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Abstract 

A detailed knowledge of the atmospheric circulation which characterizes the 
complex Planetary Boundary Layers (PBLs) typical of mountainous regions is of 
great interest for environmental assessment studies. Furthermore, efforts are 
underway in developing wind farms, often located in mountainous areas; efficient 
wind power-plants require detailed and reliable knowledge of wind fluctuations 
near the surface which cannot be learned from regional-scale investigations. The 
Large Eddy Simulation (LES) methodology provides three-dimensional, time 
evolving structure of turbulence and a much more accurate estimate of turbulence 
statistics compared to those from PBL schemes used by operative meteorological 
models. 

In the present work the coherent structures and the turbulent characteristics of a 
complex PBL driven by surface heating, thermally-induced circulations and 
geostrophic wind forcing is investigated by means of the LES technique. The three-
dimensional non-hydrostatic meteorological model WRF is used with a LES grid 
resolution to explicitly resolve the energy-containing turbulent eddies and is 
modified to include a new formulation for the filter width of the subgrid scale 
model. The LES model is coupled with a wall scheme and surface heat and 
momentum fluxes are computed based on Monin-Obukhov surface similarity 
theory. 
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Riassunto 

L’accurata conoscenza della circolazione atmosferica e della complessa struttura 
dello strato limite in zone di montagna riveste una notevole importanza per gli studi 
di impatto ambientale. Inoltre, negli ultimi anni si stanno dedicando molte risorse 
per lo sviluppo e l’installazione di parchi eolici, di sovente localizzati in zone con 
forte presenza orografica. Lo sfruttamento efficiente dell’energia fornita dalle 
turbine richiede una quantificazione affidabile dell’entità delle fluttuazioni del vento 
in prossimità del terreno; tale informazione non può essere fornita da studi a scala 
regionale. La metodologia Large Eddy Simulation (LES) è in grado di riprodurre la 
struttura tridimensionale e non stazionaria della turbolenza atmosferica a differenti 
scale, garantendo statistiche turbolente con un livello di accuratezza notevolmente 
superiore a quello degli schemi di strato limite impiegati operativamente nei modelli 
meteorologici. 

Nel presente lavoro le strutture coerenti e le caratteristiche turbolente dello 
strato limite atmosferico in presenza di orografia variabile sono indagate per mezzo 
della tecnica LES; le forzanti considerate comprendono: il ciclo giornaliero della 
temperatura al suolo, gli effetti della circolazione baroclina risultante e la presenza 
di un vento geostrofico. Il modello meteorologico tridimensionale non-idrostatico 
WRF, modificato con una nuova formulazione per la dimensione del filtro del 
modello di sottogriglia, è utilizzato con una risoluzione adeguata al calcolo esplicito 
delle strutture con contenuto energetico significativo. Il modello è accoppiato ad uno 
schema di parete basato sulla teoria della similarità di Monin-Obukhov per il calcolo 
del flusso di calore superficiale e della velocità di attrito. 
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1 Introduction 

The Large Eddy Simulation (LES) approach is based on the explicit resolution of 
the governing equations for the large energy carrying structures with characteristic 
dimension L, while the effects of the smaller motions on the resolved fields are 
addressed by a subgrid scale (SGS) model. The rationale is that the smaller 
structures, mainly dissipative, can be considered less dependent on the flow 
conditions. The scale separation is obtained applying a low-pass filter to the 
governing equations. The dimensions of the filter, which fall within the inertial 
subrange, are imposed by the numerical resolution ∆. 

In the last 3 decades, owing to a progressive increase of computer power, LES 
has become an important tool for the study of turbulent flows. Since the pioneering 
work of Deardorff (1972), a considerable and increasing effort has been put on the 
development and application of LES models to the study of atmospheric turbulence 
occurring in neutral and convective boundary layers (CBLs) (Moeng 1984; 
Nieuwstadt 1993; Sullivan et al. 1994). The smaller sizes of the energy containing 
eddies, which characterize the stably stratified boundary layer (SBL), require 
significantly more resolution and more sophisticated subgrid scale models. 
Nevertheless LES has provided reliable results also in the study of the SBL, 
particularly for the moderately stable cases (Beare et al. 2006). All these studies were 
conducted assuming simple idealized boundary conditions, such as horizontal 
homogeneity or periodicity. These assumptions are inadequate for the investigation 
of real Planetary Boundary Layers (PBLs), for which surface inhomogeneities along 
with complex orography play a fundamental role in the determination of turbulent 
flow features. Furthermore, in a real PBL one must consider the interaction of 
microscale turbulence with mesoscale motions, which poses the problem of how to 
correctly describe inflow and outflow turbulent conditions (Moeng et al. 2007). 

Nowadays there exists two different approaches with respect to the numerical 
simulation of atmospheric turbulent flows: mesoscale modeling on large (from 100 
km to 3000 km) domains with coarse resolution (1 ≤ ∆ ≤ 50 km) and LES on small 
domains (less than 20 km) with fine resolution (∆ ≤ 200 m). The main difference is on 
the amount and type of resolved turbulence and hence on the SGS models. In the 
region where an important issue arises about the adequacy of existing turbulent 
closures since these are designed to operate at different scales. Wyngaard (2004) 
pointed out that in this region, which he termed “Terra Incognita”, a tensorial 
turbulent diffusivity should be considered. Then, in order to correctly reproduce the 
atmospheric circulation in a real PBL, we need a model able to work both on the 
mesoscale and microscale in a two-way nested framework, verifying the 
performance of the SGS models with respect to the ratio of the intermediate grids. 
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Most severe events of atmospheric pollution occur under weak synoptic systems 
when circulation is mainly driven by local forcing. Mid-latitude zones with complex 
orography are mainly affected by sea-land breeze regimes and slope winds, the 
latter often in association with valley winds. Since many urban sites are located in 
proximity of the coast or in mountainous regions, a detailed knowledge of the 
atmospheric circulation, which characterizes such complex PBLs, is of great interest 
for environmental assessment studies. Furthermore, large urban areas contribute to 
the heterogeneity of heat and moisture surface fluxes and can effectively influence 
the structure of the above boundary layer through the “Urban Heat Island” effect. 
The non-hydrostatic mesoscale model WRF (Weather Research and Forecast) has 
been proved to be a good tool to perform LES studies in a two-way nesting 
framework (Moeng et al. 2007). Following this approach, a first step toward LES of 
real PBLs can be the investigation of local winds under weak synoptic systems, for 
which we can neglect large scale forcing and work on relatively small domains. 
Subsequently we can extend the nested grids to perform a downscaling from the 
mesoscale motions, with the coarser grid designed to acquire the synoptic scale 
boundary conditions from a general circulation model, as in current mesoscale 
studies. 

This work is arranged as follows. Chapter 2 presents a review of the numerical 
techniques used to simulate the atmospheric circulation at different scales. The 
problem of turbulence modeling is briefly discussed and a great emphasis is given 
on the Large Eddy Simulation technique and its differences with respect to the 
Reynolds Averaged Navier-Stokes (RANS) methodology. Chapter 3 briefly 
describes the state of the art of the atmospheric circulation characteristic of the 
mountainous regions. Chapter 4 reports the LES results of the circulation in a valley, 
both the unstable daytime conditions and stable nighttime regime are analyzed. 
Chapter 5 is devoted to the investigation of the influence of the geostrophic wind on 
the thermally driven circulation described in the previous chapters. The work is 
completed by an appendix describing the parametrical schemes used to reproduce 
the effects of the unresolved physics. 
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2 Numerical models for the atmospheric 
circulation 

Numerical models, used for the simulation of the atmospheric circulation 
(meteorological models), have two main purposes: 

• to efficiently and consistently interpolate the measurements of 
meteorological variables taken in a limited number of positions in order 
to obtain information in every location of interest; 

• to forecast the evolution of the system; this can be done for no more than 
a few days, the system having chaotic characteristics. 

In the latter case the measurements allow both the verification of the quality of 
the prediction and the update of the boundary conditions (data assimilation 
process). 

2.1 Scales of motion 
The partial derivative differential equations system upon which every 

meteorological model is based is formed by the balance of mass, momentum, energy 
and scalars (one equation for each scalar considered), along with the diagnostic 
equation of state. 

The independent variables are the spatial coordinates x, y, η and the time t. The 
vertical coordinate η is a function of the hydrostatic pressure (Laprise 1992) which 
assumes different expressions depending on the model considered. The dependent 
variables are the three components of the velocity u, v, w, potential temperature θ, 
density ρ, pressure p, mixing ratios for water in its different states. 

The concentration of the pollutants is assumed to be very low, compared to the 
density of the air (c << ρ); it is then possible to neglect the influence of the pollutants 
on the fluid dynamic field, their concentration is determined offline solving an 
additional system of differential equations (transport and dispersion equations). 

The numerical solution of the differential equations system is obtained after their 
discretization in order to obtain an algebraic equations system. The unknowns are 
the values of the variables in some points of the field; the set formed by these points 
is the computational domain. 

Turbulence plays a fundamental role in the study of the atmospheric circulation. 
A turbulent motion is composed of a wide range of coherent spatial structures of 
different lengths. Grid spacing of the order of a millimeter must be used to solve the 
finer structures; this is the aim of the DNS (Direct Numerical Simulation) technique. 
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Due to the onerous computational demand, DNS is applied only for very limited 
domains. Operational needs require cell dimensions much bigger than the finer 
turbulent structures; in this case it is more appropriate to characterize the 
atmospheric circulation in terms of its mean and second-moment properties. The 
RANS methodology is based on the Reynolds decomposition of the flow variables 
into mean value and turbulent fluctuation. Introducing this decomposition into the 
balance equations and averaging, additional terms arise from the non-linearity of the 
advection terms; the new unknowns are the second-order correlations of the velocity 
components and the cross-correlations between potential temperature and velocity. 
This requires additional equations in order to solve the system. Furthermore, 
transport equations for the second-order correlations contain as unknowns third-
order correlations and, to generalize, the equations for the nth-order correlations 
contain as additional unknowns n+1th-order correlations (turbulent hierarchy). It is 
then necessary to develop closure relations that do not require additional higher-
order variables. 

Like the atmospheric motions, meteorological models can be classified on the 
base of the resolved spatial and temporal scales. 

The GCM (General Circulation Models) works on the planetary scale and their 
domain is the whole atmosphere of the earth. The most widely used are the 
European model developed by ECMWF (European Centre for Medium-Range 
Weather Forecasts), characterized by a horizontal resolution of 0.5° (about 50 km at 
the middle latitudes) and the American model GFS (Global Forecast System) 
developed by NOAA (National Oceanic and Atmospheric Administration), with a 
horizontal resolution of 1°. The GCM are used for climatological analysis and to 
provide medium-range weather forecasts. The initial and boundary conditions are 
provided by the measurements of ground stations, radiosondes and meteorological 
satellites. 

For the investigation of synoptic and mesoscale phenomena (breezes, slope and 
valley winds, urban heat islands) the spatial and temporal resolution of the GCMs is 
not sufficient and a different category of models is necessary: LAM (Limited Area 
Models). These models work with domains of tens to a few thousands of kilometers 
and thus cannot reproduce the atmospheric structures characterized by larger 
dimensions. For this reason, initial and boundary conditions for these models are 
provided by a GCM. An important feature of LAMs is their ability to operate in a 
nested grids framework (nesting), with increasing resolution (Fig. 2.1). 
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Fig. 2.1. Example of horizontal nested grids with increasing resolution. 

This technique allows to extend the simulation to an area wide enough to 
capture the evolution of the synoptic scale and, at the same time, to reproduce the 
mesoscale simulation which requires a finer resolution, optimizing the number of 
grid point and hence the computational time. A typical configuration for a 
mesoscale study is: a coarse grid with a horizontal resolution of 50 km, an 
intermediate grid with a spacing of 10 km and a fine mesh with a resolution of 2 km. 
The vertical grid is non homogeneous, having a finer resolution near the ground 
(vertical stretching). The higher resolution near the surface is justified by the 
consideration that it is in the lower portion of the domain that mesoscale forcings 
develop. 

A first classification of LAMs is based on the hypothesis on the vertical 
distribution of pressure in atmosphere: hydrostatic and non-hydrostatic. The 
hydrostatic hypothesis assumes that vertical acceleration components are negligible 
with respect to pressure gradients; this assumption becomes then inacceptable at 
resolutions higher than 10 km. 

The eddies smaller than the grid dimensions are not explicitly resolved. Their 
influence on the bigger scales is taken into account by means of empirical or semi-
empirical parametric schemes. 

For the investigation of the dispersion of pollutants in urban areas it is necessary 
to use resolutions on the order of a few meters, in order to reproduce the 
atmospheric flows in a specified road or square; this kind of models are called urban 
scale models. The horizontal dimension of the domain varies from tens of meters to 
a few kilometers. These models can be divided into two main categories: CFD 
(Computational Fluid Dynamics), based on the explicit resolution of the balance 
equations and fully parametric models, based on a semi-empirical description of the 
effects of the buildings. 
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2.2 Lateral Boundary conditions 
Mesoscale studies make use of the assimilation of the initial and boundary 

conditions from a global scale model; boundary conditions are generally updated 
with a time frequency of six hours. To avoid the generation of unphysical gradient at 
the boundaries, which might cause numerical instabilities, a relaxation zone of 4 - 5 
cells is embedded where the value of the variables is obtained as a weighted average 
between the assimilated value and the value computed by the model. 

Meteorological models are used for idealized investigations too; in this case the 
boundary conditions are arbitrarily assigned depending on the specific phenomena 
to be reproduced. The value assumed by the variables at the boundaries is then 
specified by functions of time and space. In the following the most widely used 
types of idealized boundary conditions will be briefly discussed. 

• Periodic 
The generic variable ψ is forced to assume the same value at the opposed 
extremes of the domain: 

( ) ( )yψ x,0 =ψ x,L  (2.1) 
for south and north boundaries; 

( ) ( )xψ 0,y =ψ L ,y  (2.2) 
for west and east boundaries. xL  and yL  represent, respectively, the length 
of the domain along x and y. This kind of boundary condition is used for the 
domains that present homogeneity at least along one of the horizontal 
coordinate axis, since it reproduces an infinite domain in that direction. 

• Symmetric, antisymmetric or wall  
Additional cells are introduced, generally three or four, outside of the 
boundary and the values of the generic variable ψ at the same distance from 
the boundary are forced to be the same, i.e. for the west and east 
boundaries: 

( ) ( )b bψ x -x,y =ψ x +x,y  (2.3) 
where the position of the boundary bx  is 0 for the west boundary and xL  
for the east boundary. For the velocity component normal to the considered 
boundary u⊥ , an antisymmetric condition is usually imposed, with null 
values on the considered boundary and of opposite sign outside of it: 

( ) ( )b bu x -x =-u x +x⊥ ⊥  (2.4) 
Conditions for the south and north boundary are defined in the same way. 

From the above definitions, it is evident that every perturbation which 
propagates toward the boundaries is entirely reflected back into the domain; 
if these perturbations and the associated reflections would assume a 
particular relevance, the solution would be strongly affected by the presence 
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of the boundaries even in the middle of the domain. For this reason this kind 
of boundary conditions are also called wall boundary conditions. 

• Radiation or open 
The aim of this kind of conditions is to allow the perturbations propagating 
toward the boundaries to cross them, thus reducing (virtually eliminating) 
the reflections. This is obtained substituting, in the nodes located on the 
boundaries, the momentum balance equation for the normal component of 
velocity with the relation: 

f
u u+c =0
t x
⊥ ⊥∂ ∂

∂ ∂  
(2.5) 

which states that the perturbation of u⊥ would cross the boundary with a 
phase speed fc . The remaining variables are kept equal to their original 
values; an alternative is to impose their gradients along the direction normal 
to the boundary are zero. 

The key for a strong reduction of the reflections is a correct choice for fc ; a 
number of methods have been proposed in literature for the determination 
of this parameter. Orlanski (1976) assumes that it is possible to measure the 
phase speed of the outgoing perturbations just before they reach the 
boundary; the solution at time t - 1 in the cell preceding the boundary is 
then used to compute fc : 

b

f
x -Δx,t-Δt

u uc =-
t x
⊥ ⊥∂ ∂ 

 ∂ ∂   
(2.6) 

Klemp and Wilhelmson (1978) proposed to evaluate fc  as the sum of a 
constant c and the speed u⊥ : 

fc =c+u⊥  (2.7) 
c is the maximum value of the phase speed of the internal waves: 

zNLc=
π  

(2.8) 

where N is the Brunt-Väisälä frequency and zL  is the vertical extension of 
the domain. 

2.3 Turbulence closure for RANS models 
Turbulence closures models can be organized on the basis of the maximum 

order of the correlations explicitly resolved and the number of transport equations 
introduced to model the higher order moments. 
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2.3.1 Eddy viscosity models 

This class of models assumes that the characteristics of a turbulent flux are 
directly related to the gradients of the components of the mean velocity and 
temperature. Correlations of second and higher orders are modeled. 

2.3.1.1 Algebraic models 

The correlations for the three components of velocity fluctuations can be 
expressed by the symmetric second-order Reynolds tensor i ju u′ ′ . The simplest 
closure, proposed by Boussinesque, relates Reynolds tensor to the gradients of the 
mean velocity by a turbulent viscosity coefficient Tν  which is a specific characteristic 
of the flow (hypothesis of Boussinesque): 

ji
i j T

j i

uuu u =- +
x x

 ∂∂′ ′ ν   ∂ ∂   
(2.9) 

In the kinetic theory of gases the molecular viscosity of a fluid is proportional to the 
product of the mean free path of a molecule times its mean velocity; similarly the 
turbulent viscosity can be expressed as the product of a characteristic length (which 
represents the dimension of the eddies responsible of the momentum transport) 
times a velocity scale. 

The cross-correlation of velocity and potential temperature can be expressed by a 
first-order closure: 

∂′ ′
∂j θ

j

θu θ =-K
x

 (2.10) 

where θK  is chosen after a calibration with atmospheric measurements. 

Algebraic models use for the computation of Tν  only algebraic expressions, without 
any transport equation; hence they are models of order 1. The Prandtl model is one 
of the simplest; it assumes a turbulent current with plane geometry and the 
maximum gradient of velocity normal to the mean flow direction. Consider the 
parcel of fluid being translated, by the effect of turbulence, of a distance ml  from its 
original position along the direction of the mean gradient. The conservation of 
momentum allows approximating the variation of velocity of the parcel by a Taylor 
expansion: 

m
uu =l
z

∂′
∂  

(2.11) 

where u  is the mean velocity. The components of the diagonal of the Reynolds 
tensor 2

iu′  can be expressed by: 

2
2 2

i m
uu =l
z

∂ ′  ∂   
(2.12) 

If we assume the proportionality between i ju u′ ′  and 2
iu′ , then: 
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∂ ∂ ∂′ ′ = −ν ≈
∂ ∂ ∂

2
i j T m

u u uu u l
z z z

 (2.13) 

and: 

2
T m

ul
z

∂
ν ≈

∂  
(2.14) 

In the viscous sublayer the dimensions of the eddies are limited by the presence of 
the ground and the mixing length ml  is given by: 

ml =kz  (2.15) 
where k = 0.4 is the von Kármán constant. 

Above the viscous sublayer ml  is given by: 

m
k zl =cδtanh
c δ

 
 
   

(2.16) 

where c ≅ 0.085 is an empirical constant and δ is the boundary layer thickness. 

2.3.1.2 One-equation models 

These models are based on the definition of the scale velocity as a function of the 
turbulent kinetic energy (TKE) q ; an additional transport equation is then solved: 

tur tur tur
Dq =P +G +T -
Dt

ε
 

(2.17) 

− The production term turP  is related to the transfer of energy from the mean 
flow to the turbulent fluctuations: 

i
tur i j

j

uP =-u u
x

∂′ ′
∂  

(2.18) 

− The production term turG  expresses the variation of kinetic energy due to 
buoyancy forces: 

tur i 3i
0

g
G = θ u δ

θ
′ ′

 
(2.19) 

− The transport term turT  can be written in divergence form: 

{tur j i
j 0 jI

II III

q1T = -qu - p u +
x ρ x

 
 ∂∂ ′ ′ ′ ν

∂ ∂ 
 
 

14243 123
 

(2.20) 

turT  contains the contributions to the redistribution of turbulence energy by 
velocity fluctuations (I) and by pressure fluctuations (II); furthermore, in 
proximity of the walls the transport is also influenced by molecular viscosity 
effects (III). 

− The dissipation ε is given by: 
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2

i

j

u=
x

 ′∂
ε ν  ∂   

(2.21) 

This term represents viscous dissipative phenomena active at the small 
scales. 

Equation (2.17) represents the transfer of energy from the larger to the smaller 
scales, according to the Kolmogorov theory. The turbulent kinetic energy associated 
to the dissipative scales, neglecting the contribution from the transfer of energy 
toward the larger scales (inverse cascade), is a function of the rate of dissipation ε 
and the integral length scale fL  only. The dimensional analysis gives: 

[ ]
2 2

β β
f 2 3

L Lq = ε L = = L
t t

α

α    
     

     
(2.22) 

( )
2
3

fq= εL  (2.23) 

Hence ε can be expressed by the closing relation: 
3
2

f

q= Lε
 

(2.24) 

The term turT , neglecting the transport due to molecular viscosity effects, can be 
modeled by a gradient diffusion approach: 

T
tur

j

ρ qT =
Pr x

ν ∂
∂  

(2.25) 

Prandtl number is generally assumed to be 1 in atmosphere. 

The eddy viscosity coefficient is then given by: 

T μ= qLν  (2.26) 
The one-equation models assume that the length scales μL  and fL  are proportional 
and given by: 

μ 1L = 2a kz  (2.27) 

( )
3-
2

f 1L = 2a kz  (2.28) 

where 1a = 0.15, determined by a comparison with atmospheric measurements. 

The cross-correlation ′ ′ju θ  is given by (2.10), where θK  is assumed to be 
proportional to the eddy viscosity coefficient: 

νT
θK =

Pr
 (2.29) 
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2.3.1.3 Two-equation models 

This category introduces, along with the turbulent kinetic energy equation, an 
additional transport equation for the scale turbulent variable Ψ: 

ki T
Ψ1 i j Ψ2 k 3k Ψ3 Ψ4

j 0 k j Ψ j

g uuDΨ Ψ Ψ= c -u u +c θ u δ +c q -c + ρ
Dt x θ x q x x

      ∂∂ ν∂ ∂′ ′ ′ ′ ε        ∂ ∂ ∂ σ ∂        
(2.30) 

where Ψic  are empirical coefficients to be determined on the basis of experimental 
measurements. Ψσ  is the turbulent Prandtl/Schmidt number for the variable Ψ; the 
meaning of this parameter changes whether the thermal diffusivity (Prandtl number 

Pr= ν
κ

, with ν  kinematic viscosity and κ thermal diffusivity) or the molecular 

diffusivity (Schmidt number Sc=
D
ν , with D molecular diffusivity) prevails. 

The main reasons upon which the scale turbulent variable is chosen are: 

- ability to solve directly the equation of transport for characteristic turbulent 
scale variable; 

- the scale variable should be chosen in order that its boundary conditions can 
be easily specified. 

The most widely used two-equation model consider the turbulent kinetic energy 
dissipation term ε as the additional scale variable; hence this model is called k-ε, 
from the original nomenclature that called k the turbulent kinetic energy. 

