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INTRODUCTION 
 

1. Duchenne muscular dystrophy and dystrophin 
 

1.1  Duchenne muscular dystrophy 

Duchenne muscular dystrophy is a fatal X-linked inherited disease with an 

incidence of 1 in 3300 male births. It is caused by large deletions or duplications in 

the dystrophin gene that disrupt the translational reading frame leading to the 

complete loss of the full-lenght protein. In allelic disorder Becker muscular 

dystrophy the translational reading frame is preserved, resulting in the production of 

an incomplete but partially functioning protein (reviewed in Mehler, 2000). DMD is 

characterized by progressive muscle weakness, leading to death at around an age 

of 20 years, usually because of cardio-respiratory complications (reviewed in Blake 

et al., 2002). Many DMD patients also show signs of cognitive impairment (reviewed 

in Anderson et al, 2002) and autonomic dysfunctions (Yotsukura et al., 1995). From 

a histological point of view, necrotic or degenerating muscle fibers, often grouped in 

clusters, are seen in all postnatal DMD muscle biopsies even before muscle 

weakness is clinically observed. This occurs together with inflammatory cells. In the 

early phase of the disease a regenerative process is ongoing. However in later 

phases, the regenerative capacity of the muscles appears to be exhausted and 

muscle fibers are replaced by connective and adipose tissue (reviewed in 

Deconinck & Bernard, 2007). Lack of dystrophin in cardiac muscle cells is 

responsible for cardiomyopathy and cardiac conduction abnormalities in DMD 

patients (reviewed by Blake et al., 2002). Smooth muscle cells are also altered, at 

least in certain regions, such as the gastrointestinal tract (Bensen et al., 1996). 

Many hypotheses have been proposed to explain the pathophysiological processes 

responsible for DMD. The so-called “mechanical hypothesis” is based on the 

observation that the absence of the scaffolding protein dystrophin or of members of 

the dystrophin-associated glycoprotein complex compromises the sarcolemma 

integrity of muscle fibers in DMD, particularly during sustained contractions (Petrof 

et al., 1993). Indeed, in muscle cells, dystrophin is localized at costameres, 

composed of cytoskeletal proteins that act as mechanical couplers to distribute 

contractile forces generated in the sarcomere. It has been shown that the absence 

of dystrophin and the consequent loss of the DGC is responsible for the disruption 
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of the costameric lattice leading to membrane fragility (Rybakova et al., 2000), 

which is also suggested by the increased membrane permeability of dystrophic 

muscles to small molecules and dyes (Straub et al., 1997). Another important and 

widely explored hypothesis is the altered calcium homeostasis in dystrophic muscle 

fibers. All the data support the hypothesis that when mechanical stress induces 

micro-lesions in the fiber membrane, high influx of extracellular calcium occurs 

through calcium leak channels, overriding the capacity of the cell to maintain 

physiological calcium concentrations. Sustained increase in cytosolic calcium 

concentration leads to activation of proteases, which, in turn, can lead to cell death 

(Alderton & Steinhardt, 2000). There are often other contributing factors such as 

altered regeneration, inflammation, impaired vascular adaptation and fibrosis 

(reviewed in Deconinck & Bernard, 2007).  

With regard to the involvement of the nervous system, it is noteworthy that 

Duchenne himself in 1861 reported that many DMD patients showed altered 

cognitive functions. According to Sekiguchi (2005), CNS disorders can be divided 

into two categories: the intellectual and/or cognitive impairment and the psychiatric 

disorders. Even though initial data from DMD brain autopsies showed no 

abnormalities (Dubowitz & Crome, 1969), by using more sophisticated techniques it 

has become possible to observe slight cortical atrophy, neuronal loss and dendritic 

abnormalities in cortical and sub-cortical brain areas, as well as cerebellar 

hypometabolism (reviewed in Anderson et al., 2002).  

 

1.2  Dystrophin and the dystrophin-associated glycoprotein complex  

Dystrophin is a large cytoskeletal protein whose loss is responsible for 

Duchenne muscular dystrophy (Hoffmann et al., 1987).  The DMD gene is located 

on the short arm of the X chromosome, at Xp21. The expression of the full-length 

dystrophin (Dp427, a protein of molecular mass 427 kDa) is controlled by three 

tissue specific promoters, whose names reflect the major site of expression: B, 

brain, M, muscle and P, Purkinje cells (Fig.1). The DMD gene has also internal 

promoters that drive the expression of shorter non-skeletal muscle protein products 

of 260 kDa (Dp260), 140 kDa (Dp140), 116 kDa (Dp116) and 71 kDa (Dp71). These 

proteins consist of the C-terminal domains of dystrophin, but lack progressively 

greater parts of the N-terminal regions of Dp427 (Fig.1); Dp71 is detected in many 
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non-muscle tissues, including brain, liver, lung and kidney, while the other isoforms 

are primarily expressed in central and peripheral nervous system (reviewed in Blake 

et al., 2002).   

 

Figure 1. The dystrophin gene and protein isoforms (from Blake & Kroger, 2000) 

 

Dystrophin is a member of the β-spectrin/α-actinin protein family. Dystrophin 

major domains are homologues to those present in cytoskeletal proteins belonging 

to this family. Dystrophin N-terminal domain is a functional actin binding domain; the 

central rod domain consists of 24 triple helical spectrin-like repeats interspersed 

with four putative hinge domains, that together are thought to confer dystrophin an 

elongated and flexible shape; the cysteine-rich domain comprises different modules 

for protein-protein interactions, namely a EF hand-like, a WW and a ZZ module; the 

C-terminal domain is unique to dystrophin and its closest homologues utrophin and 

dystrobrevins and contains two polypeptide stretches that form α-helical coiled coils 

(Fig.1) (reviewed in Ervasti, 2007).  

Utrophin is an autosomal gene product with high homology to dystrophin, in 

fact its primary structure is similar to dystrophin throughout its length especially in 

the N- and C-terminal domains. A number of utrophin shorter C-terminal isoforms 

have also been described.  It is widely expressed in nearly all tissues, including 

skeletal and smooth muscle, lung, kidney and the nervous system. In fetal and 

regenerating muscle cells, utrophin is distributed all along the sarcolemma, while in 

adult muscle it is confined to myotendinous and neuromuscular junctions, where it 



4 

 

is thought to stabilize postsynaptic AChRs (reviewed in Blake et al., 2002). Many 

studies have demonstrated that utrophin overexpression can compensate for the 

absence of dystrophin in muscle cells. However, biochemical differences between 

utrophin and dystrophin actin binding have been identified (reviewed in Ervasti, 

2007). Moreover, it is likely that dystrophin isoforms and utrophin fulfill distinct roles 

in non-muscle tissues (Haenggi & Fritschy, 2006). 

1.2.1 The dystrophin-associated glycoprotein complex in muscle cells 

In muscle cells, dystrophin is localized to the cytoplasmic face of the 

sarcolemma, where it is part of a large protein complex (Campbell & Kahl, 1989), 

called the dystrophin-associated glycoprotein complex (Fig.2). This complex spans 

the muscle cell membrane and physically links the cellular actin-based cytoskeleton 

to the extracellular matrix, stabilizing the sarcolemma and helping to resist the 

stresses that develop particularly during muscle contraction or stretch (reviewed in 

Blake et al., 2002). Nevertheless, it is becoming clear that, beyond its structural 

functions, the DGC also plays an important role in signal transduction, in non-

muscle tissues, through its interactions with many cytoplasmic signaling proteins 

(Rando, 2001). Furthermore, it is involved in physiological phenomena such as 

brain development, synaptic plasticity and ion homeostasis (reviewed in Haenggi & 

Fritschy, 2006). The DGC is composed of three subcomplexes: the dystroglycan, 

the sarcoglycan and the cytoplasmic complex. The dystroglycan complex, a central 

component of the DGC, primarily involved in sarcolemma stabilization, is composed 

by α- and β-dystroglycan; a single dystroglycan gene produces a precursor protein 

that is afterwards proteolytically processed into extracellular α-dystroglycan and 

single-pass transmembrane β-dystroglycan, which remain non-covalently 

associated (Ibraghimov-Beskrovnaya et al., 1993). β-dystroglycan is directly linked 

to the cysteine-rich domain of dystrophin through its C-terminal domain and 

interacts with α-dystroglycan through its N-terminal domain. α-dystroglycan binds to 

many extracellular matrix proteins such as laminin, perlecan and agrin. Moreover, 

dystroglycan interacts with the signaling proteins Grb2 and Caveolin-3, and might 

thus have a role in intracellular signal transduction (reviewed in Rando, 2001), and 

with rapsyn, a protein that, at the neuromuscular junction, is required for clustering 

of AChRs (Cartaud et al., 1998). 
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Figure 2. The dystrophin-associated glycoprotein complex in muscle cells (from Rando, 2001) 

 

The sarcoglycan/sarcospan complex is made up by four transmembrane 

glycoproteins (α-, β-, γ- and δ-sarcoglycan in skeletal and cardiac muscle) and by a 

small transmembrane protein named sarcospan; it is necessary for the DGC 

stabilization, in fact mutations in any of the sarcoglycan isoforms result in the 

absence or severe reduction in the remaining components of the complex and are 

the primary defects in some forms of human limb-girdle muscular dystrophy 

(reviewed in Blake et al., 2002). The main components of the cytoplasmic complex 

are dystrobrevins and syntrophins. Dystrobrevin belongs to the dystrophin-related 

protein family and two isoforms, α- and β-dystrobrevin, are encoded by different 

genes, though only the former is highly expressed in skeletal muscle, and both 

present multiple splice-variants. Dystrobrevins interact with dystrophin and utrophin, 
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the binding occurring at the coiled-coil C-terminal domains of each protein, and 

dystrophin-dystrobrevin and utrophin-dystrobrevin complexes contain syntrophin 

binding sites (Sadoulet-Puccio et al., 1997). Moreover, dystrobrevin C-terminal 

domain contains many tyrosine kinase consensus sites, suggesting that the protein-

protein interactions might be modulated by tyrosine phosphorylation (reviewed in 

Rando, 2001). The syntrophin family is composed of five members, encoded by 

different genes and able to bind both dystrophin and dystrobrevin; they are 

considered adaptor proteins: they have been shown to interact with a number of 

signaling molecules and membrane proteins through their PDZ domain, including 

nNOS, acquaporin 4, inwardly rectifying potassium channels, voltage-gated sodium 

channels and stress-activated protein kinase 3 (reviewed in Haenggi & Fritschy, 

2006). 

1.2.2 The dystrophin-associated glycoprotein complex in the nervous system 

In the brain, dystrophin shows a region-specific expression pattern: it is 

expressed in the cerebral cortex, cerebellum and hippocampus, localized at post-

synaptic densities (Lidov et al., 1990). Members of the DGC complex are also 

present in specific neurons, astrocytes and radial glia, usually associated with either 

dystrophin or utrophin; moreover, dystrophin shorter isoforms Dp140 and Dp71 are 

both highly expressed in brain (reviewed in Haenggi & Fritschy, 2006).  Localization 

of dystroglycan in the brain showed that it is widely expressed in postsynaptic 

densities and in the endfeet of perivascular astrocytes (Zaccaria et al., 2001); α-

dystroglycan interactions with extracellular matrix proteins are thought to be 

important in synapse stabilization, while β-dystroglycan cytoplasmic domain is 

needed for rapsyn to associate with AChRs (reviewed in Culligan & Ohlendieck, 

2002). In addition, this complex is able to bind brain-specific ligands such as 

neurexins, presynaptic membrane-associated proteins whose Ca2+-dependant 

binding with α-dystroglycan might mediate intercellular cell adhesion at the synapse 

(Sugita et al., 2001).  α- and β-dystrobrevin are both expressed in the CNS, both in 

glial cells and hippocampal neurons, in association with Dp427 and utrophin 

(reviewed in Culligan & Ohlendieck, 2002). With regard to syntrophins, two brain-

specific syntrophins have recently been described, and, even though their function 

is not yet clear, they are likely to function as syntrophin isoforms in muscle cells 
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(reviewed in Culligan & Ohlendieck, 2002). Finally, it is known that Dp116 is present 

in glial cells of the peripheral nervous system (Byers et al., 1993).  

 

1.3 Animal models for Duchenne muscular dystrophy 

The discovery of dystrophin led to the recognition of mutations in orthologous 

genes in other animals. Their study dramatically increased our knowledge of DMD 

pathogenetic mechanisms and allowed initial testing of putative treatments for 

patients. Although animals, such as GMRD (golden retriever muscular dystrophy) 

dogs and FXMD (feline X-linked muscular dystrophy) cats exist, the mdx/mdx mice 

are the smallest and easiest to handle. The mdx mouse was initially identified 

because of raised serum creatine kinase levels (a characteristic shared with human 

patients), that is an indicator of muscle damage (reviewed in Blake et al., 2002). It 

lacks full-length dystrophin (Dp427) because a mutation in exon 23 of the gene 

leads to the appearance of a stop codon which prematurely terminates the 

translation of dystrophin, while the short isoforms are normally produced (Sicinsky 

et al., 1989). Moreover, all components of the DGC are extremely reduced 

(reviewed in De La Porte et al., 1999). Even though mdx mice are largely used as a 

model for human DMD, the progressive muscle-wasting disease is present in these 

animals in a much milder form than in humans. Their life span is not reduced 

compared to controls, there is minimal fibrosis and fatty replacement in their muscle 

cells, and cellular necrosis is compensated by regeneration of muscle fibers, with 

degeneration-regeneration cycles peaking between 4 and 8 postnatal weeks of age 

(reviewed by De La Porte et al., 1999). Why dystrophic mice and humans show 

such diverse characteristics is still controversial and many possible explanations 

have been proposed, such as the different size and the different regenerative 

capacity that involves satellite cells and transcription factors expression (reviewed 

by Durbeej & Campbell, 2002), and utrophin compensation for the lack of 

dystrophin in mdx mice skeletal muscle (Grady et al., 1997). Recently a comparison 

of studies in mice and humans has highlighted no remarkable differences between 

mdx mice and DMD patients at least in the expression of proteoglycans, muscle 

growth factors, integrins, caveolin-3, nNOS and calcineurin (reviewed by Fadic, 

2005), suggesting that further investigations are needed.  
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In mdx mice, both skeletal and cardiac muscle show membrane fragility and 

increased permeability to small molecules, necrotic fibers are typically grouped in 

clusters and the amount of degenerating tissue varies depending on the considered 

muscle (Straub et al., 1997; Danialou et al., 2001). It has been suggested that this 

could be due to many factors, namely muscle activity level and diameter of the 

fibers (Boland et al., 1995). The most affected skeletal muscle is the diaphragm, 

which well reproduces the degenerative changes observed in human muscular 

dystrophy (Stedman et al., 1991). Mdx smooth muscles show no morphological 

signs of cell necrosis or muscle fibrosis, but a reduction in gastrointestinal smooth 

muscle thickness has been observed, that could reflect a mild smooth muscle 

atrophy (Boland et al., 1995). From a functional point of view, mdx mice present 

altered electric and motor activity in various regions of the gastrointestinal tract, that 

are likely to depend on altered nitric oxide production by smooth muscle cells (Mulè 

et al., 1999, 2001, 2006); altered biomechanical properties of carotid arteries have 

been also demonstrated in these animals (Dye et al., 2007). As for the nervous 

system alterations, it appears that the lack of full-length dystrophin in mdx mice is 

correlated with a slight degree of cognitive impairment (reviewed by Anderson et al., 

2002). It has been shown that nicotine doses needed to increase memory in a 

passive avoidance memory task were higher in mdx than in wt mice, suggesting 

that central nAChRs might be down regulated in dystrophic animals (Coccurello et 

al., 2002). Histological evidences demonstrated architectural changes of the cortico-

spinal system in the cerebral cortex of mdx mice, namely a reduction in the number 

of the cortico-spinal neurons and in their average diameter relative to wt animals 

(Sbriccoli et al., 1995). Dystrophin is enriched in the postsynaptic densities of 

cerebral cortex, hippocampus and cerebellum (Lidov et al., 1993); Knuesel and 

colleagues (1999) demonstrated that in these brain areas dystrophin co-localizes 

with GABAA receptor subunits and that synaptic clustering of GABAA receptors is 

markedly reduced in mdx mice, suggesting that dystrophin may play an important 

role in the clustering or stabilization of such receptors. Increased sensitivity of mdx 

hippocampal pyramidal neurons to hypoxia-induced loss of synaptic transmission 

(Mehler et al., 1992) and reduced long-term depression in dystrophic cerebellar 

Purkinje cells (Anderson et al., 2004) have been also demonstrated. Moreover, 
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dystrophin deficiency leads to severe injury of glial endfeet and to blood-brain 

barrier breakdown in mdx mice brain (Nico et al., 2003). 
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2. The sympathetic superior cervical ganglion 
  

The superior cervical ganglion is part of the autonomic sympathetic nervous 

system and belongs to the paravertebral sympathetic chain, which lies close to the 

vertebral column. The SCG is localized in the cervical region, dorsally to the 

branching of the common carotid artery (Fig.3). Its large size and accessibility make 

it a favorite research model.  

