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Introduction

The complexity arising from financial markets is a challenge to develop new and more sophisticated

models. Since the pioneering work of Black and Scholes [10], the stochastic finance literature has grown as

well as the interest on the topic. Markov processes have been largely used in an attempt to give a stochastic

description of financial markets. However the Markovian memoryless hypothesis imposes strict conditions

on the distribution of the waiting times in the states. Semi-Markov processes are a generalization of Markov

processes allowing every kind of waiting times distribution and preserving the memoryless hypothesis in a

more adaptable way.

Semi-Markov processes can be view as a generalization of both Markov processes and renewal processes.

The first works on the topic have been produced independently by Lévy [64], Smith [79] and Takacs [83].

An important theoretical contribution was given by Çinlar [27, 28]. Since the introduction of this concept

the interest on the topic has been growing. Nowadays there are applications of semi-Markov processes in

various fields as a mark of their flexibility.

In this thesis we will focus our attention on applications in finance, in particular on interest rate, volatility

derivatives and credit risk.

A relevant class of models for application in finance is that of (Markov or semi-Markov) modulated models.

Indeed, they can give an explanation of the external random elements that influence the phenomena. For

example, the classical interest rate diffusion models can be modulated by a switching process that allows

to take into account for macroeconomic changing; modulated diffusion model of price returns can give an

explanation of low or high volatility periods.

There is a wide literature on interest rate models since the fundamental paper by Vasicek [84]: among the
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diffusion models of particularly relevance are those of Hull and White [54] and Cox, Ingersoll and Ross (CIR)

[30]. Many works have been presented in order to extend and improve diffusion models. Duffie and Kan [47]

proposed a model consisting of short rate process function of a state process. Successively, developments

have been proposed by Mamon [66] who characterized the term structure of a Markov interest rate model

when the interest rate process is assumed to be a function of a continuous time non-homogeneous Markov

chain. Then using forward measures Mamon [67] has shown how to price term structure derivative products.

In this thesis we assume that the short rate process is a diffusive process modulated by a continuous time

semi-Markov process. In this way we provide a general model of evolution that is able to reproduce a great

variety of evolutions of the interest rate. The results include renewal type equations for the higher order

moments of the zero coupon bond process and for the covariance function of the force of interest.

The market for variance and volatility swaps has been growing, and many investment banks and other

financial institutions are now actively quoting volatility swaps on various assets: stock indices, currencies, as

well as commodities. Among recent and new financial products there are covariance and correlation swaps,

which are useful for volatility hedging and speculation using two different financial underlying assets. Mar-

kets with Markov modulated volatility have been analyzed by Elliott and Swishchuk [50], in this work the

incompleteness of the market is shown and a minimal martingale measure to price option is found. They give

an expression for the price of European option as well as variance swap. In this thesis, within a stochastic

Markov modulated volatility market, we obtain an expression for the price of volatility swap. Considering a

two risky asset market with Markov modulated volatility, the price of a covariance swap and an expression

for the price of a correlation swap are obtained. We apply these results to stochastic volatility driven by a

two-state Markov chain. Numerical examples are presented for VIX and VXN volatility indices (S&P 500

and NASDAQ-100, respectively, since January 2004 to June 2012). We also used VIX (January 2004 to June

2012) to price variance and volatility swaps for the two-state Markov-modulated volatility and to present a

numerical result in this case.

Using the martingale representation of semi-Markov processes, we were able to generalize this model. Vari-

ance swap price has been derived in a semi-Markov stochastic volatility market by Swishchuk [81]. In this

work we derive an expression for volatility swap price. In a two risky asset market with semi-Markov volatility
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we price covariance swap and we obtain an expression for the correlation swap price.

The study of loss probability of any financial subjects is the main challenge of credit risk. There are many

approaches to this topic, among them we pay particular attention to credit migration models. The main

advantage of these models is their ability to describe not just the probability of default, but what happens

to the credit reliability of a debtor during the life of a contract. Semi-Markov processes were proposed for

the first time as applied to credit ratings by D’Amico et al. [32], and more recently D’Amico et al. [33]

applied this method to credit default swap evaluation.

The recent financial crisis has stressed the importance of considering all the sources of risk associated with

financial products. As well known financial markets create a network connecting institutions, banks and

companies. In any financial contract the risk of default of the counterpart is then crucial. In order to

approach this problem we need to build models able to capture the default correlation between financial

subjects.

The first challenge was to build a bivariate model whose components could be credit migration processes.

In this thesis we define multivariate semi-Markov chains, i.e. multivariate chains whose components are

semi-Markov chain. The evolution of a bivariate chain in time is studied. A bivariate reliability model for

the study of credit rating evolution of two debtors is defined. This model has been applied to the study of

counterparty risk in credit default swap (CDS).

The evolution of the yield spread as a function of rating evolution has been studied by D’Amico et al. [37].

They used a semi-Markov rewards process for the yield spread, a complete discussion about semi-Markov

rewards process is found in Stenberg et al. [80]. Particular relevant, nowadays is the credit spread between

two debtors. In this thesis, a bivariate reward model is defined and the evaluation of first and second

moments is discussed. In this model we are able to evaluate the credit spread between two debtors.

The thesis is organized in two parts as follows.

The first part is composed of 4 chapters and concerns Markov and semi-Markov modulated models, in

particular their applications to interest rate and stochastic volatility. Discrete and continuos time semi-

Markov processes are defined in the first chapter. This chapter does not contain new developments, however

it recalls the main definitions and fixes the notation for what follows.
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A semi-Markov modulated model for interest rate is discussed in the second chapter. In this chapter a

continuos time semi-Markov process modulates a diffusion model to describe the force of interest. In this

framework we are able to evaluate the Zero Coupon Bond (ZCB) and its higher order moments. We apply

this model to some well known diffusion models such as Vasicek, Hull and White and CIR. This chapter is

based on a paper [41] currently under review.

Financial markets with Markov modulated volatility are studied in Chapter 3. In this chapter we first

describe Markov processes by their martingale representation, then we consider two market models: a single

and a double risky assets. In the single risky asset market model with Markov stochastic volatility we show

how to price variance and volatility swap. In the two risky assets market model with Markov stochastic

volatility we obtain a closed form solution for the price of covariance swaps and we derive an approximation

formula for the price of correlation swaps. We discuss an application to a simple two state Markov chain

model. We apply our model to S&P 500 and NASDAQ 100 indices. This chapter is based on a paper [75]

currently under review. This and the next chapter have been developed during my visiting PhD program at

the University of Calgary, Calgary (AB) Canada, under the supervision of Prof. A. V. Swishchuk.

Financial markets with semi-Markov modulated volatility are studied in Chapter 4, that is a generalization

of Chapter 3 to semi-Markov environment. A martingale characterization of semi-Markov processes is given

at the beginning of the chapter, then we discuss variance and volatility swaps in a single risky asset market

with semi-Markov volatility. Covariance and correlation swaps are studied in a two risky assets market with

semi-Markov volatilities.

The second part concerns the study of multivariate semi-Markov processes, in particular definition,

properties and their application to credit risk.

Bivariate Markov chain are presented in Chapter 5. In the first section we study multidimensional

matrices. We use multidimensional matrices as a general framework for bivariate Markov chain. To study

this topic we will follow the works of Manca [68, 69] for notation and we refer to them for details and proofs.

Bivariate Markov chain are discussed in the second section. We first consider the system as a whole and

then we discuss some particular dependence structures between the components.

Discrete time multivariate semi-Markov processes on a finite state space are defined in Chapter 6. First we
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discuss the assumptions and all the main definitions, then we study the evolution equation of this multivariate

process. This chapter and the next are based on a paper [40] currently under review.

A discrete time bivariate semi-Markov reliability model and its applications to counterpart credit risk

are presented in Chapter 7. A bivariate semi-Markov reliability model for credit ratings evolution is defined

in the first part of this chapter; here we define the system reliability and the marginal reliabilities of the

components and we show how to express them in terms of the semi-Markov kernel. The counterparty credit

risk in a credit default swap (CDS) contract is analyzed by the bivariate reliability model. The price of a

risky CDS and the credit value adjustment due to the counterpart credit risk are obtained. A numerical

example is discussed in the final part of the chapter.

A bivariate semi-Markov rewards model and its application to credit spread evaluation is discussed in

Chapter 8. The bivariate semi-Markov rewards model and the evaluation of its first and second order mo-

ments are discussed on the second section of the chapter. The computation of the credit spread between two

debtors is described in the last section. This chapter is based on a working paper [42].
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Part I

Markov and Semi-Markov Modulated
Models





Chapter 1

Semi-Markov Process

This chapter will recall some standard notations about finite semi-Markov process.

Many books have been written on this topic and we refer to them for more details, eg. Barbu and Limnios

[3], Janssen and Manca [59] and Limnios and Opria̧n [65].

The chapter is organized as follows: the first section is devoted to discrete time semi-Markov process

while in the second section we discuss continuos time processes.

1.1 Discrete Time Semi-Markov Process

In this section we will describe discrete time processes. Let (Ω,F , (Fn)n∈N,P) be a complete filtered

probability space and let E = {1, . . . , d} be a given finite set.

Definition 1.1.1. Markov Chain

A sequence of random variables J = (Jn)n∈N∗ in E = {1, . . . , d} is called time homogenous Markov chain if

for every n ∈ N we have

P(Jn+1 = j | J0 = i0, . . . , Jn = i) = P(Jn+1 = j | Jn = i) := pij ∀ i, j ∈ E , (1.1)

the stochastic matrix P = (pij)i,j∈E is called Markov transition probability.

Let X = (Xn)n∈N∗ be a sequence of positive random variables with values in N, i.e. Xn > 0 for any

n ≥ 0. Let T = (Tn)n∈N∗ be the increasing sequence of partial sums

Tn = X0 +X1 + · · ·+Xn−1 = Tn−1 +Xn−1 for n ≥ 1 , (1.2)
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where T0 ∈ Z is the initial time. The (Xn)n∈N are called lifetimes or waiting times; intuitively they represent

the times between the occurrence of two successive events. The (Tn)n∈N∗ are called arrival times and describe

the successive instants when a specific event occurs.

Definition 1.1.2. Renewal Chain

A random sequence T = (Tn)n∈N∗ such that the waiting times X = (Xn)n∈N∗ form an i.i.d. sequence and

• T0 = 0 a.s.;

• Tn = X0 +X1 + · · ·+Xn−1;

is called a renewal chain and the r.v. Tn, n ≥ 0 are called renewal times.

Remark 1.1.3. If we consider a sequence X with values in R+ we can define the increasing sequence of

partial sums T in exactly the same way.

Definition 1.1.4. Counting Process

The increasing random sequence N = (N(t))t∈N∗ defined by

N(t) = max{n ∈ N | Tn ≤ t} , (1.3)

is the counting process associated to the renewal chain T . It gives at any time the number of events occurred.

It is interesting to study a process whose sequence of states is determined by a Markov chain and the

permanence in any state is triggered by a renewal chain. To this end we first define a semi-Markov kernel

and then we introduce the Markov renewal chain.

Definition 1.1.5. Discrete-Time Cumulated Semi-Markov Kernel

A matrix valued function Q = (Qij(t); i, j ∈ E, t ∈ N∗) is a discrete-time cumulated semi-Markov kernel if

• Qij(t) ≥ 0 for every i, j ∈ E and t ∈ N∗;

• Qij(0) = 0 for every i, j ∈ E;

• (limt→∞Qij(t))i,j∈E is a Markov transition probability.
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Definition 1.1.6. Discrete-Time Semi-Markov Kernel

A matrix valued function q = (qij(t); i, j ∈ E, t ∈ N∗) is a discrete-time semi-Markov kernel if

• qij(t) ≥ 0 for every i, j ∈ E and t ∈ N∗;

• qij(0) = 0 for every i, j ∈ E;

• (
∑∞
t=1 qij(t))i,j∈E is a Markov transition probability.

Definition 1.1.7. Markov Renewal Chain

A random sequence (J, T ) = (Jn, Tn)n∈N∗ is a Markov renewal chain if for all n ∈ N, i, j ∈ E and t ∈ N it

satisfies

P{Jn+1 = j, Tn+1 − Tn ≤ t|σ(Ja, Ta), 0 ≤ a ≤ n} = P{Jn+1 = j, Tn+1 − Tn ≤ t|Jn = i} . (1.4)

If the probability in Eq. (1.4) does not depend on n, (J, T ) is time homogenous and its associated semi-Markov

kernel q is defined by

qij(t) := P{Jn+1 = j, Tn+1 − Tn = t | Jn = i} . (1.5)

The cumulated semi-Markov kernel associated to the Markov renewal chain (J, T ) is defined by

Qij(t) := P{Jn+1 = j,Xn ≤ t | Jn = i} =

t∑
k=0

qij(k) . (1.6)

Remark 1.1.8. Through this thesis we will only consider time homogenous processes, then, in what follow,

we may omit to specify it.

If (J, T ) is a Markov renewal chain then (Jn)n∈N∗ is a Markov chain, called the embedded Markov chain

associated to the Markov renewal chain (J, T ). The Markov transition probability of J is defined by

pij := P{Jn+1 = j | Jn = i} =

∞∑
t=0

qij(t) . (1.7)

Definition 1.1.9. Distributions of the Waiting Times

• The cumulative conditional distribution of Xn is defined by

Gij(t) := P{Xn ≤ t | Jn = i, Jn+1 = j} , (1.8)

for every n ∈ N and i, j ∈ E.
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• The cumulative unconditional distribution of Xn is defined by

Hi(t) := P{Xn ≤ t | Jn = i} =
∑
j∈E

Qij(t) , (1.9)

for every n ∈ N and i ∈ E.

Remark 1.1.10. We can express the conditional distribution in terms of the semi-Markov kernel as

Gij(t) =
Qij(t)

pij
for pij 6= 0 , (1.10)

and we set Gij(t) = 1 for pij = 0 for every t ∈ N.

Definition 1.1.11. Semi-Markov Chain

Let (J, T ) be a Markov renewal chain and N its associated counting process. The process Z = (Z(t))tinN∗

defined by

Z(t) := JN(t), (1.11)

is a semi-Markov chain associated to the Markov renewal chain (J, T ). In other words Z(t) gives the position

of the embedded Markov chain at time t.

An example of trajectory is shown in Figure 1.1. The evolution of a semi-Markov chain from an initial

state can be studied by the associated transition probability.

Definition 1.1.12. Transition Probability

The transition probability of the semi-Markov chain Z is the matrix valued function φ = (φij(t); i, j ∈ E, t ∈

N∗) defined by

φij(t) := P{Z(t) = j | Z(0) = i, TN(0) = 0} . (1.12)

The following result allows us to express the transition probability in a recursive way as a function of the

semi-Markov kernel.

Proposition 1.1.13. Evolution Equation (see for example Howard [52])

For all i, j ∈ E and t ∈ N, we have

Φij(t) = δij [1−Hi(t)] +
∑
l∈E

t∑
τ=1

qil(τ)Φlj(t− τ) , (1.13)
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Figure 1.1: A semi-Markov trajectory is shown as a function of time. In the picture sojourn times, transition
times and backward recurrence time are shown.

where δij represents the Kronecker symbol.

The transition probability is expressed as a sum of two terms. The first is the probability to have no

transition up to k while the second gives the probability to have at least one transition. This result completely

defines the evolution of the semi-Markov chain and it allows us to solve numerically the process once the

semi-Markov kernel is known (see Janssen and Manca [59] for details).

Semi-Markov processes are a very convenient way to describe phenomena which display a duration effect.

The duration effect states that the time system spent in a state influence its transition probabilities. One

way to detect and quantify it with semi-Markov processes is by using backward and forward recurrence time

processes. Recurrence processes were analyzed in Janssen and Manca [60] and more recently in D’Amico et

al. [34, 39].

Definition 1.1.14. Backward Recurrence Time

The backward recurrence time process B = (B(t))t∈N associated to the semi-Markov chain Z is defined by

B(t) := t− TN(t). (1.14)

Intuitively, it gives the lifetime of the present state, in other words it is the time since the last transition.
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In the semi-Markov evolution the Markovian memoryless property is preserved only at the transition

times, i.e. the renewal moments. This feature makes the age of the state particularly important. As a

consequence, the transition probabilities of a semi-Markov process change as a function of the values of the

backward time. Indeed, the conditional waiting times distribution functions (1.8) can be of any kind and

thus, also no memoryless distributions can be used. In this case the time length spent in the starting state

(initial backward value) changes the transition probabilities.

The transition probability with initial backward is

bφij(u; t) := P{Z(t) = j | Z(0) = i, B(0) = u} ,

and denotes the probability of being in state j after t periods given that at present the process is in state i

and it got into this state with the last transition u periods before.

Furthermore one might be interested to know the age of state at time t, i.e. the backward value at time t

(final backward). The transition probability with initial and final backward is defined by

bφij(u; v, t) := P{Z(t) = j, B(t) = v | Z(0) = i, B(0) = u} .

It is clear that

bφij(u; t) =
∑
v∈N

bφij(u; v, t) . (1.15)

We now find a recursive formula for calculating backward transition probability

Proposition 1.1.15. (D’Amico et al. [35])

For all i, j ∈ E, u, v ∈ N and k ∈ N, we have

bφij(u; v, k) = δijδu+k,v
1−Hi(u+ k)

1−Hi(u)
+
∑
l∈E

k∑
τ=1

qik(u+ τ)

1−Hi(u)
bφlj(0; v, k − τ). (1.16)

If we sum on the value of the final backward v on both member of the above result we obtain a recursive

formula for the initial backward transition probability.

Remark 1.1.16. If we consider the joint process (Z,B), we record at any step the time already spent by

the semi-Markov process in the present state, then it result that (Z,B) is a Markov process (cf. Anselone
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[1] and Limnios and Oprişan [65]). In other words, a Markov process is obtained when to the semi-Markov

process is added the information regarding the permanence in the states.

1.2 Continuos Time Semi-Markov Process

In this section we summarize the main properties of continuos time processes, recalling the main definition

of continuos time semi-Markov process with particular emphasis on the difference with the discrete time

case. Let (Ω,F , (Ft)t∈R+
,P) be a complete filtered probability space, (Ft)t∈R+

with the usual conditions

of completeness and right continuity, and let E = {1, . . . , d} be a given finite set.

Definition 1.2.1. Semi-Markov Kernel

A matrix valued function Q = (Qij(t); i, j ∈ E, t ∈ R+) is a semi-Markov kernel if

• for fixed i, j ∈ E, t→ Qij(t) is a nondecreasing right continuos function and Qij(0) = 0;

• t→ Qij(t) is a probability distribution function for every i, j ∈ E;

• (limt→∞Qij(t))i,j∈E is a Markov transition probability.

We define now Markov renewal chain in continuos time, i.e. Markov renewal chain with waiting times

taking values in R+.

Definition 1.2.2. Continuos Time Markov Renewal Chain

A random sequence (J, T ) = (Jn, Tn)n∈N∗ is a continuos time Markov renewal chain if for all n ∈ N, i, j ∈ E

and t ∈ R+ it satisfies

P{Jn+1 = j, Tn+1 − Tn ≤ t|σ(Ja, Ta), 0 ≤ a ≤ n} = P{Jn+1 = j, Tn+1 − Tn ≤ t|Jn = i} . (1.17)

If the probability in (1.17) does not depend on n, (J, T ) is time homogenous and its associated semi-Markov

kernel Q is defined by

Qij(t) := P{Jn+1 = j, Tn+1 − Tn ≤ t | Jn = i} . (1.18)

Definition 1.2.3. Counting Process

The stochastic process N = (N(t))t∈R+ defined by

N(t) = sup{n ∈ N | Tn ≤ t} (1.19)
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is the counting process associated to the renewal process T . In other words, it gives at any time the number

of events occurred.

Definition 1.2.4. Continuos Time Semi-Markov Process

Let (J, T ) be a Markov renewal chain and N its associated counting process. The process Z = (Z(t))tinR+

defined by

Z(t) := JN(t), (1.20)

is a semi-Markov process associated to the Markov renewal chain (J, T ). In other words, Z(t) gives the

position of the embedded Markov chain at time t.

Definition 1.2.5. Transition Function

The transition function of the semi-Markov process Z is the matrix valued function φ = (φij(t); i, j ∈ E, t ∈

R+) defined by

φij(t) := P{Z(t) = j | Z(0) = i, TN(0) = 0} . (1.21)

Proposition 1.2.6. (see for example Limnios and Oprişan [65])

The transition function can be expressed as

φij(t) = δij(1−Hi(t)) +
∑
k∈I

∫ t

0

φkj(t− θ)Qik(dθ) . (1.22)

The first term on the right hand side (r.h.s), δij(1−Hi(t)) gives the probability that the system does not

have transitions up to time t given that it starts in state i at time 0; the second
∑
k∈I

∫ t
0
φkj(t− θ)Qik(dθ),

takes into account the permanence of the system in state i up to the time θ where a transition in state k

occurs. After the transition, the system will move to state j following one of all the possible trajectories

going from state k to state j in the remaining time t − θ. All possible states k and times θ are considered

by the summation and the integration.

The backward recurrence time process is defined by

B(t) := t− TN(t). (1.23)
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As we already pointed out in the discrete time case, the transition probabilities of a semi-Markov process

change as a function of the values of the backward time.

The transition function with initial backward is defined by

bφij(u; t) := P{Z(t) = j | Z(0) = i, B(0) = u} .

Proposition 1.2.7. (see for example Limnios and Oprişan [65])

The backward transition function can be expressed as

bφij(u; t) = δij
1−Hi(u+ t)

1−Hi(u)
+
∑
k∈I

∫ t

0

bφij(0; t− θ)Qik(u+ dθ)

1−Hi(u)
. (1.24)

For our purposes we do not need to introduce the transition function with final backward, we refer to

the book of Limnios and Oprişan [65] for more details.
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Chapter 2

A Semi-Markov Modulated Interest Rate
Model

In this Chapter we propose a semi-Markov modulated model of interest rates. We assume that the

switching process is a semi-Markov process with finite state space E and the modulated process is a diffusive

process.

Under these assumptions we derive recursive equations for the higher order moments of the discount

factor and we describe a Monte Carlo algorithm to execute simulations. The results are specialized to

classical models as those by Vasicek [84], Hull and White [54] and Cox, Ingersoll and Ross (CIR) [30] with

a semi-Markov modulation.

The chapter is organized as follows. After a short introduction to the problem, we present the stochastic

models of the short interest rates and we derive the main results concerning the equations for the higher

order moments of the discount factor and for the covariance function of the force of interest. In the last

section we apply our model to three well known diffusion models for interest rate and we present a Monte

Carlo algorithm able to generate the synthetic data of the model.

This chapter is based on a paper (G. D’Amico, R. Manca and G. Salvi [41]) currently under review.

2.1 Introduction

The literature on interest rate models is ample and mainly concerns models based on short rate dynamics

and models of forward rate (see e.g. Björk [9]). The advantages and the drawbacks of short rate models are
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well known in literature and even nowadays they continue to receive attention by researchers and practition-

ers.

The fundamental paper by Vasicek [84] is the pioneering contribution to short rate models. Different

extensions and alternatives to the Vasicek model have been presented. One interesting approach in term-

structure modeling is that proposed by Duffie and Kan [47], they assumed the short rate to be a function of

a state process. Interesting developments were subsequently obtained by Mamon [66] who characterized the

term structure of a Markov interest rate model when the interest rate process is assumed to be a function

of a continuous time non-homogeneous Markov chain. By using the forward measure it was shown how to

price term structure derivative products, see Mamon [67].

This paper assumes that the short rate is a diffusive process modulated by a continuous time semi-

Markov process. The force of interest rates is defined by using the theory of semi-Markov reward processes

with initial backward times, as developed by [80], and here opportunely extended to consider the case of

stochastic permanence rewards. The resulting model is sufficiently general to be able to reproduce a great

variety of interest rate evolutions. This is possible because the parameters of the diffusion are considered to

be dependent on the state of the regime (semi-Markov process) and also on the time elapsed in the current

regime (backward recurrence time process). Therefore the model is characterized by a rich parameter space,

which consequently allows for model flexibility. It is worth noting that, since the Markov modulated model

is an instance of the semi-Markov one, the latter will work at least as well as the former.

The results include renewal type equations for the higher order moments of the discount factor (DF) and

for the covariance function of the force of interest. Notice that, in the paper by Hunt and Devolder [55],

a discrete time regime switching binomial-like model of the term structure, where the regime switches are

governed by a discrete time semi-Markov process, is presented. As reported by Hunt and Devolder [55], the

semi-Markov modulated model offers a solution to some of the drawbacks of the Markovian switching models.

The most important inadequacies are represented by the memoryless property of Markov processes and by

the rather unrealistic hypothesis of constant transition intensities for the Markovian switching process for

interest rate data (see Dahlquist and Gray [44]). Additional advantages of the semi-Markov approach can

be found in Hunt and Devolder [55].
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We propose a finite state space continuous time semi-Markov modulated model as opposed to the

binomial-like discrete time regime switching model of Hunt and Devolder [55]. There are different rea-

sons motivating our choice. First of all, the continuous time model avoids necessitating the selection of a

discrete time scale that, in general, depends on the observation frequency. This, in turn, avoids the problem

of temporal aggregation when estimating model parameters, which may cause inconsistent estimations of the

short-term interest rate (see Broze et al. [18]). The second reason is that very often regimes are considered

as states of the economy and although economic measurements occur in discrete periods (e.g. monthly or

quarterly) the economy operates continuously in time.

It should be highlighted that our paper doesn’t discuss the problem of transformation between the real-

world (physical) measure and the pricing measure and therefore the proposed model could not be adopted for

pricing interest derivative products, but it is suitable for all applications that require real-world evolution of

rates (see Rebonato et al. [74] for a complete list). It should be mentioned that determination of real-world

evolution of rates should not to be considered as an alternative to sampling the risk-adjusted measure, but

rather as a complement (see Rebonato et al. [74]).

Particular cases of our model proved appropriate to solve problems with applications to insurance (see

Norberg [71]). In this respect, the semi-Markov modulated interest rate model can be useful in studying

problems of actuarial mathematics such as, for example, the evolution of mathematical reserves linked to life

insurance contracts, where the adoption of simplified and stylized interest rates models can determine mis-

leading results. The mis-modeling of interest rates is a serious problem, which impacts on assets, liabilities

and surplus levels (see Wang and Huang [86]).

2.2 The Model

In this section we define a semi-Markov modulated model of interest rates and we assess its probabilistic

behavior.

In the following we assume that the force of interest, at any time t, is a stochastic process of diffusive

type whose parameters depend on the state of the semi-Markov process, on the backward recurrence time
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process and on the initial value of the force of interest r0. To be more precise we assume that within two

transition times Tn−1 and Tn of the semi-Markov process the evolution of the force of interest follows the

dynamic of a diffusive process whose parameters depends on the state Jn−1 of the semi-Markov process.

The dynamic of the force of interest, between two consecutive renewal moments, will be indicated as

dr(t) = bi(r(t), t)dt+ σi(r(t), t)dW (t), r(0) = r0 , (2.1)

where it is supposed that T0 = 0, T1 > t and J0 = i. The process W (t) is a Brownian motion with respect

to its own filtration FWt , and we denote the drift and diffusion coefficients with b and σ, respectively. The

solution of the stochastic differential equation (2.1) will be denoted by ri,r0(s), for s ∈ [T0, T1). In T1 the

semi-Markov process transits to another state, say j, the force of interest in the time interval since T1 to the

next transition will evolve according to

dr(t) = bj(r(t), t)dt+ σj(r(t), t)dW (t), r(T1) = ri,r0(T1) , (2.2)

for t ∈ [T1, T2), and so on. Therefore, the resulting force of interest will be a continuous process.

We would like to stress that for any s ∈ [T0, T1), and in general between any two transition times, the

solution ri,r0(s) is obtained with standard stochastic calculus methods.

Due to the fact that the force of interest depends on the modulating process, we need to describe the

force of interest process at any time s given the information available at the present time, which is time zero

as long as we are working with a homogenous time model, and this is represented by the triplet of values

{Z(0) = i, B(0) = u, r(0) = r0}.

Definition 2.2.1. The force of interest at the generic time s is defined as:

δi,u,r0(s)
d
= χ(T1 > s|J0 = i, T0 = −u, T1 > 0)ri,r0(s) + χ(T1 ≤ s|J0 = i, T0 = −u, T1 > 0)δJ1,0,ri,r0 (T1)(s− T1).

(2.3)

Here χ(A | B) is the indicator function of set A given the information B and the symbol d
= stands for the

equality in distribution.

Remark 2.2.2. The processes χ(T1 > s|J0 = i, T0 = −u, T1 > 0) and ri,r0(s) are independent for any

s ∈ R+ and i ∈ I.
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Remark 2.2.3. The process χ(s < T1 < s+h|J0 = i, T0 = −u, T1 > 0)δJ1,0,ri,r0 (T1)(s+h−T1) conditioning

to the value of ri,r0(T1) is independent of ri,r0(s).

We are interested in the DF process vi,u,rt(t, T ) := exp(−
∫ T
t
δi,u,rt(s)ds) expressing the value of 1 Euro

at time T , given that at current time t the semi-Markov process is in the state i and it has entered this

state u periods before and the force of interest at that time is rt. To this end, we would like to consider

only diffusion processes in the following that allow an explicit representation of the Laplace transform of∫ t
0
ri,r0(s)ds for example, Vasicek [84], Hull and White [54] and Cox, Ingersoll and Ross (1985) (CIR) model.

Theorem 2.2.4. Let

V
(n)
i,u,rt

(t, T ) = E[(vi,u,rt(t, T ))n] , (2.4)

be the nth order moment of the DF process, then it results that

V
(n)
i,u,rt

(t, T ) =
1−Hi(T − t+ u)

1−Hi(u)

(
B

(n)
i,rt

(t, T )
)

+
∑
k∈I

∫ T

t

Q̇ik(τ + u)

1−Hi(u)

(
B

(n)
i,rt

(t, τ)

∫ +∞

−∞
V

(n)
k,0,x(τ, T )Fri,rt (τ)(dx)

)
dτ ,

(2.5)

where B(n)
i,rt

is defined by

B
(n)
i,rt

(t, T )
.
= E

{
exp

(
−n
∫ T

t

ri,rt(s)ds

)}
. (2.6)

Proof. Let us consider that at the time t, the process vi,u,rt(t, T ) := exp(−
∫ T
t
δi,u,rt(s)ds) and the condition

TN(t)+1 is the time of the next switching process transition. We can partition the state space into two

possible events: {TN(t)+1 > T} or {TN(t)+1 ≤ T}.