The transport equation for ε is: 

ki T
1 i j 2 k 3k 3 4

j 0 k j j

g uuD = c -u u +c θ u δ +c q -c + ρ
Dt x θ x q x xε ε ε ε

ε

      ∂∂ νε ε ∂ ∂ε′ ′ ′ ′ ε        ∂ ∂ ∂ σ ∂        
(2.31) 

where 1c =1.44ε , 2c =0.8ε , 3c =0.33ε , 4c =1.92ε , =1.3εσ . The term w θ′ ′  is given by 
(2.10). 

The relation for the eddy viscosity comes from dimensional analysis: 
2

T μ
q=cν
ε  

(2.32) 

with μc =0.09 . 

The generic variable Ψ can be expressed as a function of q  and ε: 

m nΨ=q ε  (2.33) 
The eddy viscosity can thus be expressed as a function of Ψ: 

m2+
n

T μ 1
n

q=c
Ψ

ν

 
(2.34) 
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We can write the transport equation for the generic turbulent scale variable in the 
same form of (2.17): 

m n
m n-1 m-1 n

1 tur tur Ψ1 tur
Dq qDΨ DΨ D DΨ= + =q n c P +mq P +....=c P +...

Dt D Dt Dq Dt q qε

εε ε
ε ε

ε  
(2.35) 

The coefficients Ψic  are given by: 

Ψi ic =m+ncε  (2.36) 
Table 2.1 summarizes the main characteristics of the most widely used two-equation 
schemes. 

Model Ψ Unit of Ψ 

k – ε ε 2 -3m s  
 

k – ω ω=
q
ε  -1s    

k – τ 
1=
ω

τ  [ ]s  

k – L 
3
2qL=

ε
 [ ]m  

k – kL 
5
2qkL=qL=

ε
 

3 -2m s    

Table 2.1. Two-equation models with different additional prognostic variable Ψ. 

2.3.2 Reynolds-stress models 

This category of models overcomes the approximation of the Boussinesque 
hypothesis directly solving transport equations for the components of the stress 
tensor i ju u′ ′ ; only third-order and fourth-order correlations undergo modeling. The 
main advantage of this methodology lies on the fact that the flow is less influenced 
by higher order statistical moments. Since the Reynolds tensor is second-order and 
symmetric, six differential equations are to be solved and, consequently, the terms to 
be modeled increase. On one hand, this gives the opportunity to model more 
accurately the physics of turbulence but on the other this modeling can be very 
difficult for some kind of flows. Furthermore, numerical problems can arise from the 
strong coupling of the equations of the system and a significant amount of 
computational power is needed with respect to the eddy viscosity models. 

2.4 Large Eddy Simulation 
Turbulent fluxes are composed by coherent spatial structures whose dimensions 

are distributed over a wide spectrum of length scales. The larger structures are the 
foremost responsible for the transport processes, while the smaller scales are mainly 
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involved in the viscous dissipation of kinetic energy. The process can be viewed as a 
cascade of energy from the larger eddy structures, characterized by the integral 
length scale fL , to the Kolmogorov microscale η. 

This mechanism is governed by the Reynolds number, through the relation: 
3-
4

f

=Re
L
η

 
(2.37) 

The large structures, more energetic, are characterized by a marked anisotropy 
and a strong dependence on the flow type; the microstructures are instead 
essentially independent from the boundary conditions and mostly isotropic. From 
(2.37), the separation between microscale and macroscale is more evident for high 
Reynolds numbers. 

Applying the Fourier decomposition to the dependent variables in the Navier-
Stokes equations it is possible to analyze the spectral density of the turbulent kinetic 
energy E as a function of the wavenumber k (Fig. 2.2). Higher wavenumbers 
correspond to smaller structures. It is evident that lower energy content is associated 
to the smaller structures. The region of the spectrum with an approximately linear 
shape, called inertial subrange, divides the dissipative microstructures from the 
large eddies connected to turbulent transport; in this range of wavenumbers the 
energy flux toward the Kolmogorov microscale equals the dissipation rate ε. The 
Kolmogorov theory predicts for the energy spectral density the relation: 

( )
2 5-
3 3E k = ε kα  

(2.38) 

where α = 1.5. 

 
Fig. 2.2. Turbulent kinetic energy spectral density: the -5/3 linear slope in the log-log plot 

delineates the inertial subrange. 

The LES methodology relies on the explicit resolution of the governing equations 
only for the structures larger than a chosen dimension; the influence of the smaller 
subgrid scales on the resolved field is modeled. The separation between resolved 
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and subgrid scales results from the application of a low-pass filter (Nieuwstadt 
1990). The generic variable ( )f ,tx  is thus decomposed in a filtered component 

( )f ,tx  and a residual. The filtering operation can be expressed mathematically by 

the convolution between the variable and the filter ( )G ,− Λx ξ : 

( ) ( ) ( )
+∞

−∞

= − Λ∫f ,t G , f ,t dx x ξ ξ ξ  (2.39) 

where Λ is the filter width. 

The most widely used filter types are: 

− box or top hat: 

( ) 3

1     ,    x-ξ
G x-ξ, = 2

0        ,    altrove

Λ ≤Λ Λ
  

(2.40) 

− sharp cutoff, defined in Fourier space: 

( ) 1    ,    k
G k, =

0    ,    altrove

π ≤Λ Λ
  

(2.41) 

− gaussian, defined in Fourier space: 

( )
2 2k-
4G k, =e

Λ

Λ  
(2.42) 

The filters can be represented both in the physical and in the Fourier space (Fig. 2.3). 

 
Fig. 2.3. Representation of different filters for the LES in physical and Fourier spaces. 

For a compressible fluid it is convenient to decompose the turbulent variables, based 
on Favre filtering (Erlebacher et al. 1992): 
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( ) ( ) ( )′%f ,t =f ,t +f ,tx x x  (2.43) 
The Favre filter is defined by: 

% ρff=
ρ

 (2.44) 

where the explicit space and time dependence of the variable has been omitted. 

The main difference between LES and RANS techniques relies in the fact that, while 
in the Reynolds decomposition the average of the fluctuating component is zero, in 
the LES we have: 

° ( )f , t 0′ ≠x  (2.45) 
thus: 

( ) ( )f , t f , t≠x x%% %
 (2.46) 

Neglecting Coriolis terms and taking into account the Boussinesque 
approximation, the filtered governing equations for dry atmosphere are: 

 
  
 

% γ

d
0

0

R θp=p
p

 (2.47) 

( )∂∂
+

∂ ∂

% i

i

ρuρ =0
t x

 (2.48) 

( ) ²( )∂ ∂τ∂ ∂∂π
β +

∂ ∂ ∂ ∂ ∂

% %% %%
2

i j iji i
i3 i2

j i j j

ρu uρu u+ =- +g ρθδ + μ +F
t x x x x

 (2.49) 

( ) ²( )∂∂ ∂ ∂
∂ ∂ ∂ ∂

%% % %2j j
p p p θ2

j j j

ρu θρθ h θc +c =c +κ +F
t x x x

 (2.50) 

where ijδ  is the Kronecker operator, p0 is the reference pressure, Rd = 2/7cp is the 
gas constant for dry air, γ = cp/cv = 1.4 is the ratio of the heat capacities for dry air, cp 
= 1004.5 J K-1 Kg-1 is the heat capacity at constant pressure, β is the thermal 
expansion coefficient, κ the thermal conductivity and μ is the dynamic viscosity. The 
terms Fi represent momentum forcing and surface friction, Fθ is the thermal forcing. 
The remaining terms are defined by: 

π ηkk
1=p+
3

 (2.51) 

ij ij kk ij
1=- - δ
3

 τ η η 
   

(2.52) 

² ² ²( )′ ′ ′ ′%%j j j jh =-ρ u θ -u θ-u θ  (2.53) 

² ² ²( )′ ′ ′ ′% %ij i j i j i jη =-ρ u u -u u -u u  (2.54) 
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The terms ijτ  and jh  represent the influence of the subgrid scales on the resolved 
field: again the above equations must be closed through parametric schemes, like for 
the RANS models. 

It results, from the discussion above, that the main advantage of the LES 
methodology relies in its ability to model only the small scales. The parameterization 
is then easier, since the subgrid scales can be considered almost independent from 
the flow conditions. Furthermore, a higher energetic content is generally resolved 
and the influence of the subgrid contributions on the resolved scales is less 
important than with the RANS technique. Nevertheless, it should be noted that for 
the flows characterized by small scale forcings the LES technique is not efficient 
since in this case the subgrid scale modeling depends significantly from the flow 
conditions. Examples of situations where the LES is not recommended include: wall 
turbulence, where the small structures are highly energetic and anisotropic and 
turbulent combustion, where molecular diffusion and chemical reactions are 
important. 

The choice of the filter width Λ is a fundamental step in the LES investigations. 
Usually this parameter is chosen to be proportional to the spatial resolution h, thus 
depending on the characteristics of the flow. A more rigorous method for the 
definition of Λ is the so-called adaptative LES (Pope 2004). The method is based on 
the definition of a measure ( )M , tx  for the resolved turbulence, as the ratio between 

the subgrid scale turbulent kinetic energy ( )q , t′ x  and the total energy (including the 

resolved component ( )q , tx% ): 

( ) ( )
( ) ( )

q ,t
M ,t =

q ,t +q ,t
′

′
x

x
x x%  

(2.55) 

For a DNS M = 0, while for a RANS M = 1; a decrease of M corresponds to an 
increase of the resolved energy and of the number of turbulent structures explicitly 

represented. Chosen a threshold value Mε  for M and a fixed h
Λ

 ratio, it is possible to 

refine the mesh in order to have in every region of the domain: 
( ) MM ,t ≤ εx  (2.56) 

The choice M 0.2ε = , for example, ensures the explicit resolution of the 80% of the 
turbulent kinetic energy. 

2.4.1 Eddy viscosity subgrid scale models 

The LES subgrid scale schemes can be grouped into two main categories: eddy 
viscosity models and scale similarity models. The formers assume the 
proportionality between the subgrid strain tensor ijτ  and the resolved strain tensor 

ijS . The latter are based on the strong analogy between the contiguous scales in the 

wavenumber space; in this case, ijτ  is expressed as a function of a tensor obtained 
by multiple filtering of the resolved field. 
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We will focus only on the eddy viscosity models. The subgrid parameterization 
models essentially viscous dissipative phenomena; these processes can be described 
by a gradient diffusion approach: 
τ νij LT ij=-2 ρS  (2.57) 

∂
ν

∂

%
j LH

j

θh = ρ
x

 (2.58) 

with: 
 ∂∂
  ∂ ∂ 

%% ji
ij

j i

uu1S = +
2 x x

 (2.59) 

The various models differ for the expressions used for LTν  and LHν . 

One of the first eddy viscosity models, still widely used, was developed by 
Smagorinsky (1963); it assumes that the eddy viscosity coefficient LTν  is 
proportional to the dissipation ratio ε, this being locally and instantaneously 
balanced by the shear production of the subgrid turbulent kinetic energy ij ijS−τ , 
which is the energy transferred from the resolved to the subgrid scales. From 
dimensional analysis it results: 

4
3

LT =C
1
3ν ε Λ  

(2.60) 

imposing the local equilibrium between production and dissipation: 
ij ij LTS S2ε = −τ = ν  (2.61) 

combining (2.61) and (2.60): 
2

LT =l Sν  (2.62) 

where ij ijS= 2S S . The length scale l is related to the filter width Λ, which is in turn 

a function of the grid cell dimensions: 
sl=C Λ  (2.63) 

The non dimensional parameter 
3
4

sC C=  is the ratio between the filter width and the 
characteristic dimension of the cell; its value depends on the type of the filter. For 
the top hat filter Nieuwstadt (1990) suggested sC 0.23= . 

The coefficient LHν  is usually assumed proportional to the ratio between LTν  and 
the turbulent Prandtl number: 

LT
LH

T

=
Pr
ν

ν
 

(2.64) 

The values of TPr  in atmosphere (Eidson 1985) usually lie in the interval 1 1;
3 2

 
 
 

. 
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Smagorinsky’s hypothesis of balance between shear production and dissipation 
is not acceptable for buoyancy-driven flows. A possible solution is to introduce an 
additional prognostic equation for the subgrid-scale turbulent kinetic energy e 
(Moeng 1984), like in the RANS one-equation models. Moeng’s original formulation 
considered an incompressible flow; here the transport equation has been rewritten to 
include compressibility effects, consistently with the Favre averaging defined in 
(2.44): 

( ) ±( ) ± ± ( )²′ ′∂∂∂ ∂
′ ′ ′ ′

∂ ∂ ∂ ∂

     
 
 

% % i 0i i
i j 3

i j j

u e+ p ρρeuρe u g
+ =ρ -u u + u θ + -ε

t x x θ x
 (2.65) 

The downgradient diffusion assumption can be used to model the pressure 
correlation and turbulent diffusion term: 

( )² ∂
′ ′

∂
i 0 LT

j

e
u e+ p ρ =-2ν

x
 (2.66) 

Neglecting the energy contribution from the inverse energy cascade we can express 
the dissipation ε as a function of the filter width Λ: 

3

2
εC e

ε=
Λ

 (2.67) 

with 
( )k

ε k

0.93-1.9C l
C =1.9C +

Λ
. 

The expression for the length scale l differs for positive and negative stratification: 

2

2

  
emin Λ ,  0.76        for    N >0

Nl=

Λ                                     for    N 0

  
  

   


≤

 (2.68) 

where the Brunt-Vaisälä frequency is defined by 2 g θ
N =

θ z

∂

∂
. 

The formulation (2.68) implies, for stable regimes, l < Λ near the surface, where the 
local potential temperature lapse rate (and hence N) is larger. This is consistent with 
the presence of smaller scales in the wall region (Sagaut 2006). 

The turbulent viscosities νLT and νLH are modeled with: 

k

t

LT LH LT
1

ν =C l e ;    ν =ν
Pr

 (2.69) 

with kC = 0.15. The inverse turbulent Prandtl number is a function of the ratio 
between the length scale and the filter width: 
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t

1 2l
=1+

Pr Λ
 (2.70) 

Near the ground, due to the importance of viscous effects, the characteristic 
dimensions of the eddies become smaller and their order of magnitude can be 
evaluated in wall units: 

+ i
i

x ux = τ

ν  
(2.71) 

where wu =τ

τ
ρ

 is the friction velocity, wτ  is the wall strain, ρ and ν are, 

respectively, the density and the cinematic viscosity of the fluid. The inertial 
subrange moves toward higher wavenumbers and, in order to resolve a significant 
energy content, it is necessary to use cell dimensions on the order of +Δx 100; , 

+Δz 20; ; notably smaller than the discretizations that can be used far from the wall, 
where viscous effects are negligible and the energetic scales are larger. Also, the time 
step for the integration is related to the time scale of the eddies, which is inverse 
proportional to the spatial scale and hence to the cell dimensions. A possible 
solution is to refine the grid only close to the walls, for example with the vertical 
stretching. Anyway, for very complex geometries the computational cost remains 
elevated; Reynolds (1990) estimated that it can be on the order of 2.4Re . 

Efficient, even if less accurate, solutions are the hybrid methods, called DES 
(Detached Eddy Simulation); in these models the RANS technique is used for the 
wall layer and the LES above a certain distance from the walls. In this case, the 
dimensions of the cell and the time step are large enough to retain that the effects of 
the turbulent structures near the ground can be taken into account statistically. 
Sullivan et al. (1994) proposed a criterion for the determination of the RANS/LES 
interface based on the ratio between the fluctuating component of the strain tensor 
(computed subtracting from ijS  its horizontal average) and its resolved part. 

2.4.1.1 Filter width for anisotropic grids 

If the grid is composed by a cubic mesh the filter width is equal to the sides of 
the cell: Λ = ∆x = ∆y = ∆z. If, instead, the grid is anisotropic the filter cutoff length is 
not the same in each direction of the space and the subgrid stresses may significantly 
differ from their values obtained with an isotropic filter. Two approaches are 
available: 1) define a single characteristic length scale to represent the filter and 2) 
introduce a tensorial subgrid viscosity with different length scales for each direction. 
The second approach requires a considerable increase of both model complexity and 
computational demand. Hence we will limit the following discussion to the first 
approach. 

The filter width in the scalar models can be expressed in the form: Λ = Λ(∆x, ∆y, 
∆z). The most commonly used expression is the empirical formulation proposed by 
Deardorff (1970), which equals Λ to the geometrical mean of the dimensions of the 
cell ∆: 
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3Δ= ΔxΔyΔz  (2.72) 

Scotti et al. (1993) have demonstrated that this definition is appropriate only for 
moderately anisotropic grids. Combining (2.57), (2.61) and (2.62) and approximating 
to the second-order moments, the dissipation ratio reads: 

( )
3

2 2
ij ijε=l 2S S  (2.73) 

For an isotropic homogeneous flow the resolved second-order moments of the strain 
rate ij ijS S  is defined as the convolution of the Kolmogorov spectrum E(k), given by 

(2.38), with the filter kernel ( )G k : 

( ) ( ) ( )
2 5- 22 3 3

ij ijS S = E k G d =ε k G d
2π
α

⋅∫ ∫k k k k  (2.74) 

where k ≡ k . Substitution of (2.74) into (2.73) yields: 

( )
3

5 4- 2
3l= k G d

2π
α

−
 
 
 

∫ k k  (2.75) 

The cell aspect ratios are: 

[ ]

[ ]

i
1

k
2

Δ
a =

max Δx,Δy,Δz

Δ
a =

max Δx,Δy,Δz

 (2.76) 

Δi and Δk are the lengths of the two smaller sides of the cell. For example, if max[Δx, 
Δy, Δz] = Δz, then a1 = Δx/Δz and a1 = Δy/Δz. 

In the case of a sheet-like grid ( Δz Δx Δy= ; ), considering a sharp cutoff filter, the 

integral of (2.75) tends to a constant: -1 3
1l 0.1Δa; . Taking into account (2.63), it is 

evident that Deardorff’s definition (2.72) underestimates the Smagorinsky constant 
Cs for highly anisotropic grids. The reason is that, even if the filter is almost 2D for a 
sheet-like cell, the fine scales are significantly weakened in the direction of the 
smaller side too. A similar result can be obtained for pencil-like grids 
( Δz Δy Δx; = ). 

On the basis of the above discussion, the authors proposed a modification of 
Deardorff’s expression by a function f(a1, a2) which takes into account grid 
anisotropy. 

Λ=fΔ  (2.77) 

The expression for f(a1, a2) is obtained by a numerical evaluation of (2.75): 
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( ) ( )( ) ( )2 2

1 1 2 2

4
f=cosh lna - lna lna + lna

27
    (2.78) 

This formulation results in an increase of the filter width (and hence the eddy 
viscosity) in the zones of the domain where the aspect ratios are smaller. 
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3 Thermally driven circulations over 
complex terrain 

3.1 Baroclinic instability 
Atmospheric circulation in mountainous areas under weak synoptic conditions 

is mainly characterized by slope and valley winds (Simpson 1994). The slope wind 
system is driven by the horizontal temperature gradient between the air near the 
slope and that at some hundreds of meters from the slope at the same height, while 
the valley wind circulation results from the temperature difference between the air 
within the valley and that over an adjacent plain. These gradients are generated by 
the solar shortwave heating during the day and the radiative longwave cooling at 
the ground during the night. The resulting pressure gradient force drives an air flow 
from the regions of low temperature toward those of high temperature near the 
ground and a compensating return motion in the upper part of the atmosphere. The 
overall circulation is then determined by baroclinicity and characterized by vorticity, 
as can be viewed applying the Bjerknes theorem. The same mechanism is common 
for all thermally driven local systems such as the sea and land breezes, or flows due 
to the urban heat island effect (Martin 2006). 

We define the circulation Γ as the line integral of the velocity u along a closed 
path L; the Stokes theorem allows to express Γ as the vorticity flux trough an open 
simply connected surface A bounded by L. Taking the lagrangian derivative of Γ, 
considering a material line l and taking into account the Helmoltz theorem, we have: 

( ) 2

2A

DΓ 1 ρ× p
= ν +ν d + dA

Dt 3 ρL

∇ ∇
∇ ∇ ⋅ ∇

  
      

∫ ∫u u l nÑ  (3.1) 

where we have introduced the Navier-Stokes equation for a viscous fluid and 
considered that mass forces are perfect differentials and thus give no contribution to 
the circulation. Also, since we are interested in fine mesoscale phenomena, the 

Coriolis terms have been neglected. The term 
DΓ

Dt
 is an angular acceleration and 

thus describes the rotational characteristic of the flow. The baroclinic vector 
2

ρ× p

ρ

∇ ∇
 

is zero only for barotropic flows, where pressure and density gradients are parallel. 
The line integral at the right hand side of (3.1) accounts for the viscous dissipation 
effects, which reduce the circulation. Hence, for an inviscid barotropic flow the 



 23 

circulation is constant. For a baroclinic flow density is a function of both pressure 
and temperature: 

( )ρ=ρ p,T  (3.2) 

thus pressure gradient is not parallel to density gradient. 

In order to evaluate the contribution of the baroclinic term to the circulation, it is 
convenient to rewrite the area integral at the right hand side of (3.1) as a line 
integral: 

2A

ρ× p 1
dA= p d

ρ ρL

∇ ∇
− ∇

   
   
   

∫ ∫n lÑ  (3.3) 

which, again, results from the application of the Stokes theorem. 

 
Fig. 3.1. Evaluation of the baroclinic term along a closed path L over a finite slope: the 

solid lines represent the isobars and the dashed lines are the isopycnals. 

Fig. 3.1 illustrates the circulation tendency around the closed loop 1-2-3-4 over a 
finite slope; the solid and dashed lines represent, respectively the isobars and the 
isopycnals. The segments 1-2 and 3-4 give no contribution to the circulation since 
they are isobaric surfaces. Moving from 2 to 3 p∇  is negative, thus its contribution 
to the integral is positive. From 4 to 1 p∇  is positive and its contribution to the 
integral is negative. Since ρ appears in the denominator of the baroclinic term and 
the average density in the section 2-3 is less than that of the segment 4-1, the net 
contribution is positive. Therefore, the line integral assumes a positive sign and we 
obtain an increase of the counterclockwise circulation along the path L. The 
baroclinic circulation acts to reduce density gradients, carrying lighter air toward 
low pressure zones and heavier air toward high pressure zones. The result is a tilt of 
the isopycnals into an orientation in which they are closer parallel with the isobars; 
that is, the circulation represents a tendency to gain the barotropic state, converting 
the potential energy associated to the horizontal density gradient into the kinetic 
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energy of the local wind system. The baroclinic circulation also lowers the 
barycentre of the entire flow system and hence reduces the overall potential energy. 

