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Introduction

Choice behavior is a theme of great interest in several research areas, such as social
and psychological sciences, but its investigation usually involves variables which
cannot be directly observed and measured in an objective and precise manner. For
this reason the evidence in choice experiments is often collected in ordinal form,
that is, in terms of ranking data. More specifically, ranked data arise in those
studies where a sample of N people is presented a finite set of K alternatives, called
items, and is asked to rank them according to a certain criterion, typically personal
preferences or attitudes. Thus, a generic ranking is the result of a comparative
judgment on the competing alternatives expressed in the form of order relation.
Interest in ranked data analysis is motivated, for example, by marketing and political
surveys, where items could be consumer goods, political candidates or goals, but
also by psychological and behavioral studies consisting, for instance, in the ordering
of words/topics according to the perceived association with a reference subject.
However, ranking data are not limited to the inquiry of preferences or attitudes of
a target population. Another typical context that naturally gives rise to rankings is
sports, such as national soccer championships, as well as horse or car races, where
players or teams compete and the final outcome is a ranking among competitors.

Ranked data analysis has been addressed from numerous perspectives, as re-
vealed by a wide and consolidated literature on this topic. This thesis focuses on
the probabilistic modeling of ranking data and, after reviewing the main contribu-
tions on the construction of statistical models for random rankings, develops some
original extensions of a popular parametric distribution.

The thesis is organized as follows. Chapter 1 formalizes notation and provides a
structured overview of several methodological strategies adopted in building para-
metric modeling for rankings. The review describes the basic approaches developed
in the literature to conceive non-uniform models, which can be classified in four main
categories: (i) order statistics models, (ii) models based on paired comparisons, (iii)
distance-based models and (iv) stagewise models. We will then concentrate on a
parametric distribution belonging to the last class, known as Plackett-Luce model
(PL). Probability distributions based on a sequential construction of the ranking,
such as the PL, implicitly suppose that preferences are expressed with the canonical
forward procedure, meaning that the judge proceeds from the elicitation of her best
choice up to the worst one. In spite of various attempts to improve the description
of ranked data, yet the rank assignment order has not, to our knowledge, received
explicit consideration in any model setup process, although any other order for the
rank assignment process is admissible and potentially leads to different results. This
aspect has inspired us to extend the PL relaxing the conventional forward assump-
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tion and representing the order of the rank assignment scheme with an additional
free parameter in the model, referred to as reference order. The novel generaliza-
tion, named Extended Plackett-Luce model (EPL), is introduced in the last part of
Chapter 1. A characterizing property of the ordinary PL is employed to formally
prove the actual greater flexibility of the proposal.

Chapter 2 is completely dedicated to the estimation procedures for ranking mod-
els within the maximum likelihood inferential framework. We describe how to solve
the inferential issue of maximizing the likelihood function for the novel EPL over a
mixed-type parameter space, due to the discreteness of the reference order, thanks
to the adaptation and combination of different estimation devices for ranking mod-
els. For the continuous parameters we apply the Minorization/Maximization (MM)
algorithm, which is an iterative optimization technique based on the replacement of
the original objective function with a more tractable minorizing surrogate function.
For the discrete parameter, instead, we implement a local search, constraining the
optimization step within a fixed distance from the current estimate of the reference
order. To evaluate the sensitivity of the algorithm w.r.t. the choice of a particular
distance in the local search step, we focus on two frequently used metrics for rank-
ings and compare the corresponding estimation performances. Moreover, in order
to address the common situation of unobserved sample heterogeneity and increase
the applicability of the EPL, we also consider the natural extension of the novel
model in the mixture model setting. In this framework the likelihood maximization
requires the derivation of a hybrid procedure, called EMM algorithm, which inte-
grates the standard Expectation Maximization algorithm with the aforementioned
MM procedure.

In Chapter 3 we verify the practical utility of the EPL with an application to the
real LFPD data set. This data set comes from a bioassay experiment and collects
the binding measurements of human blood exposed to 11 partially overlapping frag-
ments of the HER2 oncoprotein. Raw quantitative outcomes have been obtained
from three different disease groups but, for reasons due to the numerical instability
of measurements and to the absence of universally accepted methods of rescaling
the original data, we are interested in verifying the possible usefulness of the un-
derlying ordinal information as a more robust and unambiguously defined evidence
of sample heterogeneity. Specifically, we address the heterogeneous nature of the
experimental units via model-based clustering and compare the performance of the
mixture model using the new distribution as mixture components with alternative
mixture models for random rankings.

The successful application of the EPL to bioassay data encouraged us to explore
further PL generalizations in different directions. These ideas include the possibility
to combine the novel EPL with the popular Benter model (BM). The BM extends
the PL with the introduction of additional parameters that account for variable
selection accuracy over the stages of the ranking process. As described in Chap-
ter 4, the EPL and the BM move from substantially different but complementary
attributes of the ranking procedure and their merging can add further flexibility to
the PL. We name this second proposal Benterized Extended Plackett-Luce model and
detail how to perform maximum likelihood estimation for both the homogeneous
population case and the finite mixture framework.

As final contribution, Chapter 5 illustrates the extension to the finite mixture
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context of a Bayesian device for PL inference recently introduced in the litera-
ture. We describe an efficient way to incorporate the latent group structure in the
data augmentation approach and how to interpret previous maximum likelihood
procedures as special instances of the proposed Bayesian analysis. We then test
the computational effectiveness and efficiency of both the maximum a posteriori
estimation and the GS algorithm under multiple simulation scenarios focusing, in
particular, on the identifiability problems that can affect the results of the MCMC
technique. In this regard, we discuss the application of several relabeling algorithms
to the MCMC samples, aimed at solving the label-switching issue, and examine the
resulting posterior inference. We finally illustrate the Bayesian inference for the
PL mixture with an application to a real data set concerning taste preferences of
different hamburger cooking styles.

The thesis ends with concluding remarks and proposals for future developments
involving, in particular, the idea to implement also the EPL mixture within the
Bayesian paradigm.
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Chapter 1

Statistical models for ranked
data

1.1 Notation and basic definitions

Before reviewing the main approaches for the probabilistic modeling of ranked data,
it is convenient to fix some notation. Formally, a full (or complete) ranking π is a
bijective mapping of a finite set I = {1, . . . ,K} of labeled items into a set of ranks
R = {1, . . . ,K}, that is

π : I → R,

resulting from the attribution of a rank to each item. The whole bijective mapping
can be represented in terms of an ordered K-tuple π = (π(1), . . . , π(K)), where po-
sitions of the components refer to items and entries give the corresponding assigned
ranks. In other words, π(i) must be read as the rank attributed to the i-th item.
The underlying convention is that if π(i) < π(i′), then item i is ranked higher than
item i′, and hence preferred to it.

In the literature, it is common to distinguish between a full and a partial (or
incomplete) ranking where, in the latter case, the rank assignment process is not
completely carried out. This happens, for instance, when a judge expresses only
her first t preferences out of K items (t < K), producing the so-called top-t partial
ranking. Top-t rankings are just one type in the wide variety of incomplete data
that can emerge from a ranking experiment (see Lebanon & Mao (2008)) and the
situation where both full and partial rankings are involved in the statistical analysis
is usually referred to as heterogeneous ranked data analysis. In the past it was a
usual practice to discard incomplete rankings from the analysis, with the conse-
quent sample size reduction and loss of inferential accuracy. In the last decades
several proposals to extend the standard ranking models have appeared in the liter-
ature and a substantial evidence gain resulting from the treatment of heterogeneous
ranked data has been emphasized. In the first part of the thesis we suppose that
the bijection π is completely observed, so that partial rankings are not permitted
because of surjectivity of the mapping and ties are not allowed due to injectivity.
In Chapter 5, where a novel Bayesian modeling proposal is presented, we relax this
assumption to account also for top-t partial observations in the sample.
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The inverse π−1 = (π−1(1), . . . , π−1(K)) of a ranking π is called ordering. Po-
sitions of the components in π−1 refer to ranks and elements correspond to items.
Hence, π−1(j) is the item ranked in the j-th position. In order to avoid confusion
with π, we will henceforth make explicit use of the inverse function notation to
denote the corresponding ordering π−1 : R → I. We remind also that a ranking
admits a matricial representation Π with binary elements defined as follows

Πij =
{

1 if π(i) = j,

0 otherwise i, j = 1, . . . ,K.

The binary matrix Π is doubly stochastic and its inverse Π−1 = ΠT is also a
binary doubly stochastic matrix returning the matricial format for the corresponding
ordering.

We denote the set of allK! possible rankings with SK , which is identified with the
symmetric group of permutations endowed with the composition operation ◦. The
composition πσ−1 = π ◦ σ−1 = (π(σ−1(1)), . . . , π(σ−1(K))), for instance, indicates
ranks under π relative to the items ranked 1, . . . ,K by σ. In the symmetric group
this is formally defined as the mapping σ−1 which acts on the right of π, to stress
that the composition is not in general commutative. Reversing the order in the com-
position, in fact, gives σ−1π = σ−1 ◦ π = (σ−1(π(1)), . . . , σ−1(π(K))), which lists
items receiving from σ those ranks that π has attributed to items 1, . . . ,K. Geomet-
rically speaking the elements of SK can be represented as the vertices of a polytope,
i.e., of the convex hull of the points π ∈ SK ⊂ RK . Thompson (1993) suggested this
representation to visualize the distribution of a sample π = {π1, . . . , πs, . . . , πN} of
N rankings, placing a ball at each vertex of the polytope with diameter proportional
to the corresponding frequency observed in the sample (Figure 1.1). In addition to a
graphical inspection, feasible only for a small number K of items, it could be useful
to perform a preliminary exploratory analysis on the ranking data set or on specific
parts thereof. As examples of descriptive statistics one can mention the first-order
marginals matrix M̂ , whose generic element M̂ij is defined as

M̂ij = 1
N

N∑
s=1

I[πs(i)=j] i, j = 1, . . . ,K,

where I[E] is the indicator function of the event E such that I[E] = 1 if the event E
occurs and I[E] = 0 otherwise. Thus, M̂ij indicates the observed relative frequency
that item i is ranked j-th. Comparing pairs of items rather than considering the
marginal distribution for each column of the data set, one can construct the pairs
matrix P̂ where

P̂ii′ = 1
N

N∑
s=1

I[πs(i)<πs(i′)] 1 ≤ i < i′ ≤ K

is the proportion in the sample preferring item i to item i′. Obviously, in the absence
of ties one has P̂i′i = 1 − P̂ii′ . Another summary statistics is the mean or average
rank vector given by

π = 1
N

N∑
s=1

πs,
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Figure 1.1. 3-D representation of the ranking polytope for K = 4 items. Rankings
are represented as the vertices of the polytope and segments connect adjacent ordered
sequences in terms of the Kendall distance. Ball radius is proportional to the sample
frequency of each ranking.

where the generic element π(i) expresses the mean rank of item i. Note that π is
not properly a ranking. The average rank vector π can be easily obtained from the
K ×K matrix M̂ using the following relation

π = M̂e,

where e = (1, . . . ,K) is the identity ranking in SK . The above summaries are
implemented by the function destat of the R package pmr, whereas the command
instruction rankplot displays the empirical distribution on the ranking polytope in
the presence of K = 3 or K = 4 items.

1.2 Probability models for random rankings

In this section we give a brief review of ranked data modeling. It is not intended to
be an exhaustive outline but offers some useful background of the most frequently
used distributions for rankings. For a more systematic review see Marden (1995)
and Critchlow et al. (1991).

The most general statistical model, referred to as saturated model (SM), is the
collection of all discrete distributions for random rankings, identified with the whole
(K!− 1)-dimensional simplex P(SK) and parameterized by the K!− 1 probabilities
of each ordered sequence. This very general class includes elements which play a
special role in ranking modeling: the uniform (or null) model (UM), represented by
the single flat distribution which assigns equal probability to each ranking, and the
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degenerate models (DM), which conversely concentrate all the probability mass on
a single ranking. Geometrically, the UM is the central point of P(SK) and the DM
coincides with its vertices. The SM incorporates every possible statistical model,
whereas the UM and the DM are usually obtained as specific members of almost all
common statistical models for random ranking. In this sense the UM and the DM
should be regarded as reference probability distributions.

Although the SM allows for the maximum degree of flexibility, the fast-growing
dimension of the ranking space makes it intractable and cumbersome to interpret
even with a relatively small number K of items. An empirical example of such a
difficulty may be the inference of the distribution parameters from the observed
orderings of web-pages produced by different search engines, for which K is usually
very large. These practical limitations have motivated the introduction of simplify-
ing assumptions on the ranking process and justify the wide assortment of restricted
parametric models developed in rank data theory. In this regard we can recover also
in the ranking literature the more general issue of statistical modeling, whose ob-
jective is the definition of interpretable and useful parametric representations, able
to capture and efficiently synthesize the relevant aspects of empirical phenomena.
Following the review in Critchlow et al. (1991), the basic approaches developed in
the literature to define non-uniform models can be classified in four main categories:
(i) order statistics models, (ii) models based on paired comparisons, (iii) distance-
based models and (iv) stagewise models. These alternative strategies do not have to
be interpreted as unrelated compartments in modeling the ranking process. Some
effort in our review, in fact, will be devoted to clarify the meaning of the under-
lying assumptions within specific approaches but also the overlaps among different
parametric families.

1.2.1 Ordered statistics models

One of the main streams in the development of ranked data modeling is the approach
based on the order statistics. Thurstone (1927) proposes to use an auxiliary con-
tinuous multivariate model to derive a model for random rankings as a by-product
of the distribution of the order statistics. The Thurstone model (TM) assumes the
existence of a unobserved quantitative mechanism underlying the ranking process,
such that each item i is associated with a continuous latent random variable (r.v.)
Wi, also named score. The score should be intended as a latent item feature, mea-
surable on a unidimensional scale and on which the comparative judgment is based.
Examples of unidimensional scores are the unrecorded arrival times of drivers in a
race or any possible preference/liking measure towards items. In this perspective
the derivation of a model on SK induced by a hypothesized parametric joint distri-
bution for the W ’s is straightforward if one considers the order of the item scores
as follows

P(π) = P(Wπ−1(1) < · · · < Wπ−1(K)) π ∈ SK . (1.2.1)

It suffices to set π(i) = rank(Wi) in {W1, . . . ,WK} for all i = 1, . . . ,K to switch
from continuous to ordinal information. Postulating that the Wi’s are indepen-
dent and normally distributed with different means but same variances, the expres-
sion in (1.2.1) translates into the Thurstone-Mosteller-Daniels model (see Mosteller
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(1951) and Daniels (1950)). More general versions of this approach relax the hy-
pothesis of homoscedasticity, of independence, or contemplate other parametric laws
for the item scores. Some contributions in this direction can be found in Luce (1959)
and Henery (1983), who respectively considered the Gumbel and the Gamma dis-
tributions with equal shape parameters to model the latent W ’s. Following the
terminology in Train (2003), Thurstone models are also known as random utility
models.

1.2.2 Ranking models based on paired comparisons

The TM has an interesting connection with another approach to construct a random
ranking based on the so-called pairwise comparisons. Originally, in fact, the TM
involved only two items and Daniels (1950) contributed to extend it for the ordering
of K > 2 alternatives. For a detailed review on the literature of paired comparisons
the reader is referred to Bradley & Terry (1952), Bradley (1976), Bradley (1984)
and David (1988). Suppose the items in I are compared and ordered in a pairwise
manner, for a total of K(K − 1)/2 comparisons. Let us define with the binary r.v.
Xii′ ∼ Bern(ρii′) the preference between item i and i′ in the paired comparison, so
that

Xii′ =
{

1 if item i is preferred to item i′,
0 otherwise 1 ≤ i < i′ ≤ K.

A generic set of paired comparisons, however, is not necessary consistent with the
definition of a ranking. In fact, circularities of the type π(1) < π(2) < π(3) <
π(1) are allowed in pairwise comparison modeling, whereas are not permitted in
a ranking elicitation. It follows that a conditioning argument is needed in order
to construct a model for rankings after converting them into the suitable set of
pairwise preferences. Assuming that all the K(K − 1)/2 comparisons are drawn
independently and governed by the probabilities ρii′ , for the final result of the
random ranking to be valid it is necessary that the sequence of paired preferences
does not contain any circularity, otherwise it is discarded and the comparisons
are repeated until no circularity is present. In this setting the probability of each
ranking turns out to be

P(π|ρ) =
∏
i<i′ ρ

xii′ (π)
ii′ (1− ρii′)1−xii′ (π)∑

π∈SK
∏
i<i′ ρ

xii′ (π)
ii′ (1− ρii′)1−xii′ (π)

π ∈ SK ,

which is known in the literature as the Babington Smith model (BSM). It was
originally proposed by Babington Smith (1950) and is indexed by the K(K − 1)/2
parameters collected in ρ = (ρii′)i<i. We remind that, since ties are not permitted,
ρi′i = 1− ρii′ .

Setting special forms for the ρ’s, popular subclasses of the BSM can be derived.
Bradley & Terry (1952) introduced item parameters pi > 0 for all i = 1, . . . ,K
reflecting the skill rate of each item and constrained the paired comparison proba-
bilities as follows

ρii′ = pi
pi + pi′

. (1.2.2)
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Equality (1.2.2) is the basic equation of the well-known Bradley-Terry model (BT),
which the authors applied only to paired comparison data. Mallows (1957) sug-
gested to substitute expression (1.2.2) in the BSM, leading to the Mallows-Bradley-
Terry model for rankings. The same author proposed other simplifications which
reduce the BSM to specific distance-based ranking models, extensively described
later in Section 1.2.4. We conclude this section stressing that, in the presence of
only two items i and i′, the TM corresponds to the BT when the scores Wi and Wi′

follow the Gumbel distribution. The same parametric setup for K > 2 leads to the
Plackett-Luce ranking model discussed in the next section.

1.2.3 The Plackett-Luce model and related extensions

When a judge proceeds to elicit from her best choice (rank 1) up to the worst one
(rank K), we say that she is eliciting according to the so-called forward ranking
process; the inverse ranking procedure is named backward ranking process. This
formal definition has been originally introduced in Fligner & Verducci (1988) but,
to our knowledge, the rank assignment scheme has not received an explicit consider-
ation in a model setup in the attempt to improve the description of random ranked
data. Obviously, any other order for the rank assignment process is admissible and
potentially leads to different models. As detailed in Section 1.3, this aspect has
inspired us to expand an existing and well-known parametric ranking model, that
is the Plackett-Luce model (PL). It is a very popular parametric family of ranking
distributions and can be considered in turn as an extension of the BT to the context
of multiple (more than two) repeated item comparisons. Its name arises from both
independent contributions supplied by Luce (1959) and Plackett (1975). The mono-
graph in Luce (1959) provides an in-depth theoretical description of the individual
choice behavior based on a general axiom system, whereas Plackett (1975) derived
the PL in the context of horse races. Its probabilistic representation moves from the
decomposition of the ranking process in a finite sequence of independent stages, one
for each rank that has to be assigned, combined with the underlying assumption of
standard forward procedure on the ranking elicitation. In fact, a ranking can be
elicited through a series of sequential comparisons in which a single item is preferred
to all the remaining alternatives and, after being selected, is removed from the next
comparisons. For this reason, the PL is said to belong to the family of stagewise
ranking models. Specifically, the PL probability distribution is completely specified
by the so-called support parameter vector p = (p1, . . . , pK), where pi > 0 for all
i = 1, . . . ,K and

∑K
i=1 pi = 1. Note that in the present PL formulation the sup-

port parameters are constrained to add up to one. This restriction is introduced to
avoid unidentifiability due to possible multiplication by an arbitrary positive con-
stant. The generic parameter component pi expresses the probability that item i
is selected at the first stage of the ranking process and hence preferred among all
other items. The probability of choosing item i at lower preference levels t > 1 is
proportional to its support value pi. Since the set of available items in the sequence
of random selections is reduced by one element after each step, the computation of
the choice probabilities at each stage requires suitable normalization of the support
probabilities w.r.t. the set of remaining items. It follows that under the PL the
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probability of the random ordering π−1 is

P(π−1|p) =
K∏
t=1

pπ−1(t)∑K
ν=t pπ−1(ν)

π−1 ∈ SK . (1.2.3)

The special case pi = 1/K for all i = 1, . . . ,K corresponds to the UM over SK .
The vase model metaphor, originally introduced by Silverberg (1980), is an

alternative way to interpret the above random stagewise item selections and a useful
representation in order to understand the PL extensions already developed in the
literature (see Marden (1995) for a review). Let us consider a vase containing item-
labeled balls such that the vector p expresses the starting vase composition. The
vase differs from an urn simply because the former contains an infinite collection
of balls in order to allow arbitrary proportions in the simplex. At the first stage
a ball is drawn and the corresponding item is ranked first. At the second stage
another ball is drawn from the vase: if its label is different from π−1(1) the rank
2 is then assigned to the corresponding item, otherwise the ball is put back in the
vase and the drawing is repeated until a distinct item is chosen and then ranked in
the second position. The multistage experiment ends when there is only one item
not yet selected and this is automatically ranked last. Put in other words, PL can
be regarded as an urn sampling scheme without replacement where the vector p
describes the inclusion probabilities of each item-labeled ball. The probability of
a generic sequence of drawings turns out to be (1.2.3). In such a scheme the vase
configurations (inclusion probabilities) are constant over all stages and stagewise
interactions among items are not contemplated. A first attempt to generalize this
basic scheme consists in retaining the absence of item interactions and allowing
a varying vase composition among stages, as formalized in Silverberg (1980). In
this model setting the support parameters become stage-dependent, that is pti for
t = 1, . . . , (K − 1) and i = 1, . . . ,K. Setting the special form pti = pαti one obtains
the Benter model (BM) introduced by Benter (1994), that is

P(π−1|p, α) =
K∏
t=1

pαtπ−1(t)∑K
ν=t p

αt
π−1(ν)

π−1 ∈ SK . (1.2.4)

The BM is then characterized by the additional vector α = (α1, . . . , αK) of the
dampening parameters with 0 ≤ αt ≤ 1 for all t = 1, . . . ,K. As apparent from
the probabilistic definition (1.2.4), the element of α perturb the stagewise stochas-
tic selections given by the sequential normalizations of the item supports. These
parameters accommodate for the possible different degree of accuracy with which
the choice at each selection stage is made. The choice accuracy, for example, may
depend on the cardinality of the item set I: if K is large, the ranker may have
clear preferences about her best choices and order, instead, the remaining alterna-
tives with less accuracy. The PL corresponds to the BM with αt = α = 1 for all
t = 1, . . . ,K, meaning that all ranks are attributed with the maximum degree of
care. In order to overcome overparametrization problems, one assumes α1 = 1 and
αK = 0 in the inferential analysis (see Gormley & Murphy (2008a) and Gormley
& Murphy (2008b)). Moreover, one can also relax the non-interaction hypothesis,
so that the vase configuration at each stage relies on the previous selected items.
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Indeed Plackett (1975) defined a hierarchy of further PL extensions. Marden (1995)
refers to such generalizations as Lag L models, where L = 0, . . . ,K − 2 indicates
that the vase at stage t depends on the previous choices only through the last L
selected items {π−1(t−L), . . . , π−1(t−1)}. The Lag 0 model, also called in Plackett
(1975) first-order model, coincides with the ordinary PL; the Lag 1 model is such
that at each choice step t the vase composition depends only on the item π−1(t−1).
In general, the total number of parameters in the Lag L model is given by

L∑
l=0

K!
(K − l)! (K − l − 1) =

L∑
l=0

(
K!