The first event {TN(t)+1 > T} corresponds to the possibility of having no transition up to the time T and it

has a probability 1−Hi(T−t+u)
1−Hi(u) . Under this event, the force of interest is given by

δi,u,rt(s) = ri,rt(s) for s ∈ [t, T ] . (2.7)

In this case, the DF process assumes the value

vi,u,rt(t, T )

∣∣∣∣
TN(t)+1>T

= exp

(
−
∫ T

t

ri,rt(s)ds

)
, (2.8)

taking now the expectation that

E{(vi,u,rt(t, T ))n|TN(t)+1 > T} = B
(n)
i,rt

(t, T ) . (2.9)
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Therefore, we have

E{(vi,u,rt(t, T ))nχ(TN(t)+1 > T |JN(t) = i, TN(t) = t− u, TN(t)+1 > t, r(t) = rt)}

=
1−Hi(T − t+ u)

1−Hi(u)
B

(n)
i,rt

(t, T ) . (2.10)

The other event {TN(t)+1 ∈ (t, T ], JN(t)+1 ∈ I} corresponds to the possibility of having at least one

transition in the considered time interval. The probability that the semi-Markov process has the first

transition in the time interval (τ, τ + dτ), for τ ∈ (t, T ), into the state k ∈ I, is given by

P (JN(t)+1 = k, TN(t)+1 ∈ (τ, τ + dτ)|FSMt , Z(t) = i, B(t) = u) =
Q̇ik(τ + u)

1−Hi(u)
dτ ,

where (FSMt )t is the filtration generated by the process (Z,B), that is the semi-Markov and the backward

recurrence time together. To properly evaluate the expectation under this event, we have to consider all the

possible values that the force of interest can assume on transition time τ . Denoting Fri,rt (τ) as the cumulative

distribution function associated to ri,rt(τ), and using the continuity property of the force of interest, we have

P (JN(t)+1 = k, TN(t)+1 ∈ (τ, τ + dτ), δi,u,rt(τ) ∈ (x, x+ dx)|Ft) =
Q̇ik(τ + u)

1−Hi(u)
Fri,rt (τ)(dx)dτ ,

where Ft is the filtration generated by (Z,B,W). Under the event A = {JN(t)+1 = k, TN(t)+1 ∈ (τ, τ +

dτ), δi,u,rt(τ) ∈ (x, x+ dx),Ft} the DF process can be expressed as

vi,u,rt(t, T )

∣∣∣∣
A

= exp

(
−
∫ T

t

δi,u,rt(s)ds

)∣∣∣∣∣
A

= exp

(
−
∫ τ

t

ri,rt(s)ds

)
exp

(
−
∫ T

τ

δk,0,x(s)ds

)∣∣∣∣∣
A

.

Moreover from Remark 2.2.3, we have

E{(vi,u,rt(t, T ))n|A} = E

{
exp

(
−n
∫ τ

t

ri,rt(s)ds

)
exp

(
−n
∫ T

τ

δk,0,x(s)ds

)∣∣∣∣∣A
}

= E

{
exp

(
−n
∫ τ

t

ri,rt(s)ds

) ∣∣∣∣∣A
}
E

{
exp

(
−n
∫ T

τ

δk,0,x(s)ds

)∣∣∣∣∣A
}

= B
(n)
i,rt

(t, τ)V
(n)
k,0,x(τ, T ) .

and consequently

E{(vi,u,rt(t, T ))nχ(t < TN(t)+1 ≤ T |JN(t) = i, TN(t) = t− u, TN(t)+1 > t, r(t) = rt)}

=
∑
k∈I

∫ T

t

Q̇ik(τ + u)

1−Hi(u)

(
B

(n)
i,rt

(t, τ)

∫ +∞

−∞
V

(n)
k,0,x(τ, T )Fri,rt (τ)(dx)

)
dτ .

(2.11)
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The value of the discount factor is given by

E{(vi,u,rt(t, T ))n} = E{(vi,u,rt(t, T ))nχ(TN(t)+1 > T |JN(t) = i, TN(t) = t− u, TN(t)+1 > t, r(t) = rt)}

+ E{(vi,u,rt(t, T ))nχ(t < TN(t)+1 ≤ T |JN(t) = i, TN(t) = t− u, TN(t)+1 > t, r(t) = rt)},
(2.12)

then by substitution of expressions (2.10) and (2.11) into (2.12) the proof is complete.

Corollary 2.2.5. Lets represent Ri,u,rt(s) = E[δi,u,rt(s)], then it results that

Ri,u,rt(s) =
1−Hi(s+ u)

1−Hi(u)
mi,rt(t, s) +

∑
k∈I

∫ s

0

Q̇ik(τ + u)

1−Hi(u)

(∫ +∞

−∞
Rk,0,x(s− τ)Fri,rt(τ)(dx)

)
dτ , (2.13)

here, mi,rt(s) := E[ri,rt(s)].

We can derive the following result that helps us obtain the covariance function of the force of interest.

Theorem 2.2.6. Let s > 0 and h > 0, and

Ξi,u,r0(s, h) = E[δ(s)δ(s+ h)|Z(0) = i, B(0) = u, δ(0) = r0] . (2.14)

Then it results that

Ξi,u,r0(s, h) =
1−Hi(s+ h+ u)

1−Hi(u)
ρi,r0(s, s+ h)

+
∑
k∈I

∫ s+h

s

Q̇ik(τ + u)

1−Hi(u)
mi,r0(s)

∫ +∞

−∞
Rk,0,x(s+ h− τ)Fi,r0(τ)(dx)dτ

+
∑
k∈I

∫ s

0

Q̇ik(τ + u)

1−Hi(u)

∫ +∞

−∞
Ξk,0,x(s− τ, s+ h− τ)Fi,r0(τ)(dx)dτ ,

(2.15)

here, ρi,r0(s, s+ h) := E[ri,r0(s)ri,r0(s+ h)].

Proof. Using the definition of the force of interest process δ, cf. formula (2.3), we have that

δi,u,r0(s)δi,u,r0(s+ h)
d
= {χ(T1 > s|J0 = i, T0 = −u, T1 > 0)ri,r0(s)

+ χ(T1 ≤ s|J0 = i, T0 = −u, T1 > 0)[δJ1,0,ri,r0 (T1)(s− T1)]}

×
{
χ(T1 > s+ h|J0 = i, T0 = −u, T1 > 0)ri,r0(s+ h)

+ χ(T1 ≤ s+ h|J0 = i, T0 = −u, T1 > 0)[δJ1,0,ri,r0 (T1)(s+ h− T1)]
}
,

(2.16)

which can be simplified to

δi,u,r0(s)δi,u,r0(s+ h) = χ(T1 > s+ h|J0 = i, T0 = −u, T1 > 0)ri,r0(s)ri,r0(s+ h)

+ χ(s < T1 ≤ s+ h|J0 = i, T0 = −u, T1 > 0)ri,r0(s)δJ1,0,ri,r0 (T1)(s+ h− T1)

+ χ(T1 ≤ s|J0 = i, T0 = −u, T1 > 0)δJ1,0,ri,r0 (T1)(s− T1)δJ1,0,ri,r0 (T1)(s+ h− T1) ,

(2.17)
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The first term on the right hand side of (2.17) corresponds to the possibility that the semi-Markov process

has no transition up to time s+h, the second term considers the case when the first transition occurs during

the time interval (s, s + h) and the third takes into account the possibility of the first transition occurring

before s.

Taking expectations of the first term on the right hand side (r.h.s.) of (2.17) and noting that (cf. Remark

2.2.2) the random variable χ(T1 > s + h|J0 = i, T0 = −u, T1 > 0) is independent from, both, ri,r0(s) and

ri,r0(s+ h) yields,

E[χ(T1 > s+ h|J0 = i, T0 = −u, T1 > 0)ri,r0(s)ri,r0(s+ h)]

= E[χ(T1 > s+ h|J0 = i, T0 = −u, T1 > 0)]E[ri,r0(s)ri,r0(s+ h)]

=
1−Hi(s+ h+ u)

1−Hi(u)
ρi,r0(s, s+ h) .

(2.18)

Let us consider the second term on the r.h.s. of (2.17). By taking the expectation and by conditioning

on the value of ri,r0(T1), we can use the independence between ri,r0(s) and χ(s < T1 ≤ s + h|J0 = i, T0 =

−u, T1 > 0)δJ1,0,ri,r0 (T1)(s+ h− T1) (cf. Remark 2.2.3) to obtain

E{E[χ(s < T1 ≤ s+ h|J0 = i, T0 = −u, T1 > 0)ri,r0(s)δJ1,0,ri,r0 (T1)(s+ h− T1)|ri,r0(T1) = x]} (2.19)

= E{E[χ(T1 > s+ h|J0 = i, T0 = −u, T1 > 0)δJ1,0,ri,r0 (T1)(s+ h− T1)|ri,r0(T1) = x]}E[ri,r0(s)]

=
∑
k∈I

∫ s+h
s

Q̇ik(τ+u)
1−Hi(u) E[ri,r0(s)]

∫ +∞
−∞ E[δk,0,x(s+ h− τ)]Fi,r0(τ)(dx)dτ ,

since

E[ri,r0(s)] = mi,r0(s) , (2.20)

and

E[δk,0,x(s+ h− τ)] = Rk,0,x(s+ h− τ) , (2.21)

then, by substitution, we get

E[χ(s < T1 ≤ s+ h|J0 = i, T0 = −u, T1 > 0)ri,r0(s)δJ1,0,ri,r0 (T1)(s+ h− T1)]

=
∑
k∈I

∫ s+h
s

Q̇ik(τ+u)
1−Hi(u) mi,r0(s)

∫ +∞
−∞ Rk,0,x(s+ h− τ)Fi,r0(τ)(dx)dτ . (2.22)
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Finally, taking the expectation of the third term on the r.h.s. of (2.17) we obtain

E[χ(T1 ≤ s|J0 = i, T0 = −u, T1 > 0)δJ1,0,ri,r0 (T1)(s− T1)δJ1,0,ri,r0 (T1)(s+ h− T1)] (2.23)

=
∑
k∈I

∫ s
0
Q̇ik(τ+u)
1−Hi(u) E[δk,0,ri,r0 (τ)(s− τ)δk,0,ri,r0 (τ)(s+ h− τ)]dτ ,

and, by considering all possible values of ri,r0(τ), we get

E[χ(T1 ≤ s|J0 = i, T0 = −u, T1 > 0)δJ1,0,ri,r0 (T1)(s− T1)δJ1,0,ri,r0 (T1)(s+ h− T1)] (2.24)

=
∑
k∈I

∫ s
0
Q̇ik(τ+u)
1−Hi(u)

( ∫ +∞
−∞ E[δk,0,x(s− τ)δk,0,x(s+ h− τ)]Fi,r0(τ)(dx)

)
dτ ,

but

E[δk,0,x(s− τ)δk,0,x(s+ h− τ)] = Ξk,0,x(s− τ, s+ h− τ) , (2.25)

then

E[χ(T1 ≤ s|J0 = i, T0 = −u, T1 > 0)δJ1,0,ri,r0 (T1)(s− T1)δJ1,0,ri,r0 (T1)(s+ h− T1)] (2.26)

=
∑
k∈I

∫ s
0
Q̇ik(τ+u)
1−Hi(u)

( ∫ +∞
−∞ Ξk,0,x(s− τ, s+ h− τ)Fi,r0(τ)(dx)

)
dτ .

Therefore, in order to determine the expectation of (2.17), it is sufficient to sum (2.18), (2.22) and (2.26).

2.3 Applications to Some Known Diffusion Models

So far, we have not assumed any specific dynamic driving the force of interest between two consecutive

renewal moments. In this section we would like to consider some extensively applied diffusion models for

the force of interest such as those proposed by Vasicek [84], Hull and White [54] and CIR [30]. For these

models, as it is well known, the Laplace transformation of the integral of the force of interest, r, has an

explicit representation. As we will see, our general results specialized for these particular cases.

Without loss of generality, since we are working with an homogeneous time model, we can suppose that

the present time is t = 0, with J0 = i, and study the dynamic of the force of interest from 0 up to a generic

instant t < T1.
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2.3.1 Vasicek Modulated Model

We assume that the process ri,r0(t), satisfies{
dri,r0(t) = ai(bi − ri,r0(t))dt+ σidWt

ri,r0(0) = r0
,

where ai, bi and σi, for fixed i ∈ I, are non-negative constants. The solution of the previous stochastic

differential equation is

ri,r0(t) = bi + (r0 − bi)e−ait + σie
−ait

∫ t

0

eaisdWs . (2.27)

For any fixed t, ri,r0(t) is normally distributed, ri,r0(t) ∼ N (mi,r0(t), σ2
i,r0

(t)) with mean

mi,r0(t) = E[ri,r0(t)] = bi + (r0 − bi)e−ait , (2.28)

and variance

σ2
i,r0(t) =

σ2
i

2ai
(1− e−2ait) . (2.29)

It follows that (see Lamberton and Lapeyre [63])
∫ t
0
r(s)ds is a normal random variable, since the integral

can be written as the limit of Riemann sums, which are Gaussians. Then we can completely characterize

the distribution of
∫ t
0
ri,r0(s)ds with its mean and variance. The mean, using Fubini’s Theorem, is given by

E
[∫ t

0

ri,r0(s)ds

]
=

∫ t

0

E[ri,r0(s)]ds =

∫ t

0

mi,r0(s)ds

=

∫ t

0

[bi + (r0 − bi)e−ais]ds = bit+
r0 − bi
ai

(1− e−ait) .
(2.30)

The variance can be expressed as

V ar

[∫ t

0

ri,r0(s)ds

]
= V ar

[∫ t

0

(
bi + (r0 − bi)e−ais + σie

−ais
∫ s

0

eaiudWu

)
ds

]
= V ar

[∫ t

0

(
σie
−ais

∫ s

0

eaiudWu

)
ds

]
,

(2.31)

which can be written as

V ar

[∫ t

0

ri,r0(s)ds

]
= V ar

[∫ t

0

eaiu
(
σi

∫ t

u

e−aisds

)
dWu

]
. (2.32)

Using Ito’s isometry we get

V ar

[∫ t

0

ri,r0(s)ds

]
= σ2

i

∫ t

0

e2aiu
(∫ t

u

e−aisds

)2

du = σ2
i

∫ t

0

e2aiu
(
e−aiu − e−ait

ai

)2

du .
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This is a standard integral, and we can simply solve it using the ordinary techniques of calculus obtaining

V ar

[∫ t

0

ri,r0(s)ds

]
=
σ2
i t

a2i
− σ2

i

a3i
(1− e−ait)− σ2

i

2a3i
(1− e−ait)2 . (2.33)

Now, we can give an analytical expression of the nth moment of a DF between two consecutive renewal

moments, B(n)
i,r0

(0, t) (cf. Theorem 2.2.4), defined by

B
(n)
i,r0

(0, t) = E
[
exp{−n

∫ t

0

ri,r0(t)dt}
]
, (2.34)

which can be seen as the Laplace transformation of the normal random variable
∫ T
0
ri,r0(t)dt and then it can

be expressed as

B
(n)
i,r0

(0, t) = exp

{
−nE

[∫ t

0

ri,r0(t)dt

]
+
n2

2
V ar

[∫ t

0

ri,r0(t)dt

]}
. (2.35)

Substituting in the mean and variance expressions we get

B
(n)
i,r0

(0, t) = exp

{(
σ2
i n

2

a2i
− nbi

)
t−
(
σ2
i n

2

a3i
+
n(r0 − bi)

ai

)(
1− e−ait

)
− σ2

i n
2

2a3i
(1− e−ait)2

}
. (2.36)

This way, we are able to express all the moments of the DF in any time interval.

Corollary 2.3.1. The nth order moment of the discount factor in the Vasicek model modulated by the

semi-Markov process of kernel Q is

V
(n)
i,u,rt

(t, T ) = E

[
exp(−n

∫ T

t

δi,u,rt(s)ds)

]
=

1−Hi(T − t+ u)

1−Hi(u)

(
B

(n)
i,rt

(t, T )
)

+
∑
k∈I

∫ T

t

Q̇ik(τ + u)

1−Hi(u)

(
B

(n)
i,rt

(t, τ)

∫ +∞

−∞
fN (mi,rt (τ−t),σ2

i,rt
(τ−t))(x)V

(n)
k,0,x(τ, T )dx

)
dτ.

(2.37)

where B(n)
i,rt

(t, T ) is given in equation (??) and fN (mi,rt (τ−t),σ2
i,rt

(τ−t)) is the probability distribution function

of a normal random variable with mean mi,rt(τ − t) and variance σ2
i,rt

(τ − t) (cf. eq. (2.28) and (2.29),

respectively).

Corollary 2.3.2. The first moment of the force of interest of the Vasicek model modulated by the semi-

Markov process of kernel Q is

Ri,u,rt(s) = E[δi,u,rt(s)] =
1−Hi(s+ u)

1−Hi(u)

(
bi + (rt − bi)e−ais

)
+
∑
k∈I

∫ s

t

Q̇ik(τ + u)

1−Hi(u)

∫ +∞

−∞
fN (mi,rt (τ),σ

2
i,rt

(τ))(x)Rk,0,x(s− τ)dxdτ.

(2.38)
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where fN (mi,rt (τ),σ
2
i,rt

(τ)) is the probability distribution function of a normal random variable with mean

mi,rt(τ) and variance σ2
i,rt

(τ) (cf. eq. (2.28) and (2.29), respectively) .

Corollary 2.3.3. The product moment of the force of interest of the Vasicek model modulated by the semi-

Markov process of kernel Q is

Ξi,u,r0(s, h) = E[δ(s)δ(s+ h)|Z(0) = i, B(0) = u, δ(0) = r0] =
1−Hi(s+ h+ u)

1−Hi(u)
ρi,r0(s, s+ h)

+
∑
k∈I

∫ s+h

s

Q̇ik(τ + u)

1−Hi(u)

(
bi + (r0 − bi)e−ais

) ∫ +∞

−∞
fN (mi,r0 (τ),σ

2
i,r0

(τ))(x)Rk,0,x(s+ h− τ)dxdτ

+
∑
k∈I

∫ s

0

Q̇ik(τ + u)

1−Hi(u)

∫ +∞

−∞
fN (mi,r0 (τ),σ

2
i,r0

(τ))(x)Ξk,0,x(s− τ, s+ h− τ)dxdτ

(2.39)

where ρi,r0(s, s+ h) is given by

ρi,r0(s, s+ h) = E[ri,r0(s)ri,r0(s+ h)] = mi,rt(s)mi,rt(s+ h) +
σ2
i

2ai
e−aih(1− e−2ais), (2.40)

and fN (mi,rt (τ),σ
2
i,rt

(τ)) is the distribution function of a normal random variable with mean mi,rt(τ) and

variance σ2
i,rt

(τ) (cf. eq. (2.28) and (2.29), respectively) .

Monte Carlo Algorithm

We conclude the discussion with a Monte Carlo algorithm able to generate the trajectories of the Vasicek

model modulated by a semi-Markov process of kernel Q in the time interval [0, T ]. The algorithm consists

in repeated random sampling to compute successive visited states of the random variables {J0, J1, ...}, the

jump times {T0, T1, ...} and the force of interest process r(t) up to the time T .

The algorithm consists of 5 steps:

1. Set n = 0, J0 = i, T0 = 0, r(0) = r0, horizon time= T ; discretization step= h

2. Sample J from pJn,· and set Jn+1 = J(ω);

3. Sample W from GJn,Jn+1
(·) and set Tn+1 = Tn +W (ω);

4. For each i = Tn : h : max(T, Tk+1 − 1)

Sample N from N (0, h)

Set r(i+ 1) = bJn + e−aJn (r(i)− bJn) + e−aJnσJnN(i+ 1)



2.3 Applications to Some Known Diffusion Models 31

5. if Tn+1 ≥ T stop

else Set n = n+ 1 and go to 2).

2.3.2 Hull and White modulated model

Let’s now assume that the process ri,r0(t) satisfies{
dri,r0(t) = (αi(t)− βi(t)ri,r0(t))dt+ σi(t)dWt

ri,r0(0) = r0

where αi, βi and σi are deterministic functions of time. The solution of this stochastic differential equation

can be expressed (see Shreve [78]) as

ri,r0(t) = e−ki(t)
[
r0 +

∫ t

0

eki(u)αi(u)du+

∫ t

0

eki(u)σi(u)dW (u)

]
, (2.41)

where

ki(t) =

∫ t

0

βi(u)du. (2.42)

Note that (ri,r0(t))t∈[0,T ] is a Gaussian process whose mean is given by

mi,r0(t) = e−ki(t)
[
r0 +

∫ t

0

eki(u)αi(u)du

]
, (2.43)

and its variance is given by

σ2
i,r0(t) = e−2ki(t)

∫ t

0

e2ki(u)σi(u)2du. (2.44)

Moreover the process (
∫ t
0
ri,r0(s)ds)t∈[0,T ] is Gaussian as well, with mean

E
[∫ t

0

ri,r0(s)ds

]
=

∫ t

0

e−ki(t)
[
r0 +

∫ s

0

eki(u)αi(u)du

]
ds, (2.45)

and variance

V ar

(∫ t

0

ri,r0(s)ds

)
=

∫ t

0

e2ki(u)σ2
i (u)

(∫ t

0

e−ki(s)ds

)2

du. (2.46)

Then, we are able to express the nth moment of a DF value between two consecutive renewal moment in an

analytical form

B
(n)
i,r0

(0, t) = E

[
exp{−n

∫ T

0

ri,r0(t)dt}

]
= exp

{
−E

[∫ T

0

ri,r0(t)dt

]
+

1

2
V ar

[∫ T

0

ri,r0(t)dt

]}
. (2.47)

We can now express all the moments of the DF in any time interval.
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Corollary 2.3.4. The nth order moment of the discount factor in the Hull and White model modulated by

the semi-Markov process of kernel Q is

V
(n)
i,u,rt

(t, T ) = E

{
exp(−n

∫ T

t

δi,u,rt(s)ds)

}
=

1−Hi(T − t+ u)

1−Hi(u)

(
B

(n)
i,rt

(t, T )
)

+
∑
k∈I

∫ T

t

Q̇ik(τ + u)

1−Hi(u)

(
B

(n)
i,rt

(t, τ)

∫ +∞

−∞
fN (mi,rt (τ−t),σ2

i,rt
(τ−t))(x)V

(n)
k,0,x(τ, T )dx

)
dτ ,

(2.48)

where B(n)
i,rt

(t, T ) is given in equation (2.47) and fN (mi,rt (τ−t),σ2
i,rt

(τ−t)) is the probability distribution func-

tion of a Normal distribution with mean mi,rt(τ − t) and variance σ2
i,rt

(τ − t) (cf. eq. (2.43) and (2.44)

respectively).

Corollary 2.3.5. The first moment of the force of interest of the Hull and White model modulated by the

semi-Markov process of kernel Q is

Ri,u,rt(s) = E[δi,u,rt(s)] =
1−Hi(s+ u)

1−Hi(u)
e−ki(s−t)

[
rt +

∫ s

t

eki(u)αi(u)du

]
+
∑
k∈I

∫ s

t

Q̇ik(τ + u)

1−Hi(u)

∫ +∞

−∞
fN (mi,rt (τ),σ

2
i,rt

(τ))(x)Rk,0,x(s− τ)dxdτ.

(2.49)

where fN (mi,rt (τ),σ
2
i,rt

(τ)) is the probability distribution function of a Normal distribution with mean mi,rt(τ)

and variance σ2
i,rt

(τ) (cf. eq. (2.43) and (2.44) respectively) .

Corollary 2.3.6. The product moment of the force of interest of the Hull and White model modulated by

the semi-Markov process of kernel Q is

Ξi,u,r0(s, h) = E[δ(s)δ(s+ h)|Z(0) = i, B(0) = u, δ(0) = r0] =
1−Hi(s+ h+ u)

1−Hi(u)
ρi,r0(s, s+ h)

+
∑
k∈I

∫ s+h

s

Q̇ik(τ + u)

1−Hi(u)
e−ki(s)

[
r0 +

∫ s

0

eki(u)αi(u)du

] ∫ +∞

−∞
fN (mi,r0 (τ),σ

2
i,r0

(τ))(x)Rk,0,x(s+ h− τ)dxdτ

+
∑
k∈I

∫ s

0

Q̇ik(τ + u)

1−Hi(u)

∫ +∞

−∞
fN (mi,r0 (τ),σ

2
i,r0

(τ))(x)Ξk,0,x(s− τ, s+ h− τ)dxdτ ,

(2.50)

where ρi,r0(s, s+ h) is given by

ρi,r0(s, s+ h) = E[ri,r0(s)ri,r0(s+ h)] = mi,rt(s)mi,rt(s+ h) + e−ki(s)−ki(s+h)
∫ t

0

e2ki(u)σi(u)2du , (2.51)

and fN (mi,rt (τ),σ
2
i,rt

(τ)) is the probability distribution function of a Normal distribution with mean mi,rt(τ)

and variance σ2
i,rt

(τ) (cf. eq. (2.43) and (2.44) respectively) .
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2.3.3 Cox-Ingersoll-Ross (CIR) Modulated Model

In this model we assume that the dynamics of the force of interest between two consecutive renewal

moments, is described by the following stochastic differential equation{
dri,r0(t) = (ai − biri,r0(t))dt+ σi

√
ri,r0(t)dWt

ri,r0(0) = r0
,

here, ai and σi are non-negative constants, while bi ∈ R. This stochastic differential equation, for any r0 ∈ R,

has a unique solution (see e.g. Ikeda and Watanabe [57]). We will not elaborate on the explicit solution of

this equation, but following the approach of Lamberton and Lapeyre [63], we will study the property of the

distribution of ri,r0(t). To this aim, let us first study the distribution of (ri,r0(t),
∫ t
0
ri,r0(s)ds). It is possible

to show (see Lamberton and Lapeyre [63]) that

E
(
e−λri,r0 (t)e−µ

∫ t
0
ri,r0 (s)ds

)
= exp(−aiφi,λ,µ(t)) exp(−r0ψi,λ,µ(t)) , (2.52)

where the functions φi,λ,µ(t) and ψi,λ,µ(t) are given by

φi,λ,µ(t) = − 2

σ2
i

log

(
2γie

t(γi+bi)

2

σ2
i λ(eγit − 1) + γi − bi + eγit(γi + bi)

)
, (2.53)

and

ψi,λ,µ(t) =
λ(γi + bi + eγit(γi − bi)) + 2µ(eγit − 1)

σ2
i λ(eγit − 1) + γi − bi + eγit(γi + bi)

, (2.54)

with γi =
√
b2i + 2σ2

i µ . Using this result we can explicitly evaluate the Laplace transform of ri,r0(t), indeed

by putting µ = 0 in the above expression we get

E
(
e−λri,r0 (t)

)
=

(
2bi

σ2
i λ(1− e−bit) + 2bi

) 2ai
σ2
i

exp

(
−r0

2λbie
−bit

σ2
i λ(1− e−bit) + 2bi

)
. (2.55)

Moreover, we can obtain an analytic representation of the nthmoment of a DF between two renewal moments,

in fact setting λ = 0 and µ = n, we have

B
(n)
i,r0

(0, t) = E
(
e−n

∫ t
0
ri,r0 (s)ds

)
=

(
2γie

t(γi+bi)

2

γi − bi + eγit(γi + bi)

) 2ai
σ2
i

exp

(
−r0

2(eγit − 1)

γi − bi + eγit(γi + bi)

)
, (2.56)

where γi =
√
b2i + 2σ2

i n . Starting from here we can obtain the nth moment of a DF in an arbitrary time

interval and the first moment of the force of interest.
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Corollary 2.3.7. The nth order moment of the discount factor in the CIR model modulated by the semi-

Markov process of kernel Q is

V
(n)
i,u,rt

(t, T ) = E

{
exp(−n

∫ T

t

δi,u,rt(s)ds)

}
=

1−Hi(T − t+ u)

1−Hi(u)

(
B

(n)
i,rt

(t, T )
)

+
∑
k∈I

∫ T

t

Q̇ik(τ + u)

1−Hi(u)

(
B

(n)
i,rt

(t, τ)

∫ +∞

0

fχ2(2ci(τ,t)rt;2qi+2,2ui(τ,t))(x)V
(n)
k,0,x(τ, T )dx

)
dτ.

(2.57)

where B(n)
i,rt

(t, T ) is given in equation (2.56) and fχ2(2ci(τ,t)rt;2qi+2,2ui(τ,t)) is the non-central chi-square dis-

tribution function with

ci(τ, t) =
2bi

σ2
i (1− e−bi(τ−t))

; qi =
2ai
σ2
i

− 1 ; ui(τ, t) =ci(τ, t)rte
−bi(τ−t) . (2.58)

Corollary 2.3.8. The first moment of the force of interest of the CIR model modulated by a semi-Markov

process of kernel Q is

Ri,u,rt(s) = E[δi,u,rt(s)] =
1−Hi(s+ u)

1−Hi(u)

[
rte
−bi(s−t) +

ai
bi

(
1− e−bi(s−t)

)]
+
∑
k∈I

∫ s

t

Q̇ik(τ + u)

1−Hi(u)

∫ +∞

0

fχ2(2ci(τ,t)rt;2qi+2,2ui(τ,t))(x)Rk,0,x(s− τ)dxdτ.

(2.59)

where fχ2(2ci(τ,t)rt;2qi+2,2ui(τ,t)) is the non-central chi-square distribution function.



Chapter 3

Financial Markets with Markov
Modulated Stochastic Volatilities

In this chapter we price covariance and correlation swaps for financial markets with Markov-modulated

volatilities. As an example, we consider stochastic volatility driven by a two-state continuous time Markov

chain. In this case, numerical examples are presented for VIX and VXN volatility indexes (S&P 500 and

NASDAQ-100, respectively, since January 2004 to June 2012). We also use VIX to price variance and

volatility swaps for the two-state Markov-modulated volatility and to present a numerical result in this case.

The chapter is organized as follows. First, martingale representation of Markov processes is considered.

Then, variance and volatility swaps for financial markets with Markov-modulated stochastic volatilities are

studied. Furthermore, pricing of covariance and correlation swaps for a two risky assets for financial markets

with Markov-modulated stochastic volatilities is presented. Finally, we consider an example for variance,

volatility, covariance and correlation swaps for Markov-modulated volatility driven by a two-state continuous

time Markov chain. Here, a numerical example for variance and volatility swaps pricing using S&P500 VIX

index is given. Moreover, a numerical example for covariance and correlation swaps using S&P500 VIX and

NASDAQ-100 VXN indexes is presented.