3.2 Mountain wind systems 
Typical speed values of slope currents range from 0.5 m/s for low intensity 

anabatic winds to more than 10 m/s for fast katabatic flows in regions with a 
significant snow or ice cover over long (tens of kilometers) slopes (Monti et al. 2002; 
Pettré and André 1991). While the depth of the anabatic current can easily exceed 
500 m (Reuten et al. 2005), the katabatic wind is characterized by a vertical extension 
ranging from 5–30 m in midlatitude climates to more than 100 m over long slopes in 
polar regions. In the evening and in the early morning the temperature gradients 
tend to disappear and the resulting circulation intensity is consequently strongly 
reduced, creating a critical situation for the dispersion of pollutants. Therefore, these 
wind systems have a great influence on the air quality of inhabited mountain areas, 
since they can enhance ventilation within the valley atmosphere favoring the 
dilution of pollutants. Furthermore, they modify the stability profiles, which are 
crucial for the dispersion properties of the atmosphere. Such currents also play an 
important role in the formation of clouds, favoring the uplift of moist air masses 
above the lifting condensation level. Another important issue is that slope and valley 
winds, like other local circulation systems, play an important role in redistributing 
energy from the local to the regional scale (Noppel and Fiedler 2002). Since this 
effect can be of the same order as the parameterized surface turbulent exchange in 
GCMs but is not usually taken into account, the investigation of these wind systems 
is of great interest for the development of better parameterizations for the GCMs. 

One of the first theoretical works on slope flows was developed by Prandtl 
(1952), who assumed a steady, two dimensional, constant viscosity flow in a 
thermally stratified fluid with a constant lapse rate. The transport mechanism which 
generates the flow derives from a balance between the divergence of heat flux 
perpendicular to the slope and the advective transport along the slope (simplified 
heat budget equation), together with a balance between buoyancy and friction 
(simplified momentum equation). According to this model, the maximum wind 
speed is not dependent on the slope angle; the influence of this parameter is limited 
to the vertical extent of the anabatic current. Manins and Sawford (1979) (in the 
following named MS) presented a hydraulic model of katabatic winds which, 
assuming stationarity, can be used to predict the flow depth h as a function of the 
distance along the slope: 

c

3
h= E s

4
 (3.4) 

where s is the distance from the top of the slope. The entrainment coefficient cE  is 

given by Briggs’ (1981) semi empirical relationship: ( )2 3

cE =0.05 sinβ , where β is the 
slope steepness. 

Ye et al. (1987) proposed a revision of Prandtl’s theory for a turbulent upslope 
flow and concluded that the maximum intensity of the wind is not dependent on the 
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background atmospheric stability. Instead it depends linearly on the surface heat 
flux and on the slope angle. Hunt et al. (2003) (in the following named HU) used a 
bulk approach to describe the unsteady anabatic flow over a slope, subdividing the 
vertical domain into three zones where different flow situations are likely to occur: a 
surface layer with prevailing frictional effects, a middle layer where turbulent 
mixing dominates and an inversion layer controlled by buoyancy and inertial forces. 
They derived a linear expression for the mean velocity of the middle layer of the 
anabatic current: 

1/3

m *U =λw β  (3.5) 

with: 

-

1

3
s

*

s

gQ h
w =

θ

 
 
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 convective velocity scale; 

- λ parameter dependent from the surface roughness and the PBL depth; 

- ′ ′ssQ =w θ  surface kinematic heat flux; 

- sθ surface temperature over the slope. 

It should be observed that all theoretical models developed for slope winds 
implicitly assume “quasi-hydrostatic” equilibrium (Mahrt 1982; Haiden 2003). That 
is, vertical accelerations in the momentum balance equation are considered 
negligible with respect to the buoyancy term. This assumption is valid if the slope 
boundary layer is shallow compared to the radius of curvature of the orography 
profile and fails for very steep slopes or abrupt changes of terrain inclination. 

Many authors have measured the circulation over complex terrain during field 
studies. Brehm and Freytag (1982) analyzed the mass transport and the temperature 
structure in the Inn valley (Austria) and pointed out the importance of subsidence 
motions and entrainment from the free atmosphere associated with the return flow. 
These phenomena, along with the reduced volume with respect to a plain geometry, 
are the main reasons for the enhanced diurnal warming of the air volume in a valley. 
Kondo et al. (1989) measured the heat budgets in a basin under nighttime stable 
conditions and daytime convective regime, also evaluating the development of the 
cold pool during the night; they emphasized the importance of subsidence in 
lowering the convective boundary layer. Princevac et al. (2001) briefly reports 
measurements of the HU constant λ taken during the Vertical Transport and Mixing 
(VTMX) field campaign, conducted in Salt Lake City (Utah). Princevac and 
Fernando (2005), Princevac et al. (2008), Lee et al. (2006) and Monti et al. (2002) used 
data from the VTMX campaign to investigate the nighttime circulation, also 
computing the calibration parameters for the MS model. They pointed out the 
importance of the entrainment at low Richardson numbers and the development of 
along-slope periodic oscillations as the stability of flow increases during the night. 
Lee et al. (2006) used the VTMX measurements to implement and test a new PBL 
parameterization scheme based on a stability dependent turbulent Prandtl number. 



 26 

The study by Monti et al. (2002) also includes an investigation of the different waves 
which can develop at the interface between the upslope flow and the return current, 
as a function of the stability of the flow, evaluated via the gradient Richardson 

number 

∂
∂

∂ ∂   
   ∂ ∂   

g 2 2

θ
g zRi =
θ u v+

z z

. Haiden and Whiteman (2005) analyzed wind and 

potential temperature data from a tethered-balloon field campaign, finding that the 
local equilibrium assumption on the base of the Prandtl model is not verified for 
weak stratifications. Reuten et al. (2005) investigated the flow pattern in the Fraser 
Valley (Canada) pointing out that the anabatic wind and the return current may 
exhibit equal velocity and vertical extension for valleys with steep slopes. 

Laboratory scale studies with simplified geometries were performed in order to 
validate theoretical and numerical models. Deardorff and Willis (1987) investigated 
the upslope flow by means of an inclined water tank heated from below, using oil 
parcels as a tracer. The complete daily cycle of heating and cooling was investigated 
by Chen et al. (1996). They used a salt-stratified water tank and two-dimensional 
ridge geometry. Their sensitivity analysis with respect to the background 
stratification confirmed a weak dependence on this parameter, as previously argued 
by Ye et al. (1987). Fernando et al. (2000) used a water tank with two different 
experimental setups, a simple variable slope and a two dimensional sinusoidal 
basin, to reproduce the anabatic and katabatic currents in neutral and stratified 
background environment. Chan (2001), by means of experiments in a thermally 
controlled water tank, provided calibration values for the anabatic intensity relation 
derived by HU. Along with their analytical model, HU presented a laboratory study 
of the transition between the anabatic and the katabatic current above a two 
dimensional valley showing the formation of a frontal structure over the slope. 
Cenedese et al. (2004) used a thermally controlled water tank with various 
background stratification values to reproduce the diurnal and nocturnal circulation 
over a simple slope. Calibration values for the MS and HU analytical models were 
also provided. A recent work by Princevac and Fernando (2007) focused on the 
steepness conditions leading to the onset of the anabatic flow. They used a variable 
simple slope and different water-glycerin solutions to obtain a relation for the 
critical slope angle at which the onset of the anabatic wind occurs, as a function of 
the Prandtl number. 

Numerical modeling represents a way to extend theoretical and laboratory scale 
insights toward more complex situations. The pioneering work by Orville (1964) on 
upslope winds was based on the integration of the vorticity equation in a two 
dimensional domain with a simple slope of 45° and a plateau. The basic flow 
features, described at the beginning of this section, were captured despite the 
simplicity of his model. Bader and McKee (1983) analyzed the heat transfer 
mechanism in a valley, obtaining results in line with the observations made by 
Brehm and Freytag (1982). Ye et al. (1987) developed a numerical model to extend 
and validate their theoretical work. Segal et al. (1987) focused on the effects related 
to the slope orientation on upslope flows, which becomes important especially for 
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midlatitude winter conditions. Rampanelli et al. (2004) used the WRF model to 
investigate the diurnal circulation over a valley with simplified two and three 
dimensional geometries. The numerical resolution for this study was 1 km on the 
horizontal and 50 m on the vertical, which fall in the fine mesoscale range. The first 
LES study of the atmospheric boundary layer over a slope was performed by 
Schumann (1990) who assumed an unbounded homogeneous rough plane. The SGS 
model was based on the TKE closure, periodic conditions were imposed for the 
lateral boundaries and a constant and uniform heat flux was imposed at the bottom. 
The results showed the development of transverse convective rolls which are an 
indicator of a dynamical instability. Anquetin et al. (1998) investigated, by means of 
an LES model, the formation and breakup of the cold pool over an idealized two 
dimensional valley with a resolution of 200 m along the horizontal directions and a 
stretched grid with 75 ≤ Δz ≤ 100 m along the vertical direction. Skyllingstad (2003) 
performed the first LES of a katabatic wind, focusing also (Smith and Skyllingstad 
2005) on the influence of along slope steepness variations. He assumed an infinite 
slope with periodic lateral boundary conditions and open boundary conditions in 
the direction of the flow, finding a good agreement with the predictions of the MS 
hydraulic model. LESs of the PBL within the Riviera Valley (Switzerland) focused 
mainly on the mean fields of the PBL (Chow et al. 2006; Weigel et al. 2006); the heat 
budget is also analyzed but, due to their resolution of 150 m in the horizontal and 20 
m in the vertical, results showed a significant importance of the modeled subgrid-
scale components of the turbulent fluxes compared to the resolved ones. Michioka 
and Chow (2008) performed an LES with horizontal resolution of 25 m of the 
circulation in the area of Mount Tsukuba (Japan) but focused mainly on the 
dispersion characteristics of a passive scalar. 

Most of the published LESs of the atmospheric circulation considered rather 
small domains with homogeneous and steady surface forcing; the complete diurnal 
and nocturnal cycle was not thoroughly investigated. The turbulence structure of the 
valley circulation, despite its relevance for environmental and wind-energy issues, 
has not been sufficiently studied. 

When the fast katabatic current impacts the quiescent atmosphere of the valley, a 
hydraulic jump may form. This phenomenon is difficult to observe (Pettré and 
André 1991) and to reproduce with a numerical model, due to its small characteristic 
length and time scales. Yu and Cai (2006) managed to reproduce in their idealized 
simulations the basic features of this structure, like the updraft and the correlation 
between the velocity and the temperature fields. According to these authors further 
insights can be derived from a LES study of the katabatic current, which is one of the 
issues we address in the present investigation. 
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4 Large Eddy Simulation of the circulation 
in a valley: effects of geometry and strong 

capping 

The complete day-night cycle of the circulation over a slope under simplified 
idealized boundary conditions is investigated by means of LES. The thermal forcing 
is given with a time-varying law for the surface temperature. A surface layer 
parameterization based on the Monin-Obukhov similarity theory is used as a wall 
layer model. The domain geometry is symmetric, having an infinitely long straight 
valley in the y direction. Since the depth of the katabatic flow in mid-latitude 
climates is limited to 5 - 30 m, we introduced a vertically stretched grid in order to 
obtain a finer mesh near the ground. The length scale for the calculation of eddy 
viscosities is modified to take into account the grid anisotropy. A pre-integration of 
24 h is made in order to obtain a capping inversion over the valley. Results show 
that the model is able to reproduce microscale circulation dynamics driven by 
thermal forcing over sloping terrain. The diurnal growth of the CBL leading to the 
development of the anabatic wind as well as the evolution of the cold pool in the 
valley during the night and its interaction with the katabatic flow are shown. Waves 
develop at the interface between the anabatic current and the return flow. During 
the day, as a combined effect of the geometry and the forcing, a horizontal breeze 
develops directed from the middle of the valley toward the ridges. The impact of the 
gravity current on the quiescent atmosphere in the valley generates a weak 
hydraulic jump during the night. 

The Chapter is arranged as follows. In Section 4.1 a short description of the WRF 
model and its configuration to be used for our LES study is given. The daytime and 
nighttime results are presented in Section 4.2 and 4.3, respectively. Section 4.4 deals 
with some consideration about the complete heating-cooling cycle. Section 4.5 
reports some comparisons with analytical models, field observations and laboratory 
investigations from some of the literature works discussed in the previous Chapter. 
Conclusions are given in Section 4.6. 

4.1 Model and experiment setup 
The numerical simulations were performed using the three dimensional 

meteorological model WRF (in LES mode), developed by NCAR (National Center 
for Atmospheric Research) in cooperation with several universities and research 
groups. The model is based on the fully compressible non-hydrostatic Navier-Stokes 
equations with a terrain-following hydrostatic-pressure vertical coordinate. For a 
detailed description of the WRF modeling system see Skamarock et al. (2008). 
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Since the horizontal scales of the investigated phenomena are quite small we can 
neglect the Coriolis terms (Rossby number >> 1); in addition we will limit the 
present study to a dry atmosphere. Under these simplifications the model equations 
are given by (2.47) - (2.50). 

Here the tilde denotes quantities averaged over the cell volume Δ3 and the prime is 
used for SGS variables. To simplify the notation, we have omitted the tilde for the 
resolved (RES) variables and the overbar will be used instead of the tilde to denote 
turbulent correlations. 

The turbulence energy model of Moeng (1984) with the modified transport equation 
(2.65) is used to model the subgrid-scale fluxes. The contributions of pressure 
correlations and turbulent diffusion terms (2.66) are relatively small with respect to 
the other terms and will be neglected. 

The formulation (2.70) for the SGS turbulent Prandtl number gives Prt ≅ 1/3 in 
neutral and unstable conditions and has an upper bound of Prt = 1 for stable 
regimes; this has proven to be successful in simulation of unstable to moderately 
stable boundary layers. However, some authors (Monti et al. 2002; Zilitinkevich et 
al. 2008) questioned its application for very stable regimes, since observations of 
nocturnal boundary layers have shown that, when Rig is larger than ≅ 0.1, Prt can 
exceed unity. Axelsen and Van Dop (2009a, b) in their LES of the katabatic winds 
have employed an alternative formulation of the SGS Prandtl number which takes 
into account its dependence on Rig, observing that an underestimation of Prt 
generates lower surface buoyancy. Nevertheless, in the present work the imposed 
thermal forcing does not generate very stable regimes and the results satisfy the 
limit Rig ≅ 0.1 (not shown), hence the current formulation for Prt can be retained. 

The common practice is to define Λ as the geometrical mean of the dimensions of the 

cell 3Δ= ΔxΔyΔz  (Deardorff 1970); for cubic or moderately anisotropic grids this 
approach is justified. In case of highly anisotropic grids, like vertically stretched 

grids with small aspect ratios 
Δz

<<1
Δx,Δy

, the almost two-dimensional filtering 

dampens most of the fine scales in the z direction resulting in an underestimation of 
the constant kC . Scotti et al. (1993) proposed a modification of the filter width Λ 

based on a correction function ( )1 2f a ,a , described in Section 2.4.1.1. This 
modification of the length scale results, for the stretched grids, in an increase of the 
filter width both in the lower and in the upper part of the domain, where the aspect 
ratios are smaller (Fig. 4.1). 
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Fig. 4.1. Effect of the anisotropy correction on the filter width as a function of the vertical 
resolution: the solid line represent Deardorff’s (1970) filter definition, dashed line is the 

filter with the correction proposed by Scotti et al. (1993). 

Catalano et al. 2007 performed LES with the same geometry directly imposing a 
sinusoidal time dependence for the turbulent heat flux at the bottom boundary to 
provide the thermal forcing at the surface; also, the anisotropy correction was not 
applied and the classical definition of Deardorff was assumed. This previous 
formulation does not take into account the coupling between momentum and heat 
fluxes and the resulting differences of surface heat fluxes in zones of the domain 
where different flow conditions occur. This leads to deviations from the real 
conditions, especially during the nighttime period when in the valley the prevalent 
heat exchange occurs by radiative cooling and small negative values of surface heat 
flux are likely to occur, while over the slope high negative values are expected due 
to the momentum contribution on the cooling of the air. 

In order to provide a more realistic boundary condition, in the present study the 
thermal forcing is imposed with a time-varying law for the surface temperature. A 
surface layer parameterization based on the Monin-Obukhov similarity theory is 
then used as a wall layer model to provide the surface heat flux and the friction 
velocity to the first layer of the grid. In the following the variables defined at the 
surface will be denoted by the subscript s and those defined at the first model layer 
by 1. Stability regimes and functions are determined by the bulk Richardson number 

1 s1
b 2

1 1

θ -θgz
Ri =

θ U
, following Zhang and Anthes (1982). 

The domain geometry is composed of a valley, symmetric with respect to xz and 
xL

x=
2

yz  planes, where Lx is the length of the domain along the x direction (Fig. 4.2); 
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the same plot also shows the four locations of the vertical profiles considered for the 
discussion. 

 
Fig. 4.2. Shape of the orography and locations of the vertical profiles (capital letters): A is 
located in the middle of the west ridge, B in the middle of the west slope, C at the foot of 

the west slope and D is in the middle of the valley. 

Three simulations with different volumes of the valley and slope angles (Table 4.1) 
were performed in order to analyze the influence of these key parameters on the 
flow pattern and the distribution of the temperature. It is important to recall here 
that, since momentum and heat fluxes are coupled, a change in the geometry, which 
results in a modification of the circulation, will also result in a change of the 
computed surface heat fluxes. 

Periodic lateral boundary conditions are assumed for the x and y directions, in order 
to reproduce an infinite succession of valleys and ridges along the x direction. The 
top boundary of the domain is assumed to be at constant pressure with zero vertical 
velocity. A preliminary analysis (not shown) suggested a negligible influence of 
gravity waves reflections on the solution, due to the presence of a capping inversion; 
hence an upper damping layer will not be used. The choice is supported by previous 
mesoscale (Rampanelli et al. 2004) and LES (Moeng et al. 2007; Antonelli and 
Rotunno 2007) studies of the atmospheric boundary layer conducted with the WRF 
model. The WRF code contains optimized algorithms for the damping of acoustic 
wave modes; here we set the 3D divergence damping coefficient to 0.1, the external 
wave filter coefficient to 0.01, and the small time step off centering coefficient to 0.1. 
The horizontal grid resolution is uniform, Δx = Δy = 50 m; the vertical grid is 
defined with a parabolic stretching in order to have Δz ≅ 2 m near the ground and 
Δz ≅ 90 m at the top of the domain. Table 4.2 summarizes the main parameters for 
the three simulations. Since the vertical coordinate is terrain following and the top of 
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the domain is fixed, vertical resolution slightly increases with ground elevation. For 
a constant and homogeneous horizontal grid we have: 

1 2

1 2

Δz
a =     ,    a =1    for     Δz<Δx

Δx
Δx

a =a =                for    Δz>Δx
Δz

 (4.1) 

Hence there is a moderate increase of the filter width near the ground (Δz < Δx) and 
a slight increase close to the top of the domain (Δz < Δx) (Fig. 4.1). 

  CASE 1 CASE 2 CASE 3 

a (m) 3500 3500 3500 

b (m) 5000 3000 3000 

c (m) 3000 5000 1000 

d (m) 3000 3000 3000 

h (m) 500 500 500 

H (m) 2400 2400 2400 

β ≅ 5°45’ ≅ 9°30’ ≅ 9°30’ 

Vvalley (km3) 12 12 6 

Table 4.1. Domain configurations; geometry is given in Fig. 4.2. V valley is the volume of the 
basin. 

We use a 5th order advection scheme for horizontal advection terms, 3rd order for 
vertical advection and a 3rd order Runge-Kutta (RK) scheme for the time integration 
with a time step Δt = 1 s. The integration of acoustic and gravity waves is performed 
using a smaller time step sΔt = Δt/12, using a time-splitting scheme incorporated 
into the RK loop, hence allowing for larger time steps in the RK integration. 

A sinusoidal time dependence is imposed for the increments of the surface 
temperature sΔθ  with respect to the values sθ , corresponding to the initial 
stratification defined by the Brunt-Vaisälä frequency N (Table 4.2): 

s s,max

2πt
Δθ =Δθ sin

T
 
  

 (4.2) 

where s,maxΔθ  is the amplitude, T = 24 h is the period and t is the time. This choice 
for the surface thermal forcing is supported by the observations of Monti et al. 
(2002), done during the VTMX campaign. For the beginning of October they 
reported a sinusoidal variation of the surface temperature with maximum amplitude 
of ≅ 5 K around the daily average. 
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  CASE 1 CASE 2 CASE 3 

Nx, Ny, Nz: 400x60x58 360x60x58 280x60x58 

∆x, ∆y (m) 50 

∆z (m) Stretched: 2 – 90 

∆t (s) 1 

Δϑs,max (K) 5 

N2 (s-2) 1.6⋅10-4 

z0 (m) 0.3 

L.B.C. Periodic x, Periodic y 

Table 4.2. Parameters of the simulations: Δθs,max is the amplitude of the imposed thermal 
forcing, N2 is the initial Brunt-Väisälä frequency, z0 is the surface roughness. 

It should be noticed that imposing a constant surface temperature anomaly over the 
basin and the ridges implies neglecting the effects of the variations of the solar 
radiation’s angle and its daytime evolution (e.g. shadowing from the surrounding 
terrain) and the influence of the deviation from the zenith direction. In the following, 
the terms west-east and south-north refer, respectively, to the orientation of x and y 
axes. Due to the above mentioned assumptions, there is not a real correspondence 
with the geographical coordinates on the earth surface. 

The origin of time axis roughly corresponds to the sunrise. A pre-integration of 24 h 
is made in order to obtain a capping inversion over the valley. 

Since both geometry and boundary conditions are independent with respect to the y 
direction, the mean flow can be considered two dimensional on a vertical plane and 
the variables are averaged along the y direction. 

The simulations were run for 3 days; at the end of the first day a capping 
inversion forms over the valley (Fig. 4.3) as a result of the nighttime cooling. The 
solution is then almost cyclic after the first complete 24 hour cycle. Hereinafter we 
will discuss only the second day of the simulation; the time scale will then be 
adjusted in order to have 0 ≤ t ≤ 24 h for the second daily cycle. 

In the following, Case 2 will be used as the reference simulation for the analysis of 
the results. The stable layer at the end of the pre-integration period extends up to 
about 500 m with a Brunt-Väisälä frequency 2 -4 -2N =9.8*10  s . 
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Fig. 4.3. Capping inversion as evidenced by the mean potential temperature profiles taken 

at point D for Case 2 for the beginning (filled circles) and the end (open squares) of the 
first day of simulation. 

4.2 Daytime results 

4.2.1 Mean winds and temperature 

During the daytime period, surface heating creates horizontal potential 
temperature gradients (Fig. 4.4) which, in turn, lead to the development of anabatic 
winds over the two slopes. At t = 5 h the thermal structure is characterized by the 
presence of a deep (≅ 800 m) mixed layer over the ridges and a shallow (≅ 200 m) 
CBL at the bottom of the basin. This is overlied by a strongly stratified inversion 
layer with a vertical extension of about 200 m and a deep residual layer aloft. A 
significant along-slope potential temperature gradient, directed toward the ridge, is 
also observed. The symmetric geometry of the valley will force the circulation into a 
closed pattern, as can be seen from the stream function plot (Fig. 4.5). This 
representation was obtained after a decomposition of the wind field into spherical 
harmonics from which the stream function can be computed analytically by 
derivation (Adams and Swarztrauber 1997). Different features can be identified in 
the daily circulation: 

- the anabatic current over the slopes, extending from the ground up to about 
200m; 

- a horizontal breeze directed from the center of the valley toward the slopes, 
extending from z ≅ 450 m to z ≅ 650 m; 

- a strong updraft and an associated intense roll vortex over the ridge; 
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- a region characterized by a free convection regime near the east and west 
lateral boundaries; 

- a return current in the upper part of the domain directed from the ridges 
toward the center of the valley with a vertical extension ranging from 600 m 
in proximity of the top of the slope to 250 m over the valley; 

- a deep (about 800 m) subsidence region from x = 8000 m to x = 10000 m 
which closes the overall circulation. 