(K − l − 1)! −
K!

(K − l)!

)
= K!

(K − L− 1)! − 1

= K(K − 1) · · · (K − L)− 1,

thus the L = K − 2 model covers the whole SM.

1.2.4 Distance-based models

Another fundamental class of parametric distributions is the so-called distance-based
model (DB). Roughly speaking, the DB can be interpreted as the analogue of the
normal distribution on the finite discrete space SK . In fact, it is an exponential
location-scale model indexed by a discrete location parameter σ ∈ SK , called modal
or central ranking, and a non-negative real concentration parameter λ ∈ R+

0 . Each
distribution in a DB model has the following form

P (π|σ, λ) = 1
Z(λ)e

−λd(π,σ) π ∈ SK , (1.2.5)

where Z(λ) =
∑
π∈SK e

−λd(π,σ) is the normalization constant and d is a metric on
SK . The probability mass function in (1.2.5) attains its maximum at π = σ and
decreases as the distance from σ increases. Under (1.2.5) rankings at the same
distance from the modal sequence σ are equally probable. The central ranking
σ expresses the so-called consensus in the population, whereas the concentration
parameter λ calibrates the effect of d on the probability of the ranking: the higher
the value of λ, the more concentrated the distribution around its mode (Figure 1.2).
Hence, when λ→ +∞, equation (1.2.5) becomes the DM at π = σ; conversely, when
λ = 0 it turns out to be the UM.

Changing the distance measure d in (1.2.5), one can define different families
of parametric distributions for ranked data. Following Diaconis (1988), a function
d : SK × SK → R+

0 is a distance between rankings if it satisfies the usual three
properties:

- identity π, σ ∈ SK d(π, σ) = 0⇐⇒ π = σ,

- symmetry π, σ ∈ SK d(π, σ) = d(σ, π),

- triangle inequality π, σ, δ ∈ SK d(π, δ) ≤ d(π, σ) + d(σ, δ)

and the additional fourth condition

- right-invariance π, σ, δ ∈ SK d(π, σ) = d(πδ−1, σδ−1).
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Figure 1.2. Three distance-based distributions with d = dK and modal ranking equal to
e = (1, 2, 3, 4) for decreasing values of the concentration parameter, respectively equal
to λ = 2 (left), λ = 1 (center) and λ = 0.5 (right). The dispersion of the probability
mass function on S4 increases as the value of λ decreases.

Right-invariance (or label-invariance) guarantees the desirable property of invari-
ance of d w.r.t. arbitrary relabeling of items. Examples of metrics for rankings
satisfying above properties are

- the Kendall distance

dK(π, σ) =
∑∑

1≤i<i′≤K
I[(π(i)−π(i′))(σ(i)−σ(i′))<0],

- the Spearman distance

dS(π, σ) =

√√√√ K∑
i=1

(π(i)− σ(i))2,

- the Spearman Footrule

dF (π, σ) =
K∑
i=1
|π(i)− σ(i)|,

- the Cayley distance

dC(π, σ) = minimum number of transpositions
needed to transform π−1 into σ−1,

- the Hamming distance

dH(π, σ) = #{i = 1, . . . ,K : π(i) 6= σ(i)},

i.e., the number of items ranked differently by π and σ,
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Figure 1.3. Normalizing coefficient of the distance-based model with d = dK as function
of the concentration parameter λ in the case K = 4.

- the Maximum distance

dM (π, σ) = max
1≤i≤K

|π(i)− σ(i)|,

- the Ulam distance

dU (π, σ) = K-maximal number of items
ranked in the same order by π and σ.

One of the most frequently used metrics is dK , which counts the number of pairwise
disagreements, i.e., the pairs of items with relative discordant order under π and
σ. It is also equal to the minimum number of adjacent transpositions needed to
transform π−1 into σ−1. Relaxing the adjacency requirement one has the Cayley
distance dC , meaning that the inequality dC ≤ dK always holds. Moreover, the well-
known Kendall and Spearman rank correlation coefficients are obtained respectively
from dK and d2

S with an appropriate rescaling as follows

corr(π, σ) = 1− 2d(π, σ)
dmax

,

where dmax = max{d(π, σ) : π, σ ∈ SK}. For a more complete and detailed de-
scription of the metrics on rankings, the reader is referred to Critchlow (1985)
and Diaconis (1988).
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Due to the right-invariance of d, the normalizing constant in (1.2.5) does not
depend on σ:

Z(λ) =
∑
π∈SK

e−λd(π,σ) =
∑
π∈SK

e−λd(πσ−1,e) =
∑

π′∈SK

e−λd(π′,e).

The only way the central ranking plays a role in determining Z(λ) is through its
length K, as it affects the possible range of values {0, 1, ..., dmax} for d(π, σ) and
hence

Z(λ) =
dmax∑
d=0

nde
−λd,

where nd indicates the number of rankings in SK at distance d from σ. It can be
easily proved that the normalizing constant is a decreasing bounded function of λ
satisfying

1 = lim
λ→∞

Z(λ) < Z(λ) ≤ Z(0) = K! λ ≥ 0.

Figure 1.3 shows the decreasing behaviour of Z(λ) in the case of d = dK and K = 4.
The determination of Z(λ) could be computationally demanding, as it requires the
summation over all possible rankings. As stressed in Fligner & Verducci (1986), a
possible simplification for its computation relies on the relation of Z(λ) with the
moment generating function (m.g.f.) MD(·) of the random distance D(·, σ) under
the UM on SK , that is

Z(λ) = K!
∑
π∈SK

e−λd(π,σ) 1
K! = K!E[e−λD] = K!MD(−λ). (1.2.6)

In the wide variety of distances, only some specific ones lead to a closed form expres-
sion for Z(λ). For this reason when performing a statistical ranked data analysis
one should carefully choose an appropriate metric balancing between interpretation
purposes, in order to better accommodate the problem at hand, and computational
feasibility. In the light of these motivations, in our applications we chose the Kendall
distance dK for the specification of the DB, whereas both dK and dC were employed
in the inferential procedure for a novel model. These aspects will be better clarified
later.

We conclude this section considering some restrictions of the DB. In the cases
when σ is supposed to be known, (1.2.5) becomes the element of the one-parameter
exponential family originally proposed by Mallows (1957). According to the adopted
distance, respectively dK or d2

S , such a model is referred to in the literature as
Mallows φ- or θ-model. Actually, Mallows (1957) derived such restricted distance-
based models in the attempt to simplify the BSM, setting for its parameters the
special form ρii′ = (1+tanh((i′−i) log θ+log φ))/2 and fixing either θ = 1 or φ = 1.
These constraints impose that in the φ-model the ρii′ ’s depend on the sign of i− i′,
whereas in the θ-model they depend on the difference i − i′. More generally, one
usually refers to the probability function (1.2.5) as the Mallows model, provided
that d is a distance.
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1.2.5 Multistage models

In their fundamental work Fligner & Verducci (1988) defined a very general class of
probability distributions called multistage ranking models. It integrates the idea of
the ranking process divided into independent stages, already exploited in the PL,
with the presence of a true reference ranking in the population, as assumed in the
DB. Postulating the canonical forward (rank-assignment) strategy, any ranking π
can be equivalently expressed in terms of a (K − 1)-dimensional vector V(π|σ) =
(V1(π|σ), . . . , VK−1(π|σ)) whose generic component Vt(π|σ) is defined as

Vt(π|σ) = σ(π−1(t))− 1−
∑
t′<t

I[σ(π−1(t′))<σ(π−1(t))]

= σ∗(π−1(t))− 1 t = 1, . . . ,K − 1.
(1.2.7)

In (1.2.7) σ∗ indicates the reduction of the reference ranking σ on the set of re-
maining items at stage t, given by I \ {π−1(1), . . . , π−1(t− 1)}. The vector V(π|σ)
collects the number of mistakes made by the judge π over the K − 1 stages w.r.t.
the presumed correct ranking σ. Let us make an example to clarify the definition
given in (1.2.7) considering π−1 = (2, 3, 4, 5, 1) and σ−1 = (4, 3, 5, 1, 2). This im-
plies V(π|σ) = (4, 1, 0, 0). In general the interpretation of entries in V(π|σ) is the
following: the case Vt = 0 states that at stage t the judge π made the correct choice
selecting the best item among the available ones, i.e., at that stage her preference
matched with the reference σ; on the other hand, when Vt = vt > 0 means that at
preference level t the ranker π failed vt positions, choosing the (vt + 1)-st best item
rather than the preferred one by σ among the remaining alternatives. Later we will
see that the Vt’s are, indeed, the additive components in a measure of global discrep-
ancy between the generic π and the true underlying σ. Exploiting the one-to-one
correspondence between π and V(π|σ) and assuming that the Vt’s are independent,
a model setting as

P(π|σ) = P(V(π|σ)) =
K−1∏
t=1

P(Vt(π|σ) = vt) π ∈ SK (1.2.8)

becomes straightforward. Equation (1.2.8) represents the most general multistage
ranking model, indexed by the choice probabilities {P(Vt = vt) : vt = 0, . . . ,K −
t and t = 1, . . . ,K−1}. When no constrains are placed on the probability distribu-
tions for the V ’s, Fligner & Verducci (1988) refer to equation (1.2.8) as free model
(FM). This does not have to be confused with the SM: the independence hypothesis,
in fact, leads to a restricted parametric class with K(K − 1)/2 parameters versus
the K!− 1 of the SM. We stress that the independence notion employed in (1.2.8)
does not refer to the item selection but to the amount of disagreement in making
the best choice at each stage w.r.t σ. This aspect reveals the main difference be-
tween the PL and the FM: in the former the selection probabilities are indexed by
the available alternatives, whereas in the latter they depend only on the stage. Ob-
viously, a probability mass distribution on SK induces a probability model on the
components of V and viceversa; in particular, when each Vt is uniformly distributed
the FM corresponds to the UM. An important subclass of the FM can be obtained
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setting an exponential form for the choice probabilities, that is

P(Vt = vt|λt) = e−λtvt∑K−t
vt=0 e

−λtvt
t = 1, . . . ,K − 1. (1.2.9)

The restriction (1.2.9) leads to the so-called φ-component model, governed by the
K − 1 stage-dependent non-negative concentration parameters λ1, . . . , λK−1.

1.2.6 Generalized Mallows model and other DB extensions

In their previous work Fligner & Verducci (1986) had already derived the φ-com-
ponent model starting from a different motivation, specifically illustrating the pos-
sibility to extend the DB approach. The starting point is the property of some
metrics for rankings, such as the Kendall and the Cayley distance, to be decompos-
able into the sum of independent components associated to the each single stage of
the ranking process. It can be shown, for example, that dK admits the following
multistage formulation

dK(π, σ) =
K−1∑
t=1

Vt(π|σ), (1.2.10)

that can be viewed as the decomposition of the global distance in the discrepancies
over the ranking stages. Moreover, the decomposition into sums is appealing also
because it can lead to a closed form expression for Z(λ), provided that the m.g.f.
of the single components are simple enough. Hence, Fligner & Verducci (1986)
exploited this property of dK to formulate a parametric generalization of such a
distance, applying a non-negative constant to each term as follows

dλ(π, σ) =
K−1∑
t=1

λtVt(π|σ), (1.2.11)

where λ = (λ1, . . . , λK−1) is the vector of concentration parameters. This idea is
analogous to the introduction of additional stage-dependent quantities in the BM in
order to expand the PL family. Fligner & Verducci (1986) further proposed to plug
(1.2.11) in (1.2.5), transferring the stagewise construction to the DB and deriving
for the latter the following multiparametric generalization

P (π|σ, λ) = e−
∑K−1

t=1 λtVt(π|σ)

Z(λ) π ∈ SK , (1.2.12)

named Generalized Mallows model (GMM). This parametrization allows to assess
the closeness to σ in a rank-dependent manner. For example, high values of λt
for top positions induce a greater probability to observe rankings which agree with
σ in the assignment of the first positions. Recognizing in (1.2.12) the product of
independent exponential models on the Vt’s, the coincidence of the GMM with the
φ-component model becomes clear. Furthermore, the GMM is associated with the
following closed-form expression for the normalizing constant

Z(λ) =
K−1∏
t=1

Z(λt) =
K−1∏
t=1

K−t∑
vt=0

(e−λt)vt =
K−1∏
t=1

1− e−λt(K−t+1)

1− e−λt . (1.2.13)
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The extension of the DB obtained by the stagewise decomposition of the Cayley
distance was called by Fligner & Verducci (1986) cyclic structure model, but it is
not considered in this review. The equality constraint λt = λ for all t = 1, . . . ,K−1
in both generalized models leads directly to the standard DB model with either the
d = dK or the d = dC .

As stressed by Lee & Yu (2010), although model (1.2.12) has been developed to
generalize the DB with d = dK , the GMM is not a proper distance-based model.
In fact, whereas (1.2.10) is a distance, the same is not true for (1.2.11) because the
symmetry property is lost. Inspired by Shieh (1998), Shieh et al. (2000) and Tar-
sitano (2009), who contributed to define the weighted rank correlation coefficients,
Lee & Yu (2010) suggest to employ the weighted versions of the commonly used
distances between rankings. These measures permit to evaluate the discrepancy
between two rankings by assigning different weights to each rank but, at the same
time, retain the desired properties. The derived model is referred to by the authors
as weighted distance-based model (WDB).

We conclude this section by briefly mentioning the extension of the GMM to ad-
dress infinite rankings, i.e., the caseK →∞. This situation alludes to all those cases
in which the number of items is very high or potentially not completely known, as
in the output of search engines or programs for matching physical/biological traits.
For this purpose Meilă & Bao (2008) propose the infinite Generalized Mallows model
(IGM), that they express in a compact form as follows

P (π|σ, λ) = e−
∑∞

t=1(λtVt(π|σ)+logZ(λt)) π ∈ S∞, (1.2.14)

where the normalizing constant derives asymptotically from (1.2.13) as follows

Z(λt) = lim
K→∞

1− e−λt(K−t+1)

1− e−λt = 1
1− e−λt .

In this case V defines a vector of independent countably infinite r.v. taking values in
N and the concentration parameters have to be strictly positive in order for (1.2.14)
to be a proper probability distribution. In presence of an infinite number of alter-
natives, it is likely that the ranking process is only partially observed and hence
a reasonable assumption is to think of data as subject to a certain mechanism of
truncation. Meilă & Bao (2008) discuss the interesting application of the IGM to
a situation where K is very large and the recorded rankings are partial top-t se-
quences. They simply implement the marginalized version of (1.2.14) arrested at
the first components of V actually observed for each subject or, equivalently, at
the prefix of V whose length varies among sample units. The same methodological
contribution can be found also in Meilă & Bao (2010).

1.2.7 Insertion Sort Rank data model

Although the models reviewed in the previous sections represent the major and
consolidated definitions of stochastic mechanisms on the ranking space, other recent
proposals deserve to be mentioned, as the one presented by Biernacki & Jacques
(2013). It combines some traditional approaches for rank data modeling, such as the
existence of a reference true ordering and the paired comparison scheme, through
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the insertion sort algorithm detailed in Knuth (2005). The authors describe a
stochastic ranking process which starts from an initial presentation order ξ−1 and
returns each ordered sequence π−1 as the result of multiple independent paired
comparisons, represented as Bernoulli trials. The probability of success τ is assumed
to be constant over all stages of the sorting process and denotes the chance to
correctly order a pair of items according to the reference σ−1. These assumptions
induce a Binomial form for the following conditional ranking model

P(π−1|ξ−1, σ−1, τ) = τG(π−1,ξ−1,σ−1)(1− τ)A(π−1,ξ−1)−G(π−1,ξ−1,σ−1),

interpreted as the probability to obtain the generic ordering π−1 conditional to the
presentation order ξ−1. A(π−1, ξ−1) and G(π−1, ξ−1, σ−1) indicate respectively the
total number of paired comparisons and the number of paired agreements w.r.t.
σ−1. The final insertion sort rank model ISR(σ−1, τ) is derived integrating out the
initial order ξ−1 with hypothesized uniform distribution, that is

P(π−1|σ−1, τ) =
∑

ξ−1∈SK

P(π−1|ξ−1, σ−1, τ)P(ξ−1)

= 1
K!

∑
ξ−1∈SK

τG(π−1,ξ−1,σ−1)(1− τ)A(π−1,ξ−1)−G(π−1,ξ−1,σ−1).

The reader is referred to Biernacki & Jacques (2013) for further details on the formal
properties of the ISR(σ−1, τ) and the implemented inferential procedures.

1.3 Novel extension of the Plackett-Luce model
In this section we introduce an original proposal which generalizes the standard PL.
Multistage ranking models previously reviewed implicitly suppose that preferences
are expressed with the canonical forward order, proceeding from the assignment of
the first rank up to the last one. This is just a conventional assumption and other
reference orders can be contemplated but, to our knowledge, this aspect has not
been addressed in the literature. Indeed, even the individual experience in choice
problems suggests the plausibility of alternative paths for the ranking elicitation.
For example, one can think of situations where the judge has a clearer perception
about her most- and least-liked items but only a vaguer idea relative to middle
ranks; alternatively the ranker could build up her best alternatives following an
exclusion process starting with the final position, which would be better described
by a backward model. Besides such motivations aimed at characterizing typical
behaviors in real choice/selection problems, we are also interested in developing
a more flexible tool in order to improve the description of phenomena observed
in the form of ordered data. All these intuitive and practical instances make the
forward hypothesis too restrictive when approaching a flexible inferential analysis
of a ranking data set. Hence, we propose to extend the PL in the following way:
rather than fixing a priori the stepwise order leading the judge to her final ranked
sequence, we represent it with a specific free model parameter ρ ∈ SK and let data
guide inference about the reference order followed in the rank assignment scheme.
Such an approach would also alleviate the asymmetry toward ranks assigned at the
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extreme (the first and the last) stages of the ranking procedure, which affects the
PL. The reference order ρ = (ρ(1), . . . , ρ(K)) is the result of a bijection between
the stage set S and the rank set R, i.e.,

ρ : S → R,

where the entry ρ(t) indicates the rank attributed at the t-th stage of the ranking
process. Hence, ρ identifies a discrete parameter taking values in SK . Once al-
ternatives schemes for the ranking elicitation are contemplated, the sequence π−1

no longer coincides with the actual item selections over the stages. In order to re-
construct this information, the composition of the ordering π−1 with the reference
order ρ has to be considered, yielding the sequence

η−1 = π−1ρ

which lists the items chosen at each stage. This means that η−1(t) = π−1(ρ(t))
is the item chosen at step t and receiving rank ρ(t). The probability of a random
ordering under the Extended Plackett-Luce model can be written as

PEPL(π−1|ρ, p) = PPL(π−1ρ|p) =
K∏
t=1

pπ−1(ρ(t))∑K
ν=t pπ−1(ρ(ν))

π−1 ∈ SK , (1.3.1)

where the additional discrete parameter ρ acts directly by composition on the right-
hand side of the generated outcome of a standard PL. The composition determines
the rearrangement of components in π−1 and reveals the actual item selections over
the stages. Hereafter we will shortly refer to (1.3.1) as EPL(ρ,p). The vector p still
denotes the support parameters, with the probabilities for each item to be selected
at the first stage and to be ranked in the position given by the first entry in ρ.
Obviously, the standard PL is a special case of the EPL, obtained setting ρ equal to
the identity permutation e. Similarly, when ρ = (K + 1)− e one has the backward
PL.

