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The most exciting phrase to hear in science, the one that her-

alds new discoveries, is not “Eureka!” (I found it!) but “That’s

funny...” Isaac Asimov
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CHAPTER

ONE

Introduction

The process by which a linear sequence of amino acids folds into a unique functional

three-dimensional protein is one of the most remarkable examples of the effect of natural

selection on biological molecules. The main information for protein folding is contained

in the amino acid sequence that is subject to evolutionary pressure to adjust folding

rates and product stability according to physiological needs. Only correctly folded

proteins provide selectivity and diversity in their functions and have long-term stability

in crowded biological environments. The failure to fold correctly, or to remain correctly

folded, is the origin of a wide variety of pathological conditions, which may lead to

aberrant degenerative diseases such as Alzheimer’s and Prion diseases. These illnesses

are associated with the aggregation of uncorrectly folded, or “misfolded”, structures

whose growth may lead to amyloid fibrils and plaques formation, that are usually found

in the damaged organs and tissues. Questions that still remain open are how proteins

are able to find their unique native states in such a robust and fast way and why a few

of them, such as the prion protein or the Aβ peptide, under certain, almost unknown,

conditions escape the quality-control system of the cell, leading to amyloid diseases.

In the present thesis work the complex mechanism of protein folding and the nature

of misfolding and its links with disease are explored with computational methods, in

particular using molecular dynamics (MD1) simulations.

The free energy of the native state of a correctly folded protein is only slightly lower

than that of denatured and misfolded states under physiological conditions, thus it is

not favoured by a great thermodynamic stabilization. Nevertheless, the total number

of possible conformations of a polypeptide chain is so large that it would take an

astronomical length of time to find one particular structure by means of a systematic

search of the whole conformational space. Hence, it becomes evident that only a very

small number of all possible conformations needs to be sampled during the folding

1A complete list of abbreviations used in the present thesis work is provided at the end of the
manuscript
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2 Chapter 1

process, but how this is achieved is still an open question. To explain the way a protein

restricts its conformational search, Levinthal1 postulated the existence of a series of

mandatory steps between specific partially folded states toward the native state. This

classical view of folding “pathways” has been extended in a “new view”, based on

statistical mechanics and polymer physics,2−5 that emphasizes the ensemble nature of

protein conformational states. The new view invokes the concept of an energy landscape

for each protein, describing the free energy of the polypeptide chain as a function of

its conformational degrees of freedom (Figure 1.1). To enable a protein to fold rapidly

and efficiently, the landscape should have the shape of a funnel since, in such a way,

the conformational space accessible to the polypeptide chain is reduced as the native

state is approached. In essence the high degree of disorder of the polypeptide chain is

reduced as folding progresses, as the more favourable enthalpy associated with stable

native-like interactions can offset the decreasing entropy as the structure becomes more

ordered. On such an energy landscape, a polypeptide chain is able to reach the native

state by multiple routes, without the imposition of the same pathway to be followed by

every molecule. In a similar scenario, misfolding processes may take place as well: one

of the local minimum of the landscape could act as a folding trap, irreversibly capturing

the polypeptide chain in a misfolded state and eventually leading to amyloidogenesis.

The study of protein folding is now at the stage where theory and experiment can

together make rapid progress toward an understanding of this complex process. The

structural transitions taking place during folding can be investigated in vitro by a

variety of experimental techniques, ranging from optical methods, such as UV Circu-

lar Dichroism (CD) and time resolved small angle X-ray scattering (SAXS), to NMR

spectroscopy,5 some of which can now even be used to follow the behaviour of single

molecules.7 The advent of continuous-flow rapid-micromixing techniques,8, 9 rapid laser-

induced temperature-jump heating methods,10 redox-triggered folding experiments,11

and NMR lineshape analysis 12 is beginning to allow even direct examination of the

earliest events in protein folding (down to nanoseconds) and permitting more direct

comparisons to theories and models of protein folding.13

Theory too has developed both to address the global character of folding thermo-

dynamics and kinetics and to provide microscopic details.14, 15 A range of theoretical

studies, particularly involving computer simulation techniques,15 have been largely used

to address these questions and MD simulations is one of the most used computational

methods. The major problem with MD simulations, in particular when equilibrium

thermodynamic properties have to be calculated, is due to the conformational sampling

efficiency; even in the 1-microsecond simulation of a 36-residue protein,16 one of the

longest simulations so far afforded, the sampled space explored represents a small frac-

tion of the available conformational space. The problem of adequate sampling is also

present in systems with a lower complexity, such as peptides, but is more tractable than

for large proteins. Experimentally, peptides fold at very fast rates, requiring probing
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Figure 1.1: Schematic representation of the folding free energy landscape of a protein
where the free energy is displayed as a function of the topological arrangements of the
atoms. Adapted from Schultz.6

on the nanosecond-microsecond time resolution, hence offering a unique opportunity to

bridge the gap between theoretical and experimental understanding of protein folding.

Only very recently long time scale unbiased MD simulations in the canonical ensemble

provided the folding of peptides into α helix17 or very short β structures.18

Apart from the latter exceptions, the development and implementation of new sam-

pling algorithms have become necessary to overcome the limitations of insufficient sam-

pling of the equilibrium thermodynamics and kinetics of folding processes. Concep-

tually, three categories of techniques can be distinguished: (i) those that simplify the

molecular models involved, thus gaining computation time by neglecting details, (ii)

those that aim to mimic biological systems as realistically as possible and focus on

sophisticated (mathematical) methods to enhance computational efficiency and (iii)

those that use thermal unfolding simulations to infer informations on folding, relying

on microscopic reversibility. The most relevant methods will be discussed in Chapter

2.

For what concerns protein misfolding, the insoluble and massive character of fibrils
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rules out the possibility to investigate their formation and their structure at atomic

detail with conventional experimental techniques. Using techniques such as electron

microscopy and atomic force microscopy,19−23 the analyses of amyloid deposits show

remarkable ultrastructural similarity of fibrils from different sources (e.g. from the

pancreas of type II diabetes patients as compared to the brain of Alzheimer’s disease

patients). Furthermore, X-ray diffraction patterns of several fibrils show a predomi-

nant β-sheet structure24 and it is suggested by spectroscopic techniques that an α to

β conformational transition plays a key role in promoting aggregation.25−29 However,

understanding the conformational transitions that trigger aggregation and amyloido-

genesis of otherwise soluble proteins and peptides at atomic resolution would be of

fundamental relevance for the design of effective therapeutic agents against amyloid

related disorders. In such a case the use of computational approaches becomes very

useful and precious.

In the present thesis work the transition from an ideal α-helix to a β-hairpin con-

formation of two well studied amyloidogenic peptides, the 14 residues H1 peptide from

prion protein and the Aβ(12–28) fragment from the Aβ(1-42) peptide responsible for

Alzheimer disease, is revealed, for the first time, by long time scale, all atom MD sim-

ulations in explicit water solvent (Chapter 3). Due to the huge time scale afforded

by our simulations, we were also able to provide a thermodynamic and kinetic char-

acterization of the folding process of the H1 peptide in water solution (Chapter 4).

Moreover, the initial self-assembly stages of 26 replicas of another fibrillogenic peptide,

the 6 residues core-recognition motif of the type II diabetes associated islet amyloid

polypeptide, is studied by MD simulations and forms the subject of Chapter 5. These

studies provide a description of the molecular determinants involved in fibril formation,

in terms of atomic details of the α-β conformational transition and of the structure of

nascent aggregates.

For what concerns the study of more complex molecular systems, such as proteins,

the development of enhanced sampling algorithms is necessary to overcome the limita-

tions of insufficient sampling. The so-called Essential Dynamics Sampling (EDS) tech-

nique will be here described in detail (section 2.3.2) since it is applied in the present

thesis to the study of the folding process of an experimentally well studied protein, the

cytochrome c (Chapter 6), and to the accessibility of the closed and open domain

conformations of an important enzyme, the citrate synthase (Chapter 7).



CHAPTER

TWO

Methods for Molecular Simulations

2.1 Introduction

In this chapter some basic concepts and methodologies of molecular simulations are

introduced with a particular attention devoted to the methods relevant to this the-

sis. Several books on these subjects can be found with a deeper insight into these

problems.30−32 As the method used in the present thesis to study the properties of large

molecular systems, like macromolecules in solution, is classical Molecular Dynamics

(MD), a very brief description of its basic principles is presented (section 2.2), with a

particular attention to the techniques devoted to the study of folding processes (section

2.3) and to the methods employed to evaluate free energy changes from MD simulations

(section 2.4).

2.2 Classical Molecular Dynamics

The aim of computer simulations of molecular systems is to compute macroscopic be-

havior from microscopic interactions. A model of the real world is constructed, both

measurable and unmeasurable properties are computed and the former are compared

with experimentally determined properties. If the model used is validated by the com-

parison, it could even be used to predict unknown or unmeasurable quantities. A

theoretical treatment of the motions and interactions of molecules should be founded,

rigorously speaking, on quantum mechanics principles, due to the microscopic nature of

these objects. Unfortunately, first-principle approaches are often unpractical because

they require very large computational facilities and they are definitely prohibitive for

systems containing thousands of atoms. Hence, a certain level of approximation be-

comes necessary and it should be chosen in such a way that those degrees of freedom

that are essential to a proper evaluation of the quantity or property of interest can be

5



6 Chapter 2

sufficiently sampled. When excluding chemical reactions, low temperatures or details

of hydrogen atoms motion, it is relatively safe to assume that the system is governed

by the laws of classical mechanics.

In classical MD, a trajectory (configurations as a function of time) of the molecular

system is generated by simultaneous integration of Newton’s equations of motions for

all atoms in the system:

d2ri

dt2
= m−1

i F i (2.1)

F i = −∂V (r1, . . . , rN)

∂ri

(2.2)

The force acting on atom i is denoted by F i, the mass by mi and time is de-

noted by t. MD simulations require calculation of the gradient of the potential energy

V (r1, . . . , rN), which therefore must be a differentiable function of the atomic coordi-

nates ri. This potential energy function, or force field, is called an effective interaction

function since the average effect of the omitted (electronic) degrees of freedom has

been incorporated in the interaction between the (atomic) degrees of freedom explicitly

present in the model.

The choice of molecular model and force field is essential to a proper prediction

of the properties of a system. Therefore, it is of great importance to be aware of the

fundamental assumptions, simplifications and approximations that are implicit in the

various types of models used in the literature.

2.2.1 Force Field Models

A huge variety of force fields is currently used in the molecular dynamics community,

sometimes differing for minor changes, e.g. CHARMM,33 AMBER,34 GROMOS.35 A

typical molecular force field, or effective potential, for a system of N atoms with masses

mi (i = 1, 2, . . . , N) and Cartesian position vectors ri has the following form:

V (r1, r2, . . . , rN) =
∑

bonds

1

2
Kb(b− beq)

2 +
∑

angles

1

2
Kθ(θ − θeq)

2

+
∑

dihedrals

Kφ[1 + cos(nφ− δ)] +
∑

imp.dihedrals

1

2
Kξ(ξ − ξeq)

2

+
∑
pairs

4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]

+
∑
pairs

qiqj
4πε0rij

(2.3)

The first term represents the covalent bond stretching interaction between two atoms

linked by a harmonic potential where beq is the minimum energy bond length and Kb
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is the force constant changing with the particular bond type. The second term is a

three-body interaction corresponding to the valence angle, θ, deformation expressed

as a harmonic potential where θeq is the equilibrium valence angle and Kθ the force

constant. The third and fourth terms are used for the (four-body) dihedral angle

interactions: a harmonic term for improper dihedral angles, ξ, that are not allowed to

make transitions, i.e. to keep the aromatic rings planar, and a sinusoidal term for all

the other dihedral angles, φ. The last two terms are sums over the pairs of non-bonded

atoms and represent the effective non-bonded interactions expressed in terms of van

der Waals and Coulombic interactions between atoms i and j at a distance rij. The

parameters εij and σij are the typical constants defining the Lennard-Jones potential,

qi and qj are the atom charges and ε0 is the dielectric constant in vacuum.

The parameters used in the force field (Eq. 2.3) can be determined in different ways.

Generally two main approaches are followed. The first one is to fit them with results

obtained from ab initio calculations on small molecular clusters. The alternative way is

to fit the force field parameters to experimental data, like crystal structures, energy and

lattice dynamics, infrared or X-ray data on small molecules, liquid properties like density

and enthalpy of vaporization, free energy of solvation, nuclear magnetic resonance data,

etc. Whatever method is used, the resulting model is far to be universal. It is worth

to note that every force field is usually well suited for specific general conditions, i.e.

particular thermodynamic conditions (temperature, density, pressure, etc.) and also

boundary conditions. Moreover, they are optimized for specific classes of molecules,

such as inorganic molecules, organic molecules, biomolecules (DNA, proteins, lipids),

etc.

2.2.2 The Boundary Conditions

An important characteristic of the molecular dynamics simulations is the way in which

the boundaries are treated. Due to computational limits, a typical simulated system

contains 104−105 atoms, and then is quite small compared to macroscopic matter. This

means that, if the molecules are arranged in a cubic box, a relatively great part of them

will lie on the surface and will experience quite different forces from molecules in the

bulk. The consequence of the finite size of the system is that the boundary conditions

may affect seriously the results of the simulations, especially when the system of interest

is a homogeneous liquid or a solution. Usually, periodic boundary conditions (PBC) 30

are adopted to reduce the surface effects. This technique consists on simulating the

system in a central cubic box surrounded by an infinite number of copies of itself.

During the simulation, the molecules in the original box and their periodic images

move exactly in the same way. Hence, when a molecule leaves the central box one

of its images will enter through the opposite side. As a result, there are no physical

boundaries neither surface molecules. Note that other shapes of the box can be used
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as the truncated octahedron or the rhombic dodecahedron.

2.2.3 Integration of Motion Equations

Newton’s equations of motion, a second-order differential equation, can be written as

two first-order differential equations for the particle positions ri(t) and velocities vi(t)

respectively:

dvi(t)

dt
= m−1

i F i (2.4)

dri(t)

dt
= vi(t) (2.5)

A standard method for solution of the previous ordinary differential equations is

the finite difference approach. The general idea is the following. Given the molecular

positions, velocities and forces at time t, we attempt to obtain the positions, velocities

and forces at a later time t + δt, to a sufficient degree of accuracy. The equations are

solved on a step-by-step basis; the choice of the time interval δt will depend somewhat

on the method of solution, but δt will be significantly smaller than the typical time

taken for a molecule to travel its own length.

Many different algorithms fall into the general finite difference pattern, like Verlet,

and its computational efficient variant leap-frog,36, 37 Beeman 38 or the Gear predictor-

corrector.39

2.2.4 Enhanced efficiency methods

Since the first published application of MD to biomolecular systems,40 a little more than

20 years ago, people have devised methods to increase the time scales of MD simulations.

When Newton’s equations of motion are integrated, the limiting factor that determines

the time step that can be taken is the highest frequency that occurs in the system. In

solvated biological macromolecules, the vibrations of bonds involving hydrogen atoms

form the highest frequency vibrations. The bond stretching frequency of an O-H bond

is typically about 104 Hz, so the average period would be of the order of 10 fs.41 This

limits the time-step to be taken in MD simulations to about 0.5 fs (a rule of thumb

exists that states that for a reasonable sampling of a periodic function, samples should

be taken at least twenty times per period). The introduction of a method to constrain

these bonds (or, in fact, all covalent bonds) allowed to increase the time step to a typical

value of 2 fs (SHAKE).42 Since these bond vibrations are practically uncoupled from

all other vibrations in the system, constraining them does not notably alter the rest

of the dynamics of the system. This is not true, however, for bond-angle fluctuations,

which form the second-highest frequency vibrations. Constraining bond-angles has a
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severe effect on many other fluctuations in the system, including even global, collective

fluctuations, limiting the use of methods that use bond-angle constraints to only a few

specific cases.41

The notion that a number of discrete classes of frequencies of fluctuations in sim-

ulations of biomolecules can be distinguished, however, can be utilized to design more

efficient algorithms. Forces that fluctuate rapidly need to be recalculated at a higher

frequency than those that fluctuate on a much longer time scale. Although not trivial

to implement, a number of successful applications of so-called multiple time-step algo-

rithms have been reported in the literature (for a review, see Schlick et al. 41). Speed up

factors of 4-5 have been claimed for such methods with respect to unconstrained dynam-

ics, making them only slightly more efficient than simulations with covalent bond-length

constraints.

Another approach to reach equilibrium conformational properties at an enhanced

rate is by constraining the rotational and translational motions in polyatomic systems.43

This method is generally used to study biomolecules in solution. In such a system, the

internal motions of the solute are often more interesting than its rotational and transla-

tional motions. This algorithm is implemented in a leap-frog integration scheme coupled

with SHAKE. The use of the roto-translational constraint presents several advantages,

like a reduction of the molecular relaxation time and the possibility of reducing the

amount of solvent molecules to be used.44

2.2.5 Long-range Interactions

One of the most challenging problems in molecular dynamics simulations is the treat-

ment of long-range interactions, which usually correspond to the electrostatic forces

between molecules. To reduce the computational cost, the size of the simulated sys-

tem is generally small and, as a consequence, a correct evaluation of the intermolecular

interactions is not trivial. Many different methods were developed to reproduce rea-

sonably the thermodynamics of bulk liquids. Here we consider two of the most used

techniques: the use of a cut-off radius and the Ewald sum.

The cut-off method is based on the truncation of the forces when the distance be-

tween the interacting particles is greater than a specified value, called the cut-off radius,

rc. In this way, the only interactions felt by the i-th particle are those due to the parti-

cles contained in a sphere of radius rc and centered at ri. This method is doable only if

the intermolecular forces decay rapidly with the distance. In fact, when the forces are

negligible at a distance ≥ rc, the main structural and dynamical properties are correctly

reproduced. Otherwise deviations from the correct bulk behaviour are expected.

Another methodology in MD simulations is the use of a periodic lattice method in

which all the interactions between the molecular system in the central cubic cell and

its virtual replica are included. The Coulomb interaction energy in a periodic system
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of N charged particles is obtained by a sum over all pairs of which one atom lies in the

central box and the other is its periodic image:

E =
1

8πε0

∞∑

|n|=0

( N∑
i=1

N∑
j=1

qiqj
|rij + n|

)
(2.6)

The sum over n is a summation over all simple cubic lattice points n = (nxL, nyL, nz

L), with L the side length of the cubic cell and nx, ny, nz integers. The case i = j is

omitted for n = 0. It was shown that the sum over n for such kind of potential (r−1)

is only conditionally convergent, then its limit may vary or even diverge if the order of

terms in the sum is changed. A solution to this problem was developed following a phys-

ical idea:30 each point charge is surrounded by a charge distribution of equal magnitude

and opposite sign, which spreads out radially from the charge, ρG(r). This distribution

has the effect to screen the interactions between the neighbouring point charges and

hence the interaction energy becomes short-ranged. Commonly, the screening charges

have a Gaussian form. The total charge distribution is given by:

ρi(r) = ρq
i (r) + ρG

i (r) (2.7)

where ρq
i (r) is the distribution of the point charge of the i-th particle and ρG

i (r) is

the corresponding Gaussian distribution.

First, the interaction energy due to the distribution 2.7 is calculated in the real space,

then, in order to recover the original charge distribution, a canceling function is added in

the reciprocal space, which is equal to −ρG
i (r), realized by means of a Fourier transform.

Hence the final form of the total interaction energy is given by:

E =
1

8πε0

N∑
i=1

N∑
j=1

( ∞∑

|n|=0

qiqjerfc(α|rij + n|)
|rij + n|

+
1

πL3

∑

k 6=0

4π2qiqj
k2

exp(−k2/4α2) cos(k · rij)

)

− α

4π3/2ε0

N∑
i=1

q2
i +

|∑N
i=1 qiri|2

2ε0L3(2ε′ + 1)
(2.8)

Here erfc(x) is the complementary error function, which falls to zero with increasing

its argument. Thus, if the parameter α is large enough, the sum over n in the first term

reduces to the only term n = 0. The second term is a sum over the reciprocal vectors

k = 2πn/L. Again, if α is large, a lot of terms in the k-space sum are needed to get a

convergence of the energy. The last two terms are, respectively, a correction function,

due to the fact that a self-interaction of the canceling distribution is included in the

recipe, and the energy contribution of the depolarizing field, which is compensated by
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the effect of the external dielectrics. Note that in the Ewald sum the virtual cubic

cells are ordered as concentric spherical layers starting from the central box. Clearly

the infinite sum is truncated at a certain point and the resulting spherical system

is immersed in a continuum dielectrics with dielectric constant ε′. The last term in

equation 2.8 is the sum of the contributions of the depolarizing field and the reaction

field due to the external dielectrics. If the sphere is embedded in a medium with an

infinite dielectric constant, this term vanishes because of a perfect compensation of the

two effects.

Other periodic lattice methods are often used in computer simulations for their

computational stability and efficiency. These methods, like the Particle Mesh Ewald

(PME)45 method, can be considered of the same family of the method shown here.

2.2.6 Constant Temperature/Constant Pressure Molecular Dy-

namics

When Newton’s equations of motion are integrated the total energy is conserved (adi-

abatic system) and if the volume is held constant the simulation will generate a mi-

crocanonical ensemble (NVE). However, this is not always very convenient. Other

statistical ensembles, such as canonical (NVT) and isothermal-isobaric (NPT) ensem-

bles, better represent the conditions under which experiments are performed than the

standard microcanonical ensemble. Moreover, with the automatic control of tempera-

ture and/or pressure, slow temperature drifts that are an unavoidable result of force

truncation errors are corrected and also rapid transitions to new desired conditions of

temperature and pressure are more easily accomplished.

Several methods for performing MD at constant temperature have been proposed,

ranging from ad hoc rescaling of atomic velocities in order to adjust the temperature, to

consistent formulation in terms of modified equations of motion that force the dynamics

to follow the desired temperature constraint. The three most utilized methods are

described next.

The termal bath coupling method, or Berendsen coupling,46 has the great advantage

of being simple. This algorithm simulates a coupling of the system with an external

termal bath at the temperature T0 and the interaction between this bath and the system

is modulated by a time constant τ . The coupling is obtained multiplying for a constant

λ the velocities. The temperature T is scaled to the reference temperature T0 via an

exponential law.

The isothermal , or isogaussian, method 47 allows to fix the temperature exactly

constant. Using this algorithm, a variable is added to the motion equations, acting as a

friction coefficient changing in time in order to keep the kinetic energy constant. This

method correctly generates the configurational properties of the canonical ensemble,

while the momenta distribution is not canonical.43
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Nosé-Hoover thermostat is based on the use of an extended Lagrangian, i.e. a

Lagrangian that contains additional, artificial coordinates and velocities.48, 49 The con-

ventional Nosé-Hoover algorithm only generates the correct distribution if there is a

single constant of motion. Normally, the total energy, that includes the artificial vari-

ables, is always conserved. This implies that one should not have any other conserved

quantity. If we have more than one conservation law, we have to use the Nosé-Hoover

chains to obtain correct canonical distribution.50

The various methods for carrying out MD at constant pressure are based on the same

principles as the constant temperature scheme with the role of the temperature played

by the pressure and the role of the atomic velocities played by the atomic positions.

