, there has been considerable attention on which was the best method, in terms
of efficiency and consistency, to estimate a latent variable, such as the spot volatility. Since
option prices reflect expectations and rumors of economic agents on future movements of the
underlying asset, the implied volatility is widely believed to contain much more information
than the historical volatility. As a consequence, it is considered a more efficient forecast for
future realized volatility. This is supported by a wide branch of the financial literature, such as
Christensen, Hansen and Prabhala [65], Christensen and Prabhala [66], Ederington and Guan
[81], Fleming [88], Jiang and Tian [107], Pong et al. [136] and Yu, Lui and Wang [160], among
others. On the contrary, Canina and Figlewski [53] find that the implied volatility of the S&P
100 index options is a poor forecast of the subsequent realized volatility and does not incorporate
the information contained in historical volatility. Following this literature, Luo and Zhang [120]
investigate the information content of the VIX term structure and they find that the VIX
contains more information than historical volatility, consistently with previous studies.

The goal of this chapter is to propose a new estimation method of the spot volatility from
a panel of options available in the market, which relies on the concept of model-free implied
volatility previously introduced. This technique exploits the observed VIX term structure to
make inference on the unobserved spot volatility. This can be achieved by simply using the
information content of a complete set of European options daily quoted in the market, with a
significant range of strikes and maturities, which is a natural assumption for active and liquid
derivatives markets. We use this panel of options to obtain a daily volatility term structure,
whose representative shape can be seen in Figure 3.1.

Consider the semi-nonparametric theoretical model in (2.21), which conveys the VIX as a
functional form of the option maturity, the spot volatility and the mean-reverting parameters.
We fit this model on the daily VIX term structure and we obtain the spot volatility estimation
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Figure 3.1: Representative Daily VIX Term Structure

as solution of a non-linear optimization problem. This allows us to relax the hypothesis of
parametric estimation, thus obtaining a semi-nonparametric estimation procedure, which can
be applied to a wide variety of stochastic volatility models.

Proposition 3.1. Under the general dynamics described in Equation (2.19), the annualized
VIX at the present time t = 0, referred to maturity T , is given by

V IX = 1
T

[
V0
κ

(
1− e−κT

)
+ ωT − ω

κ

(
1− e−κT

)]
. (3.1)

Proof. Since the Markov process Vt is given by Equation (2.20), we have

EQ [Vt | Ft] = V0e
−κt + ω(1− e−κt).

By definition, the VIX equals the expected risk-neutral integrated variance over the interval
[0, T ]. Thus, we have

V IX = EQ
[

1
T

∫ T

0
Vs ds

]
= 1
T

∫ T

0
EQ [Vs] ds

= 1
T

∫ T

0

[
V0e
−κs + ω

(
1− e−κs

)]
ds

= 1
T

[
V0
κ

(
1− e−κT

)
+ ωT − ω

κ

(
1− e−κT

)]
.

Remark 3.1. Our semi-nonparametric theoretical model (3.1) represents a formal expression
of the VIX as a function of maturity T , spot variance V0 and mean-reverting parameters κ and
ω. Thus, given the vector of parameters Θ = (κ, ω, V0), we have V IX = f (T,Θ).
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Figure 3.2: Example of Model Fit

Hence, we fit this closed-form expression to obtain an estimation Θ̂ of Θ, which is given by

Θ̂ = arg min
Θ

N∑
i=1

[
V IXMKT

Ti − f (Ti,Θ)
]2
, (3.2)

where N is the number of available maturities, V IXMKT
Ti

is the market value of the VIX with
maturity Ti computed as in (2.14) and f (Ti,Θ) is the corresponding theoretical value, given by
Equation (3.1). In other words, we have to solve a non-linear optimization problem of the form

min
Θ

N∑
i=1

{
2
Ti

∫ ∞
0

CF (t,K)−max (F0 −K, 0)
K2 dK +

− 1
Ti

[
V0
κ

(
1− e−κt

)
+ ωt− ω

κ

(
1− e−κt

)]}
. (3.3)

The optimization algorithm yields the value of Θ, which guarantees the theoretical function
f (T,Θ) as close as possible to the observed values V IXMKT

Ti
. Clearly, the parameter V0 rep-

resents the spot variance estimation. Figure 3.2 shows an example of the theoretical model fit
with respect to the market VIX values.

Some advantages of this method can be outlined. Firstly, it is a very intuitive procedure,
which does not require heavy computational issues. Second, it allows us to relax parametric
assumptions. Indeed, our theoretical model is completely semi-nonparametric, since it does not
depend on βt, and it allows us to obtain a valid estimate of the spot volatility parameter only by
means of options market data. This approach should give more accurate estimates than those
obtained with high-frequency data (see Andersen, Fusari and Todorov [20]). Daily market data
are available in real time free from biases, in order to avoid any arbitrage opportunity. On the
contrary, estimation methods based on high-frequency data often use larger data sets, composed
by historical volatilities. As a consequence, even though they can reduce the variance of an
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estimator, they surely present a much higher bias, since historical volatilities are well away from
the instantaneous volatility measure. Hence, this represents a clear theoretical advantage of an
options based methodology. Moreover, the estimation procedure described above can be applied
to a wide class of stochastic volatility models. For instance, the celebrate Heston [97] model
can be obtained with βt = σ

√
Vt, while the Luo and Zhang [120] model is a special case with

stochastic long-run mean level θ.

3.1 Testing Spot Volatility Estimation: GMM

The nonlinear optimization problem (3.3) is an intuitive estimation method easy to implement.
Nevertheless, it does not take into account a way to model the uncertainty, induced by the fact
that option prices can be observed with error or that a continuum of strikes is generally not
available, but we can only manage discrete realizations. These sources of uncertainty can entail
the occurrence of possible estimation errors, which must be inferred. Hence, now we analyze a
slightly different approach with respect to the previous one, based on the so-called Generalized
Method of Moments (GMM).

Given a probability space (Ω,E,P) ≡ Ω endowed with a filtration (Ft)t≥0, let (St)t≥0 be
the spot price of a financial equity asset. We consider a panel of options market data, with N
maturities (Ti)i=1,...,N ≡ T ∈ RN+ , J strikes (Kj)j=1,...,J ≡ K ∈ RJ+ for each maturity and option
prices C (T,K) ∈ RN×J+ . Let us define, for every i ∈ [1, N ]:

Y ∗i = 2
Ti

∫ ∞
0

C (Ti,K)−max (S0 −K, 0)
K2 dK, (3.4)

and

Yi = 2
Ti

J∑
j=1

∆Kj

K2
j

C (Ti,Kj) , (3.5)

such that
Yi = Y ∗i + εi. (3.6)

Furthermore, we assume that

1. E [εi|Ft] = 0,

2. E [εiεᵀi |Ft] = σ2
ε > 0,

3. E
[
εiε

ᵀ
l |Ft

]
= 0, whenever i 6= l, with i, l ∈ [1, N ] ,

4. E
[
|εi|4 |Ft

]
<∞, almost surely.

In other words, (Y ∗i )i=1,...,N ≡ Y ∗ is the real value of the expected integrated risk-neutral
variance, as seen in Equation (2.13), while (Yi)i=1,...,N ≡ Y is its empirical approximation, in
light of the fact that we can observe only discrete realizations of the strike prices K and then we
cannot compute the exact integral from 0 to∞ in (3.4). However, the discretization of Y ∗ using
(3.5) implies that the observed expected risk-neutral integrated variance is equal to its real value

64



plus a computational error, as shown by Equation (3.6). Note that (3.5) is the general formula
(2.1) used by the CBOE to compute the VIX, where we consider a free-risk interest rate equal
to zero and we omit the last term 1

T

(
F
K0
− 1

)2
, which is negligible for the upcoming analysis.

Given a compact parameter space Θ ⊆ R3, let be θ0 ∈ Θ the true parameter value. Consider
the mean-reverting instantaneous variance process (Vt)t≥0 ≡ Vt in the general dynamics (2.19),
which we report here for sake of clarity:

dVt = κ(ω − Vt)dt+ βtdZt. (3.7)

Then, we can write N unconditional moment restrictions g (Y ∗, θ0), that is

g (Y ∗, θ0) =


g (Y ∗1 , θ0)

...
g (Y ∗N , θ0)



=


2
T1

∫∞
0

C(T1,K)−max(S0−K,0)
K2 dK − 1

T1

∫ T1
0 Vs ds

...
2
TN

∫∞
0

C(TN ,K)−max(S0−K,0)
K2 dK − 1

TN

∫ TN
0 Vs ds

 , (3.8)

such that
EQ [g (Y ∗, θ0)] = 0. (3.9)

Hence, our theoretical model (2.21) implies that

g (Y, θ) =


g (Y1, θ)

...
g (YN , θ)



=


2
T1

∑J
j=1

∆Kj
K2
j
C (T1,Kj)− 1

T1

[
V0
κ

(
1− e−κT1

)
+ ωT1 − ω

κ

(
1− e−κT1

)]
...

2
TN

∑J
j=1

∆Kj
K2
j
C (TN ,Kj)− 1

TN

[
V0
κ

(
1− e−κTN

)
+ ωTN − ω

κ

(
1− e−κTN

)]
 ,
(3.10)

for admissible θ = [κ, ω, V0] ∈ Θ. Denoting by

bi = 1− e−κTi
κTi

, i ∈ [1, N ] ,

we can rewrite the last equation in a more compact way, that is

g (Y, θ) =


2
T1

∑J
j=1

∆Kj
K2
j
C (T1,Kj)− [b1V0 + (1− b1)ω]

...
2
TN

∑J
j=1

∆Kj
K2
j
C (TN ,Kj)− [bNV0 + (1− bN )ω]

 . (3.11)
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Intuitively, if our theoretical model is right, then Y and the vector [bV0 + (1− b)ω] should
be close to each other on average and, as a consequence, the parameter estimation errors should
tend to zero. In particular, this is true when J →∞, that is, when the number of strikes available
for each maturity approaches infinity, since Y approximates the true Y ∗. Before testing whether
this is the case, a value for θ has to be chosen. It seems natural to select the value of θ that would
give the model the best chance. The GMM estimates θ by minimizing the empirical function
g (Y, θ). Hence, given an estimate for θ, say θ̂GMM , we can evaluate the size of the estimation
error.

Denote by gJ (θ) ≡ g (Y, θ), in order to stress the fact that a good approximation of the
integral in (3.4) mostly depends on the number of strikes J . Now, let WJ be a positive def-
inite weighting matrix, such that WJ

p→ W , where W is positive definite. Then, the GMM
estimator θ̂GMM is the choice of θ that minimizes the scalar quadratic objective function
QJ (θ) = gJ (θ)ᵀWJgJ (θ), that is

θ̂GMM = arg min
θ∈Θ

gJ (θ)ᵀWJgJ (θ) . (3.12)

Under regularity conditions,
gJ (θ) p→ 0. (3.13)

Proof. For a given maturity Ti, we have

E [gJ (θ)− g (Y ∗i , θ0)] = 2
Ti

J∑
j=1

∆Kj

K2
j

C (Ti,Kj)−
2
Ti

∫ ∞
0

C (Ti,K)−max (S0 −K, 0)
K2 dK

= Yi − Y ∗i = εi.

As J →∞,
lim
J→∞

εi = 0.

3.1.1 Consistency and Asymptotic Normality of the GMM Estimator

Assume N moment conditions and d parameters, with N ≥ d. In addition, assume there is no
dependence in the data. By virtue of the Taylor’s expansion, we have

∂QJ
(
θ̂GMM

)
∂θ

− ∂QJ (θ0)
∂θ

= ∂2QJ (θ0)
∂θ∂θᵀ

(
θ̂GMM − θ0

)
.

Note that ∂QJ(θ̂GMM)
∂θ = 0, since θ̂GMM is the solution of the problem (3.12) and then it minimizes

the objective function QJ (θ). Hence, it holds

θ̂GMM − θ0 = −
(
∂2QJ (θ0)
∂θ∂θᵀ

)−1
∂QJ (θ0)

∂θ
,
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or
√
J
(
θ̂GMM − θ0

)
= −

(
∂2QJ (θ0)
∂θ∂θᵀ

)
︸ ︷︷ ︸

B

−1(√
J
∂QJ (θ0)

∂θ

)
︸ ︷︷ ︸

A

. (3.14)

Let us focus on A term first. We have

√
J
∂QJ (θ0)

∂θ
=
√
J2
(
∂gJ (θ0)
∂θᵀ

)ᵀ

WJgJ (θ0) . (3.15)

By virtue of the strong law of large numbers, we can state that

∂gJ (θ0)
∂θᵀ

a.s.→ E
[
∂g (Y ∗, θ0)

∂θᵀ

]
. (3.16)

Proof. Computing the derivatives of (3.8) and (3.10) with respect to parameters, we obtain

∂g (Y ∗, θ0)
∂θᵀ

=
[
∂g(Y ∗,θ0)

∂κ
∂g(Y ∗,θ0)

∂ω
∂g(Y ∗,θ0)

∂V0

]

=


∂
∂κ

(
− 1
T1

∫ T1
0 Vsds

)
∂
∂ω

(
− 1
T1

∫ T1
0 Vsds

)
∂
∂V0

(
− 1
T1

∫ T1
0 Vsds

)
...

...
...

∂
∂κ

(
− 1
TN

∫ TN
0 Vsds

)
∂
∂ω

(
− 1
TN

∫ TN
0 Vsds

)
∂
∂V0

(
− 1
TN

∫ TN
0 Vsds

)


=


− (V0 − ω) e−κT1−b1

κ − 1
T1

∂
∂κ

(∫ T1
0 e−κs

∫ s
0 βue

κudWuds
)

b1−1 −b1
...