 

 
Figure 3. Schematic representation of the superior cervical ganglion: localization, afferent and efferent 

nerves 

 

Sympathetic ganglion cells are isolated from their environment by a thick 

capsule of connective tissue, which is continuous over afferent and efferent nerves. 

Sympathetic ganglia receive a rich blood supply from vessels that enter the 

ganglion over both the pre- and the post-ganglionic nerve pathways (reviewed in 

Dail & Burton, 1983). Superior cervical ganglion neurons are reached by 

preganglionic input from neurons located mainly in the intermediolateral column of 

the last cervical and the first seven thoracic spinal cord segments: preganglionic 

neurons project to the SCG through the superior cervical trunk (reviewed in Baluk, 

1995). Superior cervical ganglion neurons project to their targets through two 

postganglionic nerves (Fig.3): the internal carotid nerve that innervates iris, pineal 

gland and tissues in the cranium, such as smooth muscle cells of some arteries, 

and the external carotid nerve that innervates heart and submandibular glands 
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(Fig.4) (reviewed by Dail & Burton, 1983); moreover, a small population of neurons 

sends axons caudally through the superior cervical trunk (Bowers & Zigmond, 

1979). Within the ganglion, neurons tend to be localized near the exit of their 

postganglionic nerve fibers (Bowers & Zigmond, 1979).  

 

 
Figure 4. SCG target organs (modified from Berne & Levy, 2002) 

 

Superior cervical ganglion neurons are called “principal” and are typical 

multipolar neurons with a complex array of processes, and they are almost entirely 

enclosed by satellite cells. The covering of satellite cells is only deficient at 

synapses sites on both soma and dendrites (reviewed by Dail & Burton, 1983). Like 

all sympathetic ganglion neurons, SCG neurons are noradrenergic and contain 

dense-core catecholamine vesicles in their cytoplasm (reviewed by Dail & Burton, 

1983). SIF cells, with very high amount of catecholamines are also present in 

sympathetic ganglia, but there still is no general agreement as to their function: they 

have been proposed to mediate a chemoreceptor function for substances in the 

blood, to act as interneurons or to have a paracrine role (reviewed in Baluk, 1995).  

The main neurotransmitter released by presynaptic terminals is acetylcholine 

and its binding to nAChRs elicits rapid excitatory postsynaptic potentials in 

ganglionic neurons (reviewed in Taxi & Eugène, 1995). This neurotransmitter 

interacts with different nAChRs subtypes: heteromeric receptors containing the α3 

subunit associated with the β4 and/or β2 subunits and the homomeric α7 receptors 
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(Del Signore et al., 2002; 2004). Moreover, in the SCG, muscarinic receptors are 

also present: ACh binding to M1 muscarinic receptors induces slow excitatory 

postsynaptic potentials and its binding to M2 muscarinic receptors induces inhibitory 

postsynaptic potentials (reviewed in Taxi & Eugène, 1995). In SCG, presynaptic 

terminals release, besides ACh, many neuropeptides, namely vasointestinal 

peptide, enkefalins and substance P that are neuromodulators and can also induce 

delayed excitatory postsynaptic potentials (reviewed in Taxi & Eugène, 1995). It is 

now clear that signals traveling along the preganglionic nerves are not simply 

relayed by postganglionic nerves to the effector tissues, but are distributed, 

integrated and/or modified before reaching the final target (reviewed in De Biasi, 

2002). 

 

2.1 Development of the superior cervical ganglion 

During development, principal neurons of sympathetic ganglia acquire the 

appropriate match of input from preganglionic neurons in the spinal cord and 

establish synaptic contacts with peripheral target tissues. Superior cervical ganglion 

neurons, like all sympathetic neurons, SIF cells and adrenal chromaffin cells, derive 

from embryonic neural crest cells (reviewed in Francis & Landis, 1999). Precursors 

migrate ventrally from the neural crest to form a column of sympathetic ganglion 

primordia near the dorsal aorta, undergo specification, commence acquisition of 

noradrenergic properties and then coalesce to form the definitive sympathetic 

ganglia, among which the rostrally located SCG (reviewed in Glebova & Ginty, 

2005). The initial outgrowth of the single axon from principal ganglion neurons 

occurs soon after the withdrawal from the cell cycle and axons do not branch until 

they reach their targets. Dendritic arbor development follows shortly after the 

beginning of axon outgrowth (reviewed in Wright, 1995). Contacts between 

preganglionic and postganglionic neurons and between postganglionic neurons and 

peripheral targets begin to form before birth, but develop and mature postnatally 

(reviewed in Wright, 1995). Developmental neuron death occurs in the first 

postnatal weeks: neurons die by apoptosis and this results in the loss of 30-40% of 

the neurons present at birth, in the rat SCG (Wright et al., 1983). Thus, death of 

SCG neurons occurs during the developmental period in which neurons are 

establishing synaptic contacts with their targets and afferents. Many factors 
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contribute to the establishment of synaptic contacts, as well as their maintenance 

throughout life, thus influencing development and survival of SCG neurons 

themselves. Preganglionic input (Black et al., 1971; Black & Mytilineou, 1976), 

neuronal activity and non-neuronal cells (reviewed in Wright, 1995) may all regulate 

development of SCG neurons. Nevertheless, it is the interaction of sympathetic 

neurons with their peripheral target organs that primarily influences neuronal 

development and survival and allows to maintain neuronal morphology and 

connections. The release by peripheral targets of neurotrophic factors and their 

subsequent retrograde transport to neuronal somata is the main mechanism 

involved in this essential function. 

2.1.1 Role of target organs and neurotrophins in the development of the 

superior cervical ganglion 

The classical “neurotrophic hypothesis”, formulated to explain the observed 

developmental cell death, states that in order to ensure the optimal amount of target 

innervation, neurons are initially overproduced during development. Once they 

innervate their targets, compete for limiting amount of target-derived neurotrophic 

factors. Consequently, those neurons that do not obtain sufficient amounts of 

neurotrophins die by apoptosis (Oppenheim, 1991). The foundation for this 

hypothesis was laid by the pioneering work by Hamburger and Levi-Montalcini back 

in 1949 which demonstrated that neuronal survival is strictly dependent on target-

derived trophic factors. These studies led, in the 1960s, to the identification of the 

first neurotrophic factor, named nerve growth factor, as the neurotrophic factor for 

sensory and sympathetic neurons (reviewed in Bennett et al., 2002). Subsequently, 

it has been found that NGF is only a member of a low-molecular-mass protein 

family of growth factors, called the neurotrophic family, which includes NGF, BDNF, 

NT3 and NT4/5. It is now well established that, besides many aspects of 

development such as cell fate decisions, axon growth, dendrite pruning, patterning 

of innervation and protein expression, neurotrophins regulate also maintenance and 

function of the whole vertebrate nervous system (reviewed in Huang & Reichardt, 

2001).  

Neurotrophins are synthesized as precursor forms called proneurotrophins, 

which are intracellularly cleaved by furin or proconvertases to yield mature 

neurotrophin dimers (reviewed in Nykjaer et al., 2005). Proneurotrophins can also 
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be secreted and cleaved by extracellular proteases such as metalloproteinases and 

plasmin (Lee et al., 2001). Neurotrophins are able to bind to two types of 

transmembrane receptors (Fig.5): the Trk and the p75NTR receptors, thus giving 

rise to different and sometimes opposite signalling pathways. In fact, while Trk 

receptors transmit positive signals such as enhanced survival and growth, p75NTR 

(p75) transmits both positive and negative signals (reviewed in Kaplan and Miller, 

2000).  

     
Figure 5. Neurotrophins: ligands and receptors (from Nykjaer et al., 2005) 

 

Each neurotrophin binds with high affinity to a specific receptor of the Trk 

family: NGF to TrkA, BDNF to TrkB and NT3 to TrkC. NT3 can also bind to TrkA 

and TrkB (reviewed in Zweifel et al., 2005). Ligand binding induces dimerization of 

Trk receptors and their autophosphorylation at specific tyrosine residues in the 

cytoplasmic domain. This, in turn, leads to the recruitment of various downstream 

effectors and the activation of numerous signal transduction cascades that support 
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growth and survival (reviewed in Huang & Reichardt, 2003) (Fig.5). Trks use at 

least two mechanisms to signal survival: the Ras-PI3K-Akt-induced suppression of 

apoptotic pathways and the MEK/MAPK activation of anti-apoptotic proteins 

(reviewed in Kaplan and Miller, 2000). It is interesting to note that distinct effector 

pathways may be activated by neurotrophin signalling in different cellular 

compartments, that is in axon terminals, or after retrograde transport, in neuronal 

soma (Watson et al., 2001). The mechanism that has been proposed to explain 

Trks retrograde signalling is the “signalling endosome model” (Campenot, 1994). 

According to this hypothesis, neurotrophins are synthesized by target tissues and 

the binding to their specific Trk receptor in axon terminals leads to endocytosis of a 

ligand-receptor complex and to formation of signalling endosomes; the downstream 

signals must be retrogradely conveyed to the cell body where they support neuronal 

survival. The signalling endosome is retrogradely transported along the axon via a 

cytoskeleton-based transport machinery (reviewed in Howe and Mobley, 2003). In 

support of this model, it has been shown, in compartmentalized cultures, that 

inhibition of Trk kinase activity, both in the distal axons compartment or the cell 

bodies compartment, attenuates or eliminates accumulation of Trk signalling events 

(Senger & Campenot, 1997), activation of the transcription factor CREB (Riccio et 

al., 1997; Watson et al., 2001) and cell survival (Ye et al., 2003; Heerseen et al., 

2004). Disruption of neurotrophin endocytosis (Ye et al., 2003) and pharmacological 

or molecular disruption of dynein-dependent microtubule transport (Heerseen et al., 

2004) also leads to neuronal apoptosis. In vivo, target-derived NGF is detected in 

cell bodies in early endosomes together with TrkA and activated ERK and the 

amount of retrograde transport of activated TrkA is influenced by the amount of 

NGF present in the target (Delcroix et al., 2003). Most of the reviewed papers focus 

on NGF and its tyrosine kinase receptor TrkA, since NGF is the principal 

sympathetic and sensory neuron target-derived neurotrophic factor. During 

development, sympathetic neurons only become dependent on NGF about the time 

their axons first reach their target (reviewed in Bennett et al., 2002). In this period, 

in sympathetic target tissues NGF is expressed at levels corresponding to 

innervation density. Moreover, increasing the available NGF during development 

rescues sympathetic neurons that normally die, whereas decreasing NGF levels 
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with NGF antisera causes destruction of the sympathetic nervous system (reviewed 

in Francis & Landis, 1999).  

The role of p75 in sympathetic neuron development is, instead, still 

controversial, because it has been shown to play different functions depending on 

cell types and developmental stages (reviewed in Hempstead, 2002). p75 is a 

member of the tumour necrosis factor receptor superfamily and binds all 

neurotrophins equally well (reviewed in Nykjaer et al., 2005). p75 can modulate 

ligand affinity and specificity of Trk receptors (Fig.5): indeed, responsiveness to 

limiting concentrations of NGF depends on the relative levels of TrkA and p75 and 

their ability to form high affinity binding sites (Lee et al., 1994; Esposito et al., 2001). 

Both NGF and NT3 bind TrkA, but p75 expression restricts TrkA signalling to NGF 

(Mischel et al., 2001), enabling developing sympathetic neurons to switch sensitivity 

from NT3 to NGF and to support TrkA internalization and retrograde transport 

(Kuruvilla et al., 2004). Nevertheless, a well established function of p75 is to 

promote cell death, by inducing the activity of the JNK-p53-Bax apoptosis pathway 

(Aloyz et al., 1998) and of other proteins that regulate cell death, such as NRIF 

(Casademunt et al., 1999; Kenchappa et al., 2006). Ligand-dependent activation of 

p75 has been shown to cause apoptosis of a number of different cell types 

(reviewed in Kaplan and Miller, 2000), including neonatal sympathetic neurons 

(Bamji et al., 1998). In sympathetic neurons, examination of a possible apoptotic 

role for p75 has focused on BDNF, which is produced by both sympathetic ganglia 

(Causing et al., 1997) and their targets (Maisonpierre et al., 1990a; Kohn et al., 

1999). BDNF signals only through p75 in these neurons because they do not 

express the BDNF Trk receptor, TrkB (reviewed in Glebova & Ginty, 2005). 

Nevertheless, a number of studies have shown that p75 only mediates apoptosis 

when TrkA is inactive or suboptimally activated, leading to the conclusion that TrkA 

activation silences p75 apoptotic signalling in sympathetic neurons (Bamji et al., 

1998; Majdan et al., 2001). Recently, it has become evident that the pro-forms of 

neurotrophins, proneurotrophins, are able to bind p75 with higher affinity than that 

exhibited by mature neurotrophins (Lee et al., 2001), particularly when p75 forms a 

complex with sortilin, a member of the family of Vps10p-domain receptors (Nykjaer 

et al., 2004; Teng et al., 2005). Pro-NGF induces apoptosis of p75-expressing cells 

(Fig.5), including sympathetic neurons and oligodendrocytes, and is unable to 
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stimulate TrkA-mediated survival (Lee et al., 2001). The proneurotrophin pro-NGF is 

expressed in vivo by both sympathetic neurons (Hasan et al., 2003; Jansen et al., 

2007) and peripheral targets (Bierl et al., 2005). 

It is now clear that sympathetic neuron development is an elaborate chain of 

intricate events, composed by distinct temporal and spatial elements that lead, 

through a coordinated process, from neuron specification to axon growth and 

maturation. During embryonic development, at least one other member of the 

neurotrophin family is needed for proximal axon extension, NT3 (Kuruvilla et al., 

2004), that, together with artemin, a vascular-derived neurotrophic factor, (Honma 

et al., 2002), mediates sympathetic axon growth along the vasculature. Final target 

innervation is instead controlled by NGF (Glebova & Ginty, 2004): once the axons 

reach target tissues, the increased availability of NGF and the higher selectivity of 

TrkA for NGF over NT3, due to up-regulation of p75, possibly cause NGF to 

become the dominant survival factor (Francis & Landis, 1999); in addition, although 

both NT3 and NGF signal through TrkA to mediate axon growth, only NGF can 

support retrograde TrkA signalling in sympathetic neurons (Kuruvilla et al., 2004).  