2.2.7 Essential Dynamics

The Essential Dynamics (ED) analysis is a method to seek those collective degrees

of freedom that best approximate the total amount of fluctuation of a dynamical

system.51, 52 A brief description will be given here. ED is based on a principal compo-

nent analysis (PCA) of (MD generated) structures. A PCA is a multidimensional linear

least squares fit procedure. To understand how this is applicable to protein dynam-

ics, the usual three-dimensional (3D) Cartesian space to represent protein coordinates

(which is e.g. used to represent protein conformations in the Brookhaven Protein Data

Bank or PDB) needs to be replaced by another, multidimensional space. A molecule of

N particles can be represented by N points in 3D space. With 3 coordinates per point,

this adds up to 3N coordinates. In a 3N-dimensional space, however, such a structure

can be represented by a single point. In this space, this point is characterized by 3N

coordinates. This representation is convenient since a collection or trajectory of struc-

tures can now be regarded as a cloud of points. Like in the case of a two-dimensional

cloud of points, also in more dimensions, always one line exists that best fits all points.

As illustrated for a two-dimensional example (Figure 2.1), if such a line fits the data

well, the data can be approximated by only the position along that line, neglecting

the position in the other direction. If this line is chosen as coordinate axis, then the

position of a point can be represented by a single coordinate. In more dimensions the

procedure works similarly, with the only difference that one is not just interested in

the line that fits the data best, but also in the line that fits the data second-best,

third best, and so on (the principal components). These directions together span a

plane, or space, and the subspace responsible for the majority of the fluctuations has

been referred to as the ’essential subspace’. Applications of such a multidimensional

fit procedure on protein configurations from MD simulations of several proteins has

proven that typically the ten to twenty principal components are responsible for 90% of

the fluctuations of a protein.51−53 These principal components correspond to collective

coordinates, containing contributions from every atom of the (protein) molecule. Sum-



Classical Molecular Dynamics 13

marised, a limited number of collective motions is responsible for a large percentage of

a protein conformational fluctuations.
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Figure 2.1: Example of Essential Dynamics in two dimensions. With a distribution of
points as depicted here, two coordinates (x,y) are required to identify a point in the
cluster in panel A, whereas one coordinate (x’) approximately identifies a point in panel
B

If all atoms in a protein were able to move uncorrelated from each other, an ap-

proximation of the total fluctuation by only a few collective coordinates would not be

possible. The fact that such an approximation is successful is the result of the presence

of a large number of internal constraints and restrictions (’near-constraints’) defined by

the interactions present in a given protein structure. Atomic interactions, ranging from

covalent bonds (the tightest interactions) to weak non-bonded interactions, together

with the dense packing of atoms in native-state protein structures form the basis of

these restrictions.

In the study of protein dynamics, only internal fluctuations are usually of interest.

Therefore, the first step in an Essential Dynamics analysis is to remove overall rotation

and translation. This is done by translation of the center of mass of every configuration

to the origin after which a least squares rotational fit of the atoms is performed onto to

a reference structure. The actual principal component analysis is based on construction

and diagonalisation of the covariance matrix of positional fluctuations. Defining the 3N

dimension column vector X(t) representing the atomic coordinates of the system at

time t, the covariance matrix is built up according to:

C = 〈∆X∆XT 〉 (2.9)
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where ∆X = X(t)− 〈X〉 and the angle brackets represent a time or ensemble av-

erage. Particles moving in a correlated fashion correspond to positive matrix elements

(positive correlation) or negative elements (negative correlation) and those that move

independently to small matrix elements. The orthogonal transformation T that diago-

nalises this (symmetric) matrix contains the eigenvectors or principal components of C

as columns and the resulting diagonal matrix Λ contains the corresponding eigenvalues:

Λ = T T CT (2.10)

The eigenvalues are the positional mean square fluctuations along the corresponding

eigenvectors. When the eigenvectors are sorted to decreasing eigenvalues, the first

eigenvectors are those collective motions that best approximate the sum of fluctuations

and the last eigenvectors correspond to the most constrained degrees of freedom. The

characteristics of these collective fluctuations can be studied by projecting the ensemble

of structures onto single eigenvectors and by translation of these projections to 3D

space to visualize the atomic displacements connected with that eigenvector. As stated

above, analyses of MD trajectories of several proteins have shown that few collective

coordinates dominate the dynamics of native proteins (together often referred to as the

’essential subspace’). In a number of cases these main modes of collective fluctuation

were shown to be involved in the functional dynamics of the studied proteins.51, 54, 55

ED analyses can be applied to any subset of atoms of the ensemble of structures and

are not restricted to ensembles generated by MD simulation. Applications to collec-

tions of X-ray structures,55, 56 NMR structures57 and structures derived from distance

constraints58 have been reported. Since collective (backbone) fluctuations dominate the

dynamics of proteins, usually only backbone or Cα coordinates are used to save com-

putation time and to prevent problems with apparent correlation of side chain motions

with backbone motions which are merely the result of poor statistics. However, even

when the method is applied to only Cα atoms, the diagonalisation of the covariance

matrix can still be an enormous computational task.

2.3 Protein folding simulations

A clear gap exists between time scales that can currently be obtained by computer

simulation techniques applied to biological macromolecules and the times required for

most biological processes. With current methods and computer state of the art, a

typical protein of 1000 amino-acids (100 kD) can be simulated for time-scales of at

most tens of nanoseconds, whereas most biological processes, such as protein folding,

take place at times ranging between microseconds to seconds (or even minutes). Even if

the present rate of increase in computer power (an order of magnitude every 5-7 years)

will continue in the future, simulation of such processes at the required time scales will
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be beyond those of standard MD simulation protocols in the next decade.

To overcome the limitations of insufficient sampling of the equilibrium thermody-

namics and kinetics of folding processes, the development and implementation of new

sampling algorithms have become necessary. Conceptually, three categories of tech-

niques can be distinguished: (i) those that simplify the molecular models involved,

thus gaining computation time by neglecting details (section 2.3.1), (ii) those that aim

at mimicking biological systems as realistically as possible and focus on sophisticated

methods to enhance computational efficiency (section 2.3.2) and (iii) those that use

thermal unfolding simulations to infer informations on folding, relying on microscopic

reversibility (section 2.3.3). This division is not exclusive; some methods cannot be

assigned to either category whereas others are hybrid methods based on principles from

more than one category. A number of examples from each of the categories will be

discussed in the next sections, and in particular a technique from the second category,

the so-called Essential Dynamics Sampling technique, will be described in detail since

it will play a key role throughout the rest of this thesis.

2.3.1 Simplified models

Simulations of protein folding with a simplified protein model have been utilized exten-

sively, especially in the presence of explicit solvent. Employed methodologies include

lattice Monte Carlo (MC) models and adapted MD or Langevin Dynamics (LD) models.

Lattice models form perhaps the most simplified models with some resemblance

to real proteins.59−61 Their advantage is that exhaustive searches of the configuration

space can be reached for small proteins (up to about 100 residues) by Monte Carlo

methods.62−65 However, their applicability is limited due to the lack of detail in the

models and the restriction of the search space due to lattice constraints.

Continuum “minimalist” models of simplified proteins (bead models), utilizing a-

dapted MD or LD algorithms, are more promising, because of the absence of lattice

restrictions. In Langevin Dynamics, compared to classical Molecular Dynamics, forces

contain an additional friction term to mimic the effect of solvent (which is not treated

explicitly).66 Although exhaustive searches can usually not be reached by these bead

methods, promising results have been reported.67−70

Another application of simplified protein models, used in native folds prediction, are

the so called threading techniques,71−73 some of which make use of neural networks.74, 75

The idea is that a discrete number of folds exists to which proteins are restricted. The

sequence of a protein with unknown structure is threaded through a set of known protein

folds, after which suitable scoring potentials reveal which structure is most probable for

that sequence.

Another way of simplifying the complexity of the simulated system is to neglet

explicit solvent degrees of freedom. Several methods of solvent treatment by implicit
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models have been suggested over the years,76−79 but their range of applicability is still

a matter of debate.80−82

2.3.2 Enhanced sampling algorithms

The most widely used enhanced sampling algorithms can be divided into two classes. On

one hand there are those techniques that make use of embarrassingly parallel schemes

to enhance sampling, thus making efficient use of multiprocessor low-cost cluster ma-

chines, such as parallel replica dynamics and replica exchange molecular dynamics. On

the other hand there are methods that make use of biasing potentials or constraint

forces to enhance sampling, such as umbrella sampling, multicanonical sampling and

Essential Dynamics Sampling (EDS). Brief descriptions and applications of these meth-

ods are described next, giving a particular emphasis to the latter technique, since it is

extensively used in this thesis.

The simplest parallel sampling method is to run many uncoupled copies of the same

system with different initial conditions.83−87 The massive parallelism inherent in this

method has been useful in project such as Folding@Home,88 which uses the excess

compute cycles of weakly coupled private computers. This simple parallel simulation

method is most successful for systems with implicit solvent, the use of which increases

the slowest relaxation rates by factors of 100-1000.83 With explicit solvent, most single

simulations are short compared to the system relaxation time and are strongly influ-

enced by the initial conditions. A more sophisticated method of this class is the parallel

replica dynamics (PRD) method.89 In this method, independent simulations are started

from the same conformational basin. When one of these simulations exits a basin, all

the other simulations are restarted from the new basin. Although this method has been

successfully applied on peptides,90 it is suspect when applied to proteins because of the

difficulty of identifying when a barrier-crossing event has occurred.91

In the replica exchange molecular dynamics (REMD) simulations,92, 93 M non in-

teracting copies (or replicas) of the original system are simulated in parallel in the

canonical ensemble at M different temperatures. At fixed time intervals, replicas hav-

ing neighbouring temperatures are exchanged with periodic Metropolis Monte Carlo

temperature-exchange trials. The REMD method has many advantages. It is partic-

ularly easy to implement, produces information over a range of temperatures and is

easily adapted for use with implicit or explicit solvent.

One of the oldest methods to enhance the calculation of static properties is umbrella

sampling. In the umbrella sampling method, separate simulations starting from different

points of the configurational space are carried out with modified potential functions.

These separate simulations are then combined and the resulting phase space distribution

is corrected to determine what it would have been if the sampling had been done with

the original unbiased potential.94, 81, 95, 15
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A less obvious method of umbrella sampling is to use a biasing potential that is solely

a function of the potential energy. Determining this bias self-consistently, so that all

potential energies are equally sampled, allows the system to do random walk in potential

energy space and easily surmount large enthalpic barriers. This is the multicanonical

method created by Berg and Neuhaus96 and applied by others to the study of peptide

folding.97−99 Although widely used, the determination of the biasing function is difficult,

especially for systems with explicit solvent, since iterative simulations are required to

evaluate the biasing function. The parallel version of this algorithm was adapted for

use with REMD. 92

Another approach incorporates experimental measurements, such as NOE and φ

values, directly into the simulations as restraints limiting the regions of conformational

space that are explored in each simulation. This strategy has enabled rather detailed

structures to be generated for transition, intermediate and denatured states of several

proteins.100−102

Essential Dynamics Sampling (EDS)

The Essential Dynamics Sampling technique is based on the dominant modes of collec-

tive fluctuation of proteins revealed by the ED analysis. Once an approximation of the

collective degrees of freedom (essential eigenvectors) has been obtained (see paragraph

2.2.7), constraint (non-deterministic) forces are used to move the system preferentially

in the subspace spanned by only these coordinates (essential subspace). This method

exploits the limited dimensionality of the essential subspace to achieve a more effi-

cient sampling than can be obtained by more conventional techniques.103, 104 The EDS

technique can be used to increase (expansion mode) or decrease (targeting mode) the

distance from a reference structure. To this end, the distance is calculated in the new

reference system (the one obtained by the ED analysis) using only a subset of the gen-

eralized degrees of freedom of the system, i.e. a subset of the eigenvectors. At each time

frame the usual MD step is performed and the distance in the subspace between the

current conformation and the reference conformation is calculated. The step is accepted

if this distance does not decrease, in the case of expansion, or does not increase, in the

case of targeting. Otherwise the coordinates and velocities are projected radially onto

the hypersphere (in the subspace) centred on the reference conformation, with a radius

given by the distance from the reference in the previous step (see Figure 2.2). It has to

be pointed out that with this biased MD simulation no deterministic force is added to

the system.

Although proposed in 1996, this technique has been applied only in the expansion

mode, to enhance native state protein dynamics,103, 104 but it was never used before in

the targeting mode to follow the folding process of a protein towards its native structure.

Its first application to protein folding is the subject of chapter 6 of this thesis while an
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Figure 2.2: Essential dynamics sampling; example for the contraction procedure in a
bidimensional case. A: structure at step ’i’; B: structure at step ’i+1’; B’: new structure
at step ’i+1’. ev1 and ev2 represent eigenvectors 1 and 2, respectively.

application to enzymatic functionality is the subject of chapter 7.

2.3.3 High Temperature simulations

An alternate means of studying protein folding in a fully atomic representation of the

protein is through temperature (or denaturant)-induced unfolding simulations. Then to

infer folding from unfolding trajectories, one has to rely on microscopic reversibility and

reverse sequence of events observed in unfolding.105−108 However, the unfolding process

may not necessarily be the reverse of the folding process and therefore the issue of

whether unfolding simulations are representative for the folding process is still open.109

2.4 Free energy calculations

In general terms, a microscopic description of a particular molecular system can be

given in the form of a Hamilton operator or function. This is often simply expressed as

the Hamiltonian H(p, q) of the generalized coordinates q and their conjugate momenta

p. For example, the Hamiltonian for a classical system of N atoms, expressed in terms

of the Cartesian coordinates r and momenta p of each of the atoms, has the form

H(p, r) = K(p) + U(r), where K is the kinetic and U the potential energy. In the

canonical ensemble the fundamental formula for the Helmholtz free energy, A, is: 110

A(N, V, T ) = −kBT lnQ(N, V, T ) (2.11)
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where the partition function Q is:

Q(N, V, T ) = h−3N

∫ ∫
e−H(p,r)/kBTdpdr (2.12)

where V is the volume of the system, T the absolute temperature, kB Boltzmann’s

constant, h Planck’s constant, and it is assumed that the N atoms are distinguishable.

The factor before the integral actually comes from quantum mechanics. The essential

difficulty in calculating the free energy of a system is evident from Eqn. 2.12, which is

dependent on a 6N -dimensional integral to be carried out over phase space.

By means of statistical mechanics, free energy differences may also be expressed in

terms of averages over ensembles of atomic configurations for the molecular system of

interest. Such an ensemble can be generated by MC or MD simulation techniques. If

the ergodic hypothesis is verified, that is the simulated trajectory will visit all possible

microstates available to it, given an infinite amount of time the following equivalence

holds:

〈A(q(t),p(t))〉ensemble = 〈A(q(t),p(t))〉time (2.13)

that is the ensemble average of a generic physical observable, A(t), is equivalent to its

time average. In principle this equivalence offers a valid method, the time average, to

obtain physical properties from our ”virtual” experiment, namely computer simulations.

However, despite its inherent simplicity, the computation of thermodynamic properties

from molecular simulations remains far from trivial due to the limit of infinite sampling

of phase space and to unavoidable numerical errors.

Within the framework of statistical mechanics, a variety of formulae for determining

the difference in free energy between two states of a system, or the projection of such a

difference in free energy along a spatial (reaction) coordinate, have been derived. The

different formulations available are all equivalent within the limit of infinite sampling

of phase space. In practice, as only a part of the total phase space accessible to a

realistic system can ever be sampled by molecular simulations techniques, there are

often significant differences in accuracy between the free energy estimates obtained

from different formulae. Below a list of the most useful statistical mechanical formulae

and computational methods to obtain the difference in free energy ∆AA→B = AB −AA

between a state B and a state A of a molecular system in a canonical ensemble is

provided.

2.4.1 Probability ratio method

In equilibrium thermodynamics, free energy changes are related to the populations

(or probabilities) of states. Hence, the most straightforward way to determine the

difference in free energy between two states of a system is simply to count the number of

configurations in the two corresponding states. For example, in the case of folding, this
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involves counting the number of folded conformations NF and the number of unfolded

conformations NU in an ensemble generated during a MD or MC simulation, with the

difference in free energy being given by

∆AU→F = −kBT ln
QF

QU

= −kBT ln
pF

pU

= −kBT ln
NF

NU

(2.14)

where kB is the Boltzmann constant, T is the temperature, QF and QU are the par-

tition functions of the folded and unfolded states, respectively, and pF and pU are the

probability densities of finding the system in the folded or unfolded states, respectively.

This technique is only appropriate when folded and unfolded conformations occur with

sufficient frequency in the ensemble to obtain reliable statistics. An example of the

use of Eqn. 2.14 to determine the difference in folding free energy can be found in

chapter 4 of this thesis. Direct counting has the advantage that it does not depend on

the definition of a reaction coordinate and it is particularly well-suited to situations in

which the end states are themselves ensembles of structures, such as in the study of

protein/peptide folding.

2.4.2 Thermodynamic Integration

Integrations methods determine the change in free energy between two states of a system

from the integral of the work required to go from an initial state to a final state via

a reversible path. In Thermodynamic Integration (TI) method an arbitrary coupling

parameter, λ, is introduced in the the Hamiltonian H(p, q, λ). The coupling parameter

is chosen such that when λ = λA the Hamiltonian of the molecular system corresponds

to that of state A, i.e. H(p, q, λA)=H(p, q) and when λ = λB the Hamiltonian of the

system corresponds to that of state B, i.e. H(p, q, λB)=H(p, q). If the Hamiltonian

is a function of λ the free energy in Eqn. 2.11 will also be a function of λ, and the

derivative of the free energy with respect to λ will be given by

dA(λ)

dλ
=

〈
∂H(λ)

∂λ

〉

λ

(2.15)

From this, it follows directly that the free energy difference between state A and state

B of a molecular system is given by

A(λB)− A(λA) =

∫ λB

λA

〈
∂H(λ)

∂λ

〉

λ

dλ (2.16)

which is the so-called thermodynamic integration formula.111 The ensemble average

〈∂H/∂λ〉 is most commonly determined from simulations at a series of λ values between

λA and λB and the integral in Eqn. 2.16 evaluated numerically. The choice of λ is

arbitrary and λ may equally refer to a spatial coordinate or to a non-physical coordinate
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in parameter space. In either case, the functional dependence of the system on λ

effectively describes the pathway from the initial to the final state.

2.4.3 Perturbation method

An alternative to the TI method is to adopt a perturbation approach. In the perturba-

tion method (PM) the free energy change is expressed by the following relation:112

AB − AA = −kBT ln
QB

QA

= −kBT ln
〈
e∆H/kBT

〉
B

(2.17)

where QB and QA are the partition functions of state B and A respectively, ∆H =

HB − HA is the energy difference, kB is the Boltzmann constant and T the absolute

temperature. The subscript on the brackets 〈...〉 indicates that the ensemble average

is performed with respect to the probability function representative of the final state,

B, of the system. Thus, the free energy change is calculated directly from one MD

simulation of the state B averaging the quantity e∆H/kBT . Usually, due to the known

insufficient sampling of the tails of the distribution, this method gives accurate results

when the energies of the initial and final states of the system differ by a relatively small

amount (≤ 2kBT ). Otherwise, it is possible to decompose the total free energy change

by defining intermediate states along a given path between the initial and final states,

hence computing as a sum of partial free energy changes.

2.4.4 Potential of Mean Force

The difference in free energy between two states of a molecular system is a single

number. Often we would like to know how the free energy of a system, or the potential

of mean force (PMF), changes as a function of a particular coordinate within the system,

most commonly a spatial coordinate. Chosen this coordinate, r, and considering the

partial derivative of the free energy with respect to this coordinate, we obtain:

∂A

∂r
= −kBT

1

Q

∂Q

∂r
= −kBT

1

Q

∫ ∫
−∂U(q)

∂r

1

kBT
e−H(p,q)/kBTdpdq (2.18)

Considering that −∂U(q)/∂r is the force acting along r, F (r), and that the average

value of a generic function, f(p, q), is given by:

〈f(p, q)〉 =
1

Q

∫ ∫
f(p, q)e−H(p,q)/kBTdpdq, (2.19)

Eqn. 2.18 becomes

∂A

∂r
= −〈F (r)〉 (2.20)
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Hence, if we are interested in the free energy change between two positions rA and rB,

we get

AB − AA =

∫ rB

rA

−〈F (r)〉dr (2.21)

Usually the ensemble average −〈F (r)〉 is most commonly determined from simula-

tions at a series of r values between rA and rB and the integral in Eqn. 2.21 evaluated

numerically.
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β-hairpin conformation of fibrillogenic

peptides: structure and α-β transition

mechanism revealed by molecular dynamics

simulations

Summary

Understanding the conformational transitions that trigger the aggregation and amy-

loidogenesis of otherwise soluble peptides at atomic resolution is of fundamental rele-

vance for the design of effective therapeutic agents against amyloid related disorders.

In the present study the transition from ideal α-helical to β-hairpin conformations is

revealed by long time scale, all atom molecular dynamics simulations in explicit water

solvent, for two well known amyloidogenic peptides: the H1 peptide from prion protein

and the Aβ(12–28) fragment from the Aβ(1-42) peptide responsible for Alzheimer dis-

ease. The simulations highlight the unfolding of α-helices, followed by the formation

of bent conformations and a final convergence to ordered in register β-hairpin confor-

mations. The β-hairpins observed, despite different sequences, exhibit a common dy-

namic behaviour and the presence of a peculiar pattern of the hydrophobic side chains,

in particular in the region of the turns. These observations hint at a possible com-

mon aggregation mechanism for the onset of different amyloid diseases and a common

mechanism in the transition to the β-hairpin structures. Furthermore the simulations

presented herein evidence the stabilization of the α-helical conformations induced by

the presence of an organic fluorinated cosolvent. The results of molecular dynamics in

2,2,2-trifluoroethanol (TFE)/water mixture provide a further evidence that the peptide

coating effect of TFE molecules is responsible for the stabilization of the soluble helical

23
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conformation.
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3.1 Introduction

The incorrect folding of globular proteins is the result of amino acid mutation, chemical

modification, environmental changes, or other unknown factors. The misfolded proteins

are often degraded. In some cases, however, they aggregate and form amyloid fibrils,

which are associated with some of the most distressing neurodegenerative deseases,
113 such as prion and Alzheimer’s deseases. 114, 115 Many evidences suggest that these

diseases are associated with an α to β conformational transition of part of the protein
26, 27 and that a small fragment of the protein plays a key role, as misfolding and

aggregation precursor. 28, 29

Prion deseases arise through a post-translational change to the so called prion pro-

tein, PrP, whose NMR structure was first resolved by Riek et al.,116 and are charac-

terized by the accumulation of an abnormal form of the prion protein, PrPSc, in the

brain.117, 118 Residues 109-122 (H1 peptide) are considered to be important for the α to

β conformational transition and amyloid formation. According to several experimen-

tal evidences on the isolated H1 peptide of the normal cellular prion protein, PrPC ,

it adopts in water β-sheet structure from which amyloid fibrils precipitate, 119, 120 it is

able to induce the α-helix to β-sheet conformational transition of the isolated 129-141

fragment (H2 peptide) 119 and, as part of the synthetic fragment PrP(90-145), it can

convert PrPC to a PrPSc-like form. 121

Similarly, Alzheimer’s disease is the result of deposition in brain tissues of Aβ(1–

42) peptides, a product in the amyloid protein metabolism. 115 Shorter and synthetic

fragments of the Aβ–peptide (1–28, 25–35, 10–35 and 12–28) have been studied and

characterized, in particular the Aβ(12-28) fragment, which was shown to have behav-

ioral effects in mice, 122, 123 formation of fibril aggregates 124 and toxic effects in vitro.
125

In 2,2,2-trifluoroethanol (TFE) or membrane mimicking environments both H1 and

Aβ–(12-28) fragments were shown to adopt an α–helical conformation. 126, 27

Unfortunately, the insoluble and massive character of the fibrils rules out the possi-

bility to investigate their structure at atomic resolution with conventional experimental

techniques, so that the β–structures of these fragments are not available and the mech-

anism of the conformational transition is largely unknown. In such cases, one has little

choice but to turn to the use of theoretical approaches.