...
...

− (V0 − ω) e
−κTN−bN

κ − 1
TN

∂
∂κ

(∫ TN
0 e−κs

∫ s
0 βue

κudWuds
)
bN−1 −bN

 ,

and

∂gJ (θ0)
∂θᵀ

=
[
∂gJ (θ0)
∂κ

∂gJ (θ0)
∂ω

∂gJ (θ0)
∂V0

]

=


− (V0 − ω) e−κT1−b1

κ b1 − 1 −b1
...

...
...

− (V0 − ω) e
−κTN−bN

κ bN − 1 −bN

 .
Details 1. Consider a general maturity T , where we omit the subscript i for sake of simplicity.

67



We can compute the following derivatives:

∂

∂κ

(
− 1
T

∫ T

0
Vsds

)
= − 1

T

∂

∂κ

∫ T

0
Vsds

= − 1
T

∂

∂κ

∫ T

0

(
V0e
−κs+ω−ωe−κs+e−κs

∫ s

0
βue

κudWu

)
ds

= − 1
T

∂

∂κ

[
(V0 − ω) 1− e−κT

κ
+ ωT

]
+

− 1
T

∂

∂κ

(∫ T

0
e−κs

∫ s

0
βue

κudWuds

)
︸ ︷︷ ︸

it depends on κ

= − 1
T

(V0 − ω)
Tκe−κT −

(
1− e−κT

)
κ2 +

− 1
T

∂

∂κ

(∫ T

0
e−κs

∫ s

0
βue

κudWuds

)

= − (V0 − ω) e
−κT−b
κ

− 1
T

∂

∂κ

(∫ T

0
e−κs

∫ s

0
βue

κudWuds

)
,

then

∂

∂ω

(
− 1
T

∫ T

0
Vsds

)
= − 1

T

∂

∂ω

∫ T

0
Vsds

= − 1
T

∂

∂ω

[
(V0 − ω) 1− e−κT

κ
+ ωT

]
+

− 1
T

∂

∂ω

(∫ T

0
e−κs

∫ s

0
βue

κudWuds

)
︸ ︷︷ ︸

it does not depend on ω

= − 1
T

(
−1− e−κT

κ
+ T

)
= b− 1,

and finally

∂

∂V0

(
− 1
T

∫ T

0
Vsds

)
= − 1

T

∂

∂V0

∫ T

0
Vsds

= − 1
T

∂

∂V0

[
(V0 − ω) 1− e−κT

κ
+ ωT

]
+

− 1
T

∂

∂V0

(∫ T

0
e−κs

∫ s

0
βue

κudWuds

)
︸ ︷︷ ︸

it does not depends on V0

= −1− e−κT

Tκ
= −b.
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Since

E
[
∂

∂κ

(∫ T

0
e−κs

∫ s

0
βue

κudWuds

)]
= ∂

∂κ

(∫ T

0
e−κsE

[∫ s

0
βue

κudWu

]
ds

)
= 0,

the expected value of ∂g(Y ∗,θ0)
∂θᵀ is completely deterministic and exactly equal to ∂gJ (θ0)

∂θᵀ . Thus,
we have

∂gJ (θ0)
∂θᵀ

a.s→ E
[
∂g (Y ∗, θ0)

∂θᵀ

]
,

which ends the proof.

Moreover, from an application of the Central Limit Theorem (CLT), we have

√
JgJ (θ0) d→ N (0,Φ0) , (3.17)

where
Φ0 = E [g (Y ∗, θ0) g (Y ∗, θ0)ᵀ] + σ2

ε .

Proof. The expected value of gJ (θ0) is equal to

E [gJ (θ0)] = E [Yi − (biV0 + (1− bi)ω)]

= E [Y ∗i + εi − (biV0 + (1− bi)ω)]

= E [Y ∗i − (biV0 + (1− bi)ω)] + E [εi] ,

with i ∈ [1, N ]. By assumption 1, E [εi] = 0, then we have

E [gJ (θ0)] = E [Y ∗i − (biV0 + (1− bi)ω)]

= E [g(Y ∗i , θ0)] = 0,

from (3.9).
The variance of gJ (θ0) is

var (gJ (θ0)) = E [gJ (θ0) gJ (θ0)ᵀ]

= E [(Yi − (biV0 + (1− bi)ω)) (Yi − (biV0 + (1− bi)ω))ᵀ]

= E [(Y ∗i + εi − (biV0 + (1− bi)ω)) (Y ∗i + εi − (biV0 + (1− bi)ω))ᵀ]

= E [Y ∗i (Y ∗i )ᵀ] + E [Y ∗i ε
ᵀ
i ]−E [Y ∗i (biV0 + (1− bi)ω)ᵀ] +

+ E [εi (Y ∗i )ᵀ] + E [εiεᵀi ]−E [εi (biV0 + (1− bi)ω)ᵀ] +

−E [(biV0 + (1− bi)ω) (Y ∗i )ᵀ]−E [(biV0 + (1− bi)ω) εᵀi ] +

+ E [(biV0 + (1− bi)ω) (biV0 + (1− bi)ω)ᵀ]

= E [Y ∗i (Y ∗i )ᵀ]−E [Y ∗i (biV0 + (1− bi)ω)ᵀ] + σ2
ε+

−E [(biV0 + (1− bi)ω) (Y ∗i )ᵀ] + E [(biV0 + (1− bi)ω) (biV0 + (1− bi)ω)ᵀ] ,
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on account of assumptions 1-2. Hence,

var (gJ (θ0)) = σ2
ε + E [Y ∗i (Y ∗i − (biV0 + (1− bi)ω))ᵀ] +

−E [(biV0 + (1− bi)ω) (Y ∗i − (biV0 + (1− bi)ω))ᵀ]

= σ2
ε + E [(Y ∗i − (biV0 + (1− bi)ω)) (Y ∗i − (biV0 + (1− bi)ω))ᵀ]

= σ2
ε + E [g (Y ∗i , θ0) g (Y ∗i , θ0)ᵀ] ,

which is the desired result.

Remark 3.2. We have

√
J
∂QJ (θ0)

∂θ
= 2

(
∂gJ (θ0)
∂θᵀ

)ᵀ

WJ

√
JgJ (θ0)

d→ N (0, 4Γᵀ
0WΦ0WΓ0) , (3.18)

where

Γ0 = E
[
∂g (Y ∗, θ0)

∂θᵀ

]
, (3.19)

Φ0 = E [g (Y ∗, θ0) g (Y ∗, θ0)ᵀ] + σ2
ε . (3.20)

Proof. From the properties of a linear transformation of random variables normally distributed1,
we have √

J
∂QJ (θ0)

∂θ
d→ N

(
0, (2Γᵀ

0W ) Φ0 (2Γᵀ
0W )ᵀ

)
,

and, recalling that W ᵀ = W since W is symmetric, we obtain

√
J
∂QJ (θ0)

∂θ
d→ N (0, 4Γᵀ

0WΦ0WΓ0) .

Now, we need to consider the additional term, namely ∂2QJ (θ0)
∂θ∂θᵀ . Let (·)mn be the mn − th

element of the Hessian matrix, given by(
∂2QJ (θ0)
∂θ∂θᵀ

)
mn

= 2
(
∂gJ (θ0)
∂θm

)ᵀ

WJ
∂gJ (θ0)
∂θn

+ 2
(
∂2gJ (θ0)
∂θm∂θn

)ᵀ

WJgJ (θ0) ,

for m,n = 1, . . . , d. Note that the last term converges to zero by (3.13). Hence, by virtue of
(3.16), we have

∂2QJ (θ0)
∂θ∂θᵀ

p→ 2E
[
∂g (Y ∗, θ0)

∂θᵀ

]ᵀ
WE

[
∂g (Y ∗, θ0)

∂θᵀ

]
= 2Γᵀ

0WΓ0. (3.21)

1Let x be a random variable, given by x = Ay + b, where y v N (µ, S). Then, x is normal distributed, with
x v N (Aµ+ b, ASAᵀ).
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Now, we can put (3.18) and (3.21) together and we obtain

√
J
(
θ̂GMM − θ0

)
= −

(
∂2QJ (θ0)
∂θ∂θᵀ

)−1√
J
∂QJ (θ0)

∂θ

d→ N
(
0, (Γᵀ

0WΓ0)−1 Γᵀ
0WΦ0WΓ0 (Γᵀ

0WΓ0)−1
)
, (3.22)

where Γ0 and Φ0 are as in (3.19) and (3.20), respectively.

Proof. Exploiting the same property used for the proof of (3.18), we have

√
J
(
θ̂GMM − θ0

)
d→ N

(
0, (−2Γᵀ

0WΓ0)−1 4Γᵀ
0WΦ0WΓ0

(
(−2Γᵀ

0WΓ0)−1
)ᵀ)

,

that is √
J
(
θ̂GMM − θ0

)
d→ N

(
0, (Γᵀ

0WΓ0)−1 Γᵀ
0WΦ0WΓ0

(
(Γᵀ

0WΓ0)−1
)ᵀ)

.

Since
(
(Γᵀ

0WΓ0)−1
)ᵀ

=
(
(Γᵀ

0WΓ0)ᵀ
)−1 and noting that (Γᵀ

0WΓ0)ᵀ = Γᵀ
0WΓ0, we then obtain

√
J
(
θ̂GMM − θ0

)
d→ N

(
0, (Γᵀ

0WΓ0)−1 Γᵀ
0WΦ0WΓ0 (Γᵀ

0WΓ0)−1
)
,

which ends the proof.

Proposition 3.2. The GMM estimates are consistent, with θ̂GMM converging to the true value
θ0 at speed

√
J . Moreover, the precision of our estimates can be quantified by evaluating the

asymptotic variance-covariance matrix.

An important issue in the GMM estimation is the exact identification of the model. If the
number of moment conditions N is the same as the number of parameters d, then Γ0 becomes a
non-singular square matrix. Thus, the asymptotic variance-covariance matrix in (3.22) can be
rewritten as

(Γᵀ
0WΓ0)−1 Γᵀ

0WΦ0WΓ0 (Γᵀ
0WΓ0)−1 = Γ−1

0 W−1 (Γᵀ
0)−1 Γᵀ

0WΦ0WΓ0Γ−1
0 W−1 (Γᵀ

0)−1

= Γ−1
0 Φ0 (Γᵀ

0)−1

=
(
Γᵀ

0Φ−1
0 Γ0

)−1
.

This means that, when N = d, it does not really matter which weighting matrixW we are using,
since it does not affect the asymptotic distribution of our parameter estimates. Hence, in this
fairly standard case, we have

√
J
(
θ̂GMM − θ0

)
d→ N

(
0,
(
Γᵀ

0Φ−1
0 Γ0

)−1
)
. (3.23)

On the other hand, if the number of moment conditions is not the same as the number of
parameters, which is the case concerning this work, then the optimal weighting matrix matters,
even asymptotically.
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Proposition 3.3. If W = Φ−1
0 , then the asymptotic variance-covariance matrix of the GMM

estimator θ̂GMM is minimal and equal to
(
Γᵀ

0Φ−1
0 Γ0

)−1
, which corresponds to the value obtained

for the standard case of exact identification.

Proof. By substituting W = Φ−1
0 into (3.22), we have

(Γᵀ
0WΓ0)−1 Γᵀ

0WΦ0WΓ0 (Γᵀ
0WΓ0)−1 =

(
Γᵀ

0Φ−1
0 Γ0

)−1
Γᵀ

0Φ−1
0 Φ0Φ−1

0 Γ0
(
Γᵀ

0Φ−1
0 Γ0

)−1

= Γ−1
0 Φ0 (Γᵀ

0)−1 Γᵀ
0Φ−1

0 Φ0Φ−1
0 Γ0Γ−1

0 Φ0 (Γᵀ
0)−1

= Γ−1
0 Φ0 (Γᵀ

0)−1

=
(
Γᵀ

0Φ−1
0 Γ0

)−1
.

Remark 3.3. It holds

(Γᵀ
0WΓ0)−1 Γᵀ

0WΦ0WΓ0 (Γᵀ
0WΓ0)−1 −

(
Γᵀ

0Φ−1
0 Γ0

)−1
≥ 0.

Proof. Given two generic matrices, namely A and B, if B−A ≥ 0, then A−1−B−1 ≥ 0 . Hence,
we want to show that

Γᵀ
0Φ−1

0 Γ0 − Γᵀ
0WΓ0 (Γᵀ

0WΦ0WΓ0)−1 Γᵀ
0WΓ0 ≥ 0.

Gathering the term Γᵀ
0Φ−1

0 Γ0 and denoting by H = Γᵀ
0Φ−1/2

0 , we can write

H
[
I − Φ1/2

0 WΓ0 (Γᵀ
0WΦ0WΓ0)−1 Γᵀ

0WΦ1/2
0

]
Hᵀ = HPHᵀ,

where P is a symmetric and idempotent matrix. Then,

HPPHᵀ = HPP ᵀHᵀ = HP (HP )ᵀ .

The last expression is necessarily positive semidefinite, since

zᵀ (HP ) (HP )ᵀ z ≥ 0, ∀z ∈ Rd.