Let us make a toy example elucidating the definition and the notation of the
EPL given in (1.3.1). Suppose we have fixed a parameter point (ρ, p) so that p =
(0.1, 0.2, 0.3, 0.4) and the entries of the reference order ρ = (1, 4, 2, 3) correspond
to the following alternating selection scheme: at the first stage the judge expresses
her best preference (ρ(1) = 1), at the second stage she chooses her least-liked item
(ρ(2) = 4) and finally at the third and forth stage she attributes respectively the
second (ρ(3) = 2) and the third (ρ(4) = 3) position. Let π−1 = (4, 3, 1, 2) be the
ordering of interest for which we want to compute the probability mass under the
specified EPL. The EPL retains the same stagewise ranking construction of the PL
but allows the rank attribution order to be different from the ordinary best-to-worst
path. The EPL postulates that the probability associated to π−1 is equivalent to
the probability under the PL of sequentially selecting item 4 at the first stage, item
2 at the second stage, item 3 at the third stage and item 1 at the last stage, as
indicated by the composition

π−1ρ = (π−1(ρ(1)), π−1(ρ(2)), π−1(ρ(3)), π−1(ρ(4)))
= (π−1(1), π−1(4), π−1(2), π−1(3)) = (4, 2, 3, 1).
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Hence, the probability can be computed as

PEPL((4, 3, 1, 2)|ρ, p) = PPL((4, 2, 3, 1)|(0.1, 0.2, 0.3, 0.4))

= 0.4
1 ·

0.2
0.1 + 0.2 + 0.3 ·

0.3
0.1 + 0.3 · 1 = 0.1.

Note that, in order to interpret the order of preferences from π−1ρ, one needs to
refer to the reference order ρ.

From a theoretical point of view, the novel EPL is a proper generalization of the
original PL if and only if such a new class covers a wider portion of the SM, i.e.,
it allows to describe additional probability functions that cannot be derived from
the PL with any parameter specification. In other words, one should give a formal
proof concerning the existence of ranking distributions (hopefully more than one)
in the new EPL which do not belong to the standard PL family. Such a proof is
given in the next section.

1.4 Relation between the novel EPL and the PL

We prove here the presence of distributions on orderings in the novel EPL family
which are not members of the canonical PL family. For this purpose, we recall that
the PL implies the independence of irrelevant alternatives (IIA), stating that the
probability ratio of selecting an item over another is unaffected by the preferences
towards the other alternatives in the choice set (see Luce (1959)). Equivalently, one
can say that in a PL the choice probability ratio between two items is constant over
all stages as long as such alternatives are both still available. In the case K = 3
the IIA property translates into the following set of conditions on the probabilities
qπ−1 = P(π−1) of each possible ordering

q(1,2,3)
q(1,3,2)

=
q(2,1,3) + q(2,3,1)
q(3,1,2) + q(3,2,1)

,

q(2,1,3)
q(2,3,1)

=
q(1,2,3) + q(1,3,2)
q(3,1,2) + q(3,2,1)

,

q(3,1,2)
q(3,2,1)

=
q(1,2,3) + q(1,3,2)
q(2,1,3) + q(2,3,1)

.

(1.4.1)

The first condition, for example, imposes the equality between the probability ratio
to prefer item 2 over item 3 at the second stage (left-hand side) and the analo-
gous probability ratio for the first stage (right-hand side). The remaining equalities
have the same meaning but clearly refer to the other possible paired comparisons.
The equations in (1.4.1) have to be simultaneously satisfied for a generic ranking
distribution to belong to the forward PL. Now, let us consider the EPL with param-
eter ρ = (2, 1, 3) and generic support parameter vector p. The induced probability
distribution on the random orderings is given byq(1,2,3) q(1,3,2) q(2,1,3) q(2,3,1) q(3,1,2) q(3,2,1)

p2p1
1− p2

p3p1
1− p3

p1p2
1− p1

p3p2
1− p3

p1p3
1− p1

p2p3
1− p2

 . (1.4.2)
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Figure 1.4. Examples of EPL (left) and PL (center and right) distribution functions in
the case K = 3. Sequences at the vertices indicate orderings.

Substituting (1.4.2) in (1.4.1) and solving w.r.t. p one obtains as unique solution
p = (1/3, 1/3, 1/3), meaning that the two model classes can share only the UM.
This formally shows what has been hinted at in Fligner & Verducci (1988) on
the possibility to define new ranking models relaxing the forward hypothesis. To
give an intuition about the types of ranking distributions that are not covered
by the traditional PL, let us consider the EPL with parameter configuration ρ =
(2, 1, 3) and p = (1 − 2ε, ε, ε) where ε → 0. The corresponding distribution over
the six possible orderings has two equally supported modes on the sequences with
item 1 ranked second, which capture almost the total probability mass as shown
in Figure 1.4(a). This represents a distribution that cannot be obtained with any
parameter specification from the forward PL. In fact, the suitable calibration of
the support parameters in the PL can lead only to degenerate marginal choices of
item 1 for the first and the last rank, see Figures 1.4(b) and 1.4(c). Therefore, the
introduction of the extra parameter ρ running over the permutation space allows to
overcome this asymmetry among ranks.

1.5 Finite mixture modeling for ranked data

One of the formal properties satisfied by the DB with d = dK is strong unimodality,
meaning that the distribution is uniquely maximized by σ and the probability does
not increase when the distance from the modal sequence becomes higher (see Marden
(1995)). This representation implies a homogeneous population clustered around a
single modal sequence, where the degree of agreement w.r.t. the true ranking σ is
controlled by the concentration parameter λ. Strong unimodality is expected to be
violated in real data especially when the sample composition is heterogeneous w.r.t.
factors related to the ranking elicitation. In this case the unimodality assumption
should be relaxed in favor of a multimodal characterization of the sampling distri-
bution. A well-established statistical tool to address inference in the presence of
unobserved heterogeneity is given by the finite mixture approach. A finite mixture
model assumes that the population consists of a finite number G of subpopulations.
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In this setting the probability of observing the ranking πs for the s-th unit is

f(πs) =
G∑
g=1

ωgfg(πs) πs ∈ SK ,

where fg(·) denotes the g-th component of the mixture, i.e., the statistical distribu-
tion of data within the g-th group, and ωg is the probability for the s-th observation
to belong to the g-th group. The membership probabilities ω = (ω1, . . . , ωG) are
usually termed weights of the mixture. Mixture components are often modeled with
members of the same parametric family, that is fg(·) = f(·|θg) ∈ {f(·|θ) : θ ∈ Θ}
for all g = 1, . . . , G, identified by the group-specific parameters θg. For a more
extensive introduction to finite mixture models the reader can refer to McLachlan
& Peel (2000).

Beside a clustering-oriented analysis, aimed at recognizing differential patterns
in the data, mixture modeling is also motivated as effective tool to describe less
structured populations, in alternative to a nonparametric approach. In this perspec-
tive the generalization to the finite mixture makes all generative ranking models pre-
viously reviewed more flexible and enlarges significantly their applicability. For this
reason, after the early seminal papers by Croon (1989) and Croon & Luijkx (1993),
an increasing recourse to the mixture framework in the more recent literature can
be highlighted. For example, Murphy & Martin (2003) analyzed the popular 1980
APA (American Psychological Association) presidential election data set (specif-
ically the sub-data set of complete rankings) fitting a mixture of distance-based
models. They aimed at inquiring voters’ orientation towards candidates within the
electorate, assessing the possible adequacy to incorporate a noise component (UM)
in the mixture. Such a component, in fact, could collect outliers and/or observations
characterized by untypical preference profiles, with a possible final improvement of
model fitting. A similar approach has been adopted in Lee & Yu (2012), who esti-
mated a mixture of WDB from the German sample data set, and in other preference
studies in combination with an increasing interest towards more general methods
to analyze heterogeneous (partial+full) ranking data. In this context, parametric
models based on a stagewise ranking construction are attractive because they allow
a straightforward treatment of mixed-type information once their marginal form
is considered. Although multistage models apply in a natural way to accomodate
inference based simultaneously on full and top-t partial rankings, contributions are
not limited only to this type of models. Among the applications to partial rankings
one can mention Busse et al. (2007), who performed a model-based clustering of
the entire APA data set applying a maximum entropy approach for the DB with
d = dK , and the nonparametric clustering algorithm, named Exponential-Blurring-
Mean-Shift, for the IGM implemented by Meilă & Bao (2008). Gormley & Murphy
(2006) fitted a mixture of PL to the 2000 CAO (Central Applicant Office) data set
to investigate motivations of Irish college applicants in their degree course choice,
whereas Gormley & Murphy (2008a) employed a mixtures of both PL and BM to
infer the structure of the Irish political electorate and characterize voting blocks. In
more recent works the same authors attempted to extend the mixture framework in
different directions. Gormley & Murphy (2008b) and Gormley & Murphy (2010),
for example, contributed to the estimation of the mixture of experts models (MOE)
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for ranked data. The MOE approach was formalized in the machine learning liter-
ature by Jacobs et al. (1991) and involves as special case the concomitant-variable
latent class model, proposed in the statistical methodology by Dayton & Macready
(1988). It accommodates for the introduction of individual covariates in the finite
mixture through the generalized linear model theory. The covariates can be ap-
plied to either mixing proportions or component paramaters (or both), leading to
different MOE specifications. Thus, the MOE is flexible tool allowing to explore
simultaneously the groups configuration and the impact of social/economic factors
on preferences.

In Section 3.3 will verify the utility of alternative flexible classes of ranking
models in a real application, considering data from the LFPD bioassay experiment.
For the analysis of the LFPD data set we will implement different mixture models,
adopting as mixture components elements from the following parametric families:

- DB with d = dK ,

- PL with known forward and backward reference order,

- BM,

- our novel EPL.

DB and PL represent two of the most frequently used distributions for inferring
ranking data and both parameterizations allow a clear interpretation. In the former
case, the central ranking summarizes the overall profile in assessing the orderings
of the items, whereas the concentration parameter expresses how representative the
modal ranking is. In the latter case, a higher value of the item support parameter
implies a greater probability for that item to be preferred at each selection level.
The implementation of the BM mixture facilitates the investigation of how the BM
and the EPL compete in terms of flexibility, although they generalize the PL in
totally different directions. This analysis and related inferential details discussed in
Section 2.2 are the main contribution to ranked data modeling proposed in Mollica
& Tardella (2014).

In Chapter 2 we will rely on maximum likelihood estimation, typically achieved
with iterative optimization procedures. Since the Bayesian paradigm provides a
more general inferential framework with the important advantage to account for
estimation uncertainty in a more straightforward manner, contributions to Bayesian
ranked data modeling are reviewed separately in Chapter 5, with a special focus on
the PL and a further proposal.
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Chapter 2

Maximum likelihood inference
for ranking models

In this chapter the attention is devoted to the inferential aspects for the parameter
estimation in the maximum likelihood approach, starting with the simpler case of
ranked data models for a homogenous population and subsequently generalizing it
to the finite mixture setting with G components. For the stagewise models we limit
ourselves to give details only for the novel EPL distribution because, as mentioned
in Section 1.3, the conventional forward PL is a reduction of the wider EPL family.
It follows that the estimation procedure for the mixture of PL can be easily derived
from the mixture of EPL with all known reference orders ρg = e for g = 1, . . . , G.
However, explicit estimation formulas for this special case can be found in Gormley
& Murphy (2006), whereas inference concerning the mixture of BM is detailed
in Gormley & Murphy (2008a). We begin with the MLE of the DB considering,
without too much loss of generality, the case where the Kendall distance is assumed
in the model specification.

2.1 MLE of the mixture of distance-based models
Let π = {π1, . . . , πN} be a random sample drawn from the following homogenous
population

π1, . . . , πN |σ, λ
i.i.d.∼ DB(σ, λ).

The corresponding log-likelihood turns out to be

l(σ, λ) = −
(
λ

N∑
s=1

dK(πs, σ) +N logZ(λ)
)
, (2.1.1)

which is jointly optimized with a two-step procedure. Since for any value of lambda
the log-likelihood is a strictly decreasing function of the sum of the empirical dis-
tances from the central sequence σ, in the first step one maximizes the function
(2.1.1) w.r.t. σ as follows

σ̂ = arg min
σ

N∑
s=1

dK(πs, σ).
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In the second step one uses the profile log-likelihood lprof(λ) = l(λ, σ̂) to get the
MLE as follows

λ̂ = arg max
λ∈R+

0

lprof(λ).

Borrowing the property (1.2.6) one can compute the λ̂ as the solution of

d̄K = −Z
′(λ)
Z(λ) ⇐⇒ d̄K =

M ′DK (−λ)
MDK (−λ) ⇐⇒ d̄K = d

dt
logMDK (t)∣∣

t=−λ
,

where d̄K is equal to
∑N
s=1 dK(πs, σ̂)/N . In rank aggregation theory, which aims

at synthesizing a certain set of rankings in a single overall ordered sequence, σ̂ is
known as the Kemeny ranking and is NP-hard to compute. For large values of K,
in fact, the exhaustive search in SK needed to get σ̂ becomes unfeasible. Fligner
& Verducci (1988) suggest to alternate sequentially the approximate maximization
over σ through a local search and the solution of the estimating equation for λ. In
the local search one minimizes the sum of the sample distances over the subset of
rankings adjacent to the current estimate. Notice that adjacency can be considered
in terms of a metric which need not be the same used in the model specification
(1.2.5). The Borda ranking π = (π(1), . . . , π(K)), whose generic component is
defined from the average rank vector as

π(i) = rank(π(i))

in {π(1), . . . , π(K)}, is often used to initialize σ. Other reasonable starting values
can be deduced by the wide variety of rules developed in the rank aggregation
literature. For an in-depth simulation-based analysis comparing several methods to
address the computational complexity of the Kemeny ranking problem, the recent
work by Ali & Meilă (2012) is recommended. For the estimation of λ we recall that
the DB is an element of the exponential family when σ is fixed, implying that the
following relations for the generic random distance D(·, σ) hold

Mλ,D(t) = MD(t− λ)/MD(−λ)

and

Eσ,λ[D] = d

dt
logMD(t)∣∣

t=−λ
VARσ,λ[D] = d2

dt2
logMD(t)∣∣

t=−λ
,

where Mλ,D(t), Eσ,λ[D] and VARσ,λ[D] denote the m.g.f., the expectation and the
variance of D(·, σ) w.r.t. (1.2.5) (Fligner & Verducci, 1986). Note that we can drop
σ in the subscript notation to stress the independence of the distribution of D on
the central ranking, due to label invariance of the distance. Thus, the MLE of λ
satisfies

d̄K = Eλ̂[DK ],
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Figure 2.1. Expectation of the Kendall distance DK under the distance-based model for
K = 4 as function of the concentration parameter λ.

i.e., it corresponds to the value of the concentration that matches the expectation
of D with the sample average distance. In the specific case D = DK , one can write

MDK (t) = E
[
etDK(π,σ)

]
= E

[
e
t
∑K−1

j=1 Vj(π|σ)
]

= E

K−1∏
j=1

etVj(π|σ)


i.=
K−1∏
j=1

E
[
etVj(π|σ)

]
=

K−1∏
j=1

 1
(K − j + 1)

K−j∑
vj=0

etvj


= 1
K!

K−1∏
j=1

1− et(K−j+1)

1− et = (1− et)−K

K!

K∏
j=1

(
1− et(K−j+1)

)
and

d

dt
logMDK (t) = Ket

1− et −
K∑
j=1

(K − j + 1) et(K−j+1)

1− et(K−j+1) = Ket

1− et −
K∑
j=1

jejt

1− ejt ,

hence

Eλ[DK ] = Ke−λ

1− e−λ −
K∑
j=1

je−jλ

1− e−jλ .

As plotted in Figure 2.1, Eλ[DK ] is a monotone decreasing function in λ. Its shape is
similar to the one observed for Z(λ) and also in this case we have a bounded function.
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Figure 2.2. Distribution of the Kendall distance DK under the distance-based model for
K = 4 and different values of the concentration parameter: λ = 0 (left), λ = 1 (center)
and λ = 3 (right).

In particular, under the UM E0[DK ] = K(K − 1)/4 because of the symmetric
distribution of DK over the discrete support {0, 1, . . . ,K(K−1)/2}. As λ increases,
the probability corresponding to lower values of DK becomes higher and Eλ[DK ]
decreases towards zero for λ → ∞. Examples of distributions of DK for different
values of λ are shown in Figure 2.2. An approximation of λ̂ can be easily derived
using the table provided by Feigin & Cohen (1978) (limited up to K = 10 and
expressed in the parametrization θ = e−λ) or by a line search algorithm.

Now we summarize the fundamental steps to derive the MLE for a mixture
of DB with d = dK . We basically reproduce the algorithm described in Murphy
& Martin (2003). Let zs = (zs1, . . . , zsG) be the latent variables indicating the
individual component membership such that

zsg =
{

1 if the s-th unit belongs to the g-th group,
0 otherwise.
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From (1.2.5) it follows that the complete log-likelihood can be expressed as

lc(σ, λ, ω, z) = log P(π, z|σ, λ, ω) = log
N∏
s=1

P(πs, zs|σ, λ, ω)

= log
N∏
s=1

P(πs|zs, σ, λ)P(zs|ω)

=
N∑
s=1

G∑
g=1

log
(
ωg
e−λgdK(πs,σg)

Z(λg)

)zsg

=
N∑
s=1

G∑
g=1

zsg
(
logωg − λgdK(πs, σg)− logZ(λg)

)
,

where ω and λ are vectors representing, respectively, the group membership proba-
bilities and the component-specific concentration parameters, whereas σ is a G×K
matrix, whose rows indicate the central rankings of the mixture components. In
order to derive parameter estimates, the EM algorithm can be implemented (Demp-
ster et al., 1977). It represents the major scheme to address the inferential analysis
in the presence of missing data. For the present model the EM algorithm consists
of the following steps:

Initialization: set initial values σ(0), λ(0), ω(0) for the parameters to be estimated;

at iteration l + 1 compute

E-step: for s = 1, . . . , N and g = 1, . . . , G

ẑ(l+1)
sg = ω

(l)
g PDB(πs|σ(l)

g , λ
(l)
g )∑G

g′=1 ω
(l)
g′ PDB(πs|σ(l)

g′ , λ
(l)
g′ )

,

which represent the current estimates of the posterior membership probabili-
ties;

M-step: for g = 1, . . . , G

ω(l+1)
g =

N∑
s=1

ẑ
(l+1)
sg

N
,

σ(l+1)
g = arg min

σg

N∑
s=1

ẑ(l+1)
sg d(πs, σg)

and determine λ(l+1)
g as the solution of

Ke−λg

1− e−λg
−

K∑
j=1

je−jλg

1− e−jλg
=
∑N
s=1 ẑ

(l+1)
sg d(πs, σ(l+1)

g )∑N
s=1 ẑ

(l+1)
sg

.

Obviously, setting G = 1 these inferential equations reduce to the estimates previ-
ously described for the homogenous model.
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2.2 MLE of the mixture of Extended Plackett-Luce
models

The derivation of the MLE for the EPL is less straightforward and requires a suitable
adjustment for the maximization step. Assuming the EPL(ρ,p) as the sampling
distribution of the observed orderings, the log-likelihood has the following expression

l(ρ, p) =
N∑
s=1

K∑
t=1

log
pπ−1

s (ρ(t))∑K
ν=t pπ−1

s (ρ(ν))

=
N∑
s=1

K∑
t=1

(
log pπ−1

s (ρ(t)) − log
K∑
ν=t

pπ−1
s (ρ(ν))

)

= N
K∑
i=1

log pi −
N∑
s=1

K∑
t=1

log
K∑
ν=t

pπ−1
s (ρ(ν)).

(2.2.1)

Note that the direct maximization of the log-likelihood w.r.t. the p’s is made arduous
by the presence of the annoying term log

∑K
ν=t pπ−1

s (ρ(ν)). Therefore, we derive the
estimation formula for the support parameters borrowing the approach in Hunter
(2004) based on theMinorization/Maximization (MM) algorithm. This iterative op-
timization method is reviewed in its general form by Lange et al. (2000) and Hunter
& Lange (2004), whereas Hunter (2004) discusses the specific application of the MM
algorithm for the PL estimation. The basic idea consists in performing the opti-
mization step for the p’s on a surrogate objective function rather than on (2.2.1).
The surrogate is obtained by exploiting the strict convexity of − log

∑K
ν=t pπ−1

s (ρ(ν))
and in particular the supporting hyperplane property for convex functions. From
Taylor’s linear expansion, in fact, one has

− log
K∑
ν=t

pπ−1
s (ρ(ν)) ≥ 1− log

K∑
ν=t

p
(l)
π−1
s (ρ(ν)) −

∑K
ν=t pπ−1

s (ρ(ν))∑K
ν=t p

(l)
π−1
s (ρ(ν))

.