Several studies using molecular dynamics simulations on model peptides and aggre-

gates have recently appeared in the literature. Levy and coworkers 127 observed the

helix-coil transition of the slightly different PrP106-126 peptide performing a set of 34

MD simulations. Klimov and Thirumalai 128 showed via MD that the oligomerization

of Aβ(16–22) requires the peptide to undergo a random coil to α-helix to β-strand

transition. Straub and coworkers 129 used the computation of a variationally optimized

dynamical trajectory connecting fixed end points of known structures to speed up the
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conformational transitions among the different secondary structure motifs . On the ag-

gregation side, Caflish and coworkers, 130 for instance, used a simplified implicit model

based on the solvent accessible surface to describe the main solvent effects, to simulate

the aggregation process of the heptapeptide GNNQQNY from the yeast prion protein

. Other MD simulations with explicit representations of solvent were run on oligomers

of the Alzheimer’s peptides. The results indicate that Aβ(16–22) has a preference to

aggregate in an extended conformation, forming antiparallel β-sheet structures. Longer

fragments, instead, tend to aggregate as β–hairpins.131 These studies however do not

consider the dynamic mechanism leading to the formation of the β–hairpins.

In the present study we report, for the first time at atomic resolution, the sponta-

neous transition to β-hairpin conformations of the Syrian hamster PrP peptide H1 and

of the Aβ(12-28) fragment obtained with long timescale, all atom, MD simulations in

explicit water. The analysis of the trajectories helps define the common and peculiar

pattern of the hydrophobic side chains in the β-hairpin conformation and the common

α to β conformational transition mechanism of these two peptides, that despite hav-

ing different sequences, give rise to analogous aggregation phenomena. This unbiased

MD approach to study amyloid peptides was also tested by the use of a 30% (v/v)

TFE/water mixture model of the solvent to check its ability to reproduce the stabi-

lization of the helical conformation in membrane mimicking environments, by the TFE

coating effect already noticed in a previos study. 132

The convergence of the results is particularly significant as actually the peptide H1

and the Aβ(12-28) fragment, although simulated with the same MD package and force

field, were studied independently from each other in two different laboratories.

3.2 Methods

3.2.1 MD simulations protocol.

MD simulations, in the NVT ensemble, with fixed bond lengths,133 were performed

with the GROMACS software package 134 and with the GROMOS96 force field. 35 The

force field uses an explicit representation of acidic hydrogens and of hydrogen atoms

on aromatic rings. Water was modeled by the simple point charge (SPC) model135 and

TFE by the Fioroni et al. model.136 A twin range cut-off was used for the calculation of

the non-bonded interactions. The short range cutoff radius was set to 0.8 nm and the

long range cut-off radius to 1.4 nm for both Coulombic and Lennard-Jones interactions.

The Berendsen algorithm 46 was used for the temperature control. The peptides, in their

different starting conformations, were solvated with water or the TFE/water mixture

and placed in a periodic truncated octahedron large enough to contain the peptide and

≈1.0 nm of solvent on all sides. In all the simulations of the H1 peptide, a negative

counter ion, Cl−, was added by replacing a water molecule at the most positive electrical
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potential to achieve a neutral simulation cell. The side-chains were protonated as to

reproduce a pH of about 7 and the N-terminal and C-terminal were amidated and

acetilated respectively to reproduce the experimental conditions. 119 For the simulations

of the Aβ(12-28) fragment no counterions needed to be added, since the total charge

of the peptide resulted to be zero. The protonation of the side-chains and the N-

terminal and C-terminal were consistent with the experimental pH = 5 condition used

by Jarvet et al. 137 All the simulations, starting from the crystallographic structure,

were equilibrated with 100 ps of MD runs with position restraints on the protein to

allow relaxation of the solvent molecules. These first equilibration runs were followed

by other 50 ps runs without position restraints on the protein. The temperature was

gradually increased from 50 K to the chosen temperature performing short runs, of 50

ps each, every 50 K.

3.2.2 MD simulations of the H1 peptide.

Different all atom MD simulations in explicit water of the H1 peptide (MKHMA-

GAAAAGAVV) were carried out:

1) 450 ns of MD simulation at 300K starting from an ideal α-helix solvated with 5133

water molecules;

2) ≈21 ns of MD simulation in water at two different temperatures: ≈11 ns at 360 K

followed by ≈11 ns at 300K. The starting structure was obtained by a clustering pro-

cedure performed on the first 200 ns of the previous simulation. The central structure

of the most populated cluster resulted to be the one at 84 ns;

3) 35 ns of MD simulation at 300K in water, starting from a model configuration pro-

vided by low resolution X-ray diffraction data solvated with 6411 water molecules; 120

4) 50 ns of MD simulation at 300K starting from an ideal α-helix in a mixture of 30%

(v/v) TFE/water. Although experimentally 1,1,1-3,3,3-hexafluoropropan-2-ol (HFIP)

was used as cosolvent, we preferred to perform simulation in TFE since its smaller size

allow a larger computational efficiency. Furthermore, TFE is less effective as secondary

structure stabilizer than HFIP used in the experiments, so we expect that the results

of our simulations are further validate by this fact.

The Protein Data Bank (PDB) coordinates file of the low resolution X-ray structure

was downloaded from http:

//www.mad-cow.org/∼tom/prion QuatStruc.html.

3.2.3 MD simulations of the Aβ(12-28) peptide.

The Aβ(12–28) fragment (VHHQKLVFFAEDVGSNK) was studied with five long time-

scale all atom MD simulations in explicit solvent:

1) two 100 ns long MD simulation in water at 295K and 320K (in order to speed up the

phase space sampling), respectively, starting from an α-helical conformation, solvated

with 3463 water molecules, taken from the PDB 1IYT.pdb file corresponding to the



28 Chapter 3

whole Aβ(1–42) peptide;

2) two MD simulation in water, 30 ns at 295K and 20 ns at 320K, respectively, starting

from an extended, all trans, conformation. This starting conformation was solvated

with 11712 water molecules. The timespan of these two simulations was shorter than

the first two due to the much higher number of solvating water molecules;

3) a 100 ns long MD simulation in water at 320K starting from a conformation rep-

resentative of most populated cluster obtained from the statistical clustering of the

conformations explored in the four simulations described above, which was solvated by

3757 water molecules;

4) a 50 ns long MD simulation of the same peptide at 300K, in a TFE/water mixture,

starting from the same α-helical conformation of item 1.

3.2.4 Clustering procedure

Cluster analysis was performed using the Jarvis-Patrick method: 138 a structure is added

to a cluster when this structure and a structure in the cluster have each other as

neighbours and they have at least P neighbours in common. The neighbours of a

structure are the M closest structures. In our case P is 3, M is 9.

3.3 Results

3.3.1 α-helix to β-hairpin transition of the H1 peptide.

A first simulation was performed at 300K for 450 ns starting from an ideal α-helix. The

α-helix structure was completely lost after ≈10 ns and after ≈408 ns a transition to

an ordered β-hairpin structure, stable for the remaining 50 ns, was observed [Figure

3.1(a)]. The β-hairpin structure [Figure 3.2(a)] was of the type 2:2 with a type II’

β-turn sequence of (A113-)G114-A115(-A116) and was characterized by a shift in the

β-sheet register of the inter-strand hydrogen bonds (HB) pattern, with an antiparallel

bulge involving G119. Interestingly, the hydrophobic residues, and in particular ala-

nines A113, A115 and A116 in the turn region were mostly exposed to the solvent,

providing a possible seed for the aggregation process. Furthermore, the hydrophobic

solvent–accessible surface area monitored in the last stages of the β-hairpin folding

process, clearly showed a sharp transition from a state of compact bent conformations

with buried hydrophobic side-chains, to the β-hairpin state with an increased water

accessibility of the hydrophobic residues (Figure 3.3). The final average solvent acces-

sible surface area value is around 9 nm2, slightly lower than the value calculated for the

α-helical starting conformation of 9.4 nm2.

To speed up the sampling of the conformational space, a further simulation at

higher temperature was performed starting from a configuration obtained by a cluster

analysis 138 of the first 200 ns of the previous simulation. The temperature was initially

set to 360K and after ≈11 ns quenched to 300K, when an almost complete β-hairpin
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Figure 3.1: Time evolution of secondary structure. The analysis was performed with
the DSSP program. 139 The starting and final structures are shown on the left and
right sides, respectively. The N-terminal in each snapshot is indicated with “N”. a)
Time evolution of the H1 peptide secondary structure. Upper panel: MD simulation
at 300K starting from an ideal α-helix. Note the formation of the β-hairpin at t≈408
ns. Middle panel: MD simulation at variable temperature starting from the central
structure of the most populated cluster obtained from the first 200 ns of the previous
simulation. Two β-hairpins are formed at t≈11 ns and t≈18 ns, respectively. Lower
panel: MD simulation at 300K starting from the low resolution X-ray structure. The
β-hairpin is formed at t≈8 ns. b) Time evolution of the Aβ(12-28) peptide secondary
structure. Upper panel: MD simulation at 320K starting from an ideal α-helix. Middle
panel: MD simulation at 295K and at 320K starting from an extended conformation.
Lower panel: MD simulation at 320K starting from the representative structure of the
previous simulations. Note the formation of the β-hairpin at t≈48.

structure was observed [Figure 3.1(a)]. In the last ≈10 ns, two different β-hairpins with

an occurrence of 45% and 25%, respectively, were sampled: a 4:4 β-hairpin with a type
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Figure 3.2: β-hairpin structures. a) Structure of the 2:2 β-hairpin, with a type II’ β-
turn, of the H1 peptide obtained in the 450 ns long MD simulation at 300K. Note that
the alanines, in particular in the turn region (A113, A115 and A116), are exposed to
the solvent. b) Structure of the 4:4 β-hairpin, with a type IV β-turn, of the H1 peptide
obtained in the 35 ns long MD simulation at 300K, starting from the low resolution
X-ray structure. Note that the alanines, in particular in the turn region (A115, A116
and A117), are exposed to the solvent. c) Structure of the 2:2 β-hairpin, with a type II’
β-turn, of the Aβ(12-28) peptide obtained in the 100 ns long MD simulation at 320K.
Note that the central hydrophobic residues (L17,V18,F19,F20,A21) are exposed to the
solvent. The residues in italics belong to the turn.

VIII β-turn sequence of G114-A115-A116-A117 [Figure 3.2(b)] and a 2:2 β-hairpin with

the same HB pattern and turn sequence observed in the previously reported simulation

at 300K.

The only available experimental model, obtained by low resolution X-ray diffraction

measurements on fibers, 120 suggested the presence of a β-bend with an intramolecular

turn. Using this structure as starting point, we performed a 35 ns long MD simulation

in water [Figure 3.1(a)]. After ≈ 8 ns the peptide adopted a very stable 4:4 β-hairpin

conformation [Figure 3.2(b)], with the same HB pattern and β-turn sequence observed

in the simulation at variable temperature. The only difference was in the β-turn type,

being IV instead of VIII.

It has to be pointed out that the two types of β-hairpin observed in the different

simulations (4:4 and 2:2) have the turn region surprisingly rich in alanines and a peculiar

high solvent accessibility of the hydrophobic residues, hinting at a reasonable starting

point for the aggregation process. A β-hairpin like conformation of the H1 peptide, in

the scrapie form of the prion protein, was hypothesized by Prusiner and coworkers 140

and by Daggett and coworkers. 141

3.3.2 α-helix to β-hairpin transition of the Aβ–(12-28) peptide.

The conformational evolution of the Aβ(12-28) peptide was investigated by long time

scale simulations at two different temperatures, namely 295 and 320K, using different

starting structures.

Two 100 ns long simulations at the two above referenced temperatures were started

from the helical conformation. The α–helix was only marginally stable at both the

temperatures and the peptide showed a high tendency to populate a compact bent

conformation [Figure 3.1(b)]. This was stabilized by the formation of a salt bridge

between K16 and E22 or D23, and by the packing of the side-chains of residues 17–

21 (LVFFA), the central hydrophobic core (CHC). V24 also packed on this nascent

hydrophobic patch.
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Two additional simulations (30 ns at 295K and 20 ns at 320 K) were started from

a completely extended structure to check the convergence to the same family of com-

pact states as described above. In both simulations the peptide evolved into a compact

conformational ensemble, characterized by the same features of the bent structure ob-
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Figure 3.3: Hydrophobic Solvent Accessible Surface (SAS) area as function of time.
Upper panel: the SAS variation corresponding to the conformational transition from
bent to β-hairpin geometry at 300K for the H1 peptide. Note the increase of the
hydrophobic SAS at t≈408 ns, corresponding to the α-β transition. Lower panel: β
transition at 320K of the Aβ(12-28) peptide in the MD simulation at 320K. The starting
structure in the figure corresponds to the representative structure obtained by a cluster
analysis (see text). The maximum hydrophobic SAS is obtained in correspondence of
the transition from disordered bent to ordered β-geometry at ≈48 ns. For the Aβ(12-
28) peptide just the central hydrophobic residues are considered. The plots shown are
results of box car averaging over a 10-ps window. General features are insensitive to
the nature of this averaging.

tained from the two previously described simulations. A clustering procedure 138 was

then applied to the four trajectories obtained, and the representative structure of the

most populated cluster was isolated and used as a starting point for further MD anal-

ysis. This structure, characterized by the presence of a loop comprising residues 22–23

(E–D) and residues 12–21 and 24–28 in extended-bend conformation, was simulated for

100 ns at 320K. After ≈48 ns a sharp transition to a very ordered β-hairpin structure

was observed [Figure 3.1(b)]. The β-hairpin structure [Figure 3.2(c)] was of the type

2:2 with a type II’ β-turn sequence of F19-F20-A21-E22.

Very interestingly, the hydrophobic side chains of LVFFA sequence, as a consequence

of both being consecutive in the sequence and of the formation of the turn, were mostly

exposed to water and, consistent with the observations in the H1 peptide simulations,
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an analogue increase in the hydrophobic SAS was observed [Figure 3.3], on going from

the compact bent conformation to the ordered β-hairpin. The final average solvent

accessible surface area value is around 5.8 nm2 and is lower than the value calculated

for the α-helical starting conformation of 8 nm2. The final ordered structure of the β-

hairpin is consistent with several experimentally based hypotheses on the conformation

of the monomer in the fibrils. 29, 142, 137

3.3.3 α-helix stabilization in TFE/water mixture.

Conformational studies of both the H1 peptide and Aβ(12-28) fragment have been per-

formed in mixtures of fluorinated solvent and water that were shown to stabilize the

helical conformations. 126, 27 To investigate this effect and test the simulations against

those experimental data, two simulation in ≈ 30% TFE/water mixture were carried

out. In Figure 3.4, the time percentage of α-helical conformation per residue for both

the simulations is reported. A representative structure of each peptide is also shown.

The H1 peptide retains the central core of the initial α-helix (residues 112-117) dur-

ing all the simulation time. This result is in excellent agreement with the solid state

NMR data obtained by Heller et al. 126 using the stronger helix stabilizer HFIP and by

Satheeshkumar and Jayakumar 143 on the slightly different 113-127 peptide. In the case

of the Aβ–(12-28) fragment, the helical conformation is retained in the region 13-17 and

in region 21–24, while in the central part the structure has the tendency to bend, once

more in agreement with the experimental observations. 27

In a recent molecular dynamics study of peptide forming secondary structure in

TFE/water mixture, 132 it has been shown that in a TFE/water mixture the organic

cosolvent aggregates around the peptide forming a matrix that partly excludes water.

This process in turn promotes the formation of local interactions and, as a consequence,

stabilizes the folded structures. 144, 132 A similar coating effect is at the basis of the

increased stability of helical conformations also in the cases examined herein. The

average number of contacts of the TFE molecules with the peptide in the first 200

ps and in the last 5 ns are 191±30 and 349±33 for the H1 peptide and 293±33 and

525±42 for the Aβ(12-28) peptide, respectively. In both cases, an increase of ≈ 85% is

observed, showing a clear propensity of TFE to coat the solute, in agreement with the

previous observation by Roccatano et al. on Melittin peptide. 132

3.4 Conclusions

Taken together, the results obtained from our totally unbiased simulations indicate an

extremely high conformational flexibility for both peptides in water solution, with a

general high tendency to form stable and ordered β–sheet structures. The observed

β–hairpin conformations are characterized by an increased hydrophobic SAS area with

respect to the compact bent conformation preceding the transition. In the ordered β-
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Figure 3.4: Time percentage of α-helical conformation per residue for the H1 peptide
(left) and for the Aβ(12-28) peptide (right) in the TFE/water mixture simulations.
A representative structure extracted at 50 ns for both peptides is also shown. The
N-terminal in each snapshot is indicated with “N”.

structure all of the hydrophobic side chains lie on the same plane around the turn region

of the hairpin, and point into the same direction in 3D space. In contrast, in the starting

α-helical conformations of both peptides, the hydrophobic side chains are ”scattered”

on different faces of the helix, and as a result of geometrical and sequence constraints,

they point in different directions. This is a new feature in the β-hairpin conformations,

as the structures so far obtained for other peptides show large intramolecular hydropho-

bic interactions 145 with a clear tendency to remove hydrophobic side-chains from water

contact in order to avoid aggregation phenomena. Although the presence of five consec-

utive hydrophobic residues (LVFFA) in Aβ peptide and the unusual hydrophobic patch

in H1 are not well represented in protein sequences, analogous highly hydrophobic se-

quences in α–helical geometries are also present in some ’nonamyloidogenic’ proteins

known to aggregate in amyloidogenic conditions, such as in the case of lysozime, 146
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or myoglobin. 147 Thus, it is conceivable that these very peculiar sequences and the

conformational transitions into the stable β–hairpin geometry conspire to expose part

of the hydrophobic cores of the two peptides. This type of structure can be considered

as highly frustrated and offers a clear starting point for aggregation. Despite showing a

lower or comparable global hydrophobic SAS area with respect to the α-helical confor-

mation, the steric properties and the ordered directionality of the exposed patches in

the β-hairpin conformations may define a possible ordered hydrophobic interaction area

with other molecules sharing the same structural features. This sort of preorganized

interaction area is absent in the helical conformation, and these observations can the-

oretically support the observation of high percentages of β-structures in experimental

studies. 26, 28, 137, 142

More specific interactions, such as coulombic interactions, in addition to the hy-

drophobic collapse, should be considered necessary for the subsequent ordering of the

nascent fibrillar aggregates, as shown in the case of experimentally studied small peptide

models. 148

The transition from α–helical to β structure requires the peptides to populate in-

termediate β–bend geometries in which several mainly hydrophobic interactions are

partially formed. This is followed by the sudden collapse to ordered β–hairpin struc-

tures and the simultaneous disruption of the hydrophobic side-chain interactions with

a consequent increase in the solvent exposure. For both H1 and Aβ(12-28) peptides

the atomic picture of the detailed mechanism of the evolution from α to β, provided in

this work, can be very useful for the design of new constrained sequences or new drug

candidates.

Finally, the simulations in the TFE/water mixture evidence the stability of α-helical

conformations in the presence of the fluorinated cosolvent, resulting in excellent agree-

ment with the available experimental data. Furthermore, the analysis of the TFE

distribution around the peptide confirms the mechanism of TFE stabilization proposed

by Roccatano et al. 132 on different secondary structure forming peptides.
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CHAPTER

FOUR

Thermodynamic and kinetic characterization

of a β-hairpin peptide in solution: the

complete phase space sampling by molecular

dynamics simulations in explicit water

Summary

The folding of the amyloidogenic H1 peptide MKHMAGAAAAGAVV taken from the

syrian hamster prion protein is explored in explicit aqueous solution at 300K using long

time scale all-atom molecular dynamics simulations for a total simulation time of 1.1

µs. The system, initially modeled as an α-helix, preferentially adopts a β-hairpin struc-

ture and several unfolding/refolding events are observed, yielding a very short average

β-hairpin folding time of ≈200 ns. The long time scale accessed by our simulations and

the reversibility of the folding allow to properly explore the configurational space of

the peptide in solution. The free energy profile, as a function of the principal compo-

nents (essential eigenvectors) of motion, describing the main conformational transitions,

shows the characteristic features of a funneled landscape, with a downhill surface to-

ward the β-hairpin folded basin. However, the analysis of the peptide thermodynamic

stability, reveals that the β-hairpin in solution is rather unstable. These results are in

good agreement with several experimental evidences, according to which the isolated

H1 peptide adopts very rapidly in water β-sheet structure leading to amyloid fibril pre-

cipitates [Nguyen et al., Biochemistry 34:4186-4192, 1995; Inouye et al., J. Struct. Biol.

122:247-255, 1998]. Moreover, in this study we also characterize the diffusion behaviour

in conformational space, investigating its relations with folding/unfolding conditions.

37
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4.1 Introduction

The most stable fold of a protein is determined by its amino acid composition, sol-

vent environment (composition, pH, ionic strength) and physical state (temperature,

pressure). Considering that interactions at atomic level play a crucial role in the equi-

librium between folded and unfolded conformers, molecular dynamics simulations could

in principle be used to calculate the folded/unfolded equilibrium and could yield the

kinetics of the folding process. However, given the high computational cost required

for the complete sampling of the protein-peptide configurational space, MD simulation

in atomic detail of the folding/unfolding equilibrium was not in practice considered as

a possible investigation tool. For this reason in folding studies, the molecular mod-

els used were often of a simple nature: one interaction site per residue,149, 150 implicit

solvent approximation,76−79 motions restricted to lattice sites,60, 61 etc. On the other

hand, other methods were developed to enhance the configurational space sampling

in atomistic simulations such as essential dynamics sampling,151 highly parallel simu-

lation algorithms (PRD,REMD), 93, 152, 153 or other generalized-ensemble methods.154

However, the direct MD simulation of the folding/unfolding equilibrium in the canoni-

cal ensemble would be the most reliable procedure to obtain both thermodynamic and

kinetic properties.

Only recently, with the aid of high power computers, all atoms MD simulations,

in explicit water, provided the folding of peptides into α-helix 17 or very short β

structures.18 In the previous study155 (chapter 3) the more complex folding of a 14

residue peptide (the prion protein H1 peptide) into a in-register β-hairpin conforma-

tion starting from an ideal α-helix has been achieved. The syrian hamster prion protein

residues 109-122 (H1 peptide) is considered to be important for the α to β conforma-

tional transition that leads to amyloid formation and is responsible for prion diseases.

According to several experimental evidences on the isolated H1 peptide, it adopts very

rapidly in water β-sheet structure from which amyloid fibrils precipitate,119, 120 while

in 2,2,2-trifluoroethanol (TFE) or membrane mimicking environments the H1 peptide

adopts an α–helical conformation.126, 27 These properties make the study of this peptide

very interesting and may provide a key for understanding protein folding or the cause

of amyloid diseases.