Control of sympathetic neuron survival and death during development by 

neurotrophins and their receptors has been well characterized (Fig.6).  

 

 
Figure 6. Control of sympathetic neuron survival and death during development (from Glebova & Ginty, 2005) 

 

It is, thus, possible to propose a model for the events that control sympathetic 

neuron survival (Glebova and Ginty, 2005).  NGF expressed by target tissues binds 

TrkA on axon terminals, where it is endocytosed as a ligand-receptor complex and 

transported to the cell body in a signalling endosome. In neuronal soma, NGF 
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supports survival, also by regulating gene expression. One of the genes 

upregulated by NGF is p75 (Wyatt & Davies, 1995), which may have a proapoptotic 

function. TrkA activation suppresses prodeath p75 signalling (Majdan et al., 2001), 

thus ensuring cell survival. However, if a neuron does not obtain adequate NGF to 

sustain prosurvival TrkA signalling after p75 induction, such suppression will not 

occur. p75 may then promote cell death in response to ligands such as BDNF or 

proNGF from the target or from the neurons themselves (Glebova and Ginty, 2005). 

 

2.2 Dystrophin and the organization of the SCG intraganglionic synapses  

Previous work of our laboratory has shown that in the autonomic superior 

cervical ganglion dystrophin co-localizes with β-dystroglycan and nAChRs at the 

intraganglionic postsynaptic apparatus (De Stefano et al., 1997; Zaccaria et al., 

1998). After SCG postganglionic nerve crush, it has been observed by immuno-

electron microscopy that the disassembly of the intraganglionic synapses was 

preceded by a rapid decline in the percentage of postsynaptic specializations 

immunopositive for β-DG, dystrophin and the α3 subunit of the nAChR. When 

axotomized neurons began to regenerate their axons, the number of intraganglionic 

synapses, as well as that of postsynaptic specializations immunopositive for the 

aforementioned proteins, increased. This suggests that the dystrophin-dystroglycan 

complex might play a role in the injury-induced disassembly and subsequent 

reassembly of the postsynaptic apparatus, possibly being involved in the 

stabilization of nAChR clusters (Zaccaria et al., 1998). In the SCG of mdx mice, that 

lack full-length dystrophin, a selective and significant reduction in intraganglionic 

postsynaptic specializations immunopositive for α3nAChRs (Del Signore et al., 

2002; Zaccaria et al., 2000) and for α- and β-dystroglycan (Zaccaria et al., 2000) 

compared with the wt have been found. This strongly indicates that the absence of 

dystrophin at the intraganglionic postsynaptic apparatus of mdx mouse SCG 

interferes with the presence of both dystroglycan and nAChRs clusters at these 

sites, possibly affecting fast intraganglionic transmission. Moreover, the different 

nAChR subtypes present in the SCG of wt and mdx mice were characterized. Two 

types of receptors were found: one containing the α3 subunit associated with the β2 

and/or β4 subunits and another one containing the α7 subunit (Del Signore et al., 
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2002). Only α3, β2 and/or β4 nAChRs were drastically reduced at the 

intraganglionic postsynaptic specializations of mdx mouse SCG, further 

demonstrating a dystrophin-dependant stabilization of this subtype of receptor at 

the postsynaptic apparatus. Conversely, dystrophin was not involved in stabilization 

of the α7 containing nAChRs, as the percentage of α7-immunopositive synapses is 

similar in both wt and mdx mouse SCG (Del Signore et al., 2002). Thus, in the 

autonomic SCG the dystrophin-dystroglycan complex is involved in the 

disassembly-reassembly of the postsynaptic apparatus consequent to axotomy and 

in the stabilization of the α3 containing AChRs. 
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3.  Axonal transport and neuronal cytoskeleton  
 

Neurons are highly polarised cells with a long and thin axon that typically 

grows very far from the cell body. They also have multiple thick dendrites that 

remain comparatively short. Cytoskeletal elements play key architectural roles and 

contribute significantly to the acquisition and maintenance of such asymmetrical 

cellular morphologies (reviewed in Baas & Buster, 2003). Moreover, communication 

and active transport between the cell periphery and the cell centre and vice versa 

are required (reviewed in Chevalier-Larsen & Holzbaur, 2006). Neurons depend on 

molecular transport for all these cellular functions.  

The cytoskeleton is an aggregate structure formed by three classes of 

cytoplasmic structural proteins: microtubules (tubulins), microfilaments (actins) and 

intermediate filaments. They are all dynamic rather than passive structural elements 

(reviewed in Brady et al., 1999). Microtubules are nearly ubiquitous components of 

the cytoskeleton in eukaryotes and are very abundant in the nervous system. They 

are hollow tubes 25 nm in diameter, whose walls comprise 13 protofilaments 

formed by a linear arrangement of globular subunits, that is heterodimers of α- and 

β-tubulin. Each protofilament thus consists of a series of α- and β-tubulin dimers 

organized in a polar fashion, giving the microtubule a “plus” (fast growing) and a 

“minus” (slow growing) end (reviewed in Brady et al., 1999). In neurons, 

microtubules are differently arranged in the axonal and dendritic compartments: 

along the axon, they are organized in a polar array, with the microtubule “plus” end 

directed outward and the microtubule “minus” end directed toward the cell centre. 

Differently, they are found in mixed polarities in dendrites (reviewed in Chevalier-

Larsen & Holzbaur, 2006). Microfilaments are composed by actin, which is 

universally present in eukaryotes. Microfilaments are present throughout the 

cytoplasm in the form of short filaments from 4 to 6 nm in diameter, often bundled 

into networks. In neurons, actin microfilaments are most abundant in presynaptic 

terminals, dendritic spines, growth cones and the subplasmalemmal cortex 

(reviewed in Brady et al., 1999). Intermediate filament proteins constitute a 

superfamily of 5 classes, which have specific cell type and developmental stage 

patterns of expression. They are named after the characteristic diameter of 8-10 

nm, that is intermediate between actin filaments and microtubules. IF share a 
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characteristic ~310 amino acid α-helical domain containing a hydrophobic repeat 

essential for assembly. Head and tail segments flank this central rod, and are 

markedly divergent in length and sequence among the various members of the 

family (reviewed in Lee & Cleveland, 1996). Assembly of IF involves the formation 

of two coiled-coil dimers of protein subunits in order to form an antiparallel tetramer. 

The lateral and longitudinal association of tetramers makes up the final filament 

(reviewed in Lariviere & Julien, 2003). The neurofilament proteins are the most 

abundant IF type in adult neurons. They are made up by the copolymerization of the 

NF-light (NF-L, 68 kDa), medium (NF-M, 140 kDa) and heavy (NF-H, 180-200 kDa) 

molecular mass proteins (reviewed in Lariviere & Julien, 2003). They are obligate 

heteropolymers requiring NF-L with either NF-M or NF-H for proper polymer 

formation (Lee et al., 1993). Unlike other IFs, NFs have characteristic “side arms” 

extending from the filament backbone that appear to form bridges between 

filaments (Hirokawa et al., 1984); these side arms are formed by NF-M and NF-H 

carboxy-terminal regions. NF-H and, even though to a less extent, NF-M tails 

contain many repeats of lysine-serine-proline (KSP); the serines in the KSP 

domains are heavily phosphorylated in axons (Julien & Mushynski, 1983). NFs have 

a role in modulating the radial growth of large myelinated axons: this is important for 

normal nerve function because calibre is the principal determinant of conduction 

velocity (reviewed in Lariviere & Julien, 2003). Phosphorylation of multiple KSP 

repeats in NF-H and NF-M C-terminal domains can influence axon calibre: 

phosphorylation increases neurofilaments negative charge that causes increased 

NF spacing (de Waegh et al., 1992). Neurofilaments also contribute to axon branch 

stability (Smith et al., 2006).  

Organelles generally move very short distances along actin filaments and the 

molecular motors that drive this transport are myosins (reviewed in Chevalier-

Larsen & Holzbaur, 2006). Actin-based organelle transport is particularly important 

in regions of axons and dendrites that are not rich in microtubules, such as dendritic 

spines and the leading edge of the axonal growth cone (reviewed in Baas & Buster, 

2003). 

The rapid and robust movement of organelles and membrane-associated 

proteins along microtubules within the axon is referred to as “fast axonal transport”. 

This kind of transport occurs both in the anterograde and retrograde directions, that 
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is from the cell body to the periphery and from the periphery to the soma, 

respectively. Microtubules act as railways for fast axonal transport. Proteins 

belonging to the kinesin superfamily drive plus-end directed motility along 

microtubules and are thus the anterograde motors. Cytoplasmic dynein is the major 

motor driving retrograde transport, because it produces force towards the minus 

end of microtubules (reviewed in Chevalier-Larsen and Holzbaur, 2006). In vivo, the 

dynactin accessory complex is required for most of dynein functions (reviewed in 

Mallik & Gross, 2004). Among the most critical cargos transported by dynein in 

neurons are neurotrophic signalling molecules (reviewed in Chevalier-Larsen and 

Holzbaur, 2006). Activated Trk receptors are associated with vesicles that travel in 

the retrograde direction via a dynein-driven transport mechanism (Bhattacharyya et 

al., 2002) and a dynein-dependent transport is required for Trk-activated retrograde 

survival signals (Heerssen et al., 2004).  

Slow axonal transport is the movement of the proteins that comprise the 

cytoskeleton itself, which must be conveyed from their site of synthesis within the 

cell body down the length of the axon (reviewed in Baas & Buster, 2003). It consists 

of two subcomponents, the faster of which has a transport rate of 2-3 mm/d and 

contains actin, actin-associated proteins and a huge array of cytosolic proteins. The 

slower component has a transport rate of 0.25 mm/d and contains most of the 

tubulin, the neurofilament proteins and proteins known to associate with 

microtubules and neurofilaments (Black & Lasek, 1980). Early studies of slow 

axonal transport utilized pulse-chase experiments and revealed that transported 

proteins moved distally through the axon; the waves of transported proteins spread 

as they moved down the axon, suggesting some asynchrony in the rates of 

movement of individual elements within each component of slow transport 

(reviewed in Baas & Buster, 2003).  The first opportunity to follow the movement of 

cytoskeletal proteins in living neurons in culture came with the addition of 

fluorescent tags to cytoskeletal proteins that, microinjected into neurons, typically 

filled a neurite (reviewed in Brady, 2000). A patch on the neurite could be 

“photobleached” and monitored for slow synchronous movement. Surprisingly, the 

movement did not occur (reviewed in Baas & Buster, 2003). Recently, by widening 

the parameters of the live-cell imaging paradigm, it has become possible to explain 

and reconcile the results of previous studies (reviewed in Baas et al., 2006). Such 



23 

 

result has been obtained by employing much longer “photomarks” or natural gaps in 

the neurofilament array, with image acquisition every several seconds instead of 

minutes. It has been shown that both neurofilaments (Wang et al., 2000; Yan & 

Brown, 2005) and microtubules (Wang & Brown, 2002) do move as polymers. The 

vast majority of the polymers are in a “pausing” state at any given moment, while 

roughly 10% of them undergo bouts of rapid movements. The slow rate of slow 

axonal transport is thus the result of this fast but relatively infrequent movement. 

Neurofilaments and microtubules also move bi-directionally, that is in both the 

anterograde and retrograde directions (Wang et al., 2000; Wang & Brown, 2002; 

Theiss et al., 2005).  These observations also indicate that the motors for slow 

transport are actually fast motors, and hence are probably already identified motors, 

such as cytoplasmic dynein and members of the myosin and kinesin families. 

Indeed, He et al., (2005) showed that dynein is responsible for the retrograde 

transport of neurofilaments, consistent with a “cargo” model for neurofilament 

transport. According to this model, neurofilaments move in ways analogous to the 

movement of vesicles along microtubules. One or more microtubule-associated 

motor proteins associate with neurofilaments and carry their cargo along 

microtubules (Shah et al., 2000; reviewed in Brady, 2000). Instead, cytoplasmic 

dynein is a major participant in the anterograde transport of microtubules, therefore 

supporting the “sliding filament” model for axonal microtubule transport (He et al., 

2005). According to this model, microtubules move down the axon by pushing 

against the actin cytomatrix (Ahmad et al., 1998). In this view, the cargo domain of 

the cytoplasmic dynein molecule is associated with the actin cytomatrix, leaving the 

motor domain available to interact with microtubules (reviewed in Baas & Buster, 

2003). It is also possible for cytoplasmic dynein to move microtubules along other 

microtubules (Ahmad et al., 1998; Hasaka et al., 2004; Ahmad et al., 2006). 

Retrograde microtubule and anterograde neurofilament movements use motors 

other than cytoplasmic dynein. These motors are probably members of the kinesin 

(Yabe et al., 1999; Shah et al., 2000; Theiss et al., 2005) and myosin (Jung et al, 

2004) families of motor proteins. 
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4.  AIM OF THE PROJECT 
 

In mouse sympathetic SCG, dystrophin is localized at the postsynaptic 

apparatus of a number of intraganglionic synapses (De Stefano et al., 1997), where, 

together with the transmembrane glycoprotein dystroglycan, it stabilizes the 

nicotinic acetylcholine receptors containing the α3 subunit (α3nAChR) (Zaccaria et 

al., 1998; Del Signore et al., 2002). In mdx mouse SCG, because of the lack of 

dystrophin Dp427, the number of α3nAChR-containing synapses is significantly 

reduced with respect to the wt (Zaccaria et al., 2000), suggesting alterations in the 

fast intraganglionic synaptic transmission. Changes in sympathetic neuron activity 

may, therefore, contribute to episodes of autonomic dysfunction described in DMD 

patients, such as heart rate alteration (Yotsukura et al., 1995). However, ganglionic 

neurons may also be affected by the damages induced by the lack of Dp427 in SCG 

target organs, such as the cardiac muscle. Dilated cardiomyopathy has been 

observed in DMD patients and mdx mice (Grady et al., 1997; Coral-Vazquez et al., 

1999; Megeney et al., 1999). Many of the events characterizing neuronal life are 

indeed influenced by neuron-target multiple interactions (Introduction, chapter 2). 

Among these, cell body size and dendritic arborization (Voyvodic, 1989; Andrews et 

al., 1996), synapse formation and plasticity (Personius and Balice Gordon, 2000; 

Schinder and Poo, 2000), neurotransmitter secretion (Liou et al., 1999) and neuron 

survival (reviewed in Bennett et al., 2002). Previous observations of our group 

showed that the number of synapses per area are reduced in mdx mouse SCG 

compared to the wt and that the mdx mouse SCG is smaller than the wt.  

The aim of the present work is to analyze whether the lack of Dp427 in mdx 

mice may affect SCG neurons directly and/or indirectly by damaging their target 

organs. With its dual innervation of muscular (heart, iris, arterial wall) and non-

muscular (submandibular and pineal glands) targets, the SCG is an excellent in vivo 

model to evaluate the effects on sympathetic neurons exerted by each type of 

peripheral target, that may be differently affected by the dystrophic pathology. We 

counted SCG neuron number and assessed the extension and distribution of 

adrenergic innervation in SCG peripheral target organs, in wt and mdx mice. We 

also investigated the structural and functional effects of the lack of full-length 

dystrophin on mdx mouse SCG peripheral targets, both muscular and non-
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muscular. Finally, we analyzed the expression of proteins involved in neuron 

development and survival and in axon growth, such as trophic factors, trophic 

factors receptors, and molecules responsible for axonal retrograde transport. 