 
Fig. 4.4. Vertical cross section of the averaged isotherms at t = 5 h for Case 2. 

 
Fig. 4.5. Vertical cross section of the stream function of the mean wind field at t = 5 h for 
Case 2; the different components of the circulation are evidenced: the anabatic flow, the 

horizontal breeze at ridge height, the return current and the deep subsidence zone over the 
basin. 

The depth of the slope current h is determined, from the vertical profiles of u, by 
the height where the wind speed goes below 15% of its maximum value. The 
maximum intensity of the upslope wind is attained, for Case 2, at t = 5 hours of 
simulation. At that time, when the surface temperature is increased of ≅ 5 K, the 
depth of the current continues to increase due the development of a horizontal 
breeze directed from the center of the valley toward the two ridges and located 
between 400 and 600 m. This current can be regarded as a secondary flow resulting 
from the layered thermal structure of the basin and can be explained considering the 
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mutual influence of different factors. A first mechanism is related to the interaction 
of the subsidence current over the valley with the strong inversion layer below; the 
current is then forced to flow horizontally, interacting with the anabatic wind over 
the slope. An important aspect for the two-layer characteristic of the anabatic flow is 
the stronger stratification at low levels in the valley compared to that of the region 
above the inversion. A second mechanism is then related to the smaller mass flux 
associated to the lower slope region which is characterized by a stronger potential 
temperature lapse rate. The large mass-flux required by the upper circulation is then 
partially compensated by a horizontal flux at ridge height. A significant role in this 
phenomenon is also played by the higher values of the surface kinematic heat flux 
over the two ridges compared to the lower ones at the bottom of the valley at t = 5 h 
(Fig. 4.6), since Qs drives and strengthens the return current and hence the 
subsidence flow. 

 
Fig. 4.6. Time evolution of the potential temperature surface anomaly Δθ and the averaged 
surface kinematic heat flux Qs at different locations of the domain (see Fig. 4.2) for Case 2. 

A simulation run with the same geometry but with a constant prescribed surface 
heat flux (Catalano et al. 2007) did not revealed the two-layer feature of the anabatic 
flow. Also, the horizontal breeze was not observed in previous investigations of the 
valley circulation. This might be due to stronger synoptic conditions; in fact the field 
measurements of Rotach et al. (2004) and the LES by Chow et al. 2006) show an 
upper level cross-valley wind of ~ 15 m/s. This is also confirmed by the results 
described in Section 5.3, relative to a simulation run with an along-valley 
geostrophic wind of 10 m/s. 

 The daytime values of the surface kinematic heat flux over the slope (point B) 
are about 1.5 times larger than those observed on the valley floor (point D). Qs 
shows a negative phase shift with respect to the imposed temperature on the slope 
and the valley base; Qs is in phase with the temperature on the ridge top. Also, the 
transition between positive and negative (or zero) heat flux occurs earlier on the 
valley ground than on the slope. The field measurements of the Riviera project 
(Rotach et al. 2004) showed a similar daytime evolution of Qs for a steep symmetric 
Alpine valley. The authors attributed such behavior to the differences in exposure 
and slope angle. Instead, the similarity with the present results, which do not take 
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into account the solar radiation, suggests that the surface heat flux evolution is 
mostly influenced by the local flow conditions (through the coupling with surface 
momentum fluxes). This complex distribution of the surface heat flux, which is in 
agreement with the numerical results of Chow et al. (2006), was not observed in 
previous studies, conducted imposing a surface heat flux constant in space 
(Catalano et al. 2007). The large negative values of the surface kinematic heat flux, 
associated to the nighttime period, are not comparable with those reported by 
Rotach et al. (2004), due to a sensible difference between the arbitrarily imposed 
surface temperature and the values measured during the night at that site. 

The anabatic flow shows a distinctive layered structure, as appears in the two 
distinct maxima in the vertical profiles of horizontal velocity (Fig. 4.7). Vertical 
layering is a typical feature of thermally driven circulations over complex terrain 
(Fernando et al. 2001; Reuten et al. 2005; Reuten et al. 2007) and is a consequence of 
the interaction of multiple spatial and temporal scales. At t = 5 h the horizontal 
breeze is characterized by approximately the same intensity as the anabatic wind; as 
the upslope current decays at t = 9 h, the horizontal breeze is three times more 
intense than the anabatic wind. At the foot of the slope (Fig. 4.7b) the two-layer 
structure of the anabatic flow is even clearer and lasts for the entire daytime period; 
furthermore, a weak return current is observed between the anabatic wind and the 
horizontal breeze at ≅ 300 m. The intensity and depth of the upper return current are 
about the same in the middle of the slope and at its foot. 

 
Fig. 4.7. Daytime vertical profiles of the averaged horizontal wind speed for Case 2: (a) at 

point B, (b) at point C. 

The vertical profiles of u at t = 5 h taken at different x distances (Fig. 4.8) show 
that over the valley at x = 7750 m only the horizontal breeze is present; the anabatic 
current is very weak at x = 6500 m (about half of the strength of the horizontal 
breeze); at x = 5000 m the anabatic wind and the horizontal breeze have the same 
intensity and two different maxima can be observed; at the top of the slope (x = 3500 
m) the two currents are completely merged and the wind is characterized by an 
intensity of 2 m/s. Due to the development of the horizontal breeze, the maximum 
vertical extension of the anabatic wind is reached later than its maximum intensity 
and is associated with a slower upslope current. 
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Fig. 4.8. Daytime vertical profiles of the averaged horizontal wind speed for Case 2 at 

different x locations at t = 5 h. 

Over the ridge the stable layer developed during the night of the pre-integration 
period is very shallow, hence the evolution of the CBL promptly interacts with the 
residual layer generating a well defined mixing layer (Fig. 4.9a); over the slope and 
in the middle of the valley the strong stable layer is gradually eroded. Over the slope 
the warm air, advected by the return current of the anabatic winds enhances the 
erosion of the inversion layer and the residual layer above is reached at 7 h (Fig. 
4.9b). In the middle of the valley the extension of the stable layer is progressively 
reduced by the combined effects of the subsidence above and the growing of a 
mixing layer below (Fig. 4.9c). Princevac and Fernando (2008) (hereinafter PF) 
proposed a cold pool destruction mechanism based on the relative importance of the 
heat flux and the stratification. According to their conceptual model, supported by 
laboratory measurements in a V-shaped valley, when the stratification prevails (type 
I), the erosion of the nocturnal inversion is mainly driven by horizontal intrusion at 
mid-depth of the basin. Otherwise, if the heat flux is significant compared to the 
stratification (type CI), the destruction of the stable core is driven by upslope 
advection and subsidence over the valley center. The variables which determine the 
prevailing inversion breakup mechanism are the buoyancy parameter 

( )3 2

s 0B= N h Q g θ  and the slope angle β; the intrusion dominates for values of B 
larger than Bc = Cβ2/3. With the value of the empirical constant (C = 1750) suggested 
by PF, our results are expected to follow the type I mechanism for all the 
simulations, since B ~ 103 and Bc ~ 102. However, the return current in the present 
cases is located higher up the valley top and we did not observe any intrusion at 
mid-depth of the basin and the characteristics of the cold pool breakup are 
ascribable to type CI. This can be explained by the different geometry of PF, in 
particular their negligible bottom width, as mentioned by the authors themselves. 
This phenomenon can affect the air quality of cities in similar environments, since 
the pollutant will be likely to stagnate for a long time under such conditions. 

The subsidence over the valley induces warming, in agreement with the 
measurements made by Brehm and Freytag (1982). The warming effect is more 
important for smaller valleys, as can be seen from the comparison of the potential 
temperature profiles for Cases 2 and 3 (Fig. 4.9c, Fig. 4.10). 
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Fig. 4.9. Daytime vertical profiles of the averaged potential temperature for Case 2: (a) at 

point A, (b) at point B, (c) at point D. 

 
Fig. 4.10. Daytime vertical profiles of the averaged potential temperature at point D for 

Case 3 (smaller valley). 

It is interesting to note that in Case 1, which has a gentler slope, the vertical 
profiles at mid depth of the valley (Fig. 4.11a) show that the anabatic current is 
completely merged with the horizontal breeze until 7 h, while at the foot of the slope 
(Fig. 4.11b) the horizontal breeze prevails. This demonstrates that the slope 
steepness plays a much more important role during the onset of the anabatic, in 
particular at the foot of the slope. 
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Fig. 4.11. Daytime vertical profiles of the averaged horizontal wind speed for Case 1 

(gentler slope): (a) at point B, (b) at point C. 

The high resolution of this LES study makes it possible to identify some 
characteristic microscale features of the anabatic current, like the presence of waves 
at the interface between the upslope current and the horizontal breeze (Fig. 4.12), 
resulting from the entrainment of warmer air into the anabatic current. A similar 
wave activity was observed by Schumann (1990) between the anabatic flow and the 
return current for slope angles of about 10°. In the current case, the presence of the 
horizontal breeze restricts larger overturning motions to the lower part of the slope 
(6000 ≤ x ≤ 6500 m), where a weak eastward current is observed at ≅ 300 m (Fig. 
4.7b). 

 
Fig. 4.12. Vertical cross-section of the streamlines of the mean flow at t = 5 h for Case 2, 
revealing waves at the interface between the anabatic wind and the horizontal breeze. 

4.2.2 Turbulence 

Most of the past LES investigations assumed horizontal homogeneity and 
computed the statistics as spatial averages over horizontal planes or time averages 
on the steady state solution. The present investigation considers time varying 
surface forcing and the only homogeneous direction is y, hence we will compute the 
averages for every (x, z) location in space. To improve the data sample, the statistics 
are next averaged over a 40 minutes time interval. This choice for the averaging 
period allows including a significant number of the characteristic timescales, as 
suggested by Sakai et al. (2001). As an example, at t = 5 h, the PBL depth z i ≅ 200 m, 
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w* ≅ 0.81 m/s and the convective time scale t* = zi/w* = 247 s, hence the averaging 
interval is ≅ 10 t*. 

The vertical profiles of TKE (total, resolved and subgrid scale) at t = 5 h show 
(Fig. 4.13) that the maximum values (≅ 0.75 m2/s2) are attained over the ridge at z ≅ 
700 m, due to the instabilities associated to a strong roll vortex associated to the 
reverse of the anabatic current and the presence of deep thermals. In the middle of 
the slope (Fig. 4.13b) the maximum values of TKE (≅ 0.25 m2/s2) are located close to 
the surface; a second maximum is observed at z ≅ 1200 m, perhaps due to the shear 
generation at the interface between the return current and the free atmosphere. Over 
the valley (Fig. 4.13c), the maximum values, located ≅ 100 m above the ground, are 
about five times lower than over the ridge, whereas the very low turbulence activity 
in the upper layer can be explained by the weak intensity of the subsidence motions. 
The resolved part of TKE is the most important contribution, apart from the first 
levels close to the ground where the grid spacing, even with a vertically stretched 
grid, is still not enough to fully resolve the very fine structure of that part of the 
boundary layer. 

The horizontal breeze determines the presence of a relative maximum of TKE in 
the upper part of the domain over the slope (Fig. 4.13b). This mechanism can be of 
great importance in the computation of the exchange coefficient in the PBL 
parameterizations for mesoscale or GCM models, which usually neglect orographic 
effects, as long as simple one-dimensional models are used. 

The level where the vertical profiles of TKE go below 15% of their maximum 
value is used to estimate the vertical extension of the PBL. It is important to recall 
here that the PBL depth differs from the height of the total anabatic flow (defined in 
section 4.2.1), which includes the upper horizontal breeze. The maximum velocity of 
the anabatic wind component is located within 10 – 20% of the boundary-layer 
depth, while the maximum of the horizontal breeze is associated with the upper 
maximum in the TKE profiles. 
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Fig. 4.13. Vertical profiles of TKE at t = 5 h for Case 2: (a) at point A, (b) at point B, (c) at 
point D. Open squares/ dashed lines represent the resolved contribution, filled circles/ 

dash-dotted lines shows the subgrid-scale contribution, filled triangles/ full lines 
represent the total variable. 

In order to analyze the effect of the new formulation for the filter width it is 
convenient to examine the behavior of the simulated turbulent flow in wavenumber 
space. Since the vertical direction is not homogeneous we will limit the analysis to 
the horizontal wavenumber spectra. The one-dimensional spectra of the horizontal 
component of the velocity along the longitudinal wavenumber direction kx are 
obtained by performing a two-dimensional Fourier transformation of the u field for 
a fixed vertical level and then integrating the two-dimensional periodogram along 
the transverse wavenumber direction ky. Even if the flow described in this work is 
characterized by a marked anisotropy and inhomogeneity along the x direction, it is 
still possible to isolate a portion of the domain where homogeneous and isotropic 
conditions are approximately satisfied, like in the middle of the CBL over the valley. 
Furthermore, in order to reduce the inhomogeneities of the flow field being 
analyzed, a detrending operation is performed following Errico (1985). 

On the basis of the above discussion, following Moeng and Wyngaard (1988), it 
is then possible to compare the one dimensional spectrum obtained for that 
subdomain against the theoretical -5/3 inertial subrange form of the Kolmogorov 
spectrum, valid for homogeneous and isotropic turbulence: 
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( ) 2/3 -5/3E k =αε k  (4.3) 

where 2 2

x yk = k +k≡ k  and α = 1.5. The u component of the spectrum tensor along 

the kx wavenumber has the expression: 

( )
( )( )2 2

x

ux 4

E k k -k
Φ =

4πk
k  (4.4) 

The truncated one-dimensional inertial range spectrum is defined as the integral of 
the spectrum tensor over all the wavenumbers greater than kx: 

( ) ( )N

x

k

ux x uxk
E k =2 2πkΦ dk∫ k  (4.5) 

where 
22

N

π π
k = +

Δx Δy
  

      
. Because of the finite upper limit in (4.5), ( )ux xE k  

differs from the log-log line with slope -5/3 for the higher wavenumbers. 

Solving the finite difference equations for the system (2.48) - (2.50) on a staggered 
grid is equivalent (Schumann 1975) to applying a top-hat filter to the variables. 
Hence, in order to account for the filter type we perform a convolution operation 
with the top-hat filter kernel on the theoretical one dimensional Kolmogorov 
spectrum tensor, obtaining: 

( ) ( ) ( )N

x

k 2

ux x uxk
E k =2 2πkΦ ×G dk∫ k k%  (4.6) 

The filter transfer function for the two-dimensional top-hat filter kernel is: 

( )
x y

x y

Δx Δy
sin k sin k

2 2G k =
Δx Δy

k k
2 2

   
   
     (4.7) 
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Fig. 4.14. One dimensional spectrum of the horizontal wind component over the valley 

core (6500 ≤ x ≤ 11500) at z - zs ≅ 60 m at t = 5 h for Case 2. the solid line represent the top-
hat filtered theoretical Kolmogorov spectrum for isotropic and homogeneous turbulence 

(K41), coarse dashed line is the spectrum obtained using the filter with the correction 
proposed by Scotti et al. (1993), fine dashed line is the spectrum obtained using the 

Deardorff’s (1970) filter definition. 

Fig. 4.14 shows the spectrum obtained for the valley subdomain (6500 m ≤ x ≤ 11500 
m) for level 8 of the grid (z - zs ≅ 60 m) at t = 5 h taken from Case 2 and from the 
same simulation recomputed without the anisotropy correction; both the curves are 
compared to the filtered truncated Kolmogorov spectrum (K41). This level has been 
chosen because it is located in a well mixed zone of the PBL, thus not being too close 
to the ground where the flow tends to be less resolved, and because the important 
aspect ratio of the grid at that level (∼5) allows us to evaluate the influence of grid 
anisotropy. The spectrum obtained with the corrected length scale clearly lies closer 
to the theoretical curve, apart from the high wavenumber region where data seems 
to be slightly affected by aliasing. 

4.3 Nighttime results 

4.3.1 Mean winds and temperature 

During the nighttime period, as the ground temperature goes down, a stable 
layer develops in the valley, thus eroding the residual layer just above (Fig. 4.15). 
The surface cooling is responsible for the development of downslope currents, 
flowing from the top of the two ridges. The maximum depth of the katabatic current 
(∼20 m), determined by the sign of the vertical profiles of u, is several times lower 
than the vertical extent of the anabatic flow. Instead, the intensity of the downslope 
wind is about 2 - 2.5 times larger than the anabatic one (Fig. 4.16). Another 
important difference with respect to the daytime circulation is the absence of a 
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return current of significant intensity, in agreement with the flow measurements of 
Princevac et al. (2008) and the LES results of Skyllingstad (2003). The katabatic wind, 
in fact, can be interpreted as a low level jet in a stratified flow. 

 
Fig. 4.15. Vertical cross section of the averaged isotherms at t = 17 h for Case 2. 

 
Fig. 4.16. Nighttime vertical profiles of the averaged horizontal wind speed at point B: (a) 

Case 1, (b) Case 2, (c) Case 3. 

The downslope wind is a gravity current, so the length and the angle of the slope 
are the most important control parameters. The vertical profiles of the wind speed 
show that, during the onset and the early stage of the katabatic current, the longer 



 46 

slope of Case 1 (Fig. 4.16a) is characterized by intensity and depth similar to those of 
the shorter but steeper slopes (Fig. 4.16b, c). Next, the interaction with the growing 
stable boundary layer inside the basin will make the late evolution of the flow 
essentially governed by the volume of the valley. In fact, in the smaller basin the 
growth of the stable boundary layer is faster, causing an earlier damping of the 
katabatic wind. 

In the valley system a stable stratification develops. Over the slope (Fig. 4.17), 
negative values of surface kinematic heat flux (Fig. 4.6) are associated to the 
katabatic wind. Over the valley (Fig. 4.18) Qs is almost zero and the cooling is driven 
by the advection of cold air by the downslope currents. Three different zones can be 
distinguished in the vertical direction: 

- a shallow surface layer with a strong lapse rate can be observed. Over the 
slope this layer corresponds to the vertical extension of the katabatic current 
(Fig. 4.17). The lapse rate in this zone reaches its maximum of 0.3 K/m at 17 
h, at the same time where the maximum wind speed is attained; 

- a stably stratified layer above with a smaller lapse rate, corresponding to the 
evolution of the cold pool in the basin; the intensity of the stratification 
increases during the night; 

- a residual layer above 500 m and extending up to the maximum daytime 
PBL depth. 

Up to 17 h the atmosphere above the katabatic layer has a very small lapse rate 
of 0.007 K/m. After this time the depth and intensity of the katabatic currents begin 
to decay and the stratification extends to the higher levels of the atmosphere. This 
phenomenon can be interpreted considering that the katabatic wind produces an 
increase in the negative turbulent heat fluxes near the ground, which enhances 
surface cooling. At the same time, warmer air from the ridge is advected in the 
upper level of the downslope current; this contributes to maintain a shallow stable 
layer during the first hours of the night. 
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Fig. 4.17. Nighttime vertical profiles of the averaged potential temperature at point B: (a) 

Case 1, (b) Case 2, (c) Case 3. 

 
Fig. 4.18. Nighttime vertical profiles of the averaged potential temperature at point D for 

Case 2. 

It is important to recall here that, during the night, over the ridge and the valley 
the heat exchange is almost zero, while over the slope it reaches absolute values 
even bigger than the daytime ones (Fig. 4.6), due to the intense momentum fluxes 
generated by the katabatic wind. Such large negative surface heat flux reflects a 
limitation of the imposed thermal forcing; in fact, prescribing soil temperature has 
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the drawback that the feedback with the uppermost soil layer, which would reduce 
the surface temperature anomaly, is neglected. Nevertheless, our choice for the 
thermal forcing stresses the importance of considering the coupling between heat 
and momentum fluxes instead of directly imposing the surface heat flux. 

The main parameter which controls the evolution of the nocturnal PBL under 
this topographical configuration is found to be the volume of the valley; in fact, the 
smaller valley exhibits a faster cooling (Fig. 4.17). Slope steepness also plays an 
important role, since the faster current flowing over the steepest slope slightly 
reduces and delays cooling with the mechanism discussed above. 

Intersecting the vertical profiles of potential temperature over the valley at 
different times with the neutral profile at the end of the diurnal period, it is possible 
to analyze the evolution of the depth hp of the cold pool into the valley (Fig. 4.19). 
The life cycle of the nocturnal inversion starts when the lapse rate becomes positive 
near the valley floor and ends when the stability regime turns back to be unstable 
driven by the positive surface heat flux (morning of third day of simulation). In Case 
3 the cold pool evolves quickly during the first hours of the night, reaching a depth 
of ≅ 150 m at t = 11 h, while for the other cases the stable layer has grown only a few 
tens of meters. A rapid increase of the cold pool is observed when the base of the 
former inversion layer is reached; this occurs at t ≅ 10:30 h for Case 3, at t ≅ 11:30 h 
for Case 1 and at t ≅ 12:30 h for Case 2. At t ≅ 15 h the depth of the stable core is 
roughly the same for the three cases; from this point on the growth rate decreases for 
cases 1 and 2 and a difference in depth of ≅ 50 m with respect to Case 3 is kept. As 
already mentioned, one can see the role played by the volume of the valley and the 
effect of the slope steepness in delaying the formation of the stable boundary layer. 

 
Fig. 4.19. Cold pool height hp evolution for the different cases computed by the potential 

temperature profiles taken at point D. 

4.3.2 Turbulence 

The maximum values of turbulent kinetic energy (≅ 0.5 m2/s2) over the slope are 
observed near the surface (Fig. 4.20). At this point the depth of the PBL (≅ 20 m) 
roughly equals the vertical extension of the katabatic current. Despite the increased 
vertical resolution near the ground, the horizontal grid spacing is still too coarse to 
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fully capture all the fine turbulent structures in the lowest model layer, hence the 
modeled components of TKE are the most important contribution during the 
nocturnal period. In this sense, the results obtained for the nighttime period can be 
regarded as the output of a RANS model with a second-order closure for the 
turbulence kinetic energy and a first-order closure for the temperature fluxes. The 
difference in the model behavior with respect to the diurnal period is due to the fact 
that the characteristic length scales of turbulence are strongly reduced in presence of 
stratification. It should be recalled here that the aim of this Chapter is to simulate the 
entire diurnal cycle over a quite large periodic ridge-valley domain. The choice of 
the spatial resolution is then a compromise between the need to resolve the main 
features of the circulation and the computational demand. 

 
Fig. 4.20. Vertical profiles of TKE at t = 17 h at point B for Case 2. Open squares/ dashed 

lines represent the resolved contribution, filled circles/ dash-dotted lines shows the 
subgrid-scale contribution, filled triangles/ full lines represent the total variable. 

As the downslope gravity current impacts with the quiescent air of the 
developing cold pool in the valley, an instability zone forms in association with a 
vortex and an updraft current (Fig. 4.21). At 17:30 h it is located between x = 4500 m 
and x = 5000 m, with an extension of 500 m in the horizontal and 100 m in the 
vertical. If we consider the atmosphere in the framework of a two-layer bulk 

hydraulic model (Ball 1956), the densimetric Froude number maxU
Fr=

g h′
 can be 

assumed to characterize the instability region. Here k a

a

ρ -ρ
g = g

ρ
′  is the reduced 

gravity, kρ  is the density of the katabatic layer and aρ  is the density of the 
atmosphere above the current. 
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Fig. 4.21. Overlay of the vertical cross section of the streamlines of the mean flow and TKE 

over the west slope at t = 17:30 h for Case 2: a weak jump beginning at x ≅ 4750 m is 
revealed by the presence of a vortex and the concentration of TKE. 