In the present chapter further simulations of the H1 peptide at physiological condi-

tions have been performed to obtain a complete description of its conformational free

energy landscape, including the folding/unfolding equilibrium, by means of long time

scale (1.1 µs) all atoms MD simulations in explicit water. At our knowledge this is one

of the first attempt to simulate the thermodynamic equilibrium of a complex system,

such as a β-hairpin, for more than 1 µs using realistic models for both the peptide and

the solvent and with a completely unbiased sampling.

Finally, in the present study we also investigate in details the diffusion behaviour in

conformational space, relating its properties with folding/unfolding conditions. Results

show a characteristic dual diffusion regime, observed previously in small proteins,156
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which can be utilized to better understand the kinetics of conformational transitions.

4.2 Methods

4.2.1 MD simulations protocol.

MD simulations, in the NVT ensemble, with fixed bond lengths 133 and a time step

of 2 fs for numerical integration were performed with the GROMACS software pack-

age 134 and with the GROMOS96 force field. 35 Water was modeled by the simple point

charge (SPC) model. 135 A non-bond pairlist cutoff of 9.0 Å was used and the pairlist

was updated every 4 time steps. The long-range electrostatic interactions were treated

with the particle mesh Ewald method 157 using a grid with a spacing of 0.12 nm com-

bined with a fourth-order B-spline interpolation to compute the potential and forces

in between grid points. The isokinetic temperature coupling 158 was used to keep the

temperature constant at 300 K. The peptide, in its different starting conformations,

was solvated with water and placed in a periodic truncated octahedron large enough

to contain the peptide and ≈1.0 nm of solvent on all sides. In all the simulations a

negative counter ion, Cl−, was added by replacing a water molecule to achieve a neutral

condition. The side-chains were protonated as to reproduce a pH of about 7 and the

N-terminal and C-terminal were amidated and acetilated respectively to reproduce the

experimental conditions.119

Two all atom MD simulations in explicit water at 300 K of the H1 peptide (MKHMA-

GAAAAGAVV), for a total of ≈1.1 µs of simulation time, were carried out:

1) 240 ns starting from the α-helix conformation obtained from the simulation in 30%

(v/v) TFE/water mixture of the previous work155 (chapter 3);

2) 850 ns starting from the β-hairpin conformation observed in the previous simulation,

using a new set of initial velocities.

4.2.2 Essential Dynamics analysis

The principles of the ED analysis are described in detail elsewhere.51, 104 Briefly, from

all the structures of both simulations a covariance matrix of positional fluctuations (Cα

only) was built and diagonalized. Sorting the eigenvectors by the size of the eigenval-

ues shows that the configurational space can be divided in a low dimensional (essential)

subspace in which most of the positional fluctuations are confined, and a high dimen-

sional (near-constraints) subspace in which merely small vibrations occur. In Figure

4.1 the eigenvalues obtained from Cα coordinates covariance matrix are reported as

a function of eigenvectors index and are ordered in descending order of magnitude.

The corresponding relative cumulative positional fluctuation (with respect to the total

positional fluctuation) is given in the inset. We used the two principal components

with the highest eigenvalues, defining the first “essential plane”, for thermodynamic
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Figure 4.1: Eigenvalues, in decreasing order of magnitude, obtained from Cα coordi-
nates covariance matrix as a function of eigenvectors index. The corresponding relative
cumulative positional fluctuation is given in the inset.

and kinetic calculations. This is because such a plane accounts for almost 60% of

the overall positional fluctuation (inset of Figure 4.1), hence describing the most rel-

evant conformational degrees of freedom and the main conformational transitions of

the peptide backbone. We performed similar calculations over planes defined by other

eigenvectors. However, within such planes some of the relevant conformational transi-

tions are not detectable and hence the corresponding eigenvectors are not suitable as

conformational coordinates to describe the large conformatinal fluctuations as well as

the folding/unfolding transitions.

4.2.3 Thermodynamic properties

Given a system in thermodynamic equilibrium, the change in free energy on going from

a reference state, ref, of the system to a generic state, i, (e.g., from unfolded to folded)

at constant temperature and constant volume can be evaluated as

∆Aref→i = −RT ln
pi

pref

(4.1)

where R is the ideal gas constant, T is the temperature and pi and pref are the proba-

bilities of finding the system in state i and state ref, respectively. We will describe the

free energy surface as a function of principal components (essential eigenvectors) from

ED analysis. Structures sampled every 1 ps were projected onto the plane defined by
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the two first principal components. A grid 20x20 has been used to divide this plane in

400 cells and for every cell the number of points were counted and the relative prob-

ability was calculated. Finally the ∆Aref→i was evaluated. We chose as the reference

state the grid cell with the highest probability, i.e. the cell corresponding to the β-

hairpin folded structures ensemble. Surfaces of the total (peptide + solvent) internal

energy changes, ∆Uref→i, and entropy changes, ∆Sref→i, were calculated as well, via

the average internal energy of the simulation box in each cell and

∆Sref→i =
∆Uref→i −∆Aref→i

T
(4.2)

To evaluate the local stability of the secondary structure elements we calculated

for every grid cell the ratio between the number of folded structures (β-hairpin) and

the number of the unfolded ones; using equation 4.1 the ∆A of secondary structure

formation, ∆A(formation), was then evaluated for every position in the essential plane.

In order to check the effect of different grid spacing on the thermodynamic prop-

erties, the same type of free energy landscapes were constructed using different grids,

10x10, 20x20 and 30x30 (data not shown). Interestingly, all the different grids pro-

vided similar free energy landscapes with the same free energy maximum variation

(≈14 kJ/mol), the surface being slightly more corrugated on going from the grid with

a lower cell density (10x10) to the more dense one (30x30).

4.2.4 Kinetic properties

For the study of diffusion properties, we chose the subspace defined by the first two

essential coordinates. In particular different regions of the essential plane, where the co-

ordinates do not encounter a relevant free energy gradient, were analyzed separately. To

generate an ensemble of independent trajectories we used all the trajectory fragments

starting within one of the selected regions and the corresponding ensemble mean square

displacement, from each initial point as a function of time, was evaluated. In order to in-

crease the statistics we averaged such a property over the first two essential degrees free-

dom, assuming for both a similar diffusion behaviour. All the curve fits are obtained us-

ing the graphing tool Xmgrace (http://plasma–gate.weizmann.ac.il/Grace/doc/UsersGuide.html),

which makes use of the Levenberg Marquardt algorithm and provides χ2 and correlation

coefficient evaluations. Moreover, we also evaluated the noise (standard deviations, σ)

for the model parameters, obtained by fitting simulation data, calculating their stan-

dard deviations over n subsets of trajectories and then extrapolating for the complete

statistical sample:

σ =

(∑n
i=1(ai − ā)2

(n− 1)n

)1/2

(4.3)

ā =

∑n
i=1 ai

n
(4.4)
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where ai is the generic parameter evaluated in the ith subset. Note that the previous

equation is based on the approximation that the parameters obtained by the whole

number of trajectories are equivalent to the ones obtained averaging the corresponding

values over the n subsets. In the present case we used 3 independent subsets which

resulted to be a good compromise between the statistics within each subset and the

sample size used in the last equation, given by the number of subsets.

4.3 Results

4.3.1 Thermodynamic characterization of the conformational

transitions.

Two all atom MD simulations of the syrian hamster H1 peptide, for a total simulation

time of ≈1.1 µs, were carried out. In Figure 4.2 and Figure 4.3(a) the root mean square

deviation (RMSD), with respect to the β-hairpin structure, and the time evolution of

the secondary structure are reported, respectively.

Within the first 0.24 µs of simulation the α-helix structure, used as the initial sim-

ulation structure, is rapidly lost and interestingly, after ≈0.20 µs, a β-hairpin structure

is formed, with the same structural properties of the one observed in the previous work

(chapter 3).155 Further 0.85 µs of simulation were performed in the same conditions

starting from the β-hairpin conformation. Many unfolding/refolding events of the β-

hairpin are observed, with an average folding time of ≈200 ns, ensuring the reversibility

of the folding of this peptide in the conditions used. The long time scale accessed by

our simulations and the reversibility of the folding allow to properly explore the con-

figurational space of the 14 residues peptide at physiological conditions.

α-helix and β-hairpin structures are populated for ≈5% and ≈30% of the total time,

respectively. The rest is populated by partial folded β-hairpins, unfolded or “molten

globule” like structures.

In Figure 4.3(b) the free energy surface as a function of the two first essential com-

ponents (see methods) is reported. This free energy profile, obtained by the probability

per grid cell as described in the methods section, shows a characteristic funneled land-

scape (i.e. a surface characterized by a single deep minimum) with a downhill free

energy change toward the β-hairpin basin of ≈-14 kJ/mol. Such a free energy surface

was obtained projecting the complete 1.1 µs simulation trajectory. To estimate its reli-

ability we tested the convergence of the free energies within grid cells of the plane (note

that free energy values are defined with respect to the grid cell corresponding to the

global minimum). The results show rather stable values (within 0.1-0.2 kJ/mol) after

about 0.3 µs for grid cells close to the free energy minimum. In grid cells located far

from this region a worse convergence is observed, although after about 0.3 µs ∆A values

are obtained within a noise of about 1.5 kJ/mol. In Figure 4.4(a) we report such a con-

vergence plot for two given grid cells belonging to the previously mentioned subspaces,
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Figure 4.2: Root mean square deviation (RMSD) of the backbone atoms with respect
to the β-hairpin structure vs time.

i.e. within the contour lines ∆A=0 kJ/mol and ∆A ≈3 kJ/mol of Figure 4.3(b). In

Figure 4.4(b) we report the probability distribution of the free energy standard devia-

tions, σ∆A, over the grid cells utilized, showing rather small statistical errors affecting

the free energy values. It is worth noting that the level of convergence observed for the

free energy variations considered and the very limited corresponding statistical errors,

do not necessarily mean that all the possible conformational transitions are sampled

with the same accuracy.

The absolute free energy minimum, as well as the adjacent region within the con-

tour line at ∆A≈2 kJ/mol in Figure 4.3(b), is mainly populated by β-hairpin struc-

tures, including the complete β-hairpin conformation also observed in the previous

chapter.155 Such a structure corresponds to a 2:2 β-hairpin with a type II’ β-turn se-

quence of (A113-)G114-A115(-A116) and is characterized by 6 inter-strand hydrogen

bonds (HB), with an antiparallel bulge involving G119 [Figure 4.5(a)]. A free energy

plateau, within the contour line at ∆A ≈6 kJ/mol, is characterized by an ensemble of

either completely unfolded or partial β-hairpin structures which only rarely evolve into

the complete β-hairpin. Such partial β-hairpin structures mainly involve two types of

structured conditions: either they share the same turn of the complete β-hairpin struc-

ture, but with flanking terminals (i.e. some HB are lost), or they have a different turn

type. Note that among the latter, a 4:4 β-hairpin with a type IV β-turn sequence of

G114-A115-A116-A117 [Figure 4.5(b)], was already observed in the simulations of the

previous work (chapter 3).155 Three “molten globule” like states are present with free

energy local minima at ≈6, 8 and 10 kJ/mol respectively and are characterized by bent
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conformations. A representative structure is given in Figure 4.5(c). The rest of the

accessible essential subspace corresponds basically to completely unfolded structures.

α-helix structures [Figure 4.5(d)] are sampled 7 times throughout the simulations

but each time for a very short period, about 500 ps. α-helix conformers do not populate

any free energy minimum and are rather “disperse” through the gray plateau, within
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Figure 4.3: a): Time evolution of the H1 peptide secondary structure. The starting and
final structures are shown on the left and right sides, respectively. The N-terminal in
each snapshot is indicated with “N”. In the first panel the first part of the simulation,
starting from an ideal α-helix, is reported. The formation of the 2:2 β-hairpin at
t≈0.18 µs can be observed. In the following panels the second part of the simulation,
starting from the β-hairpin structure with a new set of velocities, is reported. The
analysis of the secondary structures was performed with the DSSP program.139 b):
Contour maps of the free energy, ∆A, internal energy, ∆U, entropy, ∆S, and free
energy change associated to the β-hairpin formation, ∆A(formation), as a function of
the position in the essential plane. ∆A, ∆U and ∆S are calculated with respect to the
state with the highest probability, i.e. the one corresponding to the β-hairpin folded
structures ensemble. Energy and entropy values are given in kJ/mol and kJ mol−1 K−1,
respectively.

the contour line at ∆A≈8 kJ/mol, with rather high free energies.

∆U and ∆S profiles share the same funneled like shape of the free energy [see

Figure 4.3(b)]. Note that the internal energy and the entropy values are calculated

for the whole system, i.e. peptide and solvent. Interestingly, the absolute free energy

minimum region (the subspace inside the contour line at ∆A≈2 kJ/mol) includes the

absolute internal energy and entropy minima, thus meaning that this state is the most

energetically stable, with the lowest entropy.

To evaluate the local stability of the complete β-hairpin structure, we used the same

essential plane to evaluate the free energy change, ∆A(formation), associated to its

formation from any other possible structure [Figure 4.3(b)]. This was accomplished for

every position (grid cell) of the essential plane, calculating the probability for the com-

plete β-hairpin (pβ) and for any other possible structure (p) to occur which was then

used to obtain the β-hairpin formation free energy ∆A(formation) = −RT ln(pβ/p).

Interestingly, except for a small region corresponding to the absolute free energy mini-

mum, β-hairpin formation free energies are always positive, thus revealing that the H1

peptide has a rather unstable secondary structure.

In Figure 4.4(c) we also show the convergence of such a free energy change for two

grid cells, clearly showing that also for this evaluation 1.1 µs is enough to obtain reliable

results. A similar evaluation for the α-helix structure is not really possible because of its

rare occurrence (5% of the total simulation time). However its very high approximate

free energy shows, as expected, that the α-helix structure is very unstable (data not

shown), although a relatively high number of α-helix unfolding/refolding transitions (7

times) was observed.

Finally we evaluated the global β-hairpin formation free energy, i.e. over the whole

accessible conformational space. This was accomplished considering the essential plane

as a unique cell and evaluating the corresponding probabilities, pβ and p, from which
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Figure 4.4: Time convergence of the ∆A [panel a)] and ∆A(formation) [panel c)] for
two given essential plane positions. We chose a grid cell in the free energy minimum
region, i.e. within the contour line at ∆A=0 of Fig. 3(b) (solid line), and a grid cell
within the contour line at ∆A ≈3 of Figure 4.3(b) (dashed line). In panel b) the
probability distribution of the free energy standard deviations, σ∆A, for all the cells is
reported.

the ∆A was then obtained. ∆U and ∆S were calculated as described in the method

section. It is interesting to note that the global β-hairpin formation free energy ob-

tained, ∆A≈+2.5 kJ/mol, shows that the “folded structure” is not the thermodynamic

most stable condition for this peptide in water. Such a feature is due to the entropy

decrease (≈-0.070 kJ mol−1 K−1) which overcompensates the internal energy stabiliza-

tion (≈-18.7 kJ/mol). Even in the absolute free energy minimum, where the β-hairpin

structure is mostly stable, its formation free energy, ∆A(formation), is only about -2

kJ/mol [Figure 4.3(b)].

Our results are consistent with experimental data on a non-amyloidogenic 16 resi-
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Figure 4.5: Structures of the H1 peptide observed along the simulations. a): a 2:2
β-hairpin with a type II’ β-turn; b): a 4:4 β-hairpin with a type IV β-turn. Note that
in the β-hairpins the alanines, in particular in the turn regions, are exposed to the
solvent; c) a representative “molten globule” like structure; d) a representative α-helix
structure.

dues β-hairpin peptide using a nanosecond laser temperature jump technique.159 These

experimental data provided an apparent ∆G for the β-hairpin folding transition of ≈-

2.5 kJ/mol, a value close to our estimate for the H1 peptide, although the latter is ≈5

kJ/mol less stable. This relative instability could explain the amyloidogenic nature of
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the H1 peptide.

4.3.2 Kinetic characterization of the conformational transi-

tions.

In the previous subsection we characterized the thermodynamics within the conforma-

tional space of the H1 peptide. In this subsection we characterize its kinetics in the

essential plane used for the previous thermodynamic analysis. Note that the essential

eigenvectors defining such a plane represent the most relevant conformational degrees of

freedom of the peptide backbone, hence describing the main conformational transitions.

In a previous paper 156 it was shown that the kinetics of the essential degrees of freedom

in proteins can be described by a diffusion behaviour characterized by a dual regime: a

fast type of diffusion within a single energy local minimum, switching exponentially to

a slower one, probably corresponding to “hopping” between multiple harmonic wells.

Such a dual diffusion behaviour should be determined by the relaxation of the medium

(defined by all the other coordinates) associated to the hopping and resulting into an

increase of viscosity.

In the previous paper 156 we characterized the diffusion using relatively short time

intervals (up to 20 ps). In this study, due to the huge simulation time available, we

can afford a better statistical characterization of the diffusion over essential degrees

of freedom, extending our investigation over longer times (up to 100 ps). However, a

single-exponential relaxation of the velocity autocorrelation function, that was utilized

to describe such a conformational diffusion in the previous study,156 is not really suitable

to describe this process over longer time intervals (up to 100 ps) afforded in the present

study. A more accurate model can be obtained considering two relaxation modes of

the velocity autocorrelation function (corresponding to a bi-exponential switching from

the fast to the slow diffusion-regime), which can be considered as a generalization of

the previous model, see Appendix. The equation obtained from this generalized model,

for the mean square displacement, neglecting the initial fast (within a few tens of fs)

relaxation, is for a given q (essential) degree of freedom

〈
∆q2(t)

〉 ∼= 2D∞t+ 2[D0 − A1]τ1[1− e−t/τ1 ]

+ 2[D0 − A2]τ2[1− e−t/τ2 ] (4.5)

where D∞ is the long-time diffusion constant, D0 the short-time diffusion constant,

τ1, τ2 the “relaxation times” of the two switching modes and A1, A2 two parameters

defined by the integral of the velocity autocorrelation function, see Appendix.

Such a model was used to describe the diffusion in the configurational subspace

defined by the first two Cα essential degrees of freedom, assuming at least for the

“relaxation times” the same behaviour (this was actually checked to be a good approx-

imation). In order to increase the statistics, we averaged the mean square displacement
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over the first two essential degrees of freedom.
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Figure 4.6: Upper panel: Mean Square Displacement, as a function of time, averaged
over the first two principal eigenvectors. The theoretical models (solid line), derived
in the Appendix, were parameterized fitting the simulation data. In particular we
report results for three selected regions of the essential plane, one in the region of
the free energy minimum (∆A=0 kJ/mol) (circles), another in the region of the free
energy plateau within the contour line at ∆A≈6 kJ/mol (squares) and the third in the
completely unfolded region (∆A≈12 kJ/mol) (diamonds). Lower panel: a comparison
between the previous model, based on a single-exponential relaxation (dotted line), and
the present one, based on a bi-exponential relaxation (solid line), is shown for one of
the regions (∆A=0 kJ/mol). In the inset the first 10 ps are shown in more details.

In Figure 4.6 we show the comparison between the theoretical models and the en-

semble mean square displacements obtained by simulations. In particular we report the

results obtained for three selected regions of the essential plane, one in the region of the

free energy minimum (∆A=0 kJ/mol), another in the region of the free energy plateau

within the contour line at ∆A≈6 kJ/mol and the third in the completely unfolded re-

gion (∆A≈12 kJ/mol). The plot reported in the upper panel clearly shows the high

accuracy of the model used in the whole time range. Note that for all the three theoreti-

cal models the χ2 values are in the range 10−5−10−4 with correlation coefficients always

higher than 0.997 and full fitting convergence was achieved within 500 steps. In the

lower panel a comparison between the simpler model, as used in the previous paper,156

and the present generalized one is shown for one of the regions (∆A=0 kJ/mol). It
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is evident how the bi-exponential relaxation of the velocity autocorrelation function

provides a more accurate model. In particular a dramatic improvement is observed in

the first few ps of diffusion (see inset of Figure 4.6).

The diffusion constants and the “relaxation times” are reported in Table 4.1. While

the short-time diffusion constants, D0, are of the same order of magnitude for all the

regions, revealing a similar diffusion behaviour within a single local energy well, the

long-time diffusion constants, D∞, are similar for the less structured regions, but it is

significantly lower in the β-hairpin region. Thus, when the system enters its long-time

diffusion regime, hopping between multiple energy basins, the more structured state

encounters a greater viscosity of the medium defined by the other coordinates including

the solvent.

Table 4.1: Diffusion constants and “relaxation times” for three selected re-
gions of the essential plane, one in the region of the free energy minimum
(∆A=0 kJ/mol), another in the region of the free energy plateau within
the contour line at ∆A≈6 kJ/mol and the third in the completely unfolded
region (∆A≈12 kJ/mol).

D0
∗ D∞∗ τ1

∗ τ2
∗

region nm2ps−1 nm2ps−1 ps ps

∆A=0 kJ/mol 0.026 (0.001) 5.3·10−5(0.4·10−5) < 1 13.2 (2.4)

∆A≈6 kJ/mol 0.032 (0.001) 15.9 ·10−5(1.5·10−5) < 1 8.5 (1.1)

∆A≈12 kJ/mol 0.032 (0.001) 12.8·10−5(1.9·10−5) ≈1.1 24.8 (2.1)

∗D0 is the short-time diffusion constant, D∞ the long-time diffusion constant and τ1, τ2 the “relaxation
times” of the two switching modes (see Appendix). Standard deviations (see Methods) are given in
parentheses.

For what concerns the “relaxation times”, i.e. the time required to switch from the

fast to the slower diffusion behaviour, the most striking difference can be observed for

the slower mode relaxation time, τ2, values which are similar for the two more structured

regions while for the completely unfolded one its value is almost double. This could

be explained considering the roughness of the internal energy surface in the unfolded

region (left side of the ∆U landscape in Figure 4.3(b)). The presence of deep valleys

and high mountains, with internal energy differences up to ≈25 kJ/mol, could be the

cause of the longer time required for spreading the trajectories over such a corrugated

internal energy region. Interestingly a similar trend is observed for the faster mode

relaxation time, τ1.
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4.4 Conclusions

The thermodynamic and kinetic properties of the H1 peptide MKHMAGAAAAGAVV

taken from the syrian hamster prion protein was explored in explicit aqueous solution

at 300K using long time scale all-atom molecular dynamics simulations in the canonical

ensemble for a total simulation time of 1.1 µs. At our knowledge this is one of the first

attempt to simulate the thermodynamic equilibrium of a complex system, such as a β-

hairpin, for more than 1 µs using realistic models for both the peptide and the solvent

and with a completely unbiased sampling of the configurational space. The peptide,

initially modeled as an α-helix, preferentially adopts β-hairpin structures; furthermore

many unfolding/refolding events of the β-hairpin were observed, with an average fold-

ing time of ≈200 ns. The free energy profile, as a function of the first two essential

eigenvectors, that represent the most relevant conformational degrees of freedom of the

peptide backbone, has the characteristic features of a funneled landscape, with a down-

hill surface toward the bottom. ∆U and ∆S profiles share the same funneled like shape

of the free energy and their absolute minima almost correspond to the absolute free

energy minimum region. Although complete β-hairpin structures mostly populate the

free energy minimum, its global free energy of formation, from any other structure, is

≈+2.5 kJ/mol. This positive value clearly shows that the “folded structure” is not the

thermodynamic most stable condition for this peptide in water. Such a feature is due

to the entropy decrease (≈-0.071 kJ mol−1 K−1) which overcompensates the internal

energy stabilization (≈-18.7 kJ/mol).