26 

 

5. MATERIALS AND METHODS 

 

5.1) Animals 

We used male wild-type (C57BL/10) and genetically dystrophic (C57BL/10 

mdx/mdx) mice (Jackson Laboratories, Bar Harbor, Maine, USA) P0, P5, P10, P15, 

P21 and young adult 6–7 weeks old. The age of 6–7 weeks falls within the time 

interval of 4–8 weeks during which, in mdx mice, intense cycles of skeletal muscle 

degeneration/regeneration occur. The animals were housed and handled in 

accordance with the guidelines laid down by the European Community Council 

Directive (86/609/EEC of 24 November 1986) and the American Society for 

Neuroscience. 

 

5.2) Determination of SCG neuron number  

To determine the number of ganglionic neurons, we used SCG dissected 

from three wild-type and three mdx mice at each postnatal date considered. P5, 

P10 and P15 mice were anesthetized with isoflurane (Merial, Milano, Italy), killed by 

decapitation and the ganglia, rapidly dissected, were fixed by immersion in 2.5% 

glutaraldehyde in 0.1M cacodylate buffer, pH 7.4 for 2 h at 4°C. Differently, adult 

and P21 animals were deeply anesthetized by intraperitoneal injection of chloral 

hydrate (400 mg/Kg body weight), perfused transcardially through the ascending 

aorta with oxygenated Ringer’s solution at pH 7.3, followed by the same fixative as 

above. The SCGs were removed and, together with those fixed by immersion, were 

processed for standard light and electron microscopy. All specimens were post-

fixed in 2% osmium tetroxide in 0.1M cacodylate buffer for 1 h at 4° C, dehydrated 

through an ascending series of ethyl alcohol and propylene oxide, with a 20 min 

step in 2% uranyl acetate dissolved in 70% ethanol, and embedded in Epon 812. 

The ganglia were cut in 2 μm thick serial semithin sections from the caudal to the 

rostral regions and stained with 0.1% Toluidine Blue in 0.1% borax. For each series, 

nucleolated neurons were counted at a Zeiss Axiophot light microscope in one of 

every five sections (P5, P10 and P15) or one of every ten sections (P21 and 6-7 

weeks old), taking into account the morphometric development of SCG neurons. 
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The numbers obtained from each section were summed. This method minimized 

the risk of counting the same neuron twice, although the actual final number may be 

underestimated. Two experimenters performed the count blind (not knowing the 

genotype) and independently to verify its reproducibility. The final number of 

neurons from each group of animals is reported as the mean ± SEM and the 

differences were analyzed using Student’s t-test. 

 

5.3) Immunocytochemistry 

5.3.1) Primary antibodies. Extension and distribution of adrenergic fibers in 

the SCG peripheral targets were evaluated by tyrosine hydroxylase (T-OH) 

immunostaining using an affinity purified rabbit polyclonal antibody (Chemicon 

International Inc., Temecula, CA, USA) diluted 1:100. T-OH is the rate-limiting 

enzyme in catecholamine synthesis (Levitt et al., 1965) and a measure of the 

functional activity of SCG neurons (Black & Mytilineou, 1976). Dystrophin 

immunolocalization in heart, iris and submandibular gland cryo-sections was carried 

out using a polyclonal guinea pig antiserum against a recombinant dystrophin 

protein (N-terminal residues 1–246) (Knuesel et al., 1999), which recognizes only 

the full-length dystrophin, kindly provided by Dr. M. Fritschy (University of Zurich, 

Switzerland), diluted 1:3000. The presence of Dp427 in smooth muscle cells of iris 

and submandibular gland was verified by co-localization with smooth muscle actin, 

using a rabbit polyclonal antibody (Abcam Limited, Cambridge, UK) diluted 1:100.  

5.3.2) Immunocytochemistry procedure. T-OH was revealed in the hearts, 

irises and submandibular glands of three wild-type and three mdx mice at P0, P5, 

P10 and 6–7 weeks of age. P0, P5 and P10 mice were killed by decapitation 

following isoflurane anesthesia and the heart, irises and submandibular glands were 

rapidly dissected and fixed by immersion in 4% paraformaldehyde in 0.1 M PB for 2 

h at 4°C. Adult wild-type and mdx mice were, instead, anesthetized and perfused 

with the same fixative as above. After perfusion, the heart, irises and submandibular 

glands were removed. All specimens were cryoprotected for 36 h in 30% sucrose at 

4°C, rapidly frozen and cut on a cryostat into 12 μm thick sections, collected on 

subbed glass slides. Immunolabeling for T-OH in heart and submandibular gland 

was performed using the PAP procedure as described previously (De Stefano et al., 
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1997). Due to the presence of black pigmentation, T-OH immunoreactivity in the iris 

was detected using a secondary antibody Cy3TM-conjugated affinityPure F(ab)2 

fragment goat anti-rabbit IgG (H + L) diluted 1:400 or a Cy2TM-conjugated 

affinityPure F(ab)2 fragment goat anti-rabbit IgG (H + L) diluted 1:100 (Jackson 

Immunoresearch Laboratories Inc., West Grove, PA, USA). Iris cryostat sections 

were first incubated for 1 h at RT in a blocking solution containing 10% NGS, 1% 

BSA and 0.2% Triton X-100 in 0.1 M PB, pH 7.4. After a rinse in buffer, the 

specimens were incubated for 36 h with the anti-T-OH antibody diluted in 1% NGS, 

1% BSA and 0.1% Triton X-100 in 0.1 M PB, pH 7.4 and coverslipped with 3:1 

glycerol:PBS. Full-length dystrophin and smooth muscle actin were revealed in two 

6–7 weeks old wt and two mdx mice. Tissue preparation and Dp427 

immunostaining were performed as described by Vannucchi et al. (2002). Briefly, 

animals were anesthetized with isoflurane and killed by decapitation. Hearts, irises 

and submandibular glands were rapidly dissected, frozen in TissueTek® O.C.T. 

compound on dry ice and kept at -80°C until use. 10 μm cryostat sections were cut 

from each sample, collected on electrostatic glass slides and immersed horizontally 

in a Petri dish containing 50 ml of fixative (2% formaline in 0.1 M PB, pH 7.4). After 

a 2 min rinse in PBS, the sections were incubated in a blocking solution of PBS 

containing 4% NGS and 0.5% Triton X-100, for 15 min at RT. After a 3 x 10 min 

rinses in PBS, the specimens were incubated overnight at 4°C with the guinea pig 

dystrophin antibody diluted in the same medium used for blocking, rinsed again and 

then incubated with the secondary antibody Alexa Fluor® 594 goat anti-guinea pig 

IgG (H + L) (10 μg/ml) (Molecular Probes, Inc., Eugene, OR, USA). Iris and 

submandibular gland sections were further rinsed and incubated, overnight at 4°C, 

with the antibody to smooth muscle actin, successively revealed with a secondary 

antibody Cy2TM-conjugated affinityPure F(ab)2 fragment goat anti rabbit IgG (H + L) 

(Jackson Immunoresearch Laboratories Inc.) diluted 1:100. Sections were 

coverslipped with glycerol:PBS and viewed at a Zeiss Axiophot fluorescence 

microscope. Control sections from all specimens were obtained by omitting the 

primary antibody.  
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5.4) Retrograde labeling of superior cervical ganglion neurons by wheat germ 

agglutinin injection and quantitative analysis 

Neurons projecting to the submandibular gland and to the iris were visualized 

by retrograde labeling with WGA-HRP. Five μl of 2% WGA-HRP diluted in 2% 

dimethylsulfoxide and sterile saline solution were injected, under deep anesthesia 

with chloral hydrate, into the right submandibular gland of three wild-type and three 

mdx adult mice. Five injections of 1 μl each were administered to different areas of 

the glands using a 30 1/2 gauge needle connected, through a polyethylene tube (PE-

20), to a Hamilton syringe. To label neurons projecting to the iris, 3 μl of 5% WGA-

HRP were injected through the corneal limbus, using the same device, into the 

anterior eye chamber (in the proximity of the iris) of three wild-type and three mdx 

adult mice. To minimize the excessive dilution of the tracer and its outflow from the 

anterior eye chamber by the regular replacement of the aqueous humor, 10-15 min 

before retrograde labeling the eyes were injected with 2% methylcellulose diluted in 

sterile saline solution (Pescosolido et al., 1998). Methylcellulose does not degrade 

or trigger any immunitary response and forms polymers that reduce and/or block the 

outflow of aqueous humor by temporarily obstructing Schlemm's canal and its 

collectors. Eighteen hours after the injection into either the submandibular gland or 

the anterior eye chamber, the mice were anesthetized and perfused with a fixative 

composed of 1% paraformaldehyde and 1.5% glutaraldehyde in 0.1 M PB, pH 7.4. 

After dissection, the SCG were cryoprotected overnight in 30% sucrose and cut into 

15 μm thick serial sections collected free-floating in three wells. Each well thus 

contained a complete series of sections separated from each other by 30 μm. The 

WGA-HRP within neuronal cell bodies was visualized by the usual DAB reaction. 

Sections from submandibular glands were also cut and processed as above to 

verify the homogeneous distribution of the WGA-HRP injections. After DAB 

reaction, all sections were collected on glass slides and coverslipped with Eukitt 

balsam. WGA-HRP labeled neurons were counted at a light microscope. For each 

ganglion, the final number of neurons was represented as the mean ± SEM of the 

counts performed on the single series of sections collected in the three wells. 

Differences between counts were statistically evaluated by Student’s t-test.  
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5.5) Biochemistry 

5.5.1) Primary antibodies. The mouse monoclonal antibody Dys1 

(Novocastra, Newcastle upon Tyne, U.K.), diluted 1:15, was used in the biochemical 

characterization of Dp427. Dys1 is directed against the dystrophin mid rod domain 

and recognizes the full-length dystrophin of 427 kDa. Expression of T-OH was 

evaluated using the same antibody used for immunocytochemistry (diluted 1:100). 

In addition, other antibodies used for Western blots were as follows: rabbit anti 

mouse-NGF (diluted 1:500) was from Alomone Labs (Israel); rabbit anti TrkA, used 

at a concentration of 2 μg/ml, was from Abcam Limited (Cambridge, UK); rabbit anti 

phospho-TrkA (diluted 1:800) was from Sigma; mouse anti p75 (diluted 1:100) was 

kindly provided by Dr. L. Manni; rabbit anti NF-L and anti NF-M, diluted 1:5000 and 

1:10000 respectively, were from Immunological Sciences (Rome, Italy); rabbit anti 

NF-H (diluted 1:1000) was from Sigma; mouse monoclonal (SMI-36) recognizing 

the phosphorylated form of 200 kDa neurofilament heavy protein was from AbCam 

Limited (Cambridge, UK) and was diluted 1:1000; rabbit anti dynein heavy chain (R-

325) was from Santa Cruz Biotechnologies and it was used diluted 1:1000; mouse 

monoclonal anti actin (0.75 μg/ml) was from Boehringer Mannheim Biochemica.  

5.5.2) Preparation of tissue extracts. Mice were anesthetized with isoflurane 

and killed by decapitation. The hearts, irises, submandibular glands and SCGs were 

quickly removed on ice, frozen and stored at –80°C until use. The whole hearts and 

submandibular glands were homogenated in RIPA buffer containing 50 mM Tris/HCl 

pH 7.6, 150 mM NaCl, 1 mM EDTA, 1% SDS, 1%Triton X-100, 1 X inhibitor cocktail 

(Sigma), 1 mM PMSF, 0.2 mM Na3VO4 and 1 mM NaF, with a ground-glass micro-

homogenizer kept in ice. Irises and SCGs were pooled and then homogenized as 

described for hearts and submandibular glands. After centrifugation (15,000 x g for 

15 min at 4°C), a measured aliquot of the supernatants was used to determine 

protein concentration using the Micro BCA kit (Pierce, Rockford, IL, USA). Other 

aliquots of the samples were boiled for 1 min after addition of 4 x loading buffer (200 

mM Tris/HCl pH 6.8, 4% SDS, 30% glycerol, 4% β-mercaptoethanol, 4% blue 

bromophenol) and analyzed by sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) and immunoblotted. 

5.5.3) Electrophoresis and immunoblotting. Equal amounts of proteins were 

separated by SDS-PAGE on 6-15% (for Dp427 revelation), 15% (for NGF 
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revelation), 4% (for dynein revelation) and 7.5% (for the revelation of all the other 

proteins) acrylamide gels. Molecular mass standard mixture containing myosin (205 

kDa), β-galactosidase (116 kDa), phosphorylase b (97.4 kDa), bovine albumin (66 

kDa), egg albumin (45 kDa) and carbonic anhydrase (29 kDa) was used (Sigma-

Aldrich s.r.l., Milano, Italy). In another set of experiments, Molecular Weight 

Standard Mixture (Sigma), containing precisely sized recombinant proteins of 

molecular mass 150, 100, 75, 50, 35, 25, 15 kDa, was used. Hi-Mark Prestained 

High Molecular Weight Standard (Invitrogen), containing proteins of molecular mass 

500, 279, 251, 164 and 121 kDa was used only for 4% polyacrilamide gels. Proteins 

were then transferred onto nitrocellulose membranes using a solution containing 50 

mM Tris/HCl, 380 mM glycine, 0.1% SDS and 20% methanol and Ponceau S 

(Sigma) staining was used to verify similar protein loading between wt and mdx 

mouse samples. Non-specific binding sites were blocked with 5% dry milk in TTBS 

1X (20 mM Tris/HCl at pH 7.5, 500 mM NaCl, 0.05% Tween 20) and the 

membranes were then incubated overnight at 4°C with the primary antibody, diluted 

in 3% BSA and 0.05% NaN3 in TTBS. After a thorough wash in buffer, the 

membranes were incubated for 1h at RT with an anti-mouse or anti-rabbit IgG 

secondary antibody, both conjugated with horseradish peroxidase (Promega Italia, 

Milano, Italy), diluted 1:15000 and 1:10000 respectively, in 2.5% dry milk in TTBS. 

Membranes were then developed using enhanced chemiluminescence (ECL) 

(Pierce, Rockford, IL, USA). The positive bands were visualized by exposure of the 

membrane to X-OMAT films (Kodak). Densitometric analysis of band intensities was 

carried out using ImageQuant 5.2 (Amersham Biosciences Europe, Cologno 

Monzese, Italy) program. At least three western immunoblots were used for each 

analysis. Actin was used as internal standard. A ratio of each protein of interest to 

actin was obtained; results were expressed as mdx protein level/wt protein level for 

animals of the same age. Data were evaluated for statistical significance using 

Student’s t-test; differences were accounted as statistically significant if p ≤ 0.05. 

 

5.6) Standard electron microscopy 

6-7 weeks old and P10 wt and mdx mice were deeply anesthetized and 

perfused as described in the 5.2 Section. After fixation, the salivary glands, hearts, 

irises and SCGs were removed, cut in small pieces and processed following the 
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same protocol described above. Ultrathin (60-70 nm thick) sections were cut on a 

Reichert ultramicrotome, stained with 4% uranyl acetate followed by 0.2% lead 

citrate and viewed under a Philips EM208S transmission electron microscope at 80 

kV.  