For optimization purposes the additive term 1 − log
∑K
ν=t p

(l)
π−1
s (ρ(ν)) not depending

on p can be disregarded. With the suitable substitutions the minorizing auxiliary
objective function can be written as

q = N
K∑
i=1

log pi −
N∑
s=1

K∑
t=1

∑K
ν=t pπ−1

s (ρ(ν))∑K
ν=t p

(l)
π−1
s (ρ(ν))

. (2.2.2)

As emphasized by Hunter (2004), the advantage of optimizing the more tractable
(2.2.2) in place of (2.2.1) relies on the separation of the support parameters. Fur-
thermore, in Hunter (2004) it is proved that the iterative maximization of q returns
a sequence p(1), p(2), . . . which converges at least to a local maximum of the original
objective function. Thus, differentiating the surrogate w.r.t. each pi one has

∂q

∂pi
= N

pi
−

N∑
s=1

K∑
t=1

δ
(l)
sti∑K

ν=t p
(l)
π−1
s (ρ(ν))

(2.2.3)
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and equating the partial derivatives (2.2.3) to zero, at the current iteration one
obtains the following updating rule for the support parameters

p
(l+1)
i = N∑N

s=1
∑K
t=1

δ
(l)
sti∑K

ν=t p
(l)
π−1
s (ρ(l)(ν))

i = 1, . . . ,K.

The binary indicator

δ
(l)
sti =

{
1 if i ∈ {π−1

s (ρ(l)(t)), . . . , π−1
s (ρ(l)(K))},

0 otherwise

indicates the event that item i is still available at stage t for the subject s or,
equivalently, that is not selected by unit s before stage t. Notice that the binary
array has a superscript because of the dependence on the ρ = ρ(l) available at the
current iteration. In the MLE of the PL, instead, this array is not subject to update
(Gormley & Murphy, 2006).

Using the original log-likelihood, the update of the reference order parameter is
derived as follows

ρ(l+1) = arg min
ρ

N∑
s=1

K∑
t=1

log
K∑
ν=t

p
(l+1)
π−1
s (ρ(ν)). (2.2.4)

Solving (2.2.4) with a global search in SK is prohibitive when K is large. So, we
implemented a local search similarly to the method suggested by Busse et al. (2007)
and Lee & Yu (2010), constraining the optimization within a fixed distance from
the current estimate of the reference order ρ(l). It may be interesting to evaluate
the sensitivity of the algorithm w.r.t. the choice of a particular distance in the
local search step. In Section 3.3 we will perform such sensitivity analysis focusing
only on the Kendall and Cayley distance and compare the corresponding estimation
performances.

Now we relax the hypothesis of homogeneous population and consider a more
flexible mixture model with EPL components, discussing the related inferential is-
sues. Augmenting data with the missing individual group membership variables
zs = (zs1, . . . , zsG), one obtains the following expression for the complete log-
likelihood

lc(ρ, p, ω, z) = log
N∏
s=1

G∏
g=1

ωg K∏
t=1

pgπ−1
s (ρg(t))∑K

ν=t pgπ−1
s (ρg(ν))

zsg

=
N∑
s=1

G∑
g=1

zsg

(
logωg +

K∑
i=1

log pgi −
K∑
t=1

log
K∑
ν=t

pgπ−1
s (ρg(ν))

)
.

In the EM algorithm the maximization problem is transferred to the the expectation
of the lc w.r.t. the posterior distribution of the latent variables z represented by ẑ,
that is
Q((ρ, p, ω), (ρ∗, p∗, ω∗)) = E[lc|π−1, ρ∗, p∗, ω∗]

=
N∑
s=1

G∑
g=1

ẑsg

(
logωg +

K∑
i=1

log pgi −
K∑
t=1

log
K∑
ν=t

pgπ−1
s (ρg(ν))

)
,
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where for s = 1, . . . , N and g = 1, . . . , G

ẑ(l+1)
sg =

ω
(l)
g PEPL(π−1

s |ρ
(l)
g , p(l)

g
)∑G

g′=1 ω
(l)
g′ PEPL(π−1

s |ρ(l)
g′ , p

(l)
g′ )

.

Similarly to Gormley &Murphy (2006) we combined the EM with the MM algorithm
into a hybrid version of the former, called EMM algorithm, using the following
minorizing surrogate function q in place of the original objective

Q((ρ, p, ω), (ρ∗, p∗, ω∗)) ≥ q

=
N∑
s=1

G∑
g=1

ẑsg

K∑
i=1

log pgi −
N∑
s=1

G∑
g=1

ẑsg

K∑
t=1

∑K
ν=t pgπ−1

s (ρg(ν))∑K
ν=t p

(l)
gπ−1
s (ρg(ν))

.

The maximization of q leads to the updating rule for pgi at the current iteration
given by

p
(l+1)
gi =

∑N
s=1 ẑ

(l+1)
sg∑N

s=1 ẑ
(l+1)
sg

∑K
t=1

δ
(l)
stig∑K

ν=t p
(l)
gπ−1
s (ρ(l)

g (ν))

for g = 1, . . . , G and i = 1, . . . ,K, with

δ
(l)
stig =

{
1 if i ∈ {π−1

s (ρ(l)
g (t)), . . . , π−1

s (ρ(l)
g (K))},

0 otherwise,

indicating if, under the group-specific reference order ρg, the unit s did not choose
the i-th item before stage t, and hence if, at that step, it still belongs to the set of
available alternatives or not. The estimate for the reference orders in each subgroup
is the solution of the optimization problem given, for g = 1, . . . , G, by

ρ(l+1)
g = arg min

ρg

N∑
s=1

ẑ(l+1)
sg

K∑
t=1

log
K∑
ν=t

p
(l+1)
gπ−1
s (ρg(ν)),

which can be solved locally with ρ ranging in a suitable neighborhood of the current
reference order, as in the case G = 1. The M-step ends with the traditional update
of the mixture weights

ω(l+1)
g =

∑N
s=1 ẑ

(l+1)
sg

N
g = 1, . . . , G,

computed as the posterior proportions of sample units belonging to each group.
Finally, in order to address the issue of local maxima, we run the algorithm with a
suitably large number of different starting values.

2.3 Algorithm convergence and model selection
As detailed in the previous sections, we conducted MLE relying on the EM algorithm
and on a hybrid version thereof. For this purpose, we developed a suite of functions
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written in R language (R Core Team, 2012). In these estimation procedures the log-
likelihood is iteratively maximized until a suitable convergence criterion is achieved.
Following Böhning et al. (1994), the Aitken acceleration criterion has been employed
as stopping rule. Given an arbitrary small tolerance value ε, this method replaces
the standard criterion based on the absolute/relative increment of the log-likelihood
with the following stopping rule

|l(l+1)
∞ − l(l)∞ | < ε, (2.3.1)

where
l(l+1)
∞ = l(l) + l(l+1) − l(l)

1− a(l) and a(l) = l(l+1) − l(l)

l(l) − l(l−1)

indicate respectively the current Aitken accelerated estimate of the maximized log-
likelihood and the ratio of two consecutive increments of the log-likelihood. Al-
though the improvement of the log-likelihood in two successive iterations is widely
employed in practice, Böhning et al. (1994) consider it a “lack of progress” mea-
sure rather than a proper convergence criterion. Such method, for example, could
wrongly stop the algorithm in correspondence of a step of the objective function
(McNicholas et al., 2010). Criterion (2.3.1), instead, assesses convergence relying
on the projection of the optimized log-likelihood, which represents the actual goal
of the iterative procedure. For a discussion on the relative merits of the Aitken
acceleration criterion and other related proposals see McNicholas et al. (2010).

As far as convergence of the proposed algorithm is concerned, it is difficult
to provide theoretical support. In fact, we cannot exploit well-known sufficient
conditions provided in Vaida (2005) and McLachlan & Krishnan (2007) due to the
discreteness of the ρ parameter component. To our knowledge in the presence
of mixed-type parameter space, no previous positive result has been developed.
However, we have always experienced a strictly monotone likelihood updating in
our algorithm, with stopping rule achieved in a suitable number of iterations. A
similarly convincing behavior of the EM algorithm in the presence of mixed-type
parameter space is found also in the successful implementations for mixtures of
distance-based models in Murphy & Martin (2003) and Lee & Yu (2010).

Another crucial issue in a mixture model setting is the choice of the number
of components. In the statistical literature this problem is addressed with several
criteria; we opted for the popular Bayesian Information Criterion

BIC = −2l(θ̂ML) + ν logN,

where l(θ̂ML) is the maximized log-likelihood and ν is the number of free parameters.
The BIC, introduced by Schwarz (1978), is a measure which balances between two
conflicting goals typically aimed at when fitting a statistical model: good fit and
parameter parsimony, where the latter is modulated through the penalty term. In
the presence of competing mixture models, the one associated with the lowest BIC
value is preferred.
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Chapter 3

Ranking models for the Large
Fragment Phage Display data

3.1 The LFPD data set

Our investigation is motivated by a real data set coming from a new technology
for epitope mapping of the binding between the antibodies present in a biological
tissue and a target protein. The biological foundation of the experiment is detailed
in Gabrielli et al. (2013) and consists of repeated binding measurements of human
blood exposed to K = 11 partially overlapping fragments of the HER2 oncopro-
tein, denoted sequentially by Hum 1,..., Hum 11 (see Figure 3.1). Researchers were
originally interested in testing the validity of their innovative biotechnology which
consists in a new way of isolating protein fragments without losing the conforma-
tional structure of the protein portions. To achieve this goal they employed a phage
as a vector for hosting each protein fragment. Then they compared the binding
outcome detected on each of the 11 fragments via a standard Enzyme-Linked Im-
munoSorbent Assay (ELISA) with the whole protein (Hum 12) and the empty vector
(Hum 13) used, respectively, as positive and negative controls (see Figure 3.1). They
first checked with monoclonal antibodies that the expected binding at some specific
fragment was actually detected. Then they gathered N = 67 samples of human
blood taken from three different disease groups: i) HD = healthy patients, ii) EBC
= patients diagnosed with breast cancer at an early stage, iii) MBC = patients
diagnosed with metastatic breast cancer. Binding outcomes from the ELISA ex-
periment have been detected by a laser scanner so that the binding intensities have
been measured and recorded in terms of absorbance levels in nanometers (nm). In
the next section we motivate our statistical analysis of the LFPD data based on the
ordinal information rather than on the original quantitative scale measurements.

3.2 Ranked data modeling of the LFPD data

The original raw absorbance data derived from the LFPD experiment were some-
how wildly fluctuating and looked indeed very heterogeneous as apparent in Fig-
ure 3.2. However, there were certainly some manifest peaks corresponding to recur-
rent fragments, especially high for some patients, most frequently those diagnosed
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| | | | | | |

| |

Empty phage vector (Hum 13)

Hum  7 Hum  8 Hum  9 Hum  10 Hum  11

Hum  1 Hum  2 Hum  3 Hum  4 Hum  5 Hum  6

Whole HER2 oncoprotein (Hum 12)

Negative control

Protein fragments

Positive control

{
Figure 3.1. 1-D scheme of the HER2 oncoprotein and its segmentation into the 11 partially

overlapping fragments (Hum) employed in the LFPD bioassay experiment. Hum 12 and
Hum 13 indicate respectively the whole HER2 oncoprotein (positive control) and the
empty phage vector (negative control).

with cancer. It is also apparent that the individual absorbance profiles are mea-
sured at different mean levels for different patients and with different variability. A
simple logarithmic transformation and recentering w.r.t. the individual mean were
performed providing some more stable evidence of the differential profiles among
groups. However, there are some specific profiles which seem pretty much over-
lapped among different subgroups, although with some different overall pattern
(Figure 3.3).

Since data emerged from the development of an innovative technology, miscali-
brations or inaccuracies of the measuring device may occur and/or subject-specific
characteristics may alter somehow the observed numerical outcome. This makes it
more difficult to adjust the statistical analysis based on raw or ad-hoc pre-processed
data. Unfortunately, for this kind of data a consolidated and fully-shared normal-
ization technique is lacking. For all these reasons, rather than basing our analysis
on the quantitative output of the LFPD study, we verified the possible usefulness of
the ranking profiles as a more robust and unambiguously-defined evidence, capable
to capture and characterize the sample heterogeneity. Hence, we first derived or-
dered sequences ranking the absorbance levels of the individual protein fragments
taken in decreasing order (rank 1=highest value, rank K=lowest value). We per-
formed a simple exploratory analysis by cancer state computing both the K × K
first-order marginal matrices M̂ and the Borda orderings π−1. The generic entry
M̂ij in the marginal matrix denotes the observed relative frequency that item i is
ranked j-th, whereas the sequence π−1 lists items taken in order from the highest
to the lowest mean rank. These matrices are displayed as image plots in Figure 3.4,
together with the Borda sequences at the bottom of each panel. The color intensity
is an increasing function of the corresponding observed frequency. The analysis
of the first-order marginal matrices suggests that some protein fragments are very
often associated with lower ranks, as pointed out by the presence of darker rectan-
gles in correspondence of bottom positions. This constantly occurs for all disease
subgroups with Hum 10 but some interesting differential evidence is apparent for
EBC subjects with Hum 5 and 6, for MBC with Hum 2 and 13 and also for HD
patients with Hum 9 (Figure 3.4). Such a precious discriminant information could
be better captured by our EPL. To validate this claim we fitted both the PL and
the new EPL to the three disease subgroups separately. For the former we used
two known orders, forward (PL-ρ1) and backward (PL-ρ2), whereas for the latter
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Figure 3.2. Raw absorbance profiles for the three groups of patients in the LFPD study:
HD = healthy (green), EBC = diagnosed with breast cancer in an early stage (red),
MBC = diagnosed with metastatic breast cancer (blue). Each continuous piecewise lin-
ear function represents the absorbance levels in the HER2 oncoprotein fragments (Hum)
of a single experimental unit. Hum 12 and Hum 13 indicate respectively the whole HER2
oncoprotein (positive control) and the empty phage vector (negative control).

the reference order is a parameter to be estimated. Estimation performances are
shown in terms of BIC values in Table 3.1 and reveal that the EPL fit is better
or at most comparable with those relative to the PL with fixed reference orders.
The interest in relaxing the traditional forward assumption is supported also by the
BIC values for the PL-ρ2, showing that such a model constantly outperforms the
PL-ρ1 when fitted to HD and MBC subjects. These BIC results represent a strong
evidence motivating the need of a PL extension. In what follows we consider a more
comprehensive analysis in a mixture model setting. With this approach we aim at:

- addressing the heterogeneous nature of the LFPD data using the evidence
provided by the orderings of the absorbance levels;

- assessing if and how the path in the sequential ranking process can impact
the final model-based classification and select the most appropriate one;

- identifying possible characteristic subgroups related to the disease state;

- characterizing each subgroup with the estimates of the cluster-specific param-
eters.
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Figure 3.3. Mean-centered log-absorbance profiles for the three groups of patients in
the LFPD study: HD = healthy (green), EBC = diagnosed with breast cancer in
an early stage (red), MBC = diagnosed with metastatic breast cancer (blue). Each
continuous piecewise linear function represents the mean-centered log-absorbance levels
in the HER2 oncoprotein fragments (Hum) of a single experimental unit. Hum 12 and
Hum 13 indicate respectively the whole HER2 oncoprotein (positive control) and the
empty phage vector (negative control).

3.3 Empirical findings

Considering all the 67 available orderings, we fitted mixtures of DB with d = dK
(DBmix), mixtures of PL with both forward and backward reference order (PLmix-
ρ1 and PLmix-ρ2), mixtures of BM (BMmix) with dampening parameters shared by
all groups as in Gormley & Murphy (2008a) and mixtures of EPL. In the most gen-
eral mixture model (EPLmix) each EPL component has a group-specific parameter
ρg to be inferred. We have also considered a constrained version with an unknown
reference order ρ common to all components and we have denoted it with PLmix-ρ.
All mixtures have been implemented with a number of components varying from
G = 1 to G = 7. Of course, the case G = 1 coincides with the assumption that
observations come from a homogeneous population without an underlying group
structure. We separately applied all mixture models to the ranked absorbance lev-
els relative to the K = 11 partially overlapping protein fragments as well as to the
K = 11 + 2 binding probes (spots), including also the whole HER2 oncoprotein
(positive control) and the empty phage vector (negative control).

Focusing on the BIC for G = 1 compared to G > 1, the MLE of the DBmix
provided an overall evidence in favor of heterogeneity when both K = 11 or K = 13
binding probes are considered. We highlighted a remarkably decreasing behavior for
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Table 3.1. BIC values and corresponding differences ∆BIC w.r.t. the best fitting model.
MLE of PL-ρ1, PL-ρ2 and EPL have been computed separately for the three disease
groups (HD = healthy, EBC = diagnosed with early stage breast cancer and MBC
= diagnosed with metastatic breast cancer) and for a different number K of binding
probes included in the rankings. The smallest BIC and ∆BIC values indicating the best
fitted models are highlighted in bold.

Model K = 11
HD EBC MBC

BIC ∆BIC BIC ∆BIC BIC ∆BIC
PL-ρ1 694.04 17.11 776.13 2.96 499.46 25.56
PL-ρ2 685.85 8.92 804.61 31.44 498.67 24.77
EPL 676.93 0 773.17 0 473.90 0

K = 13
HD EBC MBC

BIC ∆BIC BIC ∆BIC BIC ∆BIC
PL-ρ1 899.63 25.92 1025.71 0 658.44 28.39
PL-ρ2 894.44 20.73 1039.45 13.74 652.15 22.10
EPL 873.71 0 1026.61 0.90 630.05 0

Table 3.2. BIC values resulting from the MLE of the DBmix on the LFPD data with a
varying number G of components, when either K = 11 or K = 13 binding probes are
included in the rankings.

G

1 2 3 4 5 6 7 8 9 10
K = 11 2078.77 2003.65 1940.86 1899.33 1882.32 1863.17 1846.98 1829.81 1817.06 1798.12
K = 13 2700.02 2617.66 2551.38 2512.19 2483.25 2451.38 2421.71 2392.10 2366.78 2342.60

the associated BIC, which persists even when the fitting is carried out up to G = 10
components as shown in Table 3.2. Indeed, fitting DBmix with an increasing
number of groups pointed out a particular feature of the DB, probably due to the
sparse nature of LFPD data. We remind, in fact, that in the present application the
sample size is small w.r.t. to the cardinality (11! or 13!) of the discrete ranking space.
As the value of G in the DBmix increases, some components start to represent just
a single observation. This can be explained, perhaps, by the fact that, once the
modal ranking σ has been fixed, the DB has only one parameter left for fitting
the amount of uncertainty around σ. It follows that for these components the
concentration parameter λ is typically estimated as a very high value. This behavior,
of course, could make the DBmix model not sufficiently parsimonious and suitable
in some sparse-data situations because it could lead to a more sparse clustering of
the observations and to a less enlightening inferential findings.

When stagewise models were fitted to the LFPD data, we found again evidence in
favor of the heterogeneous structure. Since in the comparison between the Kendall
and the Cayley distance employed in the local search step neither of the two metrics
yielded a consistently better solution, we decided to report in Table 3.3 only the BIC
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Table 3.3. BIC values, corresponding differences ∆BIC w.r.t. the best fitting model and
number G of components of the best PLmix-ρ1, PLmix-ρ2, BMmix, PLmix-ρ and
EPLmix fitted to LFPD data for different number K of binding probes included in
the ranking. The smallest BIC and ∆BIC values indicating the best fitted models are
highlighted in bold.

K = 11 K = 13
Model BIC ∆BIC G BIC ∆BIC G

PLmix-ρ1 1964.87 29.10 4 2589.93 71.37 5
PLmix-ρ2 1984.53 48.76 4 2619.60 101.04 4
BMmix 1995.09 59.32 4 2615.45 96.89 5
PLmix-ρ 1969.24 33.47 4 2597.42 78.86 5
EPLmix 1935.77 0 4 2518.56 0 5

values obtained with the Kendall distance. In the case K = 11 all types of mixtures
consistently identify four groups in the sample. When also the control probes are
included in the ordered sequences, five groups are consistently selected with the
only exception of PLmix-ρ2. Bold BIC values in Table 3.3 point out the EPLmix as
the best model. Optimal BIC values of the EPLmix are, in both cases, significantly
smaller than those corresponding to the competing mixtures, as also stressed by
∆BIC values in the same table. Indeed, the outperformance of EPLmix for any
fixed G of the mixture is apparent in Figure 3.5. Hence, the introduction of the
discrete parameter in the mixture component leads to a remarkable improvement of
fit when it is allowed to be variable among groups. Note, in fact, the gap between
the BIC trend associated to the more flexible EPLmix and the one relative to its
restricted version PLmix-ρ. Comparing also the EPLmix with the BMmix, BIC
results apparently show that the larger flexibility provided by the BM does not lead
to an improvement, since with these data the penalization for a larger number of
parameters exceeds the gain in terms of log-likelihood.