Remark 3.4. Finally, we can conclude that the optimal weighting matrix is given by

W = Φ−1
0 =

(
E [g (Y ∗, θ0) g (Y ∗, θ0)ᵀ] + σ2

ε

)−1
, (3.24)

and the asymptotic variance of the GMM estimator is equal to

asyvar
(
θ̂GMM

)
=
(
Γᵀ

0Φ−1
0 Γ0

)−1

=
{

E
[
∂g (Y ∗, θ0)

∂θᵀ

]ᵀ (
E [g (Y ∗, θ0) g (Y ∗, θ0)ᵀ] + σ2

ε

)−1
E
[
∂g (Y ∗, θ0)

∂θᵀ

]}−1
. (3.25)

It is worth noting that, in our model the most efficient choice of W is represented by the
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inverse of the sum between the variance of the moment restriction function and an additional
term, given by the error variance. This could sound in contrast with the standard GMM theory,
in which σ2

ε does not appear. As a consequence, we can state that the computation of Y ∗ (3.4)
through its discrete approximation Y (3.5) allows us to obtain consistent and asymptotically
normal, although not efficient, spot volatility estimations.

When N > d, since the optimal weighting matrix (3.24) depends on θ0, a two stage procedure
is needed, in order to estimate θ0 by using a preliminary estimate θ̂GMM(1), which is given by

θ̂GMM(1) = arg min
θ∈Θ

gJ (θ)ᵀ INgJ (θ) , (3.26)

where IN is the N -dimensional identity matrix. Now, the optimal weighting matrix can be
computed by means of

WJ = Φ̂−1
0 =

[
gJ
(
θ̂GMM(1)

)
gJ
(
θ̂GMM(1)

)ᵀ
+ σ2

ε

]−1
. (3.27)

Finally, in the second step we can implement

θ̂GMM(2) = arg min
θ∈Θ

gJ (θ)ᵀWJgJ (θ) , (3.28)

whereWJ is given by (3.27). Furthermore, GMM inference on the parameter values requires the
estimation of the asymptotic variance-covariance matrix. Hence, from Equation (3.25), we have

âsyvar
(
θ̂GMM

)
=

∂gJ
(
θ̂GMM(2)

)
∂θᵀ

ᵀ (
gJ
(
θ̂GMM(2)

)
gJ
(
θ̂GMM(2)

)ᵀ
+ σ2

ε

)−1 ∂gJ
(
θ̂GMM(2)

)
∂θᵀ

−1

.

By the strong law of large numbers (3.16) and the convergence in probability of θ̂GMM to θ̂0,
âsyvar

(
θ̂GMM

)
p→ asyvar

(
θ̂0
)
.

3.1.2 Test of Overidentifying Restrictions

Once obtained the parameters estimates, we can do some inference on them and, also, we can
evaluate whether all the moment conditions are close enough to zero. To this goal, the so-called
Hansen test is available, that is

JQJ
(
θ̂GMM

)
= gJ

(
θ̂GMM

)ᵀ
Φ̂−1

0 gJ
(
θ̂GMM

)
d→ χ2

N−d. (3.29)

Proof. By Taylor expansion, we have

gJ
(
θ̂GMM

)
= gJ (θ0) + ∂gJ (θ0)

∂θᵀ

(
θ̂GMM − θ0

)
,
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and √
JgJ

(
θ̂GMM

)
≈
√
JgJ (θ0) + Γ0

√
J
(
θ̂GMM − θ0

)
.

Now, recalling (3.14), from Equations (3.15), (3.16) and (3.21) we can write

√
J
(
θ̂GMM − θ0

)
≈ −

(
Γᵀ

0Φ−1
0 Γ0

)−1
Γᵀ

0Φ−1
0
√
JgJ (θ0) ,

and then √
JgJ

(
θ̂GMM

)
≈
√
JgJ (θ0)− Γ0

(
Γᵀ

0Φ−1
0 Γ0

)−1
Γᵀ

0Φ−1
0
√
JgJ (θ0) .

Denote by Ψ0 =
√
JgJ (θ0), the previous expression becomes

√
JgJ

(
θ̂GMM

)
≈
(
IN − Γ0

(
Γᵀ

0Φ−1
0 Γ0

)−1
Γᵀ

0Φ−1
0

)
Ψ0.

Premultiplying
√
JgJ

(
θ̂GMM

)
by Φ−1/2

0 , after some computations we obtain

Φ−1/2
0
√
JgJ

(
θ̂GMM

)
≈ Φ−1/2

0

(
IN − Γ0

(
Γᵀ

0Φ−1
0 Γ0

)−1
Γᵀ

0Φ−1
0

)
Ψ0

≈
(
IN − Φ−1/2

0 Γ0
(
Γᵀ

0Φ−1
0 Γ0

)−1
Γᵀ

0Φ−1/2
0

)
Φ−1/2

0 Ψ0

≈ PΦ−1/2
0 Ψ0,

where P is symmetric and idempotent. Hence,

JQJ
(
θ̂GMM

)
= gJ

(
θ̂GMM

)ᵀ
Φ̂−1

0 gJ
(
θ̂GMM

)
≈ Ψᵀ

0Φ−1/2
0 P ᵀPΦ−1/2

0 Ψ0

≈ Ψᵀ
0Φ−1/2

0 PΦ−1/2
0 Ψ0.

Consider the trace of P , given by

tr

(
IN − Φ−1/2

0 Γ0
(
Γᵀ

0Φ−1
0 Γ0

)−1
Γᵀ

0Φ−1/2
0

)
= tr (IN )− tr

(
Φ−1/2

0 Γ0
(
Γᵀ

0Φ−1
0 Γ0

)−1
Γᵀ

0Φ−1/2
0

)
= N − tr

(
Φ−1/2

0 Γ0
(
Γᵀ

0Φ−1
0 Γ0

)−1
Γᵀ

0Φ−1/2
0

)
= N − tr

((
Γᵀ

0Φ−1
0 Γ0

)−1
Γᵀ

0Φ−1
0 Γ0

)
= N − tr (Id) = N − d.

Thus,

JQJ
(
θ̂GMM

)
= Ψᵀ

0Φ−1/2
0 PΦ−1/2

0 Ψ0

= Ψᵀ
0Φ−1/2

0 QΛQᵀΦ−1/2
0 Ψ0,
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Parameter Value
κ 4.0320
ω 0.0144
Λ 0.20
ρ −0.46
V0 0.003

Table 3.1: Risk-neutral parameters setting for the numerical experiment.

where Λ is a matrix of ones and zeros, with N − d ones. Denoting by z = QᵀΦ−1/2
0 Ψ0, we have

JQJ
(
θ̂GMM

)
= zᵀΛz =

N−d∑
i=1

z2
i .

By virtue of (3.17), z is normally distributed with

z ∼ N
(
0, QᵀΦ−1/2

0 Φ−1
0 Φ−1/2

0 Q
)
,

or
z ∼ N (0, IN−d) ,

since P is symmetric and, then, QᵀQ = IN−d. As a consequence, z has independent components
N (0, 1)-distributed. Finally,

JQJ
(
θ̂GMM

)
=

N−d∑
i=1

z2
i

d→ χ2
N−d,

which ends the proof.

3.2 Monte Carlo Simulations

We now investigate the finite-sample properties of the proposed estimator by virtue of several
Monte Carlo simulations, based on the Heston [97] diffusion model. We fix the parameters to
the consensus values from the literature, provided by Broadie et al. [50]. The full set of initial
parameters values is reported in Table 3.1. We apply our inference procedures on a total of
1,000 replications.

The panel of options is constructed as follows. We set 5 maturities, ranging from two weeks
to one year, which resemble the available maturities in the actual data. Firstly, we simulate
only 10 strikes and, for each maturity, we compute the corresponding option prices. Then, we
apply an observation error to the computed prices, in light of Equation (2.42) introduced in the
previous chapter. This error is of two types: a 1% low error and an higher one equal to 5%.
Secondly, we consider the case in which 50 options are available in the market and we repeat
the same simulation procedure. Thus, the simulation covers four possible cases in a day: 10
options with 1% of pricing error; 10 options with 5% of pricing error; 50 options with 1% of
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pricing error; and finally, 50 options with 1% of pricing error.
In Tables 3.2 and 3.3, we report the results of the Monte Carlo simulation for the two pan-

els of options. These results support our intuitions. Indeed, the observation error on option
prices influences the accuracy of the estimates. In particular, Figures 3.3 and 3.4 show that the
distribution of estimated parameters is highly concentrated around the mean value when the
observation error is low, while parameters dispersion is more than doubled in case of an higher
error. On the other hand, the effect of the option prices observation error on the estimated pa-
rameters decreases dramatically as the number of options considered increases. Our estimator
bias with respect to the vector of true values is attributable to the fact that we are performing
a semi-nonparametric estimation, so that a fully unbiased estimation is not achievable. Never-
theless, our estimator is able to fit almost perfectly the generated VIX term structure, as shown
in Figure 3.5.

An alternative method for the estimation of spot volatility, pretty much used and appreciated
in the literature, is based on the observation of high-frequency data on the underlying asset
price. Such an estimator can be readily derived substituting the integrated variance with its
consistent estimator, that is, the realized variance (see Andersen et al. [18], Andersen and
Benzoni [12] and Barndorff-Nielsen and Shephard [32], among others, for reviews on the topic).
Clearly, using intra-daily data, instead of daily observations, has the advantage of shrinking
the variance of estimates, since the data set available is larger than a daily option panel. On
the other hand, in order to obtain consistent estimation values, the time series considered have
to be much longer. Then, high-frequency estimates have higher bias than low-frequency ones.
As a consequence, spot volatility estimation methods based on realized variance present an
evident trade off between the variance and the bias of the estimates. For instance, assume the
availability of observations on the underlying for a year, discretely sampled every trading day,
corresponding to a total of 252 daily quotes. For each such day, intra-daily returns are recorded
every 5 minutes between 8.30 a.m. to 3.15 p.m.. Then, every day we would have a total of 81
price returns to estimate daily spot volatility Hence, realized volatility is a substantially more
demanding estimator than our.

76



True Value Mean Median Min Max StdDev RMSE
(a)
κ 4.0320 2.4239 2.4256 2.2962 2.4936 0.0280 0.5080
ω 0.0144 0.2546 0.2545 0.2526 0.2582 0.0008 0.0759
v0 0.0030 0.0926 0.0926 0.0920 0.0939 0.0003 0.0283
(b)
κ 4.0320 2.4251 2.4236 2.1715 2.6893 0.0809 0.5086
ω 0.0144 0.2546 0.2546 0.2478 0.2623 0.0023 0.0760
v0 0.0030 0.0926 0.0926 0.0904 0.0950 0.0007 0.0283

Table 3.2: Monte Carlo results of the risk-neutral parameters estimation for a panel of 10 options
with 1% (a) and 5% (b) of observation error.
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Figure 3.3: Finite-sample parameters distribution for a panel of 10 options with 1% (left) and
5% (right) of observation error.
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True Value Mean Median Min Max StdDev RMSE
(a)
κ 4.0320 2.5225 2.5233 2.4703 2.5506 0.0108 0.4771
ω 0.0144 0.2463 0.2462 0.2456 0.2475 0.0003 0.0733
v0 0.0030 0.0915 0.0915 0.0913 0.0920 0.0001 0.0280
(b)
κ 4.0320 2.5228 2.5231 2.3717 2.6416 0.0416 0.4771
ω 0.0144 0.2463 0.2462 0.2432 0.2502 0.0011 0.0733
v0 0.0030 0.0915 0.0915 0.0904 0.0929 0.0004 0.0280

Table 3.3: Monte Carlo results of the risk-neutral parameters estimation for a panel of 50 options
with 1% (a) and 5% (b) of observation error.
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Figure 3.4: Finite-sample parameters distribution for a panel of 50 options with 1% (left) and
5% (right) of observation error.
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Figure 3.5: Simulated data of the VIX term structure compared to the theoretical model gen-
erated by the estimated parameters.
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Chapter 4

Heston++

Nowadays, the well-known Black-Scholes [42] formula is still considered by academics and quants
a universal benchmark for option pricing and hedging. On the other hand, it is widely recognized
that the plainness of the Black-Scholes [42] model is no longer sufficient to capture modern
market phenomena, especially since the 1987 crash. In fact, as rigorously demonstrated by the
works of Bates [36] and Rubinstein [142], among others, prior to the 1987 market crash the
Black-Scholes formula prices options quite accurately, whereas after the crash it systematically
underprices out-of-the-money equity index put contracts.

Furthermore, empirical studies have shown some results contrary to the unrealistic assump-
tions of the Black-Scholes [42] model, which have been accepted as stylized facts about financial
returns, such as

• the volatility smile, or smirk, which characterizes the behavior of implied volatilities with
different strike prices, for a given maturity;

• the volatility persistence, which is the property that the autocorrelation function of squared
returns is significantly positive with a range of several months, implying that in financial
markets periods of low volatility are followed by periods of high volatility;

• the existence of excess kurtosis larger than three in the asset price returns distribution,
with skewness close to zero;

• the leverage effect, which is the phenomenon of negative correlation between volatility and
returns, or in other terms, negative returns have a greater impact on future variance than
positive returns.

Hence, during the last four decades, researchers and scholars have tried to find extensions
of the standard Black-Scholes [42] model, in order to fix its failures. One of the attempt to
tackle the limits of the Black-Scholes model is Merton [126], who suggests that the volatility
can be considered as a deterministic function of time. This approach explains the presence of a
term structure for the implied volatility at different maturities, but it still does not consider the
smile effect. In 1994, a series of contributions developed by Derman and Kani [77], Dupire [80]
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and Rubinstein [142] introduces the idea of allowing both time and state variables dependence
of the volatility coefficient. These studies, concerning deterministic volatility approaches, yield
complete market models, thus letting the local volatility surface to be fitted. However, they
cannot explain the persistence of the smile shape even for longer maturities. Furthermore,
these models do not allow to efficiently price exotic derivatives, whose trading volume is rapidly
growing in modern financial markets.