This chapter is based on the work done while visiting University of Calgary, Calgary (AB) Canada, under

the supervision of Prof. A. V. Swishchuk.

This chapter is based on a paper (G. Salvi and A. V. Swishchuk [75]) currently under review.
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3.1 Introduction

Among the recent and new financial products there are covariance and correlation swaps, which are useful

for volatility hedging and speculation using two different financial underlying assets.

For example, option dependent on exchange rate movements, such as those paying in a currency different

from the underlying currency, have an exposure to movements of the correlation between the asset and the

exchange rate. This risk may be eliminated by using covariance swap.

A covariance swap is a covariance forward contract of the underlying rates S1 and S2. Its payoff at

expiration is equal to

N(CovR(S1, S2)−Kcov) ,

where Kcov is the strike price, N is the notional amount, CovR(S1, S2) is the covariance between the two

assets S1 and S2.

A correlation swap is a correlation forward contract of two underlying rates S1 and S2 which payoff at

expiration is equal to:

N(CorrR(S1, S2)−Kcorr) ,

where Corr(S1, S2) is the realized correlation of two underlying assets S1 and S2,Kcorr is the strike price,

and N is the notional amount.

Pricing covariance swap, from a theoretical point of view, is similar to pricing variance swaps, since

CovR(S1, S2) = 1/4{σ2
R(S1S2)− σ2

R(S1/S2)} ,

where σ2
R(S) is a variance swap for underlying assets.

Thus, we need to know variances for S1S2 and for S1/S2. Correlation CorrR(S1, S2) is defined as follows:

CorrR(S1, S2) =
CovR(S1, S2)√
σ2
R(S1)

√
σ2
R(S2)

.

Given two assets S1
t and S2

t with t ∈ [0, T ], sampled on days t0 = 0 < t1 < t2 < ... < tn = T between

today and maturity T, the log-return for each asset is: Rji := log(
Sjti
Sjti−1

), i = 1, 2, ..., n, j = 1, 2.

Covariance and correlation can be approximated by

Covn(S1, S2) =
n

(n− 1)T

n∑
i=1

R1
iR

2
i ,
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and

Corrn(S1, S2) =
Covn(S1, S2)√

V arn(S1)
√
V arn(S2)

,

respectively.

The literature devoted to the volatility derivatives is growing. We give here a short overview of the latest

development in this area. The Non-Gaussian Ornstein-Uhlenbeck stochastic volatility model was used by

Benth et al. [4] to study volatility and variance swaps. M. Broadie and A. Jain [15] evaluated price and

hedging strategy for volatility derivatives in the Heston square root stochastic volatility model and in [16]

they compare result from various model in order to investigate the effect of jumps and discrete sampling on

variance and volatility swaps. Pure jump process with independent increments return were used by Carr et

al. [19] to price derivatives written on realized variance, and subsequent development by Carr and Lee [20].

We also refer to Carr and Lee [21] for a good survey on volatility derivatives. Da Fonseca et al. [43] analyzed

the influence of variance and covariance swap in a market by solving a portfolio optimization problem in a

market with risky assets and volatility derivatives. Correlation swap price has been investigated by Bossu

[12, 13] for component of an equity index using statistical method. Drissien et al. [46] discusses the price of

correlation risk for equity options. Pricing volatility swaps under Heston’s model with regime-switching and

pricing options under a generalized Markov-modulated jump-diffusion model are discussed by Elliott et al.

[48, 49], respectively. Howison et al. [53] considers the pricing of a range of volatility derivatives, including

volatility and variance swaps and swaptions. The pricing options on realized variance in the Heston model

with jumps in returns and volatility is studied by Sepp [77]. An analytical closed-form pricing of pseudo-

variance, pseudo-volatility, pseudo-covariance and pseudo-correlation swaps is studied by Swishchuk et al.

[82]. Windcliff et al. [87] investigates the behaviour and hedging of discretely observed volatility derivatives.

3.2 Martingale Representation of Markov Processes

Let (Ω,F , (Ft)t∈R+
,P) be a filtered probability space, with right-continuous filtration (Ft)t∈R+

and

probability P. Let (X,X ) be a measurable space and (xt)t∈R+
be a (X,X )-valued Markov process with

generator Q. The following two results allow us to associate a martingale to this process and to obtain its

quadratic variation (we refer to Elliott and Swishchuk [50] for the proofs).
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Proposition 3.2.1. (Elliott and Swishchuk [50])

Let (xt)t∈R+ be a Markov process with generator Q and f ∈ Domain (Q), then

mf
t := f(xt)− f(x0)−

∫ t

0

Qf(xs)ds , (3.1)

is a zero-mean martingale with respect to Ft := σ{y(s); 0 ≤ s ≤ t}.

Let us evaluate the quadratic variation of this martingale.

Proposition 3.2.2. (Elliott and Swishchuk [50])

Let (xt)t∈R+ be a Markov process with generator Q, f ∈ Domain (Q) and (mf
t )t∈R+ its associated martingale,

then

〈mf 〉t :=

∫ t

0

[Qf2(xs)− 2f(xs)Qf(xs)]ds , (3.2)

is the quadratic variation of mf .

In the following it will be useful to consider the quadratic covariation of two martingales associated to a

generic couple of functions of a Markov process.

Proposition 3.2.3. Let (xt)t∈R+ be a Markov process with generator Q, f, g ∈ Domain (Q) such that fg ∈

Domain (Q). Denote by (mf
t )t∈R+

, (mg
t )t∈R+

their associated martingale. Then

〈f(x·), g(x·)〉t :=

∫ t

0

{Q(f(xs)g(xs))− [g(xs)Qf(xs) + f(xs)Qg(xs)]}ds , (3.3)

is the quadratic covariation of f and g.

Proof. First of all, we note that

mf
tm

g
t = f(xt)g(xt)− f(xt)

∫ t

0

Qg(xs)ds− g(xt)

∫ t

0

Qf(xs)ds+

∫ t

0

Qf(xs)ds

∫ t

0

Qg(xs)ds

= f(xt)g(xt)−mf
t

∫ t

0

Qg(xs)ds−mg
t

∫ t

0

Qf(xs)ds−
∫ t

0

Qf(xs)ds

∫ t

0

Qg(xu)du ,

(3.4)

Moreover,

d

[
mf
t

∫ t

0

Qg(xs)ds+mg
t

∫ t

0

Qf(xs)ds+

∫ t

0

Qf(xs)ds

∫ t

0

Qg(xu)du

]
=

(∫ t

0

Qg(xs)ds

)
dmf

t +

(∫ t

0

Qf(xs)ds

)
dmg

t +mf
tQg(xt)dt+mg

tQf(xt)dt

+

(∫ t

0

Qg(xs)ds

)
Qf(xt)dt+

(∫ t

0

Qf(xs)ds

)
Qg(xt)dt .
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Using the expression for mf and mg (cf. Proposition 3.2.1) we obtain

d

[
mf
t

∫ t

0

Qg(xs)ds+mg
t

∫ t

0

Qf(xs)ds+

∫ t

0

Qf(xs)ds

∫ t

0

Qg(xu)du

]
=

(∫ t

0

Qg(xs)ds

)
dmf

t +

(∫ t

0

Qf(xs)ds

)
dmg

t + f(xt)Qg(xt)dt+ g(xt)Qf(xt)dt .

(3.5)

and using Eq. (3.5), Eq. (3.4) becomes

mf
tm

g
t = f(xt)g(xt)−

[∫ t

0

(∫ s

0

Qg(xu)du

)
dmf

s +

∫ t

0

(∫ s

0

Qf(xu)du

)
dmg

s

]
−
∫ t

0

[f(xs)Qg(xs) + g(xs)Qf(xs)] ds .

Adding and subtracting
∫ t
0
Q(f(xs)g(xs))ds on the right hand side of the previous equation, we have

mf
tm

g
t = f(xt)g(xt)−

∫ t

0

Q(f(xs)g(xs))ds

−
[∫ t

0

(∫ s

0

Qg(xu)du

)
dmf

s +

∫ t

0

(∫ s

0

Qf(xu)du

)
dmg

s

]
+

∫ t

0

[Q(f(xs)g(xs))− f(xs)Qg(xs)− g(xs)Qf(xs)] ds .

(3.6)

Since fg ∈ Domain (Q), then (cf. Proposition 3.2.1)

f(xt)g(xt)−
∫ t

0

Q(f(xs)g(xs))ds t ∈ R+ , (3.7)

is a martingale. The term in square bracket on the r.h.s of Eq. (3.6) is a martingale too. Therefore

mf
tm

g
t −

∫ t

0

[Q(f(xs)g(xs))− f(xs)Qg(xs)− g(xs)Qf(xs)] ds t ∈ R+ , (3.8)

is a martingale and we have that

〈f(x·), g(x·)〉t =

∫ t

0

[Q(f(xs)g(xs))− f(xs)Qg(xs)− g(xs)Qf(xs)] ds . (3.9)

Now, we are able to evaluate the expectation of a generic function of a Markov process.

Proposition 3.2.4. (Elliott and Swishchuk [50])

Let (xt)t∈R+ be a Markov process with generator Q and f ∈ Domain (Q), then

E{f(xt)} = etQf(x0) . (3.10)
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Remark 3.2.5. Let (xt)t∈R+
be a Markov process with generator Q, f, g ∈ Domain (Q) such that fg ∈

Domain (Q), then

E{f(xt)g(xt)} = etQf(x0)g(x0) . (3.11)

3.3 Variance and Volatility Swaps for Financial Markets with Markov-
Modulated Stochastic Volatilities

Let us consider a financial market with only two securities, the risk free bond (Bt)t∈R+ and the stock

(St)t∈R+ . Let us suppose that the stock price and the bond satisfy the following stochastic differential

equation

{
dBt = Btr(xt)dt

dSt = St(µ(xt)dt+ σ(xt)dwt)
, (3.12)

where w is a standard Wiener process independent of the Markov process (xt)t∈R+
. In this model the

volatility is stochastic, then it is interesting to study the property of σ and in particular how to price future

contracts on realized variance and volatility.

The following results concern the expectation of variance and are simple application of Propositions 3.2.1

and 3.2.4.

Corollary 3.3.1. Suppose that σ ∈ Domain (Q). Then

E{σ2(xt)|Fu} = σ2(xu) +

∫ t

u

QE{σ2(xs)|Fu}ds , (3.13)

for any 0 ≤ u ≤ t.

Corollary 3.3.2. The conditional expectation of the variance can be expressed as

E{σ2(xt)|Fu} = e(t−u)Qσ2(xu) , (3.14)

for any 0 ≤ u ≤ t.

This Markov-modulated financial market is incomplete (see Elliott and Swishchuk [50]). In order to price

the swaps we will use the minimal martingale measure. We briefly recall here the main definition.
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Definition 3.3.3. Martingale measure

The measure P∗ is called a martingale measure, if it is equivalent to P and such that the discounted capital

Mt :=
βtBt + γtSt

Bt
here (β, γ) is a portfolio ,

is a P∗ martingale.

Definition 3.3.4. Strongly orthogonal martingales

Two martingales are said to be strongly orthogonal if their product is a martingale.

Definition 3.3.5. Minimal martingale measure

A martingale measure P∗ for a discounted capital is called a minimal martingale measure associated with P if

any local P-martingale strongly orthogonal (under P) to each local martingale M remains a local martingale

under P∗.

Lemma 3.3.6. (Elliott and Swishchuk [50])

The measure defined by

dP̂
dP

∣∣∣∣
Ft

= ηt , (3.15)

where

ηt := e
∫ t
0
[(r(xs)−µ(xs))/σ(xs)]dws− 1

2

∫ t
0
[(r(xs)−µ(xs))/σ(xs)]2ds , (3.16)

is the minimal martingale measure associated with P.

In the following, for simplicity we will denote the minimal martingale measure with P as well.

3.3.1 Pricing Variance Swaps

Let us start from the more straightforward variance swap. Variance swaps are forward contract on future

realized level of variance. The payoff of a variance swap with expiration date T is given by

N(σ2
R(x)−Kvar) . (3.17)

Here σ2
R(x) is the realized stock variance over the life of the contract defined by

σ2
R(x) :=

1

T

∫ T

0

σ2(xs)ds , (3.18)
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while Kvar is the strike price for variance and N is the notional amounts of dollars per annualized variance

point. Without loss of generality, we can assume N = 1. The price of the variance swap is the expected

present value of the payoff in the risk-neutral world

Pvar(x) = E{e−rT (σ2
R(x)−Kvar)} . (3.19)

The following result concern the evaluation of the variance swap. We refer to Elliott and Swishchuk [50] for

a complete discussion and proof.

Theorem 3.3.7. (Elliott and Swishchuk [50])

The present value of a variance swap for Markov stochastic volatility is

Pvar(x) = e−rT

{
1

T

∫ T

0

(etQσ2(x)−Kvar)dt

}
. (3.20)

3.3.2 Pricing Volatility Swaps

Volatility swaps are forward contracts on future realized level of volatility. The payoff of a volatility swap

with maturity date T is given by

N(σR(x)−Kvol) , (3.21)

where σR(x) is the realized stock volatility over the life of the contract defined by

σR(x) :=

√
1

T

∫ T

0

σ2(xs)ds , (3.22)

where Kvol is the strike price for volatility and N is the notional amounts of dollars per annualized volatility

point. We will assume, as before, that N = 1 for sake of simplicity. The price of the volatility swap is the

expected present value of the payoff in the risk-neutral world

Pvol(x) = E{e−rT (σR(x)−Kvol)} . (3.23)

In order to evaluate the volatility swaps we need to know the expected value of the square root of the

variance, but unfortunately we are not able to evaluate analytically this expected value. Then in order to

obtain a closed formula for the price of volatility swaps we have to make an approximation. Following the
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approach of Brockhaus and Long [17] (see also Javaheri et al. [61]), from the second order Taylor expansion

we have

E{
√
σ2
R(x)} ≈

√
E{σ2

R(x)} − V ar{σ2
R(x)}

8E{σ2
R(x)}3/2

. (3.24)

Then, in order to evaluate the volatility swap price we have to know both expectation and variance of σ2
R(x).

Theorem 3.3.8. The value of a volatility swap for Markov-modulated stochastic volatility is

Pvol(x) ≈ e−rT
{√

1
T

∫ T
0
etQσ2(x)dt− V ar{σ2

R(x)}
8( 1
T

∫ T
0
etQσ2(x)dt)

3/2 −Kvol

}
,

where the variance is given by

V ar{σ2
R(x)} =

2

T 2

∫ T

0

∫ t

0

esQ
[
σ2(x)e(t−s)Qσ2(x)

]
dsdt−

[
1

T

∫ T

0

etQσ2(x)dt

]2
.

Proof. We have already obtained the expectation of the realized variance,

E{σ2
R(x)} =

1

T

∫ T

0

etQσ2(x)dt , (3.25)

then it remains to prove that

V ar{σ2
R(x)} =

2

T 2

∫ T

0

∫ t

0

esQ
[
σ2(x)etQσ2(x)

]
dsdt−

[
1

T

∫ T

0

etQσ2(x)dt

]2
.

The variance is, from the definition, given by

V ar{σ2
R(x)} = E{[σ2

R(x)− E{σ2
R(x)}]2} . (3.26)

Using the definition of realized variance, and Fubini theorem, we have

V ar{σ2
R(x)} =E


[

1

T

∫ T

0

σ2(xt)dt−
1

T

∫ T

0

E{σ2(xt)}dt

]2
=E


[

1

T

∫ T

0

(
σ2(xt)− E{σ2(xt)}

)
dt

]2
=

1

T 2

∫ T

0

∫ T

0

E
{

[σ2(xt)− E{σ2(xt)}][σ2(xs)− E{σ2(xs)}]
}
dsdt ,

(3.27)

and then solving the product

V ar{σ2
R(x)} =

1

T 2

∫ T

0

∫ T

0

E
{
σ2(xt)σ

2(xs)
}
dsdt−

[
1

T

∫ T

0

E{σ2(xt)}dt

]2
. (3.28)
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The second term on the r.h.s of Eq. (3.28) is known: it follows directly from Proposition 3.3.1. Moreover,

we observe that the integrand on the first term is invariant in the exchange of s and t. Then, we can divide

the integration set in two zone above and below the line t = s. Thanks to symmetry the contribution on the

two parts is the same. We can rewrite the variance as

V ar{σ2
R(x)} =

2

T 2

∫ T

0

∫ t

0

E
{
σ2(xt)σ

2(xs)
}
dsdt−

[
1

T

∫ T

0

etQσ2(x)dt

]2
. (3.29)

We stress that, in this form, the integration set of the first term is such that the inequality s ≤ t holds true.

Using the properties of conditional expectation we have

V ar{σ2
R(x)} =

2

T 2

∫ T

0

∫ t

0

E{σ2(xs)E{σ2(xt)|Fs}}dsdt−

[
1

T

∫ T

0

etQσ2(x)dt

]2
.

Using the Markov property and Corollary 3.3.2, the conditional expected value in the integrand can be

viewed as a function of the process at time s, that is

E{σ2(xt)|Fs} = e(t−s)Qσ(xs) =: g(xs) . (3.30)

Thus, the variance can be expressed as

V ar{σ2
R(x)} =

2

T 2

∫ T

0

∫ t

0

E{σ2(xs)g(xs)}dsdt−

[
1

T

∫ T

0

etQσ2(x)dt

]2
.

Now, using Proposition 3.2.4 we can solve the expectation on the integrand and we finally obtain

V ar{σ2
R(x)} =

2

T 2

∫ T

0

∫ t

0

esQ
(
σ2(x)g(x)

)
dsdt−

[
1

T

∫ T

0

etQσ2(x)dt

]2
.

Moreover we observe that function g, evaluated in x, becomes

g(x) = e(t−s)Qσ2(x) . (3.31)

Then, by substituting in the previous formula we can expressed the variance as

V ar{σ2
R(x)} =

2

T 2

∫ T

0

∫ t

0

esQ
[
σ2(x)e(t−s)Qσ2(x)

]
dsdt−

[
1

T

∫ T

0

etQσ2(x)dt

]2
.
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3.4 Covariance and Correlation Swaps for a Two Risky Assets Fi-
nancial Markets with Markov-Modulated Stochastic Volatilities

Let’s consider a market model with two risky assets and a risk free bond. Let’s assume that the risky

assets satisfy the following stochastic differential equations
dS

(1)
t = S

(1)
t (µ

(1)
t dt+ σ(1)(xt)dw

(1)
t )

dS
(2)
t = S

(2)
t (µ

(2)
t dt+ σ(2)(xt)dw

(2)
t )

, (3.32)

where µ(1), µ(2) are deterministic functions of time and (w
(1)
t )t∈R+

and (w
(2)
t )t∈R+

are standard Wiener

processes with quadratic covariance given by

d[w
(1)
t , w

(2)
t ] = ρtdt . (3.33)

Here, ρt is a deterministic function of time and (w
(1)
t )t∈R+

, (w
(2)
t )t∈R+

are supposed to be independent of

the Markov process (xt)t∈R+
. This model allows us to study the covariance and correlation structure of two

risky assets and how it is possible to price future contract on them.

3.4.1 Pricing Covariance Swaps

A covariance swap is a covariance forward contract on the realized covariance between two risky assets

which payoff at maturity is equal to

N(CovR(S(1), S(2))−Kcov) , (3.34)

whereKcov is a strike reference value, N is the notional amount and CovR(S(1), S(2)) is the realized covariance

of the two assets S(1) and S(2) defined by

CovR(S(1), S(2)) =
1

T
[lnS

(1)
T , lnS

(2)
T ] =

1

T

∫ T

0

ρtσ
(1)(xt)σ

(2)(xt)dt . (3.35)

The price of the covariance swap is the expected present value of the payoff in the risk neutral world

Pcov(x) = E{e−rT (CovR(S(1), S(2))−Kcov)} , (3.36)

where we assumed that N = 1.
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Theorem 3.4.1. The value of a covariance swap for Markov-modulated stochastic volatility is

Pcov(x) = e−rT

{
1

T

∫ T

0

ρte
tQ[σ(1)(x)σ(2)(x)]dt−Kcov

}
. (3.37)

Proof. To evaluate the price of covariance swap we only need to know

E{CovR(S(1), S(2))} =
1

T

∫ T

0

ρtE{σ(1)(xt)σ
(2)(xt)}dt . (3.38)

Then, it remains to show that

E{σ(1)(xt)σ
(2)(xt)} = etQ[σ(1)(x)σ(2)(x)] . (3.39)

By applying Ito’s lemma we have

d(σ(1)(xt)σ
(2)(xt)) =σ(1)(xt)dσ

(2)(xt) + σ(2)(xt)dσ
(1)(xt) + d〈σ(1)(x·), σ

(2)(x·)〉t . (3.40)

Using Proposition 3.2.3, we can express the covariation as

d〈σ(1)(x·), σ
(2)(x·)〉t =Q[σ(1)(xt)σ

(2)(xt)]dt− [σ(1)(xt)Qσ
(2)(xt) + σ(2)(xt)Qσ

(1)(xt)]dt . (3.41)

Furthermore, from Proposition 3.2.1, we have

dσ(i)(xt) = Qσ(i)(xt)dt+ dmσ(i)

i = 1, 2 . (3.42)

Substituting Eqs. (3.41), (3.42) in Eq. (3.40) we get

d(σ(1)(xt)σ
(2)(xt)) =Q[σ(1)(xt)σ

(2)(xt)]dt+ σ(1)(xt)dm
σ(2)

+ σ(2)(xt)dm
σ(1)

. (3.43)

Taking the expectation on both side of the above equation we obtain

E{σ(1)(xt)σ
(2)(xt)} =σ(1)(x)σ(2)(x) +

∫ t

0

QE{σ(1)(xs)σ
(2)(xs)}dt . (3.44)

Now, we can solve this differential equation and we get

E{σ(1)(xt)σ
(2)(xt)} = etQ[σ(1)(x)σ(2)(x)] . (3.45)

This conclude the proof.
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3.4.2 Pricing Correlation Swaps

A correlation swap is a forward contract on the correlation between the underlying assets S1 and S2

which payoff at maturity is equal to

N(CorrR(S1, S2)−Kcorr) , (3.46)

where Kcorr is a strike reference level, N is the notional amount and CorrR(S1, S2) is the realized correlation

defined by

CorrR(S1, S2) =
CovR(S1, S2)√
σ
(1)2

R (x)

√
σ
(2)2

R (x)

, (3.47)

where the realized variance is given by

σ
(i)2

R (x) =
1

T

∫ T

0

(σ(i)(xt))
2dt i = 1, 2 . (3.48)

The price of the correlation swap is the expected present value of the payoff in the risk neutral world

Pcorr(x) = E{e−rT (CorrR(S1, S2)−Kcorr)} , (3.49)

where we set N = 1 for simplicity. Unfortunately the expected value of CorrR(S1, S2) is not known

analytically. In order to obtain an explicit formula for the correlation swap price we have to introduce some

approximation.

3.4.3 Correlation Swaps Made Simple

First of all, let us introduce the following notations

X =CovR(S1, S2)

Y =σ
(1)2

R (x)

Z =σ
(2)2

R (x) .

(3.50)

In what follows we will denote with the subscript 0 the expected value of the above random variables.

Starting from the approach we have used for the volatility swap, we would like to approximate the square

root of Y and Z at the first order as follows
√
Y ≈

√
Y0 +

Y − Y0
2
√
Y0

√
Z ≈

√
Z0 +

Z − Z0

2
√
Z0

.

(3.51)
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The realized correlation can now be approximated by

CorrR(S1, S2) ≈ X(√
Y0 + Y−Y0

2
√
Y0

)(√
Z0 + Z−Z0

2
√
Z0

) =

X√
Y0

√
Z0(

1 + Y−Y0

2Y0

)(
1 + Z−Z0

2Z0

) .

Solving the product in the denominator on the r.h.s of last term and keeping only the terms up to the first

order in the increment, we have

CorrR(S1, S2) ≈
X√

Y0

√
Z0

1 +
(
Y−Y0

2Y0
+ Z−Z0

2Z0

) ≈ X√
Y0
√
Z0

[
1−

(
Y − Y0

2Y0
+
Z − Z0

2Z0

)]
.

Finally we obtain the following approximation for the correlation

CorrR(S1, S2) ≈ X√
Y0
√
Z0

− X√
Y0
√
Z0

(
Y − Y0

2Y0
+
Z − Z0

2Z0

)
. (3.52)

We are going to evaluate the expectation only on the first term on the right hand side, which represent the

zero order of approximation and the most intuitive part. We will discuss the first order correction in the

next section. In what follows we are going to approximate the realized correlation as

CorrR(S1, S2) ≈ X√
Y0
√
Z0

. (3.53)

Substituting X, Y and Z we obtain

CorrR(S1, S2) ≈ 1√
E{σ(1)2

R (x)}
√
E{σ(2)2

2R (x)}

1

T

∫ T

0

ρtσ
(1)(xt)σ

(2)(xt)dt , (3.54)

where (cf. Theorem 3.3.7), we have

E
{
σ2
(i)R(x)

}
= E

{
1

T

∫ T

0

(σ(i)(xt))
2dt

}
=

1

T

∫ T

0

etQ(σ(i)(x))2dt , (3.55)

for i = 1, 2. In order to price a correlation swap we need to be able to evaluate the expectation of both side

of Eq. (3.54). From Proposition 3.2.4 the expectation of the integrand on the r.h.s of Eq. (3.54) is given by

E{σ(1)(xt)σ
(2)(xt)} = etQσ(1)(x)σ(2)(x) . (3.56)

We can summarize the previous result in the following statement.

Theorem 3.4.2. The value of a correlation swap for a Markov-modulated stochastic volatility is

Pcorr(x) ≈ e−rT
 ∫ T

0
ρte

tQσ(1)(x)σ(2)(x)dt√∫ T
0
etQ(σ(1)(x))2dt

√∫ T
0
etQ(σ(2)(x))2dt

−Kcorr

 . (3.57)
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3.4.4 Correlation Swaps: First Order Correction

We would like to obtain an approximation for the realized correlation between two risky assets

CorrR(S1, S2) =
CovR(S1, S2)√
σ
(1)2

R (x)

√
σ
(2)2

R (x)

. (3.58)

In Section 3.4.3 we have already obtained the following approximated expression

CorrR(S1, S2) ≈
X√

Y0

√
Z0

1 +
(
Y−Y0

2Y0
+ Z−Z0

2Z0

) ≈ X√
Y0
√
Z0

[
1−

(
Y − Y0

2Y0
+
Z − Z0

2Z0

)]
. (3.59)

where

X =CovR(S1, S2)

Y =σ
(1)2

R (x)

Z =σ
(2)2

R (x) ,

(3.60)

and with the pedix 0 we have denoted the expected values. We have already evaluated the expectation of

the zero order approximation, now we would like to evaluate the first order.

Substituting X, Y and Z in Eq. (3.59) we obtain

CorrR(S1, S2) ≈ 1√
E{σ(1)2

R (x)}
√
E{σ(2)2

2R (x)}

1

T

∫ T

0

ρtσ
(1)(xt)σ

(2)(xt)dt

− 1

2T 2(E{σ(1)2

R (x)})3/2(E{σ(2)2

R (x)})3/2

∫ T

0

ρtσ
(1)(xt)σ

(2)(xt)dt

×

{
E{σ(2)2

R (x)}
∫ T

0

[(σ(1)(xs))
2 − E{(σ(1)(xs))

2}]ds

+ E{σ(1)2

R (x)}
∫ T

0

[(σ(2)(xu))2 − E{(σ(2)(xu))2}]du

}
,

(3.61)

where (cf. Theorem 3.3.7) we have

E
{
σ2
(i)R(x)

}
= E

{
1

T

∫ T

0

(σ(i)(xt))
2dt

}
=

1

T

∫ T

0

etQ(σ(i)(x))2dt , (3.62)

for i = 1, 2. We have to evaluate the expectation of the right hand side of Eq. (3.61). In Section 3.4.3 we

computed the expectation of the first term. Then we will focus now on the other terms. First of all, let us

rewrite them as follows∫ T

0

∫ T

0

ρtσ
(1)(xt)σ

(2)(xt)
(
E{σ(2)2

R (x)}[(σ(1)(xs))
2 − E{(σ(1)(xs))

2}]

+ E{σ(1)2

R (x)}[(σ(2)(xs))
2 − E{(σ(2)(xs))

2}]
)
dsdt .

(3.63)
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We have four different contributions to the integrals: the expectation values of the terms

∫ T

0

∫ T

0

ρtσ
(1)(xt, γ(t))σ(2)(xt)E{σ(i)2(xs)}E{σ(−i)2(xs)}dsdt , (3.64)

for i = 1, 2, can be evaluate using Theorem 3.4.1. Then, in order to evaluate the expectation of the

approximated realized correlation, it only remains to calculate

E

{∫ T

0

∫ T

0

ρtσ
(1)(xt)σ

(2)(xt)σ
(i)2(xs)dsdt

}
i = 1, 2 . (3.65)

To this end, let’s first divide the range of integration in two intervals as follows

E

{∫ T

0

∫ t

0

ρtσ
(1)(xt)σ

(2)(xt)σ
(i)2(xs)dsdt+

∫ T

0

∫ T

t

ρtσ
(1)(xt)σ

(2)(xt)σ
(i)2(xs)dsdt

}
,

for i = 1, 2. We notice that the first integral set is such that t > s while the second has t < s. We can now

use the property of conditional expectation to obtain

E

{∫ T

0

∫ t

0

ρtE{σ(1)(xt)σ
(2)(xt)|Fs}σ(i)2(xs)dsdt

+

∫ T

0

∫ T

t

ρtσ
(1)(xt)σ

(2)(xt)E{σ(i)2(xs)|Ft}dsdt

}
.

(3.66)

Using the Markov property, we can express the conditional expectations as

E{σ(1)(xt)σ
(2)(xt)|Fs} = e(t−s)Qσ(1)(xs)σ

(2)(xs) =: h(xs) , (3.67)

for t > s and

E{σ(i)2(xs)|Ft} = e(s−t)Qσ(i)2(xt) =: g(i)(xt) , (3.68)

for s > t. Therefore, the first term of Eq. (3.66) can be expressed (cf. Proposition 3.2.4) as

E

{∫ T

0

∫ t

0

ρth(xs)σ
(i)2(xs)dsdt

}
=

∫ T

0

∫ t

0

ρte
sQ[h(x)σ(i)2(x)]dsdt , (3.69)

while the second as

E

{∫ T

0

∫ T

t

ρtσ
(1)(xt)σ

(2)(xt)g
(i)(xt)dsdt

}

=

∫ T

0

∫ T

t

ρte
tQ[σ(1)(x)σ(2)(x)g(i)(x)]dsdt .