The selected EPLmix exhibits a good accuracy in the discrimination of sample
units w.r.t. the real disease state. The two resulting clusterings, in fact, agree with
the most relevant distinction of the real disease state between healthy and unhealthy
patients, as pointed out in Tables 3.4(a) and 3.4(b). Specifically, collapsing the
model-based group membership into the above basic bipartition, we recognize that
healthy subjects are well isolated, with only 1 or 2 false positive cases; for diseased
patients, instead, we have 7 misclassifications in the K = 11 case but only 2 with
the addition of the control spots, see Tables 3.4(a) and 3.4(b). As expected, the
inclusion of the positive and negative controls provided an additional discriminating
power, measured by the increment of the Adjusted Rand Index (ARI) from 0.52 to
0.77. Healthy patients are always modeled by two components in all the fitted
mixtures. This hints at possibly different subtypes of healthy profiles. In fact, we
can easily verify that such subdivision reflects two different absorbance patterns
in cancer-free units, made evident in Figure 3.2 by the green continuous piecewise
linear functions: a first subgroup whose immune defenses essentially did not react at
all to the exposition to the HER2 oncoprotein (lower panel) and a second one with
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Table 3.4. Correspondence between the model-based clustering derived from the MLE of
the EPLmix and the true disease state of the LFPD experimental units: HD = healthy,
EBC = diagnosed with early stage breast cancer and MBC = diagnosed with metastatic
breast cancer. Corresponding values for the Adjusted Rand Index (ARI) based on the
basic healthy/unhealthy bipartition are shown in parentheses.

(a) K = 11 (ARI = 0.52)
Group

Disease state 1 2 3 4
HD 0 2 10 8
EBC 13 12 2 1
MBC 0 15 3 1

(b) K = 13 (ARI = 0.77)
Group

Disease state 1 2 3 4 5
HD 1 10 0 1 8
EBC 12 0 9 7 0
MBC 14 2 0 3 0

some manifest and characterized binding profile (upper panel). On the other hand,
among the components representing diseased patients, the sub-classification between
EBC and MBC is only partially recovered, especially for the latter subgroup. This
is proved by the presence of at least one model-based group entirely composed of
EBC subjects in all the fitted mixtures, whereas MBC patients always belong to
mixed-type components.

The varying correspondence between the real cancer state and the inferred clus-
tering structure confirms the presumed dependence of the classification results on
the adopted reference ranking process ρ. Furthermore, the good agreement obtained
with the EPLmix (Tables 3.4(a) and 3.4(b)) suggests that researchers should not
focus exclusively on differential epitope identification but could extend their anal-
ysis considering also a more general global understanding of differential bindings.
Hence, in order to characterize disease groups w.r.t. ranking profiles, it is inter-
esting to interpret the component-specific modal orderings (Table 3.5), derived by
ordering the corresponding support parameter estimates (Figure 3.6). Results refer
to PLmix-ρ1, PLmix-ρ2 and EPLmix; inferential findings for BMmix and EPL-ρ
were very similar to PLmix-ρ1 and are not shown. Weights and reference order es-
timates of the identified clusters are shown in Table 3.6. Focusing on the analysis
based on 13 binding probes, we stress that in the best fitted models the positive
control probe (Hum 12) repeatedly occupies top positions in the modal orderings of
EBC and EBC+MBC mixture components. We remind that Hum 12 denotes the
absorbance level corresponding to the entire HER2 oncoprotein. Thus, in theory,
its level should reflect the total binding and it is reasonably expected to be higher
than absorbance level detected in limited portions of the oncoprotein. On the other
hand, immunological response in healthy patients may either be unaffected by the
exposition to the HER2 oncoprotein or yield a mild binding. This implies an ex-
changeability of binding probes in the ordering of absorbance levels which is typical
of the UM. These aspects reinforce the presence of Hum 12 in top positions as a
signal that the immunological response actually occurred and it can be reasonably
interpreted as a distinguishing feature of the unhealthy patients. It turns out that
with our wildly fluctuating LFPD data it would not be possible to identify a simple
threshold for the raw (or normalized) binding outcome to discriminate unhealthy
patients. This objective is better achieved using binding profiles based on rankings.
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Table 3.5. Modal orderings derived from the best PLmix-ρ1, PLmix-ρ2 and EPLmix
fitted to LFPD data for a different number K of binding probes included in the rank-
ings. “D.C.” stands for “disease composition” and lists sequentially the number of HD
= healthy, EBC = diagnosed with early stage breast cancer and MBC = diagnosed
with metastatic breast cancer patients in each group. The symbol ∗ indicates mixture
components which are very close to the UM.

K = 11 K = 13
Model g D.C. σ̂−1

g g D.C. σ̂−1
g

PLmix-ρ1 1 (11, 1, 3) (6, 1, 5, 4, 7, 11, 3, 8, 10, 9, 2)* 1 (2, 11, 3) (12, 1, 11, 7, 8, 9, 2, 13, 3, 4, 6, 5, 10)
2 (0, 10, 0) (9, 3, 7, 11, 4, 1, 8, 2, 5, 6, 10) 2 (6, 0, 0) (7, 2, 1, 12, 8, 11, 13, 5, 6, 10, 4, 3, 9)
3 (3, 17, 15) (1, 11, 7, 8, 3, 9, 4, 5, 2, 6, 10) 3 (0, 7, 0) (9, 3, 4, 12, 11, 7, 1, 8, 13, 2, 5, 6, 10)
4 (6, 0, 1) (7, 2, 1, 8, 11, 5, 6, 4, 10, 3, 9) 4 (0, 7, 14) (1, 12, 11, 7, 8, 3, 5, 9, 4, 6, 2, 13, 10)

5 (12, 3, 2) (1, 5, 6, 7, 3, 4, 11, 12, 8, 9, 10, 2, 13)*
PLmix-ρ2 1 (14, 5, 3) (1, 6, 11, 7, 5, 8, 2, 4, 9, 3, 10)* 1 (12, 2, 2) (1, 6, 12, 5, 7, 11, 4, 2, 13, 3, 10, 9, 8)*

2 (6, 0, 1) (7, 2, 1, 8, 11, 5, 6, 3, 4, 10, 9) 2 (0, 15, 0) (12, 9, 3, 7, 4, 11, 1, 13, 8, 2, 5, 6, 10)
3 (0, 12, 15) (1, 7, 11, 8, 3, 9, 4, 5, 2, 6, 10) 3 (1, 11, 17) (12, 1, 11, 7, 8, 3, 9, 5, 6, 4, 13, 2, 10)
4 (0, 11, 0) (9, 3, 4, 7, 11, 1, 8, 2, 5, 6, 10) 4 (7, 0, 0) (7, 2, 1, 12, 8, 13, 11, 5, 6, 3, 4, 10, 9)

EPLmix 1 (0, 13, 0) (9, 8, 1, 3, 11, 7, 2, 4, 5, 6, 10) 1 (1, 12, 14) (12, 1, 11, 7, 8, 3, 4, 9, 5, 6, 2, 13, 10)
2 (2, 12, 15) (1, 11, 7, 8, 9, 3, 4, 5, 6, 2, 10) 2 (10, 0, 2) (5, 2, 11, 4, 3, 6, 10, 7, 8, 9, 12, 1, 13)
3 (10, 2, 3) (5, 4, 11, 1, 6, 3, 10, 2, 9, 7, 8) 3 (0, 9, 0) (9, 12, 11, 3, 1, 4, 7, 2, 13, 8, 5, 6, 10)
4 (8, 1, 1) (7, 2, 1, 8, 11, 5, 6, 4, 10, 9, 3) 4 (1, 7, 3) (12, 9, 1, 11, 13, 3, 8, 7, 2, 4, 5, 6, 10)

5 (8, 0, 0) (11, 2, 1, 6, 12, 8, 13, 5, 7, 10, 4, 3, 9)

Moreover, the combination of Hum 12 with the pattern (Hum 1, Hum 11, Hum 7)
in top positions seems to characterize mixed (EBC+MBC) diseased groups, such
as the first and the fourth components in PLmix-ρ1, the third one in PLmix-ρ2
and the first one in EPLmix. In fact, the protein fragments Hum 1, Hum 11 and
7 were already recognized in Gabrielli et al. (2013) as the relevant epitopes. Re-
ferring to EBC-specific components, similar results are valid for the fragment pair
(Hum 9, Hum 3) which, together with the positive control, occupies the very first
top positions (see for example the third group in PLmix-ρ1 and the second one in
PLmix-ρ2). This means that for some EBC patients the binding reaction mainly
occurs in a different section of the oncoprotein, improving the discrimination of
this subgroup among diseased patients. Relevant findings can be also highlighted
for healthy patients. The absent or negligible immunological response observed for
some of them is well described in the estimated models by the presence of a compo-
nent which is very close to the UM, as shown by the corresponding inferred values
p̂
g
. In this case the modal orderings are poorly representative, so we marked them

with the symbol ∗ in Table 3.5. These UM-like components involve prevalently HD
patients. They are also involved in another more characterized mixture component.
The interpretation of the non-uniform component parameters suggests that some
HD subjects share the epitopes Hum 1 and Hum 7 with other patients but they
also have a distinctive Hum 2 in top positions; Hum 11, instead, appears in middle
positions. We can also look at low absorbance patterns, if bottom ranks can be
regarded as meaningful signatures for the problem at hand. Note, for example, that
while Hum 10 appears consistently in last positions for almost all of the fitted com-
ponents, Hum 9 seems to be a sort of “anti”-epitope signature for HD units. The
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Table 3.6. Mixture weights and reference order estimates of the best PLmix-ρ1, PLmix-ρ2
and EPLmix fitted to LFPD data for a different number K of binding probes included
in the rankings.

K = 11 K = 13
Model g ω̂g ρ̂g g ω̂g ρ̂g

PLmix-ρ1 1 .22 ρ1 1 .24 ρ1

2 .15 ρ1 2 .09 ρ1

3 .53 ρ1 3 .11 ρ1

4 .10 ρ1 4 .31 ρ1

5 .25 ρ1

PLmix-ρ2 1 .35 ρ2 1 .25 ρ2

2 .10 ρ2 2 .22 ρ2

3 .39 ρ2 3 .43 ρ2

4 .16 ρ2 4 .10 ρ2

EPLmix 1 .19 (11, 10, 9, 7, 8, 4, 2, 3, 6, 5, 1) 1 .39 (2, 1, 3, 4, 5, 6, 8, 9, 7, 10, 11, 12, 13)
2 .44 (1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 11) 2 .18 (6, 9, 2, 12, 13, 4, 8, 1, 3, 7, 11, 5, 10)
3 .22 (6, 9, 7, 10, 4, 5, 8, 2, 1, 11, 3) 3 .14 (12, 11, 8, 10, 9, 5, 7, 6, 3, 4, 2, 1, 13)
4 .15 (3, 1, 2, 4, 5, 9, 11, 10, 8, 7, 6) 4 .17 (1, 4, 3, 7, 8, 2, 9, 5, 6, 10, 12, 13, 11)

5 .12 (8, 13, 12, 10, 11, 1, 6, 7, 4, 5, 9, 2, 3)

same role is played by the Hum pattern (Hum 5, Hum 6) for EBC subjects. Another
interesting feature regards Hum 13; it corresponds to the empty phage vector and
hence, theoretically, one would expect it to be associated with bottom ranks. This
is true, instead, for those groups composed for the most part of MBC units (see for
example the fourth component in the PLmix-ρ1, the third one in the PLmix-ρ2 and
the first one in the EPLmix). Therefore, a minimum absorbance level in Hum 13
could be an important feature to discriminate MBC patients, the subgroup which is
only weakly characterized by the present analysis. Similar observations are valid for
the case K = 11 omitting, naturally, Hum 12 and Hum 13. Finally we remark that
the EPLmix, selected as the best model in terms of the BIC, involves 69 parameters
in the case of K = 13.

3.4 Alternative quantitative data analysis

In this section we show that our analysis based on ranked data and the EPL mixture
model compares favorably with a more conventional quantitative data approach. We
implemented the flexible mixture of multivariate normal distributions (MNorm-mix)
with the R package mclust described in Fraley & Raftery (2003).

As urged in Section 3.2, we must preliminarily decide whether there exists a
more appropriate way of transforming and rescaling the original quantitative mea-
sures. Since a consolidated normalization method is lacking for this type of ex-
periments, we worked with 3 alternative reasonable options: original raw data, the
log-transformed absorbances and the rescaled log-transformed absorbances so that
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Table 3.7. Correspondence between the model-based clustering derived from the MLE
of the MNorm-mix and the true disease state of the LFPD experimental units: HD =
healthy, EBC = diagnosed with early stage breast cancer and MBC = diagnosed with
metastatic breast cancer. Corresponding values for the Adjusted Rand Index (ARI)
based on the basic healthy/unhealthy bipartition are shown in parentheses.

(a) Raw LFPD data with 11
Hum (ARI = 0.32)

Group
Disease state 1 2 3
HD 7 9 4
EBC 3 2 23
MBC 9 0 10

(b) Rescaled log-transformed LFPD data with 13
Hum (ARI = 0.88)

Group
Disease state 1 2 3 4 5 6 7
HD 7 11 2 0 0 0 0
EBC 0 0 12 1 10 5 0
MBC 0 0 3 5 0 9 2

the individual average log-absorbance of all the considered spots is null for each
patient. Results derived from the quantitative analysis are very different according
to the measurement scale adopted in the input data. In fact, only with the raw data
the best fitting mixture model provides evidence in favor of an heterogeneous model,
namely a mixture with G = 3 components. However, as shown in Table 3.7(a), the
correspondence with the known disease state is poorer (ARI = 0.32) than the one
obtained with the ranking-based analysis. In all other cases the MNorm-mix model
selected the single component homogeneous model as the best fitting. However, if
the model is forced to be fitted as heterogeneous, then a variable number of groups
is selected, ranging from 4 to 7. Indeed, the best classification is the one obtained
with a MNorm-mix applied to the rescaled log-transformed absorbances of all the
13 fragments. This grouping has a very good agreement with the three disease sub-
groups (ARI = 0.88), as shown in Table 3.7(b). However, we stress that this model
does not represent the best fitting in terms of BIC and yields a more scattered clus-
tering. Moreover, this model requires 117 parameters; hence, it is less parsimonious
and can be more difficult to interpret than the best fitting mixture for ranked data.
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Figure 3.4. Image plots of the first-order marginal matrices for the three groups of patients
in the LFPD study: HD = healthy (left), EBC = diagnosed with early stage breast
cancer (center), MBC = diagnosed with metastatic breast cancer (right). Upper panel
refers to the data with K = 11 protein fragments, whereas lower panel concerns the
case with K = 13 binding probes, including the whole HER2 oncoprotein (Hum 12 =
positive control) and the empty phage vector (Hum 13 = negative control). The Borda
ordering π−1 lists items taken in order from the highest to the lowest mean rank.
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Figure 3.5. BIC trends resulting from the MLE of the PLmix-ρ1, PLmix-ρ2, BMmix,
PLmix-ρ and EPLmix on the LFPD data with varying number G of mixture compo-
nents, when either K = 11 (left) or K = 13 (right) binding probes are included in the
ranking. The symbol W indicates the minimum BIC values for the final selection of the
number of groups.

PLmix − ρ1

Group 1 Group 2 Group 3 Group 4

Hum 1

Hum 2

Hum 3

Hum 4

Hum 5

Hum 6

Hum 7

Hum 8

Hum 9

Hum 10

Hum 11

PLmix − ρ2

Group 1 Group 2 Group 3 Group 4

Hum 1

Hum 2

Hum 3

Hum 4

Hum 5

Hum 6

Hum 7

Hum 8

Hum 9

Hum 10

Hum 11

EPLmix

Group 1 Group 2 Group 3 Group 4

Hum 1
Hum 2
Hum 3
Hum 4
Hum 5

Hum 6

Hum 7
Hum 8
Hum 9

Hum 10

Hum 11

PLmix − ρ1

Group 1 Group 2 Group 3 Group 4 Group 5

Hum 1

Hum 2
Hum 3
Hum 4
Hum 5
Hum 6
Hum 7

Hum 8

Hum 9
Hum 10
Hum 11

Hum 12

Hum 13

PLmix − ρ2

Group 1 Group 2 Group 3 Group 4

Hum 1

Hum 2

Hum 3

Hum 4

Hum 5

Hum 6

Hum 7

Hum 8

Hum 9

Hum 10

Hum 11

Hum 12

Hum 13

EPLmix

Group 1 Group 2 Group 3 Group 4 Group 5

Hum 1

Hum 2
Hum 3
Hum 4
Hum 5
Hum 6

Hum 7

Hum 8
Hum 9
Hum 10

Hum 11

Hum 12

Hum 13

Figure 3.6. Support parameter estimates represented via mosaic plots for the best PLmix-
ρ1, PLmix-ρ2 and EPLmix fitted to the LFPD data. Bar widths are proportional to
group weights. Upper panel refers to the data with K = 11 protein fragments, whereas
lower panel concerns the case with K = 13 binding probes, including the whole HER2
oncoprotein (Hum 12 = positive control) and the empty phage vector (Hum 13 =
negative control).
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Chapter 4

Benterized Extended
Plackett-Luce model for ranked
data

In the light of the approving fitting obtained by the implementation of the novel
EPL to the LFPD data, we considered the possibility to extend further this para-
metric class. The methodological contribution developed in this chapter moves from
merging the EPL with another well-established PL extension, such as the BM. These
models, in fact, describe substantially different but complementary attributes of the
ranking procedure. In fact, selection accuracy and reference order in the ranking
process could be combined to construct a more flexible parametric PL generaliza-
tion, which incorporates both the EPL and the BM as specific parameter settings.
In the following sections we give the formal definition of the new statistical model,
with inferential details for its MLE implementation in both the homogeneous and
heterogeneous population approaches.

4.1 Benterized Extended Plackett-Luce model
The straightforward way to involve the uncertainty related to the item selection
process in the EPL definition given by (1.3.1) is assuming that the probability of a
generic ordering has the following form

PBEPL(π−1|ρ, p, α) = PBENT(π−1ρ|p, α) =
K∏
t=1

pαtπ−1(ρ(t))∑K
ν=t p

αt
π−1(ρ(ν))

π−1 ∈ SK ,

which we name Benterized Extended Plackett-Luce model and indicate in short with
BEPL(ρ,p,α). Note the different effect of ρ and α in the above probabilistic con-
struction: the former determines the order in the sequential normalization of the
support parameters, whereas the latter perturb them. The motivating subclasses
(EPL, BM and PL) are easily recovered with suitable parameter configurations.
Setting αt = 1 for all t, the BEPL becomes the EPL, whereas assuming ρ = e we
obtain the BM. Finally considering jointly such constraints on the dampening and
the reference order parameters and letting only the support parameters vary, the
model reduces to the ordinary PL.
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4.2 MLE of the Benterized Extended Plackett-Luce
model

We first consider the homogenous population case (G = 1). Let BEPL(ρ,p,α) be
the underlying mechanism generating the observed orderings π−1 and implying the
following expression for the log-likelihood

l(ρ, p, α) =
N∑
s=1

K∑
t=1

(
αt log pπ−1(ρ(t)) − log

K∑
ν=t

pαt
π−1
s (ρ(ν))

)
. (4.2.1)

The optimization of the log-likelihood is again based on the iterative MM algorithm
mimicing the approach adopted in Gormley & Murphy (2008a) to infer the BM.
We extend such a procedure with the presence of the reference order parameter
and derive the corresponding estimation formula. The estimation of the contin-
uous parameters, p and α, requires a double minorization step to be applied to
− log

∑K
ν=t pπ−1

s (ρ(ν)) and subsequently to −pαt
π−1
s (ρ(ν)), which have to be interpreted

as function of p and α according to which quantity we want to focus on. For the
support parameters, the surrogate is obtained by exploiting the convexity of both
functions and hence, as seen for the EPL, the supporting hyperplane property. From
Taylor’s first-order expansion one has

− log
K∑
ν=t

pαt
π−1
s (ρ(ν)) ≥ 1− log

K∑
ν=t

pαt
π−1
s (ρ(ν)) −

∑K
ν=t p

αt
π−1
s (ρ(ν))∑K

ν=t p
αt
π−1
s (ρ(ν))

,

where also the term −pαt
π−1
s (ρ(ν)) is in turn minorized with its linear approximation

−pα ≥ −pα − αpα−1(p− p).

Disregarding additive terms not depending on p and plugging-in (4.2.1), the final
auxiliary objective function turns out to be

q =
N∑
s=1

K∑
t=1

αt log pπ−1(ρ(t)) −
N∑
s=1

K∑
t=1

∑K
ν=t αtp

αt−1
π−1
s (ρ(ν))pπ−1

s (ρ(ν))∑K
ν=t p

αt
π−1
s (ρ(ν))

.

Differentiating w.r.t. each pi and equating the partial derivatives to zero, the es-
timation formula for the support parameters at the current iteration of the MM
algorithm can be written as

p
(l+1)
i =

∑N
s=1

∑K
t=1 α

(l)
t ξ

(l)
sti

∑N
s=1

∑K
t=1

α
(l)
t

(
p

(l)
i

)α(l)
t −1

δ
(l)
sti∑K

ν=t

(
p

(l)
π−1
s (ρ(l)(ν))

)α(l)
t

i = 1, . . . ,K,

where

ξ
(l)
sti =

{
1 if i = π−1

s (ρ(l)(t)),
0 otherwise
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and δ(l)
sti =

∑K
ν=t ξ

(l)
sνi corresponds to the binary array already defined in Section 2.2.