In light of the random features observed in the behavior of equity price returns, stochastic
volatility models in continuous time represent the most powerful and realistic overcoming of
the Black-Scholes [42] model, able to describe a much more complex market. A list of some
remarkable works which have led to the development of stochastic volatility models includes
Hull and White [101], Johnson and Shanno [108], Melino and Turnbull [124], Scott [144], Stein
[151], Stein and Stein [152] and Wiggings [156] (for reviews see Fouque, Papanicolau and Sircar
[89] and Gatheral [92]). Nonetheless, these early efforts to identify a more realistic model
for the underlying return are slowed by the analytical and computational complexity of the
option pricing problem. In fact, unlike the Black-Scholes model, the first stochastic volatility
specifications do not admit closed-form solutions. Thus, the evaluation of the option price
requires time consuming computations through simulation method or numerical solution of the
pricing partial differential equation by finite difference methods. Further, the presence of a
latent factor, such as the volatility, and the lack of closed-form expressions for the likelihood
function complicate the estimation problem.

Later studies have introduced some restrictions in the distribution of the underlying return
process, which are consistent with the empirical evidences from the data, with the aim of allowing
for closed-form, or semi-closed-form, solutions. To this goal, the affine class of continuous time
stochastic volatility models are particularly useful in providing a flexible setting, yet preserving
analytical tractability. In particular, affine jump diffusions are characterized by the fact that
the drift term, the conditional covariance and the jump intensity are all a linear function of the
state variable. The Vasicek [155] bond valuation model and the Cox, Ingersoll and Ross [70]
intertemporal asset pricing model provide considerable examples of the advantages of the affine
paradigm.

Let (Ω,E,P) ≡ Ω be a probability space endowed with a filtration (Ft)t≥0. Under the risk-
neutral measure Q, consider the general dynamics

dSt = rdt+
√
VtdW

S
t + Y S

t dNt, (4.1)

dVt = κ (ω − Vt) dt+ Λ
√
VtdW

V
t + Y V

t dNt, (4.2)

where r, κ, ω and Λ ∈ R are positive constants,
(
WS
t

)
t≥0
≡ WS

t and
(
W V
t

)
t≥0
≡ W V

t are
correlated Wiener processes, with correlation coefficient ρ ∈ [−1, 1], (Nt)t≥0 ≡ Nt is a Poisson
process, uncorrelated with WS

t and W V
t , whose jump intensity is given by

λt = λ0 + λ1Vt, (4.3)
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that is, Pr (dNt = 1) = λtdt. From this general setting of an affine jump diffusion model, we can
see that volatility is not only stochastic, but also subject to jumps, which occur simultaneously
with jumps in returns. The Black-Scholes [42] model is a special case of (4.1)-(4.3), with constant
volatility and absence of jumps, that is

Vt = σ2 and λt = 0, 0 ≤ t ≤ T.

In the same way, the Merton [127] model arises from (4.1)-(4.3) if volatility is constant but we
allow for jumps in returns.

An important special case of (4.1)-(4.3), with stochastic volatility and no jumps neither in
returns nor in the volatility process, is represented by the celebrate Heston [97] model. Using
the characteristic function method, he derives a closed-form European option pricing formula,
which can be readily evaluated by virtue of simple numerical integration. Among all the known
techniques for option pricing, the Heston model is by far the most studied and used in practice
mainly for two reasons. Firstly, the volatility process is non-negative and mean-reverting to its
long-run mean level, which is consistent with the properties of equity index returns observed in
financial markets. Secondly, its computational efficiency becomes crucial when the model needs
to be calibrated to market prices. The latter is considered by most the greatest advantage of
the Heston model over other stochastic volatility models, even though potentially more realistic.
Its popularity also stems from the fact that it is one of the first models to be able to explain the
implied volatility smile and, at the same time, to allow a front office implementation and eval-
uation of many exotic derivatives. Moreover, the Heston model assumes a negative correlation
ρ < 0 between WS

t and W V
t , allowing for the leverage effect. Finally, a fatter left tail in the

return distribution results in a higher cost for crash insurance and thus makes out-of-the-money
put options more expensive. This is qualitatively consistent with patterns observed after the
1987 market crash discussed above.

Despite this profusion of literature concerning stochastic volatility models, in quantitative
finance it is still open the long-lasting challenging problem to find a practical option pricing
model which, at the same time,

1. is guaranteed to be free of arbitrage opportunities;

2. provides fast algorithms for prices and greeks calculation;

3. is able to fit the quoted volatility surfaces, across both maturities and strikes;

4. adequately describes price and volatility risk.

These four features are equally needful, but it is very hard to find an existent model which
satisfies them all together. For instance, arbitrage-free volatility interpolation can be achieved
with local volatility models (Derman and Kani [77] and Dupire [80]), as shown recently in
Andreasen and Huge [22] and Kahalé [109], among others. However, local volatility models do
not accommodate idiosyncratic volatility risk. On the other hand, the Heston [97] model includes
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volatility risk in a mathematically convenient way, but it is not flexible enough to fit the whole
volatility surface. Similarly, the SABR (Hagan et al. [95]) model is almost arbitrage-free and
has an analytical pricing formula, but it can hardly reproduce volatility surfaces, if parameters
are not changed along with maturities.

The goal of this chapter is to fill this gap, introducing the Heston++ class of stochastic
volatility models, which is compliant to the four pillars mentioned above. We extend multi-factor
affine models, with the possible inclusion of jumps, by adding a deterministic volatility factor
meant to fit the term structure of the at-the-money (ATM) implied variances. The technique
is borrowed from deterministic shift extension (Brigo and Mercurio [47]) and its application to
short rate models. The preliminary fit of the ATM term structure strongly eases the fit of the
whole volatility surface, since the model parameters are employed with their full flexibility. The
straightforward application of our model allows a fast and accurate arbitrage-free interpolation,
as well as a sound extrapolation, of the volatility surface, which can be used for market making
or exotic pricing. Hence, the model we propose here unifies the advantages of local volatility
models and those of stochastic volatility models.

To illustrate the gain in terms of pricing, we calibrate the model on a time series of daily
option panels on FX rate EUR/USD from 2005 to 2012, for strikes up to 10∆ and 10 maturities
ranging from one week to two years. The Heston++ models are readily fitted, with no added
computational cost with respect to the standard versions, and obtain an average root mean
square error of 1.26%, in the best case.

This chapter has the following structure. In Section 4.1 we briefly review the main properties
of the Heston [97] model, with the goal of making as clearer as possible the rest of the exposition.
Next, in Section 4.2 we illustrate the proposed model and provide the corresponding option
pricing formulae. Then, in Section 4.3 we show empirical results of the Heston++ model,
suitably calibrated to the FX option market.

4.1 Brief Review of the Heston Model

Let (St)t≥0 ≡ St be the spot price of a tradable equity asset and let (Vt)t≥0 ≡ Vt be the
corresponding instantaneous variance, driven by a mean-reverting square root process. Heston
[97] proposes a stochastic variance model, as an extension of the Black-Scholes [42] model, which
follows the risk-neutral dynamics

dSt = rStdt+
√
VtStdW

S
t , (4.4)

dVt = κ (ω − Vt) dt+ Λ
√
VtdW

V
t , (4.5)

where r, κ, ω and Λ ∈ R+ are constants and
(
WS
t

)
t≥0
≡ WS

t and
(
W V
t

)
t≥0
≡ W V

t are two
correlated Wiener processes, with correlation coefficient equal to ρ ∈ [−1, 1].

By virtue of the usual change of variable st = lnSt, we can express the Heston model in
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Drift r
Rate of mean reversion κ
Long-run variance ω
Vol of vol Λ
Return/variance correlation ρ
Initial variance V0

Table 4.1: Parameters of the Heston model

terms of the logarithm of the spot price (st)t≥0 ≡ st and we obtain

dst =
(
r − 1

2Vt
)
dt+

√
VtdW

S
t . (4.6)

As we can see in Table 4.1, this model is specified by several constant parameters, such as,
the drift r, the rate of mean reversion κ, the long-run variance ω, the vol of vol Λ, the re-
turn/variance correlation coefficient ρ and the initial variance V0.

Note that Equation (4.5) is the same that we find in Cox, Ingersoll and Ross [71] for the short
rate process. In particular, the mean-reverting square root process was originally mentioned in
the literature by Feller [86] in 1951.

Proposition 4.1 (The Feller condition). Given the mean-reverting square root process Vt defined
in (4.5), we have

if V0 > 0 ∩ 2κω ≥ Λ2 ⇒ Vt > 0, ∀t > 0. (4.7)

Hence, one supposed advantage of modeling Vt by a mean-reverting process is that, if the
initial variance V0 is strictly positive, which of course it will be the case for any realistic market
with any measure of uncertainty, and if the ratio 2κω/Λ2 is greater than or equal to one, then
the instantaneous variance Vt remains always strictly positive with probability one. Conversely,
if the Feller condition is not satisfied, then there exists a finite probability that the variance
goes to zero, for some t > 0. Unfortunately, in the FX market the Feller condition is hardly
ever satisfied, due to the particular convexities of the volatility surface typically encountered in
practice. In fact, for the Feller condition to be satisfied both the mean reversion parameters κ
and ω must be nonzero and, at the same time, the vol of vol Λ cannot be too large with respect
to them. Furthermore, the correlation coefficient ρ is not considered in the Feller condition,
but in order to introduce a volatility skew, the vol of vol needs to be large enough, such that
the correlated part of W V

t results in a volatility skew for St. Therefore, the calibration of the
Heston model to either a volatility skew or a volatility smile will require a positive Λ and, since
typical FX market conditions entail this parameter to be large enough, the Feller condition is
often violated in practice.

It is worth noting that a Heston model which is always compliant with the Feller condition
provides a much higher convexity of the implied volatility surface, presenting a trade-off between
a real fit of market data and the respect of the Feller condition. Thus, it is crucial that any
numerical schemes we develop are able to deal with the violation of the Feller condition and
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the variance absorption at the Vt = 0 boundary. This is discussed in the context of backward
partial differential equation (PDE) schemes in Duffie [78] and in the original paper of Heston
[97], in the context of forward Fokker-Planck PDE schemes in Lucic [119] and in Gatheral [92]
for Monte Carlo methods.

We can transform the process for the variance into a process for the volatility, as suggested
by Zhu [163]. Consider υt =

√
Vt = f (Vt), for which it holds f ′ (Vt) = 1

2V
−1/2
t and f ′′ (Vt) =

−1
4V
−3/2
t . By virtue of the Itô’s lemma, we then have

dυt = f ′ (Vt) dVt + 1
2f
′′ (Vt) 〈dVt, dVt〉

= 1
2V
−1/2
t

[
κ (ω − Vt) dt+ Λ

√
VtdW

S
t

]
− 1

8V
−3/2
t Λ2Vtdt

= κ (ω − Vt)V −1/2
t dt− 1

4Λ2V
−1/2
t dt+ ΛdWS

t

=
(
κω

υt
− κυt −

Λ2

4υt

)
dt+ ΛdWS

t

= κ (ω̂ − υt) dt+ ΛdWS
t ,

where ω̂ =
(
ω − Λ2

4κ

)
1
υt
. This means that the Heston [97] model for the variance is equivalent to

an Ornstein-Uhlenbeck process for the volatility, whose long-run mean level is nonstationary and
state-dependent. In order to have a non negative long-run mean reversion level, we require that
ω − Λ2

4κ > 0, that is 2κω
Λ2 > 1

2 . Hence, the fulfillment of the Feller condition (4.7) in the original
Heston model is sufficient but not necessary for the positivity of the long-run mean reversion
level.

Now, consider the value function of a general contingent claim U (t, St, Vt) with t ≥ 0, which
pays U (T, ST , VT ) at maturity T > t. It can be shown1 that U (t, St, Vt) fulfills the PDE
(functional dependencies omitted)

∂U

∂t
+
(
rd − rf

)
St
∂U

∂St
+ [κ (ω − Vt)− λ (t, St, Vt)]

∂U

∂Vt
+

+ 1
2VtS

2
t

∂2U

∂S2
t

+ ρΛVtSt
∂2U

∂St∂Vt
+ 1

2Λ2Vt
∂2U

∂V 2
t

− rdU = 0, (4.8)

where the term λ (t, St, Vt) is the market price of volatility risk. Heston [97] assumes linearity
of λ (t, St, Vt) with respect to the instantaneous variance, that is λ (t, St, Vt) = λVt, in order to
preserve the form of Equation (4.8) in the risk-neutral setting. A European FX option, with
strike K in domestic currency units and maturity T , satisfies the PDE (4.8), subject to the

1For details on the derivation in the foreign exchange setting see Hakala and Wystup [96].
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following boundary conditions:

U (T, ST , VT ) = φ (ST −K)+ ,

U (t, 0, Vt) = 1− φ
2 Ke−rd(T−t),

∂U

∂St
(t,∞, Vt) = 1 + φ

2 e−rf (T−t),

rdU (t, St, 0) =
(
rd − rf

)
St
∂U

∂St
(t, St, 0) + κω

∂U

∂Vt
(t, St, 0) + ∂U

∂t
(t, St, 0) ,

U (t, St,∞) =
{
Ste−r

f (T−t) if φ = 1
Ke−rd(T−t) if φ = −1

,

where φ is the option indicator, which is equal to 1 for a call and to -1 for a put.
Heston [97] solves the PDE (4.8) analytically by virtue of the characteristic function method.