 
5.7) Evans Blue injection 

           Evans Blue is a dye used to look for changes in plasma membrane 

permeability, which is an early sign of the dystrophic pathology in muscle cells 

(Mokri & Engel, 1975). Four wild-type and four mdx mice at P10 and 6-7 weeks of 

age were injected into the peritoneum with tetrasodium diazo salt Evans blue dye 

(Sigma-Aldrich) (50 μl/10 g of body weight), dissolved in PBS at a concentration of 

0.5 mg EBD/0.05 ml PBS and filtered through a 0.2 μm pore-sized filter. Successful 

dye injection was indicated by the blue color of mouse paws and ears. Animals 

were anesthetized with isoflurane and killed by decapitation 5-6 h after injection and 

visually inspected for dye uptake in the skeletal muscles. Femoral quadriceps 

muscles (used as positive control tissue), hearts, irises and submandibular glands 

were removed and fixed in 8% formaline in 0.1 M PB, pH 7.4, for 2 h at 4°C. After a 

brief wash in PB, the specimens were cryoprotected overnight in 30% sucrose and 

cut on a cryostat in 10 μm thick sections collected on subbed slides. Sections were 

postfixed in ice-cold acetone at -20°C for 10 min, washed, mounted with 

glycerol:PBS 3:1 and viewed under an Axiophot Zeiss fluorescence microscope 

using the rhodamine filter.  

 

5.8) Real-time RT-PCR 

Wt and mdx P5, P10 and 6-7 weeks old mice were killed by decapitation 

following isoflurane anesthesia and SCGs, hearts, irises and submandibular glands 

were collected, frozen and stored at -80°C until use. Total RNA was isolated from 

hearts and submandibular glands using TRI Reagent (Sigma, Milano, Italy), 

according to the manufacturer’s instructions. The yield and integrity of the purified 

RNA were assessed by spectrophotometric analysis at 260 nm and electrophoresis 

on ethidium bromide-stained 1.3% agarose-formaldheyde gels, respectively. RNA 

was additionally purified of genomic DNA using DNA-free kit (Ambion Inc, Austin, 
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TX, USA), according to the manufacturer’s instructions. Total RNA was isolated 

from pools of SCGs and irises using the RNeasy Micro Kit (Quiagen, Milan, Italy), 

following the manufacturer’s instructions.  2 μg of total RNA was reverse-transcribed 

using random hexanucleotides as primers, 25 U of RNAsin and 200 U of MMLV-RT 

(all from Promega). 1/50 of the cDNA thus obtained was real-time PCR amplified in 

a 25 μl reaction mixture containing 1x SYBR Green JumpStart Taq ReadyMix 

(Sigma) and 0.3 mM of each primer in an iCycler iQ Real-Time Detection System 

(Bio-Rad, Milano, Italy). Each sample was amplified in duplicate. Amplification was 

carried out for 30-35 cycles (30 sec at 95°C, 30 sec at 55°C and 45 sec at 72°C). 

The primers used are listed in Table I. Amplicons were detected after each 

elongation step and were analyzed using the iCycler iQ software (Bio-Rad). A 

melting curve was obtained after completion of the cycles to verify the presence of a 

single amplified product. HPRT was used as the internal standard (Steel & Buckley, 

1993); amplification efficiencies of HPRT and of all genes of interest were set to be 

approximately equal. Comparative expression levels were calculated by the 2-ΔΔCt 

method (Livak & Schmittgen, 2001). Data were statistically analyzed by Student’s t-

test; differences were considered statistically significant if p ≤ 0.05. 

 

5.9) Measurements of NGF by Elisa 

Wt and mdx P5, P10 and 6-7 weeks old animals were killed by decapitation 

following isoflurane anesthesia and hearts and irises were collected, frozen and 

stored at -80°C until use. Homogenization buffer contained 10 mM Tris/HCl pH 7.4, 

100 mM NaCl, 1 mM EDTA, 1mM  EGTA, 0,1% Triton X-100, 1 mM PMSF and 1X 

inhibitor cocktail (Sigma). Irises were pooled, suspended in 200μl buffer and 

sonicated at a frequency of 30 kHz for 30 sec, while hearts were sonicated at a 

frequency of 30 kHz for 40 sec in a volume established on their wet weight (100μl 

buffer for 10mg tissue). Sonication was carried out by using a UP100H Ultrasonic 

Processor (Dr. Hielsher GmbH, Teltow, Germany). Samples were stored at -20°C 

until use. Measurement of NGF was performed using Emax ImmunoAssay System 

(Promega), according to the manufacturer’s instructions. Plates were read at 450 

nm. Tissue NGF values were normalized against the protein concentration of each 

sample and expressed as pg NGF/mg protein. Results were expressed as the ratio 

mdx NGF level/wt NGF level, for age-matched mice. Data were evaluated for 
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statistical significance using Student’s t-test; differences were accounted as 

statistically significant if p ≤ 0.05. 

 

Table I. Oligonucleotide primers used for real-time RT-PCR 
 

GENE lenght of 
amplicon PRIMER (5’ to 3’) 

NGF 144 bp Fw:  CCAAGCTCACCTCAGTGTCTG 
Rev:  GTTCTGCCTGTACGCCGATC 

TrkA 104 bp Fw:  TGGACGGTAACAGCACATCAAG 
Rev:  AAGGAAGAGGGCGGCAGAG 

p75 104 bp Fw:  CCTGCCTGGACAGTGTTACG 
Rev:  CACACAGGGAGCGGACATAC 

caspase 6 130 bp 
Fw:  TTCCTCATGTGCTACTCTGTCG 
Rev:  GCAGCTCCGTGAACTCCAG 

NF-L 114 bp Fw:  GTCTCCTCCTCGCTGTCC 
Rev:  CTTGAGGTCGTTGCTGATGG 

NF-M 82 bp Fw:  AAGGTTGAGGAAGTGGCTGTC 
Rev:  CGGGTGATTTGGGCATAGGG 

NF-H 96 bp Fw:  GTGGTTCCGAGTGAGGTTGG 
Rev:  CGCCGGTACTCAGTTATCTCC 

�-actin  143 bp 
Fw:  CCCAGGCATTGCTGACAGG 
Rev:  GCTGGAAGGTGGACAGTGAG 

tubulin α1 129 bp Fw:  GTATGCCAAGCGTGCCTTTG 
Rev:  TCCACAGAATCCACACCAACC 

tubulin β3 136 bp Fw:  CGCCTTTGGACACCTATTCAGG 
Rev:  ACACTCTTTCCGCACGACATC 

Cdk5 76 bp Fw GTGACCTGGACCCTGAGATTG 
Rev TTGCGGCTGTGACAGAATCC 

p35 81 bp Fw:  GCAAGAACGCCAAGGACAAG 
Rev:  CTGACACCGCCACGATCC 

dynein HC1 120 bp Fw:  GCACCTCATCCCACAGACAC 
Rev:  CGCACATCTTGGAGTAACTTGG 

kinesin 5A 117 bp Fw:  ATGGAGAGAATGTGCCTGAGAC 
Rev:  GTGCGATGCGTACCACAATG 

N-CAM 112 bp Fw:  GCTGTGATTGTCTGTGATGTGG 
Rev:  TGTTGGACAGGACTATGAACCG 

L1-CAM 97 bp 
Fw:  GCAGCAAGGGTGGCAAATAC 
Rev:  CTGTACTCGCCGAAGGTCTC 

neuropilin 99 bp Fw:  TGTCCGAATCAAACCTGTATCC 
Rev:  CCCAACATTCCAGAGCAAGG 

tenascin C 80 bp Fw:  GAGCCAGCAAGCCACAACC 
Rev:  TGACAGCAGAAACACCAATCCC 

HPRT 160 bp Fw:  AGTCCCAGCGTCGTGATTAG 
Rev:  CCATCTCCTTCATGACATCTCG 
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6.  RESULTS 

6.1 Neuron number in the SCG of P5, P10, P15, P21 and 6–7 weeks old wt and 

mdx mice 

No evident difference in neuronal organization, shape or staining affinity was 

observed between serial semithin sections of 6–7 weeks old wt and mdx mouse 

SCG. However, a cell count revealed significantly (p<0.01) fewer neurons (36%) in 

the SCG of mdx than of wt mice (Table 1). Since no dying neurons were observed, 

we performed cell counts at different postnatal dates: P5, P10, P15 and P21. As 

shown in Table 1, the number of neurons decreased between P5 and P15 in both 

wild-type and mdx mouse SCG, as a consequence of the naturally occurring cell 

death (Wright et al., 1983). However, while at P5 no statistically significant 

difference was revealed between the numbers of neurons of wt and mdx mouse 

ganglia (Table1), in the SCG of P10 mdx mice there were significantly fewer 

(p<0.01) neurons than in the wt and their numbers further decreased at P15 (Table 

1). Thus, the greater neuronal loss observed in mdx than in wt mice occurred early 

after birth and overlapped with the physiological neuronal death.  

 

 

 

Table 1 
Number of neurons in the superior cervical ganglion of wt and mdx mice at different 
postnatal dates 

 
 
 wt mdx 

P5 7915 ± 393 8450 ± 67 
P10 6583 ± 76 4676 ± 74** 
P15 5977 ± 106 3984 ± 3** 
P21 6157 ± 301 3688 ± 138** 
6-7 weeks 5204 ± 74 3339 ± 24** 

 
At each time point, the number of neurons is reported as the mean ± SEM of the number of neurons 
counted in three SCGs. At P5, wt and mdx mouse SCGs have the same number of neurons. At P10, 
the number of ganglionic neurons in both wt and mdx mice decreases significantly compared with P5 
(p<0.05, wt; p<0.01, mdx), coinciding with the naturally occurring cell death. However, in mdx mice, 
the number of neurons is significantly lower than in the wt animals (**p<0.01) and remains so 
throughout the time frame considered. Differences were analyzed by Student’s t test. 
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6.2 T-OH immunolocalization and biochemical evaluation in SCG target organs of 

P0, P5, P10 and 6–7 weeks old wt and mdx mice 

To investigate whether, with the loss of ganglionic neurons observed in mdx 

mice, the pattern of peripheral target innervation was affected, we used T-OH 

immunostaining to label the sympathetic fiber network in the heart and iris (SCG 

muscular targets) and submandibular gland (SCG non-muscular target) of wild-type 

and mdx mice. The distribution of T-OH-immunopositive nerve fibers in the heart 

was variable, being more abundant in sections from the atrium and inner ventricular 

wall, revealing regions more richly innervated than others in both wt and mdx mice, 

depending on the plane of cut. However, analysis of sections from the same heart 

regions revealed that, compared with the wild-type (Fig. 1A), the extension of the 

sympathetic fiber network and axonal branching was reduced in mdx mice (Fig. 1B). 

This reduction was strikingly evident in the iris of mdx mice (Fig. 2A, wt; Fig. 2B, 

mdx). Due to its small size, which enables sections of the whole structure to be 

obtained, iris is a much easier specimen to analyze than the heart. A different 

situation was found in the submandibular gland, where no significant difference was 

observed in the bulk extension of the sympathetic innervation between wt (Fig. 3A) 

and mdx (Fig. 3B) mice, the whole gland being reached by numerous trunks of T-

OH immunopositive fibers. However, at high magnification, the adrenergic fibers 

appeared mostly clustered in large bundles and only a few thin axonal sprouts were 

observed in mdx mice (Fig. 3D), revealing a reduction in axonal defasciculation and 

terminal sprouting compared with the wt (Fig. 3C). To evaluate whether these 

differences preceded or followed the neuronal loss observed in mdx mouse SCG, 

we performed T-OH immunolabeling on tissue sections from P5 and P10 wt and 

mdx mice. At P5, when no difference in neuron number between wt and mdx mouse 

SCG was observed, the adrenergic innervation in the heart (Fig. 1C, wt; Fig. 1D, 

mdx), iris (Fig. 2C, wt; Fig. 2D, mdx) and submandibular gland (Fig. 3E, wt; Fig. 3F, 

mdx), although immature, had already the same characteristics described in the 6–7 

weeks old animals. These patterns of innervation were more evident in P10 wt (Fig. 

1E, heart; Fig. 2E, iris; Fig. 3G, submandibular gland) and mdx (Fig. 1F, heart; Fig. 

2F, iris; Fig. 3H, submandibular gland) mice. In addition, as the result of the 

decrease in neuron numbers during naturally occurring cell death, the amount of T-
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OH immunopositive nerve fibers in both wt and mdx mice was progressively 

reduced from P5 to adulthood, a phenomenon that can be better appreciated in wt 

mouse irises. The differences observed between wt and mdx mice were also found 

in the levels of T-OH detected by Western immunoblot analysis (Fig. 4). In the 

hearts, irises and submandibular gland of 6–7 weeks old (Fig. 4A), P5 (Fig. 4B) and 

P10 (Fig. 4C) mice, T-OH antibody recognized a clear band at approximately 60 

kDa. At all postnatal dates examined, the intensity of the T-OH band was clearly 

higher in wt mouse iris and heart compared to the mdx. A similar result was also 

obtained for submandibular gland homogenates from 6-7 weeks old mice, while no 

differences were observed between wt and mdx mice of P5 and P10. These results 

indicate that the decrease in T-OH content is not only a consequence of the drastic 

reduction in the adrenergic innervation of SCG muscular targets, but also of the 

impaired defasciculation and terminal axon sprouting described in submandibular 

glands. 

T-OH immunolabeling was also performed in the submandibular gland and 

iris in P0 mice, long before the appearance of the differences in neuron number 

between wt and mdx mouse SCG. We chose to immunolabel for T-OH only the iris 

and the submandibular gland (Fig 4), as the heart does not receive a massive 

innervation from the SCG (Pardini et al., 1989) and the extension of the adrenergic 

fibers network is greatly variable in different areas, as previously observed (Fig.1). 

Bulk adrenergic innervation in iris and submandibular gland of both wt and mdx P0 

mice was lower than that observed at P5, clearly showing a still immature fiber 

network. Moreover, areas of targets are not completely innervated and axons are 

more clustered in bundles than in P5 mice. Fig. 5A and 5B show that at P0, in areas 

that are already innervated, the density of adrenergic fibers is comparable between 

wt (Fig. 5A) and mdx (Fig. 5B) submandibular glands. In addition to these common 

alterations, in mdx mouse iris (Fig. 5D) the net of adrenergic innervation is already 

lower than that of wt animals (Fig. 5C), suggesting that some of the axons of mdx 

mouse SCG neurons never reach their targets. 
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Fig. 1. T-OH immunolabeling showing adrenergic innervation in the heart of P5, P10 and 6– 7 weeks 
old wt and mdx mice. In adult wt mice (A), adrenergic axons innervating the ventricular muscular wall 
branch in thin and varicose terminal fibers. In mdx mice (B), the extension of the adrenergic 
innervation is strongly reduced compared with the wild-type and nerve fibers are visibly atrophic. 
This diversified pattern of innervation is also observed at P5 (C: wt; D: mdx) and P10 (E: wt; F: mdx). 
Scale bar: 50 μm. 
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Fig. 2. T-OH immunolabeling showing adrenergic innervation in the iris of P5, P10 and 6–7 weeks 
old wild-type and mdx mice. Adrenergic innervation is dramatically reduced in the irises of 6–7 weeks 
old mdx mice (B) as well as at P5 (D) and P10 (F) with respect to the wt mice of matching ages (A: 
6–7 weeks; C: P5; E: P10). Scale bar: 80 μm.  
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Fig. 3. T-OH immunolabeling showing adrenergic innervation in the submandibular gland of P5, P10 
and 6–7 weeks old wt and mdx mice. Bulk adrenergic innervation in adult wt (A) and mdx (B) mice is 
comparable and a rich net of T-OH immunopositive axons pervades the glands. However, at higher 
magnification, it can be seen that, while terminal axons in wt mice (C) give rise to numerous thin and 
varicose sprouts (some indicated by arrowheads), in mdx mice (D) axonal defasciculation and 
terminal sprouting are impaired. Axons appear clustered, forming large bundles (arrows) that only 
occasionally emanate to thinner branches (arrowhead). Between P5 (E) and P10 (G), in wt mice T-
OH immunopositive axons progressively surround the acini in the submandibular glands with thin 
and varicose axonal sprouts (arrowheads). Adrenergic innervation of mdx mouse glands, instead, is 
much less developed at both P5 (F) and P10 (H), being characterized by large axonal bundles 
(arrow) and poor terminal sprouting (arrowheads). Scale bar: A, B: 160 μm; C–H: 50 μm. 
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Fig. 4. Western immunoblot analysis of T-OH in heart, iris and submandibular gland of P5, P10 and 
6-7 weeks old wt and mdx mice. T-OH antibody recognizes a 60 kDa band. The intensity of the T-OH 
band shows a decrease in all tissue extracts from adult mdx mice compared with the wt of the same 
age (A). In P5 (B) and P10 (C) tissue extracts, T-OH antibody shows a drastic decrease in muscle 
tissues, which is particularly evident in the iris, in mdx mice compared to the age-matched wt. The 
difference in the T-OH band intensity is not appreciable in P5 and P10 submandibular glands. Equal 
amounts of proteins were loaded in wt and mdx lanes, in each target and in a particular stage. 
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Fig. 5. T-OH immunolabeling showing adrenergic innervation in the submandibular gland and iris of 
P0 wt and mdx mice. In submandibular gland bulk adrenergic innervation is similar in wt (A) and mdx 
(B) mice, even though it is still immature and many axons are clustered in bundles. Adrenergic 
innervation is dramatically reduced in the irises of P0 mdx mice (D) with respect to the wt mice (C).  
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6.3 Retrograde labeling of SCG neurons by WGA-HRP injection in the 