Notice that we have replaced with p(l) the quantity p in the previous minorizations.
The presence of the additional binary array ξ(l) is justified by the dampening pa-
rameters which induce the dependence of the numerator of the likelihood on the
stagewise order of selections. Its generic element ξ(l)

sti is the indicator of the event
that unit s has chosen item i at stage t.

Also the dampening parameter estimates are derived applying a double mi-
norization, where the first one is essentially the same step described for the p’s but
with α treated as the variable of interest:

− log
K∑
ν=t

pαt
π−1
s (ρ(ν)) ≥ 1− log

K∑
ν=t

pαt
π−1
s (ρ(ν)) −

∑K
ν=t p

αt
π−1
s (ρ(ν))∑K

ν=t p
αt
π−1
s (ρ(ν))

.

In this case the function −pα is concave in α but we can operate in the following
way: first we bound the convex pα around α with the quadratic function given by

pα ≤ pα + (α− α)(log p)pα + (α− α)2

2 (log p)2,

where (log p)2 ≥ (log p)2pα = d2pα/dα2; then, one simply reverses the inequality

−pα ≥ −pα − (α− α)(log p)pα − (α− α)2

2 (log p)2.

It follows that the formula for the minorizing surrogate function is

q =
N∑
s=1

K∑
t=1

αt log pπ−1
s (ρ(t))

−
N∑
s=1

K∑
t=1

1∑K
ν=t p

α
(l)
t

π−1
s (ρ(ν))

K∑
ν=t

(
(αt − α(l)

t )pα
(l)
t

π−1
s (ρ(ν)) log pπ−1

s (ρ(ν))

+ (αt − α(l)
t )2

2 (log pπ−1
s (ρ(ν)))

2
)
.

Equating the partial derivatives w.r.t. each αt to zero, the updating rule at the
current iteration for the dampening parameters is

α
(l+1)
t = α

(l)
t +

∑N
s=1

∑K
ν=t
(
p

(l+1)
π−1
s (ρ(l)(ν))

)α(l)
t
(
log p(l+1)

π−1
s (ρ(l)(t)) − log p(l+1)

π−1
s (ρ(l)(ν))

)
∑K
ν=t
(
p

(l+1)
π−1
s (ρ(l)(ν))

)α(l)
t

∑N
s=1

∑K
ν=t
(
log p(l+1)

π−1
s (ρ(l)(ν))

)2
∑K
ν=t
(
p

(l+1)
π−1
s (ρ(l)(ν))

)α(l)
t

for t = 2, . . . ,K − 1. Using the original log-likelihood, the current estimate of the
reference order parameter is derived as

ρ(l+1) = arg max
ρ

l(ρ, p(l+1), α(l+1)).
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4.3 MLE of the mixture of Benterized Extended
Plackett-Luce models

Now we contemplate a more flexible mixture model with BEPL components and
discuss the related inferential issues. Augmenting data with the missing group
membership indicators z, one obtains the following expression for the complete
log-likelihood

lc(ρ, p, ω, z) =
N∑
s=1

G∑
g=1

zsg

(
logωg +

K∑
t=1

αt log pgπ−1(ρg(t)) −
K∑
t=1

log
K∑
ν=t

pαt
gπ−1
s (ρg(ν))

)
.

Note that in the present model setup the dampening parameters α are assumed
to be constant among clusters, as in Gormley & Murphy (2008a) and Gormley &
Murphy (2008b). In analogy with the MLE of the EPL mixture described in Section
2.2, the maximization of the likelihood is achieved with the hybrid EMM procedure.
The E-step leads to

Q((ρ, p, ω), (ρ∗, p∗, ω∗)) = E[lc|π−1, ρ∗, p∗, ω∗]

=
N∑
s=1

G∑
g=1

ẑsg

(
logωg +

K∑
t=1

αt log pgπ−1(ρg(t))

−
K∑
t=1

log
K∑
ν=t

pαt
gπ−1
s (ρg(ν))

)
,

where

ẑ(l+1)
sg =

ω
(l)
g PBEPL(π−1

s |ρ
(l)
g , p(l)

g
, α(l))∑G

g′=1 ω
(l)
g′ PBEPL(π−1

s |ρ(l)
g′ , p

(l)
g′ , α

(l))

for s = 1, . . . , N and g = 1, . . . , G. The M-step for the support and dampening pa-
rameters requires the derivation of specific surrogate objective functions according
to the considerations already made for the homogeneous population case. Thus, in
order to avoid redundant details, we only provide the final expressions for the pa-
rameter updates. For further details see Gormley & Murphy (2008a). The updating
of pgi at the current iteration is

p
(l+1)
gi =

∑N
s=1 ẑsg

∑K
t=1 α

(l)
t ξ

(l)
stig

∑N
s=1 ẑsg

∑K
t=1

α
(l)
t (p(l)

gi )
α

(l)
t −1

δ
(l)
stig∑K

ν=t
(
p

(l)
gπ−1
s (ρ(l)

g (ν))

)α(l)
t

for g = 1, . . . , G and i = 1, . . . ,K, with

ξ
(l)
stig =

{
1 if i = π−1

s (ρ(l)
g (t)),

0 otherwise
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and δ(l)
stig =

∑K
ν=t ξ

(l)
sνig as in Section 2.2. The estimation formula for the dampening

parameters shared by the clusters turns out to be

α
(l+1)
t = α

(l)
t +

∑N
s=1

∑G
g=1 ẑsg

∑K
ν=t

(
p

(l+1)
gπ−1
s (ρ(l)

g (ν))

)α(l)
t (log p(l+1)

gπ−1
s (ρ(l)

g (t))
− log p(l+1)

gπ−1
s (ρ(l)

g (ν))

)
∑K
ν=t

(
p

(l+1)
gπ−1
s (ρ(l)

g (ν))

)α(l)
t

∑N
s=1

∑G
g=1 ẑsg

∑K
ν=t
(
log p(l+1)

gπ−1
s (ρ(l)

g (ν))

)2
∑K
ν=t

(
p

(l+1)
gπ−1
s (ρ(l)

g (ν))

)α(l)
t

for t = 2, . . . ,K − 1, whereas for the reference orders in each subgroup one has to
find the solution of the optimization problems given, for g = 1, . . . , G, by

ρ(l+1)
g = arg max

ρg

N∑
s=1

ẑ(l+1)
sg log PBEPL(π−1

s |ρg, p(l+1)
g

, α(l+1)),

which can be possibly solved with a local search. The M-step ends with the com-
putation of the mixture weights estimated as

ω(l+1)
g =

∑N
s=1 ẑ

(l+1)
sg

N
g = 1, . . . , G.
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Chapter 5

Bayesian inference for ranking
models

Within the Bayesian paradigm the unknown parameters of interest are treated as
random entities and the overall information on them produced by the experiment is
expressed in stochastic form through the posterior distribution. This combines the
prior belief on the parameters, formalized through the prior distribution, and the
evidence from the data represented by the likelihood function, which plays also a cen-
tral role in the frequentist approach. In this framework inference is conducted em-
ploying the final (posterior) probability distribution and suitable summaries thereof.

For a large variety of models the exact computation of the posterior is unfeasible.
This fact explains the wide assortment of techniques proposed in the Bayesian liter-
ature to derive an approximate inference. These methods can be roughly classified
into two broad categories: stochastic (sampling-based) and deterministic strategies.
In the former the approximation is carried out simulating from the posterior dis-
tribution and performing inference on the resulting sample. This class includes the
Monte Carlo Markov Chain (MCMC) methods (Chen et al. (2000) and Robert &
Casella (2004)), such as the Gibbs sampling (GS) or the Metropolis-Hastings algo-
rithm, and the more recent Approximate Bayesian Computation (see the seminal
works by Rubin et al. (1984) and Tavaré et al. (1997)), that allows to bypass the
analytic evaluation of the likelihood function for complex models. In the latter the
basic idea is the replacement of the true posterior with a more tractable distribution.
A classical example is given by the Laplace method, which considers the normal ap-
proximation located at the maximum a posteriori (MAP) estimate, and related de-
velopments in the context of latent Gaussian models, such as the Integrated Nested
Laplace approximation described in Rue et al. (2009). The Variational Bayesian
methods, instead, identify the analytic approximation as the member of a prelim-
inarily chosen parametric family such that the Kullback-Leibler (KL) divergence
of the original posterior from it is minimum (Jordan et al. (1999), MacKay (2003)
and Beal (2003)). Reversing the role of the two distributions in the definition of
the KL divergence, one has a different deterministic technique called Expectation-
Propagation algorithm (Minka, 2001). The EP is, in turn, a special case of the
more general Power EP introduced by Minka (2004), proved to be equivalent to the
minimization of the α-divergence in place of the KL measure.
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This chapter contributes with a brief account on the existing Bayesian ranking
models and the proposal of a Bayesian mixture of PL to model partial rankings in
the presence of a group structure. As revealed by the overview in Section 5.1, most
of the above approximating techniques have been explored and implemented also
for the Bayesian estimation of ranking models. In the subsequent sections we will
focus on the recent Bayesian contribution by Caron & Doucet (2012) and, in line
with this work, we will limit our attention to the inference achieved via the MAP
estimation and the GS procedure.

5.1 Review of Bayesian modeling for ranked data
One of the first Bayesian inferential analysis appeared in the ranking literature
concerns the ordered statistics models. Yao & Böckenholt (1999) discuss the dif-
ficulties related to the estimation of the TM parameters, due in particular to the
evaluation of the likelihood, and show that the GS can provide an efficient answer
to high-dimensional integration thanks to the completion with the latent scores in
the model specification. Philip (2000) enlarges further such an approach accounting
for the introduction of individual covariates in the TM through a linear regression
framework. In this regard, Johnson & Kuhn (2013) provide JAGS code (Plummer
et al., 2003) for the implementation of the Bayesian TM. The GS is applied also
in the Bayesian setting for DB models described by Gupta & Damien (2002). The
authors exploit an equivalence relation on SK to facilitate the prior specification for
the modal sequence. In particular, the suggested class of prior distributions makes
use of the Hausdorff distance for subgroups to return constant probabilities over the
equivalence classes. Stagewise ranking models, instead, are considered in Guiver &
Snelson (2009), who derive a deterministic approach to perform Bayesian inference
on the PL. Their method is based on the Power EP algorithm, which simplifies the
treatment of the annoying denominator of the PL likelihood by taking its reciprocal.
As shown by Caron & Doucet (2012), an effective Bayesian PL estimation can be
achieved also by means of a suitable data augmentation approach. We review their
work in great detail in the next section, since it represents the starting point of our
proposal.

Several Bayesian contributions to the ranking literature aim also at addressing
the issue of model-based clustering. Gormley & Murphy (2009) construct a Bayesian
grade of membership model (GoM) for ranked data to derive a soft clustering of
the sample units. Soft-clustering means that each subject belongs to model-fitted
groups probabilistically, rather than in a mutually exclusive way, with individual
membership degrees called GoM scores or mixed-membership parameters. The cru-
cial assumption underlying their GoM model is that mixed-membership parameters
operate at each rank assignment step t rather than at the overall ranking level, as
typically postulated in a standard mixture model. In particular, the probability
that a generic sample unit s selects a certain item at the t-th stage is taken as
the average of the same probability under each subpopulation g weighted with the
individual GoM scores ωs = (ωs1, . . . , ωsG):

P (π−1
s |p, ωs) =

K∏
t=1

G∑
g=1

ωsg
pgπ−1

s (t)∑K
ν=t pgπ−1

s (ν)
.
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The GoM is estimated by Gormley & Murphy (2009) through a Metropolis-within-
Gibbs algorithm. As further attempt to account for sample heterogeneity, one can
mention the recent work by Meilă & Chen (2010), where the mixture is essentially
induced placing a Dirichlet process as prior specification for the GMM parameters.
The resulting model 

F ∼ DP(α, P 0(σ, λ|ν, r)),
(σs, λs) ∼ F,
πs|σs, λs ∼ GMM(σs, λs)

(5.1.1)

is referred to as Dirichlet process mixture model (DPMM) and represents an adap-
tation of the general modeling framework introduced by Lo et al. (1984) to address
ranking data analysis. The authors describe in great detail an efficient GS scheme to
conduct inference on (5.1.1). Since distribution functions sampled from a Dirichlet
process are almost surely discrete, the above DPMM can be interpreted as a count-
ably infinite mixture model. See Neal (2000) for a more transparent equivalent
formulation of (5.1.1) as the limit for G → ∞ of a Bayesian finite mixture model.
The adopted base distribution P 0(σ, λ|ν, r) is proved by Meilă & Bao (2008) to be
the conjugate prior for the GMM. The hyperparameter α, modulating the initial
confidence in P 0, affects the granularity of the mixture. In the present setting, in
fact, the number of clusters is a parameter to be inferred, making the DPMM a
useful tool in those situations where the number of groups is not a priori known.
See, for example, Ali et al. (2010) for an application of (5.1.1) to the CAO data set.
Nonparametric Bayesian clustering via DPMM has been recently proposed also by
Caron et al. (2012) and Caron et al. (2014). In this series of works the generative
model for partial rankings is the extended version of the Plackett-Luce model for
infinite rankings, originally presented in Caron & Teh (2012).

5.2 Bayesian inference for the Plackett-Luce model
In this section we give an outline of the Bayesian approach recently proposed
by Caron & Doucet (2012) to make inference on the PL parameters in the case
of homogeneous population. In their work the PL parametric approach is referred
to as a model for multiple comparisons, to stress the contrast with the BT for
pairwise comparisons.

Let π−1 = {π−1
1 , . . . , π−1

N } be a random sample drawn from a PL, consisting of
N partial top-ns orderings where ns specifies the number of top positions expressed
by unit s in π−1

s = (π−1
s (1), . . . π−1

s (ns)). Hence, in what follows we will consider
observed sequences with unit-dependent lengths, where a full ordering corresponds
to both the special cases ns = K − 1 and ns = K. In fact, once K − 1 items have
been ranked, the last position is automatically determined. Caron & Doucet (2012)
adopt an extended PL definition as sampling distribution, that is

PPL(π−1
s |p) =

ns∏
t=1

pπ−1
s (t)∑ns

ν=t pπ−1
s (ν)

. (5.2.1)

The PL formulation given in (5.2.1) is the one employed in Hunter (2004) to account
for the possible presence of partial top rankings. It exploits the property of internal
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consistency of the PL (Guiver & Snelson, 2009) and leads to a normalization of
the p’s at each stage which is s-dependent, in the sense that it is taken w.r.t. the
items actually ranked in every specific ordinal sequence. This likelihood approach
is different, for example, from the PL specification for top rankings described in
the reference monograph Marden (1995) and in the series of works by Gormley &
Murphy (2006, 2008a,b, 2009), where the support parameter rescaling is constant
over observed rankings and contemplates the whole item set I. It is useful to
know and keep this difference in mind, although in the applications limited to full
rankings it becomes irrelevant. Moreover, in this specific inferential framework
item parameters p are still understood as unknown positive quantities but with no
explicit unit-sum constraint

∑K
i=1 pi = 1. However, we continue to count a total of

K−1 free parameters since the item supports are identified up to multiplication by
a positive constant.

The crucial idea in Caron & Doucet (2012) which leads to an efficient Bayesian
estimation consists in an augmentation step realized with the introduction of con-
tinuous latent variables in the model specification. More specifically, they complete
the sampling space with unobservable variables Y = (Yst) for s = 1, . . . , N and
t = 1, . . . , ns, associated to each entry of the observed matrix, such that

f(y|π−1, p) =
N∏
s=1

ns∏
t=1

fExp

(
yst

∣∣∣∣ ns∑
ν=t

pπ−1
s (ν)

)
, (5.2.2)

where fExp(·;λ) denotes the Negative Exponential density function parameterized
by the rate parameter λ. The parametric assumption (5.2.2) does not alter the
marginal structure of the model but, as detailed shortly, entails decisive facilitations
in deriving closed-forms for both the optimization and the GS algorithm. In this
regard, notice that the rate parameters λst =

∑ns
ν=t pπ−1

s (ν) of the Y ’s correspond
to the sequential normalizations of the p’s, that is the annoying terms of the PL
likelihood. Once the model governing observed and latent variables is specified, a
fully Bayesian approach requires the elicitation of the joint prior distribution for
the unknown parameters p. As prior specification Caron & Doucet (2012) assume
that the support parameters are i.i.d. as a Gamma r.v. implying

f0(p|c, d) =
K∏
i=1

fGa(pi|c, d),

that is the same prior employed in Guiver & Snelson (2009) indexed by the shape
and the rate parameters. The choice of the Gamma is motivated by its conjugacy
with the Gumbel distribution which, as recalled in Section 1.2.2, reduces the TM
to the PL when employed as distribution of the scores. In this setting the complete
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log-likelihood function is

lc(p, y) = log P(π−1, y|p) = log f(y|π−1, p)P(π−1|p)

= log
(

N∏
s=1

ns∏
t=1

(
ns∑
ν=t

pπ−1
s (ν)

)
e
−yst

∑ns
ν=t pπ−1

s (ν) ×
N∏
s=1

ns∏
t=1

pπ−1
s (t)∑ns

ν=t pπ−1
s (ν)

)

= log
N∏
s=1

ns∏
t=1

(
ns∑
ν=t

pπ−1
s (ν)

)
e
−yst

∑ns
ν=t pπ−1

s (ν)
pπ−1

s (t)∑ns
ν=t pπ−1

s (ν)

= log
N∏
s=1

ns∏
t=1

pπ−1
s (t)e

−yst
∑ns

ν=t pπ−1
s (ν)

=
N∑
s=1

ns∑
t=1

(
log pπ−1

s (t) − yst
ns∑
ν=t

pπ−1
s (ν)

)
.

The crucial step in the previous computation is the elimination of the annoying
denominator of the PL likelihood thanks to the assumption (5.2.2).

As first type of inference Caron & Doucet (2012) describe how to achieve the
MAP estimate of the vector p, i.e., the mode of the posterior distribution. In the
presence of the above latent variable model, they construct an EM algorithm to
optimize the posterior distribution where the objective function, differently from
the canonical frequentist implementation, contemplates also the prior information
f0(p|c, d). Explicitly, the E-step of the EM algorithm is given by

Q(p, p∗) = E[lc(p, y)|π−1, p∗] + log f0(p|c, d)

∝
N∑
s=1

ns∑
t=1

log pπ−1
s (t) −

∑ns
ν=t pπ−1

s (ν)∑K
ν=t p

∗
π−1
s (ν)

+
K∑
i=1

((c− 1) log pi − dpi),
(5.2.3)

where ∝ incorporates all additive/multiplicative terms not depending on p. Setting
noninformative hyperparameters values c = 1 and d = 0, expression (5.2.3) re-
duces to the minorizing auxiliary objective function of the MM algorithm described
by Hunter (2004) and aimed at the MLE. Differentiating and equating to zero, at
iteration l + 1 one obtains the following update of the PL parameters

p
(l+1)
i = c− 1 + γi

d+
∑N
s=1

∑ns
t=1

δsti∑ns
ν=t p

(l)
π−1
s (ν)

i = 1, . . . ,K,

where

δsti =
{

1 if i ∈ {π−1
s (t), . . . , π−1

s (ns)},
0 otherwise

and γi =
∑N
s=1 usi with

usi =
{

1 if i ∈ {π−1
s (1), . . . , π−1

s (ns)},
0 otherwise.

The quantity γi denotes the number of sample units who assigned a position to item
i, whereas δsti is the indicator that item i appears in a position not better than t
in the s-th partial ranking.
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Caron & Doucet (2012) detail also the GS to draw a sample from the joint pos-
terior distribution. The algorithm requires the identification of the full-conditional
distributions, which are the distributions of a subset of the unobserved variables
given all the remaining unknown quantities and the data. Notice that the augmented
model representation (5.2.2) determines by construction the full-conditional of the
Y ’s. Moreover, the full-conditionals for the support parameters are still members
of the Gamma family thanks to the conjugate structure, specifically

P(pi|π−1, y, p[−i]) ∝ f0(pi|c, d)Lc(p, y)

∝ pc−1
i e−dpi

N∏
s=1

pusii e−pi
∑ns

t=1 δstiyst

= pc+γi−1
i e−pi(d+

∑N

s=1

∑ns
t=1 δstiyst).

As usual p[−i] denotes the vector p of the support parameters without the i-th
component. In conclusion, at iteration l + 1 the GS proceeds iteratively as follows

- for s = 1, . . . , N and t = 1, . . . , ns sample

Y
(l+1)
st |π−1, p(l) ∼ Exp

(
ns∑
ν=t

p
(l)
π−1
s (ν)

)
,

- for i = 1, . . . ,K sample

p
(l+1)
i |π−1, y(l+1) ∼ Ga

(
c+ γi, d+

N∑
s=1

ns∑
t=1

δstiy
(l+1)
st

)
.

The two estimation procedures can be conveniently combined employing the MAP
solution as initialization of the chain in the MCMC simulation.

In the next sections we will propose the introduction of additional latent vari-
ables in order to suitably generalize the approach by Caron & Doucet (2012) to the
finite mixture context.