Hence, the pricing formula for a European FX option is given by

U (t, St, Vt) = φ
[
e−rf (T−t)StQ+ (φ)−Ke−rd(T−t)Q− (φ)

]
, (4.9)

where

Q+ (φ) = 1− φ
2 + φQ1 (t, s, v, k) , (4.10)

Q− (φ) = 1− φ
2 + φQ2 (t, s, v, k) , (4.11)

and functions Qj (t, s, v, k), j = 1, 2, are the cumulative distribution functions, in the variable
k = lnK, of the log-spot price, starting at lnSt = s and Vt = v. We do not have closed form
solutions for Q1 (t, s, v, k) and Q2 (t, s, v, k), but only for their Fourier transforms f1 (t, s, v, z)
and f2 (t, s, v, z), respectively. Then, it holds

fj (t, s, v, z) = eAj(τ,z)+Bj(τ,z)v+izs, j = 1, 2, (4.12)

where τ = T − t, i =
√
−1 and

Aj (τ, z) =
(
rd − rf

)
izτ + κω

Λ2

[
(cj + dj) τ − 2 ln

(
1− gjedjτ

1− gj

)]
, (4.13)

Bj (τ, z) = cj + dj
Λ2

(
1− edjτ

1− gjedjτ

)
, (4.14)

and finally

cj = bj − ρΛiz, dj =
√
c2
j − Λ2z (iaj − z), gj = cj + dj

cj − dj
,

b1 = κ+ λ− ρΛ, b2 = κ+ λ, a1 = 1, a2 = −1.
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Hence, the two probabilities in (4.9) can be obtained numerically by the inverse transforms

Qj (t, s, v, k) = 1
2 + 1

π

∫ ∞
0
<
[

e−izkfj (t, s, v, z)
iz

]
dz, j = 1, 2. (4.15)

It is interesting to evaluate the Greeks, by taking the appropriate derivatives. In the Heston
[97] model the spot delta and the so-called dual delta are given by

∆= ∂U (t, St, Vt)
∂St

=φe−rf (T−t)Q+(φ) and ∂U (t, St, Vt)
∂K

=−φe−rd(T−t)Q−(φ), (4.16)

respectively.
The Gamma, which measures the sensitivity of delta with respect to the underlying, is equal

to

Γ = ∂∆
∂St

= e−rf (T−t)

St
qj (t, s, v, k) , (4.17)

where
qj (t, s, v, k) = 1

π

∫ ∞
0
<
[
e−izkfj (t, s, v, z)

]
dz, j = 1, 2,

are the densities corresponding to the cumulative distribution functions Qj (4.15).
The time sensitivity theta, Θ = ∂U(t,St,Vt)

∂t , can be easily computed from (4.8), while for rho
we have

∂U (t, St, Vt)
∂rd

= φKe−rd(T−t)(T − t)Q−(φ), (4.18)

∂U (t, St, Vt)
∂rf

= −φSte−r
f (T−t)(T − t)Q+(φ). (4.19)

Note that in the foreign exchange setting there are two expressions for rho, one is the derivative
of the option price with respect to the domestic interest rate and the other is the derivative with
respect to the foreign interest rate.

Finally, vega, vanna and volga are given by

∂U (t, St, Vt)
∂Vt

= e−rf (T−t)St
∂Q1(t, s, v, k)

∂v
−Ke−rd(T−t)∂Q2(t, s, v, k)

∂v
, (4.20)

∂2U (t, St, Vt)
∂St∂Vt

= e−rf (T−t)∂Q1(t, s, v, k)
∂v

+ e−rf (T−t)St
∂2Q1(t, s, v, k)

∂s∂v
+

−Ke−rd(T−t)∂
2Q2(t, s, v, k)

∂s∂v
, (4.21)

∂2U (t, St, Vt)
∂V 2

t

= e−rf (T−t)St
∂2Q1(t, s, v, k)

∂v2 −Ke−rd(T−t)∂
2Q2(t, s, v, k)

∂v2 , (4.22)
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respectively, where

∂Qj (t, s, v, k)
∂v

= 1
π

∫ ∞
0
<
[
B (τ, z) e−izkfj (t, s, v, z)

iz

]
dz,

∂2Qj (t, s, v, k)
∂s∂v

= 1
St

1
π

∫ ∞
0
<
[
B (τ, z) e−izkfj (t, s, v, z)

]
dz,

∂2Qj (t, s, v, k)
∂v2 = 1

π

∫ ∞
0
<
[
B2 (τ, z) e−izkfj (t, s, v, z)

iz

]
dz,

with j = 1, 2.
The Heston solution is actually semi-analytical. Equations (4.10) and (4.11) require to

integrate functions fj , which are typically of oscillatory nature. Hence, different numerical ap-
proaches can be used to determine the price of a European FX option. These include finite
difference and finite element methods (see Apel, Winkler and Wystup [23]), Monte Carlo sim-
ulations and the general Fast Fourier Transform of Carr and Madan [56]. Hakala and Wystup
[96] propose to perform the integration in (4.15) with the Gauss-Laguerre quadrature, using 100
for ∞ and 100 abscissas. Jäckel and Kahl [104] suggest using the Gauss-Lobatto quadrature,
(e.g. the quadl.m function in Matlab) and transform the original integral boundaries [0,+∞)
to the finite interval [0, 1]. Nonetheless, as a number of authors have recently reported (Al-
brecher et al. [10], Gatheral [92] and Jäckel and Kahl [104]), the real problem starts when the
functions fj are evaluated as part of the quadrature scheme. In particular, the computation
of the complex logarithm in (4.13) is prone to numerical instabilities. It turns out that taking
the principal value of the logarithm causes Aj to jump discontinuously each time the imaginary
part of the logarithm argument crosses the negative real axis. One solution is to keep track
of the winding number in the integration (4.15), but it is difficult to implement since standard
numerical integration routines cannot be used. In our work, we provide a practical solution to
this problem, evaluating the integral in (4.15) by virtue of the adaptive Gauss-Kronrod quadra-
ture, that is the quadgk.m function in Matlab, which is faster and most efficient with respect
to the Gauss-Lobatto quadrature for oscillatory integrands and any smooth integrand at high
accuracies.

4.2 The Heston++ Model

Let (Ω,E,P) ≡ Ω be a probability space endowed with a filtration (Ft)t≥0 and let (Bt)t≥0 ≡ Bt
be the price of a riskless bond, satisfying the ordinary differential equation (ODE)

dBt = rBtdt, (4.23)

where r ∈ R+ is the instantaneous constant risk-free interest rate for lending or borrowing
money. Setting B0 = 1, we have

Bt = ert, t ≥ 0.
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Finally, let (St)t≥0 ≡ St be the price process of a non dividend-paying risky equity asset, evolving
in continuous time. Under the risk-neutral probability measure Q, we assume that St follows
the general dynamics

dSt = rStdt+
√
VtStdW

S
t , (4.24)

Vt = vt + φt, (4.25)

dvt = κ(ω − vt)dt+ Λ
√
vtdW

v
t , (4.26)

where r, κ, ω and Λ ∈ R+ are constants, φt ≥ 0 is a smooth enough non-negative real function
integrable on closed intervals with φ0 = 0, and

(
WS
t

)
t≥0
≡ WS

t and (W v
t )t≥0 ≡ W v

t are cor-
related Wiener processes on Ω adapted to the filtration Ft, with time dependent instantaneous
risk-neutral correlation given by

corrQ
(
dWS

t , dW
v
t

)
= ρ

√
vt

vt + φt
, (4.27)

where ρ ∈ [−1, 1] is an additional constant. Moreover, we assume that the Feller condition (4.7)
is satisfied, since 2κω ≥ Λ2, in order to ensure that the process (vt)t≥0 ≡ vt remains strictly
positive. Note that the form of the correlation in (4.27) guarantees the linearity of the pricing
PDE associated with the model.

Remark 4.1. We have∣∣∣corrQ
(
dWS

t , dW
v
t

)∣∣∣ ≤ 1 ⇐⇒ ρ2 ≤ 1 + φt
vt
, (4.28)

and since we assume |ρ| ≤ 1, φt ≥ 0 and vt > 0, the condition (4.28) is met. Furthermore,

covQ (d lnSt, dVt) = ρΛvtdt ≤ ρΛVtdt,

where ρΛVtdt is the instantaneous covariance between the driving Wiener processes in the original
Heston [97] model.

Then, the model is specified by the risk-free rate, five parameters (κ, ω,Λ, ρ, v0) and the
deterministic function φt.

An approach similar to the Heston++ model is represented by the Heston model with time-
dependent parameters, introduced by Mikhailov and Nögel [129] and then further deepened by
Elices [83], in which the constant parameters are replaced by deterministic functions. However,
our model has an inherently different specification and presents, in our view, several advantages.
The difference consists in the fact that in the Heston++ model the function φt can be interpreted
as the lower bound for the spot variance, as it is clear from Equation (4.25), while in the
Heston model with time-dependent parameters the lower bound for the local variance is still
equal to 0. This technical difference is harmless from a specification point of view, but it
is crucial in making the pricing of European vanilla options straightforward. Furthermore, the
Heston model with time-dependent parameters displays serious mathematical troubles, which are
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typically solved by virtue of approximations based on Taylor expansions or using deterministic
functions which are piecewise constant2. Moreover, its extension to multi-factor models with
jumps appears cumbersome. Conversely, the Heston++ model has no additional mathematical
and implementation complexity with respect to the traditional Heston model, providing simple
formulas and fast algorithms, and can be easily generalized to affine models, such as those in
Bates [37], Bates [38], Christoffersen et al. [67] and Duffie et al. [79], or to Wishart models, in
the sense of Da Fonseca et al. [72].

Now, we provide the pricing formulas of European vanilla options in an univariate case, in
a bivariate case and in a bivariate case with jumps. In the sequel, in order to compare the
Heston++ model with the standard Heston model, all quantities related to the Heston model
will have an H as superscript.

4.2.1 One factor

Let st = lnSt be the logarithm of the risky equity asset price. By virtue of the Itô’s lemma, we
have

dst =
[
r − 1

2 (vt + φt)
]
dt+

√
vt + φt dW

S
t . (4.29)

Furthermore, denote by

Iφ (t, T ) =
∫ T

t
φu du, 0 ≤ t ≤ T. (4.30)

Consider a European call option, with maturity T > 0 and strike K > 0, and set k = lnK.
Using Geman, El Karoui and Rochet [93]3, the call option pricing function at time t ∈ [0, T ] can
be written in the form

C(t, st, vt, k) = estQ1 (t, s, v, k)− ek−r(T−t)Q2 (t, s, v, k) , (4.31)

where, for every s, v > 0,

Q1 (t, s, v, k) = QS [sT ≥ k | st = s, vt = v] (4.32)

Q2 (t, s, v, k) = QT [sT ≥ k | st = s, vt = v] (4.33)

are the probabilities of the call option exercise, computed with respect to the martingale prob-
ability measure QS for the numéraire S and to the T -forward probability measure QT , respec-
tively. Note that, since we assume a deterministic short interest rate, we have QT = Q, and
then Q2 (t, s, v, k) is the standard risk-neutral probability of the call option exercise.

As in the original Heston [97] model, in the Heston++ model we do not have closed form
solutions for Q1 (t, s, v, k) and Q2 (t, s, v, k), but only for their Fourier transforms f1 (t, s, v, z)

2See Benhamou et al. [39] for a detailed discussion.
3Geman, El Karoui and Rochet [93] introduce the general formal framework for the change of numéraire

technique. See Brigo and Mercurio [48] for a change of numéraire toolkit.
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and f2 (t, s, v, z), respectively. Hence, it holds

fj (t, s, v, z) = fHj (t, s, v, z) e
1
2 z(aji−z)Iφ(t,T ), j = 1, 2, (4.34)

where a1 = 1, a2 = −1, i =
√
−1 and fHj (t, s, v, z), j = 1, 2, are the transforms of QHj in the

Heston model, as defined in Equation (4.12).

Proof. We know that the call option pricing function C(t, st, vt, k) is the solution of a PDE with
two space dimensions st = s and vt = v, given by (functional dependencies omitted)

∂C

∂t
+
[
r − 1

2 (v + φt)
]
∂C

∂s
+ κ (ω − v) ∂C

∂v
+

+ ρΛv ∂
2C

∂s∂v
+ 1

2 (v + φt)
∂2C

∂v2 + 1
2Λ2v

∂2C

∂v2 − rC = 0, (4.35)

with terminal condition
C(T, sT , vT , k) =

(
esT − ek

)+
.

Note that, as mentioned before, linearity of the PDE (4.35) is guaranteed by the condition (4.27).
The original Heston [97] argument, seen in the previous section, extends to our Heston++ model.
Hence, the two probabilities Qj (t, s, v, k), j = 1, 2, in (4.31) are the solutions of PDEs

∂Qj
∂t

+
[
r + 1

2aj (v + φt)
]
∂Qj
∂s

+ [κω − (κ− bjρΛ) v] ∂Qj
∂v

+

+ ρΛv∂
2Qj
∂s∂v

+ 1
2 (v + φt)

∂2Qj
∂s2 + 1

2Λ2v
∂2Qj
∂s2 = 0, (4.36)

j = 1, 2, with terminal conditions

Qj (T, sT , vT , k) = 1{sT≥k}, j = 1, 2,

where a1 = 1, a2 = −1, b1 = 1, b2 = 0 and 1{sT≥k} is the indicator function of sT ≥ k.