Although there is a dramatic decrease in Fr immediately after the recirculation 
zone, its values upwind are less than unity (Fig. 4.22); hence the phenomenon cannot 
be strictly termed a jump. In any case, it must be said that the uncertainties on the 
determination of the height of the current make the estimation of Fr prone to some 
error, since h is the most sensitive parameter for its computation. It must also be 
observed that the values of h downwind of the jump refer to the small katabatic 
layer flowing below the instability zone, rather than the vertical extent of the zone 
itself. Despite the uncertainties associated with the computation of Fr, the structure 
has most of the characteristics of a katabatic jump: a significant positive vertical 
velocity can be observed in the middle of the jump (Fig. 4.23) as well as stronger 
values of turbulent kinetic energy (Fig. 4.21). Further evidence of the presence of the 
jump can be inferred from the surface kinematic heat flux plot in B (Fig. 4.6) which 
shows a strong discontinuity in correspondence to t = 17:30 h. 

In agreement with Yu and Cai (2006), waves are observed downstream of the 
jump, as shown in the contour plot of the vertical velocity (Fig. 4.24); the wavelength 
is about 250 m. These authors attributed the generation of this kind of oscillations to 
the deformation induced in the wind field by the presence of an updraft region. It is 
worth noting that Yu and Cai (2006) considered intense (~ 10 m /s) katabatic winds 
over strongly cooled and long (~ 70 km) slopes in Antarctica. The present study 
confirms the development of such disturbances on shorter slopes in a valley; with 
this geometry, the growth of the cold pool assumes an important role in triggering 
mechanism for the formation of the jump. 
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Fig. 4.22. Discontinuity in the x-evolution of the maximum wind speed Umax, flow depth h 
and Froude number Fr at t = 17:30 h over the slope in correspondence of the jump. All the 

variables are averaged along the y direction. 

 
Fig. 4.23. The mean vertical velocity profiles at x = 4750 m for Case 2 at different times 

show an updraft at t = 17:30 h, when the jump forms. 

 
Fig. 4.24. Waves downwind of the jump, as evidenced by the alternate positive-negative 

pattern shown by the mean vertical velocity contours at t = 17:30 h for Case 2. 
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4.4 Considerations on the complete cycle 
The time evolution over a complete diurnal cycle of the maximum wind speed 

Umax, along with the height of the flow over the slope and the imposed surface 
temperature sθ  in the middle of the left slope (Fig. 4.25) gives a sketch of the 
response of the atmosphere to the variable thermal forcing in the presence of 
complex geometry. This plot also summarizes some of the main characteristics of the 
upslope and downslope winds, like the differences in intensity and vertical 
extension. Comparison of the three curves demonstrates that the maximum intensity 
of the anabatic current occurs about at the same time as the maximum surface 
forcing. During the day the maximum height of the flow takes place about 2 h later 
(t = 8 h) with respect to the imposed temperature maximum, due to the horizontal 
breeze. In the night the maximum depth of the katabatic wind is promptly reached 1 
h after the inversion of the surface forcing, then it remains almost constant until the 
cold pool reaches the middle of the slope at t = 19 h; from this time on the current 
begins to decay both in intensity and in depth. One can also observe an important 
drop (∼ 2 m/s) in the wind speed and flow depth (∼ 15 m) at 17:30 h, when the weak 
jump is taking place upstream. It is worth noting that the weak jump is an isolated 
and almost instantaneous phenomenon in our case. 

 
Fig. 4.25. Time evolution of the y-averaged maximum wind speed Umax, y-averaged flow 
depth h (in logarithmic scale) and surface potential temperature θs at point B for Case 2. 

4.5 Comparisons 
In absence of an accurate dataset of measurements taken in conditions similar to 

those described in this work, we will compare the results with the prediction of two 
well-known theoretical models. The differences between the hypotheses of the 
theoretical models and our geometry and boundary conditions pose some 
limitations that are discussed below. 

The HU bulk theoretical model was developed for the anabatic flow over a finite 
slope and a ridge. Since this model assumes a steady state flow, in order to make a 
comparison with measurements or results from prognostic numerical models, 
quantities must be considered averaged over the diurnal period (positive surface 
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heat flux). The calibration parameter λ for the HU model, defined in (3.5), is 
obtained from the current simulations averaging over the depth of the anabatic layer 
the values of the wind speed taken in point B. The values of λ are compared with the 
field measurements of Princevac et al. (2001), the laboratory investigation of Chan 
(2001) and Cenedese et al. (2004) and the simulations of Catalano et al. (2007). It can 
be seen (Table 4.3) that the development of the horizontal breeze, which is a 
peculiarity of our investigation, causes lower values of λ, due to the resulting higher 
values of the flow depth. 

 λ 

this study 1.76 

Catalano et al. 2007 3.42 

Cenedese et al. 2004 3.73 

Chan 2001 3.3 

Princevac et al. 2001 4.15 

Table 4.3. Comparisons with literature determinations of the λ parameter for the HU 
model. 

The MS model predicts the depth of the katabatic wind as a function of the 
distance from the beginning of the slope; they considered a semi-infinite slope. Our 
results for cases 1 and 2 (Fig. 4.26 a and b) show a fairly good agreement for the 
upper part of the slope, then they deviate from the theoretical predictions as the 
wind impacts with the quiescent air of the cold pool. For Case 3 (Fig. 4.26c), at this 
time (17:30 h) the current has been significantly weakened by the cold pool 
development and hence the comparison is quite poor. An interesting feature is that 
the depth of the katabatic wind inside of the cold pool layer is reduced 
proportionally to the length of the slope, with the longer slope (Case 1) showing a 
deeper residual flow. Another difference with respect to the theoretical predictions 
can be seen near the upper end of the slope, due to the fact that the MS model was 
developed for a slope without a ridge; here it appears that the current tends to 
propagate downward on the ridge for a certain extent with a depth of ≅ 5 m. 

The plot for Case 2 gives further evidence of the weak jump, which appears as a 
discontinuity in the flow depth with a slight increase upwind and a strong decrease 
downwind. 
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Fig. 4.26. Comparisons of the y-averaged depth h of the katabatic wind determined by this 
study with the theoretical predictions of the MS model at t = 17:30 h: (a) Case 1, (b) Case 2, 

(c) Case 3. 

4.6 Summary 
The three dimensional non-hydrostatic meteorological model WRF was 

modified to perform Large Eddy Simulations of the thermally driven circulation 
over a valley under calm geostrophic wind conditions. 

In order to correctly reproduce the fine structures of the anabatic and katabatic 
winds a vertically stretched grid was introduced with a finer mesh close to the 
ground. With highly anisotropic grids, problems arise with the classical definition of 
the filter width, so the length scale of the subgrid scale model was modified 
according to the theoretical considerations of Scotti et al. (1993). 

Most of the past LES studies in the literature introduced the forcing at the 
bottom boundary of the domain by directly imposing the surface heat flux as the 
term hj in the right hand side of (2.50). The most important drawback of this 
formulation is that it does not take into account the coupling between heat and 
momentum fluxes in the surface layer and thus cannot reproduce the differential 
heating of zones with different flow characteristics. In the present study the LES 
model is coupled with a surface layer scheme; the surface heat flux as well as the 
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friction velocity were computed according to the Monin-Obukhov similarity theory. 
Differences with respect to a previous study without coupling of Catalano et al. 
(2007) were emphasized. It should be recalled here that prescribing the surface 
temperature anomaly (as in this study) still has the drawback that the feedback with 
the uppermost soil layer cannot be simulated. 

The evolution of the diurnal boundary layer was investigated, pointing out the 
great importance of the subsidence over the valley and its related warming. A 
horizontal breeze develops as a consequence of the layered thermal structure of the 
basin. This flow can be explained considering the mutual influence of two principal 
factors: 1) the interaction between the subsidence current over the valley and the 
strongly stratified layer below; 2) the smaller mass flux associated to the lower slope 
region which is characterized by a stronger stratification. The large mass-flux 
required by the upper circulation is then partially recovered horizontally. The higher 
values of the surface kinematic heat flux over the ridge compared to those at the 
bottom of the valley also cover an important role in this phenomenon. 

The waves at the interface between the anabatic wind and the horizontal breeze 
were correctly reproduced and shown by the streamlines. The parameter λ from the 
HU theoretical model was computed and compared with previous investigations; 
the most relevant effect of the valley geometry is a lowering of this parameter due to 
the higher values of the flow depth caused by the interaction of the anabatic wind 
with the horizontal breeze. 

The nocturnal boundary PBL was investigated along with the evolution of the 
cold pool into the valley. It was found that the volume of the valley is the most 
important parameter for the evolution of the katabatic winds in a valley, since it 
controls the rate of the growth of the stable boundary layer into the basin. The 
resolution of this study, even if not large enough to fully resolve the small surface 
structures of the SBL, allowed capturing the flow separation which occurs as the fast 
katabatic wind impacts with the quiescent air of the cold pool. Comparisons with the 
MS hydraulic model show an agreement outside of the cold pool layer; in the lower 
part of the basin the depth of the katabatic current is reduced proportionally to the 
volume of the basin and the length of the slope. The formation of a hydraulic jump 
induces an increase of the flow depth upwind and a sensible decrease downwind of 
the discontinuity with respect to the theoretical predictions. 

During the nighttime period the SGS contribution to total TKE is significantly 
larger than the resolved one, thus the results should be interpreted like those of a 
RANS model with a second-order closure for the turbulence kinetic energy and a 
first-order closure for the temperature fluxes. The compromise on the spatial 
resolution is motivated by the aim of this work to reproduce both diurnal heating 
and nocturnal cooling over a quite large periodic ridge-valley domain. 
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5 Large Eddy Simulation of the circulation 
in a valley: influence of geostrophic wind 

A three dimensional meteorological model is used to perform large eddy 
simulations of the upslope flow circulation over a periodic ridge-valley terrain. The 
subgrid-scale quantities are modeled by a prognostic TKE scheme. The grid has a 
constant horizontal resolution of 50 m and is stretched along the vertical direction. 
To account for the grid anisotropy a modified subgrid length scale is used. To allow 
for the response of the surface fluxes to the valley-flow circulation, the soil surface 
temperature is imposed and the surface heat and momentum fluxes are computed 
based on Monin-Obukhov similarity theory. The model is designed with a 
symmetrical geometry using periodic boundary conditions in both x and y. Two 
cases are simulated to study the influence of along-valley geostrophic wind forcing 
with different intensities. The presence of the orography introduces numerous 
complexities both in the mean properties of the flow and in the turbulent features, 
even for the idealized symmetric geometry. Classical definitions for the height of the 
PBL are revisited and redefined to capture the complex structure of the boundary 
layer. Analysis of first- and second-moment statistics, along with TKE budgets, 
highlights the different structure of the PBL at different regions of the domain. 

This Chapter aims at investigating both the mean quantities and turbulent 
variances and fluxes that characterize the daytime circulation over a valley with an 
LES based on the WRF model. In order to reduce the degree of freedom of the 
system and to isolate the interacting phenomena we will limit the study to a simple 
periodic ridge-valley terrain. The model characteristics along with the simulation 
setup are briefly discussed in Section 5.1, Section 5.2 presents the flow feature and 
turbulence statistics that develop during the daytime convective PBL and the 
transition to the nighttime stable atmosphere. Section 5.3 examines the effect of 
geostrophic wind along the valley. Section 5.4 summaries the work with some 
discussions and remarks. 

5.1 Model and experiment setup 
The three dimensional meteorological model WRF (The Weather Research and 

Forecasting Model) is used as a framework for the LES simulations of the present 
work. WRF is a fully compressible, non-hydrostatic model with a terrain-following 
hydrostatic-pressure vertical coordinate. The model has been shown to be a good 
tool for LESs (Moeng et al. 2007), but has never been still needs to be thoroughly 
tested to perform LES in complex geometries. In a recent work, Lundquist et al. 
(2010) performed high resolution simulations of the flow over an urban skyline with 
WRF using the immersed boundary method but without focusing on the turbulent 
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fluxes. This work hence provides a step toward developing a multi-scale model for 
real-world PBLs which often consist of both mesoscale circulations and microscale 
turbulence. 

Since the scales of the investigated phenomena are quite small we neglect the 
Coriolis terms in the LES equations, but implicitly include the Coriolis effect in the 
geostrophic forcing. We also limit our study to a dry atmosphere. The modified 
WRF TKE diffusion scheme, described in Sections 2.4.1.1 and 4.1, is used to model 
the effects of SGS turbulence. 

The domain geometry is shown in Fig. 4.2. The parameters of the domain setup 
are reported in Table 5.1. The domain is very similar to that of Case 2 in Chapter 4; 
here the width d has been increased to improve the robustness of second-moment 
statistics. 

a (m) 3500 

b (m) 3000 

c (m) 5000 

d (m) 5000 

h (m) 500 

H (m) 2400 

β ≅ 9°30’ 

Vvalley (km3) 12 

Table 5.1. Domain configuration: geometry is given in Fig. 4.2. 

The horizontal grid resolution is uniform, Δx = Δy = 50 m; the vertical grid is 
defined with a parabolic stretching in order to have Δz ≅ 2 m near the ground and 
Δz ≅ 90 m at the top of the domain. The time step for the RK loop and the acoustic 
time-split scheme, as well as the parameters controlling the algorithm for acoustic 
wave modes damping are reported in Section 4.1. 

Periodic lateral boundary conditions are imposed in x and y, so the valley flow and 
turbulence statistics are symmetric about x = Lx/2. The top boundary of the domain 
is assumed to be at constant pressure with zero vertical velocity; as discussed in 
Section 4.1, an upper damping layer is not necessary for the present simulations. The 
lower boundary condition is described by the sinusoidal thermal forcing given by 
(4.2). The initial soil temperature is a function of the height of the ground relative to 
the bottom of the valley (zs). The evolution of the surface temperature is shown by 
its Hovmöller plot (Fig. 5.1). The surface heat flux and the friction velocity are 
computed according to Monin-Obukhov similarity theory. 
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Fig. 5.1. Hovmöller plot of the surface temperature. 

Two cases were investigated to study the influence of along-valley geostrophic 
wind on the thermal circulation and turbulence properties. Case 1 with Vg = 2 m/s 
represents a situation which is likely to occur in a real PBL over weak synoptic 
systems, while Case 2 is driven by a stronger geostrophic condition of Vg = 10 m/s. 
In both cases the symmetry in x is preserved by the orientation of Vg. The surface 
roughness z0 is set to 0.3 m (e.g. brush). 

The total grid points are 360 in x, 100 in y, and 58 in z. The model was integrated 
for 12 h, starting from the sunrise, to simulate the daytime PBL cycle. As discussed 
in Section 4.3, our grid resolution is not fine enough to fully resolve the turbulent 
eddies in the nighttime PBL; in fact, for very stable regimes the SGS component of 
the turbulent fluxes is prevailing and the model results can be interpreted like those 
of a RANS model with a second-order closure for the turbulence kinetic energy and 
a first order closure for the temperature fluxes. 

5.2 Results 
Since the valley flow and the PBL turbulence are driven mainly by surface 

heating, we first present the time evolution of the y-averaged surface kinematic heat 
flux in Fig. 5.2, for Case 1. In the valley, the surface kinematic heat flux reaches its 
maximum around hour 4 even though its ground temperature is warmest around 6 
h. This shows an evidence of strong coupling of the surface to the valley flow, which 
results in the largest difference between the surface and the near-surface air 
temperature at hour 4. Over the ridge, the maximum heat flux occurs around hour 5. 
The sharp peak near the top of the slope is about twice of the maximum value over 
the valley. The time cycle over the slope region shows an intermediate situation 
between the ridge and the valley, with stronger flux toward the ridge. The surface 
flux becomes negative after ≅ 8 h over the valley and after ≅ 9.5 h over the ridge. The 
largest negative heat flux occurs at ≅ 12 h near the foot of the slope. As outlined in 
Chapter 4, this complicated spatial and temporal evolution of the surface kinematic 
heat flux is typical of steep alpine valleys, as documented by the field measurements 
of Rotach et al. (2004) and the numerical simulations of Chow et al. (2006), and can 
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be reproduced only through the computation of the surface heat fluxes from a 
coupled surface layer scheme; such complicated interaction between valley-flow and 
surface fluxes was neglected in previous studies that imposed a constant surface 
heat flux (Catalano et al. 2007). 

 
Fig. 5.2. Hovmöller plot of the y-averaged surface kinematic heat flux for Case 1 (V g = 2 

m/s). 

5.2.1 Instantaneous flow fields 

Due to the symmetric geometry of the numerical domain, the simulated flow 
field remains symmetrical about the vertical plane at x = Lx/2. Henceforth, in most 
contour plots we will show just the west half of the domain. One of the most 
important advantages of the LES approach is the ability to resolve the turbulent 
structures of the flow. The instantaneous flow field at t = 7 h of simulation, when the 
daytime circulation is well developed, displays both terrain-induced mesoscale 
circulations as well as the random turbulent motions. The potential temperature 
field (Fig. 5.3a) shows a shallow mixed layer with a well-defined inversion at z ≅ 400 
m over the valley and a deep mixed layer with an inversion at z ≅ 1300 m over the 
ridge, while the wind field (Fig. 5.3b) reveals a large circulation with an upslope 
wind near the surface and a return flow below z ≅ 1300 m. The streamline also 
suggests a secondary circulation (i.e., clockwise between z ≅ 400 m and 1300 m) in 
the upper part of the valley and slope region, which will be described later. 

Fig. 5.4 provides a horizontal view of vertical velocity fluctuations at ≅ 50 m 
above the ground. Irregular cellular pattern is observed over the ridge and slope 
areas, which is typical of a CBL. The turbulent fluctuations are much weaker in the 
valley. As shown, the surface kinematic heat flux at this simulation hour is positive 
at all locations but it is at least three times smaller over the valley. The horizontal 
density gradients over the slopes produce an anabatic wind near the surface 
blowing from the valley toward the ridges; this is also reflected in the observed 
surface kinematic heat flux differences in the different regions of the domain. Over 
the valley the eddy structure is oriented along the y direction; this elongated feature 
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is related to the vertical shear induced by the geostrophic wind forcing and its 
interaction with the surface buoyancy. 

 
Fig. 5.3. Instantaneous vertical cross sections: isotherms (a) and vectors (b) at t = 7 h for 

Case 1 (Vg = 2 m/s), taken at y = Ly/2. 

 
Fig. 5.4. Instantaneous horizontal cross section of the vertical velocity at t = 7 h for Case 1 

(Vg = 2 m/s), at a fixed relative height from the ground. 

5.2.2 Averaging procedures for computing statistics 

Most of previous LES studies investigated idealized PBLs over horizontal 
homogeneous surfaces (both in x and y directions), so the averaging procedure in 
defining turbulence statistics was straightforwardly obtained by horizontal 
averaging; this approach guarantees a sufficient number of sample points for the 
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robustness of the statistics even with domains of modest sizes. In the present case 
the only statistically homogeneous direction is in y. Therefore, the perturbations φ’ 
are defined: 

( ) ( ) ( )φ' x,y,z,t =φ x,y,z,t -φ x,z,t  (5.1) 

where φ is the instantaneous value of the considered variable, 
yN

j
j=1y

1
φ= φ

L
∑  is its 

average value along the y direction, and Ly is the length of the domain in y. The 
averaging length Ly has to be more than ten times the turbulence integral scale in 
order to obtain reliable statistics (Wyngaard 1983). In this study, we set Ly = 5 km, 
which is a compromise between the needs for a long averaging length and the 
computational demand. To improve the data sample for reliable statistics, all 
moment statistics are subsequently averaged in time over a period of 40 minutes. 

5.2.3 Distributions of first-moment statistics 

The averaged potential temperature at hour 7 in Fig. 5.5 shows a deep well-
mixed PBL in the ridge region where the PBL is capped by a well-defined inversion 
layer above z ≅ 1300 m. In the valley, the PBL is much shallower with a capping 
inversion between z = 300 m and 450 m. Below the free atmosphere (z < 1200 m) two 
interacting internal boundary layers can be identified over the valley (6500 m < x < 
11500 m) at this time, separated the thermal inversion: the lower one is quite 
uniform and extends up to z ≅ 400 m; the upper one, located at 500 m < z < 1200 m, 
is horizontally inhomogeneous. The inversion is maintained by (1) the warm-air 
advection from the return flow and (2) by subsidence warming due to the sinking 
motion of the induced circulation. A relevant effect of this twofold warming 
mechanism is the depression of the development of the CBL in the basin, as 
confirmed by the measurements of Kondo et al. (1989). The mean temperature field 
shows a horizontal gradient of the near-surface temperature along x, which leads to 
the development of an anabatic flow over the two slopes as revealed by the stream 
function of the averaged wind fields (Fig. 5.6). 

 
Fig. 5.5. Averaged vertical cross section of isotherms at t = 7 h for Case 1 (V g = 2 m/s). 
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Fig. 5.6. Stream function of the averaged wind field at t = 7 h for Case 1 (V g = 2 m/s). 

Fig. 5.7 shows the three components of the mean wind at hour 7. The maximum 
intensity of the upslope wind is attained at t = 5 h (not shown). After that time, the 
depth of the upslope current continues to rise and eventually merges with a 
horizontal breeze (westward) located between z = 400 m and 800 m and extending 
from valley into the slope region (Fig. 5.7a). This horizontal breeze occurs at the 
terrain-height level of the ridge and is driven by the horizontal pressure gradient 
between the valley and the ridge. The horizontal breeze, along with the return flow, 
induces a secondary circulation in the upper part (400 m < z < 1300 m) of the 
domain. This secondary circulation could affect the air quality of cities in such an 
environment enhancing the dispersion of pollutants into upper air (above the mixed 
layer) over the valley. Similarly to the cases described in Chapter 4, this upper-level 
circulation is maintained by the subsidence over the center of the valley and the 
presence of a strong inversion at z ≅ 400 m over the valley. The inversion forces the 
downward flow to diverge and move horizontally toward the ridges. Note that 
between z ≅ 500 m and z ≅ 800 m the potential temperature of the air above the slope 
is lower than that over the valley (Fig. 5.5), and hence the horizontal breeze blows 
against the horizontal gradient of temperature. A more detailed description of the 
mechanisms responsible of the formation of this current has been given in Section 
4.2.1. 

The along-valley component of the wind (Fig. 5.7b), forced by the prescribed 
geostrophic wind, shows a tunneling effect in the center of the valley, where a 
shallow layer with an intensity of about 1.8 m/s is present between 400 m and 500 
m. This layer coincides with the westward horizontal breeze layer seen in Fig. 5.7a, 
together suggesting a north-westward current confined at the top of the PBL in the 
valley, and this current extends to the slope region and sits in between the anabatic 
flow and the return current. 

The vertical velocity (Fig. 5.7c) shows strong updrafts around x = 0 m where the 
two upslope flows converge (due to the periodic boundary condition in x). The 
characteristic depth of the mean updrafts decreases toward the valley, as the surface 
heat flux decreases. A broad mean subsidence extending over the whole valley can 
be observed between z ≅ 500 m and z ≅ 1100 m with an intensity of 0.1 - 0.2 m/s. 
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Fig. 5.7. Averaged vertical cross sections: u  (a), v  (b), w  (c) at t = 7 h for Case 1 (Vg = 2 

m/s). 