According to several experimental evidences, the H1 peptide adopts very rapidly

in water β-sheet structure from which amyloid fibrils precipitate, 119, 120 in agreement

with our results. Considering the relative instability of the β-hairpin structure in water,

revealed in the present study, the interaction with other monomers could be a source

of stabilization, leading to amyloid fibril formation.

Furthermore in this study we also characterize the diffusion behaviour in conforma-

tional space, investigating its relations with folding/unfolding conditions. The results

show that it is possible to accurately describe the kinetics, over the same essential plane

used for the thermodynamic characterization, with a dual diffusion model. A first dif-

fusion regime, up to a few ps, probably corresponding to the diffusion of the essential

coordinates in a single energy basin, is characterized by a higher diffusion constant.

The second diffusion mode is probably connected with the motions from one energy

well to another and is characterized by a lower diffusion constant, resulting from an in-

creased friction due to the solvent and the other non-essential coordinates. Moreover in

our model a bi-exponential switching (i.e. two relaxation times) from the faster to the

slower diffusion mode, yields a very accurate description of the diffusion of the essential

coordinates over time intervals up to 100 ps.

Different diffusion behaviours have been observed in relation to the degree of un-

folding of the peptide. The more structured regions of the essential plane seem to be

associated with a slower long-time diffusion (i.e. higher viscosity of the medium of the
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other coordinates) with respect to the less structured ones, for which the D∞ values are

almost three times larger. Interestingly, the relaxation times required to switch from

the faster to the slower diffusion regime are longer for the largely unfolded conforma-

tional region, being almost double with respect to the folded or partially folded regions.

This could be due to the higher roughness of the internal energy surface in the unfolded

region, resulting in higher energy barriers to be crossed for spreading the trajectories

from an energy well to the others.
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FIVE

Molecular dynamics simulation of the

aggregation of the core recognition motif of

the islet amyloid polypeptide in explicit water

Summary

The formation of amyloid fibrils is associated with major human diseases. Nevertheless,

the molecular mechanism that directs the nucleation of these fibrils is not fully under-

stood. Here, we used molecular dynamics simulations to study the initial self-assembly

stages of the NH2-NFGAIL-COOH peptide, the core-recognition motif of the type II

diabetes associated islet amyloid polypeptide. The simulations were performed using

multiple replicas of the monomers in explicit water, in a confined box starting from a

random distribution of the peptides at T=300 K and T=340 K. At both temperatures

the formation of unique clusters was observed after a few nanoseconds. Structural anal-

ysis of the clusters clearly suggested the formation of ”flat” ellipsoid-shaped clusters

through a preferred locally parallel alignment of the peptides. The unique assembly is

facilitated by a preference for an extended conformation of the peptides and by inter-

molecular aromatic interactions. Taken together, our results may provide a description

of the molecular recognition determinants involved in fibril formation, in terms of the

atomic detailed structure of nascent aggregates. These observations may yield informa-

tion on new ways to control this process for either materials development or drug-design.
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5.1 Introduction

Amyloid fibrils are well-ordered self-assembled protein structures in the nanometric

scale. These fibrillar structures are associated with a large variety of diseases of unre-

lated origin.19−23,160,161 A partial list of disorders includes Alzheimer’s disease, type II

diabetes, prion diseases, and primary and secondary amyloidosis. All these diseases are

characterized by the formation of large protein deposits (also know as ”protein plaques”)

in various organs and tissues. Fibrils from different sources (e.g., from the pancreas of

Type II diabetes patients as compared to the brain of Alzheimer’s disease patients)

show remarkable ultrastructural and biophysical similarity. Ultrastructural analysis of

the deposits, using electron microscopy and atomic force microscopy, demonstrate the

existence of fibrils with a diameter of 7-10 nm and a length of several microns.19−23

Furthermore, X-ray diffraction patterns of several fibrils show a predominant β-sheet

structure. Nevertheless, in spite of the high similarity between the fibrils that are

formed by the various proteins in different diseases, there is no clear homology between

the diverse amyloid-forming polypeptides.

The complexity of amyloid formation underlines the need for highly simplified sys-

tems, in which the effects of the perturbation of single properties on aggregation can

be pinpointed. Both empirical and rational approaches have been used to design such

systems for amyloidogenesis.29,162−165 In this context, the core recognition motif of the

islet amyloid polypeptide (IAPP) serves as an excellent model system to study the pro-

cess of amyloid formation.166 This NH2-NFGAIL-COOH hexapeptide forms fibrils that

show remarkable ultrastructural similarity to those that are formed by the full-length

IAPP in the pancreas of type II diabetes patients.166 Using an alanine-scan, the funda-

mental role of the phenylalanine residue in driving amyloid fibril formation by a peptide

that contained the core recognition motif, has been previously demonstrated.167 The

substitution of the phenylalanine to an alanine completely abolished the ability of the

fragment to form amyloid fibrils in vitro .167 However, the substitution of the pheny-

lalanine to the less-hydrophobic tryptophan residue resulted in efficient self-assembly

of amyloid-related structures.168, 23 Based on these observations, the remarkable occur-

rence of aromatic residues in other short amyloid related sequences, and the well-known

role of aromatic interactions in processes of self-assembly in chemistry and biochem-

istry, it has been speculated that interactions between aromatic residues may play a

role in the acceleration of the process of amyloid fibrils formation.162, 23, 169, 170

Previous Molecular dynamics (MD) simulations of NFGAIL and NFGAILSS pepti-

des171−174 focussed on the stability of β-clusters by building several different models with

two and three strands and by successively performing molecular dynamics simulations

to investigate their structure and stability. The results showed that the presence of the

two serines resulted in a higher stability of the nascent protofibril.

In the present paper we use MD simulations of NFGAIL sequences to investigate

the possible initial steps in the aggregation/nucleation of model peptides and char-

acterize possible molecular recognition mechanisms involved in these processes. Dif-
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ferently from previously reported studies, our starting point was not an already pre-

formed aggregate of peptides,171−174 but a solution of 26 peptides with initial positions

and orientations taken at random. The initial conformation of each peptide was cho-

sen as completely extended, consistently with information derived from Solid State

NMR studies on fibrils,160, 175 and in analogy with other simulation studies on the same

peptide.171, 173 Two more control simulations were run imposing two different sets of

starting conformations on the peptides. In the first each peptide was modelled in a

turn conformation, with the turn spanning residues Gly and Ala. In the second, an

-helical conformation was imposed on the four central residues of each peptide. The

concentration conditions were the same in every case (vide infra). These two control

simulations were run to rule out the (unwarranted) assumption that the peptides have

to be extended prior to clustering. The peptides were solvated with explicit water in

a confined box to mimic conditions of high local concentration. The starting confor-

mations and concentration were chosen in order to mimic local microscopic conditions

that can favour the formation of aggregates on all-atom, explicit water MD accessible

timescales.

The results clearly demonstrated a specific assembly of the peptide monomers into

well-ordered ellipsoid-shaped structures that show a specific network of aromatic inter-

actions.

5.2 Methods

MD simulations, in the NVT ensemble, with fixed bond lengths,133 were performed with

the GROMACS software package134 and with the GROMOS96 force field.35 Water was

modeled by the simple point charge (SPC) model.135 A twin range cut-off was used for

the calculation of the non-bonded interactions. The short range cutoff radius was set

to 0.8 nm and the long range cut-off radius to 1.4 nm for both Coulombic and Lennard-

Jones interactions. The Berendsen algorithm46 was used for the temperature control.

26 replicas of the same NFGAIL peptide were placed in a periodic truncated octahedron

large enough to contain the peptides and ∼1.0 nm of solvent on all sides. The initial

position of each peptide was chosen at random. In analogy to other simulation studies

on the same peptide171, 173 the initial conformation of every single unit was a totally ex-

tended one. Nevertheless, as reported in the results section, several torsional transitions

were observed in the simulation.The number of water molecules added was 20266. Two

different MD simulations were performed at T=300 K and T=340 K, respectively. Two

control simulations were also run: in the first, the peptides were simulated starting from

a turn conformation (10 ns) and in the second starting from an α-helix conformation.

The aggregation process in both simulations was determined by following the for-

mation and development of peptide clusters: a peptide unit is added to a pre-existing

cluster when its distance to any element of the cluster is less than 0.35 nm, i.e. when

at least one atom of the unit forms a van der Waals contact with an atom belonging
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to the cluster. This clustering procedure is included in release 3.2.1 of the GROMACS

package. To evaluate the dimensions of a cluster, and its global geometrical proper-

ties, principal geometrical axes were calculated. This was accomplished by a principal

component analysis, at each MD frame, of the spatial atomic fluctuation from the ge-

ometrical center of the cluster, as obtained diagonalizing the 3×3 atomic positional

covariance matrix Ci,j:

Ci,j =
1

N

N∑

k=1

(xi,k − x̄i)(xj,k − x̄j) (5.1)

where i and j correspond to x,y and z, for the kth atom, N to the total number of

atoms and x̄ refers to the geometrical center of the cluster. Its eigenvectors represent

the principal geometrical axes in 3 dimensional space and the corresponding eigenvalues

yield the mean square geometrical fluctuation of the atomic distribution along the three

principal geometrical axes (eigenvectors) of the cluster. Note that we define such three

geometrical axes according to the decreasing order of the corresponding eigenvalue,

i.e. the first eigenvector corresponds to the largest eigenvalue and the third to the

smallest. Using the same procedure, the principal geometrical axes were calculated also

for each single peptide. In the hypothesis Gaussian statistics for the atomic positional

distribution around the geometrical center of the cluster, an estimate of the cluster size

along each principal geometrical axes, within 99% of confidence, is given by 6 times the

square root of the corresponding eigenvalue (RMSF) (i.e. ±3 standard deviations).

The extent of aromatic packing, and the relative orientations of aromatic rings with

respect to each other were evaluated by the calculation of two representative angles γ

and θ. For a pair of phenylalanines, γ is the angle between the two ring surface normals;

θ is the angle between the normal and the vector; Rcen is the vector connecting the two

geometrical centers of the aromatic rings, according to G. B. McGaughey et al.176

After a stable cluster of peptides was formed in either simulation, quantitative char-

acterization of the dynamical properties was performed, utilizing a principal compo-

nent analysis of the covariance matrix of the positional fluctuations (essential dynamics

analysis) of the C-alpha atoms of the peptides belonging to the cluster, as described

elsewhere.51, 52 This matrix was built from the equilibrated portion of the trajectories

(beyond 9.5 ns at 300 K and 8.5 ns at 340 K, and the last ns for the two control simu-

lations), and its diagonalization yielded the principal directions (essential eigenvectors)

associated to the large-amplitude concerted motions that define the essential subspace

of a cluster’s internal dynamics.

5.3 Results

Two simulations at T=300 K and T=340 K were performed for 11.2 ns and 10 ns,

respectively, starting from a random distribution of the peptides in the simulation box.

In Figure 5.1 the trajectory of the cluster analysis is reported. At 300 K, after 1.5 ns,
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Figure 5.1: Cluster analysis for the simulations at 300 K (top panel) and 340 K (bottom
panel) along time. The different gray scales correspond to the number of clusters with
a given cluster size. The cluster size corresponds to the number of molecules present in
the cluster.

a large cluster of 22 peptides is observed. At t= 9.5 ns two more peptides are added to

the cluster in such a way that only two peptides are not included in the aggregate. At

T=340 K the formation of a unique cluster can be observed at t=7.0 ns.

The distribution of the φ,ψ backbone dihedral angles over the whole simulation

time for the two different temperatures (Figure 5.2) shows that the B region is the

most populated, showing that the peptides are mostly in an extended conformation.

It has to be pointed out that also the other regions of the Ramachandran plot are

populated. Bent and random coil conformations are in fact visited by several of the

replicas before the rapid collapse into the main peptide aggregate.

The preferential population of the B region is confirmed by the distributions over the

whole simulation time of the eigenvalues corresponding to the principal geometrical axes

of each peptide, providing (within 99% of confidence) the peptide time-average sizes of

1.44, 0.36, and 0.12 nm, respectively, which correspond to a rather elongated geometry
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Figure 5.2: Ramachandran plot of the φ, ψ backbone dihedral angle distribution at 300
K (top panel) and 340 K (bottom panel).

along the first geometrical axis. Similarly, the eigenvalues of the principal geometrical

axes of a cluster can account for its geometrical shape. We calculated, along the MD

trajectories, the principal geometrical axes of the cluster in each simulation, after the

formation of a unique stable cluster (at t=9.5 ns at 300 K and t=7.0 ns at 340 K).

From these data, clusters resulted to be ”flat” ellipsoids with the first two principal

axes associated to larger eigenvalues. The dimensions along the three geometrical axes

were ∼6.6, 6.0 and 3.0 nm (see Figure 5.3).

In Figure 5.4(a) the last snapshot for each simulation, each with two different ori-

entations, one in the plane of the two main geometrical axes (I and II), the other

perpendicular to it, are reported. The figure shows that, locally, the peptides prefer

to be parallel to each other. This alignment is favored by the relative orientation of
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Figure 5.3: Trajectory of the square root of the eigenvalues corresponding to the prin-
cipal geometrical axes of the cluster at 300 K (top panel) and 340 K (bottom panel).

the aromatic rings of adjacent phenylalanines. We described the orientation of one

aromatic ring with respect to the other evaluating two angles, γ and θ, as described

in the method section. In Figure 5.5, the γ and θ distributions for aromatic ring pairs

with Rcen <0.55 nm are reported together with a snapshot of a representative configu-

ration. It is evident that the phenylalanines have a preference to be perpendicular to

each other (T-shape). However, different orientations are also present, as both angles

are distributed over a relatively large range, in agreement with previous simulation re-

sults on Phe-Phe interactions in protein hydrophobic core.174 Moreover it is interesting

to note that the phenylalanine aromatic rings are preferentially oriented toward the

internal side of the cluster [Figure 5.4(b)].

In the two control simulations, starting with the peptides in either α-helical or β-

turn conformations, aggregate formation follows the same trend as in the simulations

reported above. In particular the overall shapes of the final aggregates are similar to

the ones observed above, although slightly more elongated along the first dimension.

The dimensions along the three geometrical axes were ≈7.8, 5.4 and 3.4 nm for the

α-helix simulation and ≈8.4, 5.4 and 3.0 nm for the β-turn simulation, respectively.
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Figure 5.4: a) Snapshots of the last configuration for the simulations at 300 K (top) and
340 K (bottom). Left panels represent view onto the plane of the largest geometrical
axes (I and II). In the right panels the side view of the snapshots shows the thickness
of the ”ellipsoid”. b) Last snapshot of the simulation at 340 K showing the preferred
orientation of the phenylalanine aromatic rings toward the interior of the cluster.

The distribution of the φ, ψ backbone dihedral angles for the two control simulations

at the initial (1ns) and final (1 ns at the end) stages shows that the B region is the most

populated at the end of the simulation, once an aggregate is formed (Figure 5.6, panels

a and b). It is interesting to observe that also in these two cases, in the aggregate,

the phenylalanines have a preference to be perpendicular to each other (T-shape) as
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Figure 5.5: γ and θ distributions for aromatic ring pairs with Rcen <0.55 nm along the
simulation at 300 K (top) and 340 K (middle). In the bottom panel a snapshot of a
representative configuration is reported.

observed for the two simulations started from extended conformations (data not shown).

Moreover, the preferential population of the B region is once again confirmed by the

distributions of the eigenvalues corresponding to the principal geometrical axes of each
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Figure 5.6: (a) Ramachandran plot of the φ, ψ backbone dihedral angle distribution and
structural snapshot at the initial stage (left panel) and equilibrated stage (right panel)
of the control simulation starting with α-helical conformations for all peptides. (b)
Ramachandran plot of the φ, ψ backbone dihedral angle distribution and structural
snapshot at the initial stage (left panel) and equilibrated stage (right panel) of the
control simulation starting with β-turn conformations for all peptides

peptide in the aggregates. Within 99% of confidence the peptides time- average sizes

along the geometrical peptide-axes are 1.44, 0.36, and 0.15 nm for the all α-helical

control simulation and 1.42, 0.38 and 0.15 nm for the β-turn control simulation. In both
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cases these values correspond to a rather elongated geometry along the first geometrical

axis.

To analyze the orientation of each peptide with respect to the cluster geometry we

have calculated the polar angles, α and β, of the first geometrical axes of the single

peptide in the reference frame defined by the three geometrical axes of the cluster

(Figure 5.7). α is the angle between the projection of the peptide first geometrical axis

onto the I, II plane and the first cluster geometrical axis. β is the angle between the

first peptide geometrical axis and the third cluster geometrical axis associated to the

smallest eigenvalue (i.e. the direction orthogonal to the main plane of the cluster). In

Figure 5.7 we show the α,β distribution, over peptides and MD frames, for the two

simulations, beyond 9.5 ns at 300K and 8.5 ns at 340K respectively.

Although a very sharp and ideal distribution of peaks cannot be obtained with

this sort of simulation time scales, Figure 5.7 is suggestive of the geometric trends the

peptides follow at the onset of the collapse phenomenon. It has to be pointed out that

in each plot the contour lines of the minima correspond to a population density that

is ten times larger than the population density of the outer region. The Figure shows

that at T=300 K the most probable orientation corresponds to α ≈45
◦

and β ≈80
◦
,

i.e. each single peptide is essentially in the I, II plane of the cluster oriented along its

bisector. At T=340 K three peaks can be observed: at α ≈25
◦
, β ≈80

◦
and α ≈75

◦
,

β ≈80
◦
, corresponding to orientations almost parallel to axis I and axis II, respectively,

and α ≈65
◦
, β ≈60

◦
, corresponding to an out of plane (cluster main plane) angle of

≈60
◦
.

Finally, we have performed an essential dynamics analysis to determine the principal

overall motions of the cluster and of each peptide within the cluster (data not shown).

The principal motion of each cluster can be represented as a wave propagating on a

plane surface. From the analysis it is also evident that the motion of each peptide

within the cluster is limited, so that no diffusion is detected within our simulation time.

Taken together these results provide evidence that the initial steps of the aggregation

between NFGAIL peptides occur through a preferred alignment of the peptides, locally

parallel to each other. This is favoured by a preference for an extended conformation

of each peptide and by the interaction between the aromatic rings of adjacent pheny-

lalanines. The clusters have the shape of a flat ellipsoid and peptides are specifically

oriented within its geometrical main plane.

5.4 Conclusions

Unveiling the molecular causes of the formation of amyloid fibrils is of a key medical

importance. It is estimated that there are about 4 million patients that suffer from

Alzheimer’s disease177 and about 18 million have type II diabetes178 in the United States

alone. Similar proportional figures are estimated for the rest of the world. As amyloid-

related diseases are correlated with advanced age, the global increase in life-expectancy
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Figure 5.7: Top panel: the vector represents the first principal geometrical axis of a
single peptide in the reference frame given by the three principal geometrical axes of
the cluster. The density map of the α,β distribution along the trajectories at 300 K
and 340 K are reported in the middle and bottom panel respectively. In each plot the
contour line of the maximum of population corresponds to a population density ten
times higher than the minimum population density, corresponding to the extreme outer
contour line.

imply that these group of diseases will dominate the public health concerns in the 21st

century. Therefore, significant efforts are being directed toward the development of

therapeutic agents that may inhibit the self-assembly process that might leads to the
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formation of the fibrils. Atomic level understanding of the very early stage of amyloid

formation is highly important for the efforts in this direction.

Here we studied the self-assembly of a short model peptide using molecular dy-

namics approaches to get insights into the very early steps of the molecular recogni-

tion and self-assembly processes that lead to the formation of the fibrils. While we

started our simulation with a random distribution of peptide monomers mimicking

a high concentration local environment, the formation of large clusters was observed

within nanoseconds (Figure 5.1). The clusters appeared to be consistent with a rather

extended conformation (Figure 5.2) and the analysis of the principal geometrical axes

of the cluster [Figures 5.3, 5.4(a)] was consistent with a ”flat” ellipsoid structure with

a size of several nanometers, where single peptides present a well defined orientation

within such a layer (Figure 5.7). It is worth noting that the same results in terms of

dimensional and conformational features of the peptides were observed for two further

control simulations started from very different initial conformations, namely α-helical

and β-turn. These two simulations should rule out the hypothesis that peptides have

to be necessarily extended prior to aggregation. The picture we obtain is actually con-

sistent with the view that peptides can populate a wide set of different conformational

families (i.e. non-extended conformations) before starting to aggregate, suggesting that

multiple intermolecular interactions within the initial aggregates drive the peptides to

mainly populate the B region of the Ramachandran plot.

Interestingly, the structures of the initial aggregates are consistent with the dimen-

sions and organization of prefibrillar assemblies that may actually play a central role

in the pathology of amyloid fibrils.179, 175 It was in fact demonstrated that annular

structures with a diameter of 5-15 nm facilitate toxic membrane permeation by the

Alzheimer’s β-amyloid polypeptide, the Parkinson’s α-synuclein polypeptide, and the

Type II diabetes islet amyloid polypeptide.

Another interesting point is the organization of the aromatic moieties within the

cluster (Figures 5.4(b), 5.5). The analysis of the organization of the phenylalanine

aromatic residues suggest the presence of multiple interactions among aromatic pheny-

lalanines that are preferentially organized perpendicular to each other. The existence

of the apparent aromatic interactions and their preferential organization provide fur-

ther support for our hypothesis of the role of aromatic interactions in the early stages of

amyloid formation.23 According to our model stacking and T-shape (edge to face) inter-

actions between aromatic moieties of Phe residues can provide an energetic contribution

as well as directionality and orientation, due to the restricted conformational freedom

of planar aromatic rings interactions. A support for this notion comes also from the

observation that the very simple diphenylalanine peptide contains all the molecular in-

formation to self-assemble into well-ordered nanostructures that are structurally related

to amyloid fibrils180. In terms of mechanism, the results suggest that conformational

changes to elongated conformations and the establishment of hydrophobic patches could

be taking place in parallel forming stable aggregates.
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However, at this stage of calculation and given the restraints imposed by the com-

putational costs of running longer simulations to access much longer time scales needed

to observe significant equilibration in the system, we cannot completely exclude the

fact that simple hydrophobic collapse might also lead to the formation of aggregates

like the ones obtained here.

Hydrophobic collapse might also lead to amorphous aggregation. In the case pre-

sented here, however, the number of stereochemical constraints imposed by the se-

quence, the assembly of the peptides in a specific parallel arrangement, and the ge-

ometry of aromatic interactions seem to point to a rather high degree of order of the

phenomenon in the microscopic scale.

We have to point out that the choice of the high local concentration conditions and

extended conformations of the peptides could put a bias on the aggregation process

simulated. However, we also observed several conformational transition of the non-

aggregated peptides to random coil and bent conformations prior to the docking on

growing cluster, which is composed of mainly extended peptides. This observation

suggests the possibility of an actual high preference for the extended conformation

within the fibril, consistent with both Solid State NMR and X-ray experimental data.

The same phenomenon might also be simulated with lower concentration conditions,

a higher number of peptides and many more different starting geometries to increase the

statistics on the conformational and molecular recognition requirements needed for fibril

formation. This would also allow the characterization of possible diffusion pathways of

the monomers in the cluster. This would however require such high number of particles

and long simulation times, that are currently out of reach of all atom MD simulations.