Details 2. Let us compute the relevant derivatives of (4.31). We then have

∂C

∂t
= es∂Q1

∂t
− rek−r(T−t)Q2 − ek−r(T−t)∂Q2

∂t
∂C

∂s
= esQ1 + es∂Q1

∂s
− ek−r(T−t)∂Q2

∂s
∂C

∂v
= es∂Q1

∂v
− ek−r(T−t)∂Q2

∂v
∂2C

∂s∂v
= es∂Q1

∂v
+ es∂

2Q1
∂s∂v

− ek−r(T−t)∂
2Q2
∂s∂v

∂2C

∂s2 = esQ1 + 2es∂Q1
∂s

+ es∂
2Q1
∂s2 − ek−r(T−t)∂

2Q2
∂s2

∂2C

∂v2 = es∂
2Q1
∂v2 − ek−r(T−t)∂

2Q2
∂v2 .
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Substituting the computed derivatives and (4.31) into (4.35), we obtain

es∂Q1
∂t
− rek−r(T−t)Q2 − ek−r(T−t)∂Q2

∂t
+

+
[
r − 1

2 (v + φt)
] [

esQ1 + es∂Q1
∂s
− ek−r(T−t)∂Q2

∂s

]
+

+ κ (ω − v)
[
es∂Q1

∂v
− ek−r(T−t)∂Q2

∂v

]
+

+ ρΛv
[
es∂Q1

∂v
+ es∂

2Q1
∂s∂v

− ek−r(T−t)∂
2Q2
∂s∂v

]
+

+ 1
2 (v + φt)

[
esQ1 + 2es∂Q1

∂s
+ es∂

2Q1
∂s2 − ek−r(T−t)∂

2Q2
∂s2

]
+

+ 1
2Λ2v

[
es∂

2Q1
∂v2 − ek−r(T−t)∂

2Q2
∂v2

]
− resQ1 + rek−r(T−t)Q2 = 0,

that is,

es∂Q1
∂t
− ek−r(T−t)∂Q2

∂t
+ r

[
es∂Q1

∂s
− ek−r(T−t)∂Q2

∂s

]
+

+ 1
2 (v + φt)

[
es∂Q1

∂s
+ ek−r(T−t)∂Q2

∂s
+ es∂

2Q1
∂s2 − ek−r(T−t)∂

2Q2
∂s2

]
+

+ κ (ω − v)
[
es∂Q1

∂v
− ek−r(T−t)∂Q2

∂v

]
+

+ ρΛv
[
es∂Q1

∂v
+ es∂

2Q1
∂s∂v

− ek−r(T−t)∂
2Q2
∂s∂v

]
+

+ 1
2Λ2v

[
es∂

2Q1
∂v2 − ek−r(T−t)∂

2Q2
∂v2

]
= 0,

and then

es
{
∂Q1
∂t

+
[
r + 1

2 (v + φt)
]
∂Q1
∂s

+ [κω − κv + ρΛv] ∂Q1
∂v

+

+ρΛv∂
2Q1
∂s∂v

+ 1
2 (v + φt)

∂2Q1
∂s2 + 1

2Λ2v
∂2Q1
∂v2

}
+

− ek−r(T−t)
{
∂Q2
∂t

+
[
r − 1

2 (v + φt)
]
∂Q2
∂s

+ κ (ω − v) ∂Q2
∂v

+

+ρΛv∂
2Q2
∂s∂v

+ 1
2 (v + φt)

∂2Q2
∂s2 + 1

2Λ2v
∂2Q2
∂v2

}
= 0.

A standard separation argument decomposes the last PDE into a pair of PDEs for Q1 and
Q2, both of the form (4.36).

Also the characteristic functions of the two probabilities fj (t, s, v, z), j = 1, 2, are solutions
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of the same PDEs, but with terminal conditions given by

fj (T, sT , vT , z) = eizsT , j = 1, 2. (4.37)

Since PDEs (4.36) are linear in the state variable v and do not contain the state variable s,
while the terminal condition (4.37) is log-linear in s and does not contain v, we have

fj (t, s, v, z) = eAj(τ,z)+Bj(τ,z)v+izs, j = 1, 2, (4.38)

where τ = T − t and functions t 7→ Aj (τ, z) and t 7→ Bj (τ, z), j = 1, 2, are solutions of the
ODEs 

∂Aj(τ, z)
∂t

= −riz − κωBj(τ, z)−
1
2z (aji− z)φt

A (0, z) = 0
, (4.39)

and 
∂Bj(τ, z)

∂t
= −1

2z (aji− z) + [κ− (bj + iz) ρΛ]Bj(τ, z)−
1
2Λ2B2

j (τ, z)

B (0, z) = 0
, (4.40)

for fixed τ ≥ 0 and z.
The ODE (4.40) is the same Riccati equation that we find in the original Heston model.

Therefore, it is known that its solution is given by Equation (4.14), that we report here for the
reader’s convenience:

Bj (τ, z) = BH
j (τ, z) = cj + dj

Λ2
1− edjτ

1− gjedjτ
, j = 1, 2, (4.41)

where
cj = κ− (bj + iz) ρΛ, dj =

√
c2
j − (aji− z) zΛ2, gj = cj + dj

cj − dj
.

Once obtained Equation (4.41), the ODE (4.39) can be solved by direct integration, that is

Aj (τ, z) =
∫ T

t
[izr + κωBj (u, z)] du+ 1

2z (aji− z)
∫ T

t
φudu, j = 1, 2. (4.42)

The first integral also appears in the derivation of the standard Heston model, thus we have for
j = 1, 2

Aj (τ, z) = AHj (τ, z) + 1
2z (aji− z)

∫ T

t
φudu,

or
Aj (τ, z) = rizτ + κω

Λ2

[
(cj + dj) τ − 2 ln

(
1− gjedjτ

1− gj

)]
+ 1

2z (aji− z)
∫ T

t
φudu.
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Details 3. Computing the relevant partial derivatives of (4.38), we have

∂fj
∂t

=
(
∂Aj
∂t

+ ∂Bj
∂t

v

)
fj ,

∂fj
∂s

= izfj ,
∂fj
∂v

= Bjfj ,

∂2fj
∂s∂v

= izBjfj ,
∂2fj
∂s2 = −z2fj ,

∂2fj
∂v2 = B2

j fj ,

with j = 1, 2. Substituting the computed derivatives into the PDE, we obtain

(
∂Aj
∂t

+ ∂Bj
∂t

v

)
fj + iz

[
r + 1

2aj (v + φt)
]
fj + [κω − (κ− bjρΛ) v]Bjfj+

+ iρΛvzBjfj −
1
2 (v + φt) z2fj + 1

2Λ2vB2
j fj = 0,

that is,

∂Aj
∂t

+ izr + 1
2 izajφt + κωBj −

1
2φtz

2+

+
[
∂Bj
∂t

+ 1
2 izaj − (κ− bjρΛ)Bj + iρΛzBj −

1
2z

2 + 1
2Λ2B2

j

]
v = 0.

A standard separation argument decomposes the above equation into a pair of ODEs of the
form (4.39) and (4.40).

Finally, the two probabilities in Equation (4.31) and, consequently, the option price can be
obtained numerically by the inverse transforms

Qj (t, s, v, k) = 1
2 + 1

π

∫ ∞
0
<
[

e−izkfj (t, s, v, z)
iz

]
dz, j = 1, 2. (4.43)

As said before, the Heston++ model is an extension of the classic Heston [97] model, which
is recovered when φt = 0. However, the condition φt 6= 0 can be exploited to fit the volatility
surface without sacrificing the computational advantages of the Heston model. Indeed, in the
Heston++ model, the risk-neutral expected integrated variance in the time interval [T1, T2],
conditional to time t < T1, is given by

IVt(T1, T2) = 1
T2 − T1

EQ
[∫ T2

T1
Vudu

∣∣∣∣ Vt
]

= 1
T2 − T1

EQ
[∫ T2

T1
vudu

∣∣∣∣ vt
]

+ 1
T2 − T1

Iφ(T1, T2),

that is
IVt(T1, T2) = IV H

t (T1, T2) + 1
T2 − T1

Iφ(T1, T2). (4.44)

Therefore, in the extended model, the integrated variance decomposes into the sum of the
standard Heston integrated variance IV H plus the contribution of the deterministic part of the
variance, given by the average of φt over [T1, T2].
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4.2.2 Two factors

In this section, we present a two-factor Heston++ model, which we have developed by apply-
ing the idea of an additional deterministic volatility factor to the original model proposed in
Christoffersen, Heston and Jacobs [67].

To this goal, assume now the existence of a second stochastic volatility factor, defined on
the probability space Ω, given by

dv2,t = κ2 (ω2 − v2,t) dt+ Λ2
√
v2,tdW

v
2,t, (4.45)

where κ2, ω2 and Λ2 ∈ R+ are constants, with 2κ2ω2 ≥ Λ2
2, and

(
W v

2,t

)
t≥0
≡W v

2,t is a standard
Wiener process adapted to the filtration Ft. Then, the general dynamics (4.24)-(4.26) becomes

dSt = rStdt+
√
V1,tStdW

S
1,t +√v2,tStdW

S
2,t, (4.46)

V1,t = v1,t + φt, (4.47)

dv1,t = κ1(ω1 − v1,t)dt+ Λ1
√
v1,tdW

v
1,t, (4.48)

dv2,t = κ2 (ω2 − v2,t) dt+ Λ2
√
v2,tdW

v
2,t, (4.49)

where
(
WS

1,t

)
t≥0
≡ WS

1,t,
(
WS

2,t

)
t≥0
≡ WS

2,t,
(
W v

1,t

)
t≥0
≡ W v

1,t and
(
W v

2,t

)
t≥0
≡ W v

2,t are Wiener
processes, whose correlations are settled according to (4.27) and

corrQ
(
dWS

1,t, dW
S
2,t

)
= corrQ

(
dW v

1,t, dW
v
2,t

)
= 0,

corrQ
(
dWS

2,t, dW
v
1,t

)
= corrQ

(
dWS

1,t, dW
v
2,t

)
= 0, (4.50)

corrQ
(
dWS

2,t, dW
v
2,t

)
= ρ2,

with ρ2 ∈ [−1, 1]. Moreover, the SDE (4.29) associated to the logarithm of the spot price st
becomes

dst =
[
r − 1

2 (v1,t + v2,t + φt)
]
dt+

√
v1,t + φtdW

S
1,t +√v2,tdW

S
2,t. (4.51)

Hereafter, all quantities related to the original Christoffersen, Heston and Jacobs [67] model
will be marked with a H2 superscript.

The option pricing formula for the two-factor Heston++ model can be obtained by virtue of
the same argument previously introduced for the one factor case. Hence, we have

C (t, st, v1,t, v2,t, k) = estQ1 (t, s, υ1, υ2, k)− ek−r(T−t)Q2 (t, s, υ1, υ2, k) . (4.52)

Note that the two probabilities Q1 (t, s, υ1, υ2, k) and Q2 (t, s, υ1, υ2, k) have the same financial
interpretation as in (4.33) and their characteristic functions are given by

fj (t, s, υ1, υ2, z) = fH2
j (t, s, υ1, υ2, z) e

1
2 z(aji−z)Iφ(t,T ), j = 1, 2, (4.53)

where Iφ (t, T ) is defined as in (4.30), a1 = 1, a2 = −1, i =
√
−1 and fH2

j (t, s, υ1, υ2, z), with
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j = 1, 2, are the transforms of QH2
j in the original Christoffersen, Heston and Jacobs [67] model.

Proof. In the two-factor model, the PDE (4.35) becomes (functional dependencies omitted)

∂C

∂t
+
[
r − 1

2 (υ1 + υ2 + φt)
]
∂C

∂s
+ κ1 (ω1 − υ1) ∂C

∂υ1
+ κ2 (ω2 − υ2) ∂C

∂υ2
+ ρ1Λ1υ1

∂2C

∂s∂υ1
+

+ ρ2Λ2υ2
∂2C

∂s∂υ2
+ 1

2 (υ1 + υ2 + φt)
∂2C

∂s2 + 1
2Λ2

1υ1
∂2C

∂υ2
1

+ 1
2Λ2

2υ2
∂2C

∂υ2
2
− rC = 0, (4.54)

with terminal condition
C (T, sT , v1,T , v2,T , k) =

(
es − ek

)+
.