(3.70)
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Now, we evaluate the functions h and g at x obtaining

h(x) = e(t−s)Q[σ(1)(x)σ(2)(x)] , (3.71)

and

g(i)(x) = e(s−t)Q[σ(i)2(x)] . (3.72)

We can summarize the previous result in the following statement that gives the correlation swap price up to

the first order of approximation.

Theorem 3.4.3. The value of the correlation swap for a Markov-modulated volatility is

Pcorr(x) = e−rT
(
E{CorrR(S1, S2)} −Kcorr

)
, (3.73)

where the realized correlation can be approximated by

E{CorrR(S1, S2)} ≈
2
∫ T
0
ρte

tQσ(1)(x)σ(2)(x)dt√∫ T
0
etQ(σ(1)(x))2dt

√∫ T
0
etQ(σ(2)(x))2dt

−
∫ T
0
ρt(
∫ t
0
esQ{e(t−s)Q[σ(1)(x)σ(2)(x)]σ(1)2(x)}ds+

∫ T
t
etQ{σ(1)(x)σ(2)(x)e(u−t)Q[σ(1)2(x)]}du)dt

2
(∫ T

0
etQ(σ(1)(x))2dt

)3/2 (∫ T
0
etQ(σ(2)(x))2dt

)1/2
−
∫ T
0
ρt(
∫ t
0
esQ{e(t−s)Q[σ(1)(x)σ(2)(x)]σ(2)2(x)}ds+

∫ T
t
etQ{σ(1)(x)σ(2)(x)e(u−t)Q[σ(2)2(x)]}du)dt

2
(∫ T

0
etQ(σ(1)(x))2dt

)1/2 (∫ T
0
etQ(σ(2)(x))2dt

)3/2 .

3.5 Example: Variance, Volatility, Covariance and Correlation Swaps
for Stochastic Volatility Driven by Two State Continuos Markov
Chain

Let (xt)t∈R+
be a two state continuous time Markov chain, let us denote the states as ‘Up’ (u) and ‘Down’

(d). Let Q be the generator of this Markov chain

Q =

(
quu qud
qdu qdd

)
, (3.74)

and let

P (t) =

(
puu(t) pud(t)
pdu(t) pdd(t)

)
, (3.75)
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be its transition function, such that

P (t) = etQ . (3.76)

In this simple model the volatility takes only two values: σu and σd, thus we can easily express the swap

prices of the futures contract so far studied.

The variance swap price in this model is given by

Pvar(i) = e−rT

{
1

T

∫ T

0

(piu(t)σ2
u + pid(t)σ

2
d)dt−Kvar

}
, (3.77)

where i = u, d is the initial state of the Markov chain. If we are uncertain about the initial state and we

have only a probability distribution, say (pu, pd) such that pu + pd, then the price is going be

Pvar = puPvar(u) + pdPvar(d) . (3.78)

If we assume that initial distribution is actually the stationary distribution of Markov chain the price simply

becomes

Pvar = e−rT
{
πuσ

2
u + πdσ

2
d −Kvar

}
, (3.79)

where (πu, πd) is the stationary distribution.

The volatility swap price in this model can be approximateted by

Pvol(i) ≈ e−rT
{√

1
T

∫ T
0

[piu(t)σ2
u + pid(t)σ2

d]dt− V ar{σ2
R(i)}

8( 1
T

∫ T
0

[piu(t)σ2
u+pid(t)σ

2
d]dt)

3/2 −Kvol

}
,

for i = u, d and where

V ar{σ2
R(i)} =

2

T 2

∫ T

0

∫ t

0

{piu(s)puu(t− s)σ4
u + [piu(s)pud(t− s) + pid(s)pdu(t− s)]σ2

dσ
2
u

+pid(s)pdd(t− s)σ4
d}dsdt−

[
1

T

∫ T

0

[piu(t)σ2
u + pid(t)σ

2
d]dt

]2
.

Let us now consider a two risky asset market model with volatility modulated by this two state Markov

chain. In this setting the covariance swap price is

Pcov(i) = e−rT

{
1

T

∫ T

0

ρt[piu(t)σ(1)
u σ(2)

u + pid(t)σ
(1)
d σ

(2)
d ]dt−Kcov

}
, (3.80)
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for i = u, d representing the initial state of the chain.

The correlation swap in this model, at the zero order, can be approximated by

Pcorr(i) ≈ e−rT
 ∫ T

0
ρt[piu(t)σ

(1)
u σ

(2)
u + pid(t)σ

(1)
d σ

(2)
d ]dt√∫ T

0
[piu(t)(σ

(1)
u )2 + pid(t)(σ

(1)
d )2]dt

√∫ T
0

[piu(t)(σ
(2)
u )2 + pid(t)(σ

(2)
d )2]dt

−Kcorr

 ,
for i = u, d being the initial state of the chain.

3.6 Numerical Example

3.6.1 S&P 500: Variance and Volatility Swaps

In this section, we give an example of the two states Markov chain model for stochastic volatility modu-

lating a single risky asset market. We use S&P 500 index as risky asset.

In order to estimate the Markov chain transition matrix and the parameters (σu, σd) we use the CBOE

Volatility Index (VIX), daily data from January 2004 to June 2012.

For every day t, a high data vht and a low data vlt are available. We interpolated between them defining

vt = 1
2 (vht + vlt), a reference value for day t. Taking a mean of such values we defined

v̄ =
1

n

n∑
t=1

vt . (3.81)

If vt > v̄ the day t state is Up otherwise it is Down. The transition matrix is estimated The value σu is the

mean of vt evaluated only on the Up days and similarly σd is the mean of vt evaluated only on the Down

days. In table 3.1 we show the one step transition probability matrix.

Transition Matrix
Up Down

Up 0.957 0.043
Down 0.026 0.974

Table 3.1: One step transition probability matrix.

Using this probability matrix, given the initial state of the chain, we are able to evaluate the price of

covariance and correlation swap as described in Section 3.5. In Figure 3.1 the variance and volatility swap

prices as a function of maturity are shown. The rate of convergence of the prices depend on the rate of
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convergence of the transition probability matrix to the stationary distribution.
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Figure 3.1: Variance and volatility swap prices.
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3.6.2 S&P 500 and NASDAQ-100: Covariance and Correlation Swaps

In this section, we give an example of the two states Markov chain model for stochastic volatility modu-

lating a two risky assets market. We use S&P 500 index and NASDAQ-100 index as risky assets.

In order to estimate the Markov chain transition matrix and the parameters (σ
(1)
u , σ

(1)
d , σ

(2)
u , σ

(2)
d ) we use the

CBOE Volatility Index (VIX) and the CBOE NASDAQ-100 Volatility Index (VXN), from January 2004 to

June 2012.

The volatilities of the two assets are modulated by the same Markov chain, then we can consider the two

volatility indices as two independent realization of the same process.

For each index and a given day t, a high data (vixht , vxn
h
t ) and a low data (vixlt, vxn

l
t) are available. We

interpolated between them defining a VIX and VXN reference value for day t as

vixt =
1

2
(vixht + vixlt) ,

and

vxnt =
1

2
(vxnht + vxnlt) .

We evaluate the mean value (vix, vxn) over the period. If the day t vixt > vix VIX is in the state Up oth-

erwise it is in Down, similarly if vxnt > vxn VXN is in Up otherwise it is in Down. This procedure create

two (independent) sequences of Up and Down states of our Markov process: one for VIX and the other for

VXN. Using these sequences we can estimate the transition probability for the Markov chain. Regarding the

parameters, σ(1)
u can be estimated by taking the mean of all the VIX values, vixt, such that t is an Up day

and σ(1)
d by taking the mean only of vixt such that t is a Down day. Similarly we can estimate (σ

(2)
u , σ

(2)
d )

can be estimated by taking the mean over the Up and Down days of VXN, respectively. In table ?? we show

the one step transition probability matrix built using VIX and VXN indexes.

Using this probability matrix, given the initial state of the chain, we are able to evaluate the price of

covariance and correlation swap as described in Section 3.5. In the numerical evaluation we assume that the

correlation between the brownian motion ρ (cf. Eq. 3.33) is constant.

In Figure 3.2 the covariance and correlation swap prices as a function of maturity are shown. The rate
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Transition Matrix
Up Down

Up 0.950 0.050
Down 0.030 0.970

Table 3.2: One step transition probability matrix.

of convergence of the prices depends on the rate of convergence of the transition probability matrix to

the stationary distribution. For the correlation swap price we show the result up to the zero order of

approximation, as described in Section 3.5, and up to the first order of approximation, as described in

Section 3.4.4. The zero order of approximation price is constant, indeed at that order we only take into

account the correlation of the assets noise, that is ρ the brownian motions correlation. In the first order the

interaction of the volatilities due to the Markov process is taken into account and the price changes as a

function of maturity.
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Figure 3.2: Covariance and correlation swap prices.
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3.7 Conclusion

In a Markov-modulated stochastic volatility model an expression for the price of variance, volatility,

covariance and correlation swap has been obtained. The variance swap price and volatility swap price for

a single risky assets market have been studied. The covariance swap price in a two risky assets market has

been obtained and an approximated expression for the correlation swap price has been derived. The results

have been applied in a two state continuos Markov chain volatility model. A numerical example using data

of indices S& P 500 and NASDAQ 100 has been discussed.
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Chapter 4

Financial Markets with Semi-Markov
Modulated Stochastic Volatilities

In this chapter, we model financial markets with semi-Markov volatilities and price covariance and cor-

relation swaps for this markets. Numerical evaluations of variance, volatility, covariance and correlations

swaps with semi-Markov volatility are presented as well. This chapter is a generalization to the more flexible

semi-Markov environment of what we discuss in Chapter 3 in Markovian case.

The chapter is organized as follows. First, martingale representation of semi-Markov processes is pre-

sented. Then, Variance and volatility swaps for financial markets with semi-Markov modulated stochastic

volatilities are studied. Furthermore, pricing of covariance and correlation swaps for a two risky assets for

financial markets with semi-Markov modulated stochastic volatilities is presented. The difference between

Markov and semi-Markov case will be emphasized.

This chapter is based on the work done while visiting University of Calgary, Calgary (AB) Canada, under

the supervision of Prof. A. V. Swishchuk.

This chapter is based on a paper (G. Salvi and A. V. Swishchuk [76]) currently under review.

4.1 Introduction

One of the recent and new financial products are variance and volatility swaps, which are useful for

volatility hedging and speculation. The market for variance and volatility swaps has been growing, and

many investment banks and other financial institutions are now actively quoting volatility swaps on various
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assets: stock indexes, currencies, as well as commodities. A stock’s volatility is the simplest measure of

its riskiness or uncertainty. Formally, the volatility σR is the annualized standard deviation of the stock’s

returns during the period of interest, where the subscript R denotes the observed or ’realized’ volatility. Why

trade volatility or variance? As mentioned in M. Broadie and A. Jain [16], ’just as stock investors think they

know something about the direction of the stock market so we may think we have insight into the level of

future volatility. If we think current volatility is low, for the right price we might want to take a position

that profits if volatility increases’.

In this chapter, we model financial markets with semi-Markov volatilities and price covariance and cor-

relation swaps for this markets. Numerical evaluations of variance, volatility, covariance and correlations

swaps with semi-Markov volatility are presented as well.

Volatility swaps are forward contracts on future realized stock volatility, variance swaps are similar

contract on variance, the square of the future volatility, both these instruments provide an easy way for

investors to gain exposure to the future level of volatility. A stock’s volatility is the simplest measure of

its riskness or uncertainty. Formally, the volatility σR is the annualized standard deviation of the stock’s

returns during the period of interest, where the subscript R denotes the observed or "realized" volatility.

The easy way to trade volatility is to use volatility swaps, sometimes called realized volatility forward

contracts, because they provide pure exposure to volatility (and only to volatility).

A stock volatility swap is a forward contract on the annualized volatility. Its payoff at expiration is equal

to

N(σR(S)−Kvol) ,

where σR(S) is the realized stock volatility (quoted in annual terms) over the life of contract,

σR(S) :=

√
1

T

∫ T

0

σ2
sds ,

σt is a stochastic stock volatility, Kvol is the annualized volatility delivery price, and N is the notional

amount of the swap in dollar per annualized volatility point. The holder of a volatility swap at expiration

receives N dollars for every point by which the stock’s realized volatility σR has exceeded the volatility

delivery price Kvol. The holder is swapping a fixed volatility Kvol for the actual (floating) future volatility
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σR. We note that usually N = αI, where α is a converting parameter such as 1 per volatility-square, and I

is a long-short index (+1 for long and −1 for short).

Although options market participants talk of volatility, it is its variance, or volatility squared, that has

more fundamental significance (see Demeterfi et al [45]).

A variance swap is a forward contract on annualized variance, the square of the realized volatility. Its

payoff at expiration is equal to

N(σ2
R(S)−Kvar) ,

where σ2
R(S) is the realized stock variance(quoted in annual terms) over the life of the contract,

σ2
R(S) :=

1

T

∫ T

0

σ2
sds ,

Kvar is the delivery price for variance, and N is the notional amount of the swap in dollars per annualized

volatility point squared. The holder of variance swap at expiration receives N dollars for every point by

which the stock’s realized variance σ2
R(S) has exceeded the variance delivery price Kvar.

Therefore, pricing the variance swap reduces to calculating the realized volatility square.

Valuing a variance forward contract or swap is no different from valuing any other derivative security.

The value of a forward contract P on future realized variance with strike price Kvar is the expected present

value of the future payoff in the risk-neutral world:

P = E{e−rT (σ2
R(S)−Kvar)} ,

where r is the risk-free discount rate corresponding to the expiration date T, and E denotes the expectation.

Thus, for calculating variance swaps we need to know only E{σ2
R(S)}, namely, the mean value of the

underlying variance.

To calculate volatility swaps we need more. From Brockhaus and Long [17] approximation (which is used

the second order Taylor expansion for function
√
x) we have (see also Javaheri et al [61]):

E{
√
σ2
R(S)} ≈

√
E{V } − V ar{V }

8E{V }3/2
,

where V := σ2
R(S) and V ar{V }

8E{V }3/2 is the convexity adjustment.
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Thus, to calculate volatility swaps we need both E{V } and V ar{V }.

The realized continuously sampled variance is defined in the following way:

V := V ar(S) :=
1

T

∫ T

0

σ2
t dt .

Realized continuously sampled volatility is defined as follows:

V ol(S) :=
√
V ar(S) =

√
V .

Options dependent on exchange rate movements, such as those paying in a currency different from the

underlying currency, have an exposure to movements of the correlation between the asset and the exchange

rate. This risk may be eliminated by using covariance swap. Variance and volatility swaps have been studied

by Swishchuk [81]. The novelty of this paper with respect to Swishchuk [81] is that we calculate the volatility

swap price explicitly; moreover we price covariance and correlation swap in a two risky assets market model.

A covariance swap is a covariance forward contact of the underlying rates S1 and S2 which payoff at

expiration is equal to

N(CovR(S1, S2)−Kcov) ,

where Kcov is a strike price, N is the notional amount, CovR(S1, S2) is a covariance between two assets S1

and S2.

Logically, a correlation swap is a correlation forward contract of two underlying rates S1 and S2 which

payoff at expiration is equal to:

N(CorrR(S1, S2)−Kcorr) ,

where Corr(S1, S2) is a realized correlation of two underlying assets S1 and S2,Kcorr is a strike price, N is

the notional amount.

Pricing covariance swap, from a theoretical point of view, is similar to pricing variance swaps, since

CovR(S1, S2) = 1/4{σ2
R(S1S2)− σ2

R(S1/S2)} ,

where S1 and S2 are two given assets, σ2
R(S) is a variance swap for underlying assets, CovR(S1, S2) is a

realized covariance of the two underlying assets.
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Thus, we need to know variances for S1S2 and for S1/S2. Correlation CorrR(S1, S2) is defined as follows:

CorrR(S1, S2) =
CovR(S1, S2)√
σ2
R(S1)

√
σ2
R(S2)

,

where CovR(S1, S2) is defined above.

Given two assets S1
t and S2

t with t ∈ [0, T ], sampled on days t0 = 0 < t1 < t2 < ... < tn = T between

today and maturity T, the log-return of each asset is: Rji := log(
Sjti
Sjti−1

), i = 1, 2, ..., n, j = 1, 2.

Covariance and correlation can be approximated by

Covn(S1, S2) =
n

(n− 1)T

n∑
i=1

R1
iR

2
i ,

and

Corrn(S1, S2) =
Covn(S1, S2)√

V arn(S1)
√
V arn(S2)

,

respectively.

The literature devoted to the volatility derivatives is growing. We give here a short overview of the latest

development in this area. The Non-Gaussian Ornstein-Uhlenbeck stochastic volatility model was used by

Benth et al. [4] to study volatility and variance swaps. M. Broadie and A. Jain [15] evaluated price and

hedging strategy for volatility derivatives in the Heston square root stochastic volatility model and in M.

Broadie and A. Jain [16] they compare result from various model in order to investigate the effect of jumps

and discrete sampling on variance and volatility swaps. Pure jump process with independent increments

return models were used by Carr et al. [19] to price derivatives written on realized variance, and subsequent

development by Carr and Lee [20]. We also refer to Carr and Lee [21] for a good survey on volatility

derivatives. Da Fonseca et al. [43] analyzed the influence of variance and covariance swap in a market by

solving a portfolio optimization problem in a market with risky assets and volatility derivatives. Correlation

swap price has been investigated by Bossu [12, 13] for component of an equity index using statistical method.

Drissien et al. [46] discusses the price of correlation risk for equity options. Pricing volatility swaps under

Heston’s model with regime-switching and pricing options under a generalized Markov-modulated jump-

diffusion model are discussed in and Elliott et al. [48, 49], respectively. Howison et al. [53] considers

the pricing of a range of volatility derivatives, including volatility and variance swaps and swaptions. The
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pricing options on realized variance in the Heston model with jumps in returns and volatility is studied in

Sepp [77]. An analytical closed-forms pricing of pseudo-variance, pseudo-volatility, pseudo-covariance and

pseudo-correlation swaps is studied in Swishchuk et al. [82]. Windcliff et al. [87] investigates the behavior

and hedging of discretely observed volatility derivatives.

4.2 Martingale Representation of Semi-Markov Processes

Let (Ω,F , (Ft)t∈R+
,P) be a filtered probability space, with a right-continuous filtration (Ft)t∈R+

and

probability P.

Let (X,X ) be a measurable space and

QSM (x,B, t) := P (x,B)Gx(t) for x ∈ X,B ∈X , t ∈ R+ , (4.1)

be a semi-Markov kernel. Let (xn, τn;n ∈ N) be a (X × R+,X ⊗B+)-valued Markov renewal process with

QSM the associated kernel, that is

P(xn+1 ∈ B, τn+1 − τn ≤ t | Fn) = QSM (xn, B, t) . (4.2)

Let us define the process

νt := sup{n ∈ N : τn ≤ t} , (4.3)

that gives the number of jumps of the Markov renewal process in the time interval (0, t] and

θn := τn − τn−1 , (4.4)

that gives the sojourn time of the Markov renewal process in the n-th visited state. The semi-Markov

process, associated with the Markov renewal process (xn, τn)n∈N, is defined by

xt := xν(t) for t ∈ R+ . (4.5)

Associated with the semi-Markov process, it is possible to define some auxiliaries processes. We are interested

in the backward recurrence time (or life-time) process defined by

γ(t) := t− τν(t) for t ∈ R+ . (4.6)
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The next result characterizes backward recurrence time process (cf. Swishchuk [81]), we give the proof for

completeness.

Proposition 4.2.1. The backward recurrence time (γ(t))t is a Markov process with generator

Qγf(t) = f ′(t) + λ(t)[f(0)− f(t)] , (4.7)

where λ(t) = −Gx
′
(t)

Gx(t)
, Gx(t) = 1−Gx(t) and Domain(Qγ) = C1(R+).

Proof. Let t be the present time such that γ(t) = t, without loss of generality we can assume that t < τ1,

then for T > t we have

Et{f(γ(T ))} = Et{f(γ(T ))Iθ1>T }+ Et{f(γ(T ))Iθ1≤T } . (4.8)

Using the properties of conditional expectation we obtain

Et{f(γ(T ))} =f(T )
Gx(T )

Gx(t)
+

1

Gx(t)
E{f(γ(T ))It<θ1≤T }

=f(T )
Gx(T )

Gx(t)
+

1

Gx(t)

∫ T

t

f(T − u)G′x(u)du .

(4.9)

By adding and subtracting f(t) in the integrand we get

Et{f(γ(T ))} = f(T )
Gx(T )

Gx(t)
+

1

Gx(t)

∫ T

t

(f(T − u)− f(t))G′x(u)du+ f(t)
Gx(t)−Gx(T )

Gx(t)
,

then

Et{f(γ(T ))} − f(t) = (f(T )− f(t))
Gx(T )

Gx(t)
+

1

Gx(t)

∫ T

t

(f(T − u)− f(t))G′x(u)du . (4.10)

Recalling the definition of the generator and using the above equation we have

Qγf(t) = lim
T→t

Et{f(γ(T ))} − f(t)

T − t
= f ′(t)− Gx

′
(t)

Gx(t)
[f(0)− f(t)] , (4.11)

this concludes the proof.

Remark 4.2.2. As well known, semi-Markov processes preserve the lost-memories property only at transition

times, then (xt)t∈R+
is not Markov. However, if we consider the joint process (xt, γ(t))t∈R+

, and we record

at any instant the time already spent by the semi-Markov process in the present state, then it result that

(xt, γ(t))t∈R+
is a Markov process.
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In Section 3.2 we discussed the martingale representation of a Markov process. Here (xt)t belongs to a

wider class, but if we consider the joint process with the backward recurrence time we can obtain a martingale

representation for the semi-Markov process as well.

We would like to study the martingale associated to the Markov process (xt, γ(t))t∈R+
and its generator.

The following statement concerns this task, and is a direct application of Proposition 3.2.1.

Lemma 4.2.3. (Swishchuk [81])

Let (xt)t∈R+
be a semi-Markov process with kernel QSM defined in Eq. (4.1). Then, the process

mf
t := f(xt, γ(t))−

∫ t

0

Qf(xs, γ(s))ds , (4.12)

is a martingale with respect to the filtration Ft := σ{xs, νs; 0 ≤ s ≤ t}, where Q is the generator of the

Markov process (xt, γ(t))t∈R+
given by

Qf(x, t) =
df

dt
(x, t) +

gx(t)

Gx(t)

∫
X

P (x, dy)[f(y, 0)− f(x, t)] , (4.13)

here gx(t) = dGx(t)
dt .

The following statement follows directly from Proposition 3.2.2 and it allows us to evaluate the quadratic

variation of the martingale associated with (xt, γ(t))t∈R+ .

Lemma 4.2.4. Let (xt)t∈R+
be a semi-Markov process with kernel QSM , (xt, γ(t))t∈R+

is a Markov process

with generator Q, f ∈ Domain (Q) and (mf
t )t∈R+ its associated martingale, then

〈mf 〉t :=

∫ t

0

[Qf2(xs, γ(s))− 2f(xs, γ(s))Qf(xs, γ(s))]ds , (4.14)

is the quadratic variation of mf .

4.3 Variance and Volatility Swaps for Financial Markets with Semi-
Markov Stochastic Volatilities

Let us consider a Market model with only two securities, the risk free bond and the stock. Let us suppose

that the stock price (St)t∈R+ satisfies the following stochastic differential equation{
dBt = Btr(xt, γ(t))dt

dSt = St(µ(xt, γ(t))dt+ σ(xt, γ(t))dwt)
, (4.15)
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where w is a standard Wiener process independent of (x, γ). We are interested in studying the property of

the volatility σ(x, γ). Salvi and Swishchuk [75] have studied properties of volatility modulated by a Markov

process. Here we would like to generalize their work to the semi-Markov case. First of all we study the

second moment of the volatility.

Proposition 4.3.1. (Swishchuk [81])

Suppose that σ ∈ Domain (Q). Then

E{σ2(xt, γ(t))|Fu} = σ2(xu, γ(u)) +

∫ t

u

QE{σ2(xs, γ(s))|Fu}ds , (4.16)

for any 0 ≤ u ≤ t.

Remark 4.3.2. From Proposition 4.3.1, we can directly solve the equation for E{σ2(xt, γ(t))|Fu} and we

obtain

E{σ2(xt, γ(t))|Fu} = e(t−u)Qσ2(xu, γ(u)) , (4.17)

for any 0 ≤ u ≤ t.

It is known that the market model with semi-Markov stochastic volatility is incomplete, see Swishchuk

[81]. In order to price the future contracts we will use the minimal martingale measure, we refer to Swishchuk

[81] for the details.

4.3.1 Pricing of Variance Swaps

Let us start from the more straightforward variance swap. Variance swaps are forward contracts on future

realized level of variance. The payoff of a variance swap with expiration date T is given by

N(σ2
R(x)−Kvar) , (4.18)

where σ2
R(x) is the realized stock variance over the life of the contract

σ2
R(x) :=

1

T

∫ T

0

σ2(xs, γ(s))ds , (4.19)

Kvar is the strike price for variance and N is the notional amounts of dollars per annualized variance point,

we will assume that N = 1 just for sake of simplicity. The price of the variance swap is the expected present
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value of the payoff in the risk-neutral world

Pvar(x) = E{e−rT (σ2
R(x)−Kvar)} . (4.20)

The following result concerns the evaluation of a variance swap in this semi-Markov volatility model. We

refer to Swishchuk [81] for details and proof.

Theorem 4.3.3. (Swishchuk [81])

The present value of a variance swap for semi-Markov stochastic volatility is

Pvar(x) = e−rT

{
1

T

∫ T

0

(etQσ2(x, γ)−Kvar)dt

}
, (4.21)

where Q is the generator of (xt, γ(t))t, that is

Qf(x, t) =
df

dt
(x, t) +

gx(t)

Gx(t)

∫
X

P (x, dy)[f(y, 0)− f(x, t)] . (4.22)

4.3.2 Pricing of Volatility Swaps

Volatility swaps are forward contract on future realized level of volatility. The payoff of a volatility swap

with maturity T is given by

N(σR(x)−Kvol) , (4.23)

where σR(x) is the realized stock volatility over the life of the contract

σR(x) :=

√
1

T

∫ T

0

σ2(xs, γ(s))ds , (4.24)

Kvol is the strike price for volatility and N is the notional amounts of dollars per annualized volatility point,

as before we will assume that N = 1. The price of the volatility swap is the expected present value of the

payoff in the risk-neutral world

Pvol(x) = E{e−rT (σR(x)−Kvol)} . (4.25)

In order to evaluate the volatility swaps we need to know the expected value of the square root of the

variance, but unfortunately, in general we are not able to evaluate analytically this expected value. Then in
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order to obtain a close formula for the price of volatility swaps we have to make an approximation. Using

the same approach of the Markov case (see also Brockhaus and Long [17] and Javaheri at al. [61]), from the

second order Taylor expansion we have

E{
√
σ2
R(x)} ≈

√
E{σ2

R(x)} − V ar{σ2
R(x)}

8E{σ2
R(x)}3/2

. (4.26)

Then, to evaluate the volatility swap price we have to know both expectation and variance of σ2
R(x). The

next result gives an explicit representation of the price of a volatility swap approximated to the second order

for this semi-Markov volatility model.

Theorem 4.3.4. The value of a volatility swap for semi-Markov stochastic volatility is

Pvol(x) ≈ e−rT
{√

1
T

∫ T
0
etQσ2(x, γ)dt− V ar{σ2

R(x)}
8( 1
T

∫ T
0
etQσ2(x,γ)dt)

3/2 −Kvol

}
,

where the variance is given by

V ar{σ2
R(x)} =

2

T 2

∫ T

0

∫ t

0

{
esQ

[
σ2(x, γ)e(t−s)Qσ2(x, γ)

]
−
[
etQσ2(x, γ)

] [
esQσ2(x, γ)

]}
dsdt ,

and Q is the generator of (xt, γ(t))t, that is

Qf(x, t) =
df

dt
(x, t) +

gx(t)

Gx(t)

∫
X

P (x, dy)[f(y, 0)− f(x, t)] . (4.27)

Proof. We have already obtained the expectation of the realized variance,

E{σ2
R(x)} =

1

T

∫ T

0

etQσ2(x, γ)dt , (4.28)

then it remains to prove that

V ar{σ2
R(x)} =

2

T 2

∫ T

0

∫ t

0

{
esQ

[
σ2(x, γ)etQσ2(x, γ)

]
−
[
etQσ2(x, γ)

] [
esQσ2(x, γ)

]}
dsdt .

The variance is, from the definition, given by

V ar{σ2
R(x)} = E{[σ2

R(x)− E{σ2
R(x)}]2} , (4.29)
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Using the definition of realized variance, and Fubini theorem, we have

V ar{σ2
R(x)} = E


[

1

T

∫ T

0

σ2(xt, γ(t))dt− 1

T

∫ T

0

E{σ2(xt, γ(t))}dt

]2
= E


[

1

T

∫ T

0

(
σ2(xt, γ(t))− E{σ2(xt, γ(t))}

)
dt

]2 (4.30)

=
1

T 2

∫ T

0

∫ T

0

E
{

[σ2(xt, γ(t))− E{σ2(xt, γ(t))}][σ2(xs, γ(s))− E{σ2(xs, γ(s))}]
}
dsdt .

We note that the integrand is symmetric in the exchange of s and t. We can divide the integration on the

plan in two areas above and below the graph of t = s, thanks to the symmetry the contribution on the two

parts is the same. Then we obtain

V ar{σ2
R(x)} =

2

T 2

∫ T

0

∫ t

0

E{[σ2(xt, γ(t))− E{σ2(xt, γ(t))}][σ2(xs, γ(s))− E{σ2(xs, γ(s))}]}dsdt

=
2

T 2

∫ T

0

∫ t

0

[
E{σ2(xt, γ(t))σ2(xs, γ(s))} − E{σ2(xt, γ(t))}E{σ2(xs, γ(s))}

]
dsdt .

We would like to stress that, in this representation, the integration set is such that the inequality s ≤ t holds

true. Using the property of conditional expectation and Proposition 4.3.1, we have

V ar{σ2
R(x)} =

2

T 2

∫ T

0

∫ t

0

[
E{σ2(xs, γ(s))E{σ2(xt, γ(t))|Fs}} −

(
etQσ2(x, γ)

) (
esQσ2(x, γ)

)]
dsdt .