submandibular gland and in the anterior eye chamber of 6–7 weeks old wt and mdx 

mice  

In the heart and iris of mdx mice, atrophy of the nerve fibers and poor axon 

terminal sprouting were associated with a drastic decrease in the extension of the 

sympathetic network, suggesting the selective loss of SCG neurons projecting to 

the muscular targets. To investigate this hypothesis, we retrogradely labeled 

ganglionic neurons by injecting WGA-HRP in the submandibular gland and into the 

anterior eye chamber, close to the iris. The heart was not used in this experiment 

since an efficient injection of WGA-HRP was impossible on account of the vast area 

that would need to be injected and to the limited adrenergic innervation supplied by 

the SCG compared to that of other sympathetic ganglia (Pardini et al., 1989). After 

unilateral tracer injection in the submandibular gland, no significant difference was 

seen between the number of labeled neurons in wt (537±11) and mdx (555±47) 

mouse SCG, the brown staining coloring the cell cytoplasm (Fig. 6A and higher 

magnification in panel C, wt; Fig. 6B and higher magnification in panel D, mdx) and 

emerging axons (Fig. 6C, wt; Fig. 6D, mdx). Labeled neurons were distributed 

throughout the ganglion, with no specific compartmentalization (Fig. 6A, wt; Fig. 6B, 

mdx), and were mostly arranged in small clusters (Figs. 6A,C, wt; Figs. 6B,D, mdx). 

On the contrary, the number of retrogradely labeled SCG neurons after tracer 

injection into the anterior eye chamber of wt mice (54.5±1) was significantly higher 

(p= 0.01) than that in mdx (32±2) mice. Also in this case, neurons were not 

distributed in accordance with any specific compartmentalization in either wt (Fig. 

6E) or mdx (Fig. 6F) mice.  
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Fig. 6. WGA-HRP retrogradely labeled neurons in the SCG of wt and mdx mice after unilateral tracer 
injection in the submandibular gland and anterior eye chamber. (A–D) WGA-HRP injection in the 
submandibular gland. Numerous neurons in the ipsilateral ganglion are labeled in both wt (panel A 
and higher enlargement in panel C) and mdx (panel B and higher enlargement in panel D) mice. 
Labeled neurons are distributed throughout the ganglion with no specific compartmentalization. The 
reaction product fills the cell bodies and emerging axons (arrowheads in panels C, D). (E, F) WGA-
HRP injection into the anterior eye chamber, in proximity of the iris. Several neurons are labeled in 
the ipsilateral ganglion of wt mice (E), while only a few pale cells (some indicated by arrows) are 
observed in the mdx mouse SCG (F). The difference in labeling intensity observed between neurons 
projecting to the submandibular gland and those projecting to the iris, in both wt and mdx mice, could 
be due to excessive dilution of the tracer by the aqueous humor. Scale bar: A,B,E,F: 130 μm; C,D: 
50 μm. 
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6.4 Presence and distribution of full-length dystrophin and its biochemical evaluation 

in SCG target organs of 6–7 weeks old wt and mdx mice 

The results obtained so far indicate a loss, in mdx mice, of neurons projecting 

to the muscular targets, which is possibly related to structural and/or functional 

alterations of muscle cells consequent to the lack of Dp427. We therefore 

examined, by Western immunoblot and immunocytochemistry, the expression of 

Dp427 in the heart, used as a positive control, the iris and the submandibular gland, 

in which the expression of dystrophin is unknown. The Dys1 monoclonal antibody 

recognized a predominant band at about 427 kDa, corresponding to Dp427, in all wt 

mouse tissue extracts examined by Western immunoblot (Fig. 7A). In the iris and, 

less clearly in the submandibular gland, a band at a lower molecular weight than 

427 kDa was also present, possibly corresponding to the 405 kDa form described 

for smooth muscle cells (Hoffman et al., 1988; Feener et al., 1989). The 427 kDa 

band was absent from the corresponding tissue extracts of mdx mice (Fig. 7A). The 

distribution of Dp427 in the same organs was successively investigated with the 

light microscope by using the guinea pig polyclonal antiserum together with smooth 

muscle actin antibody. As expected, Dp427 clearly decorated the profile of 

cardiomyocytes in wild-type mouse heart sections (Fig. 7B), but not those of mdx 

mice (Fig. 7I), confirming the specificity of the immunoreactivity. Dystrophin 

immunolabeling was also observed in wt mouse iris (Fig. 7C) and submandibular 

gland (Fig. 7F), but never in the respective mdx specimens (Fig. 7L, iris; Fig. 7M, 

submandibular gland). In the iris, Dp427 was expressed by a number of cells, some 

of them identified as smooth muscle cells (Figs. 7C–E). However, as only thin 

portions of these cells were visible through the iris black pigmentation and 

dystrophin expressed by smooth muscle cells is supposed to have a patterned 

distribution, co-localization of Dp427 and smooth muscle actin was seldom 

observed. In the submandibular gland, numerous Dp427-positive cells of different 

shapes were widely distributed over the entire gland tissue (Fig. 7F). Among these, 

there were the vascular smooth muscle cells and the myoepithelial cells encircling 

the secretory ducts, identified by their position and immunostaining with smooth 

muscle actin (Figs. 7F–H and insets). Dp427 immunolabeling was also observed in 

the acinar cells, specifically located close to their luminal side (insets to Figs. 7F-H) 

where secretory vesicles are clustered.  
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Fig. 7. Dp427 Western immunoblot analysis (A) and immunolocalization (B–M), with or without 
smooth muscle actin (sma), in the heart, iris and submandibular gland of wild-type and mdx mice. (A) 
Samples of tissue extracts were analyzed by electrophoresis on 6-15% gradient gels using the Dys1 
monoclonal antibody against dystrophin. Dys1 reveals a band corresponding to the Dp427 in the 
heart, iris and submandibular gland extracts of wt mice. This band is lacking in the corresponding 
tissue extracts from mdx mice. The second band observed in the iris lane may represent the 
dystrophin isoform of 405 kDa characteristic of smooth muscle cells. In wt mice, full-length 
dystrophin immunolabeling (red) characteristically decorates the profile of cardiomyocytes (B), as 
well as of several cell types in the iris (C) and submandibular gland (F). Smooth muscle actin 
immunolabeling (green) in both iris (D) and submandibular gland (G) shows co-localization with 
Dp427 in a number of cells (merge in panel E: iris; H: submandibular gland). Insets to panels F–H 
show a transverse section of a secretory acinus displaying dystrophin immunoreactivity within its 
cells, close to the luminal plasma membrane where secretory vesicles are clustered. No Dp427 
immunolabeling is observed in sections of mdx mouse heart (I), iris (L) and submandibular gland (M). 
Scale bar: 100 μm. 
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6.5 Ultrastructural analysis of SCG target organs in P10 and 6–7 weeks old wt and 

mdx mice 

To investigate whether and when the absence of Dp427 in mdx mice induced 

ultrastructural alterations in the SCG target organs, ultrathin sections of hearts, 

irises and submandibular glands from P10 and 6–7 week-old wt and mdx mice were 

examined with the electron microscope. In P10 mdx mice (data not shown), when 

SCG neuron loss has already began, we did not observe degeneration, or 

prominent ultrastructural alterations, of either iris smooth muscle cells, or heart 

cardiomyocytes, or any of the cell types in the submandibular gland compared to 

the wild-type mice. Instead, in contrast to the wt (Fig. 8A and higher magnification in 

panel B), the hearts of 6–7 weeks old mdx mice contained several muscle fibers, or 

portions thereof, with different degrees of alteration, such as disarrangement of the 

Z-lines (Fig. 8C), hypercontraction of sarcomeres (Fig. 8D), impoverishment of the 

myofibrillary content (Fig. 8E) and loss of contractile elements in some regions (Fig. 

8F). Altered mitochondria with crests separated by a swollen matrix were often 

observed (Fig. 8E) and large intercellular spaces containing fagocitized cell debris 

were present (not shown). Mdx mice of the same age did not present degeneration, 

or evident ultrastructural alterations, of either iris smooth muscle cells (not shown), 

or myoepithelial cells in submandibular glands (not shown). 
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Fig. 8. Ultrastructure of cardiomyocytes in 6–7 weeks old wt (A, B) and mdx (C–F) mice. (A, B) 
Cardiomyocytes show perfectly aligned sarcomeres characterized by regularly alternating bands and 
lines. Large mitochondria (m) and transverse tubules (arrows) are indicated. (C–F) In mdx mice of 
matching age, numerous cardiomyocytes show progressive sarcomere alteration with 
disarrangement of the Z-line (Z in panel C), sarcomere hypercontraction (D) and myofibril disruption 
(mf in panel E). Swollen mitochondria (m) are indicated in panel E. Areas empty of myofibrils are 
observed (asterisks in panel F). Scale bar: A: 2.5 μm; B–E: 1 μm; F: 2.8 μm. 
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6.6 Evans blue staining in the SCG muscular targets of P10 and 6–7 weeks old mdx 

mice 

As we had not revealed degeneration or apparent dystrophin-related 

ultrastructural alterations of cardiomyocytes and iris smooth muscle cells of P10 

mdx mice, we looked for changes in plasma membrane permeability by 

intraperitoneal injection of EBD in P10 and adult wild-type and mdx mice. This is an 

early sign of the dystrophic pathology in muscle cells (Mokri & Engel, 1975), that is 

not always easily detectable at the ultrastructural level, but that is severe enough to 

induce functional alterations in dystrophic muscle cells. Heart cryosections from 

adult mdx mice showed a variable number of muscle fibers labeled with EBD, 

preferentially distributed in clusters within the thick muscular wall of ventricles (Fig. 

9A). Numerous EBD-positive cardiomyocytes were already visible at P10 (Fig. 9B), 

when no detectable ultrastructural alterations were observed. In addition, scattered 

EBD labeled cells, possibly smooth muscle cells, were present in the iris of both 

adult (Fig. 9C) and P10 (Fig. 9D) mdx mice. Cryosections of skeletal muscles of the 

same mdx mice (Fig. 9E, adult; Fig. 9F, P10) from which the hearts and irises had 

been dissected, used as controls for successful injections, contained several EBD-

positive fibers, or portions thereof, which occurred either singly or in clusters. In 

age-matched wild-type mice, no labeling of cardiac (Fig. 9G), iris or skeletal 

muscles (not shown) was observed, nor there were cells labeled in the 

submandibular glands of either wt (Fig. 9H) or mdx mice (Fig. 9I). 
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Fig. 9. Evans blue staining in heart, iris and skeletal muscle of 6–7 weeks old and P10 mdx mice. 
Large clusters of cardiomyocytes are labeled in both 6–7 weeks old (A) and P10 (B) mouse heart. A 
few cells, presumably smooth muscle cells, are also stained in the iris (C: 6–7 weeks; D: P10). 
Femoral quadriceps of the same animals from which hearts and irises were dissected, used as 
positive controls of the Evans blue staining, show numerous clusters of labeled fibers (E: 6–7 weeks; 
F: P10). No labeling is observed in sections of wt mouse heart (G), as well as in wt (H) and mdx (I) 
mouse submandibular glands. Scale bars: A,B,G–H: 160 μm; C– F: 80 μm. 



51 

 

6.7 mRNA levels of proteins involved in SCG neurons survival and axonal growth in 

wt and mdx P5, P10 and 6-7 weeks old animals 

The results obtained so far show that in mdx mice the lack of Dp427 affects 

directly SCG neuron axon growth and terminal sprouting. Although these alterations 

allow to some neurons to survive, it can be hypothesized that when they combine 

with structural and/or functional damages of SCG muscular targets, neuronal loss 

occurs. To further investigate mechanisms possibly involved in both selective 

neuronal death and impaired defasciculation and terminal sprouting in mdx mouse, 

we analyzed, by real-time RT-PCR, in SCG and/or its peripheral targets, the mRNA 

levels of proteins of various functional categories: molecules involved in 

sympathetic neuron death and survival; cytoskeletal components and associated 

proteins; adhesion molecules and extracellular matrix proteins involved in neuritic 

outgrowth (Table 2B). NGF mRNA level in SCG peripheral targets was also 

considered (Table 2A). Based on the previous data, we focused on three postnatal 

stages: P5, when the neuron number in SCG is still similar between dystrophic and 

wt animals; P10, when SCG neuron number in mdx mice is already significantly 

reduced compared to controls; and 6-7 weeks old animals, when SCG neuron 

number in mdx mice is 36% lower than in wt animals and intense cycles of skeletal 

muscle degeneration/regeneration occur in dystrophic mice. Results are 

summarized in Tables 2A and 2B. As for SCG targets, we found that NGF mRNA 

level is significantly lower in the heart of P5 and in the submandibular gland of 6-7 

weeks old mdx mice relative to age-matched controls (Table 2A). Only a few of the 

analyzed mRNA are differentially expressed between wt and mdx mouse SCG 

(Table 2B). Among these, there are p75 and TrkA NGF receptors; light, medium, 

and high molecular mass NF proteins, as well as Cdk5, a kinase known to 

phosphorylate NFs; α1 and β3 tubulin subunits; the retrograde transport motor 

dynein heavy chain 1 and the extracellular matrix protein tenascin. It is interesting to 

note that most of the reported alterations are evident in P5 and P10 mice, that is 

when excessive neuronal death is observed in mdx mouse SCG, during the period 

of the natural occurring neuron death. In addition, the mRNA level of the apoptosis 

marker caspase 6 in P5 mdx mouse SCG is higher relative to the age-matched wt, 

and this is consistent with the observation that more neurons die in mdx SCG 

compared to the wt during the physiological programmed cell death. On the basis of 
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our PCR results, we went further to analyze protein levels of most of the genes for 

which we had observed an altered level of mRNA. In particular, we focused on NGF 

and its receptors and on cytoskeletal elements to investigate the mechanisms 

responsible for the selective neuron death and the intrinsic defects of mdx mouse 

SCG neurons.  