Therefore as different initial concentrations affect the rate of fibrillization but not the

structural features of the fibrils,181 it is practical to use high concentration of peptide

at the simulation when the structural features are probed. It is worth noting that

other studies based on a simplified implicit solvent model, and using a lower number

of peptide replicas,130, 182, 183 have addressed this point, showing results consistent with

the ones presented here in terms of the geometry of peptide arrangement. With these

caveats in mind, MD simulations can be used to create useful model to help rationalize

experimental data.

Taken together, this set of data provides an atomic resolution model of the initial

stages of a peptide aggregation process, yielding information on the nature of inter-

molecular interactions among peptides and on the preferred conformational states of

the nascent protofibril that can be used in the development of anti-aggregation (amy-

loid breaking) sequences or lead molecules, or in the design of orderly aggregating new

sequences with potential applications in material science.
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CHAPTER

SIX

Molecular dynamics simulation of protein

folding by essential dynamics sampling:

folding landscape of horse heart

cytochrome c

Summary

A new method for simulating the folding process of a protein is reported. The method

is based on the Essential Dynamics Sampling technique. In EDS a usual molecular dy-

namics simulation is performed, but only those steps, not increasing the distance from a

target structure, are accepted. The distance is calculated in a configurational subspace

defined by a set of generalized coordinates obtained by an essential dynamics analysis

of an equilibrated trajectory. The method was applied to the folding process of horse

heart cytochrome c, a protein with ∼3000 degrees of freedom. Starting from structures,

with a root mean square deviation of ∼20 Å from the crystal structure, the correct

folding was obtained, by utilizing “only” 106 generalized degrees of freedom, chosen

among those accounting for the backbone carbon atoms motions, hence not containing

any information on the side chains. The folding pathways found are in agreement with

experimental data on the same molecule.

69



70 Chapter 6

6.1 Introduction

The characterization of the protein folding process represents one of the major chal-

lenges in molecular biology. Large theoretical and experimental research efforts have

been devoted to this end.14, 3, 184, 185 Computer simulations have been largely used,

coupled to theoretical approaches, to address this question and molecular dynamics

simulations is one of the most used computational methods. The major problem with

MD simulations is due to the conformational sampling efficiency; in fact even in the

1-microsecond simulation of a 36-residue protein,16 one of the longest simulations so

far afforded , the sampled space explored represents a small fraction of the available

conformational space. For this reason different techniques have been proposed to over-

come this limit. Three kinds of most commonly used MD techniques can be identified:

one approach is to unfold starting from the native state under denaturing conditions,

mainly high temperature.105−107 However, the unfolding process is not necessarily the

reverse of the folding process and therefore the issue of whether unfolding simulations

are representative for the folding process is still open.109 Another way of addressing this

problem is the so called “biased-sampling free energy” method,94, 186, 15 in which high

temperature unfolding simulations are followed by the calculation of the free-energy of

a folding process at 300 K, along the previously determined path. Also this elegant, but

time-consuming, method is based on the hypothesis that the unfolding process at high

temperature and the folding process at 300 K follow the same path. The third method is

the “targeted molecular dynamics” (TMD), in which an additional time-dependent har-

monic restraint, applied on each atom, continuously decreases the all-atom root mean

square deviation from the native state.187 TMD has been previously used to calculate

reaction paths between two conformations of a molecule.188−190

In the present study we present a different computational approach to the folding

problem, based on the essential dynamics sampling.103, 191 In the essential dynamics,51

or principal component,52 analysis a new Cartesian reference system is obtained; each

new axis (eigenvector), obtained by the diagonalization of the covariance matrix of po-

sitional fluctuations, corresponds to a collective motion of the system and after sorting

the eigenvectors, according to the displacement involved in each one (eigenvalues), the

first ones correspond to the large concerted motions of the system and the last ones

represent the collective quasi-constraint (usually referred as near constraint) vibrations.

The EDS technique was introduced to increase (or decrease) the distance from a ref-

erence structure. To this end, the distance is calculated in the new reference system

(obtained by the previously described ED analysis of an equilibrated trajectory) using

only a subset of the generalized degrees of freedom of the system, i.e. a subset of the

eigenvectors. As reported in the methods chapter (paragraph 2.3.2), with EDS a usual

MD simulation is performed in each step; the new position is accepted if the step does

not decrease (or does not increase) the distance from the reference structure in the

chosen subspace. Otherwise the current structure is projected onto the closest config-

uration, with the same distance of the previous one in the chosen subspace. Although
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proposed in 1996, this technique was never used to follow the folding process of a pro-

tein. It has to be pointed out that with this biased MD simulation no deterministic

force is added to the system and the correct folding can be obtained by using a small

fraction of the degrees of freedom of the protein to bias the simulation. In the present

case these degrees of freedom were chosen among those accounting for backbone carbon

atoms motions, hence not containing any information on the side chains.

Here we present the results obtained in the EDS folding simulation of cytochrome

c (cyt c). Cyt c is a globular protein of 104 amino acids, whose folding dynamics has

been subjected to extensive experimental investigations.192−198 In particular fluores-

cent data 197, 199 from Trp-59 suggested an early collapse of the main chain structure

within 100 µs; time-resolved circular dichroism 192 and small-angle x-ray scattering,

SAXS,193 suggested the presence of two folding intermediates having ∼0.5 ms and ∼7

ms lifetimes. The SAXS measurements also suggested, in agreement with theoretical

investigations on different proteins,200, 201, 106 that after an initial decrease of the radius

of gyration, the main-chain collapse of the structure and the secondary structure forma-

tion are mostly concerted. Interestingly, recent fluorescence energy transfer studies on

the iso-cytochrome c folding,202 providing the distribution of distances between donor

and acceptor labelled residues, suggested that only a small fraction of the collapsed

structures correctly folds. In fact, most of those structures adopt frustrated topologies

separated by large energy barriers from the folding funnel.

6.2 Methods

6.2.1 Molecular Dynamics Simulations

The starting structure for the simulation at 300 K was taken from the 1.94 Å resolution

refined crystal structure of the protein cyt c (pdb-entry 1hrc) 203 (Figure 6.1).

The simulated system was set up as described elsewhere.108 All MD simulations were

performed using the GROMACS software package and the Gromos87 force field 204 was

used with modification as suggested by van Buuren et al.;205 explicit hydrogen atoms

in aromatic rings were simulated.35 The protein was solvated with water in a periodic

rectangular box of dimensions 67.90x63.27x72.26 Å. The SHAKE algorithm 206 was

used to constrain all bond lengths, the simple point charge 207 water model was used

and the temperature was kept constant with the isokinetic temperature coupling.158

A non-bond pairlist list cutoff of 9.0 Å was used and the pairlist was updated every

4 time steps. The long-range electrostatic interactions were treated with the particle

mesh Ewald method 157 using a 56x53x60 grid combined with a fourth-order B-spline

interpolation to compute the potential and forces in between grid points. A time step

of 2 fs was used for numerical integration.
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Figure 6.1: Crystal structure of cytochrome c.

6.2.2 Essential dynamics analysis

A molecular dynamics simulation at 300 K was performed for 2660 ps. From the equili-

brated portion of the trajectory (beyond 160 ps) the covariance matrix, of order 312, of

the positional fluctuations of the Cα carbon atoms was built up and diagonalized. The

procedure yielded new axes (eigenvectors), representing the directions of the concerted

motions. The corresponding eigenvalues gave the mean square positional fluctuation

for each direction.51

6.2.3 Essential dynamics sampling

The principles of the EDS are described in section 2.3.2. It has to be pointed out

that in the present case, the eigenvectors were obtained by the diagonalization of the

matrix of the positional fluctuations of the backbone carbon atoms (104 carbons, i.e.

312 eigenvectors), so that they do not contain any information on the other atoms, in

particular on the side chains.
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6.2.4 Unfolding/refolding simulations

To produce the starting unfolded structures the EDS technique at 300 K was used in

the expansion mode,103, 191 utilizing all the 306 native eigenvectors (the last six eigen-

vectors represent the overall roto-translation and have zero eigenvalues). Ten unfolding

simulations were performed, starting at different times of the 2660 ps simulation of

the native structure, utilized in the ED analysis. Preliminary EDS folding simulations

were performed with different procedures: a first simulation used all the 306 native

backbone carbon atom eigenvectors to calculate the distance from the target and apply

the bias (EDS procedure). Starting from the same unfolded structure three additional

simulations were performed by using the EDS procedure with three lower dimensional

subspaces: eigenvectors 1-100, eigenvectors 101-200 and eigenvectors 201-306, respec-

tively. Finally 9 additional simulations, starting from the 9 previously determined

unfolded structures, were performed using the last subspace (eigenvectors 201-306) for

the EDS procedure.

6.2.5 Contacts

According to the GROMACS definition, a contact between residues i and j>(i+3) was

considered present if the smallest distance between any two atoms, belonging to the

two residues, was less than 5.5 Å. The fraction of native contacts, ρ, is calculated with

respect to the crystal structure.

6.3 Results

Starting from the crystal structure, a 2660 ps simulation at 300 K, in explicit solvent,

was performed. From the equilibrated portion of the trajectory (beyond 160 ps) the

covariance matrix of the positional fluctuation of the Cα carbon atoms was built and di-

agonalized. The main structural properties of the equilibrated portion of the trajectory

are reported in Table 6.1.

Starting from the structure at 2500 ps of the 300 K simulation, an unfolding sim-

ulation was performed by an EDS expansion procedure at T=300 K using all the 306

native eigenvectors and the crystal structure as reference. The final structure (RUN 1

in Figure 6.2) was characterized by radius of gyration (Rg) of 18.94 Å and (with respect

to the crystal structure) by root mean square deviation (rmsd) of the Cα carbon atoms

of 19.13 Å , fraction of native contacts of 0.23 and native helix content (θ) of 28%.

The refolding process was simulated by the EDS contracting procedure, using all

the 306 native eigenvectors (ALL) to bias the system toward the target. The Cα rmsd,

with respect to the target, reached very rapidly, i.e. within 250 ps, a value close to

1.0 Å and the average structure over the last 100 ps was close to the target one (Table

6.1).



74 Chapter 6

Table 6.1: Structural properties in the crystal (row 1), in the MD simulation
of the native structure (row 2) and at the end of the refolding trajectories
(rows 3-6).

rmsdCα
# rmsdsc

# Rg ρ# %helix# θ#

(Å) (Å) (Å) (%)

Crystal - - 12.64 1.00 41 100

Native 1.44(0.22) 2.53(0.20) 12.70(0.20) 0.84(0.01) 42(4) 94(3)

ALL∗ 0.40(0.02) 2.44(0.04) 12.76(0.02) 0.83(0.01) 40(1) 94(2)

SET1∗ 2.43(0.02) 5.74(0.05) 12.98(0.02) 0.50(0.01) 10(3) 28(6)

SET2∗ 5.32(0.10) 7.13(0.08) 13.61(0.05) 0.54(0.01) 17(2) 35(7)

SET3∗ 2.33(0.07) 3.82(0.07) 13.11(0.05) 0.73(0.01) 43(2) 98(2)

∗All the values are averaged over the last 100 ps of each trajectory. Standard deviations in parentheses.
#The rmsd’s, rmsdCα and rmsdsc, the native contacts content, ρ, and the native helix content, θ, are
calculated with respect to the crystal structure. %helix represents the total helix content.

To characterize the different contribution of the native eigenvectors to the refolding

process, they were divided into three sets: eigenvectors 1-100, 101-200 and 201-306.

Using these three sets for the EDS procedure, three new refolding simulations (SET1,

SET2 and SET3) were performed. As reported in Table 6.1, only the last set gave an

average final structure close to the target one. In Figure 6.3 the ribbon diagrams of

sequential snapshots along the refolding trajectory using SET3 are represented. This

result suggests that the most rigid quasi-constraint eigenvectors, representing in the

folded protein the smallest collective vibrations, contain the proper mechanical infor-

mation for the folding process. It is also worth noting that a correct folding was ob-

tained using in the EDS procedure only 106 eigenvectors for a protein of ∼3000 degrees

of freedom. These eigenvectors seem to control and constrain the internal motion of

the secondary structure or loop elements, as shown in Figure 6.4, where we report the

fractional decomposition of the overall Cα displacement due to each single eigenvector

into internal and rototranslational (with respect to the Cα centroids) ones. The re-

sults, for the terminal helices, 60’s helix and loop1, make evidence that the last set of

eigenvectors mostly represents internal collective vibrations, i.e. within the secondary

structure or loop element considered. In addition it is evident from the fractional mean

square displacement per atom (obtained by the eigenvectors components) in the native

structure simulation, calculated for the helices and the loops, along each eigenvector

(Figure 6.5), that eigenvectors in the range 210-275 are mainly involved in the loops
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Figure 6.2: Ribbon diagrams of the crystal structure and of the starting unfolded
structures of the refolding trajectories. The N- and C- terminal residues are represented
by a black and a gray circle, respectively.
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Figure 6.3: Ribbon diagrams of sequential snapshots along the refolding trajectory
using SET3.
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Figure 6.4: Fractional Cα internal (black) and rototranslational, with respect to the
Cα centroids (gray), displacements for the Nter helix (left top), Cter helix (right top),
60’s helix (left down) and loop 1 (right down) vs the eigenvector index.
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Figure 6.5: Fractional mean square displacement per atom (obtained by the eigenvector
components) along each eigenvector, calculated for the helices Nter, Cter and 60’s (left)
and for the loops 1,2 and 3 (right).
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motion, while eigenvectors in the ranges 200-210 and 275-306 are mainly involved in

the helices motion. The mean square displacement per atom of a helix or a loop was

calculated averaging the sum of the square components of each eigenvector of the atoms

belonging to secondary structure or loop element, respectively.

Taken together these results show that, although the correct folding can be obtained

using all the 306 Cα carbon eigenvectors, a folded structure of comparable quality can be

obtained using only the last 106 eigenvectors. In what follows we will perform different

independent folding simulations using this last set of eigenvectors. This because we

want to use the least biased procedure in our folding simulations and find out the main

mechanical information necessary for the folding process.

Table 6.2: Structural properties of the starting unfolded structures of the
refolding trajectories.

rmsdCα
∗

rmsdsc
∗

Rg ρ
∗

%helix
∗

θ
∗

(Å) (Å) (Å) (%)

RUN 1 19.13 20.06 18.94 0.23 14 28

RUN 2 21.26 21.80 24.47 0.50 22 49

RUN 3 21.45 21.20 21.50 0.43 19 44

RUN 4 20.69 21.47 22.92 0.43 11 37

RUN 5 16.93 17.33 19.24 0.48 19 56

RUN 6 25.66 26.77 27.59 0.38 18 53

RUN 7 26.97 27.82 29.24 0.34 27 63

RUN 8 20.42 20.44 21.66 0.33 15 42

RUN 9 22.32 22.28 21.39 0.43 31 67

RUN 10 21.08 21.58 21.94 0.42 15 46

∗The rmsd’s, the native contacts content, ρ, and the native helix content, θ, are calculated with respect
to the crystal structure. %helix represents the total helix content.

In order to have a better statistics we performed 9 additional independent unfolding

simulations starting at different times of the native simulation, thus obtaining different

final structures (Figure 6.2 and Table 6.2). The EDS re-folding simulations (RUN 2 to
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Table 6.3: Final structural properties of the refolding trajectories.

RUNS∗ rmsdCα
# rmsdsc

# Rg ρ# %helix# θ#

(Å) (Å) (Å) (%)

RUN 1§ 2.33(0.07) 3.82(0.07) 13.11(0.05) 0.73(0.01) 43(2) 98(2)

RUN 2 1.36(0.04) 2.75(0.05) 12.76(0.04) 0.82(0.01) 39(3) 86(4)

RUN 3 1.97(0.06) 3.18(0.06) 13.11(0.05) 0.77(0.01) 41(2) 96(3)

RUN 4 2.12(0.10) 3.22(0.07) 12.96(0.04) 0.77(0.01) 40(1) 93(3)

RUN 5 1.84(0.07) 2.94(0.08) 12.93(0.04) 0.78(0.01) 38(2) 89(5)

RUN 6 4.35(0.06) 5.57(0.06) 13.52(0.06) 0.61(0.01) 35(2) 80(5)

RUN 7 3.48(0.07) 4.50(0.09) 13.41(0.05) 0.62(0.01) 33(2) 83(4)

RUN 8 2.86(0.08) 4.25(0.06) 13.23(0.06) 0.65(0.01) 36(2) 83(4)

RUN 9 2.26(0.06) 3.64(0.07) 13.40(0.04) 0.75(0.01) 42(1) 98(2)

RUN 10 1.87(0.06) 3.27(0.08) 13.03(0.05) 0.77(0.01) 42(1) 96(3)

∗All the values are averaged over the last 100 ps of each trajectory. Standard deviations in parentheses.
#The rmsd’s, rmsdCα and rmsdsc, the native contacts content, ρ, and the native helix content, θ, are
calculated with respect to the crystal structure. %helix represents the total helix content.
§RUN 1 coincides with SET3 of Table 6.1.

10) were performed for 1.0-1.5 ns, with the same procedure adopted for SET 3: 300 K

and utilizing only eigenvectors 201-306 in the EDS procedure. The results, reported in

Table 6.3 (RUN 1 of Table 6.3 coincides with SET3 of Table 6.1), show that simulations

from 1 to 5 converged well to the target structure with values comparable with the

native structure simulation (Table 6.1). Simulations 6, 7 and 8 did not show rmsd,

native contacts or helix content in agreement with the target. Simulation 9 and 10 are

doubtful because, although they show values comparable with the native structure, the

terminal helices do not show a proper folding. In fact the rmsd, with respect to the

crystal, of the terminal helices, averaged over the last 100 ps, is much larger than in

RUNS 1-5, being ≈4.5 Å on respect to ≈2.0 Å . In addition, as discussed later, they

show a small value of native contacts content between the terminal helices. Interestingly

recent fluorescence energy transfer studies on the iso-cytochrome c folding,202 measured

the distribution of distances between donor and acceptor labelled residues and suggested
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that only a fraction of the collapsed structures correctly fold. It has to be pointed out

(Figure 6.2) that the starting structures of simulations 6-10 did not have any contact

between the terminal helices, as shown by the N- and C- terminal residues represented

by a black and a gray circle, respectively. Hence the contact between the terminal helices

seems to be a prerequisite for a proper folding, in agreement with the hypothesized role

of these contacts in the cyt c folding process.208, 209, 196 Figure 6.6 (RUN 1-5) shows that

the correct folding is obtained when the native contacts between the terminal helices

precede those between helices 60’s and C-ter. The process is reversed in RUN 9 and

RUN 10, where the contacts between the terminal helices reached ∼50% of the native

structure value.
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Figure 6.6: Evolution in time (RUN 1-10) of the fraction of native contacts between
terminal helices (black) and between helices Cter and 60’s (gray).

The correlation among the native contacts content, the radius of gyration and the

helix content in the EDS folding trajectories (Figure 6.7) for RUN 1 to 10 shows that

the folding process can be divided into two steps: the first one is characterized by the

decrease of the radius of gyration, with no significant increase of the native contacts

content and amount of secondary structure; in the last part of the simulation the

radius of gyration is almost constant, while the native contacts and the secondary

structure content increase in an almost concerted way. This sequence is actually in

agreement with the one proposed by SAXS and CD measurements192, 193 and MD data
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Figure 6.7: Gray squares: correlation among the native contacts content (ρ), the radius
of gyration (Rg) and the total helix content (% helix). Black circles represent the
projection onto the Rg-ρ plane.

on different proteins.200, 201, 106 The SAXS and CD measurements also suggested that

the folding process of cyt c is characterized by two intermediates, as evidenced by the

analysis of the time dependence of the radius of gyration that was fitted by a double

exponential characterized by time constants of ∼0.5 ms and ∼15 ms. In the present

case the double exponential behaviour was less evident (data not shown), however the

double exponential fitting gave an excellent correlation coefficient, r = 0.998, and time

constants of 120 ps and 4420 ps. The difference of the time constant magnitude has to

be ascribed to the EDS method that speeds up considerably the sampling toward the

folded condition; however the ratios between the experimental time constants (∼30)

and our time constants (∼36) are comparable.
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6.4 Conclusions

In the present study a new method to simulate the folding process of a protein to

its native state is reported. The method is based on the essential dynamics sampling

procedure and provides a biased MD simulation, which restrains 106 over the ∼3000

degrees of freedom of the protein. These restrained degrees of freedom are obtained by

the essential dynamics analysis of the positional fluctuations of the backbone carbon

atoms and do not contain any information on the other backbone and side chain atoms.

It has to be pointed out that in the EDS procedure no deterministic force is added to

the Hamiltonian and hence the system is not systematically forced toward the target.

The restraints were applied only to the last eigenvectors, representing the most rigid

quasi-constraint motions, while all the other degrees of freedom were completely free

to sample the configurational space, according to the usual equations of motion. The

results also showed that the restrained eigenvectors are mostly involved in the internal

collective motions, within helices or loops, while the essential eigenvectors (the first

10-20) provide mainly rototranslational motions of helices or loops. Such results clearly

show that the last eigenvectors define the main mechanical constraints necessary in a

folded protein, while the essential eigenvectors really represent the large internal motion

which can occur without unfolding the protein.

The folding of cytochrome c was simulated as a test. The results evidenced that

5 essays (out of 10) were successful, 3 essays were not and 2 were doubtful. It has

to be pointed out that also fluorescence energy transfer studies on the iso-cytochrome

c folding202 suggested that only a fraction of the collapsed structures correctly fold.

Finally, our results showed that in the EDS simulations the folding process of cyt c

is characterized by an initial decrease of the radius of gyration, with no significant

increase of the native contacts and of secondary structure content; in the last part

of the simulation the radius of gyration is almost constant, while the native contacts

percentage and the secondary structure content increase in an almost concerted way.

This folding path is in agreement with the experimental suggestions192, 193 on cyt c and

with MD data on different proteins.200, 201, 106
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CHAPTER

SEVEN

Investigating the accessibility of the closed

domain conformation of citrate synthase

using essential dynamics sampling

Summary

A molecular dynamics study of pig heart citrate synthase is presented which aims to

directly address the question whether for this enzyme the ligand-induced closed domain

conformation is accessible to the open unliganded enzyme. The approach utilizes the

technique of essential dynamics sampling which is used in two modes. In exploring

mode the enzyme is encouraged to explore domain conformations it might not nor-

mally sample in free molecular dynamics simulation. In targeting mode the enzyme is

encouraged to adopt the domain conformation of a target structure. Using both modes

extensively it has been found that when the enzyme is prepared from a crystallographic

open-domain structure and is in the unliganded state, it is unable to adopt the crys-

tallographic closed-domain conformation of the liganded enzyme. Likewise, when the

enzyme is prepared from the crystallographic closed liganded conformation with the

ligands removed, it is unable to adopt the crystallographic open domain conformation.

Structural investigations point to a common structural difference that is the source of

this energy barrier, namely the shift of α-helix 328-341 along its own axis relative to

the large domain. Without this shift the domains are unable to close or open fully. The

charged substrate, oxaloacetate, binds near the base of this helix in the large domain

and the interaction of Arg329 at the base of the helix with oxaloacetate is one that is

consistent with the shift of this helix in going from the crystallographic open to closed

structure. Therefore the results suggest that without the substrate the enzyme remains

in a partially open conformation ready to receive the substrate. In this way the effi-

ciency of the enzyme should be increased over one that is closed part of the time, with

83
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its binding site inaccessible to the substrate.
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7.1 Introduction

Domain movements form a large class of functional movements in enzymes, and some

effort has been made to understand and characterise them. 210, 211, 212 In the simplest

scenario, the substrate binds to an open conformation of the enzyme inducing closure.