The process (xt, γ(t))t is Markovian, then using Remark 4.3.2 the conditional expected value in the integrand,

can be expressed as

E{σ2(xt, γ(t))|Fs} = e(t−s)Qσ2(xs, γ(s)) =: g(xs, γ(s)) . (4.31)

Thus, the variance becomes

V ar{σ2
R(x)} =

2

T 2

∫ T

0

∫ t

0

[
E{σ2(xs, γ(s))g(xs, γ(s))} −

(
etQσ2(x, γ)

) (
esQσ2(x, γ)

)]
dsdt .

Solving the expectation on the r.h.s we obtain

V ar{σ2
R(x)} =

2

T 2

∫ T

0

∫ t

0

[
esQ

(
σ2(x, γ)g(x, γ)

)
−
(
etQσ2(x, γ)

) (
esQσ2(x, γ)

)]
dsdt .

We notice that function g evaluated in (x, γ) is simply given by

g(x, γ) = e(t−s)Qσ2(x, γ) , (4.32)
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then substituting in the previous formula the variance finally becomes

V ar{σ2
R(x)} =

2

T 2

∫ T

0

∫ t

0

{
esQ

[
σ2(x, γ)e(t−s)Qσ2(x, γ)

]
−
[
etQσ2(x, γ)

] [
esQσ2(x, γ)

]}
dsdt .

4.3.3 Numerical Evaluation of Variance and Volatility Swaps with Semi-Markov
Volatility

When we attempt to evaluate the price of a variance or a volatility swaps we have to deal with numerical

problems. The family of exponential operators (etQ)t involved in Theorems 4.3.3 and 4.3.4 for the semi-

Markov stochastic volatility model is usually difficult to evaluate from a numerical point of view. To solve

this problem, we first look to the following identity

etQf(·) =

∞∑
n=0

(tQ)n

n!
f(·) , (4.33)

for any function f ∈ Domain(Q). This identity allows us to obtain the operator (etQ)t at any order of

approximation. For example, for n = 1, we obtain

etQf(·) ≈ (I + tQ)f(·) , (4.34)

where I is an identity operator. At this order of approximation we allow semi-Markov process to make at

most one transition during the life time of contract. If we think to semi-Markov process as a macroeconomic

factor this can be plausible. However we can always evaluate the error in this approximation using the

subsequent orders. Using the first order approximation the variance swap price becomes

Pvar(x) ≈e−rT
{

1

T

∫ T

0

(I + tQ)σ2(x, γ)dt−Kvar

}

=e−rT
{
σ2(x, γ) +

T

2
Qσ2(x, γ)−Kvar

}
.

(4.35)

Using the same approximation the volatility swap price can be expressed as

Pvol(x) ≈e−rT


√

1

T

∫ T

0

(I + tQ)σ2(x, γ)dt− V ar{σ2
R(x)}

8
(

1
T

∫ T
0

(I + tQ)σ2(x, γ)dt
)3/2 −Kvol


=e−rT

{√
σ2(x, γ) +

T

2
Qσ2(x, γ)− V ar{σ2

R(x)}

8
(
σ2(x, γ) + T

2Qσ
2(x, γ)

)3/2 −Kvol

}
.
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Here, the variance of realized volatility is given by

V ar{σ2
R(x)} ≈ 2

T 2

∫ T

0

∫ t

0

{
(I + sQ)[σ2(x, γ)(I + (t− s)Q)σ2(x, γ)]

− [(I + tQ)σ2(x, γ)][(I + sQ)σ2(x, γ)]
}
dsdt .

(4.36)

Solving the product and keeping only the terms up to the first order in Q, we obtain

V ar{σ2
R(x)} ≈ 2

T 2

∫ T

0

∫ t

0

{sQσ4(x, γ)− 2σ2(x, γ)sQσ2(x, γ)}dsdt

=
T

3

{
Qσ4(x, γ)− 2σ2(x, γ)Qσ2(x, γ)

}
.

(4.37)

Finally, to first order of approximation in Q the volatility swap price becomes

Pvol(x) ≈ e−rT
{√

σ2(x, γ) +
T

2
Qσ2(x, γ)− T [Qσ4(x, γ)− 2σ2(x, γ)Qσ2(x, γ)]

24
(
σ2(x, γ) + T

2Qσ
2(x, γ)

)3/2 −Kvol

}
.

4.4 Covariance and Correlation Swaps for a Two Risky Assets in
Financial Markets with Semi-Markov Stochastic Volatilities

Let’s consider now a market model with two risky assets and one risk free bond. Let’s assume that the

risky assets are satisfying the following stochastic differential equations
dS

(1)
t = S

(1)
t (µ

(1)
t dt+ σ(1)(xt, γ(t))dw

(1)
t )

dS
(2)
t = S

(2)
t (µ

(2)
t dt+ σ(2)(xt, γ(t))dw

(2)
t )

, (4.38)

where µ(1), µ(2) are deterministic functions of time, (w
(1)
t )t and (w

(2)
t )t are standard Wiener processes with

quadratic covariance given by

d[w
(1)
t , w

(2)
t ] = ρtdt . (4.39)

Here ρt is a deterministic function and (w
(1)
t )t, (w

(2)
t )t are independent of (x, γ).

In this model it is worth to study the covariance and the correlation swaps between the two risky assets.

4.4.1 Pricing of Covariance Swaps

A covariance swap is a covariance forward contract on the underlying assets S(1) and S(2) which payoff

at maturity is equal to

N(CovR(S(1), S(2))−Kcov) , (4.40)
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whereKcov is a strike reference value, N is the notional amount and CovR(S(1), S(2)) is the realized covariance

of the two assets S(1) and S(2) given by

CovR(S(1), S(2)) =
1

T
[lnS

(1)
T , lnS

(2)
T ] =

1

T

∫ T

0

ρtσ
(1)(xt, γ(t))σ(2)(xt, γ(t))dt . (4.41)

The price of the covariance swap is the expected present value of the payoff in the risk neutral world

Pcov(x) = E{e−rT (CovR(S(1), S(2))−Kcov)} , (4.42)

here we set N = 1. The next result provides an explicit representation of the covariance swap price.

Theorem 4.4.1. The value of a covariance swap for semi-Markov stochastic volatility is

Pcov(x) = e−rT

{
1

T

∫ T

0

ρte
tQ[σ(1)(x, γ)σ(2)(x, γ)]dt−Kcov

}
, (4.43)

where Q is the generator of (xt, γ(t))t, that is

Qf(x, t) =
df

dt
(x, t) +

gx(t)

Gx(t)

∫
X

P (x, dy)[f(y, 0)− f(x, t)] . (4.44)

Proof. To evaluate the price of covariance swap we need to know

E{CovR(S(1), S(2))} =
1

T

∫ T

0

ρtE{σ(1)(xt, γ(t))σ(2)(xt, γ(t))}dt . (4.45)

It remains to prove that

E{σ(1)(xt, γ(t))σ(2)(xt, γ(t))} = etQ[σ(1)(x, γ)σ(2)(x, γ)] . (4.46)

By applying Ito’s lemma we have

d(σ(1)(xt, γ(t))σ(2)(xt, γ(t))) =σ(1)(xt, γ(t))dσ(2)(xt, γ(t)) + σ(2)(xt, γ(t))dσ(1)(xt, γ(t))

+d〈σ(1)(x·, γ(·)), σ(2)(x·, γ(·))〉t .
(4.47)

Using Proposition 3.2.3 we obtain

d〈σ(1)(x·, γ(·)), σ(2)(x·, γ(·))〉t =Q(σ(1)(xt, γ(t))σ(2)(xt, γ(t)))dt

−[σ(1)(xt, γ(t))Qσ(2)(xt, γ(t)) + σ(2)(xt, γ(t))Qσ(1)(xt, γ(t))]dt .

(4.48)

Furthermore we have

dσ(i)(xt, γ(t)) = Qσ(i)(xt, γ(t))dt+ dmσ(i)

i = 1, 2 . (4.49)
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Substituting (4.48) and (4.49) in equation (4.47) we get

d(σ(1)(xt, γ(t))σ(2)(xt, γ(t))) =Q(σ(1)(xt, γ(t))σ(2)(xt, γ(t)))dt

+σ(1)(xt, γ(t))dmσ(2)

+ σ(2)(xt, γ(t))dmσ(1)

.

(4.50)

Taking the expectation on both side we can rewrite the above equation as

E{σ(1)(xt, γ(t))σ(2)(xt, γ(t))} =σ(1)(x, γ)σ(2)(x, γ)

+

∫ t

0

QE{σ(1)(xs, γ(s))σ(2)(xs, γ(s))}dt .
(4.51)

Solving this differential equation we obtain

E{σ(1)(xt, γ(t))σ(2)(xt, γ(t))} = etQ[σ(1)(x, γ)σ(2)(x, γ)] , (4.52)

this conclude the proof.

4.4.2 Pricing of Correlation Swaps

A correlation swap is a forward contract on the correlation between the underlying assets S1 and S2

which payoff at maturity is equal to

N(CorrR(S1, S2)−Kcorr) , (4.53)

where Kcorr is a strike reference level, N is the notional amount and CorrR(S1, S2) is the realized correlation

defined by

CorrR(S1, S2) =
CovR(S1, S2)√
σ
(1)2

R (x)

√
σ
(2)2

R (x)

, (4.54)

here the realized variance is given by

σ
(i)2

R (x) =
1

T

∫ T

0

(σ(i)(xt, γ(t)))2dt i = 1, 2 . (4.55)

The price of the correlation swap is the expected present value of the payoff in the risk neutral world, that is

Pcorr(x) = E{e−rT (CorrR(S1, S2)−Kcorr)} , (4.56)

where we set N = 1 for simplicity. Unfortunately the expected value of CorrR(S1, S2) is not known

analytically. Thus, in order to obtain an explicit formula for the correlation swap price, we have to make

some approximation.



4.4 Covariance and Correlation Swaps for a Two Risky Assets in Financial Markets with
Semi-Markov Stochastic Volatilities 77

4.4.3 Correlation Swaps Made Simple

First of all, let us introduce the following notations

X =CovR(S1, S2)

Y =σ
(1)2

R (x)

Z =σ
(2)2

R (x) ,

(4.57)

and with the subscript 0 we will denote the expected value of the above random variables. Following the

approach frequently used for the volatility swap, we would like to approximate the square root of Y and Z

to the first order as follows
√
Y ≈

√
Y0 +

Y − Y0
2
√
Y0

√
Z ≈

√
Z0 +

Z − Z0

2
√
Z0

.

(4.58)

The realized correlation can now be approximated by

CorrR(S1, S2) ≈ X(√
Y0 + Y−Y0

2
√
Y0

)(√
Z0 + Z−Z0

2
√
Z0

) =

X√
Y0

√
Z0(

1 + Y−Y0

2Y0

)(
1 + Z−Z0

2Z0

) . (4.59)

Solving the product in the denominator of the last term on the r.h.s and keeping only the terms up to the

first order in the increment, we have

CorrR(S1, S2) ≈
X√

Y0

√
Z0

1 +
(
Y−Y0

2Y0
+ Z−Z0

2Z0

) ≈ X√
Y0
√
Z0

[
1−

(
Y − Y0

2Y0
+
Z − Z0

2Z0

)]
. (4.60)

In what follows, we will consider only the zeroth order of approximation. The first order correction will be

discuss in the next section.

Here, we are going to approximate the realized correlation as

CorrR(S1, S2) ≈ X√
Y0
√
Z0

, (4.61)

Substituting X, Y and Z we obtain

CorrR(S1, S2) ≈ 1√
E{σ(1)2

R (x)}
√
E{σ(2)2

2R (x)}

1

T

∫ T

0

ρtσ
(1)(xt, γ(t))σ(2)(xt, γ(t))dt , (4.62)

where (cf. Teorem 4.3.3), we have

E
{
σ
(i)2

R (x)
}

= E

{
1

T

∫ T

0

(σ(i)(xt, γ(t)))2dt

}
=

1

T

∫ T

0

etQ(σ(i)(x, γ))2dt , (4.63)
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for i = 1, 2. In order to price a correlation swap we have to be able to evaluate the expectation of both side

of Eq. (4.62), the expectation of the r.h.s becomes

E
{
σ(1)(xt, γ(t))σ(2)(xt, γ(t))

}
= etQσ(1)(x, γ)σ(2)(x, γ) . (4.64)

We can summarize the previous result in the following statement.

Theorem 4.4.2. The value of a correlation swap for semi-Markov stochastic volatility is

Pcorr(x) ≈ e−rT


∫ T
0
ρte

tQ[σ(1)(x, γ)σ(2)(x, γ)]dt√∫ T
0
etQ(σ(1)(x, γ))2dt

√∫ T
0
etQ(σ(2)(x, γ))2dt

−Kcorr

 , (4.65)

where Q is the generator of (xt, γ(t))t, that is

Qf(x, t) =
df

dt
(x, t) +

gx(t)

Gx(t)

∫
X

P (x, dy)[f(y, 0)− f(x, t)]. (4.66)

4.4.4 Correlation Swaps: First Order Correction

We would like to obtain a first-order approximation for the realized correlation between two risky assets

CorrR(S1, S2) =
CovR(S1, S2)√
σ
(1)2

R (x)

√
σ
(2)2

R (x)

. (4.67)

In section 4.4.3 we have already obtained the following approximated expression

CorrR(S1, S2) ≈
X√

Y0

√
Z0

1 +
(
Y−Y0

2Y0
+ Z−Z0

2Z0

) ≈ X√
Y0
√
Z0

[
1−

(
Y − Y0

2Y0
+
Z − Z0

2Z0

)]
. (4.68)

where

X =CovR(S1, S2)

Y =σ
(1)2

R (x)

Z =σ
(2)2

R (x) ,

(4.69)

and with the pedix 0 we have denoted the expected values. We have already evaluated the expectation of

the zeroth order approximation, now we would like to evaluate the first-order.
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Substituting X, Y and Z in Eq. (4.68) we obtain

CorrR(S1, S2) ≈ 1√
E{σ(1)2

R (x)}
√

E{σ(2)2
2R (x)}

1

T

∫ T

0

ρtσ
(1)(xt, γ(t))σ(2)(xt, γ(t))dt

− 1

2T 2(E{σ(1)2

R (x)})3/2(E{σ(2)2

R (x)})3/2

∫ T

0

ρtσ
(1)(xt, γ(t))σ(2)(xt, γ(t))dt

×

{
E{σ(2)2

R (x)}
∫ T

0

[(σ(1)(xs, γ(s)))2 − E{(σ(1)(xs, γ(s)))2}]ds

+ E{σ(1)2

R (x)}
∫ T

0

[(σ(2)(xu, γ(u)))2 − E{(σ(2)(xu, γ(u)))2}]du

}
,

(4.70)

where

E
{
σ2
(i)R(x)

}
= E

{
1

T

∫ T

0

(σ(i)(xt, γ(t)))2dt

}
=

1

T

∫ T

0

etQ(σ(i)(x, γ))2dt , (4.71)

for i = 1, 2. We have to evaluate the expectation of the r.h.s of equation (4.70). We already calculated the

expectation of the first term, which is the zero order approximation for the realized correlation. Then we

will focus now on the other terms. First of all, let us rewrite them as follows∫ T

0

∫ T

0

ρtσ
(1)(xt, γ(t))σ(2)(xt, γ(t))

(
E{σ(2)2

R (x)}[(σ(1)(xs, γ(s)))2 − E{(σ(1)(xs, γ(s)))2}]

+ E{σ(1)2

R (x)}[(σ(2)(xs, γ(s)))2 − E{(σ(2)(xs, γ(s)))2}]
)
dsdt ,

(4.72)

we have four different contributions in the integrals, the expectation of the terms

∫ T

0

∫ T

0

ρtσ
(1)(xt, γ(t))σ(2)(xt, γ(t))E{σ(i)2(xs, γ(s))}E{σ(−i)2(xs, γ(s))}dsdt , (4.73)

for i = 1, 2, can be evaluate using Theorem 4.4.1. Then, in order to evaluate the expectation of the

approximated realized correlation, it only remains to calculate

E

{∫ T

0

∫ T

0

ρtσ
(1)(xt, γ(t))σ(2)(xt, γ(t))σ(i)2(xs, γ(s))dsdt

}
i = 1, 2 , (4.74)

To this end, let’s first divide the range of integration in two intervals as follows

E

{∫ T

0

∫ t

0

ρtσ
(1)(xt, γ(t))σ(2)(xt, γ(t))σ(i)2(xs, γ(s))dsdt

+

∫ T

0

∫ T

t

ρtσ
(1)(xt, γ(t))σ(2)(xt, γ(t))σ(i)2(xs, γ(s))dsdt

}
,

(4.75)
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for i = 1, 2. We notice that the first integral set is such that t > s while the second has t < s. We can now

use the property of conditional expectation to obtain

E

{∫ T

0

∫ t

0

ρtE{σ(1)(xt, γ(t))σ(2)(xt, γ(t))|Fs}σ(i)2(xs, γ(s))dsdt

+

∫ T

0

∫ T

t

ρtσ
(1)(xt, γ(t))σ(2)(xt, γ(t))E{σ(i)2(xs, γ(s))|Ft}dsdt

}
.

(4.76)

We notice that (xt, γ(t))t is a Markov process, then using the Markov property, we can express the conditional

expectations as

E{σ(1)(xt, γ(t))σ(2)(xt, γ(t))|Fs} = e(t−s)Qσ(1)(xs, γ(s))σ(2)(xs, γ(s)) =: h(xs, γ(s)) ,

for t > s, and

E{σ(i)2(xs, γ(s))|Ft} = e(s−t)Qσ(i)2(xt, γ(t)) =: g(i)(xt, γ(t)) ,

for s > t. Therefore, the first term of Eq. (4.76) can be expressed as

E

{∫ T

0

∫ t

0

ρth(xs, γ(s))σ(i)2(xs, γ(s))dsdt

}
=

∫ T

0

∫ t

0

ρte
sQ[h(x, γ)σ(i)2(x, γ)]dsdt , (4.77)

while the second as

E

{∫ T

0

∫ T

t

ρtσ
(1)(xt, γ(t))σ(2)(xt, γ(t))g(i)(xt, γ(t))dsdt

}

=

∫ T

0

∫ T

t

ρte
tQ[σ(1)(x, γ)σ(2)(x, γ)g(i)(x, γ)]dsdt .

(4.78)

Now, we can evaluate the functions h and g at x obtaining

h(x, γ) = e(t−s)Q[σ(1)(x, γ)σ(2)(x, γ)] (4.79)

and

g(i)(x, γ) = e(s−t)Q[σ(i)2(x, γ)]. (4.80)

We can summarize the previous result in the following statement which gives the correlation swap price up

to the first-order of approximation.
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Theorem 4.4.3. The value of the correlation swap for a semi-Markov volatility is

Pcorr(x) = e−rT
(
E{CorrR(S1, S2)} −Kcorr

)
, (4.81)

where the realized correlation can be approximated by

E{CorrR(S1, S2)} ≈
2
∫ T
0
ρte

tQσ(1)(x, γ)σ(2)(x, γ)dt√∫ T
0
etQ(σ(1)(x, γ))2dt

√∫ T
0
etQ(σ(2)(x, γ))2dt

−
∫ T
0
ρt(
∫ t
0
esQ{etQ[σ(1)(x, γ)σ(2)(x, γ)]σ(1)2(x, γ)}ds+

∫ T
t
etQ{σ(1)(x, γ)σ(2)(x, γ)euQ[σ(1)2(x, γ)]}du)dt

2
(∫ T

0
etQ(σ(1)(x, γ))2dt

)3/2 (∫ T
0
etQ(σ(2)(x, γ))2dt

)1/2
−
∫ T
0
ρt(
∫ t
0
esQ{etQ[σ(1)(x, γ)σ(2)(x, γ)]σ(2)2(x, γ)}ds+

∫ T
t
etQ{σ(1)(x, γ)σ(2)(x, γ)euQ[σ(2)2(x, γ)]}du)dt

2
(∫ T

0
etQ(σ(1)(x, γ))2dt

)1/2 (∫ T
0
etQ(σ(2)(x, γ))2dt

)3/2 ,

(4.82)

here Q is the generator of the Markov process (xt, γ(t))t∈R+
given by

Qf(x, t) =
df

dt
(x, t) +

gx(t)

Gx(t)

∫
X

P (x, dy)[f(y, 0)− f(x, t)] . (4.83)

4.5 Numerical Evaluation of Covariance and Correlation Swaps
with Semi-Markov Stochastic Volatility

In order to obtain a more handy expression for the price of covariance and correlation swaps to use in

the application, we will introduce here an approximation for the family of operators (etQ)t∈R+
. Following

the approach used for the variance and volatility case, we are going to approximate the operators at the first

order in Q as

etQf(·) ≈ (I + tQ)f(·) . (4.84)

Using this approximation the covariance swap price becomes

Pcov(x) ≈e−rT
{

1

T

∫ T

0

ρt(I + tQ)[σ(1)(x, γ)σ(2)(x, γ)]dt−Kcov

}

=e−rT

{
σ(1)(x, γ)σ(2)(x, γ)

∫ T

0

ρtdt+Q[σ(1)(x, γ)σ(2)(x, γ)]

∫ T

0

tρtdt−Kcov

}
.

(4.85)
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The same approximation allow us to express the zeroth order approximation of correlation swap price as

Pcorr(x) ≈e−rT


∫ T
0
ρt(I + tQ)[σ(1)(x, γ)σ(2)(x, γ)]dt√∫ T

0
(I + tQ)(σ(1)(x, γ))2dt

√∫ T
0

(I + tQ)(σ(2)(x, γ))2dt
−Kcorr


=e−rT

 σ(1)(x, γ)σ(2)(x, γ)
∫ T
0
ρtdt+Q[σ(1)(x, γ)σ(2)(x, γ)]

∫ T
0
tρtdt√

(σ(1)(x, γ))2 + T
2Q(σ(1)(x, γ))2

√
(σ(2)(x, γ))2 + T

2Q(σ(2)(x, γ))2
−Kcorr

 .

(4.86)

4.6 Conclusion

A semi-Markov modulated stochastic volatility model has been defined, in this model variance, volatility,

covariance and correlation swap have been studied. In particular, second order approximation for volatility

swap price have been explicitly evaluated and a numerical evaluation of both variance and volatility swap

has been discussed. The covariance swap price in a two risky assets market with semi-Markov volatility has

been obtained and an approximated expression for the correlation swap price has been derived, a numerical

evaluation of them has been discussed.



Part II

Multivariate Semi-Markov Models





Chapter 5

Bivariate Markov Chains

In this chapter we will introduce the bivariate Markov chains.

Multivariate Markov chain for stock markets has been studied by Maskawa [70], in this work a two state

space is considered and the system is studied as a whole. Multivariate Markov chain has been already studied

by Ching et al. [24, 25] using a mixing distribution approach; we refer to the book of Ching and Ng [23]

for a complete review on their approach. Multivariate Markov process with copula has been investigated

by Bielecki et al. [7]. Bielecki et al. [6] analyzed the dependence structure in a multivariate process whose

components are Markov processes.

In the first section we study multidimensional matrices as a general framework, to study this topic we

will follow the works of Manca [68, 69] for notation and we refer to them for details and proofs. The second

section is devoted to bivariate Markov chains. We begin with the study of the system as a whole and then

we discuss some particular dependence structures between the components.

5.1 Multidimensional Matrices: Definition and Properties

In this section we will introduce the multidimensional matrices.

Let us take R as the field, we define matrices of dimensions 0 and 1 as follows.

Definition 5.1.1. Matrices of dimension 0 and 1

• The elements of R are matrices of dimension 0.

• A matrix A of dimension 1 is a matrix whose elements are matrices of dimension 0.
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We denote the matrix of order 1 by

A[r1][c1] .

Here, r1 is the number of rows and c1 is the number of columns. LetM1
[r1][c1]

be the set of one dimensional

matrices with r1 rows and c1 columns.

For example, a matrix A of dimension 1 with 2 rows and 2 columns, A ∈M1
[2][2], can be expressed as

A[2][2] =

(
a b
c d

)
, (5.1)

where a, b, c, d ∈ R i.e. they are matrix of dimension 0.

By iteration we can define a matrix of higher dimension.

Definition 5.1.2. Matrices of dimension n

A matrix of dimension n is a matrix whose elements are matrices of dimension n− 1. We denote a matrix

of dimension n by

Ar c where r =

r1...
rn

 and c =

c1...
cn

 . (5.2)

Here r = (r1, . . . , rn) and c = (c1, . . . , cn) represent the numbers of rows and columns at any dimension level,

respectively. We denote by Mn
r c the set of all n-dimensional matrices with order structure of rows r and

columns c.

For example, we define a matrix of dimension 2 as a matrix with r2 rows and c2 columns, whose elements

are matrices of dimension 1, each one of them with r1 rows and c1 columns. We denote the two dimensional

matrices of this kind as follows

Ar c where r =

[
r1
r2

]
and c =

[
c1
c2

]
. (5.3)

Then, a bidimensional matrix with vector of rows (r1, 3) and vector of columns (c1, 3) can be represented as

A[r1
3

][
c1
3

] =

α[r1][c1] β[r1][c1] γ[r1][c1]
δ[r1][c1] ε[r1][c1] ζ[r1][c1]
η[r1][c1] θ[r1][c1] λ[r1][c1]

 where α, β, γ, δ, ε, ζ, η, θ, λ ∈M1
r1c1 . (5.4)

A generic element (matrix of dimension 0) of A[r1
3

][
c1
3

] can be expressed as

A(i1
i2

)(
j1
j2

) where i1 = 1, . . . , r1 ; j1 = 1, . . . , c1 ; i2 = 1, . . . , 3 ; j2 = 1, . . . , 3. (5.5)



5.1 Multidimensional Matrices: Definition and Properties 87

Denote by M2
r c the set of bidimensional matrices with fixed order structure of rows r and columns c.

Therefore, with M2[
r1
3

][
c1
3

] we will denote the set of all matrices 3 × 3 whose elements are one dimensional

matrices r1 × c1.

We define the product between two matrices as a natural generalization of the standard raws by columns

product.

Definition 5.1.3. Product of Matrices

• Let A,B ∈ M0
[1][1], we define the product of A and B as the standard multiplication between real

number.

• Let A ∈M1
[r][h] and B ∈M

1
[h][c], we define the product of A and B as the application

PM1 :M1
[r][h] ×M

1
[h][c] −→M

1
[r][c] (5.6)

given by

C(i)(j) = PM1(A,B)(i)(j) =: (A ∗1 B)(i)(j) =

h∑
l=1

A(i)(l)B(l)(j) ,

for i = 1, . . . , r and j = 1, . . . , c.

• Let A ∈Mn
r h and B ∈Mn

h c we define the product of A and B as the application

PMn :Mn
r h ×Mn

h c −→Mn
r c (5.7)

given for i = 1, . . . , rn and j = 1, . . . , cn by

C(rn−1

i

)(
cn−1

j

) = PMn(A,B)(rn−1

i

)(
cn−1

j

) =: (A∗nB)(rn−1

i

)(
cn−1

j

) =

hn∑
l=1

A(rn−1

i

)(
hn−1

l

)∗n−1B(hn−1

l

)(
cn−1

j

) ,

here rn−1, hn−1 and cn−1 denote the n − 1 dimensional vectors whose components are the first n-1

components of vectors r, h and c, respectively.

Remark 5.1.4. The product of multidimensional matrices is defined recursively from the standard rows by

columns product of one dimensional matrices. The properties of the standard raws by columns product can

be directly generalized to this multidimensional case.
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5.2 Bivariate Markov Chains

In this section we will introduce the Multivariate Markov Chains.

Let (Ω,F , (Fn)n∈N,P) be a complete filtered probability space and E = {1, . . . , d} be a given finite set.

Let us consider 2 sequences of random variables with values in E, we denote the generic random sequence

by Xα = (Xα
n )n∈N, for α = 1, 2, and by

X = (Xn)n∈N = (X1
n, X

2
n)n∈N ,

the two-dimensional random vector collecting the sequences.

Let v =

(
v1

v2

)
denote a vector in E2.

Definition 5.2.1. Bivariate Markov Chain

The sequence (X)n∈N is a bivariate Markov chain if

P{Xn+1 = j | X0 = i0, . . . ,Xn = in} = P{Xn+1 = j | Xn = in} (5.8)

for every n ∈ N, j ∈ E2, α = 1, 2 and every sequence i0, . . . , in in E2 such that

P{X0 = i0, . . . ,Xn = in} > 0 .

Remark 5.2.2. The Markovian property is preserved by the system, and each component, with respect to

the filtration of the whole system.

Definition 5.2.3. Homogeneous Chain

The bivariate Markov chain is homogenous if

P{Xn+1 = j | Xn = i} = P{X1 = j | X0 = i} , (5.9)

for all n ∈ N and i, j ∈ E2.

Definition 5.2.4. Transition Matrix

The transition matrix P = (P(
i1

i2

)(
j1

j2

))i,j∈E2 is the two-dimensional matrix inM2[
d
d

][
d
d

] defined by

P(
i1

i2

)(
j1

j2

) := P{Xn+1 = j | Xn = i} , (5.10)

for all n ∈ N and i, j ∈ E2.
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Example 5.2.5. Let us consider a two state space system, i.e. E = {a, b}. Let (X1
n, X

2
n)n∈N be a couple of

sequences like

X1 = a b b a a a b b a b a a b a . . .

X2 = b a b b b a a a a b b b a b . . .
(5.11)

The transition matrix P has the following structures

P =



P(aa)(aa) P(a
a

)(
b
a

)
P(b

a

)(
a
a

) P(b
a

)(
b
a

)
 P(aa)(ab) P(a

a

)(
b
b

)
P(b

a

)(
a
b

) P(b
a

)(
b
b

)


P(ab)(aa) P(a
b

)(
b
a

)
P(b

b

)(
a
a

) P(b
b

)(
b
a

)
 P(ab)(ab) P(a

b

)(
b
b

)
P(b

b

)(
a
b

) P(b
b

)(
b
b

)



. (5.12)

The matrix elements can be estimated counting the number of times that a given transition occurs over the

total transitions number.

Lemma 5.2.6. P is a stochastic matrix, i.e.

• P has non negative entries, P(
i1

i2

)(
j1

j2

) ≥ 0 for all i, j ∈ E2;

• P has row sums equal to one,
∑

j∈E2 P(i1
i2

)(
j1

j2

) = 1 for all i ∈ E2.