5.2.4 The PBL depth 

Due to the variable orography, the height of the PBL zi must be defined locally 
and relative to its ground level zs. Also, different definitions must be given 
depending on the stability regime, which varies with time and x location, as seen 
from the sign of the surface kinematic heat flux (Fig. 5.2). The complex and spatially 
varying PBL structure makes the classical definitions for the convective boundary 
layer (based on the minimum of the vertical kinematic heat flux or the maximum 
potential temperature gradient, Sullivan et al. 1998) inapplicable. 

For the unstable regime ( sw θ′ ′  > 0) we propose to define zi as the height where 
the magnitude of the vertical gradient of potential temperature goes above a critical 
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value cΓ = 0.001 K/m (i.e., at the base of a capping inversion) with the additional 
constraint that the heat flux is less than 15% of its maximum value. This definition is 
justified by the shape of the vertical profiles of the mean potential temperature at 
different x locations at t = 7 h (Fig. 5.8), where the height relative to the ground zr = z 
- zs has been normalized by zi. While over the ridge there is a clear signal for a single 
inversion layer, over the slope and the valley two inversions exist; over the valley 
the lower inversion corresponds clearly to a sharp capping inversion, while this is 
not the case over the slope region. Because we exclude the entire capping inversion 
zone to be part of the PBL, our method may underestimate zi compared with the 
common definitions of the CBL depth. 

 
Fig. 5.8. Profiles of the averaged potential temperature θ  at different x locations at t = 7 h 
for Case 1 (Vg = 2 m/s) as a function of the non-dimensional vertical coordinate z r/zi = (z - 
zs)/zi, where zi is the PBL depth and zs is the local terrain elevation. Filled circles refer to 
the valley centre, open squares refer to the middle of the left slope and filled triangles 

refer to the middle of the left ridge. 

For the near-neutral to moderately stable regimes ( sw θ′ ′  ≤ 0, e. g., during the 
evening transition) we distinguish between two situations: (1) when the PBL 
structure is dominated by the surface wind shear (due to geostrophic forcing); and 
(2) when the effect of temperature stratification (i.e., surface inversion) prevails. The 
friction velocity *u  is used to distinguish the two conditions with an empirical 
threshold value of 0.2 m/s. For the former case, zi is defined as the height where the 

along-y component of wind shear 
2v

z

∂

∂
 
 
 

 goes below a critical value Sc = 0.005 s-1, 

which is the height where the v ≅ Vg. For *u < 0.2 m/s, the inversion strength 
approach proposed by Hyun et al. (2005) is applied and z i is defined at the level 
where the surface inversion strength sδ=θ-θ  is smaller than 20% of its maximum 
value. 
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We have also tested a method based on the values of TKE (not shown) that could 
be applied to both unstable and stable regimes, but the presence of upper-level 
turbulence (to be discussed in the next subsection) induced by the interaction of the 
valley flows with the geostrophic wind makes this method impractical. 

The time evolution of the PBL depth for Case 1 is reported in Fig. 5.9. We 
compute zi at each (x, y) location and average them along y and also over a time 
period of 40 minutes. The plot shows a substantial increase of zi up to the time 
where the surface heat flux becomes negative (Fig. 5.2), and then the PBL drops 
abruptly to below 50 m. As we will see in section 4, this can be attributed to the 
weak geostrophic forcing which does not produce enough shear to generate 
turbulence against the negative surface heat flux. Maximum PBL depths of about 
850 m are observed at both ends of the ridges in correspondence to the strong 
updrafts. The average PBL depth over the slope (about 400 m in its middle) is about 
100 m higher than that over the valley, although this value does not consider the 
upper mixed layer that forms over the valley (see Fig. 5.8). 

 
Fig. 5.9. Hovmöller plot of the PBL depth zi for Case 1 (Vg = 2 m/s). 

5.2.5 Distributions of second-moment statistics 

Fig. 5.10a shows a vertical cross section of the total TKE, along with the wind 
vectors at hour 7; the black line shows the estimate PBL depth. At this time, the 
inclination of the growth line of the zi over the ridge is close to the angle of the slope. 
The horizontal breeze at z ≅ 400 m over the slope does not cause a noticeable 
increase in the turbulence kinetic energy. Over the valley region, zi is about 300 m 
while the TKE remains significant at about 400 m. Hence the method we proposed to 
compute zi underestimates the turbulence layer by about 25% over the valley in the 
presence of a strong capping inversion. To understand the source of TKE, we 
examine the individual components of the velocity variances. The SGS contributions 
to these variances are assumed to be 2/3 of the predicted SGS TKE. Over the ridge, 
the most important contribution to the TKE comes from the u-variance (Fig. 5.10b), 
except near the west boundary where w-variance dominates (Fig. 5.10d). The large 
contribution from the u-variance in the CBL over the ridge is unexpected; the TKE in 
the bulk of a typical CBL is usually dominated by the w-variance instead (e.g., 
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Moeng and Sullivan 1994). The dominance of the u-variance in TKE implies a 
significant shear production due to valley-flow circulation, which will be confirmed 
later. The turbulence over the slope is mostly determined by the w-variance. The v-
variance contribution (Fig. 5.10c) is relatively small, except in the inversion layer 
near the west-end boundary where the buoyancy flux is negative (Fig. 5.11a). Fig. 
5.10a and b also reveal double peaks in the u-variance profiles over the ridge and 
the upper part of the slope: one in the middle of the PBL and the other near the PBL 
top. The TKE budget shown later suggests that the upper maximum is due to 
horizontal advection of the TKE. Overall the TKE over the ridge is about two times 
higher than that over the slope and three times higher than that over the valley. 

The vertical fluxes (resolved plus SGS) are shown in Fig. 5.11. The kinematic 
heat flux is mostly positive except near the PBL top, which is typical of the CBL. 
Negative fluxes at the CBL top are the capping inversion regions, which agree well 
with our estimated zi shown in the same plot (Fig. 5.11a). The strong negative values 

of u w′ ′  (Fig. 5.11b) and the significant positive gradients of mean u over the ridge 
(Fig. 5.7a) yield a large shear production for TKE, which explains the large 
contribution of u-variance to TKE in that region. In the valley, negative v w′ ′  (Fig. 
5.11c) coincides with positive v-gradient in the lower PBL (Fig. 5.7b) which also 

contributes to shear production for TKE. The horizontal flux u v′ ′  shown in Fig. 
5.11d will be used to discuss the TKE budget later. 
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Fig. 5.10. Vertical cross sections of TKE and variances, together with the averaged wind 

vectors: TKE (a), 2u′  (b), 2v′  (c), 2w′  (d) at t = 7 h for Case 1 (Vg = 2 m/s): the black line in 
panel (a) delineates the PBL depth. 
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Fig. 5.11. Vertical cross sections of fluxes, together with the averaged wind vectors: w θ′ ′  

(a), u w′ ′  (b), v w′ ′  (c), u v′ ′  (d) at t = 7 h for Case 1 (Vg = 2 m/s): the black line in panel (a) 
delineates the PBL depth. 
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In our simulations we reproduce the interaction of three forcing mechanisms: (1) 
buoyancy resulting from the surface heat flux; (2) baroclinic shear induced by the 
valley-flow circulation; (3) shear generated by the imposed geostrophic forcing. 
Even if buoyancy dominates in many regions of the domain (particularly in Case 1), 
shear plays a marked influence on the TKE and particularly during the transition 
toward the nighttime period. 

To normalize the vertical profiles of variances, fluxes, and TKE budgets, we 
apply the scaling law proposed by Moeng and Sullivan (1994) which takes into 
account both buoyancy and shear effects, for the period when the surface heat flux is 
positive. The velocity scale 2

mw  is defined as 3 3 3

m * *w =w +5u  while the temperature 

scale is 
s

m

m

w θ
θ =

w

′ ′
, where 

1 3

s* i

0

g
w w θ z

T
′ ′≡

 
 
 

is the convective velocity proposed by 

Deardorff (1972) and 
0

g

T
 is the buoyancy parameter. This scaling approach assumes 

a linear combination of convection and surface shear effects and hence neglects all 
nonlinear feedbacks between shear and buoyancy forces. Nevertheless, it has been 
shown to be a suitable scaling for the second- and third-order moments of 
turbulence in sheared CBLs (Moeng and Sullivan 1994). For the moderately stable 
regime (discussed in the next section), we use *u  as the velocity scale since shear is 
the only mechanism responsible of turbulence production. We also normalize the 
height zr by the estimate zi shown in Fig. 5.9. 

Here we will discuss the profiles taken in the middle of the slope shown in Fig. 

5.12 as an example. The upper maximum of the normalized 2u′  (at about zr/zi = 2), 
is about 1.8 times larger than the lower one, so the contribution from horizontal 
advection accounts for a very important part of the turbulence over the slope. The v-
variance also shows an upper maximum from advection at the same level. The 
maximum of w variance occurs at zr/zi ≅ 0.4, which is typical of a CBL (Nieuwstadt 
et al. 1993; Moeng and Sullivan 1994). The profile also shows a secondary maximum 
at zr/zi ≅ 2.1, albeit small, which has been observed in sheared CBLs (Sorbjan 2004; 

Conzemius and Fedorovich 2006). The momentum flux u w′ ′  (Fig. 5.13a) is positive 
very close to the surface (zr/zi < 0.1) due to the upslope westward wind, and 
negative between zr/zi ≅ 0.1 and 0.7 due to the strong vertical shear of the induced 
valley flow. The upper maximum at about zr/zi = 2.2 may be due to the presence of 
gravity waves. The shear contribution from v w′ ′  (Fig. 5.13b) is less important and 
limited to the levels below zr/zi ≅ 0.5. The vertical profile of the kinematic heat flux 
(Fig. 5.13c) shows a nearly linear decrease with height as a typical convection PBL; 
however, unlike a typical CBL, there is little negative buoyancy flux at the PBL top, 
due to the weak capping inversion layer (see Fig. 5.8) as a result of the interaction 
with the horizontal breeze and the effect of the return current. 

The above second moments profiles also show that the resolved part of 
turbulence dominates the subgrid-scale part except at the first few levels close to the 
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ground (below zr/zi ≅ 0.1) where the grid spacing, even with a vertically stretched 
grid, is still not fine enough to fully resolve the energy-containing eddies. 

 
Fig. 5.12. Normalized vertical profiles of the variances: 2 2

mu w′  (a), 2 2

mv w′  (b), 

2 2

mw w′  (c) at x = 5000 m at t = 7 h for Case 1 (V g = 2 m/s). Open squares/ dashed lines 
represent the resolved contribution, filled circles/ dash-dotted lines shows the subgrid-

scale contribution, filled triangles/ full lines represent the total variable. 
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Fig. 5.13. Normalized vertical profiles of the fluxes: ( )m mw θ w θ′ ′  (a), 2

mu w w′ ′  (b), 
2

mv w w′ ′  (c) at x = 5000 m at t = 7 h for Case 1 (V g = 2 m/s). Open squares/ dashed lines 
represent the resolved contribution, filled circles/ dash-dotted lines shows the subgrid-

scale contribution, filled triangles/ full lines represent the total variable. 

5.2.6 TKE budget analysis 

To clarify the nature of the turbulence, the TKE budget is analyzed in this 
section. The governing equation for the total (resolved+sgs) turbulent kinetic energy 
E is: 

{
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with ρ and p deviations from the background hydrostatic profiles of density 0ρ  and 

pressure 0p . The terms in I represent the horizontal (ADV_h) and vertical (ADV_v) 
advection, II contains the horizontal and vertical shear production (S), III the 
buoyancy production (B), and the last term ε accounts for small-scale dissipation. 
The first two terms in IV represent the horizontal and vertical redistribution of 
turbulence by pressure fluctuations (P) and turbulent transport (T), while the last 
term represents the return-to-isotropy contribution, which should be zero for an 
incompressible flow field. In the above equation we have implicitly neglected, for 
simplicity, the advection and shear generation along y. The horizontal shear 
production (first three terms of II) are negligible in all analyzed locations (not 

shown), despite the fact that u v′ ′  (Fig. 5.11d) is large and varying from location to 

location; this is because u v′ ′  and 
v

x

∂

∂
 are poorly correlated. 

WRF is a compressible model and the pressure field is computed diagnostically 

from the equation of state. We checked the flow divergence 
u v w

= + +
x y z

∂ ∂ ∂
∇ ⋅

∂ ∂ ∂
V  and 

found its magnitude significant (on the order of 10-4 s-1) even in the shallow PBL. The 
divergence field is almost uniform in y (not shown). The y-average of the flow 
divergence is shown in Fig. 5.14; it reveals wavy structures characterized by 
alternating bands of positive and negative values with about 30° orientation with 
respect to the ground. A large band is observed above the plateau, in 
correspondence of the region characterized by large negative buoyancy (Fig. 5.11a). 
The kink at the top of the slope can be an effect of the pressure coordinate due to the 
sharp change of terrain inclination. With this large flow divergence field, we cannot 
separate the turbulent pressure fluctuations from those due to flow compressibility. 
Hence we will not calculate the pressure term P. 

 
Fig. 5.14. Vertical cross section of the averaged divergence of the wind field at t = 7 h for 

Case 1 (Vg = 2 m/s). 

To better characterize the nature of turbulence and to intercompare their profiles 
in different zones of the domain, the budget terms in Fig. 5.15 are normalized by 
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3

m iw z . Also, to show the relative importance of shear and buoyancy in 
determining the regime of the PBL, plots have been labeled with Deardorff’s 
stability parameter zi/L, where L is the Monin-Obukhov length. The upper 
boundaries of the vertical axis in Fig. 5.15a and b reach the top of the domain. 

 
Fig. 5.15. Normalized vertical profiles of the TKE budget: x = 250 m (a), x = 1750 m (b), x = 

5000 m (c), x = 9000 m (d) at t = 7 h for Case 1 (V g = 2 m/s). The curves represent the 
different terms in (11): ε (filled circles/ full lines) is the dissipation, B (open circles/ full 

lines) is the buoyancy, S (filled squares/ full lines) is the shear production, T (open 
diamonds/ dotted lines) is the turbulent transport, ADV_v (filled triangles/ full lines) and 

ADV_h (open triangles/ dashed lines) are, respectively, the vertical and horizontal 
advection terms. The stability parameter z i/L, where L is the Monin-Obukhov length, 

shows the presence of different regimes over the domain. 

Comparing the four figures in Fig. 5.15, which represent four selected locations, 
reveals significantly different TKE budgets, even though they are all taken at the 
same time period (t = 7 h). At the west-end boundary (x = 250 m), buoyancy 
production and small-scale dissipation are the two major terms in the TKE budget 
(Fig. 5.15a). This is consistent with the extremely negative stability parameter, zi/L = 
-57.5. However, due to the presence of a strong updraft (Fig. 5.7c), along with a 
significant negative vertical gradient of TKE in the upper half of the PBL (Fig. 5.10a), 
there is also a significant contribution from shear production S, turbulence transport 
T and vertical advection. A thick negative buoyancy flux layer of ~ 300 m is also 
present between zr/zi ≅ 0.8 and 1.2; such unusual large negative B has also been 
reported by Patton et al. (2005) in their LES of a flat terrain with surface 
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heterogeneities. We cannot find any budget term to balance this large negative 
buoyancy and will discuss this later. 

At x = 1750 m (Fig. 5.15b), which is still over the ridge but has a strong influence 
from the valley-flow circulation, the vertical shear production becomes the primary 
source of TKE between zr/zi ≅ 0.3 and 1.2, while buoyancy dominates only in the 
lower part of the PBL. Note that the PBL at this location has a stability parameter 
zi/L = -21.8 that according to Deardorff (1972) should be dominated by buoyancy 
production. The horizontal advection is also significant; it is negative in the lower 
half of the PBL but positive in the upper part. The redistribution term T is quite 
small, except very close to the surface. 

In the middle of the slope at x = 5000 m (Fig. 5.15c), the TKE budget is 
dominated by buoyancy production and small-scale dissipation in the lower half of 
the PBL. Near the ground (up to zr/zi ≅ 0.3), positive contributions from vertical 
shear and vertical advection are also significant. A significant redistribution of 
energy by turbulent transport from the lower half to the upper part of the PBL is 
also observed as in other three locations; this term is likely to be counterbalanced 
somewhat by the pressure redistribution P in the CBL (Moeng and Sullivan 1994) 
but unfortunately the P term cannot be estimated from the WRF output as 
mentioned before. 

In the middle of the valley (Fig. 5.15d) both buoyancy and shear are large 
production terms below zr/zi ≅ 0.5, although buoyancy is still the prevailing one. 
Above 0.5 zi, buoyancy becomes a large sink for TKE; the large TKE sink between 
zr/zi ≅ 0.5 and 1.7 is only partially balanced by the vertical transport of turbulence 
and the shear production. Advection plays a negligible role in the budget in the 
valley. A local maximum of shear production can be observed at zr/zi ≅ 1.3, which is 
induced by the vertical shear of mean v as evidenced from Fig. 5.7b. The stability 
parameter over the valley is comparable to that over the slope but their budgets (Fig. 
5.15c and d) are similar only in the lower half of the PBL. The major difference in the 
TKE budgets above zr/zi = 0.5 in these two locations is dominated by the much 
larger negative buoyancy term associated with the very strong capping inversion 
over the valley. This unusually large negative buoyancy in the capping inversion is 
also observed at x = 250 m. 

To better clarify the nature of the large negative buoyancy in the inversion layers 
at x = 250 m and x = 9000 m, a quadrant analysis of the vertical kinematic heat flux 
has been performed following Sullivan et al. (1998). Fig. 5.16 shows the resolved 

contribution of the normalized kinematic heat flux from the four quadrants: + +w θ , 
+ -w θ , - -w θ , - +w θ , where + and – represent the positive and negative fluctuations 

from the y averages, as well as the total fluxes. In both locations wave activity is 
present in the capping zone and above as suggested by Fig. 5.14. In the lower half of 
the PBL, the total flux is dominated by the two positive quadrants, particularly by 

+ +w θ  at x = 250 m (Fig. 5.16a) due to the strong updrafts. 
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Fig. 5.16. Normalized vertical profiles of the buoyancy flux partitioned into four 

quadrants: x = 250 m (a), x = 9000 m (b) at t = 7 h for Case 1 (V g = 2 m/s). The signs + and – 
stand for the positive and negative fluctuations with respect to the y averages. The total 

resolved kinematic heat flux is shown by the asterisk/ full lines. 

In the inversion layer at both locations, the two positive quadrants have similar 
magnitudes, so do the two negative quadrants, which suggest wave motions; 
however, the magnitudes of the two negative quadrants are much larger than those 
of the two positive quadrants, which then results in the very negative buoyancy flux 
there. Our quadrant distributions in the inversion layer also differ from those of the 
entrainment heat flux analyzed by Sullivan et al. (1998) where the entrainment flux 
is dominated by the second (cold air rising) and the third (cold air sinking) 
quadrants. This seems to suggest that our negative heat flux is not due to 
entrainment. This puzzling negative heat flux in the inversion layer results in an 
unbalanced TKE budgets. We have tried to look for mechanisms to explain the large 
negative B and to balance the TKE budgets but failed. This problem may be 
physical, relating to the induced valley flow circulation, but may also be just a WRF 
model problem due to its compressibility as indicated in Fig. 5.14. As will be shown 
in the next section, this large negative buoyancy and the associated imbalance in the 
TKE budget is not observed in presence of a stronger along-valley wind. This might 
be connected to the less important role played by pressure fluctuations as the shear 
production terms increase. Further investigation is needed. 

5.3 Influence of a strong geostrophic wind along the valley 
Next, we examine Case 2, which has a stronger geostrophic wind Vg = 10 m/s 

compared to Case 1; all other parameters of the two simulations remain the same. 
Our discussion below will focus mainly on the differences between the two cases to 
signify the effect of geostrophic forcing. Fig. 5.17 shows the time evolution of the 
surface kinematic heat flux for Case 2. The maximum values are roughly the same as 
those in Case 1 (Fig. 5.2) but appear one hour earlier. Again, after 9.5 hours the 
positive surface heat flux vanishes everywhere in the domain; however, the sign 
change occurs earlier (at about 6.5 h) over the valley. So, at t = 7 h we have unstable 
PBLs over the ridges and the slopes, but a weakly stable PBL over the valley. Just 
like Case 1, the most negative heat flux occurs over the slopes at t = 11 h, but with a 
much larger magnitude; this time period coincides with the onset of katabatic winds 
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(not shown). The differences between the two cases can be explained by the 
feedbacks between shear and buoyancy forces. The kinematic surface heat flux is 
given by: 

( )s * s 1

h

1
w θ =ku θ -θ

φ
′ ′  (5.3) 

where k is the Von Karman constant, 1θ  is the temperature at the first model layer 

and hφ  is the stability function for temperature. Initially, shear contributes to 

enhance *u  and thus sw θ′ ′ . Later on, when the mixed layer grows up, the shear 

generated by the geostrophic wind is reduced (because 
v

z

∂

∂
 becomes smaller). The 

shear generated by the baroclinic circulation is instead sustained by the surface 
temperature increase. This explains why the maximum values of the surface heat 
flux are reached earlier in Case 2 but are roughly the same for both cases. The 
transport of warm air from the upper levels toward the ground by subsidence in the 
valley causes the decrease of ( )s 1θ -θ  and hence of the surface heat flux. In addition, 
as shown later, the capping inversion over the valley is much stronger in Case 1, 
which effectively isolates the warm inversion air from reaching to the first grid level. 
Thus, over the valley the sign change of ( )s 1θ -θ  occurs later in Case 1. In other 
regions of the domain, the sign change of the surface heat flux occurs at the same 
time in both simulations. When the surface heat flux becomes negative, its 

magnitude is increased by the wind shear. A negative value of sw θ′ ′  drives the 
onset of katabatic winds over the slopes. The other shear source in moderately stable 
conditions is the geostrophic forced wind shear. Therefore, the higher negative 
values are observed in Case 2 over the slopes. 

 
Fig. 5.17. Hovmöller plot of the y-averaged surface kinematic heat flux for Case 2 (V g = 10 

m/s). 
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Fig. 5.18. Instantaneous horizontal cross section of the vertical velocity at t = 7 h for Case 2 

(Vg = 10 m/s), at a fixed relative height from the ground. 

The horizontal cross section of the instantaneous field of vertical velocity 50 m 
above the ground (Fig. 5.18) reveals two distinct flow features: (1) over the ridge the 
combined effect of the along-x mesoscale circulation and the along-y geostrophically 
forced wind results in structures approximately oriented along a 45° angle from the 
x axis, although the cellular pattern is still present near the west-end boundary; (2) 
over the slope and the valley large streaks are clearly aligned with the 
geostrophically forced wind, giving evidence that turbulence in this region of the 
domain is dominated by shear. 