5.3 Bayesian mixture of Plackett-Luce models
To our knowledge Bayesian inference of a finite PL mixture for partially ranked
data has not been previously developed in the literature, although a wide variety of
research contexts requires a model-based analysis that accounts for the presence of
differential patterns in the observed sequences. Bayesian PL estimation appeared
so far in the literature is either limited to the homogeneous case (see Guiver &
Snelson (2009) and Caron & Doucet (2012)) or addressed in the mixture context
for an infinite number of items by Caron et al. (2012) with a nonparametric method
based on the DPMM.

5.3.1 Model and prior specification

Let π−1 be a random sample drawn from a PL mixture, in symbols

π−1
1 , . . . , π−1

N |p, ω
i.i.d.∼

G∑
g=1

ωgPPL(π−1
s |pg). (5.3.1)
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Under the finite mixture setup, the contribution (5.3.1) of the generic observation
to the observed-data likelihood can be obtained by marginalization w.r.t. a latent
feature of the s-th sample unit, represented by the unknown group membership
label

zs = (zs1, . . . , zsG)|ω i.i.d.∼ Mult(1, ω = (ω1, . . . , ωG)).

In order to suitably generalize the data augmentation approach in Caron & Doucet
(2012) within the finite mixture framework, we can account for the unobserved
group structure acting on the underlying quantitative mechanism in this way

f(y|π−1, z, p, ω) =
N∏
s=1

ns∏
t=1

fExp

yst∣∣∣∣ G∏
g=1

(
ns∑
ν=t

pgπ−1
s (ν)

)zsg . (5.3.2)

Additionally, we construct the joint prior distribution for the unknown parameters,
in this case p and ω, postulating prior independence

f0(p, ω) = f0(p)f0(ω)

and, as in the homogeneous population context, we justify the choice of both priors
with the conjugate structure. For the support parameters, in fact, we simply extend
the initial distribution in Caron & Doucet (2012), defining for g = 1, . . . , G and
i = 1, . . . ,K

pgi
i.∼ Ga(cgi, dg),

where the assumption that within the same group the p’s are equally distributed is
relaxed. For the mixture weights, taking values in the (G− 1)-dimensional simplex,
we make the standard hypothesis

ω ∼ Dir(α1, . . . , αG).

5.3.2 MAP estimation

In the presence of the latent variables y and z, the complete-data likelihood turns
out to be

Lc(p, ω, y, z) = P(y, π−1, z|p, ω) = f(y|π−1, z, p, ω)P(π−1, z|p, ω), (5.3.3)

equal to the product of the full-conditional (5.3.2) by the standard complete-data
likelihood of a mixture model specification without the vector y. In order to simplify
analytic steps, hereafter we will make frequent use of the following equivalence

G∏
g=1

(
ns∑
ν=t

pgπ−1
s (ν)

)zsg
=

G∑
g=1

zsg

ns∑
ν=t

pgπ−1
s (ν),

which follows from the special binary characterization of the z’s. With simple
computations the factors in (5.3.3) can be rewritten so that a multinomial form in
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the z appears as follows

f(y|π−1, z, p, ω) = f(y|π−1, z, p)

=
N∏
s=1

ns∏
t=1

G∏
g=1

(
ns∑
ν=t

pgπ−1
s (ν)

)zsg
e
−
∑G

g=1 ystzsg
∑ns

ν=t pgπ−1
s (ν)

=
N∏
s=1

ns∏
t=1

G∏
g=1

((
ns∑
ν=t

pgπ−1
s (ν)

)
e
−yst

∑ns
ν=t pgπ−1

s (ν)

)zsg

=
N∏
s=1

G∏
g=1

(
ns∏
t=1

(
ns∑
ν=t

pgπ−1
s (ν)

)
e
−
∑ns

t=1 yst
∑ns

ν=t pgπ−1
s (ν)

)zsg

and

P(π−1, z|p, ω) =
N∏
s=1

P(π−1
s , zs|p, ω) =

N∏
s=1

P(π−1
s |zs, p)P(zs|ω)

=
N∏
s=1

G∏
g=1

(
ωg

ns∏
t=1

pgπ−1
s (t)∑ns

ν=t pgπ−1
s (ν)

)zsg
.

It follows that

Lc(p, ω, y, z) =
N∏
s=1

G∏
g=1

(
ns∏
t=1

(
ns∑
ν=t

pgπ−1
s (ν)

)
e
−
∑ns

t=1 yst
∑ns

ν=t pgπ−1
s (ν)

)zsg
×

N∏
s=1

G∏
g=1

(
ωg

∏ns
t=1 pgπ−1

s (t)∏ns
t=1

∑ns
ν=t pgπ−1

s (ν)

)zsg

=
N∏
s=1

G∏
g=1

(
ωg

(
ns∏
t=1

pgπ−1
s (t)

)
e
−
∑ns

t=1 yst
∑ns

ν=t pgπ−1
s (ν)

)zsg

=
N∏
s=1

G∏
g=1

(
ωg

K∏
i=1

pusigi e
−pgi

∑ns
t=1 δstiyst

)zsg
,

where usi and δsti are the binary indicators previously described. Indicating with
lc(p, ω, y, z) the complete-data log-likelihood, we have

lc(p, ω, y, z) =
N∑
s=1

G∑
g=1

zsg

(
logωg +

K∑
i=1

(
usi log pgi − pgi

ns∑
t=1

δstiyst

))
.

The implementation of the EM algorithm to derive the MAP estimates requires the
iterative maximization of the following objective function

Q((p, ω), (p∗, ω∗)) = Ey,z|π−1,p∗,ω∗ [lc(p, ω, y, z)] + log f0(p, ω),

where in this case the expectation is computed w.r.t. the joint distribution for the
latent variables given by

P(y, z|π−1, p, ω) = f(y|π−1, z, p, ω)P(z|π−1, p, ω). (5.3.4)
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Computing first the expectation w.r.t y, one has

N∑
s=1

G∑
g=1

zsg

logωg +
K∑
i=1

usi log pgi − pgi
ns∑
t=1

δsti∏G
g=1
(∑ns

ν=t p
∗
gπ−1
s (ν)

)zsg
 .

For the expectation w.r.t z it is convenient to rewrite the fractional term as

δsti∏G
g=1

(∑ns
ν=t p

∗
gπ−1
s (ν)

)zsg = δsti∑G
g=1 zsg

∑ns
ν=t p

∗
gπ−1
s (ν)

=
G∑
g=1

zsg
δsti∑ns

ν=t p
∗
gπ−1
s (ν)

and, noting that P(z|π−1, p, ω) in the right-hand side of (5.3.4) is proportional to
P(π−1, z|p, ω), the E-step returns

Q((p, ω), (p∗, ω∗)) =
N∑
s=1

G∑
g=1

ẑsg

(
logωg +

K∑
i=1

(
usi log pgi − pgi

ns∑
t=1

δsti∑ns
ν=t p

∗
gπ−1
s (ν)

))

+
G∑
g=1

(αg − 1) logωg +
G∑
g=1

K∑
i=1

(
(cgi − 1) log pgi − dgpgi

)
,

where

ẑsg =
ω∗gPPL(π−1

s |p∗g)∑G
g′=1 ω

∗
g′PPL(π−1

s |p∗g′)
.

Differentiating w.r.t. each pgi we obtain

∂Q

∂pgi
=
∑N
s=1 ẑsgusi
pgi

−
N∑
s=1

ẑsg

ns∑
t=1

δsti∑ns
ν=t p

∗
gπ−1
s (ν)

+ cgi − 1
pgi

− dg (5.3.5)

and equating (5.3.5) to zero, the updating rule for the support parameters turns
out to be

pgi = cgi − 1 + γ̂gi

dg +
∑N
s=1 ẑsg

∑ns
t=1

δsti∑ns
ν=t p

∗
gπ−1
s (ν)

for g = 1, . . . , G and i = 1, . . . ,K, where

γ̂gi =
N∑
s=1

ẑsgusi.

The optimization of Q((p, ω), (p∗, ω∗)) w.r.t. ω is subject to the canonical constraint∑G
g=1 ωg = 1 and requires the expression of the Lagrangian function L. Discarding

additive terms not depending on ω we obtain

L =
N∑
s=1

G∑
g=1

ẑsg logωg +
G∑
g=1

(αg − 1) logωg − λ

 G∑
g=1

ωg − 1

 ,
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where λ denotes the Lagrange multiplier. Hence,

∂L
∂ωg

= 0 ⇒ ωg =
∑N
s=1 ẑsg + αg − 1

λ
.

Exploiting the constraint, one has λ =
∑G
g′=1 αg′ −G+N and thus the estimation

formula for the mixture weights is

ωg = αg − 1 +
∑N
s=1 ẑsg∑G

g′=1 αg′ −G+N
g = 1, . . . , G.

In conclusion the EM reduces to the following iterative procedure:

Initialization: set starting values p(0), ω(0) for the parameters to be estimated;

Computation: at iteration l + 1, compute until convergence

- for s = 1, . . . , N and g = 1, . . . , G

ẑ(l+1)
sg =

ω
(l)
g PPL(π−1

s |p(l)
g

)∑G
g′=1 ω

(l)
g′ PPL(π−1

s |p(l)
g′ )

,

- for g = 1, . . . , G

ω(l+1)
g = αg − 1 +

∑N
s=1 ẑ

(l+1)
sg∑G

g′=1 αg′ −G+N
,

- for g = 1, . . . , G and i = 1, . . . ,K

p
(l+1)
gi =

cgi − 1 + γ̂
(l+1)
gi

dg +
∑N
s=1 ẑ

(l+1)
sg

∑ns
t=1

δsti∑ns
ν=t p

(l)
gπ−1
s (ν)

.

When flat priors are employed in the analysis, corresponding to fixing cgi = 1,
dg = 0 and αg = 1, such an estimation scheme coincides with the EMM algorithm
in Gormley & Murphy (2006).

5.3.3 Gibbs sampling

The prior configuration described in Section 5.3.1, combined with the evidence
provided by the data, leads to a direct posterior update of the hyperparameters
and, hence, to a sampling scheme with parametric distributions which are simple
to draw from. As in the homogeneous case, the derivation of the full-conditional
distributions requires the complete-data likelihood Lc(p, ω, y, z) detailed in the pre-
vious section. The full-conditionals of the latent component labels are easily derived
noting that

P(z|π−1, y, p, ω) ∝ Lc(p, ω, y, z),
implying the following multinomial structure

P(zs|π−1
s , y

s
, p, ω) ∝

G∏
g=1

(
ωg

K∏
i=1

pusigi e
−pgi

∑ns
t=1 δstiyst

)zsg
.
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The full-conditionals of the support parameters are Gamma with hyperparameters
updated as follows

P(pgi|π−1, y, z, p[−gi], ω) ∝ f0(pgi)Lc(p, ω, y, z)

∝ pcgi−1
gi e−dgpgi

N∏
s=1

(
pusigi e

−pgi
∑ns

t=1 δstiyst
)zsg

= p
cgi+γgi−1
gi e−pgi(dg+

∑N

s=1 zsg
∑ns

t=1 δstiyst),

where

γgi =
N∑
s=1

zsgusi

is the number of units assigned to cluster g who have ranked item i. Also the
full-conditional of the mixture weights turns out to belong to a well-known para-
metric density, thanks to the conjugacy of the Dirichlet prior distribution with the
multinomial model. In fact, one has

P(ω|π−1, y, z, p) ∝ f0(ω)Lc(p, ω, y, z) ∝ f0(ω)P(z|ω)

∝
G∏
g=1

ωαg−1
g ×

N∏
s=1

G∏
g=1

ωzsgg

=
G∏
g=1

ω
αg+

∑N

s=1 zsg−1
g .

Finally, the form of the full-conditionals for the y’s is given by the assumption
(5.3.2). In conclusion, the GS algorithm to approximate the joint posterior distri-
bution P(z, y, p, ω|π−1) consists in performing iteratively the following steps

Initialization: set the total number T of iterations and the starting values y(0),
z(0), p(0) and ω(0) (note that we need starting values only for z and p);

Sampling: at iteration (l + 1) ≤ T , sample

- the mixture weights

ω(l+1)|z(l) ∼ Dir
(
α1 +

N∑
s=1

z
(l)
s1 , . . . , αG +

N∑
s=1

z
(l)
sG

)
,

- for s = 1, . . . , N and t = 1, . . . , ns

Y
(l+1)
st |π−1

s , z(l)
s , p

(l) ∼ Exp

 G∏
g=1

(
ns∑
ν=t

p
(l)
gπ−1
s (ν)

)z(l)
sg

 ,
- for g = 1, . . . , G and i = 1, . . . ,K

p
(l+1)
gi |π−1, y(l+1), z(l) ∼ Ga

(
cgi + γ

(l)
gi , dg +

N∑
s=1

z(l)
sg

ns∑
t=1

δstiy
(l+1)
st

)
,
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- for s = 1, . . . , N

z(l+1)
s |π−1

s , y(l+1)
s

, p(l+1), ω(l+1) ∼ Mult
(
1,
(
m

(l+1)
s1 , . . . ,m

(l+1)
sG

))
,

where

m(l+1)
sg =

ω
(l+1)
g

∏K
i=1(p(l+1)

gi )usie−p
(l+1)
gi

∑ns
t=1 δstiy

(l+1)
st∑G

g′=1 ω
(l+1)
g′

∏K
i=1(p(l+1)

g′i )usie−p
(l+1)
g′i

∑ns
t=1 δstiy

(l+1)
st

.

5.4 Bayesian model comparison
In the estimation procedures previously described, the number G of groups is fixed
a priori. When we perform inference on PL mixtures with alternative values of G,
a method for discriminating among the competing models is needed. Due to the
computational difficulties related to the marginal likelihood-based methods, such as
the Bayes factor, for the selection of the number of groups we rely on two alternative
Bayesian criteria, i.e., the Deviance Information Criterion (DIC) and the Bayesian
Predictive Information Criterion (BPIC). The DIC was originally introduced in the
fundamental work by Spiegelhalter et al. (2002) and is a very popular penalized mea-
sure of fitting for Bayesian model comparison, particularly useful when inference is
carried out with an MCMC sampling scheme. Denoting with D(θ) = −2 logL(θ)
the monotone transformation of likelihood known in the statistical theory as de-
viance, the original version of the DIC described by Spiegelhalter et al. (2002) has
the following expression

DIC = D̄ + pD.

The former term D̄ = E[D(θ)|x] is the posterior expected deviance, interpreted as
a Bayesian overall measure of goodness-of-fit averaged w.r.t. the posterior distribu-
tion, whereas pD is the effective number of parameters of the Bayesian model acting
as penalty term. The penalty pD is computed as the difference D̄ − D(θ̃), where
D(θ̃) is the deviance evaluated at the single point estimate θ̃. In the literature an al-
ternative method to assess model complexity was proposed by Gelman et al. (2004),
consisting in setting pD equal to half the posterior variance of the deviance. Both
computations of the effective number of parameters are justified by the asymptotic
posterior distribution of the deviance, given by

D(θ)|x ∼ D(θ̂ML) + χ2
p∗ ,

where D(θ̂ML) is the ordinary frequentist deviance measure of the goodness-of-fit
and p∗ is the true number of parameters. The former version of the DIC estimates
model complexity relying on the asymptotic posterior mean, whereas the latter
on the asymptotic posterior variance. Once the MCMC sample is available, these
quantities are easily approximated by the empirical mean and variance of the draw-
ings from the posterior distribution of the deviance, that is the plugged-in values
D(θ(l)). The large sample analyses presented in Section 5.7 and 5.8 motivate us
to exploit the above asymptotic result and explore both DIC formulations, indi-
cated respectively with DIC1, based on pD = D̄ − D(θMAP ), and DIC2, based on
pD = VAR[D(θ)|x]/2.
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One aspect often debated on the DIC is its tendency to overfitting due to the
double usage of the observed data. So, we additionally considered the BPIC sug-
gested by Ando (2007), which penalizes the fitting measure D̄ with 2pD.

The optimal model is identified with the one that minimizes the criterion.

5.5 Identifiability
When one adopts an MCMC simulation to derive approximate Bayesian inference
of a mixture model, an annoying identifiability issue can affect the posterior sam-
ple. As emphasized by Koopmans & Reiersol (1950), identifiability is a very general
and crucial issue related to any research context where a parametric modeling is
assumed. The identifiability problem, in fact, concerns the mathematical struc-
ture postulated for the stochastic generating-data mechanism. Although the issue
arises at theoretical level of the statistical analysis with the specification of a cer-
tain distributional law for the observations, the lack of identifiability prevents from
conducting a conclusive inference on the parameters of interest, i.e., from deriving
estimates in a univocal manner. Despite its theoretical and practical relevance,
this subject is often neglected by practitioners. In the following two sections we
limit ourselves to introduce some basic notions and the definition of a specific form
of unidentifiability affecting mixture models, known as label-switching. Finally, in
Section 5.7 and 5.8 we will discuss the implementation of our Bayesian PL mixture
on both simulated and real data, combined with existing alternative methods to
solve the label-switching issue.

Let P = {Pθ(·) : θ ∈ Θ} be a generic statistical model with probability distri-
butions indexed by θ. Before giving the general definition of identifiability for a
parametric model, it is useful to introduce the notion of observational equivalence
for the elements of the parameter space Θ. Adopting the terminology in Rothenberg
(1971) and Paulino & de Bragança Pereira (1994), two parameter configurations θ1
and θ2 are said to be observational equivalent (o.e.) if they determine the same
distribution function for the data, that is

Pθ1(x) = Pθ2(x) x ∈ X . (5.5.1)

This implies that two o.e. parameter values are indistinguishable for any sample re-
alization x because, by construction, the likelihood function turns out to be constant
over these points, i.e., L(θ1|x) = L(θ2|x) for all x. In this condition multiple points
could maximize the likelihood and, basing only on the data, it would not be possi-
ble to identify a unique estimate solution. Definition (5.5.1) induces a equivalence
relation on the parameter space Θ and, hence, a partition into equivalence classes
composed of o.e. parameter points. A parametric model is identifiable if any pair of
parameter values implies different sampling distributions or, in other words, if all
the equivalence classes defined by (5.5.1) are made of singletons. Thus, lack of iden-
tifiability is an intrinsic feature of the model specification and must not be confused
with a deficiency of the data which, as stressed by Paulino & de Bragança Pereira
(1994), can discriminate only among equivalence classes but not within them.

Unidentifiability is often seen as a minor problem in the Bayesian approach where
the introduction of an informative prior over Θ can further discriminate the param-
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eter values and break down the symmetry of the likelihood over the equivalence
classes. In this regard an important point should be stressed: in unidentifiabil-
ity regime the precise measurement principle by Savage (1962) no longer applies, in
favor of a more delicate and less clear updating process. This means that for uniden-
tifiable models the impact of the prior on the inferential results does not vanish as
the sample size increases. Hence, a careful assessment of the actual sample infor-
mation in the Bayesian analysis of unidentifiable models is strongly recommended,
for example by means of a sensitivity analysis (Gustafson, 2010).

Although Bayesian procedures described in Section 5.3.2 and 5.3.3 are effec-
tive tools to model prior knowledge on the parameters, in our analyses we do not
contemplate informative priors. We are mainly interested in making a direct com-
parison with the MLE, taking advantage of assessing estimation uncertainty in a
more natural and possibly less computational demanding way.

5.6 Label-switching
From the above definitions it follows that the presence of a single pair of o.e. pa-
rameter points is sufficient for a model to lack identifiability. However, as clarified
by Paulino & de Bragança Pereira (1994), typical forms of unidentifibility are such
that none of the equivalence classes is singular. Mixture modeling exemplifies very
well this aspect.

Unidentifiability of a mixture model is due to the so-called label-switching phe-
nomenon (LS), that reflects the arbitrary attribution of the indices {1, . . . , G} to
denote the mixture components. The application of a permutation τ ∈ SG of
the G indices to a given parameter point, which corresponds to a relabeling of
the latent classes, does not modify the resulting sampling distribution. Thus, in
a mixture setting any parameter θ has G! − 1 o.e. configurations. Formally, let
θ = ((ω1, η1), . . . , (ωG, ηG)) be the generic parameter vector indexing the mixture
family, where ηg collects the parameters of the g-th group and ωg is the corre-
sponding weight. Using the notation by Jasra et al. (2005), we denote with τ a
permutation of the group labels {1, . . . , G} and with τ(θ) the rearrangement of
the parameter components such that τ(θ) = ((ωτ(1), ητ(1)), . . . , (ωτ(G), ητ(G))). This
formalism allows us to translate the LS in the following invariance condition

f(x|θ) =
G∑
g=1

ωgf(x|ηg) =
G∑
g=1

ωτ(g)f(x|ητ(g)) = f(x|τ(θ))

for all x ∈ X and τ ∈ SG, implying

L(θ|x) = L(τ(θ)|x) (5.6.1)

for all x and τ ∈ SG. Equality (5.6.1) explains the presence of G! symmetric modes
in the likelihood function independently on the realization x of the experiment. If
the same permutation invariance is fulfilled by the prior distribution, no discrimina-
tion is produced within the equivalence classes and then the symmetry transfers also
in the posterior distribution. In this situation, the marginal posterior distribution
of each parameter is the same for all the mixture components and, hence, also the



5.6 Label-switching 63

posterior summaries coincide, nullifying the standard practice to use the posterior
summaries as point estimates. As described in more detail shortly with an example
on synthetic data, these aspects induce important difficulties in the application of
sampling-based methods, such as the MCMC algorithms, for the Bayesian analysis
of mixture models.