 

 

 

Table 2A. NGF mRNA levels in SCG peripheral targets of P5, P10 and 6-7 weeks 
old mdx mice relative to age-matched controls (mRNA level mdx/mRNA level wt) 

 
NGF 

 P5 P10 6-7 weeks 

iris  0.85 ± 0.39 0.94 ± 0.26 1.35 ± 0.24 

heart  0.55 ± 0.09 (*) 1.23 ± 0.27 0.94 ± 0.32 

sub. gland 1.32 ± 0.48 0.96 ± 0.33 0.58 ± 0.23 (*) 
 
 

Table 2B. mRNA levels in SCG of P5, P10 and 6-7 weeks old mdx mice relative to 
age-matched controls (mRNA level mdx/mRNA level wt) 

  P5 P10 6-7 weeks 
proteins 

involved in 
neuron 

death and 
survival 

TrkA 1.27 ± 0.07 (*) 0.93 ± 0.21 1.25 ± 0.18 
p75 0.64 ± 0.07 (**) 0.64 ± 0.16 (**) 1.42 ± 0.44 
NGF 1.19 ± 0.58 1.74 ± 0.53 1.15 ± 0.29 

caspase 6 1.56 ± 0.12 (*) 1.52 ± 0.25 1.26 ± 0.18 

cytoskeletal 
components 

and 
associated 

proteins 

NF-L 0.81 ± 0.17 0.90 ± 0.02 (*) 0.60 ± 0.14 (*) 
NF-M 0.59 ± 0.07 (*) 0.68 ± 0.20 1.31 ± 0.42 
NF-H 0.66 ± 0.11 (*) 0.85 ± 0.14 0.88 ± 0.20 
β-actin 1.01 ± 0.18 1.16 ± 0.14 1.16 ± 0.28 

tubulin-α1 1.03 ± 0.08 1.53 ± 0.13 (**) 1.63 ± 0.69 
tubulin-β3 0.95 ± 0.10 1.48 ± 0.16 (**) 1.09 ± 0.28 

Cdk5 1.21 ± 0.10 1.01 ± 0.04 0.69 ± 0.08 (*) 
p35 1.05 ± 0.05 1.18 ± 0.08 0.68 ± 0.2 

dineyn HC1 0.86 ± 0.02 (*) 0.84 ± 0.07 1.13 ± 0.44 
kinesin 5A 0.95 ± 0.07 0.82 ± 0.17 0.70 ± 0.20 

adhesion 
and 

extracellular 
matrix 

proteins 

N-CAM 1.03 ± 0.08 1.13 ± 0.15 0.74 ± 0.19 
L1-CAM 0.94± 0.10 0.87 ± 0.09 1.10 ± 0.49 

neuropilin 0.98 ± 0.08 0.96 ± 0.17 0.86 ± 0.19 
tenascin C 1.26 ± 0.04 (**) 1.26 ± 0.18 0.56 ± 0.10 (*) 

 
(*) p≤0.05; (**) p≤0.01 
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6.8 NGF protein levels in SCG target organs of P5, P10 and 6-7 weeks old wt and 

mdx mice  

To investigate whether structural and/or functional damages of the dystrophic 

SCG muscular targets might affect expression of neurotrophins and thus be 

responsible for ganglion neuron death in mdx mice, NGF protein levels were 

evaluated by ELISA. Levels of total NGF (Fig. 10) were not significantly different 

(p>0.05) in the iris and heart of wt P5 and P10 mdx mice compared to age-matched 

controls, but they were lower in the same organs of adult mdx mice compared to the 

wt, although statistical significance (p≤0.05) was reached only in the heart.  

As ELISA does not discriminate between different NGF species, we 

performed Western immunoblot to detect all the NGF forms in wt and mdx mouse 

SCG target organs (Fig. 11 and Fig. 12). Mature NGF (~13kDa and 16kDa) was not 

detectable in all P5 and P10 SCG target tissue extracts (Fig. 11 A and B). On the 

other hand, at least one proNGF form (molecular mass approximately 25 and 32 

kDa) was detectable in all SCG target organs at any postnatal date examined, along 

with glycosylated-NGF (glyNGF, molecular mass more than 50 kDa)  (Fig. 11 and 

Fig. 12). The 25 kDa proNGF form was seldom and slightly evident in SCG target 

organ extracts, while the 32 kDa form was always present. Densitometric analysis 

of immunoblot bands relative to the 32 kDa proNGF revealed that its level is 

approximately 2.5 fold higher in both P5 (Fig. 11A’) and P10 (Fig. 11B’) mdx iris 

compared to age-matched controls (p≤0.05). As for the levels of proNGF in heart 

and in submandibular gland, there is no significant difference (p>0.05) between wt 

and mdx mice at both P5 (Fig. 11A’) and P10 (Fig. 11B’). 

Different tissues from adult mice showed different patterns of expression of 

NGF species, as also reported by others (Bierl et al., 2005). High levels of mature 

NGF were detected in the submandibular gland of adult mice, although in mdx mice 

they were clearly reduced respect to the wt (Fig. 12B). Presence of mature NGF 

was also detected in adult mouse hearts, but its level was significantly lower in mdx 

mice compared to controls (Fig. 12C). We did not perform a densitometric analysis 

of the bands in the immunoblot representative of mature NGF in the submandibular 

gland because the high amount of NGF present in this organ gave rise to saturated 

bands. Nonetheless, repeated experiments always gave the same pattern of NGF 

expression. 
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Fig. 10. Total NGF level in iris and heart of P5, P10 and 6-7 weeks old wt and mdx mice. The levels 
of total NGF, measured by the Elisa technique, are significantly lower in adult mdx mouse heart than 
in age-matched control mice. There are no differences in P5 and P10 mdx mouse iris and heart 
compared to the wt of the same age (n=4). * p≤0.05. 
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Fig. 11. Western immunoblot of NGF and densitometric analysis of proNGF in iris, submandibular 
gland and heart of P5 and P10 wt and mdx mice. The NGF antibody recognizes multiple bands, 
corresponding to mature NGF (approximately 13 kDa), proNGF (approximately 25 and 32 kDa) and 
glycosylated forms of proNGF (glyNGF, more than 50 kDa). Mature NGF is not detectable in tissue 
extracts from both P5 (A) and P10 (B) animals. The 32 kDa band of proNGF is expressed at high 
levels in all these tissues in both P5 (A) and P10 (B) mice. The 25 kDa band of proNGF is seldom 
and faintly detectable in Western immunoblot and has not been included in the quantitative analysis. 
Densitometric analysis of the 32 kDa proNGF band shows that its level is higher in P5 (A’) and P10 
(B’) mdx iris compared to the age-matched wt (n=3). Molecular mass standards (/1000) are indicated 
on the right hand side. St: NGF standard (1 ng). OD: optical density. * p≤0.05. 
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Fig. 12. Western immunoblot analysis of NGF in iris, submandibular gland and heart of 6-7 weeks 
old wt and mdx mice. The mature NGF band is clearly detectable in the submandibular gland (B) and 
in the heart (C). The intensity of the NGF band is lower in both these tissue extracts from mdx 
animals, compared to the same tissue extracts from wt mice. The mature NGF band is not 
detectable in irises (A). The other NGF forms show tissue specific patterns of expression in adult 
mice (A-C). The difference in the intensity of the bands in the standard lane between this Western 
immunoblot and the one shown in Fig. 10 is due to a different exposure time of the film. Molecular 
mass standards (/1000) are indicated on the right hand side. St: NGF standard (1 ng). 
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6.9 NGF and NGF receptors protein levels in SCG of P5, P10 and 6-7 weeks old wt 

and mdx mice  

To verify if the levels of TrkA and p75, which are both expressed in 

sympathetic neurons (Enfors et al., 1992), are different in mdx mouse SCG neurons 

respect to wt animals (Fig13), Western immunoblot of SCG extracts from P5, P10 

and 6-7 weeks old wt and mdx mice was performed. Fig. 13A shows a typical 

Western immunoblot for TrkA. The two bands of 140 kDa and 110 kDa molecular 

mass correspond to different glycosylated forms of the receptor (Martin-Zanca et al., 

1989). The 140 kDa protein represents the membrane bound receptor fully 

glycosylated (Mischel et al., 2002). Densitometric analysis of these bands (Fig. 

13A’) highlights that TrkA protein level is approximately 60% lower in P5 and P10 

mdx mouse SCG compared to controls of the same age (p≤0.01), while it is similar 

between adult mdx and wt mice. TrkA belongs to the family of tyrosine kinase 

receptors. Therefore, to evaluate the extent of the receptor activation in mdx mouse 

SCG, we analyzed by Western immunoblot the levels of phosphoTrkA, by using a 

specific antibody directed against the phosphotyrosine 490 (Fig. 13B). 

Densitometric analysis of immunopositive bands (Fig. 13B’) revealed that the level 

of phosphoTrkA was approximately 50% lower in P5 mdx mouse SCG compared to 

the wt (p≤0.05), was still lower than controls at P10, although not significantly 

(p=0.1), showed no difference between adult wt and mdx mice. 

In Fig. 13C, is shown a typical Western immunoblot for p75, the other NGF 

receptor. A single band was detected by the anti-p75 antibody used, which 

densitometric analysis (Fig. 13C’) revealed that the protein levels are significantly 

lower in P10 and 6-7 weeks old mdx mouse SCG compared to controls of the same 

age (p≤0.01), while they are similar at P5. 

As ganglion  neurons produce and secrete NGF (Hasan et al., 2003), we also 

analyzed NGF protein levels of P5, P10 and 6-7 weeks old wt and mdx mouse SCG 

(Fig. 14A). Western immunoblot analysis showed that, as for peripheral targets, also 

the SCG does not express detectable levels of mature NGF. ProNGF forms, 

instead, were much more abundant and clearly visible, as also reported by others 

(Hasan et al., 2003; Jansen et al., 2007). Densitometric analysis of the 32 kDa band 

(Fig. 14A’) revealed no difference in proNGF protein level between P5 and 6-7 
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weeks old wt and mdx mouse SCG. ProNGF protein level was, instead, slightly but 

significantly lower (p≤0.05) in P10 mdx mouse SCG compared to the wt. 

   

      

 
    
 

Fig. 13. Western immunoblot and densitometric analysis of NGF receptors in SCG of P5, P10 and 6-
7 weeks old wt and mdx mice. The TrkA antibody (A) recognizes two bands of 110 and 140 kDa, that 
represent two differently glycosylated forms of the receptor. The 140 kDa form represent the 
membrane bound receptor.  Densitometric analysis (A’) of both bands shows that TrkA level is lower 
in P5 and P10 mdx mouse SCG compared to the age-matched wt (n=4). The phosphoTrkA (pTrkA) 
antibody (B) recognizes a single band of approximately 140 kDa, representing TrkA receptor 
phosphorylated in its tyrosine 490 residue. Densitometric analysis (B’) reveals that pTrkA level is 
lower in P5 mdx mouse SCG (n=4). The p75 antibody (C) detects a quite faint band of approximately 
70 kDa. Densitometric analysis shows that the p75 protein level is lower in P10 and 6-7 weeks old 
mdx mouse SCG compared to the wt (n=3). Molecular mass standards (/1000) are indicated on the 
left hand side. OD: optical density. * p≤0.05. ** p≤0.01. 
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Fig. 14. Western immunoblot of NGF and densitometric analysis of proNGF in SCG of P5, P10 and 
6-7 weeks old wt and mdx mice. Mature NGF is not detectable in mouse SCG extracts, while the 32 
kDa form of proNGF is expressed (A), together with higher molecular mass glycosylated forms 
(glyNGF). Densitometric analysis (A’) of the 32 kDa proNGF band shows that its level is not different 
in P5 and 6-7 weeks old mdx SCG compared to the age-matched wt, while it is lower in P10 mdx 
mouse SCG compared to the wt (n=4). Molecular mass standards (/1000) are indicated on the right 
hand side. OD: optical density. * p≤0.05. 
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6.10 Levels of neurofilament proteins and dynein in SCG of P5, P10 and 6-7 weeks 

old wt and mdx mice 

Protein levels of some cytoskeletal components were analysed. Figure 15A 

shows a typical Western immunoblot for neurofilament proteins. NF-H antibody 

detects at least two bands of molecular mass of approximately 180 and 200 kDa, 

which represent multiple phosphorylation forms of the protein. Antibodies directed 

against NF-M and NF-L recognize bands of approximately 140 kDa and 68 kDa, 

respectively (Fig. 15A). Densitometric analysis of the immunoreacted bands (Fig. 

15A’) revealed that the level of all three NF proteins was lower in P5 mdx mouse 

SCG (p≤0.05) compared to control, and that remained lower for NF-H and NF-M in 

P10 mdx mouse SCG compared to the age-matched wt (p≤0.01). Differently, in 

adult mice SCG, NF-H protein level was higher in mdx than in control animals 

(p≤0.05). It has to be noted that the densitometric analysis on NF-H was performed 

on both the 180 and the 200 kDa bands; thus the reported results are 

representative for the total NF-H optical density (Fig. 15A’).  

A specific antibody (SMI 36) was used to evaluate the level of the 

phosphorylated form of the high molecular mass neurofilament protein (Fig. 15B). 

Densitometric analysis of the single band detected by this antibody showed that the 

level of phosphoNF-H is significantly lower in P10 mdx mouse SCG compared to 

the wt (Fig. 15 B’). The level of phosphoNF-H is lower in 6-7 weeks old mdx mouse 

SCG than in control as well, but it does not reach statistical significance (p=0.07). 

The protein level of the molecular motor protein dynein heavy chain 1 (HC1) 

was also analysed in wt and mdx mouse SCG and a typical Western immunoblot is 

shown in Fig. 16A. No significant differences in dynein levels were ever detected by 

densitometric analysis (Fig. 16A’). 
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Fig. 15. Western immunoblot and densitometric analysis of neurofilament light, medium and high 
molecular mass proteins in SCG of P5, P10 and 6-7 weeks old wt and mdx mice. All three NF 
proteins were analyzed by Western immunoblot on the same nitrocellulose membrane by using 
specific antibodies (A). As expected, molecular mass of NF-L is approximately 68 kDa, that of NF-M 
is 140 kDa. The NF-H antibody recognizes at least two bands, of approximately 180 and 200 kDa, 
corresponding to different phosphorylation forms of the protein. Densitometric analysis (A’) reveals 
that the level of all NF proteins is lower in P5 mdx mouse SCG compared to the wt. NF-M and NF-H 
protein levels are also lower in P10 mdx mouse SCG compared to the age-matched controls. 
Differently, the total protein level of NF-H is higher in 6-7 weeks old mdx mouse SCG compared to 
the wt. (n=4). SMI 36 antibody detects a single band of molecular mass higher than 150 kDa (B). 
Densitometric analysis (B’) shows that its level is lower in P10 mdx mouse SCG compared to age-
matched wt. (n=3). Molecular mass standards (/1000) are indicated on the right hand side. OD: 
optical density. * p≤0.05. ** p≤0.01. 
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Fig. 16. Western immunoblot and densitometric analysis of dynein heavy chain 1 (HC1) in SCG of 
P5, P10 and 6-7 weeks old wt and mdx mice. Dynein HC1 antibody detects a single band of 
molecular mass approximately 500 kDa (A). Due to the high molecular mass of dynein, it has not 
been possible to analyze actin (molecular mass 43 kDa) levels in the same nitrocellulose membrane. 
Anyway protein loading is equal in all lanes. Densitometric analysis (A’) shows that there is no 
difference between wt and mdx mouse SCG dynein levels, in any of the examined stages (n=4). 
Molecular mass standards (/1000) are indicated on the right hand side. OD: optical density. 
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7. DISCUSSION 
 

7.1 Loss of SCG neurons in mdx mice 

The present study shows that, in mdx mice, the lack of Dp427 causes 

intrinsic alterations to SCG neurons. When combined with dystrophy-associated 

damages of their muscular targets, this leads to ganglion neuron death. The SCG of 

adult mdx mice has 36% fewer neurons than that of wt mice. At P5, the earliest 

postnatal date examined for the neuronal count, no difference was observed in the 

number of ganglionic neurons between wt and mdx mice demonstrating that, in the 

latter, sympathetic neurons are generated in the correct number and all migrate to 

the appropriate position to form the ganglion. This excludes a role for dystrophin in 

these events of sympathetic neuron differentiation, in contrast to the aberrant 

neuroblast migration and orientation described for central neurons (Jagadha & 

Becker, 1988; Mehler & Kessler, 1998; Hatten, 1999). SCG neuron loss begins 

sometimes between P5 and P10, concomitantly to the physiological neuronal death 

(Wright, 1995). However, the remaining neurons are intrinsically affected by the lack 

of Dp427 (see below). 