Once closed the reaction catalysed by the enzyme can proceed in a protected and highly

specific environment. It is of interest to know whether the closed domain conforma-

tion of the enzyme is accessible or inaccessible (see footnote1) to the unliganded open

conformation of the enzyme. Gerstein et al. 211 in their review of domain movements

speculate that both the open and closed conformations are dynamically accessible to the

unliganded enzyme at physiological temperature. Their model implies that there exists

a continuous range of stable domain conformations between the most open and closed

ones. They partly base their arguments on the finding that a closed unliganded form of

the binding protein lactoferrin is stabilized by weak crystal packing forces. 213 Although

this may be true for some domain proteins, it is not necessarily a universal truth as

many domain proteins have much more complicated domain interfaces than lactofer-

rin. Indeed recent combined NMR and fluorescence experiments on maltose-binding

protein has confirmed a barrier between the open and closed domain conformations for

that protein. 214 Crystallographic work on citrate synthase does not support the idea

of a continuous range of stable domain conformations but one where there are just two

stable states related to enzymatic mechanism. 215

Molecular dynamics simulations on pig heart citrate synthase 216 suggest that there

is a large free energy barrier to surmount to reach the crystallographic closed domain

conformation from the crystallographic open conformation in the unliganded state. On

the basis of that study it was concluded that the energy to surmount this barrier comes

from the interaction of the enzyme with the substrate. The concept of an energy barrier

between the open and closed domain conformation would make sense for an enzyme, in

that an enzyme that remained open would be more efficient than one that spent some

of its time closed with its binding site inaccessible to the substrate.

Citrate synthase catalyses a step in the citric acid cycle, namely the Claisen conden-

sation of acetyl-coenzyme A with oxaloacetate to form citrate and coenzyme. 217 It is a

homodimer, where the monomer comprises a large and small domain. It is an enzyme

that displays a classic domain movement as part of its function, where the binding of

oxaloacetate induces domain closure, upon which the binding site for acetyl-coenzyme

A is formed. 217 The MD simulation study referred to above comprised three simulations

that started from the crystallographic open conformation and a further three simula-

tions that started from the crystallographic closed conformation. In both cases any

ligands were removed. The simulations starting from the open conformation appeared

to show that first, there are a large number of unliganded domain conformations that

are accessible from the unliganded open conformation, but second, the crystallographic

1We used the word “inaccessible” to indicate a free energy barrier between states making it very
unlikely for there to be a transition from one to the other.
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closed domain conformation cannot be reached from the crystallographic open confor-

mation in the unliganded state. In the simulations starting from the crystallographic

closed conformation the trajectories remained around the closed domain conformation,

apart from one, where one of the monomers made an apparently spontaneous transition

to the region explored by the open simulations. Although these results suggested closed

conformation could spontaneously convert to the open in the absence of the products,

this probably never occurs in reality because the enzyme needs first to open to allow

citrate to escape. In order to investigate the results of the previous free MD simulations

further, in this work we have used the Essential Dynamics Sampling technique. 103 This

technique has been used in a number of studies on protein 104 and peptides dynamics 191

as well as folding/unfolding simulations, 108, 151 but this is its first application to the

study of a functional domain movement in an enzyme. Using this technique we are able

to encourage the domain conformation to explore a larger region of space than it would

in free MD, and also to move towards particular target conformations.

7.2 Methods

7.2.1 Molecular dynamics simulations

The details of the protocols used in the simulations performed in this work are the same

as in the previous work. 216 In short, molecular dynamics simulations were performed on

fully solvated dimers (∼80,000 atoms in total) of pig heart citrate synthase using GRO-

MACS. 218 The initial structures were the crystallographic closed structure 219 liganded

both to citrate, and coenzyme A (PDB accession code: 2CTS), and the crystallographic

open structure liganded to citrate, but bound differently to when it is a product (PDB

accession code: 1CTS). 219 None of these ligands were included in the simulations.

7.2.2 Essential Dynamics sampling

The principles of the Essential Dynamics Sampling are described in section 2.3.2. Here

the sampling is performed in two distinct modes: “targeting” and “exploring”. In the

former contraction is performed to a specified target conformation. In the latter ini-

tial expansion occurs from a specified reference conformation (e.g. the crystallographic

open conformation), but when expansion is halted according to two parameters de-

scribed below, the final conformation becomes the new reference conformation from

which a new expansion is started. There are two parameters required for the EDS in

the exploring mode: the maximum number of sampling cycles (ncycles) before changing

the origin of expansion, and the slope which sets a minimum on the rate of expansion.

These parameters were fixed to 5000 and 0.0004 nm/step, respectively. Targeting mode

simulations were stopped when the radius failed to decrease any further in a number

of consecutive steps. In all the simulations reported EDS was applied to one monomer

only, the other being allowed to undergo free MD.
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7.2.3 Sampling subspace

The sampling space was the six eigenvectors that represent the relative rigid-body mo-

tion of the two domains of a single monomer. The domains were assigned as before216

and comprised a large domain of residues 1-55, 67-278, and 378-437, and a small domain

of residues 56-66, and 278-377 which were determined by the DynDom program. 220, 221

These six eigenvectors were determined as follows. The trajectories of both monomers

from the open simulations in the previous work 216 combined to give an equivalent

single-monomer trajectory of 12 ns. This trajectory was used for a rigid-body essential

dynamics analysis that was slightly different to that described previously. The external

motion of the monomer was removed by superposing each conformation on the experi-

mental open conformation. Superposition was done using the usual least-squares fitting

procedure. Intradomain fluctuation was removed from this trajectory of intramonomer

fluctuation by superposing the experimental open domain conformations on their re-

spective domain conformations at each time frame. Superposition was done using Cα

atoms only. This gave us a trajectory of the two domains as rigid bodies. Then conven-

tional essential dynamics analysis (principal component analysis) was applied to this

trajectory resulting in six non-zero eigenvalues, which collectively quantify the amount

of relative motion there is between the two domains. The eigenvectors corresponding

to these six eigenvalues determine the subspace for the EDS. Applying EDS in this sub-

space allows us to encourage one domain to move relative to the other, and to explore

domain conformations accessible from a specific conformation (exploring mode), or to

target a specific domain conformation (targeting mode). Note that these constraints are

applied to the domain conformations only and all the intradomain degrees of freedom

are allowed to undergo free MD.

7.2.4 Visualization of relative motion of the domains

The trajectories are displayed by projecting onto the two-dimensional space specified by

the first two eigenvectors of the rigid-body essential dynamics analysis of the combined

open trajectories from the previous paper. 216 Roughly 80% of the domain fluctuation in

the combined open trajectories occurred in this two-dimensional space and the domain

movement between the two crystallographic conformations could be represented to 98%

by these two modes. Thus projecting the new trajectories from the EDS simulations

onto this space enables one to visualize the relative motion of the domains.

7.2.5 DynDom and Dom Select

In order to analyse the domain movements that occur, two programs have been used.

The program DynDom 220 takes two conformations and determines dynamic domains,

hinge axes and hinge-bending regions. It determines domains automatically based on

the conformational change itself. In this work we have also used an unreleased program
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Dom Select which allows the user to specify the domains themselves by residue number

ranges. Once the user specifies the domains, the hinge axis is determined in the same

way as in the DynDom program.

7.2.6 Rigid-body RMSD

This quantity was used in the previous analysis. 216 Consider a part of the protein that

moves from an initial to a final position. At the same time the internal conformation of

this part changes. The rigid body movement of the part between the initial and final

positions is calculated by superposing the initial conformation of the part on the final

conformation. Thus one has the initial conformation in two positions, the initial and

final. The rigid-body root mean-square deviation, RG RMSD, is simply derived from

the displacement of each atom between these two positions.

7.2.7 Helix Shift

The unreleased program Helix Shift calculates the shift of an α-helix along its own axis.

As above, consider a helix that moves from an initial to a final position. At the same

time the internal conformation of the helix changes slightly. The rigid body movement

of the helix between the initial and final positions is calculated by superposing the

initial conformation of the helix on the final conformation of the helix. The movement

of the helix along its own axis is then determined by calculating the distance between

the centres of mass of the helix in these two positions and projecting this distance onto

the helical axis of the helix in its initial position. The direction of this axis is estimated

by superposing an ideal α-helix of identical length with its axis along the z-axis onto the

real helix. The last column of the rotation matrix from this least-squares superposition

gives the direction of the axis of the real helix from which the projected distance can

be calculated.

7.3 Results

7.3.1 Simulations from open conformation

Exploring mode simulations

Three exploring mode simulations were performed starting from the open conformation

that were used to start production runs in the original work. 216 This open domain

conformation does not coincide exactly with the crystallographic open domain confor-

mation but are very near to it in comparison to the crystallographic closed domain

conformation. Details of these simulations are given in Table 7.1. Figure 7.1 shows

the domain trajectories projected onto the two main degrees of freedom for the domain

movement (see Methods).
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Table 7.1: Runs originating from crystallographic open structure

Simulation
Run Mode Starting Structure Length (ps)

Run 1 Exploring Equilibrated crystal open∗ 1300

Run 2 Exploring Equilibrated crystal open∗ 1165

Run 3 Exploring Equilibrated crystal open∗ 500

Run 4 Target to closed Equilibrated crystal open∗ 500

Run 5 Target to closed Equilibrated crystal open∗ 500

Run 6 Target to closed Equilibrated crystal open∗ 500

Run 7 Target to closed Conformation at 800ps of Run 1 500

Run 8 Exploring Final conformation of Run 5 500

Run 9 Target back-to-open Conformation at 40ps of Run 8 500

∗Each had a unique set of starting velocities generated from the Maxwell distribution.

Also shown in this figure are the trajectories of the original free simulations 216

starting from the open and closed. It is clear that domain conformations are explored

that are not explored in the original open free simulations. In Run 1 there is some prob-

ing towards the crystallographic closed domain conformation, but generally the region

around it is avoided. In order to investigate further whether trajectories that start from

the crystallographic open conformation are able or unable to reach the crystallographic

closed domain conformation, targeted simulations were performed.

To-closed targeting mode simulations

In these four simulations the crystallographic closed domain conformation is the target.

Three simulations started from the same open conformation from which the exploring

mode simulations were started, although each had a different set of velocities derived

from the Maxwell velocity distribution. The fourth simulation started from the 800ps

conformation of Run 1 of the exploring mode simulations. Table 7.1 gives the details

of these runs and Figure 7.2 shows their domain trajectories.
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Figure 7.1: Projections of the trajectories of the exploring mode simulations that started
from the crystallographic open conformation, onto the first two eigenvectors of the rigid-
body essential dynamics analysis. The three simulations shown in black, blue and red
correspond to Run 1, Run 2 and Run 3 of Table 7.1, respectively. The crystallographic
open and closed conformations are indicated with a cyan and magenta filled square,
respectively. In the plot the trajectories of the original free simulations starting from
the crystallographic open and closed conformations are also shown in grey and brown
respectively.

Figure 7.2: Projections of the trajectories of the ”to-closed” targeting mode simulations
starting from the crystallographic open conformation, onto the first two eigenvectors
of the rigid-body essential dynamics analysis. The four simulations shown in black,
blue, red and green correspond to Run 4, Run 5, Run 6 and Run 7 of Table 7.1,
respectively. Also shown in violet in the plot is the projection of the exploring mode
simulation, corresponding to Run 8 of Table 7.1. The crystallographic open and closed
conformations are indicated with a cyan and a magenta filled square respectively. In the
plot the trajectories of the original free simulations 216 starting from the crystallographic
open and closed conformations are also shown in grey and brown, respectively.
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All trajectories rapidly move towards the target but eventually are unable to move

any closer and remain stuck around a region of closest approach. The simulation with

the different starting conformation gets stuck in a slightly different region from the

others. These simulations confirm that the crystallographic closed domain conformation

is inaccessible to conformations that start from the crystallographic open conformation.

This finding supports the conclusion from the earlier work 216 where a free energy barrier

between the open and closed was proposed.

Further simulations

Figure 7.2 also shows an exploring simulation that was started from the final confor-

mation of a targeting simulation. In addition a simulation that targeted back to the

crystallographic open domain conformation was also performed. The trajectory did not

reach the crystallographic open domain conformation. Details of these simulations are

given in Table 7.1.

7.3.2 Simulations from closed conformation

Exploring mode simulations

Three exploring mode simulations were performed from the closed starting conforma-

tion, which was the same starting point as for the free MD simulations and was close

to, but not coincident with, the crystallographic closed domain conformation. Details

of the simulations are reported in Table 7.2. The projected domain trajectories are

displayed in Figure 7.3.

They move in a region around the main distribution of closed domain conformations

determined in the free simulations. However, as one would expect in an exploring mode

simulation they went beyond some of the outermost regions explored in the original

closed simulations.

To-open targeting mode simulations

In these four simulations the crystallographic open domain conformation is the target.

Three simulations started from the same closed conformation, although each had a

different set of velocities derived from the Maxwell velocity distribution. The fourth

simulation started from the 500 ps conformation of Run 2, an exploring mode simula-

tion. Table 7.2 gives the details of these simulations and Figure 7.4 shows their domain

trajectories.

All the trajectories rapidly move towards the target but eventually are unable to

move any closer and remain stuck around a region of closest approach. These simula-

tions appear to show that the crystallographic open domain conformation is inaccessible

to conformations that start from the closed. These trajectories follow the path taken

by the “transitional trajectory” of the free MD simulation study 216 indicating the
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Table 7.2: Runs originating from crystallographic closed structure

Simulation
Run Mode Starting Structure Length (ps)

Run 1 Exploring Equilibrated crystal closed* 500

Run 2 Exploring Equilibrated crystal closed* 500

Run 3 Exploring Equilibrated crystal closed* 500

Run 4 Target to open Equilibrated crystal closed* 500

Run 5 Target to open Equilibrated crystal closed* 500

Run 6 Target to open Equilibrated crystal closed* 500

Run 7 Target to open Conformation at 500ps of Run 2 500

Run 8 Exploring Final conformation of Run 4 850

Run 9 Target back-to-closed Conformation at 500ps of Run 8 500

∗Each had a unique set of starting velocities generated from the Maxwell distribution.

consistency of these results with that study. However, from the free MD study it was

concluded that the “transitional trajectory” was able to reach the open conformation.

This conclusion is not supported by the results here. The domain conformations at the

end of these targeted trajectories are indeed closer to the crystallographic open domain

conformation than the closed, but some internal differences prevent these conformations

from reaching the crystallographic open domain conformation.

Further simulations

Figure 7.4 also shows an exploring mode simulation (Run 8 in Table 7.2) which was

started from the end of the targeted simulation, Run 4. Again this trajectory explores

the regions accessed by the transitional trajectory going back to the crystallographic

closed domain conformation 6 times along the same path as the transitional trajectory.

This supports the finding that the crystallographic open domain conformation is

inaccessible and that there is an internal difference that allows these rather open domain

conformations to reach the crystallographic closed domain, but not the open one.
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Figure 7.3: Projections of the trajectories of the exploring mode simulations starting
from the crystallographic closed conformation, onto the first two eigenvectors of the
rigid-body essential dynamics analysis. The three simulations shown in black, blue
and red correspond to Run 1, Run 2 and Run 3 of Table 7.2, respectively. The crys-
tallographic open and closed conformations are indicated with a cyan and a magenta
filled square, respectively. In the plot the trajectories of the original free simulations 216

starting from the crystallographic open and closed conformations are also shown in grey
and brown, respectively.

Figure 7.4: Projections of the trajectories of the ”to-open” targeting mode simulations
starting from the crystallographic open conformation onto the first two eigenvectors,
of the rigid-body essential dynamics analysis. The four simulations shown in black,
blue, red and green correspond to Run 4, Run 5, Run 6 and Run 7 of Table 7.2,
respectively. Also shown in violet and in yellow are the projections of Run 8 (exploring
mode simulation) and Run 9 (targeting mode simulation) of Table 7.2, respectively.
The crystallographic open and closed conformations are indicated with a cyan and a
magenta filled square, respectively. In the plot the trajectories of the original free
simulations 216 starting from the crystallographic open and closed conformations are
also shown in grey and brown respectively.
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At the 500ps conformation of this exploring mode trajectory, a targeted simulation

(Run 9, Table 7.2) was started with the crystallographic closed conformation as the

target. The trajectory shown in Figure 7.4 confirms that the crystallographic closed

domain conformation is indeed accessible from conformations originating from the crys-

tallographic closed conformation. This was not found in the back-to-open simulations.

The path taken in this back-to-closed trajectory is again the same as the transitional

trajectory and the exploring mode trajectory of Run 8 indicating a low energy pathway.

Identifying the source of the energy barrier between open and closed con-

formations

These results confirm one finding of the previous work: 216 that the crystallographic

closed domain conformation is inaccessible from the open unliganded conformation.

However, on the basis of the “transitional trajectory” it was also speculated that

the crystallographic open domain conformation is accessible from the crystallographic

closed conformation in the unliganded state. However, this work indicates that the crys-

tallographic open domain conformation is not accessible from the crystallographic closed

conformation. This suggests that an energy barrier exists between both experimental

domain conformations in their unliganded states. A barrier to domain rotation is surely

located at an interface region situated between the two domains. This would mean that

it is likely to be assigned as a bending region in the DynDom analysis. Given that this

barrier is obviously overcome in the presence of the substrate or product, structural

changes in the vicinity of the binding sites for these ligands are of particular interest.

Recently, Hayward has developed a method to identify residues that are involved in

inducing closure in enzymes when an open unliganded structure and a closed liganded

structure is available. 222 Using this method three potential “closure-inducing residues”

have been identified in citrate synthase: His274, His320 and Arg329. These residues

interact with the substrate oxaloacetate to induce closure and it is reasonable to expect

therefore, that the barrier to closure will be located in the vicinity of these residues.

Previously, it was speculated that the barrier between the open and closed conforma-

tions is located at the ψ-dihedral of His274, 216 which in the closed conformation has

an angle of -134.7◦ , which together with a φ-dihedral angle of -114.7◦ puts it in a

“disallowed” region of the Ramachandran plot. 219 However, a structure at 140ps of the

back-to-closed targeting simulation (Run 9 in Table 7.2), has a domain conformation

that is almost identical to the crystallographic closed domain conformation, but the

ψ-dihedral angle of His274 has a value of -77.6◦, which with a φ-dihedral angle of -61.3◦

puts it in a low energy region of the Ramachandran plot. It seems therefore that the

extreme value of the dihedral angle in the crystallographic closed conformation is due

to the interaction of this residue with the substrate oxaloacetate and that it need not

have this value in order for the enzyme to reach the closed domain conformation. This

means that there is no particular hindrance to the domain rotation from this region.

Unlike His274, His320 is not assigned as a bending region and is located in a region
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that moves as a rather rigid body in going from the crystallographic open to closed

conformation. As it is not located in an interdomain region it is difficult to see how

any barrier to domain closure reside in the vicinity of His320. Arg329 is assigned as

a bending residue and is situated at the N-terminal of an α-helix which undergoes a

significant shift upon domain rotation. Its role in domain closure will be elucidated

below.

Structural analysis of targeting simulations

The domain conformations in the targeting simulations are straining to achieve their

target conformations but are unable to do so. It would appear logical therefore to

analyse the movements between the starting conformations, the endpoint conforma-

tions of these targeting simulations, and the target conformations themselves. Table

7.3 gives the actual domain rotation angle corresponding to these movements and the

RG RMSDs.

The data in Table 7.3 verifies that there is a significant difference between the fully

open and closed and conformations as determined by crystallography and the most

open and closed conformations achieved in the targeting simulations. The difference

between the domain movements from starting to endpoint conformations and endpoint

to target conformations can easily appreciated from Figures 7.2 and 7.4. The starting

to endpoint domain movements take routes that are rather parallel to the line that

directly joins the crystallographic conformations. The routes taken from the open are

on opposite sides of this line to those that start from the closed (see Figure 7.5 for a

schematic illustration).

The endpoint to target domain movements would be more perpendicular to this

line. The symmetry implied by Figure 7.5 indicates a common structural mechanism

that prevents the conformations of the unliganded enzyme originating from the open

crystallographic structure reaching the closed, and vice-versa. In order to investigate

this two structures were selected that form a line on our 2D projections that is parallel

to the direction of the trajectories of the targeting simulations before they get stuck,

and a further two that form a line that is perpendicular to this line. Then the program

Dom Select was used to characterise the rigid-body movement of the small domain

relative to the large for both of these pairs. In Figure 7.6 these hinge axes are displayed

with the enzyme structure.

The hinge axis depicting the movement in the parallel direction lies directly between,

and is almost perfectly parallel to, a pair of parallel α-helices: helix 222-235 situated in

the large domain, and helix 328-341 situated in the small. The hinge axis depicting the

perpendicular movement is not parallel to these helices, but also is situated between

them. The fact that in both cases the axes are located directly between these two

helices indicates that they play a crucial role in the interdomain movement.
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Table 7.3: Domain rotation angles and RG RMSD’s

Small domain RG RMSD Small domain RG RMSD
rotation between rotation between

angle between small domain angle between small domain
Targeting start and at start endpoint at endpoint
from open endpoint and endpoint and target and target
to closed (deg.) (Å) (deg.) (Å)

Run 1 20.3 5.6 2.5 1.8

Run 2 15.5 5.4 5.2 2.6

Run 3 14.4 5.2 7.7 3.1

Run 4 14.0 4.2 8.4 3.1

Targeting
to open
from closed

Run 1 15.1 4.1 7.1 2.9

Run 2 13.6 4.5 5.8 1.8

Run 3 12.1 4.3 8.5 2.1

Run 4 16.7 4.4 7.1 3.0

Shift of α-helix 328-341

Although helix 328-341 is assigned to the small domain here, DynDom often assigns a

portion of this helix to belong to the large domain in terms of its rotational properties

(please see the DynDom database of protein domain motions for more details on the

domain movement of citrate synthase between crystallographic open and closed confor-

mations). 226 Helix 222-235 belongs unambiguously to the large domain. The movement

between the crystallographic open and closed conformations is described by a hinge axis

that makes an angle of approximately 30o with these helices. Consequently, the move-

ment from crystallographic open to closed results in a distinct shift of the helix 328-341

“downwards” relative to the large domain (for convenience the direction “up” will be

used to refer to the direction of the helical axis of this helix pointing along the direction
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Figure 7.5: Schematic illustration of the paths taken by the trajectories of the targeted
simulations in relation to the locations of the crystallographic domain conformations
(see Figures 7.2 and 7.4). The filled circles indicate the crystallographic domain con-
formations. The unbroken arrows indicate the general direction taken by the targeted
trajectories, which start from the crystallographic domain conformation indicated at
the arrow’s origin. The broken arrows point to the targeted crystallographic domain
conformation from the final conformation located at the head of the unbroken arrow.
In both cases the direction taken by the targeted simulations is rather parallel to, but
does not follow the direct path between the two crystallographic domain conformations.
In order to achieve these conformations a movement indicated by the broken arrows is
required. However, in both cases it appears that this movement is unable to occur.

given by the right-hand rule). As the hinge axis describing the movement from starting

to endpoint conformations in the targeting simulations is parallel to the helical axes,

rotation about this hinge axis should not result in a shift of helix 328-341 relative to the

large domain. The hinge axis describing the endpoint to target conformations, however,

is not parallel to these helical axes and rotation about this hinge axis would result in

a shift of helix 328-341 relative to the large domain. Thus the movement described by

the crystallographic hinge axis is one the comprises two movements (see Figure 7.5),

one a rotation about an axis parallel to the two helices, which does not result in a

relative shift of these helices, the other a rotation that about an axis not parallel to the

two helices which does result in a relative shift of the helices. The former does occur

in our simulations, but the latter cannot. In order to quantify the shift in the helix
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328-341 relative to the large domain, the program Helix Shift was used (see Methods).