Fig. 5.19 shows the distribution of mean winds for Case 2. The thermally driven 
mean circulation is similar to that in Case 1, but with a stronger anabatic wind, a 
weaker return current and a weaker horizontal breeze (Fig. 5.19a). Also, its return 
current is thicker, extending up to 1700 m, while the depth of the upslope wind 
remains equal to that of Case 1. The mean v wind (Fig. 5.19b) shows no tunneling 
over the valley due to the lack of a capping inversion layer (Fig. 5.20). The mean 
vertical velocity (Fig. 5.19c) reveals a stronger updraft over the west-end of the ridge 
than that in Case 1. It also shows several updrafts along the slopes and in the valley; 
these updrafts are associated with the streaks along y shown in Fig. 5.18 over the 
foot of the slope and the valley, which extend vertically up to the entire PBL depth. 
Of particular evidence is a counterclockwise vortex street along the foot of the slope, 
which extends horizontally from x ≅ 6200 m to x ≅ 7500 m. 
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Fig. 5.19. Averaged vertical cross sections: u  (a), v  (b), w  (c) at t = 7 h for Case 2 (Vg = 10 

m/s). 

 
Fig. 5.20. Averaged vertical cross section of isotherms at t = 7 h for Case 2 (V g = 10 m/s). 
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Fig. 5.21 illustrates the temporal evolution of the PBL height zi, as determined by 
the method described in subsection 3d. The stronger shear in Case 2 makes the field 
much more irregular than that in Case 1, particularly with the formation of streaks 
and roll-like structures. On average zi grows faster and reaches higher levels 
compared to Case 1, in agreement with the observations taken for various strongly 
sheared CBLs by Fedorovich and Conzemius (2008). The maximum value of z i ≅ 950 
m (vs. ≅ 850 m in Case 1) is attained at t = 7 h near the side boundaries over the 
ridges and it persists until hour 9; after that time a sharp decrease of the PBL height 
accompanies the vanishing of the positive surface heat flux over the ridges (Fig. 
5.17). The plot also shows a deepening of the PBL in proximity of the feet of the 
slopes during the transition to the weakly stable regime occurring from hour 7 to 
hour 9; here the depth of about 600 m is associated with the formation of two-
dimensional rolls, as evidenced from the mean wind fields (Fig. 5.19a and c). These 
large 2D rolls persist and even grow in depth from t = 7 h to 9 h (not shown). 

 
Fig. 5.21. Hovmöller plot of the PBL depth zi for Case 2 (Vg = 10 m/s). 

Fig. 5.22 shows a vertical cross section of the total TKE, the wind vectors, and the 
PBL depth. Maximum turbulence values are about 1.7 times higher than those in 
Case 1 (Fig. 5.10a), confirming the noticeable influence of the wind shear, especially 
in the upper part of the PBL. Like in Case 1, the maximum TKE occurs near the 
west-end boundary; but in Case 2 a second peak of TKE near the west-end boundary 
occurs at ≅ 1600 m, which will be discussed later. A fairly good correlation between 
zi and the level where TKE decreases significantly is observed only over the slope 
and the eastern part of the ridge, where zi again reveals an angle close to the slope 
inclination. Surprisingly, the large 2D roll along y near the foot of the slope is not 
associated with intense turbulence, while the other roll-like structures (associated 
with mean updrafts in Fig. 5.19c) over the valley carry a higher energetic content. 
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Fig. 5.22. Vertical cross section of TKE, together with the averaged wind vectors at t = 7 h 

for Case 2 (Vg = 10 m/s): the black line delineates the PBL depth. 

 
Fig. 5.23. Normalized vertical profiles of the variances: 2 2

mu w′  (a), 2 2

mv w′  (b), 

2 2

mw w′  (c) at x = 5000 m at t = 7 h for Case 2 (V g = 10 m/s). Open squares/ dashed lines 
represent the resolved contribution, filled circles/ dash-dotted lines shows the subgrid-

scale contribution, filled triangles/ full lines represent the total variable. 

Next we apply the scaling described in subsection 3e to the vertical profiles of 
second-moment statistics, again taken in the middle of the slope (where the surface 
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heat flux is still positive). The lower maximum of the u variance (Fig. 5.23a) is 
slightly more intense than that in Case 1. The secondary maximum in Case 1 above 
the PBL disappears here, which will be shown later to relate to the strong 
geostrophic wind which reduces the horizontal advection along x. The v variance 
profile (Fig. 5.23b) is similar to Case 1, although the surface maximum is 1.5 times 
larger and the upper peak is shifted upward to zr/zi ≅ 3; this shift can be explained 
by the presence of an intense wind shear at this level. As expected for a less 
buoyancy dominant PBL, the normalized vertical velocity variance (Fig. 5.23c) peak 
is less intense than that of Case 1 and locates higher up to zr/zi ≅ 0.5, which agree 
with the LES results obtained by Sorbjan (2004) of a strongly sheared baroclinic CBL. 

 
Fig. 5.24. Normalized vertical profiles of the fluxes: ( )m mw θ w θ′ ′  (a), 2

mu w w′ ′  (b), 
2

mv w w′ ′  (c) at x = 5000 m at t = 7 h for Case 2 (V g = 10 m/s). Open squares/ dashed lines 
represent the resolved contribution, filled circles/ dash-dotted lines shows the subgrid-

scale contribution, filled triangles/ full lines represent the total variable. 

The normalized u w′ ′  profile (Fig. 5.24a) is similar to that of Case 1, but the 
negative value is smaller and extends up to the top of the PBL; also, the secondary 
peak in Case 1 at zr/zi ≅ 2.2 is not present here. Vigorous surface shear is shown in 
v w′ ′  profile (Fig. 5.24b) up to half of the PBL depth; the magnitudes are about 2.5 
times higher than those in Case 1. A modest positive flux is shown just above the 



 82 

height of the PBL, which may be associated to the presence of gravity waves. It is 
interesting to note that in this case such upper-level secondary large flux appears in 
the v-flux profile, while in case of weak geostrophic condition the secondary large 
flux shows up in the u-flux. The kinematic heat flux (Fig. 5.24c) is similar to that in 
Case 1 except the presence of a deep negative-flux layer between z r/zi ≅ 2.5 and 3.5; 
as shown later, this is related to the strong shear generation of turbulence at this 
level. 

The normalized TKE budgets at various locations are shown in Fig. 5.25. Again, 
they differ significantly from location to location. In the middle of the ridge (Fig. 
5.25a) the buoyancy production is important in the lower half of the domain, while 
the vertical shear dominates in both the surface layer and the upper half of the PBL. 
An entrainment layer (i.e., the negative buoyancy flux layer) is present between zr/zi 
≅ 1.5 and 2. Horizontal advection is negative in the lower half of the PBL and 
becomes positive above zr ≅ zi. Between zr/zi ≅ 1 and 2 both horizontal advection 
and vertical shear are major production of TKE, which balance the dissipation and 
the negative buoyancy. The stability parameter zi/L = -6.6 still indicates an unstable 
regime, but its magnitude is about 3 times smaller than that in Case 1 due to the 
increasing importance of the surface shear. The redistribution by turbulence 
transport is negative below zr/zi ≅ 0.8 and positive up to zr/zi ≅ 2. 

In the middle of the slope (Fig. 5.25b) the most important contributions to the 
production of turbulence are the shear and the vertical advection up to zr/zi ≅ 0.2. In 
the remaining part of the PBL, buoyancy prevails. At zr/zi ≅ 3, in correspondence to 
the interface between the return current and the stratified atmosphere above, 
buoyancy destruction in the entrainment zone is nearly balanced by the shear. 

In the middle of the valley (Fig. 5.25c) we have near neutral conditions (zi/L = 
0.2) and hence friction velocity is the appropriate parameter for scaling the TKE 
budget profiles. The small-scale dissipation nearly balances the shear production, 
which is typical of a near-neutral PBL (e.g., Moeng and Sullivan 1994). 

It is worth noting that Case 2 does not show any imbalance in the TKE budget at 
any location. This may be due to a less importance role of pressure fluctuations in a 
stronger shear case. 
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Fig. 5.25. Normalized vertical profiles of the TKE budget: x = 1750 m (a), x = 5000 m (b), x = 

9000 m (c) at t = 7 h for Case 2 (Vg = 10 m/s). The curves represent the different terms in 
(11): ε (filled circles/ full lines) is the dissipation, B (open circles/ full lines) is the 

buoyancy, S (filled squares/ full lines) is the shear production, T (open diamonds/ dotted 
lines) is the turbulent transport, ADV_v (filled triangles/ full lines) and ADV_h (open 

triangles/ dashed lines) are, respectively, the vertical and horizontal advection terms. The 
stability parameter zi/L, where L is the Monin-Obukhov length, shows the presence of 

different regimes over the domain. 

5.4 Summary 
The turbulent structure of a complex baroclinic PBL driven by (1) surface 

heating and (2) along-valley geostrophic wind Vg is investigated by means of the 
LES technique. The three-dimensional non-hydrostatic meteorological model WRF is 
modified to include new formulation for the SGS filter width. Ridge-valley 
topography, symmetrical in x and uniform in y, is simulated with an LES grid 
resolution to explicitly resolve the energy-containing turbulent eddies. The 
thermally driven circulation is generated by imposing a sinusoidal time change of 
the surface temperature; the surface heat and momentum fluxes are then computed 
based on Monin-Obukhov surface similarity theory. The approach enables the 
model to generate a surface heat flux that responds and couples to the valley-flow 
circulation. In this study we focus on the daytime circulation, i.e., the upslope flow. 
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Two cases are simulated with different Vg (2 m/s and 10 m/s) to investigate the 
influence of geostrophic wind on valley flows and their turbulence properties. 

Turbulence statistics vary from location to location due to topography. We 
define the ensemble statistics as averages along y (along the valley) and also over a 
time period of 40 minutes. The first-moment statistics show the characteristics of the 
mean flow, which consists of two symmetrical upslope circulations. The surface 
kinematic heat flux reveals complicated time and space distributions: the largest 
positive surface flux occurs about two hours before the maximum ground 
temperature; during the transition from anabatic to katabatic flows the largest 
negative flux occurs near the foot of the slope. Both cases show some characteristic 
features: the PBL over the ridge is much deeper than that in the valley and the 
growth line of the PBL over the slope (and even extending into the ridge) roughly 
corresponds to the slope angle. 

The PBL structure differs from the idealized CBL over a uniform surface. Even 
when the stability parameter indicates a very unstable CBL, the shear production is 
as important as (or even dominates) the buoyancy production in generating 
turbulence in many regions, particularly over the ridge where the valley-flow 
circulation creates a strong vertical shear of the mean u. The TKE budgets vary 
significantly at different regions among ridge, slope and valley. 

In the case with Vg = 2 m/s, a horizontal breeze, from valley towards the ridge, 
appears near the top of the PBL (which happens to be at about the ridge height) over 
the valley and extends to the slope region. This breeze merges with the anabatic flow 
and significantly deepens the upslope flow at the top of the slope. The horizontal 
breeze, along with the return current, also leads to a secondary circulation over the 
valley, which may significantly impact the vertical distribution of air pollution in the 
valley. Associated with this westward horizontal breeze is a strong northward wind 
(tunneling along the valley) again at about the ridge height. In the case with Vg = 10 
m/s, the horizontal breeze is weaker and the tunneling wind disappears, which may 
be due to the change in strength and height of the capping inversion over the valley. 

In the case with Vg = 2 m/s, a strong capping inversion forms over the valley at 
≅ 400 m, which is about the ridge height, as a result of the strong subsidence induced 
by the return current of the thermal circulation. This capping inversion weakens in 
the case with Vg = 10 m/s because of (1) a deeper earlier CBL over the valley, which 
grows above the ridge height and (2) the formation of two-dimensional roll-like 
structure over the valley and at the foot of the slope due to larger shear during the 
transition to the stable regime. 

In the case with Vg = 2 m/s, the TKE over the slope exhibits a secondary peak 
above the PBL due to the horizontal advection of turbulence (carried by the return 
current), which may significantly affect the dispersion process there. With strong 
geostrophic wind forcing, this horizontal advection effect is much reduced, but a 
large v-variance appears at zr ≅ 3zi over the slope due to the much stronger shear at 
that level. 
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Over the slope, the CBL reveals some unusual features. For example, in both 
cases, the capping inversion at the top of the CBL is largely diminished due to the 
formation of the horizontal breeze and the return current. In the case with Vg = 10 
m/s, an entrainment heat flux occurs at the interface between the return current and 
the stratified atmosphere above, around zr ≅ 3zi, where the negative buoyancy 
balances the shear production of TKE. 

It should be observed that, since the orography and the forcings in the present 
study are idealized, some of the details of the circulation and the turbulence 
structure might not be transferrable to real valleys, also due to the effect of different 
synoptic conditions. 

In this study, we show that the LES technique can be used to study higher-
moment turbulence statistics such as variances, fluxes, TKE budgets, and how they 
distribute over different regions of a complex terrain. Despite the fact that these 
higher moment statistics are of great importance to PBL applications such as air 
pollution and wind farm siting, they have not been thoroughly investigated at a 
spatial resolution as high as 50 m in previous LES studies over variable orography. 
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6 Conclusions 

The simulation of the atmospheric circulation over a heterogeneous terrain 
involves the modeling of a number of phenomena occurring at different scales. The 
analysis of the different turbulence closure techniques, presented in Chapter 2, 
evidenced that the main advantage of the LES methodology relies in its ability to 
model only the small scales; a higher energetic content is generally resolved and the 
influence of the subgrid contributions on the resolved scales is less important than 
with the RANS technique. Nevertheless, the need to model highly anisotropic wall 
structures with non uniform vertical grids requires a particular care in the definition 
of the filter width. Starting from considerations about the theoretical spectrum it is 
possible to derive an expression for the filter width which takes into account the grid 
anisotropy. We introduced this modification into the TKE subgrid scale model of 
WRF and tested against the filtered Kolmogorov spectrum; as discussed in Chapter 
4, this formulation of the filter width results in a closer agreement with the 
theoretical predictions. 

Past LES studies introduced the surface heat forcing by directly imposing the 
surface heat flux as a source term in the thermal energy balance equation. This 
formulation does not take into account the coupling between heat and momentum 
fluxes in the surface layer. We proposed a more realistic bottom boundary condition 
obtained coupling the LES model with a surface layer scheme based on the Monin-
Obukhov similarity theory. The results of Chapters 4 and 5 show that this method 
allows to reproduce the differential heating of zones with different flow 
characteristics. 

We evidenced the occurrence of coherent structures in the valley atmosphere. 
During the daytime we have: (1) an anabatic current over the slopes; (2) a horizontal 
breeze directed from the center of the valley toward the slopes; (3) a strong updraft 
and an associated intense roll vortex over the ridges; (4) a region characterized by a 
free convection regime over the ridges away from the slopes and at the bottom of the 
valley; (5) a return current in the upper part of the domain directed from the ridges 
toward the center of the valley; (6) a deep subsidence region over the basin which 
closes the overall circulation. During the nighttime period we have: (1) a stable layer 
develops in the valley (cold pool), thus eroding the residual layer just above; (2) the 
development of downslope currents, flowing from the top of the two ridges; (3) the 
absence of a significant return current. 

We emphasize here that the horizontal breeze, along with the return current, 
leads to a secondary circulation over the valley, which may significantly impact the 
vertical distribution of air pollution in the valley. In case of a weak geostrophic wind 
forcing directed along the valley axis, a strong northward wind tunneling along the 



 87 

valley at about the ridge height is associated with the horizontal breeze. In the case 
with a strong geostrophic wind forcing the horizontal breeze is weaker and the 
tunneling wind disappears. 

Turbulence statistics vary from location to location due to orography. The PBL 
over the ridge is much deeper than that in the valley. The growth line of the PBL 
over the slope (and even extending into the ridge) roughly corresponds to the slope 
angle. Even when the stability parameter indicates a very unstable CBL, the shear 
production is important in generating turbulence in many regions. The TKE budgets 
vary significantly at different regions among ridge, slope and valley. 

Previous LES studies of complex PBLs mainly investigated the mean fields. In 
this study, we studied higher-moment turbulence statistics such as variances, fluxes, 
TKE budgets, and how they distribute over different regions of a complex terrain. 
These higher moment statistics are of great importance to PBL applications such as 
air pollution and wind farms. 

The results of this study shows that, even with a certain degree of idealization, 
spatial inhomogeneities in terrain elevation considerably modify the mechanisms of 
turbulence generation and redistribution under convective conditions, introducing 
significant shear production and advection terms in the TKE budget. 

Imposing the surface temperature anomaly as the thermal forcing, even 
neglecting the interaction with the soil capacity, allows the coupling between surface 
thermal and momentum fluxes, which is a step toward the reproduction of real 
conditions where the surface heat flux over the slopes significantly differs from that 
over the valley or the ridges. In fact, most of the previous LES studies considered a 
constant stationary surface heat flux which is not realistic under variable terrain 
elevation. 

The present non-stationary LES investigation revealed that the PBL 
characteristics (e. g. its depth and the stability regime) are governed by mechanisms 
that change during the daytime evolution, depending on the relative importance of 
thermal and shear forcing. This implies that different scaling parameters should be 
used in the analysis of turbulence statistics at different times of the day and also for 
the different regions of the domain, according to the local stability regime defined by 
the sign of zi/L. Furthermore, the PBL height itself must be defined locally and its 
determination method depends on the sign of the surface heat flux. 

Valley circulation is not explicitly reproduced by mesoscale models, whose fine 
grids have a horizontal grid spacing ≥ 1 km. Furthermore, currently used mesoscale 
PBL schemes are one-dimensional and do not include the effects of horizontal 
transport. It has been shown in the present investigation that the complex turbulence 
structure over a valley and its significant horizontal heterogeneity has a large impact 
on the mesoscale circulation, particularly the buoyancy fluxes redistribution; hence 
it should be included as additional source/sink terms in future PBL 
parameterization. 
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Future LES studies should investigate the effects of the valley circulation on the 
formation and distribution of clouds, including the role of moisture and its 
interaction with the observed significant buoyancy fluxes. 

The parameters from the Hunt et al. (2003) and Manins and Sawford (1979) 
theoretical models were computed and compared with previous investigations, 
pointing out the effects of the geometry on the flow properties. 

A thorough comparison with observations is an important step in order to 
confirm the findings of this study. Nevertheless, detailed and reliable data on both 
mean quantities and turbulence statistics are very difficult to obtain and such field 
campaign is beyond the scope of the present work. Also, we have focused on an 
idealized geometry which is not representative of real meteorological conditions.
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Appendix A Physics schemes 

In the application of the models on different scales the phenomena characterized 
by dimensions smaller than the computational cell are not explicitly evaluated. 
Nevertheless, subgrid scale phenomena may have a significant influence on larger 
scales flows. Therefore, these effects must be taken into account by empirical or 
semi-empirical formulations, which are aimed to provide corrections to the 
meteorological fields resulting from the resolution of the governing equations in 
every point of the grid. The classification of the schemes for the physics is: 

− Microphysics (MP); 

− Convection (CP); 

− Radiation (RA); 

− Land Surface (LSM); 

− Surface Layer (SFC); 

− Planetary Boundary Layer (PBL). 

Fig. A. 1 shows the flux diagram of the modeling system composed by 
governing equations and parametric schemes; the shaded lines indicate that that 
specific scheme is not activated for every integration step. LW↑, SW↑, LW↓, SW↓ are 
the infrared (LW) and visible (SW) radiation fluxes, the arrows indicate the direction 
of the fluxes (upward ↑ and downward ↓); P is the total rain, sum of the explicitly 
resolved contribution PRIS and the part coming from the convective scheme PCONV; 
the subscript ()s denotes the surface layer variables, ()0 refers to ground values and 
()a denotes the variables defined at the first grid level; XC and XW are the mixing 
ratios for water vapor and condensed cloud water, respectively. The remaining 
variables will be defined in the following. 
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Fig. A. 1. Interactions of the physics with the governing equations between two 

subsequent time steps: the arrows show the incoming and outgoing variables as used by 
the different schemes. 
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A.1 Microphysics 
Microphysics schemes model all the processes of the change of state of the water 

in the atmosphere; the formation and the evolution of clouds and precipitations. 
They are classified on the basis of the way they consider the changes of state of 
water. 

We describe, as an example, the scheme of Lin et al. (1983) which considers five 
classes of hydrometeors: cloud water and cloud ice (under saturation conditions), 
rain, snow, hail. Snow is assumed for aggregates of ice crystals of 2 - 5 mm of 
diameter, a density of 0.05 - 0.89 g/cm3 and a terminal velocity of 0.5 - 3 m/s; hail 
indicates aggregates characterized by a diameter larger than 5 mm, density of 0.8 - 
0.9 g/cm3 and terminal velocity of 10 - 40 m/s. The dimensions of the particles 
which compose snow and hail aggregates are assumed to be small enough to neglect 
their terminal velocities, thus considering only the terminal velocities of the 
respective aggregates. Fig. A. 2 shows a diagram of the model with all the 
parameterized processes and their interactions; the symbols are explained in Table 
A. 1. 

 
Fig. A. 2. Microphysics scheme of Lin et al. (1983): the circled numbers represent the 

modeled physical processes, described in Table A. 1; the arrows represent the 
transformation between two different states. 
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Symbol Parameterized Process 

 − Condensation, evaporation, deposition and sublimation. 

 − Melting of cloud ice to form cloud water, T ≥ 0°C. 

 

− Growth of cloud ice by deposition of cloud water; 
− Homogeneous cooling of cloud water to form cloud ice. 

 

− Heterogeneous nucleation by collision and coalescence of water droplets; 
− Homogeneous nucleation; 
− Accretion of cloud water on snow particles; produces snow if T < 0°C, rain if T ≥ 0°C. 

 
− Accretion of cloud water on snow particles; produces snow if T < 0°C, rain if T ≥ 0°C; 
− Bergeron processes (deposition and riming) to form snow. 

 − Accretion of cloud water on hail particles. 

 

− Heterogeneous nucleation by collision and coalescence of cloud ice; 
− Accretion of cloud ice on snow particles; 
− Freezing of rain droplets which collide with cloud ice particles; produces snow if 

-4

R
X 10 g/g≤ , hail if -4

R
X >10 g/g ; 

− Autoconversion of cloud ice in snow via the growth of Bergeron nuclei (crystals of 50 
μm diameter). 

 

− Accretion of cloud ice on hail particles; 
− Freezing of rain droplets which collide with cloud ice particles; produces snow if 

-4

R
X 10 g/g≤ , hail if -4

R
X >10 g/g . 

 
− Accretion by deposition of snow particles at T < 0°C; 
− Sublimation of snow particles under unsaturated conditions. 

 − Evaporation of rain droplets under unsaturated conditions. 

 − Sublimation of hail particles under unsaturated conditions. 

 − Melting of snow particles to form rain, T ≥ 0°C. 

 

− Accretion of rain droplets on cloud ice particles; produces hail if -4

R
X >10 g/g , 

-4

S
X 10 g/g≥  and T < 0°C. 

− Accretion of rain droplets on snow particles; with T < 0°C produces hail if 
-4

R
X 10 g/g≥ and -4

S
X 10 g/g≥ , else generates snow. With T ≥ 0°C enhances snow 

melting. 

 

− Heterogeneous nucleation by collision and coalescence of snow particles; 
− Accretion of snow particles on hail particles; produces hail; 
− Accretion of snow particles on rain droplets; produces hail if -4

R
X 10 g/g≥ , 

-4

S
X 10 g/g≥  and T < 0°C. 

 

− Accretion of rain droplets on hail particles; 
− Accretion of rain droplets on cloud ice particles; produces hail if -4

R
X 10 g/g≥ , 

-4

S
X 10 g/g≥  and T < 0°C; 

− Freezing of rain droplets to form hail; 
− Accretion of rain droplets on snow particles; with T < 0°C produces hail if 

-4

R
X 10 g/g≥ , -4

S
X 10 g/g≥ , else generates snow. With T ≥ 0°C enhances snow 

melting. 