As in the one factor case, the two probabilities Qj (t, s, υ1, υ2, k), j = 1, 2, in (4.52) are solutions
of the PDEs

∂Qj
∂t

+
[
r − 1

2aj (υ1 + υ2 + φt)
]
∂Qj
∂s

+ [κ1ω1 − (κ1 − bjρ1Λ1) υ1] ∂Qj
∂υ1

+

+ [κ2ω2 − (κ2 − bjρ2Λ2) υ2] ∂Qj
∂υ2

+ ρ1Λ1υ1
∂2Qj
∂s∂υ1

+ ρ2Λ2υ2
∂2Qj
∂s∂υ2

+

+ 1
2 (υ1 + υ2 + φt)

∂2Qj
∂s2 + 1

2Λ2
1υ1

∂2Qj
∂υ2

1
+ 1

2Λ2
2υ2

∂2Qj
∂υ2

2
= 0, (4.55)

with terminal conditions

Qj (T, sT , v1,T , v2,T , k) = 1{sT≥k}, j = 1, 2,

where a1 = 1, a2 = −1, b1 = 1, b2 = 0 and 1{sT≥k} is the indicator function of sT ≥ k.
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Details 4. The relevant derivatives of Equation (4.52) are given by

∂C

∂t
= es∂Q1

∂t
− rek−r(T−t)Q2 − ek−r(T−t)∂Q2

∂t
∂C

∂s
= esQ1 + es∂Q1

∂s
− ek−r(T−t)∂Q2

∂s
∂C

∂υ1
= es∂Q1

∂υ1
− ek−r(T−t)∂Q2

∂υ1
∂C

∂υ2
= es∂Q1

∂υ2
− ek−r(T−t)∂Q2

∂υ2
∂2C

∂s∂υ1
= es∂Q1

∂υ1
+ es ∂

2Q1
∂s∂υ1

− ek−r(T−t) ∂
2Q2

∂s∂υ1
∂2C

∂s∂υ2
= es∂Q1

∂υ2
+ es ∂

2Q1
∂s∂υ2

− ek−r(T−t) ∂
2Q2

∂s∂υ2
∂2C

∂s2 = esQ1 + 2es∂Q1
∂s

+ es∂
2Q1
∂s2 − ek−r(T−t)∂

2Q2
∂s2

∂2C

∂υ2
1

= es∂
2Q1
∂υ2

1
− ek−r(T−t)∂

2Q2
∂υ2

1
∂2C

∂υ2
2

= es∂
2Q1
∂υ2

2
− ek−r(T−t)∂

2Q2
∂υ2

2
.

Now, substituting the computed derivatives and (4.52) into (4.54), we obtain

es∂Q1
∂t
− rek−r(T−t)Q2 − ek−r(T−t)∂Q2

∂t
+

+
[
r − 1

2 (υ1 + υ2 + φt)
] [

esQ1 + es∂Q1
∂s
− ek−r(T−t)∂Q2

∂s

]
+

+ κ1 (ω1 − υ1)
[
es∂Q1
∂υ1

− ek−r(T−t)∂Q2
∂υ1

]
+

+ κ2 (ω2 − υ2)
[
es∂Q1
∂υ2

− ek−r(T−t)∂Q2
∂υ2

]
+

+ ρ1Λ1υ1

[
es∂Q1
∂υ1

+ es ∂
2Q1

∂s∂υ1
− ek−r(T−t) ∂

2Q2
∂s∂υ1

]
+

+ ρ2Λ2υ2

[
es∂Q1
∂υ2

+ es ∂
2Q1

∂s∂υ2
− ek−r(T−t) ∂

2Q2
∂s∂υ2

]
+

+ 1
2 (υ1 + υ2 + φt)

[
esQ1 + 2es∂Q1

∂s
+ es∂

2Q1
∂s2 − ek−r(T−t)∂

2Q2
∂s2

]
+

+ 1
2Λ2

1υ1

[
es∂

2Q1
∂υ2

1
− ek−r(T−t)∂

2Q2
∂υ2

1

]
+

1
2Λ2

2υ2

[
es∂

2Q1
∂υ2

2
− ek−r(T−t)∂

2Q2
∂υ2

2

]
− resQ1 + rek−r(T−t)Q2 = 0,
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that is

es∂Q1
∂t
− ek−r(T−t)∂Q2

∂t
+ r

[
es∂Q1

∂s
− ek−r(T−t)∂Q2

∂s

]
+

+ 1
2 (υ1 + υ2 + φt)

[
ek−r(T−t)∂Q2

∂s
+ es∂Q1

∂s
+ es∂

2Q1
∂s2 − ek−r(T−t)∂

2Q2
∂s2

]
+

+ κ1 (ω1 − υ1)
[
es∂Q1
∂υ1

− ek−r(T−t)∂Q2
∂υ1

]
+ κ2 (ω2 − υ2)

[
es∂Q1
∂υ2

− ek−r(T−t)∂Q2
∂υ2

]
+

+ ρ1Λ1υ1

[
es∂Q1
∂υ1

+ es ∂
2Q1

∂s∂υ1
− ek−r(T−t) ∂

2Q2
∂s∂υ1

]
+

+ ρ2Λ2υ2

[
es∂Q1
∂υ2

+ es ∂
2Q1

∂s∂υ2
− ek−r(T−t) ∂

2Q2
∂s∂υ2

]
+

+ 1
2Λ2

1υ1

[
es∂

2Q1
∂υ2

1
− ek−r(T−t)∂

2Q2
∂υ2

1

]
+ 1

2Λ2
2υ2

[
es∂

2Q1
∂υ2

2
− ek−r(T−t)∂

2Q2
∂υ2

2

]
= 0,

and then

es
{
∂Q1
∂t

+
[
r + 1

2 (υ1 + υ2 + φt)
]
∂Q1
∂s

+ [κ1 (ω1 − υ1) + ρ1Λ1υ1] ∂Q1
∂υ1

+

+ [κ2 (ω2 − υ2) + ρ2Λ2υ2] ∂Q1
∂υ2

+ ρ1Λ1υ1
∂2Q1
∂s∂υ1

+ ρ2Λ2υ2
∂2Q1
∂s∂υ2

+

+1
2 (υ1 + υ2 + φt)

∂2Q1
∂s2 + 1

2Λ2
1υ1

∂2Q1
∂υ2

1
+ 1

2Λ2
2υ2

∂2Q1
∂υ2

2

}
+

− ek−r(T−t)
{
∂Q2
∂t

+
[
r − 1

2 (υ1 + υ2 + φt)
]
∂Q2
∂s

+ κ1 (ω1 − υ1) ∂Q2
∂υ1

+

+ κ2 (ω2 − υ2) ∂Q2
∂υ2

+ ρ1Λ1υ1
∂2Q2
∂s∂υ1

+ ρ2Λ2υ2
∂2Q2
∂s∂υ2

+

+1
2 (υ1 + υ2 + φt)

∂2Q2
∂s2 + 1

2Λ2
1υ1

∂2Q2
∂υ2

1
+ 1

2Λ2
2υ2

∂2Q2
∂υ2

2

}
= 0.

A standard separation argument decomposes the last PDE into a pair of PDEs for Q1 and
Q2, both of the form (4.36).

Also the characteristic functions of the two probabilities fj (t, s, υ1, υ2, z), j = 1, 2, are solu-
tions of the same PDEs, but with terminal conditions given by

fj (T, sT , v1,T , v2,T , z) = eizsT , j = 1, 2. (4.56)

Since the PDEs (4.36) are linear in the state variables υ1 and υ2 and do not contain the state
variable s, while the terminal conditions (4.56) are log-linear in s and do not depend on υ1 nor
υ2, we have

fj (t, s, υ1, υ2, z) = eAj(τ,z)+Bj(τ,z)υ1+Cj(τ,z)υ2+izs, j = 1, 2, (4.57)

where τ = T − t. Then, the functions τ → Aj (τ, z), τ → Bj (τ, z) and τ → Cj (τ, z), j = 1, 2,
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are solutions of the ODEs
∂Aj (τ, z)

∂t
= −izr − κ1ω1Bj − κ2ω2Cj −

1
2z (iaj − z)φt

A (0, z) = 0
, (4.58)


∂Bj (τ, z)

∂t
= −1

2z (iaj − z) + [κ1 − (bj + iz) ρ1Λ1]Bj −
1
2Λ2

1B
2
j

B (0, z) = 0
, (4.59)

and 
∂Cj (τ, z)

∂t
= −1

2z (iaj − z) + [κ2 − (bj + iz) ρ2Λ2]Cj −
1
2Λ2

2C
2
j

C (0, z) = 0
, (4.60)

for fixed τ ≥ 0 and z. Once again, the ODE (4.59) is the same Riccati equation that we find in
the original Heston [97] model and, from the previous section, we know that its solution is given
by (4.41). Since the ODE (4.60) has the same form of (4.59), then its solution is

Cj (τ, z) = cj,2 + dj,2
Λ2

2

1− edj,2τ

1− gj,2edj,2τ
, j = 1, 2, (4.61)

where

cj,2 = κ2 − (bj + iz) ρ2Λ2, dj,2 =
√
c2
j,2 − z (iaj − z) Λ2

2, gj,2 = cj,2 + dj,2
cj,2 − dj,2

.

Substituting (4.41) and (4.61) into (4.39), we can solve it by direct integration, that is

Aj (τ, z) =
∫ T

t
[riz + κ1ω1Bj (u, z)] du+ κ2ω2

∫ T

t
Cj (u, z) du+ 1

2z (iaj − z)
∫ T

t
φudu.

The sum between the first and the third integral yields Equation (4.42), which we have already
computed for the one-factor Heston++ model. On the other hand, the second integral gives a
solution similar to the second addend of (4.42), apart from different coefficients. Hence, we have

Aj (τ, z) = rizτ + κ1ω1
Λ2

1

[
(cj,1 + dj,1) τ − 2 ln

(
1− gj,1edj,1τ

1− gj,1

)]
+

+ κ2ω2
Λ2

2

[
(cj,2 + dj,2) τ − 2 ln

(
1− gj,2edj,2τ

1− gj,2

)]
+ 1

2z (iaj − z)
∫ T

t
φudu. (4.62)

Note that, if φt = 0, we then obtain the original two-factor version of the Heston model.
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Therefore, we can write

Aj (τ, z) = AH2
j (τ, z) + 1

2z (iaj − z)
∫ T

t
φudu,

Bj (τ, z) = BH
j (τ, z) = BH2

j (τ, z) ,

Cj (τ, z) = CH2
j (τ, z) .

Details 5. The relevant partial derivatives of (4.57) are given by

∂fj
∂t

=
(
∂Aj
∂t

+ ∂Bj
∂t

υ1 + ∂Cj
∂t

υ2

)
fj ,

∂fj
∂s

= izfj ,
∂fj
∂υ1

= Bjfj ,

∂fj
∂υ2

= Cjfj ,
∂2fj
∂s∂υ1

= izBjfj ,
∂2fj
∂s∂υ2

= izCjfj ,

∂2fj
∂s2 = −z2fj ,

∂2fj
∂υ2

1
= B2

j fj ,
∂2fj
∂υ2

2
= C2

j fj ,

with j = 1, 2. Substituting them into the PDE, we obtain

(
∂Aj
∂t

+ ∂Bj
∂t

υ1 + ∂Cj
∂t

υ2

)
fj +

[
r + 1

2aj (υ1 + υ2 + φt)
]
izfj+

+ [κ1ω1 − (κ1 − bjρ1Λ1) υ1]Bjfj + [κ2ω2 − (κ2 − bjρ2Λ2) υ2]Cjfj+

+ izρ1Λ1υ1Bjfj + izρ2Λ2υ2Cjfj −
1
2 (υ1 + υ2 + φt) z2fj + 1

2Λ2
1υ1B

2
j fj + 1

2Λ2
2υ2C

2
j fj = 0,

that is

∂Aj
∂t

+ izr + 1
2 izajφt + κ1ω1Bj + κ2ω2Cj −

1
2z

2φt+

+
[
∂Bj
∂t

+ 1
2 izaj − (κ1 − bjρ1Λ1)Bj + izρ1Λ1Bj −

1
2z

2 + 1
2Λ2

1B
2
j

]
υ1+

+
[
∂Cj
∂t

+ 1
2 izaj − (κ2 − bjρ2Λ2)Cj + izρ2Λ2Cj −

1
2z

2 + 1
2Λ2

2C
2
j

]
υ2 = 0.

A standard separation argument decomposes this equation into a triple of ODEs of the form
(4.58), (4.59) and (4.60).

The two probabilities in (4.52) and the corresponding option price can be obtained numeri-
cally by the inverse transforms

Qj (t, s, υ1, υ2, k) = 1
2 + 1

π

∫ ∞
0

R

[
e−izkfj (t, s, υ1, υ2, z)

iz

]
dz, j = 1, 2. (4.63)

Furthermore, the expected risk-neutral integrated variance in the two-factor Heston++
model can be rewritten as

IVt (T1, T2) = IV H2
t (T1, T2) + 1

T2 − T1
Iφ (T1, T2) , (4.64)
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that is, the sum of the standard two-factor Heston integrated variance plus the contribution of
the deterministic part of the variance, given by the average of φt over [T1, T2].

4.2.3 Two factors with jumps

The same idea can be used with multi-factor affine models with jumps, as those proposed by
Bates [37] and [38] and Duffie, Pan and Singleton [79]. For instance, if we need a two-factor
model with jumps, the risk-neutral dynamics of the model would read

dSt =
(
r − k̄Jλ

)
Stdt+

√
v1,t + φtStdW

S
1,t +√v2,tStdW

S
2,t + kJStdNt, (4.65)

dvj,t = κj(ωj − vj,t)dt+ Λj
√
vj,tdW

v
j,t, j = 1, 2, (4.66)

where
(
WS

1,t

)
t≥0
≡ WS

1,t,
(
WS

2,t

)
t≥0
≡ WS

2,t,
(
W v

1,t

)
t≥0
≡ W v

1,t and
(
W v

2,t

)
t≥0
≡ W v

2,t are Wiener
processes and (Nt)t≥0 ≡ Nt is an independent Poisson process, with constant intensity λ and
random jump size kJ , distributed as

log (1 + kJ) ∼ N
(

log
(
1 + k̄J

)
− 1

2σ
2
J , σ

2
J

)
. (4.67)

Risk-neutral correlation between the driving Wiener processes are all zero, except

corrQ
(
dWS

1,t, dW
v
1,t

)
= ρ1

√
v1,t

v1,t + φt
, corrQ

(
dWS

2,t, dW
v
2,t

)
= ρ2. (4.68)

It is worth noting that with φt = 0, the model (4.65)-(4.66) includes, as particular cases, both
a simplified version of Bates [38] with constant λ and the model of Christoffersen, Heston and
Jacobs [67] with jumps, as in Bates [37].