In going from the crystallographic open to closed conformations this helix shifts -1.58A

along its own axis relative to the large domain. The shift of this helix in each of the

targeting simulations was calculated as the shift in the helix between the starting and

endpoint conformations. Figure 7.7 schematically shows these distances. It confirms

that the helix is unable to move up or down sufficiently as the domains rotate to reach

the target conformation. Thus the shift of helix 328-341 relative to the large domain

that occurs between the crystallographic open and closed conformations is unable to

proceed sufficiently in our simulations. This result implies that the barrier to opening

and closing is a barrier to the shift of this α-helix. Given that the open domain con-

formation does reach the closed domain conformation in the presence of the substrate
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Figure 7.6: Backbone trace of the citrate synthase monomer. The large domain is
coloured blue, the small domain red. α-helix 328-341 is coloured yellow, α-helix 222-235,
orange. The cyan and magenta rods indicate the hinge axes for the domain movements
indicated by the unbroken and broken arrows in Figure 7.5, respectively. These axes
were calculated by selecting two pairs of conformations, one pair projecting parallel
to the path taken in the targeted trajectories, and the other perpendicular to this
path. These pairs of conformations were then passed to the program Dom Select. The
substrate, oxaloacetate is fitted into the large domain and is depicted in space-filling
model. Arg329 situated at the base of α-helix 328-341, is shown in ball and stick model.
In the crystallographic closed structure, Arg329 and oxaloacetate form a strong salt-
bridge. It is thought that this interaction helps citrate synthase overcome the energy
barrier in moving from the open to the fully closed state. The figure was created using
RasMol, 223 Molscript 224 and Raster3D. 225

oxaloacetate it is probably the interaction with oxaloacetate that is able to shift helix

328-341 relative to the large domain. Arg329 is situated at the base of this helix and

is often assigned as a bending residue. In a sequential model of ligand binding and

domain closure, oxaloacetate binds first to the large domain before closure occurs. 226

This would then put oxaloacetate in a position to interact with Arg329. This interaction

creates a torque about the hinge axis helping to induce the closed conformation. In the

closed conformation the salt-bridge between Arg329 and oxaloacetate is fully formed.

The suggested movement that this interaction would induce is one that would shift the

helix 328-341 downwards relative to the large domain (see Figure 7.6). Helix 328-341 is

parallel to helix 222-235 in the large domain and they have many packing interactions.

It would appear that the movement of helix 328-341 is quite constrained by these pack-

ing interactions and therefore the interaction between Arg329 and oxaloacetate is one

that is consistent with these inter-helix contacts. Therefore our hypothesis is that it

is primarily the interaction between oxaloacetate and Arg329 that is able to shift this

helix downwards over the energy barrier. However, there is no easy explanation as to

how the presence of the product might shift this helix back to its fully up position in

the open conformation as citrate forms a strong salt bridge with Arg329 in the closed

conformation. 219 If this hypothesis is correct then the energy barrier resides in the

interactions between the parallel helices 222-235 and 328-341.

Importance of Arg329

Arg329 is conserved over all available citrate synthase sequences despite some of the

sequences having diverged considerably. This was ascertained by using the Sequence

Retrieval System, SRS, at the European Bioinformatics’ Institute (http://srs/ebi.ac.uk)

by selecting EC number 2.3.3.1 from the Enzyme database 227 and then linking
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Figure 7.7: In going from the crystallographic open to closed structure the α-helix
328-341 shifts -1.58A along its own axis relative to the large domain. The arrows show
the shifts of this helix relative to the large domain from the starting conformation in
the targeted simulations. When starting from the open conformation and targeting to
the crystallographic closed conformation this helix is unable to shift down sufficiently.
Likewise when starting from the closed conformation and targeting to the crystallo-
graphic open conformation this helix is unable to shift up sufficiently. The distances
were calculated by the program Helix Shift and the lengths of the arrows in the figure
correspond to the calculated distances.

to the Swiss-Prot protein sequence database. 228 All the sequences found were then

aligned using Clustal W. 229 Arg329 is also the last residue in the citrate synthase

PROSITE 230 motif: G-[FYA]-[GA]-H-X-[IV]-X(1,2)-[RKT]-X(2)-D-[PS]-R. In all avail-

able PDB structures of citrate synthase, this arginine is situated at the same structural

position, namely at the N-terminus of one of two parallel α-helices. In all closed struc-

tures this arginine makes a salt bridge with either citrate or oxaloacetate. Unfortunately

only two mutational studies of this residue are reported in the literature. Both these are

on citrate synthase from Escherichia coli where this arginine is at position 314 in the

sequence. A R314L mutant showed a complete lack of activity. 231 In another kinetics

study, results on a R314Q and a D312N mutant were reported. 232 It was suggested that
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either mutant may affect the step between citryl-coenzyme A formation and hydrolysis,

and that it must involve both Arg314 and D312 acting in unison as both mutations

produce a very similar effect. This latter point makes sense because Arg314 and Asp312

form a salt bridge and can therefore be understood as a conformational change involv-

ing both. This fits with our analysis because like Arg314, Asp312 is situated in the

small domain suggesting that the forces acting on Arg314 are transmitted through to

the rest of the small domain partly through their salt-bridge interaction so helping to

induce closure. Thus without this interaction closure of the small domain upon the

large would be impaired.

7.4 Conclusions

Targeting and exploring simulations have been performed to assess whether the crystal-

lographic closed domain conformation is accessible to the unliganded enzyme from the

crystallographic open conformation and vice-versa. The results here suggest that even

with a strong bias introduced, the crystallographic closed domain conformation cannot

be reached from the crystallographic open conformation. Likewise it would appear that

the crystallographic open domain conformation is inaccessible from the crystallographic

closed conformation. The closed conformation is unlikely to occur in the unliganded

state as the enzyme needs to open to release citrate. This is supported by all available

crystal structures which are all liganded in the active site when closed. It is likely there-

fore that the interaction with the products helps to recycle the enzyme back to the open

conformation where they are finally able to escape. This means that the presence of a

barrier between the open and closed conformations for the unliganded state is of partic-

ular relevance for the open conformation because it is only the open conformation that

is likely to be unliganded. Our results indicate that the source of this energy barrier is

related to the shift of α-helix 328-341 along its own axis relative to the large domain.

In a sequential model of ligand binding and domain closure, 222 oxaloacetate binds first

to the large domain. This would put it in a position to interact with Arg329 at the base

of the helix such that it would pull this helix downwards in a direction that is roughly

parallel with its own axis. Thus it is proposed that the source of the energy barrier lies

in the interactions of this helix with its parallel partner in the large domain and that in

going from the open to closed domain conformation it is the interaction primarily with

Arg329 that provides the energy to overcome this barrier. In the unliganded state the

domains are able to partially close or open but without the shift of this helix the full

domain movement is unable to occur. Our results indicate that in citrate synthase the

open unliganded enzyme will remain in a relatively open conformation ready to receive

the substrate, thus increasing the efficiency of the enzyme over one that is closed part

of the time, with its binding site inaccessible to the substrate. The substrate therefore

is the key that is able to unlock the mechanism that prevents the domains to close fully.

In this sense the substrate catalyses the domain closure.
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Concluding remarks

As summarized in the methods section of the present thesis, recent developments in

computer simulations of biological macromolecules have enhanced the range of applica-

bility of these techniques in the study of folding and misfolding processes. The methods

used in this thesis form another contribution to this field and applications to several

model systems have yielded interesting results.

The major problem with molecular dynamics (MD) simulations of the folding pro-

cess of macromolecular systems, such as proteins, is due to the conformational sampling

efficiency. This difficulty is also present in systems with a lower complexity, such as pep-

tides, but is more tractable than for proteins. Experimentally, peptides fold at very fast

rates, requiring probing on the nanosecond-microsecond time resolution, hence offering

a unique opportunity to bridge the gap between theoretical and experimental under-

standing of protein folding. However, apart from some exceptions, the development

and implementation of new sampling algorithms is commonly necessary to overcome

the limitations of insufficient sampling for the study of more complex molecular systems.

For what concerns protein misfolding, understanding the conformational transitions

featuring in the aggregation and amyloidogenesis of otherwise soluble proteins and

peptides at atomic resolution would be of fundamental relevance for the development

of effective therapies against amyloid related disorders. However, the insoluble and

massive character of fibrils rules out the possibility to investigate their formation and

their structure at atomic detail with conventional experimental techniques and the use

of computational approaches becomes extremely useful, if not even necessary.

In the present thesis work, the determinants involved in fibril formation, in terms

of atomic details of both the α-β conformational transition that is thought to trigger

aggregation and the structure of nascent aggregates, are investigated. In particular, the

transition from an ideal α-helix to a β-hairpin conformation of two well studied amy-

loidogenic peptides, the H1 peptide from prion protein and the Aβ(12–28) fragment

from the Aβ(1-42) peptide responsible for Alzheimer disease, was here revealed for the

first time by long time scale, all atom MD simulations in explicit water solvent. The
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simulations highlight the unfolding of α-helices, followed by the formation of bent con-

formations and a final convergence to ordered in register β-hairpin conformations. The

β-hairpins observed, despite different sequences, exhibit a common dynamic behaviour

and the presence of a peculiar pattern of the hydrophobic side chains, in particular

in the region of the turns. These observations hint at a possible common aggregation

mechanism for the onset of different amyloid diseases and a common mechanism in the

transition to the β-hairpin structures.

Further simulations of the H1 peptide at physiological conditions, for a total sim-

ulation time of ≈1.1 µs, provided an almost complete phase space sampling and a

thermodynamic and kinetic characterization of its folding process was achieved. Sev-

eral unfolding/refolding events of the β-hairpin structure are observed, yielding a very

fast average β-hairpin folding time of ≈200 ns. The analysis of the peptide thermody-

namic stability, reveals that the β-hairpin in solution is rather unstable. These results

are in good agreement with several experimental evidences, according to which the iso-

lated H1 peptide adopts very rapidly in water β-sheet structure leading to amyloid fibril

precipitates.119, 120 At our knowledge this is one of the first attempts to simulate the

thermodynamic equilibrium of a complex system, such as a β-hairpin, for more then 1

µs using realistic models for both the peptide and the solvent and with a completely

unbiased sampling of the configurational space.

The initial self-assembly stages of another fibrillogenic peptide, the core recognition

motif of the type II diabetes associated islet amyloid polypeptide, was also studied

by MD simulations. The simulations were performed using multiple replicas of the

monomers in explicit water, in a confined box starting from a random distribution

of the peptides. The formation of unique clusters is observed after a few nanoseconds.

Structural analyses of the clusters clearly reveal the formation of ”flat” ellipsoid-shaped

clusters, showing a preferred locally parallel alignment of the peptides. The unique

assembly is facilitated by a preference for an extended conformation of the peptides

and by inter-molecular aromatic interactions.

For the study of more complex macromolecular systems, in the present thesis work a

new enhanced sampling protocol, the Essential Dynamics Sampling (EDS), was utilized

to study the folding process of an experimentally well studied protein, the cytochrome

c, and to study an important enzyme, the citrate synthase, to directly address the

question whether for this enzyme the ligand-induced closed domain conformation is

accessible to the open unliganded enzyme.

In the EDS (see paragraph 2.3.2) the simulated protein is encouraged to adopt the

conformation of a target structure, the X-ray folded structure in the case of cytochrome

c and the closed domain conformation in the case of citrate synthase. In the case of cy-

tochrome c, starting from structures with a root mean square deviation of ∼20 Å from

the crystal structure, its correct folding was obtained using “only” 106 out of the total

∼3000 degrees of freedom of the protein in the EDS procedure. The folding pathways

found in our simulations show that the early formations of contacts between the ter-
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minal helices seems to be a prerequisite for a proper folding, in agreement with the

hypothesized role of these contacts in the cytochrome c folding process revealed by

experiments.

In the study of citrate synthase, we found that, when the enzyme is prepared from

a crystallographic open-domain structure and is in the unliganded state, it is unable to

adopt the crystallographic closed-domain conformation of the liganded enzyme. This

result suggests that without the substrate the enzyme remains in a partially open

conformation ready to receive the substrate, providing an increased efficiency over one

that could be closed part of the time, with its binding site inaccessible to the substrate.
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APPENDIX

A

Appendix

In this section the theory used to model the kinetics in the essential plane will be

described in details.

Given a coordinate q, the ensemble mean square displacement from an initial point,

as a function of time, can be expressed as:

〈
∆q2(t)

〉
= 2

∫ t

0

I(t′)dt′ (A.1)

with ∆q(t) = q(t)− q(0) and

I(t′) =

∫ t′

0

γ(t′′)dt′′ (A.2)

where γ(t′′) = 〈q̇(0)q̇(t′′)〉 is the velocity autocorrelation function of q. As in the pre-

vious paper, 156 the function I(t) is considered rapidly converging to a positive value

within t0, corresponding to a first fast relaxation of the order of 30-40 fs, while for

t > t0 a second slower, first order, relaxation is used to model the slowly converging tail

in the velocity autocorrelation function. However, differently from the previous model

where the diffusion was studied using relatively short time intervals (up to 20 ps) and

a single-exponential mode was utilized, extension over longer time intervals (up to 100

ps) afforded in this study shows that a bi-exponential relaxation of the velocity auto-

correlation function is necessary to model accurately the diffusion. Hence, considering

γ(t) = γ1(t) + γ2(t), equation A.1 becomes

〈
∆q2(t)

〉
= 2

(∫ t0

0

I1(t
′)dt′ +

∫ t

t0

I1(t
′)dt′ +

∫ t0

0

I2(t
′)dt′ +

∫ t

t0

I2(t
′)dt′

)
(A.3)
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where

I1(t
′) =

∫ t′

0

γ1(t
′′)dt′′

I2(t
′) =

∫ t′

0

γ1(t
′′)dt′′ (A.4)

If we assume, for t > t0, a simple first order kinetics affecting the two components, then

I1(t
′) = [I1(t0)− I1(∞)]e−(t′−t0)/τ1 + I1(∞)

I2(t
′) = [I2(t0)− I2(∞)]e−(t′−t0)/τ2 + I2(∞) (A.5)

with relaxation time constants τ1 and τ2. Therefore

〈
∆q2(t)

〉
= 2∆ + 2I1(∞)(t− t0) + 2[I1(t0)− I1(∞)]τ1[1− e−(t−t0)/τ1 ]

+ 2I2(∞)(t− t0) + 2[I2(t0)− I2(∞)]τ2[1− e−(t−t0)/τ2 ] (A.6)

with ∆ =
∫ t0
0
I(t′)dt′.

Finally, considering that for a time range up to 100 ps we can neglect the initial fast

convergence, ∆, t0 ≈ 0, equation A.6 becomes

〈
∆q2(t)

〉 ∼= 2D∞t+ 2[D0 − A1]τ1[1− e−t/τ1 ]

+ 2[D0 − A2]τ2[1− e−t/τ2 ] (A.7)

where

D0 = I1(t0) + I2(t0)

D∞ = I1(∞) + I2(∞)

A1 = I1(∞) + I2(t0)

A2 = I2(∞) + I1(t0)

Equation A.7 was used to evaluate the time behaviour of 〈∆q2(t)〉 in the time range

1-100 ps. In particular three structurally different regions of the essential plane, where

the coordinates do not encounter a relevant free energy gradient, were analyzed.



Bibliography

[1] C. Levinthal. Mossbauer Spectroscopy in Biological Systems. University of Illinois

Press, Urbana, IL, P. Degennes edition, 1969.

[2] P.G. Wolynes, J.N. Onuchic, and D. Thirumalai. Navigating the folding routes.

Science 267, 1619–1620 (1995).

[3] K. Dill and H. Chan. From Levinthal to pathways to funnels. Nat. Struct. Biol.

4, 10–19 (1997).

[4] M. Karplus. The Levinthal paradox, yesterday and today. Fold. Des. 2, 569–576

(1997).

[5] C. M. Dobson, A. Sali, and M. Karplus. Protein Folding: A Perspective from

Theory and Experiment. Angew. Chem. Int. Ed. 37, 869–893 (1998).

[6] C.P. Schultz. Illuminating folding intermediates. Nat. Struct. Biol. 7, 7–10 (2000).

[7] B. Schuler, E. A. Lipman, and W. A. Eaton. Probing the free-energy surface

for protein folding with single-molecule fluorescence spectroscopy. Nature 419,

743–747 (2002).

[8] C.K. Chan, Y. Hu, S. Takahashi, D.L. Rousseau, W.A. Eaton, and J. Hofrichter.

Submillisecond protein folding kinetics studied by ultrarapid mixing. Proc. Natl.

Acad. Sci. USA 94, 1779–84 (1997).

[9] S. Takahashi, S.R. Yeh, T.K. Das, C.K. Chan, D.S. Gottfried, and D.L. Rousseau.

Folding of cytochrome c initiated by submillisecond mixing. Nat. Struct. Biol. 1,

44–50 (1997).

[10] R. H. Callender, R. B. Dyer, R. Gilmanshin, and W. H. Woodruff. Fast events

in protein folding: the time evolution of primary processes. Annu. Rev. Phys.

Chem. 49, 173–202 (1998).

[11] T. Pascher. Temperature and driving force dependence of the folding rate of

reduced horse heart cytochrome c. Biochemistry 40, 5812–5820 (2001).

111



112 BIBLIOGRAPHY

[12] J. K. Myers and T. G. Oas. Preorganized secondary structure as an important

determinant of fast protein folding. Nat. Struct. Biol. 8, 552–558 (2001).

[13] S. R. Yeh and D. L. Rousseau. Hierarchical folding of cytochrome c. Nat. Struct.

Biol. 7, 443–445 (2000).

[14] J.N. Onuchic, Z. Luthey-Schulten, and P.G. Wolynes. Theory of protein folding:

the energy landscape perspective. Ann. Rev. Phys. Chem. 48, 545–600 (1997).

[15] J. E. Shea and C. L. Brooks III. From folding theories to folding proteins: a review

and assessment of simulation studies of protein folding and unfolding. Annu. Rev.

Phys. Chem. 52, 499–535 (2001).

[16] Y. Duan and P.A. Kollman. Pathways to a protein folding intermediate observed

in a 1-microsecond simulation in aqueous solution. Science 282, 740–744 (1998).

[17] W.F. van Gunsteren, R. Bürgi, C. Peter, and X. Daura. The Key to Solving the

Protein-Folding Problem Lies in an Accurate Description of the Denatured State.

Angew. Chemie Intl. Ed. 40, 351–355 (2001).

[18] X. Daura, W.F. van Gunsteren, and A.E. Mark. Folding-unfolding thermody-

namics of a β-heptapeptide from equilibrium simulations. PROTEINS: Struct.

Funct. Gen. 34, 269–280 (1999).

[19] J.D. Harper. Models of amyloid seeding in Alzheimer disease and scrapie: mech-

anistic truths and physiological consequences of the time-dependent solubility of

amyloid proteins. Annu. Rev. Biochem. 66, 385–407 (1997).

[20] M. Sunde and C.C.F. Blake. From the globular to the fibrous state: Protein

structure and structural conversion in amyloid formation. Quart. Rev. Biophys.

31, 1–39 (1998).

[21] C. M. Dobson. Protein misfolding, evolution and disease. Trends Biochem Sci.

24, 329–332 (1999).

[22] J.D. Sipe and A.S. Cohen. Review: History of the amyloid fibril. J. Struct. Biol.

130, 88–98 (2000).

[23] E. Gazit. Mechanistic studies of the process of amyloid fibrils formation by the use

of peptide fragments and analogues: Implications for the design of fibrillization

inhibitors. Curr. Med. Chem. 9, 1725–1735 (2002).

[24] M. Sunde and C. Blake. The structure of amyloid fibrils by electron microscopy

and X-ray diffraction. Adv. Protein Chem. 50, 123–159 (1997).

[25] M. Barteri and B. Pispisa. Influence of isopropanol-water solvent mixtures on the

conformation of poly-L-lysine. Biopolymers 12, 2309–2327 (1973).



BIBLIOGRAPHY 113

[26] K. M. Pan, M. Baldwin, J. Nguyen, M. Gasset, A. Serban, D. Groth, I. Mehlhorn,

Z. Huang, R. J. Fletterick, F. E. Cohen, and S. B. Prusiner. Conversion of α-

helices into β-sheets features in the formation of the scrapie prion proteins. Proc.

Natl. Acad. Sci. USA 90, 10962–10966 (1993).

[27] D. Jayawickrama, S. Zink, D. Vander Velde, R.I. Effiong, and C.K. Larive. Con-

formational analysis of the β-amyloid peptide fragment, β(12-28). J. Biomol.

Struct. Dyn. 13, 229–244 (1995).

[28] D. Peretz, R.A. Williamson, Y. Matsunaga, H. Serban, C. Pinilla, R.B. Bastidas,

R. Rozenshteyn, T.L. James, R.A. Houghten, F.E. Cohen, S.B. Prusiner, and

D.R. Burton. A conformational transition at the N terminus of the prion protein

features in formation of the scrapie isoform. J. Mol. Biol. 273, 614–622 (1997).

[29] H. Mihara, Y. Takahashi, and A. Ueno. Design of peptides undergoing self-

catalyitic α to β transition and amyloidogenesis. Biopolymers 47, 83–92 (1998).

[30] M. P. Allen and D. J. Tildesly. Computer simulation of liquids. Oxford University

Press, Oxford, 1989.

[31] D. Frenkel and B. Smit. Understanding Molecular Simulation. From Algorithms

to Applications. Academic Press, Boston, 1996.

[32] W. F. van Gunsteren and P. K. Weiner. Computer simulation of biomolecular

systems. Escom Science, Leiden (NL), 1989.

[33] B. R. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, and

M. Karplus. CHARMM: a program for macromolecular energy, minimization,

and dynamics calculations. J. Comput. Chem. 4, 187 (1983).

[34] S. Weiner, P. Kollman, D. Nguyen, and D. Case. An all atom force field for

simulations of proteins and nucleic acids. J. Comput. Chem. 7, 230 (1986).

[35] W. F. van Gunsteren, S. R. Billeter, A. A. Eising, P. H. Hünenberger, P. Krüger,
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3D, Three Dimensional

Cα, Backbone Carbon Atom

CD, Circular Dichroism

CHC, Central Hydrophobic Core
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PDB, Protein Data Bank

PM, Perturbation Method

PME, Particle Mesh Ewald

PMF, Potential of Mean Force

PRD, Parallel Replica Dynamics

PrP, Prion Protein

PrPC , Cellular Form of PrP

PrPSc, Scrapie Form of PrP

REMD, Replica Exchange Molecular Dynamics

RMSD, Root Mean Square Deviation
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SPC, Simple Point Charge
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TI, Thermodynamic Integration

TMD, Targeted Molecular Dynamics
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