Let µ(n) be the probability distribution of Xn, for every n ∈ N, defined by

µ
(n)
i := P{Xn = i} ,

for all i ∈ E2. For n = 0, µ0 is called the initial distribution of the chain, in the following we will denote it

by µ omitting the apex.

Remark 5.2.7. A probability distribution µ on E2 is a two-dimensional matrix inM2[
1
1

][
d
d

].

The probability of a given sequence can be expressed as

P{X0 = i0,X1 = i1, . . . ,Xn = in} = P{X0 = i0,X1 = i1, . . . ,Xn−1 = in−1}P{Xn = in | Xn−1 = in−1}

= · · · = P{X0 = i0}P{X1 = i1 | X0 = i0} · · ·P{Xn = in | Xn−1 = in−1} = µ
(0)
i0
Pi0i1 · · ·Pin−1in

(5.13)

for all n ∈ N and i0, . . . , in ∈ E2.
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Definition 5.2.8. Higher-Order Transitions

The n-th order transition matrix P(n) is defined by

P
(n)(
i1

i2

)(
j1

j2

) = P{Xm+n = j | Xm = i} , (5.14)

for all n,m ∈ N, n > 0 and i, j ∈ E2. If n = 0 we have

P
(0)(
i1

i2

)(
j1

j2

) = δi1,j1δi2,j2 =

{
1 if i = j
0 if i 6= j

, (5.15)

where δ represents the Kronecker’s delta.

Lemma 5.2.9. The transition matrix satisfies

• P (n)(
i1

i2

)(
j1

j2

) = (P ∗2 P (n−1))(
i1

i2

)(
j1

j2

) =
∑

l∈E2 P(i1
i2

)(
l1

l2

)P (n−1)(
l1

l2

)(
j1

j2

);

• P (m+n)(
i1

i2

)(
j1

j2

) =
∑

l∈E2 P
(m)(
i1

i2

)(
l1

l2

)P (n)(
l1

l2

)(
j1

j2

);
for all n,m ∈ N and i, j ∈ E2.

The next result is a generalization of the standard case (cf. Billingsley [8]).

Theorem 5.2.10. Existence

Suppose that P = (P(
i1

i2

)(
j1

j2

))i,j∈E2 is a stochastic matrix and that µ is a probability distribution on E2.

There exists on some (Ω,F ,P) a bivariate Markov chain X0,X1,X2, . . . with initial distribution µ and

transition probability P.

Proof. Let (Ω,F ,P) be the unit square, i.e. the Cartesian product of two unit intervals, equipped with the

Borel σ-algebra and the Lebesgue measure on the plane.

First construct a partition Q(0)
(1,1), Q

(0)
(1,2), . . . , Q

(0)
(d,d) of (0, 1]× (0, 1] into a finite number of rectangles of area

P(Q
(0)
(i1,i2)

) = µi. Next decompose each rectangle Q(0)
(i1,i2)

into subsets Q(1)
(i1,i2),(j1,j2)

of area P(Q
(1)
(i1,i2),(j1,j2)

) =

µiPij. Iterating we obtain a sequence of partitions

(Q
(n)
(i0),...,(in)

: i0, . . . , in ∈ E2) such that P{Q(n)
(i0),...,(in)

} = µi0Pi0i1 · · ·Pin−1in .

We define the bivariate chain as

X(ω) = i if ω ∈
⋃

i0,...,in−1

Q
(n)
(i0),...,(in−1),(i)

.
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By construction it is clear that the set {X0 = i0, . . . ,Xn = in} coincides with the rectangle Q(n)
(i0),...,(in)

and

thus

P{X0 = i0, . . . ,Xn = in} = µi0Pi0i1 · · ·Pin−1in .

It remains to prove that

P{Xn+1 = j | X0 = i0, . . . ,Xn = in} = P{Xn+1 = j | Xn = in} . (5.16)

The right hand side of Eq. (5.16) can be expressed as

P{Xn+1 = j | Xn = in} =
P{Xn+1 = j,Xn = in}

P{Xn = in}
=

∑
i0,...,in−1

µi0Pi0i1 · · ·Pin−1inPinj∑
i0,...,in−1

µi0Pi0i1 · · ·Pin−1in

= Pinj , (5.17)

on the other hand

P{Xn+1 = j | X0 = i0, . . . ,Xn = in} =
P{X0 = i0, . . . ,Xn = in,Xn+1 = j}

P{X0 = i0, . . . ,Xn = in}

=
µi0Pi0i1 · · ·Pin−1inPinj

µi0Pi0i1 · · ·Pin−1in

= Pinj .

(5.18)

This concludes the proof.

Remark 5.2.11. The bivariate Markov chain, when the two components are studied as a whole system, is

equivalent to a standard Markov chain with enlarged state space. In particular all the results regarding the

classification of the states and the stationary distribution hold in the bivariate case as well. However, in

attempt to study the dependence structure and the evolution of the components the standard approach is not

helpful.

Let us consider a chain starting in i ∈ E2, we define the probability of a first visit to j ∈ E2 after n steps

as

f
(n)
ij := P{X1 6= j, . . . ,Xn−1 6= j,Xn = j | X0 = i} . (5.19)

Summing over all possible n, we obtain the probability of an eventual visit in j as

fij =

∞∑
n=1

f
(n)
ij . (5.20)

In terms of f we can classify the state as follows.
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Definition 5.2.12. Persistent and Transient States

• A state i ∈ E2 is persistent if eventually the chain return to it, that is fii = 1.

• A state i ∈ E2 is transient in the opposite case fii < 1.

Definition 5.2.13. Stationary Distributions

The distribution π on E2 is a stationary distribution for the bivariate Markov chain (P, µ) if

∑
i1,i2∈E2

π(
i1

i2

)P(
i1

i2

)(
j1

j2

) = π(
j1

j2

) . (5.21)

Definition 5.2.14. Ergodic Markov Chain

A transition matrix P is said to be ergodic if, for all i, j ∈ E2, there exists r0 ∈ N such that for all r > r0

the r-th order transition matrix P(r) has only positive entries, that is P (r)(
i1

i2

)(
j1

j2

) > 0 for all i, j ∈ E2. A

bivariate Markov chain is said to be ergodic if it can be generated by some initial distribution and an ergodic

transition matrix. In other words a bivariate Markov chain is ergodic if every state can be reached, in a finite

number of steps, from any initial state.

The next result is a generalization of the standard case (cf. Kolarov and Sinai [62]).

Theorem 5.2.15. Let P be an ergodic transition matrix for a bivariate Markov chain, then there exists a

unique stationary distribution π on E2. The n-th order transition matrix P(n) converges to the stationary

distribution π, that is

lim
n→∞

P
(n)
ij = πj . (5.22)

The stationary distribution π is such that πj > 0 for all j ∈ E2.

Proof. In order to show the result we first define a metric on the space of probability distributions on E2.

Let µ and ξ be two probability distributions on E2, we define

d(µ, ξ) :=
1

2

∑
i∈E2

∣∣µi − ξi
∣∣. (5.23)

It is to verify that d is a distance on the space of probability distributions on E2. Moreover, we observe that

0 =
∑
i∈E2

µ(
i1

i2

) −∑
i∈E2

ξ(
i1

i2

) =
∑
i∈E2

(µ(
i1

i2

) − ξ(
i1

i2

)) =
∑
i∈E2

(µ(
i1

i2

) − ξ(
i1

i2

))+ −
∑
i∈E2

(ξ(
i1

i2

) − µ(
i1

i2

))+ , (5.24)
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where the apex + denotes the positive part. Then we have

∑
i∈E2

(µ(
i1

i2

) − ξ(
i1

i2

))+ =
∑
i∈E2

(ξ(
i1

i2

) − µ(
i1

i2

))+ .

Hence, we can express the distance as

d(µ, ξ) =
1

2

∑
i∈E2

∣∣µi − ξi
∣∣ =

1

2

∑
i∈E2

(µ(
i1

i2

) − ξ(
i1

i2

))+ +
1

2

∑
i∈E2

(ξ(
i1

i2

) − µ(
i1

i2

))+ =
∑
i∈E2

(µ(
i1

i2

) − ξ(
i1

i2

))+.(5.25)

We notice that

(µ ∗2 P(n))j =
∑
i∈E2

µ(
i1

i2

)P (n)(
i1

i2

)(
j1

j2

) n ∈ N ,

is a probability distribution on E2 and in the following will be denoted simply by µP(n).

Let us first show that

d(µP(r), ξP(r)) ≤ (1− ε1)d(µ, ξ) , (5.26)

for all r > r0 and some ε1 > 0. We have

d(µP(n), ξP(n)) =
∑
i∈E2

[(µP(n))(
i1

i2

) − (ξP(r))(
i1

i2

)]+ =
∑
i∈E2

∑
h∈E2

(µ(
h1

h2

) − ξ(
h1

h2

))P
(n)(
h1

h2

)(
i1

i2

)
+

. (5.27)

Let us denote by I+ the subset of E2 such that

∑
h∈E2

(µ(
h1

h2

) − ξ(
h1

h2

))P
(n)(
h1

h2

)(
i1

i2

) ≥ 0 , (5.28)

for (i1, i2) ∈ I+. If µ 6= ξ we have that I+ ⊂ E2, proper subset, therefore

∑
i∈I+

P
(n)(
h1

h2

)(
i1

i2

) ≤ 1 . (5.29)

Moreover, being the chain ergodic, there exists r0 ∈ N such that

∑
i∈I+

P
(r)(
h1

h2

)(
i1

i2

) ≤ 1− ε1 , (5.30)

for all r > r0 and for some ε1 > 0. Hence, we have

d(µP, ξP) ≤
∑
i∈I+

∑
h∈E2

(µ(
h1

h2

) − ξ(
h1

h2

))+P(
h1

h2

)(
i1

i2

) ≤ (1− ε1)
∑
i∈E2

(µ(
h1

h2

) − ξ(
h1

h2

))+ = (1− ε1)d(µ, ξ) . (5.31)
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Let µ0 be a distribution on E2 and µn = µ0P(n) for n ∈ N. We show that (µn)n∈N is a Cauchy sequence.

That is, for any ε > 0 there exists nε0 such that for any n > nε0 and k ∈ N we have

d(µn, µn+k) < ε . (5.32)

Let us consider n > r0 and k ∈ N, we have

d(µn, µn+k) ≤ (1− ε1)d(µn−r, µn+k−r), (5.33)

for some fixed r > r0. Iterating we get

d(µn, µn+k) ≤ (1− ε1)md(µn−mr, µn+k−mr) ≤ (1− ε1)m, (5.34)

with m ∈ N such that n − r(m − 1) > r0. For sufficiently large nε0 there exists m such that (1 − ε1)m < ε

and thus (µn)n∈N is a Cauchy sequence. Let π = limn→∞ µn, we have

∑
i1,i2∈E2

π(
i1

i2

)P(
i1

i2

)(
j1

j2

) = lim
n→∞

∑
i1,i2∈E2

(µ0P (n))(
i1

i2

)P(
i1

i2

)(
j1

j2

) = lim
n→∞

(µ0P (n+1))(
j1

j2

) = π(
j1

j2

), (5.35)

so the limit distribution is stationary. It is easy to show that such stationary distribution is unique. Indeed

let π1 and π2 two stationary distributions obtained as a limit of the sequences (µ0P(n))n∈N and (ξ0P(n))n∈N,

respectively. Being the limit distributions stationary, we have

d(π1, π2) = d(π1P
(r), π2P

(r)) ≤ (1− ε1)d(π1, π2) , (5.36)

for r > r0. It follows that d(π1, π2) = 0, that is π1 = π2, which concludes the proof.

The bivariate Markov chain possesses the memoryless property with respect to the filtration of the whole

system. The two components are in general not Markovian with respect to their own filtrations. In principle

we can distinguish two cases: components Markovian with respect to the filtration of the whole system and

to their own filtration. In the following we analyze the dependence structure of the bivariate chain.

Proposition 5.2.16. The component α satisfies

P{Xα
n+1 = jα | X0 = i0, . . . ,Xn = in} = P{Xα

n+1 = jα | Xn = in} , (5.37)

for α = 1, 2.
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Proof. This is a direct consequence of the law of total probability and the memoryless property of the

bivariate chain.

Remark 5.2.17. The next visited state of a component depends on the present state of the whole system.

Definition 5.2.18. Marginal Transition Matrices

The marginal transition matrices Pα = (Pα(
i1

i2

)
(jα)

)i∈E2,jα∈E, for α = 1, 2, are the two-dimensional matrices

inM2[
d
d

][
d
1

] defined by

Pα(
i1

i2

)
(jα)

:= P{Xα
n+1 = jα | Xn = i} , (5.38)

for all n ∈ N, i ∈ E2 and jα ∈ E.

Example 5.2.19. Let us consider again the two state space system E = {a, b} and the sequences (X1
n, X

2
n)n∈N

X1 = a b b a a a b b a b a a b a . . .

X2 = b a b b b a a a a b b b a b . . .
. (5.39)

Let us assume that (X1, X2) is a strong Markov chain. Hence, the marginal transition matrix for component

1 has the following structures

P1 =



P(aa)(a) P(a
a

)
(b)

P(b
a

)
(a)

P(b
a

)
(b)


P(ab)(a) P(a

b

)
(b)

P(b
b

)
(a)

P(b
b

)
(b)




. (5.40)

and similarly for component 2.

Lemma 5.2.20. The marginal transition matrices P1 and P2 are stochastic, i.e.

• Pα has non negative entries, Pα(
i1

i2

)
(jα)
≥ 0 for all i ∈ E2 and jα ∈ E;

• Pα has row sums equal to one,
∑
j∈E2 P(i1

i2

)
(j)

= 1 for all i ∈ E2;

for α = 1, 2.

Remark 5.2.21. The marginal transition matrix for component 1 can be expressed in terms of transition

matrix as

Pα(
i1

i2

)
(j1)

=
∑
j2∈E

P(
i1

i2

)(
j1

j2

) ,
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and similarly for component 2.

In general, the bivariate chain transition matrix is not the product of the marginals

P{X1
n+1 = j1, X2

n+1 = j2 | Xn = i} 6= P{X1
n+1 = j1 | Xn = i}P{X2

n+1 = j2 | Xn = i} . (5.41)

However, if the next visited states of the components depends only the present state of the system, i.e. the

components are conditionally independent, we have

P{X1
n+1 = j1, X2

n+1 = j2 | Xn = i} = P{X1
n+1 = j1 | Xn = i}P{X2

n+1 = j2 | Xn = i} . (5.42)

Definition 5.2.22. Marginal Higher-Order Transitions

The n-th order marginal transition matrix Pα(n), for α = 1, 2, is defined by

Pα(
i1

i2

)
(jα)

(n) = P{Xα
m+n = jα | Xm = i} , (5.43)

for all n,m ∈ N, n > 0, i ∈ E2 and jalpha ∈ E. If n = 0 we have

P 1(
i1

i2

)
(j1)

(0) = δi1,j1 , (5.44)

and similarly for component 2.

Proposition 5.2.23. Let P be an ergodic transition matrix for a bivariate Markov chain with unique sta-

tionary distribution π on E2. The n-th order marginal transition matrices (P1(n),P2(n)) converge to the

marginal stationary distributions πα, for α = 1, 2, that is

lim
n→∞

Pαijα(n) = παjα . (5.45)

The marginal stationary distributions πα for α = 1, 2 are such that

π1
j1 =

∑
j2∈E

π(
i1

i2

)

π2
j2 =

∑
j1∈E

π(
i1

i2

) ,

(5.46)

for j1, j2 ∈ E.
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As well known, components of a multivariate Markov process are in general not Markovian with respect

to their own filtrations. Bielecki et al. [7] distinguished between multivariate Markov processes whose

components are Markovian with respect to their own filtration (weak Markov consistency) and multivariate

Markov processes whose components are Markovian with respect to the filtration of the whole system (strong

Markov consistency).

It could be interesting to address the problem of the conditions to impose on a multivariate Markov

process in order to obtain components that are Markov process with a specific distribution, Ball and Yeo [2]

and Bielecki et al. [6] answered to this question for continuous time Markov chain.

In the following, we discuss a consistency condition for bivariate Markov chains (cf. Bielecki et al. [7])

and we derive the condition a bivariate Markov chain should satisfy in order to obtain given Markov chains

as components.

Definition 5.2.24. (strong) Markovian Consistency

Let X = (X1, X2) be a bivariate Markov chain, we said that X satisfy the Markovian consistency condition

if

P{X1
n+1 = j1 | X0 = i0, . . . ,Xn−1 = in−1,Xn = i} = P{X1

n+1 = j1 | X1
n = i1}

P{X2
n+1 = j2 | X0 = i0, . . . ,Xn−1 = in−1,Xn = i} = P{X2

n+1 = j2 | X2
n = i2} ,

(5.47)

for all i1, j1, i2, j2 ∈ E.

Proposition 5.2.25. Let Y 1 and Y 2 be two Markov chains on E and let p1 and p2 be the transition matrices

of Y 1 and Y 2, respectively. If the system of linear equations in the unknowns P(
i1

i2

)(
j1

j2

), for i, j ∈ E2:

∑
j2∈E

P(
i1

i2

)(
j1

j2

) = p1i1j1 for all i2 ∈ E

∑
j1∈E

P(
i1

i2

)(
j1

j2

) = p2i2j2 for all i1 ∈ E ,
(5.48)

has a solution, then there exists a Markovian consistent bivariate Markov chain Y having P = (P(
i1

i2

)(
j1

j2

))i,j∈E2

as a transition matrix and (Y 1, Y 2) as components.

Proof. If the system of Eqs. (5.48) has a solution, then from Theorem 5.2.10 given an initial distribution on

E2 there exists a bivariate Markov chain, Y, having P = (P(
i1

i2

)(
j1

j2

))i,j∈E2 as a transition matrix. Moreover
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if the Eqs. (5.48) are satisfied, p1 and p2 are the marginal transition matrices. Thus, Y 1 and Y 2 are the

components of Y, that is Y is Markovian consistent bivariate Markov chain.

Remark 5.2.26. The system of Eqs. (5.48) has at least one solution. Indeed, in the independent case, it is

easy to verify that

P(
i1

i2

)(
j1

j2

) = p1i1j1p
2
i2j2 (5.49)

for i, j ∈ E2, is a solution.

Corollary 5.2.27. Let X = (X1, X2) be a Markovian consistent bivariate Markov chain with transition

matrix P = (P(
i1

i2

)(
j1

j2

))i,j∈E2 , then X1 and X2 are Markov chain with transition matrices p1 and p2 if

p1i1j1 =
∑
j2∈E

P(
i1

i2

)(
j1

j2

) for all i2 ∈ E

p2i2j2 =
∑
j1∈E

P(
i1

i2

)(
j1

j2

) for all i1 ∈ E .
(5.50)

Remark 5.2.28. Proposition 5.2.25 and Corollary 5.2.25 give a necessary and sufficient condition for a

Markovian consistent bivariate Markov chain to have given Markov chains as marginals.

In Bielecki et al. [7] an example of Markovian consistent continuous-time bivariate Markov chain is

discussed. We give an example of Markovian consistent bivariate Markov chain with given Markov chains

as components.

Example 5.2.29. Let us consider again the two state space system E = {a, b}. Let Y 1 and Y 2 be two

Markov chains, with values in E, with transition matrices

p1 =

(
p1aa p1ab
p1ba p1bb

)
=

(
1− (α+ γ) α+ γ

0 1

)
(5.51)

and

p2 =

(
p2aa p2ab
p2ba p2bb

)
=

(
1− (β + γ) β + γ

0 1

)
. (5.52)
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It is easy to verify that

P =



P(aa)(aa) P(a
a

)(
b
a

)
P(b

a

)(
a
a

) P(b
a

)(
b
a

)
 P(aa)(ab) P(a

a

)(
b
b

)
P(b

a

)(
a
b

) P(b
a

)(
b
b

)


P(ab)(aa) P(a
b

)(
b
a

)
P(b

b

)(
a
a

) P(b
b

)(
b
a

)
 P(ab)(ab) P(a

b

)(
b
b

)
P(b

b

)(
a
b

) P(b
b

)(
b
b

)




=


1− (α+ β + γ) α β γ

0 1− (α+ γ) 0 α+ γ
0 0 1− (β + γ) β + γ
0 0 0 1

 ,

(5.53)

is a solution of the system of Eqs. (5.48), then P is a transition matrix of a bivariate Markov chain Y with

values in E2.
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Chapter 6

Bivariate Semi-Markov Chains

In this chapter we would like to define a bivariate process able to capture the semi-Markov environment

features. We will define a multivariate discrete time process whose components are semi-Markov with respect

to the information of the whole process.

The Markovian memoryless property will be preserved for any component at its transition time, i.e. each

component will preserve its own renewal time process. The renewal time processes of the system will be

independent, so the waiting times in the states for each component will only depend on its present state.

However the next visited state of a component depends on the present state of the whole system, that is the

embedded chain is Markovian with respect to the filtration of the whole system.

Thus, in this bivariatete case the one step transition probabilities of each component will depend on the

present state of the whole system. The evolution in time and the main properties of this bivariate system

will be studied.

6.1 Bivariate Semi-Markov Chain: Main Definitions

Let (Ω,F , (Fn)n∈N,P) be a complete filtered probability space and let E = {1, . . . , d} be a given finite

set.

Let us consider a system consisting of two parts, each part has values in E = {1, . . . , d}. Let us denote

by Jα = (Jαn )n∈N, for α = 1, 2, the sequence of states visited by the α part, each Jα takes values in E.

Let v =

(
v1

v2

)
denote a vector in E2.
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Assumption 6.1.1. Let us assume that

A1 J = (J1, J2) is a bivariate Markov chain, i.e. the process and its components have the memoryless

Markov property with respect to the filtration of the whole system.

The one step transition probability for the bivariate Markov chain J is defined for i, j ∈ E2 as

P{Jn+1 = j | J0 = i0, . . . ,Jn = in} = P{Jn+1 = j | Jn = in} =: P(
i1

i2

)(
j1

j2

)
(6.1)

The process is time homogeneous and then the transition probabilities do not depend on present time.

Let us denote with (Tn)n∈N the sequence of system’s transition times, the state space of transition times

will be N since we are considering a discrete time system.

Let us also introduce the sequence of random variables Xn = Tn+1 − Tn, for every n ∈ N. Xn is the

sojourn time of the system in state Jn.

We define the counting process

N(t) = max{n ∈ N | Tn ≤ t} ∀ t ∈ N,

which gives the number of transitions up to time t of the system.

Remark 6.1.2. The bivariate semi-Markov chain, when the two components are studied as a whole system

with a univariate renewal time process, is equivalent to a standard semi-Markov chain with enlarged state

space.

Definition 6.1.3. Bivariate Cumulated Semi-Markov Kernel

A two-dimension matrix valued function Q = (Q(
i1

i2

)(
j1

j2

)(t); i, j ∈ E2, t ∈ N∗) is a discrete-time bivariate

cumulated semi-Markov kernel if

• Q(
i1

i2

)(
j1

j2

)(t) ≥ 0 for every i, j ∈ E2 and t ∈ N∗;

• Q(
i1

i2

)(
j1

j2

)(0) = 0 for every i, j ∈ E2;

•

(
limt→∞Q(

i1

i2

)(
j1

j2

)(t))

)
i,j∈E2

is a bivariate Markov chain transition probability.
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Definition 6.1.4. Bivariate Semi-Markov Kernel

A two-dimension matrix valued function q = (q(
i1

i2

)(
j1

j2

)(t); i, j ∈ E2, t ∈ N∗) is a discrete-time bivariate

semi-Markov kernel if

• q(
i1

i2

)(
j1

j2

)(t) ≥ 0 for every i, j ∈ E2 and t ∈ N∗;

• q(
i1

i2

)(
j1

j2

)(0) = 0 for every i, j ∈ E2;

•

(∑∞
t=1 q

(
i1

i2

)(
j1

j2

)(t)

)
i,j∈E2

is a bivariate Markov chain transition probability.

Definition 6.1.5. Bivariate Markov Renewal Chain

A random sequence (J, T ) = (Jn, Tn)n∈N∗ is a bivariate Markov renewal chain if for all n ∈ N, i, j ∈ E2 and

t ∈ N it satisfies

P{Jn+1 = j, Tn+1 − Tn ≤ t|σ(Ja, Ta), 0 ≤ a ≤ n} = P{Jn+1 = j, Tn+1 − Tn ≤ t|Jn = i} . (6.2)

If the probability in Eq. (6.2) does not depend on n, (J, T ) is time homogenous and its associated bivariate

semi-Markov kernel q is defined by

q(
i1

i2

)(
j1

j2

)(t) := P{Jn+1 = j, Tn+1 − Tn = t | Jn = i} . (6.3)

If (J, T ) is a bivariate Markov renewal chain then (J1
n, J

2
n)n∈N∗ is a bivariate Markov chain, called the

embedded bivariate Markov chain associated to the bivariate Markov renewal chain (J, T ). The bivariate

Markov transition probability of J is defined by

p(
i1

i2

)(
j1

j2

) := P{Jn+1 = j | Jn = i} =

∞∑
t=0

q(
i1

i2

)(
j1

j2

)(t) . (6.4)

Let us define the cumulative unconditional distribution of Xn as

H(
i1

i2

)(t) := P{Xn ≤ t | Jn = i} , (6.5)

for every n ∈ N and i ∈ E.

Assumption 6.1.6. The distribution of Xn does not depend on the next visited state, that is

G(
i1

i2

)(
j1

j2

)(t) := P{Xn ≤ t | Jn = i,Jn+1 = j}

= P{Xn ≤ t | Jn = i} = H(
i1

i2

)(t) ,
(6.6)
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for every n ∈ N and i, j ∈ E2.

Definition 6.1.7. Bivariate Semi-Markov Chain

Let (J, T ) be a bivariate Markov renewal chain and N its associated counting process. The process Z =

(Z1(t), Z2(t))tinN∗ defined by

Z(t) := (J1
N(t), J

2
N(t)), (6.7)

is a bivariate semi-Markov chain associated to the bivariate Markov renewal chain (J, T ). In other words

Z(t) gives the position of the embedded bivariate Markov chain at time t.

The evolution of a bivariate semi-Markov chain from an initial state can be studied by the associated

transition probability.

Definition 6.1.8. Bivariate Transition Probability

The bivariate transition probability of the bivariate semi-Markov chain Z is the two-dimension matrix valued

function φ = (φ(
i1

i2

)(
j1

j2

)(t); i, j ∈ E2, t ∈ N∗) defined by

φ(
i1

i2

)(
j1

j2

)(t) := P{Z(t) = j | Z(0) = i, TN(0) = 0} . (6.8)

The following result allows us to express the transition probability in a recursive way as a function of the

bivariate semi-Markov kernel.

Proposition 6.1.9. Evolution Equation

For all i, j ∈ E2 and t ∈ N, we have

Φ(
i1

i2

)(
j1

j2

)(t) = δ(
i1

i2

)(
j1

j2

)[1−H(
i1

i2

)(t)] +
∑

l1,l2∈E

t∑
τ=1

q(
i1

i2

)(
l1

l2

)(τ)Φ(
l1

l2

)(
j1

j2

)(t− τ) , (6.9)

where δ represents the Kronecker symbol.

Proof. In order to evaluate the transition probability in t let us first distinguish between the trajectories

with at least one transition in t-steps and those without, that is

P{Z(t) = j | Z(0) = i} = P{Z(t) = j, T1 > t | Z(0) = i}+ P{Z(t) = j, T1 ≤ t | Z(0) = i} . (6.10)
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The first term on the r.h.s of Eq. (6.10) is given by

P{Z(t) = j, T1 > t | Z(0) = i} = δ(
i1

i2

)(
j1

j2

)[1−H(
i1

i2

)(t)] , (6.11)

by applying the law of total probability to the second term on the r.h.s of Eq. (6.10) we get

P{Z(t) = j, T1 ≤ t | Z(0) = i} =
∑

l1,l2∈E

t∑
τ=1

P{Z(t) = j, T1 = τ, Z1(T1) = l1, Z2(T1) = l2 | Z(0) = i}

=
∑

l1,l2∈E

t∑
τ=1

P{Z(t) = j | T1 = τ,Z(τ) = l,Z(0) = i}P{T1 = τ,Z(τ) = l | Z(0) = i},

(6.12)

using the time homogeneity and the memoryless property of the bivariate chain at the transition time, we

obtain

P{Z(t) = j, T1 ≤ t | Z(0) = i} =
∑

l1,l2∈E

t∑
τ=1

q(
i1

i2

)(
l1

l2

)(τ)Φ(
l1

l2

)(
j1

j2

)(t− τ) , (6.13)

this concludes the proof.

In many applications, it might be more convenient to introduce a sequence of transition times for each

component of the system. In other words, we can define (T
(α)
n )n∈N the sequence of transition times of α-th

component, for α = 1, 2. We can introduce the sequence of random variables Xα
n = Tαn+1 − Tαn , for every

n ∈ N. Xα
n is the sojourn time of component α in state Jαn . For every component of our system we can

define the counting process

Nα(t) = max{n ∈ N | Tαn ≤ t} ∀ t ∈ N,

which gives the number of transitions up to time t of part α.

Remark 6.1.10. We notice that, for every t ∈ N, we have

N(t) = N1(t) +N2(t)−#{T 1
N(k) = T 2

N(k), k ≤ t} ,

here the number operator (#) allows not to count twice a simultaneous transition of the components. We

can now define

Tn = min{t ∈ N | N(t) = n} ,

and

Xn = Tn+1 − Tn ,
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thus, in order to study the evolution of the system the two approaches are equivalent. However, in attempt

to study the dependence structure and the evolution of the components the standard approach is not helpful.

Let us define the marginal transition probability for the embedded bivariate Markov chain J for i ∈ E2

and j ∈ E as
P(J1

n+1 = j1 | J1
n = ii, J

2
N2(T 1

n)
= i2) =: p1i,j1

P(J2
n+1 = j2 | J1

N1(T 2
n)

= i1, J
2
n = i2) =: p2i,j2 .

(6.14)

Definition 6.1.11. Marginal cumulated semi-Markov kernel

The marginal cumulated semi-Markov kernel is, for each component α = 1, 2, the two-dimension matrix

valued function Qα = (Qαi,j(t), for t ∈ N)i∈E2,j∈E defined by

Qαi,j(t) := P(JαNα(s)+1 = j, TαNα(s)+1 − T
α
Nα(s) ≤ t | J

1
N1(s) = i1, J

2
N2(s) = i2), (6.15)

for all s ∈ N.