In the multi-factor model with jumps, the log-price st satisfies the SDE

dst =
[
r − k̄Jλ−

1
2 (v1,t + v2,t + φt)

]
dt+

√
v1,t + φtdW

S
1,t +√v2,tdW

S
2,t + kJdNt. (4.69)

Using affinity of the model, the option pricing formula is still of the form

C (t, st, v1,t, v2,t, k) = estQ1 (t, s, υ1, υ2, k)− ek−r(T−t)Q2 (t, s, υ1, υ2, k) , (4.70)

where, for every s, v1, v2 > 0,

Q1 (t, s, υ1, υ2, k) = QS [sT ≥ k | st = s, v1,t = υ1, v2,t = υ2]

Q2 (t, s, υ1, υ2, k) = QT [sT ≥ k | st = s, v1,t = υ1, v2,t = υ2] ,

and the two probabilities have the same meaning as before. Of course, we have

Qj (t, s, υ1, υ2, k) = 1
2 + 1

π

∫ ∞
0

R

[
e−izkfj (t, s, υ1, υ2, z)

iz

]
dz, j = 1, 2, (4.71)
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where fj (t, s, υ1, υ2, z), j = 1, 2, are the characteristic functions of the two probabilities. Due to
the affinity of the model, their closed form expressions are obtained by the following steps4:

Step 1 Using independence between the continuous part of the model and its jump component,
we first factor

fj (t, s, υ1, υ2, z) = f0
j (t, s, υ1, υ2, z) fJj (t, z) , j = 1, 2, (4.72)

where f0
j (t, s, υ1, υ2, z), j = 1, 2, are the characteristic functions in the no-jump case, that

is λ = 0, and where

fJj (t, z) = exp
{
λ (T − t)hj

[
ei(log(1+k̄J )+ 1

2ajσ
2
J)z− 1

2σ
2
Jz

2 − 1
]}
, j = 1, 2,

with h1 = log(1 + k̄J), h2 = 1, a1 = 1, a2 = −1, are the contributions of the jump
component.

Step 2 Due to the affinity of the model, the no-jump characteristic functions have the form

f0
j (t, s, υ1, υ2, z) = eAj(τ,z)+Bj(τ,z)υ1+Cj(τ,z)υ2+izs, j = 1, 2, (4.73)

where τ = T − t. Then, the functions τ → Aj (τ, z), τ → Bj (τ, z) and τ → Cj (τ, z),
j = 1, 2, are solutions of the ODEs, for fixed τ ≥ 0 and z,

∂Aj (τ, z)
∂t

= −izr − κ1ω1Bj − κ2ω2Cj −
1
2z (iaj − z)φt

A (0, z) = 0
, (4.74)


∂Bj (τ, z)

∂t
= −1

2z (iaj − z) + [κ1 − (bj + iz) ρ1Λ1]Bj −
1
2Λ2

1B
2
j

B (0, z) = 0
, (4.75)

and 
∂Cj (τ, z)

∂t
= −1

2z (iaj − z) + [κ2 − (bj + iz) ρ2Λ2]Cj −
1
2Λ2

2C
2
j

C (0, z) = 0
, (4.76)

where a1 = 1, a2 = −1, b1 = 1, b2 = 0.

Step 3 Since ODEs (4.75)-(4.76) have the same form of (4.59)-(4.60), we know that their solutions
are given by Equations (4.41) and (4.61), respectively. Thus, substituting (4.41) and (4.61)
into (4.74), we solve it by direct integration and we obtain

Aj (τ, z) =
∫ T

t
[izr + κ1ω1Bj (u, z)] du+ κ2ω2

∫ T

t
Cj (u, z) du+ 1

2z (iaj − z)
∫ T

t
φudu.

The sum of the first and the third integral yields a result similar to (4.42) we already

4See also Bates [38] and Christoffersen, Heston and Jacobs [67]
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computed for the univariate Heston++ model, whereas the second integral is similar to
the second addend of (4.42). Therefore, we have

Aj (τ, z) = rizτ + κ1ω1
Λ2

1

[
(cj,1 + dj,1) τ − 2 ln

(
1− gj,1edj,1τ

1− gj,1

)]
+

+ κ2ω2
Λ2

2

[
(cj,2 + dj,2) τ − 2 ln

(
1− gj,2edj,2τ

1− gj,2

)]
+ 1

2z (iaj − z)
∫ T

t
φudu. (4.77)

As a final remark, for φt = 0 and no jumps, that is λ = 0, we obtain the Christoffersen,
Heston and Jacobs [67] model and, then, we can write

Aj (τ, z) = AH2
j (τ, z) + 1

2z (iaj − z)
∫ T

t
φudu,

Bj (τ, z) = BH
j (τ, z) = BH2

j (τ, z) ,

Cj (τ, z) = CH2
j (τ, z) ,

where the superscript H2 is used to denote the corresponding functions of that model,
which depend on t and T only trough their difference τ . Finally, we have

f0
j (t, s, υ1, υ2, z) = fH2

j (t, s, υ1, υ2, z) e
1
2 z(aji−z)Iφ(t,T ), j = 1, 2.

4.3 Application to FX options

We calibrate the Heston++ model to a sample of FX option prices on the EUR/USD currency.
To this end, we just need to replace the risk-free interest rate r with rd− rf in Equation (4.24),
where rd is the domestic interest rate and rf is the foreign rate (see Garman and Kohlhagen
[91]), and then discount at the domestic rate, that is, the Euro in our case.

The data set is composed of daily mid-quotes from 12 December 2005 to 12 November 2012,
for a total of 1,806 days. Each day, we have options quoted for 10 maturities, ranging from one
week to two years, and for 5 strikes: at-the-money, in-the-money and out-of-the-money at 10∆
and 25∆. Hence, in total our daily observed volatility surface consists of 50 observations. As a
benchmark model, we fit the standard Heston [97] model its multivariate counterparts, obtained
setting φt = 0. Thus, we fit one-factor models, labelled as 1f + + and 1f, two-factor models, 2f
+ + and 2f, and two-factor models with jumps, 2fj + + and 2fj.

When fitting the Heston++ model, Equation (4.34) shows that what is actually needed are
the integrals Iφ (t, T ). We treat these integrals as additional parameters, one for each maturity,
that is 10, in this empirical exercise. Furthermore, these additional parameters are constrained
to be positive. An alternative choice could be imposing a parametric structure to the function
Iφ (t, T ), for example with the Nelson-Siegel-Svensson parameterization.

We fit the model by minimizing the weighted mean square error on volatilities. Weights are
used to increase the relative importance of short maturities with respect to longer ones. With
no weights, we would obtain a lower mean square error error but a higher maximum error. In
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first volatility factor second volatility factor jump component
κ1 ω1 Λ1 ρ1 v0,1 κ2 ω2 Λ2 ρ2 v0,2 k̄J σJ λ

1f 18.213 0.022 0.921 -0.158 0.015 - - - - - - - -
(32.644) (0.024) (0.517) (0.209) (0.015)

1f + + 15.174 0.020 1.277 -0.187 0.012 - - - - - - - -
(27.800) (0.024) (1.135) (0.253) (0.012)

2f 3.748 0.018 0.729 -0.127 0.009 0.901 0.015 0.983 -0.367 0.006 - - -
(4.047) (0.061) (1.401) (0.373) (0.011) (0.963) (0.038) (1.166) (0.415) (0.006)

2f + + 3.746 0.017 0.903 -0.149 0.008 0.882 0.018 1.217 -0.372 0.006 - - -
(4.696) (0.061) (2.027) (0.402) (0.010) (1.006) (0.044) (1.707) (0.436) (0.006)

2fj 3.704 0.018 0.762 -0.087 0.009 0.873 0.014 0.994 -0.287 0.007 0.295 0.630 0.018
(4.326) (0.055) (1.457) (0.384) (0.011) (0.972) (0.035) (1.234) (0.407) (0.006) (0.765) (2.844) (0.093)

2fj + + 3.695 0.016 0.884 -0.114 0.008 0.875 0.016 1.200 -0.288 0.006 0.281 0.695 0.017
(4.621) (0.054) (1.592) (0.406) (0.010) (1.308) (0.037) (1.709) (0.422) (0.006) (0.774) (3.217) (0.086)

Table 4.2: Summary statistics for all six models parameters. Parameters are for yearly units
time.
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Figure 4.1: Daily relative fitting error of the competing models. Quotes are in terms of implied
volatilities.

fact, if the goal of the optimization was the minimization of the pricing error alone, then the
weight matrix would be the identity. In practice, the decision about the weights to use depends
on specific needs. Summary statistics of daily estimated parameters is provided in Table 4.2.

Figure 4.1 shows the relative pricing error in terms of volatility on all 50 × 1, 806 options.
It is striking to note that even the 1f + + model performs better than the 2fj model: the
deterministic shift extension increases the flexibility of affine models dramatically. When the 2fj
++ model is used, only 0.67% (resp. 0.05%) of the options have a relative pricing error greater
than 5% (resp. 8%).

Figure 4.2 shows the relative, with respect to volatility, daily Root Mean Square Error
(RMSE) when pricing market data, using the bivariate models with jumps. In terms of quoted
volatility, Heston++ models can reduce the average calibration error substantially: from 3.60%
of 1f to the 2.13% of 1f + +; from 3.01% of 2f to 1.51% of 2f + +; and from 2.64% of 2fj to
1.26% of 2fj + +. The advantage of the Heston++ is particularly pronounced in the middle of
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Figure 4.2: Daily relative Root Mean Square Error for 2fj + + and 2fj models.

the credit crunch crisis, as shown below.
Figure 4.3 shows a market day in which the term structure of at-the-money volatilities is

humped. Standard affine models cannot reproduce this shape and, as a consequence, they fail
in fitting the volatility surface. The fit across maturities is continuously above and below the
observed market data, in the attempt of minimizing the overall pricing error. On the contrary,
the Heston++ model with one factor, which is designed exactly to capture the term structure,
provides an excellent fit across all maturities, with a negligible pricing error.

Conversely, in Figure 4.4 we show a day in which one factor is not enough. The error is almost
totally driven by short-term options, which present no skew at all, in contrast to a prominent
skew at higher maturity. As in the traditional Heston [97] model, in the Heston++ model
the skew is controlled mainly by a single parameter, that is the leverage coefficient. Hence, if
the skew, or the convexity, changes across maturities, the solution consists in adding a second
stochastic factor and jumps.

Figure 4.5 presents the same day of Figure 4.4, but for the multifactor case. We can see
that both Heston and Heston++ fit better than the previous case, thanks to the addition of a
second stochastic factor. Roughly speaking, the Root Mean Square Error decreases from 16.23%
to 11.40% for the standard Heston and from 5.64% to 3.82% for Heston++. Nevertheless, even
with a second factor, the high skewness of the long-term maturities compromises the fit at lower
maturities. Hence, this is a proper case in which jumps are needed to be considered.

Figure 4.6 shows the fit of the two-factor Heston++ model with jumps described in Section
4.2.3, together with the two-factor Heston model with jumps, that is, the Heston++ model
with φt = 0, used as a benchmark. Despite the fact that the two-factor Heston model, used for
example by Bates [38], has 13 parameters, it still cannot fit the volatility surface, since it cannot
account for the term structure of ATM volatilities. The Heston++ model, designed purposely
to fit ATM volatilities automatically, manages to fit all strikes and maturities with a maximum
relative error of 3.59%. Adding a deterministic shift extension to the multifactor models with
jumps comes at no additional computational cost, as shown here: calibration on a volatility
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surface requires well less than one minute on a laptop bought in 2009.
Thus, the point we want to highlight here is the following.

Remark 4.2. Whatever the number of purely stochastic factors you need to introduce in your
model in order to account for time-varying skewness and/or time-varying convexity in a panel of
options, adding a deterministic shift will always provide an automatic fit of the term structure
at no additional computational cost, so that the factors or jumps added can be effectively used
for what they are meant.

Finally, Figures 4.7, 4.8, 4.9 and 4.10 show the daily estimates of all the parameters obtained
from the calibration of the six models compared. Furthermore, Figure 4.11 display the daily
estimates of the vector Iφ(t, T ), as defined in Equation (4.30), for all the three specifications of
the Heston++ model.
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Figure 4.3: A comparison between Heston and Heston++ with one factor on July 3th, 2009
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Figure 4.4: A comparison between Heston and Heston++ with one factor on December 28th,
2011
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Figure 4.5: A comparison between multifactor Heston and Heston++ on December 28th, 2011
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Figure 4.6: A comparison between multifactor Heston and Heston++ with jumps on December
28th, 2011
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Figure 4.7: Daily parameters series for Heston and Heston++ models with one factor
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Figure 4.8: Daily parameters series of the first volatility factor (left) and second volatility factor
(right) for multi-factor Heston and Heston++
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Figure 4.9: Daily parameters series of the first volatility factor (left) and second volatility factor
(right) for affine multi-factor Heston and Heston++ with price jumps
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Figure 4.10: Daily parameters series of the jump component for affine multi-factor Heston and
Heston++ with price jumps
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Figure 4.11: Daily estimates surfaces of the vector with components the integrals of φt for the
one factor Heston++ (top), two-factor Heston++ (middle) and two-factor with price jumps
Heston++ (bottom) models
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