 − Melting of hail to form rain, T ≥ 0°C. 
Table A. 1. Microphysics processes in the model of Lin et al. (1983). 
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An exponential distribution is assumed to describe the dimensions of the 
precipitating particles: 

( ) j- Dj
j j 0jn D =n e λ  (A. 1)  

where the subscript j refers to rain (j = R), snow (j = S) and hail (j = G); 0jn  indicates the 

intercepts with the axis ( )j jn D  in a logarithmic plot. The values of the constants are: 

− -2 -4
0Rn =8×10 cm  (Marshall and Palmer 1948); 

− -2 -4
0Sn =3×10 cm  (Gunn and Marshall 1958); 

− -4 -4
0Gn =4×10 cm  (Federer and Waldvogel 1975). 

jD  represents the diameter of the particles. The slopes of the distributions jλ  are 

found, considering a unit air volume, multiplying (A. 1) by the parcel mass 
3
j

j

D
ρ

8
π , 

integrating over all the diameters between 0 and ∞ and imposing the result equal to 
the water content jρX : 

0.25

j 0j
j

j

ρ n
=

ρX
 π

λ   
   

(A. 2) 

where ρ and jρ  are the air and hydrometeor densities, respectively; the snow 

density is set to 0.1 g/cm3. jX  represent the mixing ratios for the three 
hydrometeors. 

The terminal velocities for the single particles are given by: 

b R
DR R

ρU =aD
ρ  

(A. 3) 

d S
DS S

ρU =cD
ρ  

(A. 4) 

G
DG G

D

4gρ
U = D

3ρC  
(A. 5) 

The values for the constants are: 

− 1-b -1a=2115cm s     ;    b=0.8  (Liu and Orville 1969); 

− 1-d -1c=152.93cm s     ;    d=0.25  (Locatelli and Hobbs 1974); 

− DC =0.6  (Wisner et al. 1972). 
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In the computations the terminal velocities are averaged weighted by the mass, for 
the generic velocity: 

( )D

0

U X D
U= dD

X

∞

∫
 

(A. 6) 

thus, for the three hydrometeors: 
( ) R

R b
R

aΓ 4+b ρU =
6 ρλ  

(A. 7) 

( ) S
S d

S

cΓ 4+d ρU =
6 ρλ  

(A. 8) 

( ) G
S 0.5

G D

Γ 4.5 gρ4U =
6 3 ρCλ  

(A. 9) 

where ( ) j-D-1
j j

0

Γ = D e dD
∞

αα ∫  (con α > 0) is the gamma function. 

The scheme provides empirical relations for each of the processes described in Table 
A. 1 as functions of the variables defined above; the terms PR, PS and PG are obtained 
applying the balance of Fig. A. 2. 

A.2 Convection 
Convective schemes are aimed at the modeling of updrafts, downdrafts and 

related convergent and divergent compensative motions. These currents, carrying 
the moist warm air of the lower troposphere, are responsible, under atmospheric 
unstable conditions, of the mechanisms of generation of deep clouds and rainstorms. 
The goal of these models is twofold: estimate the convectively induced precipitation 
and correct the resolved fields by the modification of the vertical profiles of heat and 
moisture fluxes. Convective schemes are intended for an application up to 
horizontal resolution of 10 km; at higher resolutions the convective clouds start to be 
explicitly computed by the governing equations. The two main categories of 
convective schemes are: mass flux and adjustment. The formers are based on the 
modeling, by means of physically based relationships, of the convection 
phenomenon and on the computation of its effects on the grid points; the latter only 
correct the profiles of the pertinent variables by the use of empirical or semi-
empirical relationships. 

Among the mass flux schemes, the Kain-Fritsch (Kain and Fritsch 1990) is widely 
used for mesoscale investigations. It is one-dimensional and applies to air columns. 
The onset of convective motions, represented by an updraft and a downdraft, is 
related to the amount of kinetic energy of the air parcels on the considered vertical 
profile, evaluated by the CAPE (Convective Available Potential Energy): 

¶ ·

( ) ( )
( )·

¶EL

LFC

U2 2

EL LFC

ˆ ˆT z -T z1 1CAPE= w - w = g dzˆ2 2 T z∫
 

(A. 10) 



 95 

where: 

- EL Equilibrium Level; 

- LFC Level of Free Convection; 

- ( )UT̂ z  characteristic temperature of the updraft; 

- ( )T̂ z  temperature on the grid points; 

- w  vertical velocity. 

The overbar denotes the variables after the convective correction. Once the condition 
CAPE > 0 is verified for a given column, the convective circulation will continue up 
to the complete removal of the CAPE. The iterations end when 
CAPE-ΔCAPE=0±0.05CAPE . 

The temperature at a given point is computed as the area weighted average of the 
updraft, downdraft and environment temperatures: 

( ) ( ) ( ) ( ) ( ) ( ) ( )E E U U D DT z A z +T z A z +T z A z
T̂ z =

A  
(A. 11) 

An analogous relationship is applied to the relative humidity ( )r̂ z : 

( ) ( ) ( ) ( ) ( ) ( ) ( )E E U U D Dr z A z +r z A z +r z A z
r̂ z =

A  
(A. 12) 

where ( ) ( ) ( )E U DA=A z +A z +A z  is the cross section of the considered air column 
(equal to the face of the computational cell); the subscripts refer to: environment air, 
updraft and downdraft, respectively. 

Starting at 100 mb above the ground, it is assumed the uplift of an air mass with a 
temperature UT ; this temperature is compared to that of the above levels T. The 
level where UT -T+ΔT>0  is assumed as the base of the convective cells. The 
perturbation ∆T is a function of wind speed Gw  at the LCL (Lift Condensation 
Level) height. The first guess value for ( )UA LCL  is equal to 1% of A. The 
contribution of environment air to the updraft over the interval Δz is: 

( )
( )E U0

U

ΔzδM z =M 0.2
A LCL

 
 
 
 
  π   

(A. 13) 

with: 
( )U0 LCL UM =ρw A LCL  (A. 14) 

which gives ( )UM z . ( )UT z  and ( )Ur z  are evaluated imposing the conservation of 

the equivalent potential temperature during the mixing process. ( )Uw z  is given by: 
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( ) ( ) ( ) ( )
( )

z
U E2 2

U U
Ez-Δz

T k -T k
w z =w z-Δz +2g dk

T k∫
 

(A. 15) 

At the LFS (Level of Free Sink) the ( ) ( )U ET z -T z  is negative, the air mass is then 
characterized by negative buoyancy; this leads to the onset of a downdraft with 
velocity ( )Dw z , temperature ( )DT z  and humidity ( )Dr z . ( )DM z  is a function of 

LFSw  and is evaluated with the same procedure described for ( )UM z . ( )DT z  and 

( )Dr z  come from the adiabatic transformation associated to the downdraft. ( )Dw z  
is given by: 

( ) ( ) ( ) ( )
( )

z
D E2 2

D D
Ez+Δz

T k -T k
w z =w z+Δz +2g dk

T k∫
 

(A. 16) 

( )Uρ z  and ( )Dρ z  are evaluated using the state equation, assuming the pressure at a 
given level in the updraft and in the downdraft to be equal to the pressure 
computed by the model for that grid point. ( )UA z  and ( )DA z  are given by: 

( ) ( )
( ) ( )

U
U

U U

M z
A z =

ρ z w z  
(A. 17) 

( ) ( )
( ) ( )

D
D

D D

M z
A z =

ρ z w z  
(A. 18) 

The updated values for temperature and relative humidity come from (A. 11) - (A. 
12), the CAPE is then updated and the iterative process continues. 

The scheme provides also the precipitation (even if no without distinguish between 
liquid and solid contributions) deriving from the removal of the condensate 
produced by the convective motions: 

( )
1c z-
w

c c0r z =r 1-e
 
 
   

(A. 19) 

where -1
1c =0.01s  and c0r  is given by the sum of the condensate at level z - 1 and half 

of the degree of supersaturation at level z+1. 

A.3 Radiation 
Radiative schemes provide the thermal forcing due to solar irradiation in the 

components of infrared and visible. The longwave radiation comes from the surface 
emissivity which, in turn, depends on the soil type and the ground temperature. The 
shortwave energy flux is due to the reflection caused by surfaces albedo. The energy 
of solar irradiation is subject, passing through the atmosphere and at the ground, to 
diffusion, absorption and reflection. The radiation schemes for LAMS are one-
dimensional; for urban-canyon resolving simulations it is necessary to use more 
complex three-dimensional schemes which take into account the differential heating 
of the building walls. The principal differences among the various schemes are 
related to the spectrum amplitude, the number of spectral bands and the chemical-
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physical elements taken into account for the reflection, refraction and absorption 
processes. Two kinds of models are used for the shortwave and longwave 
radiations, respectively. We will briefly describe the RRTM (Rapid Radiative 
Transfer Model) for the infrared (Mlawer et al. 1997) and the model developed by 
Dudhia (1989) for the visible. 

The RRTM works in the frequency range of 10 - 3000 cm-1. For each vertical level 
only some representative values of the absorption coefficient ( )k ν  are considered. 

Given the irregular variability of ( )k ν , it is necessary to order its values 

monotonically through a transformation from the space ( )k ν  to ( )k g , where ( )g k  

has the form of a probability density function. The domain of the variable ( )g k  is 
subdivided into 16 discrete intervals to each corresponds a characteristic value of the 
absorption coefficient jk . These values are then used to evaluate the outgoing 
radiance R for the vertical level: 

( ) ( ) ( ) ( )( ) j
ρΔz16 16 -k
cosφ

j j j eff,j 0j eff,j
j=1 j=1

R z = W R z = W B z + R -B z e
 
 
  

∑ ∑
 

(A. 20) 

where jW  is the weight associated to the spectral interval, 0jR  is the incoming 
radiance of the vertical level, ρ is the air density, Δz is the depth of the level and φ is 
the angle of incidence of the radiation. eff,jB  is the effective Planck function, defined 
preserving the continuity of the flux between consecutive levels: 

lay bnd
eff,j

B +0.2τB
B =

1+0.2τ  
(A. 21) 

where j=k ρΔzτ  is the optical depth of the level, layB  and bndB  are the values of the 
Planck function, computed for the temperature of the level and that of the following 
level, respectively. The Planck function ( )B ,θν  is defined by: 

( )
3

h
3 κθ

8 hB ,θ =
c e -1

ν

π ν
ν

 
(A. 22) 

where θ is the potential temperature, h is the Planck constant and κ is the Boltzmann 
constant. 

The absorption coefficients jk  are linearly interpolated from a database of known 
values (containing 59 pressure levels with a constant spacing in logarithmic scale) 
relative to atmospheric conditions (pressure, temperature, relative humidity) 
comparable with those of the investigated region. The presence of chemical 
compounds different from water (CO2, O3, CH4, N2O, CCl4, CFC) is taken into 
account in the database considering characteristical average distributions for the 
upper (96–0.01 mb) and lower (1050 – 96 mb) atmosphere. 

The model developed by Dudhia considers only one spectral band and the radiative 
flux is assumed to be entirely downward. The model accounts for the effect of the 
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solar zenith angle, which reduces the incoming radiative flux and increases the 
radiation path through the atmosphere. The shortwave radiation flux ( )dS z  is: 

( ) ( )
top

d 0 cs ca s a
z

S z =μS - dS +dS +dS +dS∫
 

(A. 23) 

where μ is the cosine of the solar zenith angle and 0S  is the solar constant. The 
effects of the clouds are taken into account by two terms: csS  represents the 
diffusion and caS  includes the absorption processes; both terms are linearly 
interpolated from a database (Stephens 1978) whose values are functions of μ and 
the condensate lM . The air absorption aS  is related to the water vapor content vaM  
and to μ. The air diffusion sS  is considered uniform and proportional to ρ, being 
also function of μ. 

A.4 Soil models 
The Land Surface Models (LSMs) provide the surface values of temperature and 

humidity, to be used by the surface layer schemes for the computation of the fluxes 
at the first model layer. The progressively increasing resolution of the mesoscale 
models and the application of the LES technique require a significant detail of the 
information on the local forcings (strongly dependent on topography, vegetation 
and land use); it is thus evident the great importance assumed by the LSMs. The 
input variables are: radiative forcing from the RA schemes and precipitation from 
MP and CP schemes; soil type and vegetation are used to compute the latent heat 
flux. The LSMs differ for the number of soil layers considered, the completeness of 
the relations describing heat and hydraulic exchanging processes, description of the 
vegetative processes and the effects of snow cover. The schemes operative on the 
mesoscale are one-dimensional. 

We will briefly describe, as an example, the scheme developed by Chen and 
Dudhia (2001). The model considers four layers in the first 2 m of the soil and the 
potential presence of a superficial snow cover. The thicknesses of the layers are, 
starting from the surface: 10, 30, 60 and 100 cm. Empirical relationships account for 
the water exchange processes connected to the roots (in the first meter from the 
surface), the evapotranspiration and the superficial runoff (Fig. A. 3). 
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Fig. A. 3. Physical processes modeled by the LSM model of Dudhia (2001). 

The effects of vegetation depend on the category of the plants, the season and the 
soil texture; these data can be obtained from the USGS (United States Geological 
Service) database, along with the values of albedo and green vegetation fraction. The 
skin temperature is computed applying the thermal diffusion equation to the soil 
layers: 

( ) ( )t
T TC Θ = K Θ
t z z

∂ ∂ ∂ 
 ∂ ∂ ∂   

(A. 24) 

where T is the temperature, ( )C Θ  3

J
m K

 
 
 

 is the heat capacity, ( )tK Θ  W
mK

 
 
 

 is 

the thermal conductivity and Θ is the soil water content (moisture). At the bottom (3 
m depth) the temperature is fixed to the mean annual surface temperature. The 
moisture is computed by the Richard equation: 

( ) ( )
Θ

KΘ Θ= D + +F
t z z z

∂ Θ∂ ∂ ∂ Θ ∂ ∂ ∂ ∂   
(A. 25) 

where D is the water diffusivity on the terrain, K is the hydraulic conductivity and 
the term ΘF  accounts for sources and sinks (precipitation, evapotranspiration, 
surface runoff, draining). The computation of the evapotranspiration term depends 
on the surface exchange coefficients hC  and qC , which are provided by the surface 
layer scheme. 

Whenever snow cover is present, the heat flux G between the soil and the snow 
surface is given by: 

s soil
snow

snow

T -TG=K
D  

(A. 26) 
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where sT  is the surface temperature, soilT  is the temperature of the first soil layer, 

snowD  is the snow cover depth and snowK  is the thermal diffusivity of the snow 
W0.35

mK
 
 
 

. 

A.5 Surface Layer 
Surface layer modeling relies on the Monin-Obukhov similarity theory, by the 

evaluation of the friction velocity and the surface exchange coefficients; these 
variables allow for the computation of the heat, humidity and momentum fluxes in 
the lower portion of the atmosphere (about 10% of the vertical extent of the PBL), 
where they are assumed to be constant with height. Similarity theory is based on the 
Buckingham theorem: every physical law can be expressed as a function of a certain 
number of non-dimensional parameters; these have to be at least equal to the 
number n of the quantities involved in the modeled phenomenon minus the number 
m of the base quantities, that is, n - m non-dimensional parameters. Every quantity 
must appear at least in one of the non-dimensional parameters and these have to be 
mutually independent. Monin-Obukhov theory assumes a horizontally 
homogeneous surface layer with the mean wind and the turbulent characteristics 
being dependent on five variables: height z, friction velocity *u , kinematic heat flux 

w θ s′ ′ , humidity flux w q s′ ′  and buoyancy 
g
θ

. θ is the virtual potential temperature 

and w is the vertical component of the velocity. The apex denotes turbulent 
fluctuations. Similarity hypothesis implies that: the horizontal velocity field is 
homogeneous and stationary, the turbulent heat and momentum fluxes are not 
dependent on the height, the molecular diffusion is negligible with respect to the 
turbulent transport and the Coriolis force is negligible with respect to friction effects. 

The quantities considered for the determination of the non-dimensional groups are: 

( ) ( ) ′ ′ ′ ′  
′ ′

′ ′

1 42 2
ss*

*
*

*
*

z                                                          height

u = u w + v w              friction velocity

-w θθ =                                          temperature scale
u

-w q
q =  

u

s

s

′ ′

3
*

                                        humidity scale

uL=                                      Monin-Obuchov lengthgκ w θ
θ

s

 
(A. 27) 

where κ = 0.4 is the von Kármán constant. 
Therefore, for the mean wind profile the relationship is of the type: 

1 *
uf ,z,u ,L =0
z

∂ 
 ∂   

(A. 28) 
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The base quantities are m = 2 (length and time) and the independent variables are n 

= 4 ( u
z

∂
∂

, z, *u , L); following the Buckingham theory it is possible to define two non-

dimensional parameters related by: 

m
*

u Lk z=φ
z u L

∂  
 ∂    

(A. 29) 

For the potential temperature profile the base quantities are: temperature and 

length; the independent variables are: θ
z

∂
∂

, z, *θ , L. 

2 *
θf ,z,θ ,L =0
z

∂ 
 ∂   

(A. 30) 

h
*

θ Lk z=φ
z θ L

∂  
 ∂    

(A. 31) 

Likewise, considering as base quantities mass and length and as independent 

variables q
z

∂
∂

, z, *q , L, it is possible to obtain the humidity profile: 

3 *
q

f ,z,q ,L =0
z

∂ 
 ∂   

(A. 32) 

h
*

q Lk z=φ
z q L

∂  
 ∂    

(A. 33) 

The expressions for the stability functions m
zφ
L

 
 
 

 and h
zφ
L

 
 
 

 depend on the 

stability regime. 

As an example, we present the surface layer scheme developed by Zhang and 
Anthes (1984). This model makes use of the stability functions from Dyer and Hicks 
(1970), Paulson (1970) and Webb (1970). Depending on the surface bulk Richardson 

number 1 s1
b 2

1 1

θ -θgz
Ri =

θ U
 four stability regimes are considered: 
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≥bRi 0.2 : 

 
 
 

m h
1

0

-10φ =φ =
zln
z

 

b0<Ri <0.2 : 
 
 
 

1
b

0
m h

b

z-5Ri ln
z

φ =φ =
1.1-5Ri

 

bRi =0 : 
m hφ =φ =0  

bRi <0 : 
              + + + + −                         
    − +   

    


     = + −    
      

1 4 1 2
1 1

m

1 4
1

1 2
1

h

z z1 1φ =2ln 1 1 16 ln 1 1 16
2 L 2 L

z π        -2arctan 1 16
L 2

z1φ 2 ln 1 1 16
2 L

 

(A. 34) 

where the variables defined at the surface are denoted by the subscript s and those 

defined at the first model layer by 1. 2 2

1 1 1U = u +v  is the intensity of the horizontal 

wind and 
1 *

1 1

2

*

=

g
κ z θ

z θ

L u
. 

The friction velocity *u  is given by: 

 
 
 

1
*

1
m

0

κU1u =
2 zln -φ

z

 (A. 35) 

where 0z  is the surface roughness length and depends on the land use category. The 
temperature scale *θ  is: 

( )1
*

h

κ θ -θ
θ =

φ
s  (A. 36) 

The humidity scale is expressed in the same form of (A. 36): 

( )1
*

h

κ q -q
q =

φ
s  (A. 37) 
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The surface exchange coefficient for the heat is: 

p * *
h

1 s

c ρu θ
C =

θ -θ
 (A. 38) 

and for the humidity: 

p * *
q

1 s

c ρu q
C =

q -q
 (A. 39) 

where cp is the specific heat at constant pressure. 

The heat and moisture surface fluxes are readily evaluated by the third and fourth 
expressions in (A. 27). The momentum fluxes are given by: 

′ ′
2
* 1

s

1

u uu w =
U

 

′ ′
2
* 1

s

1

u vv w =
U

 
(A. 40) 

A.6 Planetary Boundary Layer 
The PBL schemes model the effects of the subgrid vertical fluxes. Therefore, 

when activated, the vertical diffusion term in the turbulent transport equations is 
ignored. These models are coupled to the SFC and LSM models, which provide 
them the lower boundary conditions. The PBL schemes are one-dimensional and 
assume a clear separation between resolved and subgrid motions; this hypothesis 
holds only if the horizontal resolution is much coarser than the vertical one, that is 
for horizontal meshes larger than 1 km; for higher resolutions a three dimensional 
turbulence transport scheme must be used. 

We will briefly describe the PBL model developed by Hong and Pan (1996). The 
scheme makes use of the non-local counter-gradient theory for the computation of 
heat and moisture fluxes under unstable conditions; therefore the vertical fluxes 
depend not only on the local gradients of the resolved variables but also on the 
presence of large coherent spatial structures (thermals). The turbulence diffusion 
equation for the generic variable C (u, v, θ, q)  is: 

c c
C C= K -
t z z

∂ ∂ ∂  γ  ∂ ∂ ∂    
(A. 41) 

where cK  is the vertical eddy diffusivity coefficient and the counter-gradient term 

cγ  is a correction to the local gradient which accounts for the contribution of the 
large scale structures. The counter-gradient term is considered only for the transport 
of θ and q. The vertical momentum diffusivity coefficient is: 

 
 
 

p

zm s
i

zK =kw z 1-
z

 (A. 42) 
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with p = 2; zi is the PBL height. The scale velocity sw  is given by: 

*
s

m

uw =
φ

 (A. 43) 

*u  and mφ  are provided by the SFC scheme; the height of the surface layer is 

assumed to be equal to i0.1z . 

The counter-gradient terms for heat and moisture fluxes are: 
′ ′

γ

′ ′
γ

s
θ

s

s
q

s

w θ=b
w

w q
=b

w

 (A. 44) 

with b = 7.8. ′ ′sw θ  and ′ ′sw q  are provided by the SFC scheme. 

The PBL height zi is evaluated iteratively from: 

( )
( )  

2
1

i bcr
sa

θ U h
z =Ri

g θ h -θ
 (A. 45) 

where =bcrRi 0.5  is the critical bulk Richardson number. The temperature near the 
surface saθ is given by: 

′ ′s
sa 1

s i

w θθ =θ +b
w z

 (A. 46) 

The vertical eddy diffusivity coefficient zhK  for temperature and humidity fluxes is 
a function of the vertical momentum diffusivity coefficient zmK  via the Prandtl 
number: 

zm
zh

KK =
Pr

 (A. 47) 

The vertical diffusion in the free atmosphere (above zi) is modeled with a local 
approach. The vertical eddy diffusivity coefficient is given by: 

∂
∂

2
m,h m,h g

UK =l f Ri
z

 (A. 48) 

where 

∂
∂

∂
∂

g 2

θ
g zRi =
θ U

z

 is the gradient Richardson number. The characteristic length 

scale l is given by: 
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0

1 1 1= +
l κz λ

 (A. 49) 

where 0λ =30m  is the asymptotic length scale. 

The stability function m,hf  depends on the atmospheric stability: 

gRi >0 : 
g-8.5Ri

m,h
g

0.15f =e +
Ri +3

 

≤gRi 0 : 




m m

h h

f =φ
f =φ

 

(A. 50) 

That is, under neutral and unstable conditions the stability functions are taken 

equal to those valid for the surface layer (A. 34), substituting 1z
L

 with gRi . 
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