Different strategies have been proposed in the statistical literature to solve the
LS issue in the MCMC analysis. Following the review by Jasra et al. (2005), they
can be summarized in three classes: (i) introduction of artificial identifiability con-
straints, (ii) relabeling algorithms (RA) and (iii) employment of label-invariant loss
functions.

The first approach consists in the elicitation of restrictions over the parameter
space, typically order relations, which are satisfied by only one labeling τ of the
mixture components. This action forces the equivalence classes to be singular so
that LS ambiguity no longer persists. The pioneering work in this direction was
Diebolt & Robert (1994), followed by the application of identifiability constraints
in Richardson & Green (1997). Practical implications and criticisms related to
this method are reviewed and discussed in Marin & Robert (2007) and Jasra et al.
(2005). We simply note that in our multivariate setting the specification of artificial
constraints can be very arduous.

The basic idea of the RA is the post-processing, that is the ex-post relabeling, of
the raw MCMC simulations in order to make them lie in a unique posterior mode
among the G! possible modal regions. If the MCMC sample after the burn-in period
has size T , the RA determines a total of T permutations for the rearrangement of
each single drawing of the raw MCMC output. The Pivotal Reordering algorithm
proposed by Marin et al. (2005), for example, switches the elements of each simu-
lated value θ(l) from the joint posterior distribution according to a permutation τl so
that a certain distance from a target mode is minimized. The target mode plays the
role of pivot and can be easily identified, for example, with the MAP solution. Note,
in fact, that the MAP procedure is not affected by the LS issue because a single
point estimate is returned by the optimization algorithm, without keeping track of
the previous explorations of the parameter space. In this sense the posterior mode
represents a naive answer to the LS, able to provide an unambiguously inference
on the G subpopulations. On the other hand, it does not allow us to directly have
any information about estimation uncertainty, which instead can be addressed by
a sampling-based method. Moreover, MAP estimation fails in capturing “genuine”
multimodality in the posterior distribution, that is the multimodality not induced
by the LS, since its output is limited to the single best solution. The class of RA
includes also the popular clustering-oriented method proposed by Stephens (2000),
the Probabilistic RA by Sperrin et al. (2010), the Equivalence Classes Representa-
tives technique suggested by Papastamoulis & Iliopoulos (2010) and the Data RA
recently introduced by Rodríguez & Walker (2014). With the only exception of
the Data RA, they are all implemented in a recently released R package, called
label.switching, that we used in our Bayesian PL mixture applications.

We conclude this brief review of the solutions for the LS mentioning the strategy
based on the decision theoretic approach, where meaningful Bayesian estimates in
presence of LS are obtained with the minimization of the posterior expectation of
label-invariant loss functions. We do not go into further details of such an approach
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Table 5.1. Population scenarios considered in the simulation study and corresponding
inferential results from the MAP estimate and the GS procedure initialized with random
starting values. Posterior means were computed on both the raw and the relabeled
MCMC samples. For Scenario 3 the GS was initialized also with the MAP solution,
whose results are highlighted in grey.

Scenario 1 Scenario 2 Scenario 3
g ω̂g σ̂−1

g p̂g1 p̂g2 p̂g3 p̂g4 g ω̂g σ̂−1
g p̂g1 p̂g2 p̂g3 p̂g4 g ω̂g σ̂−1

g p̂g1 p̂g2 p̂g3 p̂g4

True value 1 .700 (1, 2, 3, 4) .700 .200 .080 .020 1 .700 (1, 2, 3, 4) .700 .200 .080 .020 1 .700 (1, 2, 3, 4) .700 .200 .080 .020
2 .300 (4, 3, 2, 1) .040 .120 .240 .600 2 .300 (1, 4, 3, 2) .600 .040 .120 .240 2 .300 (1, 2, 4, 3) .550 .300 .030 .120

MAP 1 .702 (1, 2, 3, 4) .706 .205 .071 .018 1 .731 (1, 2, 3, 4) .702 .209 .069 .020 1 .961 (1, 2, 3, 4) .654 .252 .061 .033
2 .298 (4, 3, 2, 1) .049 .123 .261 .567 2 .269 (1, 4, 3, 2) .554 .028 .101 .317 2 .039 (1, 4, 3, 2) .499 .002 .003 .496

Raw GS 1 .699 (1, 2, 3, 4) .699 .209 .073 .019 1 .732 (1, 2, 3, 4) .695 .211 .072 .022 1 .515 (1, 2, 4, 3) .569 .251 .079 .101
2 .301 (4, 3, 2, 1) .053 .129 .268 .551 2 .268 (1, 4, 3, 2) .549 .031 .106 .315 2 .485 (1, 2, 4, 3) .534 .274 .091 .102

1 .731 (1, 2, 3, 4) .623 .240 .071 .066
2 .269 (1, 2, 4, 3) .465 .283 .100 .152

Relabeled GS 1 .699 (1, 2, 3, 4) .699 .209 .073 .019 1 .732 (1, 2, 3, 4) .695 .211 .072 .022 1 .868 (1, 2, 3, 4) .670 .231 .064 .035
2 .301 (4, 3, 2, 1) .053 .129 .268 .551 2 .268 (1, 4, 3, 2) .549 .031 .106 .315 2 .132 (1, 2, 4, 3) .433 .293 .106 .168

1 .887 (1, 2, 3, 4) .670 .231 .064 .035
2 .113 (1, 2, 4, 3) .418 .293 .106 .183

but the interested reader can refer to the fundamental works by Celeux et al. (2000)
and Hurn et al. (2003) for both the theoretical and practical aspects related to the
application of the label-invariant loss functions.

5.7 Simulation study

As first evaluation of the estimation procedures proposed in Section 5.3.2 and 5.3.3
we applied them in a simulation study, paying special attention to the behavior
of the GS regarding the exploration of the parameter space and the occurrence
of LS. For this purpose we simulated a sample of N = 300 complete orderings of
length K = 4 from a 2-component PL mixture under three different population
scenarios. True parameter values are reported in the upper-panel of Table 5.1
and describe bimodal populations with varying Kendall distances between the two
modes, specifically equal to dK = 6 in Scenario 1, dK = 3 in Scenario 2 and
dK = 1 in Scenario 3. Adopting uninformative prior densities with hyperparameters
equal to cgi = 1, dg = .001 and αg = 1, we performed for each simulated data
set the MAP estimation through the EM algorithm and the GS initialized with
random starting values. For the third scenario we considered also the initialization
of the GS with the MAP estimate. We run the sampling algorithm for a total
of 22000 iterations but, as usual practice for this approach, we discarded the first
2000 drawings (burn-in period) to avoid undesirable bias of the estimation results
depending on the starting points. The LS problem did not take place at all in
the GS application to the first two scenarios because the sampler explored only
one of the two symmetric modes. In general, in fact, it is more likely that the LS
occurs when the mixture components are not well-separated. This aspect confirms
a well-known feature of the GS, unable to efficiently move over the parameter space
and capture in full the multimodal profile of the posterior distribution. For the
cases of artificial multimodality induced by the LS this behavior is paradoxically
convenient because it allows straightforward inference. As remarked by Celeux
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Figure 5.1. Traceplots and posterior marginal densities for the weights of the 2-component
PL mixture resulting from the raw MCMC sample for the third population scenario.

et al. (2000), in fact, the visit of different symmetric modal regions is unnecessary
from an inferential point of view, since the artificial peaks equivalently characterize
the sampling distribution. On the other hand genuine multimodality, resulting for
example from alternative representations suggested by the data, would not benefit
from the inertia of the sampler in leaving a local mode. In this situation the MCMC
sample could provide a partial picture of the posterior distribution and a consequent
underestimation of the inferential uncertainty. Obviously, an inferential device able
to distinguish between redundant and relevant information is desirable (see Grün
& Leisch (2009) for a proposal in this context). However, the absence of LS for
Scenario 1 and 2 allows us to directly derive meaningful GS estimates, which are
indeed very close to the MAP results and in turn to the true parameter values,
especially for the case of maximum distance between the two mixture components
(Table 5.1).

In the GS analysis of the third scenario the effects of the LS are evident. They
manifest with step-like configurations of the traceplots of the parameters indicating
transitions of the sampler from one mode to another, see Figures 5.1 and 5.2. In
particular, the traceplots point out that almost half of the chain is affected by
LS, leading to marginal posterior densities which pretty much overlap, as shown in
Figure 5.1 and 5.3, and yielding very similar empirical marginal means (Table 5.1).
The LS still occurs when the MCMC chain is initialized with the MAP estimation
but at a reduced extent. The dependence on the initialization reveals the instability
of the LS occurrence for different runs of the MCMC algorithm.

The LS phenomenon clearly invalidates the use of posterior summaries based
on the crude MCMC samples as meaningful estimates. For this reason, we are in-
terested in assessing how alternative relabeling methods act in addressing the LS
issue in the third scenario. The raw MCMC output has been post-processed us-
ing the functions implemented in the R package label.switching. The check of
the traceplots reveals a good performance of all methods in removing the artificial
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Figure 5.2. Traceplots for the support parameters of the 2-component PL mixture result-
ing from the raw MCMC sample for the third population scenario. Solid lines indicate
the true parameter values.

multimodality. All strategies consistently rearranged 49% of the drawings and re-
turned very similar results in terms of adjusted estimates. Posterior means derived
specifically from the application of the algorithm proposed by Stephens (2000) are
shown on the bottom-right of Table 5.1. Analogous considerations are valid for the
results relative to the MCMC chain initialized with the MAP but, in this case, only
21% of the simulations has been permuted (see results in Table 5.1 highlighted in
grey). As consequence of the adjacency of the two mixture components in the third
scenario, we note that the closeness of the adjusted GS estimates to the true values
is slightly reduced than that observed in both Scenario 1 and 2, although the actual
order of the support parameters within each group is fully recovered (Table 5.1).
When the two mixture components considerably overlap, in fact, it is more difficult
to reconstruct the actual group memberships of the sample units and this can have
negative effects on the final estimates. In this regard, the performance of the GS
turns out to be better than the MAP procedure, which indeed corresponds to the
MLE, since the latter completely fails in inferring the minor mixture component.
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Figure 5.3. Posterior marginal densities for the support parameters of the 2-component
PL mixture resulting from the raw MCMC sample for the third population scenario.

The posterior mode, in fact, exhibits the tendency of the optimization algorithm to
privilege the homogenous model, i.e., to allocate the sample units into the major
mode, returning a very poor estimates for the minor subpopulation. This aspect
strongly affects also the criteria for Bayesian model comparison. Table 5.2 shows
that in the third scenario both the DIC and BPIC are minimized by the homo-
geneous model, suggesting a mild evidence of heterogeneity induced by the strong
similarity of the two generating mixture components. For Scenario 1 and 2, instead,
all the criteria recognize the true number of groups.

5.8 Bayesian PL mixture for the HPQ data

In this section we illustrate the Bayesian PL mixture model with an application to
the real data from the Hamburger Preparation Quiz (HPQ), carried out as part of
the Menu Census Survey organized by the Market Research Corporation of America
during the period March 1996−February 1997. The HPQ data set collects N = 594
complete rankings ofK = 5 hamburger cooking methods ordered by the respondents
according to their taste preferences. Hamburger preparation types, labeled from 1 to
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Table 5.2. DIC and BPIC values for the Bayesian PL mixtures with varying number
of components fitted to the simulated data from three population scenarios. Optimal
values of the criteria are indicated in bold.

Scenario 1 Scenario 2 Scenario 3
G DIC1 DIC2 BPIC1 BPIC2 DIC1 DIC2 BPIC1 BPIC2 DIC1 DIC2 BPIC1 BPIC2

1 1769.4 1769.4 1772.4 1772.4 1507.7 1507.7 1510.7 1510.7 1343.1 1343.1 1346.1 1346.1
2 1574.0 1573.9 1581.0 1580.9 1460.1 1459.9 1467.2 1466.9 1348.5 1344.2 1357.1 1348.5
3 1576.8 1575.7 1589.6 1587.4 1462.9 1460.6 1472.9 1468.1 1356.0 1345.3 1372.6 1351.1

Table 5.3. DIC and BPIC values for the Bayesian PL mixtures with varying number of
components fitted to the HPQ data. Optimal values of the criteria are indicated in
bold.

G DIC1 DIC2 BPIC1 BPIC2

1 4764.31 4764.21 4768.36 4768.17
2 3905.99 3907.50 3913.88 3916.89
3 3725.97 3729.36 3741.46 3748.24
4 3644.44 3651.28 3667.13 3680.82
5 3590.88 3587.77 3624.28 3618.06
6 3593.73 3602.82 3645.57 3663.76
7 3598.60 3648.70 3668.07 3768.27

5, are respectively: rare, medium-rare, medium, medium-well and well-done. The
same data set has been previously analyzed by Gormley & Murphy (2010), who
evaluated the possible information contribution provided by the inclusion of socio-
demographic covariates in the mixture setting, and by Bao & Meilă (2008), where
sample heterogeneity was investigated by means of a nonparametric approach. In
our Bayesian analysis we first set uninformative hyperparameters values for the
prior specification (cgi = 1, dg = .001 and αg = 1) and implemented the EM
algorithm to obtain the MAP estimates for the PL mixtures, with a number of
components varying from G = 1 up to G = 7. Obviously, flat priors reduces this
approach to MLE but, in order to gain information on the uncertainty associated
to the Bayesian parameter estimates, we subsequently employed the MAP solutions
to initialize the GS procedure. The marginal traceplots revealed the presence of
LS in the posterior MCMC samples (results not shown). So, as in the simulation
study, alternative relabeling strategies have been applied to the GS outputs. A
total of 15000 iterations, after a 5000 burn-in period, has been considered adequate
for meaningful posterior inference subsequently to a positive graphical inspection
of the algorithm convergence, supported by the good mixing of the traceplots and
the weak sample autocorrelation.

DIC and PBIC values for the models fitted to the HPQ data are shown in Table
5.3 and consistently indicate the Bayesian PL mixture with G = 5 components as
the best fitting model. Corresponding parameter estimates obtained from the MAP
procedure and from the posterior means of the relabeled MCMC samples are shown
in Table 5.4. Support parameter estimates are also represented via mosaic plots
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Table 5.4. MAP estimates and posterior means of the relabeled MCMC samples for the
best Bayesian PL mixture fitted to the HPQ data. Ordered sequences indicate the
component-specific modal profiles, whereas posterior standard deviations are shown in
parentheses.

Estimation g ω̂g σ̂−1
g p̂g1 p̂g2 p̂g3 p̂g4 p̂g5

MAP 1 .412 (5,4,3,2,1) .000 .000 .008 .255 .736
2 .238 (3,2,4,5,1) .006 .262 .594 .132 .006
3 .013 (2,4,1,5,3) .000 .988 .000 .012 .000
4 .177 (4,3,5,2,1) .000 .002 .378 .613 .007
5 .160 (2,1,3,4,5) .316 .454 .220 .009 .001

Relabeled GS 1 .389 (.02) (5,4,3,2,1) .000 (<.01) .000 (<.01) .007 (<.01) .245 (.03) .747 (.03)
2 .234 (.03) (3,2,4,1,5) .008 (<.01) .262 (.04) .594 (.04) .129 (.03) .007 (<.01)
3 .025 (<.01) (2,4,1,5,3) .136 (.06) .384 (.13) .028 (.03) .351 (.10) .102 (.06)
4 .197 (.03) (4,3,5,2,1) .001 (<.01) .010 (<.01) .356 (.05) .596 (.05) .037 (.02)
5 .155 (.02) (2,1,3,4,5) .319 (.05) .450 (.04) .219 (.04) .012 (<.01) .001 (<.01)

in Figure 5.4. It is interesting to compare the optimal Bayesian PL mixture with
the maximum likelihood inference performed by Gormley & Murphy (2010) which,
in the present uninformative prior setting, is very similar to our MAP estimates.
The four main clusters recognized by our Bayesian model essentially agree with
those pointed out by Gormley & Murphy (2010), both for the estimated size and
for the group-specific preference patterns. Nevertheless, some differences can be
highlighted. The final Bayesian model turns out to be more parsimonious because
it identifies a single relevant component (the first one in Table 5.4) to represent
those sample units who strongly prefer the well-done cooking type (item 5) and,
as second best choice, the medium-done hamburger (item 4). Another difference
concerns the group with smaller size, which is labeled as the third cluster in Table
5.4. In Gormley & Murphy (2010) this component is characterized by the exclusive
preference for the medium-rare hamburger (item 2) and a substantial indifference
towards the remaining alternatives. The GS estimates, instead, describe a more
assorted liking profile with larger support to both item 2 and 4. The last choice,
with very low estimated support equal to .028, is the medium cooking (item 3).
Compared to the other clusters, this one exhibits a peculiar pattern since most of
the support is not placed on contiguous/similar levels of hamburger doneness.
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MAP estimation

Group 1 Group 2 Group 3 Group 4 Group 5

Rare
Medium-rare
Medium

Medium-well

Well-done

Relabeled GS

Group 1 Group 2 Group 3 Group 4 Group 5

Rare
Medium-rare
Medium

Medium-well

Well-done

Figure 5.4. Mosaic plots for the support parameter estimates of the best Bayesian PL
mixture fitted to the HPQ data. Bar widths are proportional to the estimated group
weights.
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Concluding remarks and future
developments

This thesis has addressed the problem of parametric modeling for ranking data anal-
ysis. We have contributed some original extensions of the popular and widely-used
Plackett-Luce model, considering different directions and inferential frameworks. As
a first proposal we constructed the novel Extended Plackett-Luce model relaxing
the standard assumption of forward ranking elicitation and detailed its estimation
in the MLE approach. We verified the usefulness of the EPL with a successful
application to the real LFPD data set from a bioassay experiment, comparing its
performance to alternative and more standard probability distributions for rank-
ings. Specifically, taking into account the heterogeneous origin of the sample units,
we considered several parametric models in a mixture model setting. Inferential re-
sults of our mixture modeling approach revealed a good capability of the absorbance
rankings to fit heterogeneous and wildly fluctuating binding data as well as a good
accuracy in discriminating the actual disease state. Interestingly, an almost uniform
component has been estimated from the data. Unlike previous applications in the
literature, where the uniform component was introduced to fit outliers/untypical
observations, for the LFPD data such a component has a precise interpretation in
characterizing a subgroup of healthy patients. The utility of ranking-based anal-
ysis for epitope mapping experiments is reinforced by the possibility to partially
overcome difficulties related to the choice of the preliminary normalization needed
for the raw quantitative absorbance profiles. Additionally, the fitted model turned
out to be more parsimonious than alternative quantitative analyses for the present
multivariate setting and exhibited an interesting interpretation, unaffected by ad-
hoc monotone pre-processing transformations of the original raw data. Hence, even
when quantitative data are available in a bioassay experiment, statistical analysis
of underlying ordinal information may provide a useful and more robust tool for
the description of outcomes. Cluster-specific parameter estimates, characterizing
groups of patients, are very useful to construct epitope mapping profiles. These can
identify protein fragments whose binding can be related to the disease development
and help detect spots relevant for possible classification/prediction purposes. The
significantly improved fit obtained with the more general EPL class could suggest
the absence of a natural and a priori known reference order of the binding mecha-
nism and, in any case, the estimated reference order allowed to better capture the
discriminant information of all positions.

The second proposal to ranking modeling is based on a further extension of the
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EPL combining it with a well-established PL extension called Benter model. We
integrated the two different PL generalizations in a wider parametric family named
Benterized Extended Plackett-Luce model and solved the related MLE issues in
both the homogeneous population case and the finite mixture context.

As a last contribution we have introduced the Bayesian mixture of Plackett-Luce
models and described efficient algorithms to conduct approximate inference. Our
Bayesian approach can be seen as a direct and natural extension of the Bayesian
inference on multiple comparisons recently proposed in the literature, aimed at ac-
counting for unobserved sample heterogeneity. At the same time, this contribution
can be interpreted as the generalization within the Bayesian paradigm of the PL
mixture, whose MLE has been achieved with a hybrid Expectation-Maximization
algorithm and implemented for the analysis of ranking data from several prefer-
ence and political studies. In the Bayesian analysis we additionally faced with the
problem of label switching, that can affect the MCMC procedure and complicate
the interpretation of inferential results, with the application of several relabeling
strategies. The practical relevance of the proposed Bayesian PL mixture has been
assessed with both a simulation study and the identification of group patterns in
the real HPQ data set, concerning taste preferences of respondents towards different
hamburger cooking styles.

A natural direction of development for further work could be the implementa-
tion of the EPL mixture model in the Bayesian framework, in order to allow the
incorporation of pre-experimental information in the ranking analysis. This exten-
sion could benefit from the conjugacy of the PL with the Gamma prior distribution,
already exploited in Guiver & Snelson (2009), Caron & Doucet (2012) as well as in
our Bayesian proposal. A possible device to achieve this goal could be the addition
in the Gibbs sampling scheme described for the PL mixture of a Metropolis-Hastings
step to simulate the discrete reference order based, for example, on a random walk
as proposal distribution.
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