In the following, we will refer to the probability to have a transition exactly at a certain time, thus we

introduce here the marginal semi-Markov kernel.

Definition 6.1.12. Marginal semi-Markov kernel

The marginal semi-Markov kernel is, for each component α = 1, . . . , γ, the matrix valued function qα =

(qαi,j(t), for t ∈ N)i∈Eγ ,j∈E defined by

qαi,j(t) := P(JαNα(s)+1 = j, TαNα(s)+1 − T
α
Nα(s) = t | JN(s)) =

{
Qαi,j(t+ 1)−Qαi,j(t) for t > 0

0 for t = 0
, (6.16)

for all s ∈ N, where we used the time homogeneity of the process and we used the notation

JN(s) =

(
J1
N1(s)

J2
N2(s)

)
. (6.17)

Lemma 6.1.13. The marginal transition probabilities of the embedded bivariate Markov chain, Eq. (6.14),

can be expressed in terms of the marginal semi-Markov kernel as

pαi,j =

∞∑
t=0

qαi,j(t) , (6.18)

for every α = 1, . . . , γ, i ∈ Eγ and j ∈ E.
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Figure 6.1: The trajectory of the double-component system is shown as a function of time. In the picture
sojourn times, transition times and backward recurrence times are shown.

The evolution of the multivariate (J,X) process can be described as follows, given an initial state the

next state occupied by the system is determined according to the evolution of the multivariate Markov chain

while the sojourn time in the present state, of every part of the system, is determined according to the joint

distribution of X. In the bivariate case an example of trajectory is shown in Figure (6.1).

The marginal transition function of part α of the multivariate semi-Markov chain is defined by

Φαi,j(t) := P(Zα(t) = j | Z(0) = i, T 1
N1(0) = 0, T 2

N2(0) = 0), (6.19)

for all i ∈ Eγ , j ∈ E and t ∈ N. It gives the probability that component α at time t is in a state j given the

state of the system at the present time 0.

In the semi-Markov evolution the Markovian memoryless property is preserved only at the transition

times, i.e. the renewal moments. This feature makes the age of the state particularly important. As a

consequence, the transition probabilities of a semi-Markov process change as a function of the values of the

backward time, see for example D’Amico et al. [36].

Definition 6.1.14. Multivariate backward recurrence time process
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The multivariate backward recurrence time process associated to the multivariate semi-Markov process Z,

denoted by (B(t))t∈N = (B1(t), B2(t))t∈N), is defined component by component as

Bα(t) := t− TαNα(t) for α = 1, 2,

its α component specifies at any time t the age of the α component’s state. In other words, Bα(t) gives the

time since the last transition of α-th component.

Definition 6.1.15. Marginal Backward Semi-Markov Kernel

The backward marginal semi-Markov kernel is, for each component α = 1, 2, the matrix valued function

bqα = (bqαi,j(vα, t), for t ∈ N, vα ∈ N)i∈Eγ ,j∈E defined by

bqαi,j(vα, t) := P(JαNα(s)+1 = j,Xα
Nα(s) = t+ vα | JN(s) = i , TN(s) = s1− v , TN(s)+1 > s1)

where vα stands for the backward of component α at time s.

Remark 6.1.16. If we add to the semi-Markov process the information regarding the permanence into the

states we obtain a Markov process. In other words, (Z,B) is a Markov process.

Definition 6.1.17. Transition probability for (Z,B)

The transition probability for (Z,B) is defined by

P̃i,j(v,w) := P(Z(t+ 1) = j,B(t+ 1) = w | Z(t) = i,B(t) = v) . (6.20)

The transition probability does not depend on t due to the homogeneity of the process.

Let us denote the marginal transition function for the α-th component by

bΦαi;jα(v;uα, t) := P(Zα(t) = jα, B
α(t) = uα | Z(0) = i , B(0) = v), (6.21)

it gives the probability of the event {Z1(t) = j1, B
1(t) = u1}, for all j1 ∈ E and u1 ∈ N, given that Z(0) = i

be the initial state of the system with backward recurrence time B(0) = v.

In order to study the evolution equation for the marginal transition function we make some assumption

on the waiting times distribution.
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6.1.1 Bivariate Semi-Markov Chain with Independent Waiting Times

Assumption 6.1.18. A2 The sequences of random variables (Xα
n )n∈N, for α = 1, 2, are independent. To

be more precise the σ algebras generated by (Xα)α=1,2 are independent. In other words the sojourn

times of the components do not influence each other.

The sequence of sojourn times (X
(α)
n )n∈N depends only on the visited state of the α-component Jαn .

Moreover, the sojourn time of component α depends only on its present state. Thus, the marginal

unconditional cumulative distribution function of the waiting times for component α can be defined as

P(Xα
Nα(s) ≤ t | σ(Jβ

Nβ(h)
), h ≤ s, β = 1, 2) = P(Xα

Nα(s) ≤ t | σ(JαNα(h)), h ≤ s)

= P(Xα
Nα(s) ≤ t | J

α
Nα(s) = iα) = P(Xα

n ≤ k | Jαn = iα) =: Hα
iα(t) ∀ s ∈ N,

(6.22)

where σ(Jβ
Nβ(h)

, h ≤ s, β = 1, 2) is the natural filtration of the multivariate Markov chain (J).

Remark 6.1.19. A simplifying assumption could be that of equally distributed sojourn times for each com-

ponent, i.e.

H1
i (k) = H2

i (k) ∀ k ∈ N, i ∈ E . (6.23)

This simplification could be adopted if data are not sufficient to estimate different cdf.

Remark 6.1.20. Using assumptions A1 and A2, we have

P(JαNα(s)+1 = j, TαNα(s)+1 − T
α
Nα(s) ≤ t | (JN(h),TN(h), h ≤ s)) = P(JαNα(s)+1 = j,Xα

Nα(s) ≤ t | JN(s) = i),

that is Tα, for α = 1, 2, can be interpreted as the renewal times of component α.

Lemma 6.1.21. The marginal cumulated semi-Markov kernel can be expressed as

Qαi,j(t) = pαi,jF
α
iα(t) . (6.24)

Proposition 6.1.22. Let Z be a semi-Markov chain satisfying assumptions A1 and A2. Then, the marginal

backward semi-Markov kernel for component α can be expressed as

bqαi,j(vα, t) =
Hα
iα

(t+ vα)−Hα
iα

(t+ vα − 1)

1−Hα
iα

(vα)
· pαi,j . (6.25)
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Proof. By applying Bayes rules we get

P(JαNα(s)+1 = j,Xα
Nα(s) = t+ vα | JN(s) = i , TN(s) = s− v , TN(s)+1 > s)

= P(Xα
Nα(s) = t+ vα | JαNα(s)+1 = j , JN(s) = i , TN(s) = s− v , TN(s)+1 > s)

× P(JαNα(s)+1 = j | JN(s) = i , TN(s) = s− v , TN(s)+1 > s). (6.26)

Then, by using assumptions A1 and A2 we obtain

P(JαNα(s)+1 = j,Xα
Nα(s) = t+ vα | JN(s) = i , TN(s) = s− v , TN(s)+1 > s)

= P(Xα
Nα(s) = t+ vα | JαNα(s) = iα , T

α
Nα(s) = s− vα , TαN(s)+1 > s)

× P(JαNα(s)+1 = j | JN(s) = i), (6.27)

and by using the definitions we get

P(JαNα(s)+1 = j,Xα
Nα(s) = t+ vα | JN(s) = i , TN(s) = s− v , TN(s)+1 > s)

=
Hα
iα

(t+ vα)−Hα
iα

(t+ vα − 1)

1−Hα
iα

(vα)
· pαi,j = bqαi,j(vα, t) . (6.28)

We notice that, if the backward process is zero Bα(s) = 0 (vα = 0), as we expect the backward kernel

coincides with the kernel, that is

bqαi,j(0, t) = qαi,j(t).

Remark 6.1.23. Formula (6.25) reveals that assumptions A1 and A2 imply that backward semi-Markov

kernels (bqα)α=1,2 are affected by the permanence in the state only of their own component. That is, the

backward values of the other parts of the system does not affect the kernel. However, we will see that transition

functions will depend on the backward values of each part of the system.

Proposition 6.1.24. Let Z be a bivariate semi-Markov process satisfying assumptions A1 and A2. Then,
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the one-step transition probability for (Z,B) can be expressed as

P̃i,j(v,w) =



(
1−H1

i1
(1+v1)

1−H1
i1

(v1)

)(
1−H2

i2
(1+v2)

1−H2
i2

(v2)

)
if l = i,w = v + 1

bq1i,j1(v1, 1)

(
1−H2

i2
(1+v2)

1−H2
i2

(v2)

)
if j1 6= i1, j2 = i2,w =

(
0

1 + v2

)
bq2i,j2(v2, 1)

(
1−H1

i1
(1+v1)

1−H1
i1

(v1)

)
if j1 = i1, j2 6= i2,w =

(
1 + v1

0

)(
H1
i1

(1+v1)−H1
i1

(v1)

1−H1
i1

(v1)

)(
H2
i2

(1+v2)−H2
i2

(v2)

1−H2
i2

(v2)

)
P(

i1

i2

)(
j1

j2

) if j1 6= i1, j2 6= i2,w =
(
0
0

)
0 otherwise

(6.29)

Proof. The backward time process, for each component, takes value in N so P̃ has in principle infinite

entries, however, most of them are null. In fact, the next step backward time of component α can assume

only two values depending on whether there is a transition on the next step, backward time null, or there

is no transition, backward time increasing of one. These two possibilities partition the trajectories of our

bivariate system in 4 parts. These parts can be obtained directly writing the one step transition probability

as

P̃i,j(v,w) =


P(Z(1) = i,B(1) = v + 1 | Z(0) = i,B(0) = v)

P(Z(1) =
(
j1
i2

)
,B(1) =

(
0

1 + v2

)
| Z(0) = i,B(0) = v)

P(Z(1) =
(
i1
j2

)
,B(1) =

(
1 + v1

0

)
| Z(0) = i,B(0) = v)

P(Z(1) =
(
j1
j2

)
,B(1) =

(
0
0

)
| Z(0) = i,B(0) = v)

, (6.30)

here we suppose i1 6= j1 and i2 6= j2. The first probability on the r.h.s of Eq. (6.30) can be expressed as

P(Z(1) = i,B(1) = v + 1 | Z(0) = i,B(0) = v) =

(
1−H1

i1
(1 + v1)

1−H1
i1

(v1)

)(
1−H2

i2
(1 + v2)

1−H2
i2

(v2)

)
, (6.31)

it is the probability that no transition occurs.

The second probability on the r.h.s of Eq. (6.30) can be written as

P(Z(1) =
(
j1
i2

)
,B(1) =

(
0

1 + v2

)
| Z(0) = i,B(0) = v) = bq1i,j1(v1, 1)

(
1−H2

i2
(1 + v2)

1−H2
i2

(v2)

)
, (6.32)

it is the probability that only component 1 makes a transition. Similarly the third, i.e. the probability that

only component 2 makes a transition, can be represented as

P(Z(1) =
(
i1
j2

)
,B(1) =

(
1 + v1

0

)
| Z(0) = i,B(0) = v) = bq2i,j2(v2, 1)

(
1−H1

i1
(1 + v1)

1−H1
i1

(v1)

)
. (6.33)

Finally the fourth part gives the probability of a simultaneous transition of both components and it can be

expressed as

P(Z(1) =
(
j1
j2

)
,B(1) =

(
0
0

)
| Z(0) = i,B(0) = v) =

H1
i1

(1 + v1)−H1
i1

(v1)

1−H1
i1

(v1)

H2
i2

(1 + v2)−H2
i2

(v2)

1−H2
i2

(v2)
P(

i1

i2

)(
j1

j2

) ,
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here P is the transition matrix of the embedded bivariate Markov chain.

Assumption 6.1.25. A3 The bivariate process J = (J1
n, J

2
n)n∈N is such that the next visited state of

each component depends only on the present state of the system. The marginal one step transition

probabilities satisfy

P(J1
n+1 = j1 | σ(J1

n, h < n+ 1), σ(J2
h, h ≤ N2(T 1

n+1))) = P(J1
n+1 = j1 | J1

n = ii, J
2
N2(T 1

n)
= i2) =: p1i,j1

P(J2
n+1 = j2 | σ(J1

h, h ≤ N1(T 2
n+1)), σ(J2

h, h < n+ 1)) = P(J2
n+1 = j2 | J1

N1(T 2
n)

= i1, J
2
n = i2) =: p2i,j2

where σ(Jαh , h < n+ 1) denotes the natural filtration of Jα.

Remark 6.1.26. The bivariate semi-Markov chain satisfying assumptions A1, A2 and A3 is not a mul-

tivariate process with independent components. Indeed, the waiting times are independent (see assumption

A2) but the sequences of visited states are dependent. This is outlined by assumption A3 stating that the

next visited state of component α depends on its present state and on the present states of all the other

components.

Theorem 6.1.27. Let Z be a bivariate semi-Markov process satisfying assumptions A1, A2 and A3. Let B

be the associated backward recurrence time process.

The transition probability function for component 1 can be expressed, for all i, j ∈ E2, v,u ∈ N2 and t ∈ N,

as follows

bΦ1
i;j1(v;u1, t) =

(
1−H1

i1
(t+ v1)

1−H1
i1

(v1)

)(
1−H2

i2
(t+ v2)

1−H2
i2

(v2)

)
δi1,j1δu1,t+v1

+
∑
l1∈E

t∑
s=1

q1i,l1(v1, s)

(
1−H2

i2
(s+ v2)

1−H2
i2

(v2)

)
bΦ1(

l1
i2

)
;j1

(
(

0
v2 + s

)
;u1, t− s)

+
∑
l2∈E

t∑
s=1

q2i,l2(v2, s)

(
1−H1

i1
(s+ v1)

1−H1
i1

(v1)

)
bΦ1(

i1
l2

)
;j1

(
(
v1 + s

0

)
;u1, t− s)

+
∑

l1,l2∈E

t∑
s=1

bq1i,l1(v1, s)
bq2i,l2(v2, s)

bΦ1(
l1
l2

)
;j1

(
(
0
0

)
;u1, t− s) ,

(6.34)
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and similarly for component 2 we have

bΦ2
i;j2(v;u2, t) =

(
1−H1

i1
(t+ v1)

1−H1
i1

(v1)

)(
1−H2

i2
(t+ v2)

1−H2
i2

(v2)

)
δi2,j2δu2,t+v2

+
∑
l1∈E

t∑
s=1

q1i,l1(v1, s)

(
1−H2

i2
(s+ v2)

1−H2
i2

(v2)

)
bΦ2(

l1
i2

)
;j2

(
(

0
v2 + s

)
;u2, t− s)

+
∑
l2∈E

t∑
s=1

q2i,l2(v2, s)

(
1−H1

i1
(s+ v1)

1−H1
i1

(v1)

)
bΦ2(

i1
l2

)
;j2

(
(
v1 + s

0

)
;u2, t− s)

+
∑

l1,l2∈E

t∑
s=1

bq1i,l1(v1, s)
bq2i,l2(v2, s)

bΦ2(
l1
l2

)
;j2

(
(
0
0

)
;u2, t− s) .

(6.35)

Proof. In order to show the result we first notice that, for all j1 ∈ E and u1 ∈ N, the event {Z1(t) =

j1, B
1(t) = u1}, given that the initial state is Z(0) = i with backward recurrence time B(0) = v, can be

obtained by different possible trajectories of the system, these can be divided in the following way

I{Z1(t)=j1,B1(t)=u1|Z(0)=i,B(0)=v}
d
= I{T 1

1>t,T
2
1>t|Z(0)=i,B(0)=v}δi1,j1δu1,t+v1

+
∑
l1∈E

t∑
s=1

I{T 1
1 =s,J

1
1=l1,T

2
1>s|Z(0)=i,B(0)=v}I{Z1(t)=j1,B1(t)=u1

∣∣Z(s)=
(
l1
i2

)
,B(s)=

(
0

v2 + s

)}

+
∑
l2∈E

t∑
s=1

I{T 1
1>s,T

2
1 =s,J

2
1=l2|Z(0)=i,B(0)=v}I{Z1(t)=j1,B1(t)=u1

∣∣Z(s)=
(
i1
l2

)
,B(s)=

(
v1 + s

0

)}

+
∑

l1,l2∈E

t∑
s=1

I{T 1
1 =s,J

1
1=l1,T

2
1 =s,J

2
1=l2|Z(0)=i,B(0)=v}I{Z1(t)=j1,B1(t)=u1

∣∣Z(s)=
(
l1
l2

)
,B(s)=

(
0
0

)},

(6.36)

where δ denotes the Kronecker delta function, the upper script d on the equal sign denotes the equality in

distribution, and on the second term of the r.h.s we used the following relation

P{Z1(t) = j1, B
1(t) = u1|T 1

1 = s, J1
1 = l1, T

2
1 > s,Z(0) = i,B(0) = v}

= P
{
Z1(t) = j1, B

1(t) = u1|Z(s) =
(
l1
i2

)
,B(s) =

(
0

v2 + s

)
,Z(0) = i,B(0) = v

}
= P

{
Z1(t) = j1, B

1(t) = u1|Z(s) =
(
l1
i2

)
,B(s) =

(
0

v2 + s

)}
,

(6.37)

here we applied (Z,B) as a Markov process. A similar relation has been used for the third and fourth term

on the r.h.s of Eq. (6.36).

The relation (6.36) divides the trajectories into four parts, the first takes into account the events with no

transition in t steps, the second and third consider the trajectories where the first transition is made by the

first and second component respectively, finally the fourth possibility considers the first transition of the first

and second component simultaneously. A similar relation can be obtained for the event {Z2(t) = j2, B
2(t) =
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u2}, for all j2 ∈ E and u2 ∈ N, at t time steps given that (Z(0) = i,B(0) = v) is the initial state, that is

I{Z2(t)=j2,B2(t)=u2|Z(0)=i,B(0)=v}
d
= I{T 1

1>t,T
2
1>t|Z(0)=i,B(0)=v}δi2,j2δu2,t+v2

+
∑
l1∈E

t∑
s=1

I{T 1
1 =s,J

1
1=l1,T

2
1>s|Z(0)=i,B(0)=v}I{Z2(t)=j2,B2(t)=u2

∣∣Z(s)=
(
l1
i2

)
,B(s)=

(
0

v2 + s

)
,Z(0)=i,B(0)=v

}

+
∑
l2∈E

t∑
s=1

I{T 1
1>s,T

2
1 =s,J

2
1=l2|Z(0)=i,B(0)=v}I{Z2(t)=j2,B2(t)=u2

∣∣Z(s)=
(
i1
l2

)
,B(s)=

(
v1 + s

0

)
,Z(0)=i,B(0)=v

}

+
∑

l1,l2∈E

t∑
s=1

I{T 1
1 =s,J

1
1=l1,T

2
1 =s,J

2
1=l2|Z(0)=i,B(0)=v}I{Z2(t)=j2,B2(t)=u2

∣∣Z(s)=
(
l1
l2

)
,B(s)=

(
0
0

)
,Z(0)=i,B(0)=v

}.

(6.38)

The transition probabilities for component 1 and 2 can be obtained by taking the conditional expectation on

both sides of Eqs. (6.36) and (6.38), respectively. The structures of these two equations is similar, therefore

we will explicitly evaluate only the expected value of Eq. (6.36) for component 1. Similar calculations can

be done for the expression of the transition probability function for component 2.

We have to evaluate the expectation of four terms on the r.h.s of Eq. (6.36). In the first term the expectation

of the indicator function is given by

E{I{T 1
1>t,T

2
1>t|Z(0)=i,B(0)=v}} = P{T 1

1 > t, T 2
1 > t|Z(0) = i,B(0) = v}

= P{X1
1 > t+ v1|X1

1 > v1, J
1
0 = i1}P{X2

1 > t+ v2|X2
1 > v2, J

2
0 = i2}

=

(
1−H1

i1
(t+ v1)

1−H1
i1

(v1)

)(
1−H2

i2
(t+ v2)

1−H2
i2

(v2)

)
,

(6.39)

where we used the independence between the waiting times of the components.

The second term on the r.h.s of Eq. (6.36) is a sum of terms that are products of indicator functions. By

linearity property of the expectation we can directly evaluate the expectation of the single terms of the sum.

Using the properties of conditional expectation, the expected value of the generic summand is

E
{
I{T 1

1 =s,J
1
1=l1,T

2
1>s|Z(0)=i,B(0)=v}I{Z1(t)=j1,B1(t)=u1

∣∣Z(s)=
(
l1
i2

)
,B(s)=

(
0

v2 + s

)}∣∣∣∣Z(0) = i,B(0) = v

}
= P{T 1

1 = s, J1
1 = l1, T

2
1 > s|Z(0) = i,B(0) = v}P

{
Z1(t) = j1, B

1(t) = u1
∣∣Z(s) =

(
l1
i2

)
,B(s) =

(
0

v2 + s

)}
,

(6.40)

where we used the Markov property of the process (Z,B). Now, by time homogeneity of the process

P
{
Z1(t) = j1, B

1(t) = u1
∣∣Z(s) =

(
l1
i2

)
,B(s) =

(
0

v2 + s

)}
= P

{
Z1(t− s) = j1, B

1(t− s) = u1
∣∣Z(0) =

(
l1
i2

)
,B(0) =

(
0

v2 + s

)}
= bΦ1(

l1
i2

)
;j1

(
(

0
v2 + s

)
;u1, t− s),

(6.41)
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and using the hypothesis A1 and A2

P{T 1
1 = s, J1

1 = l1, T
2
1 > s|Z(0) = i,B(0) = v}

= P{J1
1 = l1|J0 = i}P{T 1

1 = s|X1
1 > v1, J

1
0 = i1}P{X2

1 > s+ v2|X2
1 > v2, J

2
0 = i2}

= p1i,l1

(
H1
i1

(s+ v1)−H1
i1

(s+ v1 − 1)

1−H1
i1

(v1)

)(
1−H2

i2
(s+ v2)

1−H2
i2

(v2)

)
= bq1i,l1(v1, s)

(
1−H2

i2
(s+ v2)

1−H2
i2

(v2)

)
.

(6.42)

Here the last equality is obtained using Eq. (6.25). Finally, by substituting we obtain

E
{
I{T 1

1 =s,J
1
1=l1,T

2
1>s|Z(0)=i,B(0)=v}I{Z1(t)=j1,B1(t)=u1

∣∣Z(s)=
(
l1
i2

)
,B(s)=

(
0

v2 + s

)}∣∣∣∣Z(0) = i,B(0) = v

}
= bq1i,l1(v1, s)

(
1−H2

i2
(s+ v2)

1−H2
i2

(v2)

)
bΦ1(

l1
i2

)
;j1

(
(

0
v2 + s

)
;u1, t− s).

(6.43)

The expectation of the third term on the r.h.s of Eq. (6.36) can be evaluated in the same way. The fourth

term on the r.h.s of Eq. (6.36) is a sum as well, but now the generic summand takes into account for

simultaneous transitions of the components and its conditional expectation is

E
{
I{T 1

1 =s,J
1
1=l1,T

2
1 =s,J

2
1=l2|Z(0)=i,B(0)=v}I{Z1(t)=j1,B1(t)=u1

∣∣Z(s)=
(
l1
l2

)
,B(s)=

(
0
0

)}∣∣∣∣Z(0) = i,B(0) = v

}
= P{T 1

1 = s, J1
1 = l1, T

2
1 = s, J2

1 = l2|Z(0) = i,B(0) = v}P
{
Z1(t) = j1, B

1(t) = u1
∣∣Z(s) =

(
l1
l2

)
,B(s) =

(
0
0

)}
.

(6.44)

Here by time homogeneity we have

P
{
Z1(t) = j1, B

1(t) = u1
∣∣Z(s) =

(
l1
l2

)
,B(s) =

(
0
0

)}
= bΦ1(

l1
l2

)
;j1

(
(
0
0

)
;u1, t− s), (6.45)

and using hypothesis A1 and A2 we can express this probability as

P{T 1
1 = s, J1

1 = l1, T
2
1 = s, J2

1 = l2|Z(0) = i,B(0) = v}

= P{J1
1 = l1|J0 = i}P{J2

1 = l2|J0 = i}P{T 1
1 = s|X1

1 > v1, J
1
0 = i1}P{T 2

1 = s|X2
1 > v2, J

2
0 = i2}

= p1i,l1p
2
i,l2

(
H1
i1

(s+ v1)−H1
i1

(s+ v1 − 1)

1−H1
i1

(v1)

)(
H2
i2

(s+ v2)−H2
i2

(s+ v2 − 1)

1−H2
i2

(v2)

)
= bq1i,l1(v1, s)

bq2i,l2(v2, s) .

(6.46)

By substituting we get

E
{
I{T 1

1 =s,J
1
1=l1,T

2
1 =s,J

2
1=l2|Z(0)=i,B(0)=v}I{Z1(t)=j1,B1(t)=u1

∣∣Z(s)=
(
l1
l2

)
,B(s)=

(
0
0

)}∣∣∣∣Z(0) = i,B(0) = v

}
= bq1i,l1(v1, s)

bq2i,l2(v2, s)
bΦ1(

l1
l2

)
;j1

(
(
0
0

)
;u1, t− s).

(6.47)

The result is obtained by substituting all the terms in Eq. (6.36).
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We can express the evolution equations for the transition probability functions of component 1 and 2 in

a more compact form. To this end, let us define the vector

bΦi;j(v;u, t) =

(
bΦ1

i;j1
(v;u1, t)

bΦ2
i;j2

(v;u2, t)

)
(6.48)

whose components are the transition probability for the two components, and let us introduce the following

notation for the Kronecker symbol on the states

δi,j =

(
δi1,j1
δi2,j2

)
(6.49)

and similarly for the one on backward values. The vector Φ defined in Eq. (6.48), represents the transition

probabilities for all the system. In terms of Φ the recursive formulas (6.34) and (6.35) for the two components

can be represented as

bΦi;j(v;u, t) =

(
1−H1

i1
(t+ v1)

1−H1
i1

(v1)

)(
1−H2

i2
(t+ v2)

1−H2
i2

(v2)

)
δi,jδu,v+1t

+
∑
l1∈E

t∑
s=1

bq1i,l1(v1, s)

(
1−H2

i2
(s+ v2)

1−H2
i2

(v2)

)
bΦ(l1

i2

)
;j
(
(

0
v2 + s

)
;u, t− s)

+
∑
l2∈E

t∑
s=1

bq2i,l2(v2, s)

(
1−H1

i1
(s+ v1)

1−H1
i1

(v1)

)
bΦ(i1

l2

)
;j
(
(
v1 + s

0

)
;u, t− s)

+
∑

l1,l2∈E

t∑
s=1

bq1i,l1(v1, s)
bq2i,l2(v2, s)

bΦ(l1
l2

)
;j
(
(
0
0

)
;u, t− s),

(6.50)

where 1 is the bidimensional vector with the two components equal to one.

Lemma 6.1.28. Let Z be a bivariate semi-Markov process satisfying assumptions A1, A2 and A3. Then,

the one-step transition probability for (Z,B) can be expressed as

P̃i,j(v,w) =



(
1−H1

i1
(1+v1)

1−H1
i1

(v1)

)(
1−H2

i2
(1+v2)

1−H2
i2

(v2)

)
if l = i,w = v + 1

bq1i,j1(v1, 1)

(
1−H2

i2
(1+v2)

1−H2
i2

(v2)

)
if j1 6= i1, j2 = i2,w =

(
0

1 + v2

)
bq2i,j2(v2, 1)

(
1−H1

i1
(1+v1)

1−H1
i1

(v1)

)
if j1 = i1, j2 6= i2,w =

(
1 + v1

0

)
bq1i,j1

bq2i,j2 if j1 6= i1, j2 6= i2,w =
(
0
0

)
0 otherwise

. (6.51)

Proof. The result can be obtained by Proposition 6.1.24 using assumption A3.
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6.2 Conclusions

A discrete time bivariate semi-Markov chain has been defined and a recursive system for the evaluation

of its transition probabilities has been derived. The transition probabilities define the evolution of the chain

over time.

Assuming the independence of the two components waiting times, an evolution equation for the marginal

transition function has been obtained.
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Chapter 7

Bivariate Reliability Model and
Application to Counterparty Credit Risk

The current financial crisis has necessitated further study of correlations in the financial market. In

this regard, the study of the risk of counterparty default, in any financial contract, has become crucial in

determining credit risk. For a complete treatment about credit risk we refer to the classical book by Bielecki

and Rutkowski [5]. Many works have been done trying to describe the counterparty risk in a Credit Default

Swap (CDS) contract, but all these works are based on the Markovian approach to the credit risk, see for

example Crepey et al. [31] or Ching and Ng [23].

Markov chain based models are too restrictive for the description of accurate rating dynamics. Indeed,

they require that the distribution functions of the sojourn times in a rating class, before transition into a

different rating class, should be exponentially or geometrically distributed for continuous and discrete time

models, respectively. In the early 90s, Carty and Fons [22] demonstrated that a Weibull distribution most

closely models the sojourn times in a given rating class.

In an attempt to produce more efficient credit rating models, homogeneous semi-Markov processes were

proposed for the first time as applied to credit ratings in the paper by D’Amico et al. [32]; more recent

results were given in D’Amico et al. [38, 37].

It is important to employ efficient migration models because reliable rating predictions are of interest

for pricing rating sensitive derivatives Vasileiou and Vassiliou [85], D’Amico et al. [33], for the valuation of

portfolios of defaulting bonds, for credit risk management and capital allocation.
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No results are available for counterparty credit risk for semi-Markov credit rating models. Such an exten-

sion is not straightforward, as randomness in the sojourn times and memory effects have to be appropriately

managed.

In this chapter, therefore, we present a novel multivariate semi-Markov model to approach the counter-

party risk in a CDS contract. In Section 7.1 we present a 2-component reliability model and results of strict

relevance to the financial problems. In Section 7.2 we analyze the counterparty credit risk in a CDS contract.

In Section 7.3 we present a numerical example involving real data on credit ratings.

This chapter is based on a submitted paper (G. D’Amico, R. Manca and G. Salvi [40]) currently under

review.

7.1 Bivariate Semi-Markov Reliability Model

Let us consider a system with two components supposed to be credit rating of companies or financial

institutions. The state space E of the system is a collection of the ratings, e.g. it could be the rating classes

of S&P or Moody’s.

Let us partition the state space E in two parts respectively U and D, that is

E = U
⋃
D, such that U

⋂
D = ∅ . (7.1)

The subset U contains all good or alive states, when the components of the system are in this state they are

regarded as well working. Conversely, the subset D contains all bad or dead states, when the components

are in these state they are not well performing.

Assumption 7.1.1. Let us assume that

B1 All states in D are absorbing for the components.

It is a common assumption to consider the subset D as an absorbent class, in what follows we will make

this assumption as well.

The assumption B1 is quite common in survival analysis but it can be relaxed easily and it is possible to

execute the following computation in the general case.



7.1 Bivariate Semi-Markov Reliability Model 121

The main issue of reliability models is the study of survival probability, that is the probability that the

system will not default in a given time interval. This probability as a function of time is called reliability

function, conditioning on the present state it is defined by

Rsysi1i2
((v1, v1); t1, t2) := P(Z1(t1) ∈ U,Z2(t2) ∈ U | Z(0) = i,B(0) = v). (7.2)

The conditional reliability defined above gives the probability that after t1 and t2 periods the first and second

component, respectively, have not defaulted given the present state.

The following result gives a recursive formula for the conditional reliability of the system.

Theorem 7.1.2. Suppose that the system is composed of two components, i.e. γ = 2, and such that

hypotheses A1, A2, A3 and B1 hold true. Then, for all i ∈ U2, t, s ∈ N, and v ∈ N2 we have

Rsysi1i2
((v1, v2); s, t) =

∑
l1,l2∈U

∑
w1,w2∈N

Rsysl1l2
((w1, w2); s− 1, t− 1)P̃i,l(v,w) , (7.3)

for s, t > 1 and where P̃ is given by

P̃i,l(v,w) =



(
1−H1

i1
(1+v1)

1−H1
i1

(v1)

)(
1−H2

i2
(1+v2)

1−H2
i2

(v2)

)
if l = i,w = v + 1

bq1i,l1(v1, 1)

(
1−H2

i2
(1+v2)

1−H2
i2

(v2)

)
if l1 6= i1, l2 = i2,w =

(
0

1 + v2

)
bq2i,l2(v2, 1)

(
1−H1

i1
(1+v1)

1−H1
i1

(v1)

)
if l1 = i1, l2 6= i2,w =

(
1 + v1

0

)
bq1i,l1(v1, 1)bq2i,l2(v2, 1) if l1 6= i1, l2 6= i2,w =

(
0
0

)
0 otherwise

. (7.4)

Proof. The reliability function is the probability of the event {Z1(s) ∈ U,Z2(t) ∈ U}, varying s, t ∈ N, given

the initial state Z(0) = i ∈ U2 with backward recurrence time B(0) = v. Conditioning on the first step this

probability can be written as

Rsysi1i2
((v1, v2); s, t) = P(Z1(s) ∈ U,Z2(t) ∈ U | Z(0) = i,B(0) = v)

=
∑

l1,l2∈U

∑
w1,w2∈N

P(Z1(s) ∈ U,Z2(t) ∈ U,Z(1) = l,B(1) = w | Z(0) = i,B(0) = v) ,
(7.5)

using the Markov property of (Z,B) we have

Rsysi1i2
((v1, v2); s, t) =

∑
l1,l2∈U

∑
w1,w2∈N

P(Z1(s) ∈ U,Z2(t) ∈ U | Z(1) = l,B(1) = w)

× P(Z(1) = l,B(1) = w | Z(0) = i,B(0) = v) .

(7.6)

Using the time homogeneity, we obtain

Rsysi1i2
((v1, v2); s, t) =

∑
l1,l2∈U

∑
w1,w2∈N

Rsysl1l2
((w1, w2); s− 1, t− 1)P̃i,l(v,w) , (7.7)
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where P̃ is the one-step transition probability of (Z,B) obtained in Lemma 6.1.28. The proof is complete.

Remark 7.1.3. If we consider a model where the two components are supposed to be independent, then, we

are able to evaluate the reliability of the single component credit rating. The credit rating, in the independent

case, is described by a standard univariate semi-Markov chain (see D’Amico et al. [33]) and the reliability

functions of the component is

indR1
i1(v1, t) := P(Z1(t) ∈ U | Z1(0) = i1, B

1(0) = v1)

indR2
i2(v2, t) := P(Z2(t) ∈ U | Z2(0) = i2, B

2(0) = v2) ,

(7.8)

where the left apexes ind stand for independent case, to stress the difference with the bivariate case. If the

two components are independent, the product of these two reliabilities should be equal to the reliability for

the system evaluated in Theorem 7.1.2. Indeed in the independent case the joint probability simple factorize

in the product of the probabilities. Then, any deviation of the ratio

Rsysi1i2
((v1, v2); s, t)

indR1
i1

(v1, s)indR2
i2

(v2, t)
(7.9)

by one is an indication of the correlation between the two components.

In many applications at the present time we could only know that the system is in an Up state and it

has a given starting state distribution on the state space U2. In this case it is more natural to define the

reliability of the system as

Rsys(s, t) :=
∑
i∈U2

∑
v1,v2∈N

ξi(v1, v2)Rsysi1i2
((v1, v2); s, t) for t ∈ N , (7.10)

where ξ = (ξi(v1, v2))i∈U2;v1,v2∈N is a starting distribution on possible states and backward values.

In what follows, it might be useful to have the probability that a given component is still alive after a

given time interval. Then, let us define the conditional marginal reliability functions for a single component

as
R1
i1,i2

((v1, v2); t) := P(Z1(t) ∈ U | Z(0) = i,B(0) = v)

R2
i1,i2((v1, v2); t) := P(Z2(t) ∈ U | Z(0) = i,B(0) = v).

(7.11)

The next result expresses the link between the marginal reliabilities and the transition function of the

bivariate semi-Markov chain.
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Proposition 7.1.4. The marginal reliabilities can be expressed, for all i ∈ U2, v ∈ N2 and t ∈ N, as

Rαi1,i2((v1, v2); t) =
∑
uα≥0

∑
jα∈U

bΦαi;jα(v, uα; t) =
∑
jα∈U

bΦαi;jα(v, ·; t) , (7.12)

for α ∈ {1, 2}.

Proof. The result follows directly from the definitions of marginal reliability and transition function.

We can define, even for the marginal case, a reliability function not conditioned to any particular initial

state that is

Rα(t) :=
∑
i∈U2

∑
v1,v2∈N

ξi(v1, v2)Rαi1i2((v1, v2); t) for t ∈ N , (7.13)

for α = 1, 2 and where ξ is a distribution on the state space and backward values.

7.2 Counterparty Credit Risk in a CDS Contract

In the financial market all subjects are exposed to the default risk. Therefore, in any financial contract

we have to take the risk of default of our counterpart into account. Counterparty credit risk is, in general,

‘the risk that a counterpart of a financial contract will default prior to the expiration of the contract and

will not make all the payments required by the contract’ (cf. Pykhtin and Zhu [73]).

We would like to study the counterparty credit risk in a Credit Default Swap (CDS) contract. In this work

we would like to emphasize the difference between the CDS contract with and without consideration of the

counterparty risk: we will call these two cases risky CDS and risk free CDS, respectively (Crépey et al. [31]).

Let us consider a firm C, supposed to be defaultable, emitting an obligation (or bond) on one money unit at

time 0 with maturity time T . Let us also consider a bondholder A (or protection buyer), who is supposed

to be risk free in all what follows. The possible financial scenarios are

• If C has not been defaulted until T, then it is able to pay the money due to bondholder A.

• In case of C’s default before, or at, the maturity date T , it will be able only to pay a fraction (recovery

rate ρC) of the face value of the obligation to A.
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For these reasons, bondholder A is looking for protection against the loss that would occur in the case of

C’s default. Let us consider a third financial subject that we will generically call protection seller B. A risk

free CDS is a contract obligates A (protection buyer) to pay a fee to B (protection seller who is supposed to

be risk free) in exchange for protection against the default of the reference credit firm C. The cash flows of

a risk free CDS are

• A pays B a stream of premia with spread K, from the initial date until the occurrence of the default

event or the maturity date T .

• In case of default of C, B has to cover the loss of A. Then B has to pay 1− ρC unit of money to A.

The value of the spread is evaluated in order to guarantee that the contract has a value of zero at the

inception time t0. We assume that the payment of B to A is made at the same time as the default event.

The cash amount should be discounted in order to be comparable, for this reason we introduce a structure

of discount factors (βt)t∈N. To define β we introduce the deterministic interest rates (rt)t∈N and then we

can define

βt :=

{
1 if t = 0∏t

h=1(1 + rh)−1 if t > 0
(7.14)

Let τC be the time of default for the credit reference firm C. From the above discussion, we can directly

write an expression for the cash flows and price process of the risk free CDS contract. The In Cash Flows

process from the perspective of the bondholder A in the risk free CDS is given by

βτC (1− ρC)I{t0<τC≤T}, (7.15)

where β is a discount factor. The Out Cash Flows process is given by

−K
T∑

s=t0

βsI{s<τC}. (7.16)

Then, the discounted value of the risk free CDS with maturity T at time t > t0 is

βtpT (t) = −K
T∑
s=t

βsI{s<τC} + βτC (1− ρC)I{t<τC≤T} (7.17)

and its price process is given by PT (t) = Et[pT (t)]. The subscript t, hereafter indicates the information that,

at time t, the process is still in one of the Up states.
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Remark 7.2.1. The price of a risk free CDS can be evaluated with a single component reliability model,

where the rating of the only defaultable subject is modeled via a standard univariate semi-Markov process

(see for example D’Amico et al. [33]).

A risky CDS is a contract which obligates A (protection buyer) to pay a fee to B (defaultable protection

seller) in exchange for protection against the default of the reference credit firm C. The cash flows of a risky

CDS are

• A pays to B a stream of premia with spread K, from the initial date until the occurrence of the default

event or the maturity date T .

• In case of default of C, if B has not defaulted, B has to cover the loss of A. Then B has to pay 1− ρC

unit of money to A.

• In case of default of B, if C has not defaulted, the contract is stopped with a Close-Out Cash Flow

(cf. Crépey et al. [31]). In this work we assume that the two parties agreed on a termination of the

contract with a terminal cash flow paid to A, positive or negative, depending on the value of the risk

free CDS computed at the time of default (cf. Brigo et al. [14]).

• If B defaults at the same time as the firm C, B will be only able to pay to A a fraction (recovery rate

ρB) of the loss of A, namely ρB(1− ρC) unit of money.

The value of the spread is evaluated in order to guarantee, that the contract has zero value at the inception

time t0. We assume that the payment of B to A is made at the same time as the default event(s). The

possible loss of A for the joint default event is an effect due to the counterparty risk.

Let us introduce τB , the time of default for the protection seller B. The In Cash Flows process for the

risky CDS is given by

βτC (1− ρC)I{t0<τC≤T}[I{τC<τB} + ρBI{τC=τB≤T}] + βτB I{t0<τB≤(T∧τC)}ρBP
+
T (τB) (7.18)
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here β is a discount factor and with P+
· we denote the positive part of the price process for the risk free

CDS. The Out Cash Flows process is given by

−K
T∑

s=t0

βsI{s<(τC∧τB)} − βτB I{t0<τB≤(T∧τC)}P
−
T (τB) (7.19)

where P−· stands for the negative part of the price process for the risk free CDS. Then, the discounted value

of the risky CDS with maturity T at time t > t0 is

βtπT (t) = −K
T∑
s=t

βsI{s<(τC∧τB)} + βτC (1− ρC)I{t<τC≤T}[I{τC<τB} +

+ ρBI{τC=τB≤T}] + βτB I{t<τB≤(T∧τC)}(ρBP
+
T (τB)− P−T (τB)), (7.20)

and the price process for the risky CDS is ΠT (t) = Et[πT (t)]. Here and in the following the subscript t

denotes the information that the process is still in an Up state at time t.

7.2.1 Pricing Risky CDS and CVA Evaluation

In this section we apply the 2-component reliability model to the study of the counterpart risk in a CDS

contract. In particular our goal is to price a risky CDS contract and to derive an expression for the credit

value adjustment (CVA) which can be seen as a measure of the counterparty credit risk.

In order to price a risky CDS we need to evaluate the expected value of the indicator functions in (7.20) and

then we first have to evaluate the price of a risk free CDS.

To evaluate a risk free CDS we consider a reliability model where the credit rating evolution of the firm

C is supposed to be independent from B. We will denote the reliability in this independent case by indRC ,

cf. Remark 7.1.3.

Proposition 7.2.2. The price of a risk free CDS under the real world probability measure is

βtPT (t) = −K
+∞∑
h=t+1

Pt(τC = h)

T∧h∑
s=t

βs +

T∑
h=t+1

βh(1− ρC)Pt(τC = h) , (7.21)

and for any h > t

Pt(τC = h) = indRC(h− 1)− indRC(h) , (7.22)

where the subscript t denotes the information that the process is still in an Up state.
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Proof. The result is a direct consequence of formula (7.17) and

Pt(τC = h) = Pt(τC > h− 1)− Pt(τC > h) = indRC(h− 1)− indRC(h) . (7.23)

The following two results concern the evaluation of the risky CDS price.

Proposition 7.2.3. For any h, s ∈ N the joint distribution of the stopping times has the following charac-

terization in terms of reliabilities

Pt(τC = h, τB = h) = Rsys(h− 1, h− 1)−Rsys(h, h− 1)−Rsys(h− 1, h) +Rsys(h, h)

Pt(τC = h, τB = h+ s) = Rsys(h− 1, h+ s− 1)−Rsys(h, h+ s− 1)−Rsys(h− 1, h+ s) +Rsys(h, h+ s)

Pt(τC = h+ s, τB = h) = Rsys(h+ s− 1, h− 1)−Rsys(h+ s, h− 1)−Rsys(h+ s− 1, h) +Rsys(h+ s, h) .

Proof. The result is composed of three relations, the former can be obtained by

Pt(τC = h, τB = h) = Pt(τC > h− 1, τB > h− 1)− Pt(τC > h, τB > h− 1)

− Pt(τC > h− 1, τB > h) + Pt(τC > h, τB > h)

= Rsys(h− 1, h− 1)−Rsys(h, h− 1)−Rsys(h− 1, h) +Rsys(h, h) .

The second and third relations in the statement are similar, we will show only the second one. The third

can be obtained in the same way. To this end, we note that the second can be expressed as

Pt(τC = h, τB = h+ s) = Pt(τC > h− 1, τB > h+ s− 1)− Pt(τC > h, τB > h+ s− 1)

− Pt(τC > h− 1, τB > h+ s) + Pt(τC > h, τB > h+ s)

= Rsys(h− 1, h+ s− 1)−Rsys(h, h+ s− 1)−Rsys(h− 1, h+ s) +Rsys(h, h+ s) .

This concludes the proof.

Remark 7.2.4. The joint distribution of the stopping times has been fully characterized by reliability func-

tions.

Proposition 7.2.5. The price of a risky CDS under the real world probability measure is

βtΠT (t) = −K
+∞∑
h=t+1

Pt(τ = h)

T∧h∑
s=t

βs + (1− ρC)

T∑
hC=t+1

βhC

[
+∞∑
hB=1

Pt(τC = hC , τB = hC + hB)

+ ρBPt(τC = hC , τB = hC)

]
+

T∑
hB=t+1

+∞∑
hC=1

Pt(τC = hB + hC , τB = hB)βhB
[
ρBP

+
hB
− P−hB

] (7.24)
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where τ = τC ∧ τB is the minimum of the stopping times and then

Pt(τ = h) =

∞∑
hB=1

Pt(τC = h, τB = h+ hB) +

∞∑
hC=1

Pt(τC = h+ hC , τB = h) . (7.25)

Proof. The result is a direct consequence of formula (7.20) and Proposition 7.2.3

Remark 7.2.6. The difference between the price of a risky CDS and the price of a risk-free CDS has a

particular importance: it is a measure of the loss of value a CDS contract undergoes due to the counterpart

credit risk. This difference is called credit value adjustment (CVA). The credit value adjustment process

(CV At) is defined by

CV At = PT (t)−ΠT (t) for t < τB . (7.26)

It measures the loss of value of the CDS contract. We notice that, in our model, the CVA process can be

completely expressed in term of the reliabilities.

7.3 A numerical example

In this section, a numerical example able to illustrate the previous results is presented. The model is

applied to a sample from the historical Standard & Poor’s database, which has been managed in order to

construct the input for our model directly from real data.

Data refer to entity ratings history, instruments ratings history and issue/maturity ratings history for a

sample of Standard & Poor’s rated entity, instruments stock or bonds sold by an entity at a particular time

and issue/maturity for the Global Issuers and Structured Finance instruments that Standard & Poor’s has

rated since 1982 to 2007, respectively.

The rating evaluation, done by the rating agency, indicates the degree of reliability of a bond issued by a

financial subject.

In the case of the rating agency Standard & Poors, there are eight different classes of rating expressing

the creditworthiness of the rated firm. The ratings are listed to form the following set of states:

E = {AAA,AA,A,BBB,BB,B,CCC,D}.
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The creditworthiness is highest for the rating AAA, assigned to firm extremely reliable with regard to

financial obligations, and decreases towards the rating D, which expresses the occurrence of payment de-

fault on some financial obligations. A table showing the financial meaning of the Standard & Poor’s rating

categories is reported in the book by Bluhm et al. [11].

In this paper we apply the model in a simplified form: we consider a three state model. The first state

represents the investment grade (INV ), it includes the more reliable rating classes {AAA,AA,A,BBB}. The

second state represents the speculative grade (SPE), it includes the less reliable rating classes {BB,B,CCC}.

The third is the default state (D), it includes the rating class {D}. The state space of the system is

E = {INV, SPE,D}.

Moreover, following the classification of Standard & Poor’s, we divide the rating series into two sectors:

finance and corporate. Thus, we consider a system of two components, each one corresponds to a given

sector: the first component for the finance sector (B) and the second component for the corporate sector

(C).

In order to implement the model, we estimate the following distributions from the data:

• The transition matrices of the embedded Markov chains Pα, α ∈ {B,C}.

• The unconditional waiting times cumulative distribution function Hα(t), α ∈ {B,C}.

The matrix Pα gives the transition probability of going from a system rating class i ∈ E2 to the rating

class j ∈ E of component α with next transition. We report in Table 1(a) and Table 1(b) the transition

matrices of the embedded Markov chain for finance and corporate, respectively. We notice that transition

probabilities of finance change as a function of the corporate state and conversely. This is an indication of

the dependence between the sectors rating.

In Figure 7.1(a) and Figure 7.1(b), the unconditional waiting times cumulative distribution function for

finance and corporate are shown as a function of time (years). In both cases, the waiting times CDF for the

speculative rating class is higher than the corresponding for investment rating class. Intuitively this reflects

the fact that investment rating classes are more stable than speculative ones.

From knowledge of the transition probabilities of the embedded Markov chain and of the unconditional
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(a) Transition Matrix for Finance (B)

States of B
C B INV SPE D

INV INV 0.885 0.113 0.002
INV SPE 0.235 0.397 0.368
INV D 0.000 0.000 1.000
SPE INV 0.899 0.100 0.001
SPE SPE 0.218 0.410 0.372
SPE D 0.000 0.000 1.000
D INV 0.913 0.086 0.001
D SPE 0.172 0.424 0.404
D D 0.000 0.000 1.000

(b) Transition Matrix for Corporate (C)

States of C
B C INV SPE D

INV INV 0.880 0.118 0.002
INV SPE 0.062 0.687 0.251
INV D 0.000 0.000 1.000
SPE INV 0.882 0.116 0.002
SPE SPE 0.068 0.692 0.240
SPE D 0.000 0.000 1.000
D INV 0.881 0.117 0.002
D SPE 0.071 0.678 0.251
D D 0.000 0.000 1.000

Table 7.1: Marginal Transition Matrices

(a) CDF Corporate

(b) CDF Insurance

Figure 7.1: Unconditional Waiting Times Cumulative Distribution Functions
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waiting times cumulative distribution function, we can recover the semi-Markov kernel and, through Theorem

6.1.27 and Theorem 7.1.2, we can evaluate the transition probabilities of the system and the most important

indicator, which is the reliability function of the system.

Figure 7.2: Reliabilities for speculative (SPE) state as a function of time.

In Figure 7.2 the system reliability for state (ZC , ZB) = (SPE, SPE) and backwards null is shown

as a function of time (years). In the same figure, we show the reliabilities of Corporate (indRCSPE(0, t))

and Finance (indRBSPE(0, t)) in the independent case (cf. Remark 7.1.3). Moreover in order to underline

the dependence between the components, the product indRCSPE(0, t)indRBSPE(0, t) (Product in the figure) is

reported as a comparison with sysRSPE,SPE((0, 0); t, t) (System in the figure) (cf. Eq. 7.9). As it is possible

to see from the figure, the system’s reliability with non-independent components evaluated with our bivariate

semi-Markov chain model differs markedly form the independent case. This result suggests that adoption of

the bivariate model enables capturing the dependence between the counter parties and, as a consequence,

the risk of a counterparty default.

7.4 Conclusions

This paper proposes a multivariate semi-Markov chain model in discrete time. The multicomponent

system is analysed in the transient case by implementing methods that compute the transition probabilities
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and reliability functions.

The results are applied to the evaluation of the risky credit default swap contracts and they allow the

attainment of an explicit formula for the price of a risky CDS and for the credit value adjustment process.

Possible avenues for future developments of our model include:

a) application to real data on credit rating dynamics;

b) asymptotic properties of the multivariate semi-Markov model;

c) construction of a multivariate reward model for the credit spread computation.



Chapter 8

Bivariate Rewards Model and
Application to Credit Spread Evaluation

In this chapter we define a bivariate rewards model and we apply it to the term structures and credit

spread evaluation.

The chapter is organized as follows. The first section is devoted to the definition of bivariate reward

process and evaluation of its moments. In the second section we derive an expression for the credit spread

of two debtors.

8.1 Bivariate Reward Model

The main goal of this section is to define a bivariate semi-Markov reward model.

As well known, the rewards can be classified in two main classes: the permanence rewards where the

payments are associated with occupancy of a given state and the instant rewards where the payments are

associated to the transitions between two states.

The rewards are paid in different moments so we have to consider the discount factor β defined in Eq.

(7.14).

Without loss of generality, being our system homogeneous in time by assumption, we can take t = 0

as the initial time. Let ξαi (v, 0, t) be the accumulated discounted reward for the component α = 1, 2 up to

the time t given that at the initial time, the instant 0, the system is in the state i = (i1, i2) with backward

recurrence time v = (v1, v2). We assume that ξαi (v, 0) = 0 so no reward is paid at the initial time and every
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payment is done at the end of a period. Let ψαi (τ, t) be the permanence reward of the component α in the

state i = (i1, i2), paid at time t, given that τ is the present life time of α. Let γαi,jα(t) be the instant reward

collected by the component α when it makes a transition at time t to the state jα given that the previous

state of the system was i = (i1, i2).

The accumulated reward process for the component 1 up to time t can be expressed as

ξ1(i1
i2

) ((v1
v2

)
, 0, t

) d
= I{T 1
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similarly for the component 2 we have
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)
, s, t
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(8.2)

Formulas (8.1) and (8.2) give a recursive representation of the bidimensional accumulated reward process

(ξ1(t), ξ2(t)). The expression of the rewards is divided in four parts. The first part corresponds to the

rewards accumulated when no jump occurs up to the time t. The second term is the contributions due to the

trajectories where component 1 makes a transition before 2. The third conversely consists of the trajectories

where the component 2 makes a transition before 1. The fourth term take into account for the rewards

accumulated when the two components make a transition in the same time.

Let us define the discounted accumulated permanence reward for component α as

Ψα
i (v, t) =

t∑
s=1

βsψ
α(
i1
i2

)(vα + s, s) (8.3)
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and let us define

Γαi,jα(v, t) = Ψα
i (v, t) + βtγ

α(
i1
i2

)
,jα

(t) (8.4)

that is the discounted accumulated reward of component α for permanence of the system up to time t in

state i plus the contribution for the transition in t of component α in the state jα. Using these functions

the accumulated reward up to time t for component 1 is given by

ξ1(i1
i2

) ((v1
v2

)
, 0, t

) d
= I{T 1

1>t,T
2
1>t}Ψ

1
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1
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2
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[
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[
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)
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)]
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1
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2
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2
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[
Γ1
i,j1(v, s) + βsξ

1(
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) ((0
0

)
, s, t

)]
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(8.5)

and similarly for component 2. Let us denote by V the expected value of the accumulated reward that is

1V(i1
i2

) ((v1
v2

)
, t− s

)
:= E

{
ξ1(i1
i2

) ((v1
v2

)
, s, t
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}
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)
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)
= E

{
ξ2(i1
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) ((v1
v2

)
, s, t

) ∣∣∣∣∣Z(s) = i , B(s) = v

} (8.6)

In order to evaluate the expected value of the accumulated reward we have to evaluate the expectations of all

the terms in the above representations of ξ. The next result gives us a recursive formula for the evaluation

of these expected values.

Proposition 8.1.1. The expected discount accumulated reward for component 1, 1V(i1
i2

) ((v1
v2

)
, t
)
, satisfies

the following recursive equations, for all v ∈ N2, t ∈ N and i ∈ E2,
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and similarly for component 2,
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(8.8)

Proof. In order to obtain the result we have to evaluate the expected value of the discounted reward process

for both components. We will evaluate only the expectation of ξ1, with similar calculations we can obtain

the expected value of ξ2.

If we consider the representation of ξ1 in (8.5) we have to evaluate the expected value of the four terms on

the r.h.s., to this end we notice that the expectations of the indicator functions have been already calculated

in the proof of Theorem 6.1.27. Then, the expectation of the first term given the present state is

E{I{T 1
1>t,T

2
1>t}Ψ

1
i (v, t)|Z(0) = i , B(0) = v}

= Ψ1
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)(
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(v2)

)
.

(8.9)

The second and third terms on the r.h.s of Eq. (8.5) have similar structure, therefore we consider only one

of them. For instance, the expectation of the second term is

E
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(8.10)

where in the last equality we use the properties of conditional expectation and the time homogeneity of the

process

1V(j1
i2

) (( 0
v2 + s

)
, t− s

)
= E

{
ξ1(j1

i2

) (( 0
v2 + s

)
, s, t

) ∣∣∣∣∣Z(s) =
(
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)
,B(s) =

(
0

v2 + s

)}
. (8.11)
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The expectation of the indicator function on the last term of Eq. (8.10) from Theorem 6.1.27 is given by

E
{
I{T 1

1 =s,J
1
1=j1,T

2
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}
=

(
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)
bq1i,j1(v1, s) . (8.12)

Then the expectation of the second term on the r.h.s of Eq. (8.5) is

E
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Finally for the fourth term on the r.h.s of Eq. (8.5) can be obtained again from Theorem 6.1.27 and we get

E
{
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The result is obtained by substituting all this terms.

Remark 8.1.2. In order to evaluate αV , for α = 1, 2, at time t we only need to know the value of αV for

all the times before t, then the previous equations can be solved by iteration given that at time 0 the rewards

are null.

Let us consider now the second moments. First of all we evaluate the product of the rewards of the two

components, i.e. the second mixed moments. Using the same representation we obtain
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Let us denote by

12V 2(
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}
, (8.16)

here the right upper script 2 indicates the second moment and the left upper script 12 denotes the mixed

moments.
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Using the same techniques of the first moment, we can obtain the present expected value which is formalized

in the next result.

Proposition 8.1.3. The second mixed moment for the discount accumulated reward of the system, 12V 2(
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,
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Proof. The evaluation can be done following the same steps of the first moments.

The second moment of component 1 and 2 can be obtained directly by products of the first moments,

explicitly we have(
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for the square reward of 1 and similar for 2. Let us denote by
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(8.19)

here the right upper scripts indicate the second moment and the left upper scripts denotes the component.
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Proposition 8.1.4. The second moments for the discount accumulated reward of the system, 1V 2(
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and for component 2
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Remark 8.1.5. The same technique can be applied in order to obtain moment of higher order, we omit here

details for simplicity.

8.2 Rating Migration Model for Term Structures and Credit Spread

In this section we develop a model for the credit spread value between two debtors, i.e. two credit rating

endowed financial subjects or companies or national governments.

The rating evaluation, done by the rating agency, gives a reliability’s degree of a bond issued by a financial

subject.

In the case of the rating agency Standard & Poors there are 8 different classes of rating expressing the
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creditworthiness of the rated firm. The ratings are listed to form the following set of states:

E = {AAA,AA,A,BBB,BB,B,CCC,D}.

The evaluation of the risk structure of interest rates is one of the most important problems in mathematical

finance. Fundamentally it consists in trying to explain yield spread between the risk free interest rate and

the interest rates of corporate bonds. The rating evaluation of the firm issuing the bond is one of the main

reasons for the existence of credit spread. In the paper by D’Amico et al. [37] it was presented a model

that can follow the mean evolution of the yield spread in the future by considering rating evaluation as

the determinant of credit spreads. That paper assumed that the rating evolution of the credit rating was

described by a semi-Markov process and the credit spreads were considered as permanence rewards attached

to the rating class. In this section we propose a more complete and general approach to this problem. As

we know from the last financial crisis, the credit spread of one financial subject depends also on the financial

health (rating class) of its counterpart, then it is very important to consider the spread as a reward structure

for a bivariate rating model.

Let us consider two debtors whose credit ratings are supposed to migrate via a bivariate reliability semi-

Markov model. The expected total credit spreads the debtor 1 will accumulate in a time t, under the

assumption that both of them will not make a default, are
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(8.22)

where U is the subset of all the good states. Similarly for the debtor 2 we have
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Remark 8.2.1. 1V and 2V represent the credit spread accumulated by debtor 1 and 2, respectively. Thus,

they do not contain the discount factor.

The information given by the reward processes allows for the construction of the term structures of

forward and spot interest rates and discount factors.

Let αcs(i1
i2
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)
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)
be the expected basis points the debtor α should pay at time t given the present

state of the system are defined for t > 1 by
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The expected interest rate i for the debtor α is composed by two parts: the risk free rate r and the

contribution due to the rating class occupancy αcs
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In other words αi(i1
i2

) ((v1
v2

)
; t− 1, t

)
represents the expected interest rate the debtor α will pay between t− 1

and t given the present rating class occupancy of the system.

The forward discount factors for the debtor α are obtained by the interest rate using the standard

relations
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Using the forward discount factors we can obtain the spot discount factors for debtor α as
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The credit default spread between the debtors is defined as the difference between their expected interest

rate
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12CS represents the expected spread the debtor 1 will pay with respect to debtor 2 due to the credit risk,

given the present rating class occupancy.
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