 

 7.2 Alterations of axonal defasciculation and terminal sprouting in mdx mice 

T-OH immunolabeling showed decreased axonal defasciculation and/or 

terminal sprouting in all SCG target organs examined as early as P5, when the 

number of ganglionic neurons is still at its full complement. These widespread 

changes in terminal axon architecture may be consequent to alterations in the 

dynamic link between the actin cortical cytoskeleton and the extracellular matrix 

(ECM), as also reported in different experimental models. Abnormal defasciculation 

of hippocampal axon terminals, for instance, has been observed in mice deficient in 

ephrin-B tyrosine kinase receptors (Chen et al., 2004), which normally provide the 

correct interaction between axons and extracellular environment (Kullander & Klein, 

2002). Dystrophin is actively involved in the cytoskeleton-ECM linkage via the 

dystrophin–glycoprotein complex (Michele & Campbell, 2003). Lack of Dp427, by 

decreasing the plasma membrane expression of components of the complex itself 

(Ibraghimov-Beskrovnaya et al., 1992), dramatically alters this connection. The 

direct link between the basal lamina and the cytoskeleton of Schwann cells, 
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maintained by the dystroglycan interaction with Dp116 or utrophin and laminin-2, is 

disrupted in mdx mouse peripheral nerves (Hnia et al., 2006). Alterations in the 

cytoskeleton-ECM linkage in mdx mouse SCG are also suggested by the previously 

observed decrease in the number of intraganglionic synapses immunopositive for 

dystroglycan (Zaccaria et al., 2000).  

In addition, an important contribution to aberrant axonal growth may derive 

from impairment of the fast ganglionic transmission consequent to the reduction in 

intraganglionic α3nAChRs (Del Signore et al., 2002). In support to this hypothesis, 

Rassadi and co-workers showed that in α3nAChR null mice, fast synaptic 

transmission in sympathetic ganglia is completely absent (Rassadi et al., 2005). 

Moreover, frequency alterations of the spontaneous rhythmic activity in chick motor 

neurons at early developmental stages result in altered fasciculation and axon 

pathfinding errors (Hanson & Landmesser, 2004; Hanson & Landmesser, 2006), 

underlining the significant contribution of synaptic activity in the formation of 

synaptic contacts. 

Other molecules which might be involved in altered defasciculation are 

NCAM and its polysialic acid-conjugate form PSA-NCAM. Both the involvement of 

NCAM in the regulation of axon fasciculation and nerve branching during 

development, and the role of PSA in modulating such processes are, in fact, among 

the first-elucidated and best-studied PSA-NCAM functions (reviewed in Bonfanti, 

2006). PSA appears for the most part to play a permissive role in axon guidance, 

reducing the fasciculative interactions between axons and thereby allowing them to 

respond more effectively to a variety of extrinsic signals, including those from their 

targets (reviewed in Brusés & Rutishauser, 2001). In the CNS, PSA expression 

increases specifically in the corticospinal tract (CST) when collateral branches begin 

to form (Daston et al., 1996). Thus, the sprouting and/or extension of the PSA-

positive CST axons appears to be facilitated by the presence of PSA, possibly 

through the attenuation of axon-axon interactions in the CST (reviewed in Brusés & 

Rutishauser, 2001). In the PNS, limb motor neuron axon bundles up-regulate PSA 

as they enter the plexus region. During this process, they rearrange themselves into 

muscle-specific fascicles. When PSA is enzymatically removed during this period, 

this rearrangement is hindered, resulting in pathfinding errors (Tang et al., 1992). 

Based on our T-OH immunostaining data, it is possible to speculate that 
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defasciculation defects, observed in mdx mouse SCG targets, might be due to 

altered levels of PSA-NCAM or other adhesion molecules. Although NCAM mRNA 

level was not altered in mdx mouse SCG compared to the wt, it is strikingly 

important to evaluate NCAM protein levels and, above all, post-translational 

modifications. For this reason, PSA-NCAM expression is currently under 

investigation in wt and mdx SCG and its peripheral targets. 

On the other hand, abnormalities in cytoskeletal components expression 

might as well be responsible for these intrinsic neuronal alterations, i.e. reduced 

defasciculation and terminal sprouting in all mdx mouse SCG targets and in mdx 

mice of all ages. Indeed, the mRNA levels of the neurofilament proteins were 

altered in mdx mouse SCG. Analysis of NF-L, NF-M and total NF-H protein levels 

revealed that they are reduced in P5 and P10 mdx mouse SCG compared to 

controls. In addition, the level of the phosphorylated form of NF-H protein is lower in 

P10 mdx mouse SCG compared to the wt. At P5, in mdx mouse SCG, the number 

of neurons is not yet different from that of the wt. However, the adrenergic fibres 

network of mdx iris is reduced compared to the wild-type, as already observed in P0 

mice. This suggests that, in mdx mouse SCG, some neurons, probably engaged in 

the processes leading to their death, do not extend their axons and/or have already 

retracted them from the damaged iris muscle. This is consistent with the reduced 

levels of NF proteins, as NFs are the main cytoskeletal elements responsible for 

axonal architecture and diameter (reviewed in Lariviere & Julien, 2003). In 6-7 

weeks old mice, NF-L and NF-M levels become comparable between wt and mdx 

SCGs, while the level of NF-H is still altered. It is reasonable to propose that some 

compensatory mechanism is operating in 6-7 weeks old mdx mouse SCG neurons, 

since these neurons are the surviving ones and most of them project to the 

submandibular gland, a non-muscular SCG peripheral target, undamaged by the 

lack of Dp427. Lately, it has been shown that in small diameter axons, an intact 

intermediate filament network is required for collateral sprouting (Belecky-Adams et 

al., 2003), and that neurofilament content is correlated with branch length and 

stability in cultured Xenopus spinal cord neurons (Smith et al., 2006). On the basis 

of these findings, it is possible to speculate that a reduced amount of NFs in mdx 

mouse SCG neurons may be in part responsible for the defects in defasciculation 
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and terminal sprouting observed in SCG peripheral targets of dystrophin-deficient 

mice.  

 

 

7.3 Damages induced by the lack of Dp427 in SCG peripheral target organs 

T-OH immunoreactivity revealed a reduction in the extension of the 

adrenergic fiber network only in the heart and iris of mdx mice of all examined ages. 

The adrenergic fibers density is dramatically reduced even in P0 mdx iris   

compared to the wt, strongly suggesting that some adrenergic fibers never reach 

this muscular target. In adult animals, the reduction in the extension of fiber network 

is partly consequent to the selective loss of SCG neurons projecting to muscular 

targets, as demonstrated by WGA-HRP retrograde labeling. The death-promoting 

signals may derive from the structural and/or functional damages induced in 

cardiomyocytes and iris smooth muscle cells by the lack of Dp427. Indeed, despite 

the absence of cell degeneration and/or apparent ultrastructural alterations, EBD 

labeling revealed damage to the plasma membrane of both heart and iris muscle 

cells as early as in P10 mdx mice. In both skeletal (Petrof et al., 1993) and heart 

(Danialou et al., 2001) muscle cells, the dystrophin–glycoprotein complex protects 

the plasma membrane from the mechanical stress that develops during contraction. 

In DMD patients and mdx mice, lack of this complex causes focal breakdown of the 

muscle plasma membrane, thought to be responsible for the initial events in muscle 

necrosis (reviewed in Blake et al., 2002). Damaged muscle cells show increased 

membrane permeability to macromolecules flowing in and out, thus affecting 

muscular function, contractile properties and survival (Kaye et al., 1996; Sapp et al., 

1996; Iwata et al., 2003). Possible functional alterations in mdx mouse 

cardiomyocytes and iris smooth muscle cells, consequent to the plasma membrane 

damage revealed by EBD staining, may render them inhospitable to growing axons 

and induce synapse removal and sympathetic fiber retraction, as shown by the 

reduced extension of the adrenergic innervation observed already at P0 and P5. 

Weakened by the dystrophic phenotype, SCG neurons may be unable to redirect 

their axons onto undamaged muscle fibers and die. In support of this hypothesis is 

our unpublished observation that the poor adrenergic innervation of heart and iris 

does not recover in 10 month-old mdx mice, when cycles of muscle degeneration-
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regeneration have ceased. Although we did not observe cell degeneration, or 

evident ultrastructural alterations, of mdx mouse cardiomyocytes and iris smooth 

muscle cells at P10 (data not shown), EBD staining revealed ruptures in their 

plasma membranes as the first sign of the pathology. Variable amounts of 

degenerating heart muscle cells were instead detected in 6–7 weeks old animals, 

as also reported by other authors (Grady et al., 1997; Megeney et al., 1999; Straub 

et al., 1997; Danialou et al., 2001). However, at this age, we still failed to 

demonstrate degeneration, or apparent ultrastructural alterations, of iris smooth 

muscle cells despite the damage to their plasma membrane caused by the lack of 

Dp427. Our findings are in agreement with those reported by other authors (Boland 

et al., 1995; Vannucchi et al., 2004). Boland et al. (1995) found no cell necrosis, 

fibrosis or other morphological alterations in different types of dystrophic smooth 

muscles. However, when compared with wild-type mice, the thickness of the 

gastrointestinal smooth muscle layers of mdx mice was significantly reduced, 

suggesting mild cell necrosis and muscular atrophy undetectable with the electron 

microscope (Boland et al., 1995), but possibly responsible for some of the 

gastrointestinal dysfunction episodes observed in DMD patients (Nowak et al., 

1982; Leon et al., 1986; Barohn et al., 1988). Similarly, Faussone-Pellegrini’s group 

described a number of ultrastructural and functional alterations, consequent to the 

lack of Dp427, in the myenteric neurons (Vannucchi et al., 2003) and in the 

interstitial cells of Cajal of mdx mice  (Vannucchi et al., 2004), but reported absence 

of evident morphological alterations in the surrounding smooth muscle cells 

(Vannucchi et al., 2004). Altered biomechanical properties of carotid arteries have 

also been described in mdx mice (Dye et al., 2007). In addition, circular smooth 

muscle cells from colon segments, but not those from the duodenum of mdx mice, 

developed altered electrical (Serio et al., 2001) and mechanical activity (Mancinelli 

et al., 1995; Mulè et al., 1999; Azzena & Mancinelli, 1999), indicating that smooth 

muscles from different locations may be differently affected by the dystrophic 

pathology, as demonstrated for skeletal muscles (Porter et al., 2004). Smooth 

muscle cells from mdx mouse iris may be similar in this respect to those from the 

colon and it is reasonable to suggest that molecular and functional alterations occur 

that are undetectable at the ultrastructural level and that these may affect SCG 

neuron survival. Although the submandibular gland is listed among the non-
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muscular SCG peripheral targets, it contains a component of smooth muscle-like 

cells, which express Dp427, as do other gland cell types (i.e. acinar cells). The 

absence of full-length dystrophin in mdx mice, however, does not induce evident 

structural damage in any of these cells. The lack of cellular EBD staining also 

demonstrates integrity of the plasma membranes, even in myoepithelial cells, 

whose modest mechanical activity cannot be compared to that of heart and iris 

muscle cells. Although we cannot exclude fine ultrastructural changes and/or 

functional alterations in myoepithelial cells, as well as in secretory cells, they may 

not be relevant for SCG neuron survival.  

 

 7.4 Trophic factors in SCG target organs 

SCG neuron survival and differentiation (Wright, 1995; ElShamy et al., 1996; 

reviewed in Huang & Reichardt, 2001; reviewed in Glebova & Ginty, 2005), as well 

as density of innervation and collateral sprouting (Purves, 1988; Saffran & Crutcher, 

1990; reviewed in Glebova & Ginty, 2005), strictly depend on target-derived 

neurotrophic factors (i.e. NGF, NT-3). Therefore, we hypothesized that excessive 

neuron death in mdx mouse SCG and reduced peripheral target innervation, may 

be triggered by an insufficient provision of these factors, attributable to their reduced 

synthesis by iris and heart muscle cells damaged by the lack of Dp427. Our 

experimental results partially confirm this hypothesis.  

NT-3 is a member of the neurotrophin family of growth factors, which was 

initially shown to be crucial for sympathetic neuron survival in vivo (Enfors et al., 

1994; Farinas et al., 1994). However, it does not directly support survival of 

postnatal sympathetic neurons, because it is not able to promote TrkA retrograde 

signalling (Kuruvilla et al., 2004). NT-3 does, instead, support proximal axon 

extension along the vasculature and SCG intermediate targets, and the subsequent 

innervation of effector organs (Kuruvilla et al., 2004). For this reason, the 

developmental period in which NT-3 principally exerts its action precedes that of our 

study (ElShamy et al., 1996; Kuruvilla et al., 2004; reviewed in Glebova & Ginty, 

2005); therefore NT-3 was not taken into consideration in the present work. Instead, 

an extensive analysis of NGF levels, which is the neurotrophin principally involved 

in sympathetic neuron survival and target innervation in the considered time 

window, was performed. The measured levels of total NGF, analyzed by ELISA, 
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were not significantly different between wt and mdx P5 and P10 iris, nor in the 

heart. However, this technique does not discriminate mature NGF from the proNGF 

forms, because the employed antibody detects both (Peters et al., 2006; Bierl & 

Isaacson, 2007). Thus, although less-sensitive, Western blot analysis permits to 

define with precision all the molecular mass of the NGF forms (Bierl et al., 2005). 

Mature NGF was not detectable in P5 and P10 mdx mouse tissues, in accordance 

with the findings of others (Fahnestock et al., 2001; Bierl et al., 2005; Randolph et 

al., 2007). On the contrary, the 32 kDa proNGF form was increased approximately 

2.5-fold in iris of both P5 and P10 mdx mice compared to the age-matched controls. 

Even though this is not a direct evidence, it is possible to hypothesize that the 

amount of mature NGF in irises of P5 and P10 mdx mice may be lower than in the 

same tissue of wild-type animals. Thus, it suggests that mdx mouse SCG neurons 

might receive a reduced quantity of trophic factor from irises, in a strikingly 

important period for neuron survival. The reduced amount of NGF produced by 

dystrophic irises may add to the greater distance of this target tissue from the SCG, 

compared to the submandibular gland, and explain the selective neuronal death of 

iris-projecting neurons observed in mdx mouse SCG. Sympathetic innervation of the 

heart in rodents is, instead, primarily provided by the stellate ganglion, with only 

minor contributions from the SCG and mid-thoracic paravertebral ganglia (Pardini et 

al., 1989), and our data on excessive neuron loss in mdx mouse SCG were 

obtained for iris-projecting neurons only. Thus, it is not possible to draw the same 

conclusion for the hearts of mdx mice. 

The higher level of proNGF in P5 and P10 mdx irises also suggests that 

alterations in proNGF processing to generate mature NGF might be present. Why 

the lack of Dp427 induces such alterations is an open question. One possibility is an 

impairment in the cleavage of proNGF into NGF by proteases. Proneurotrophins 

can be cleaved both intracellularly by furin (Farhadi et al., 1997) and other members 

of the pro-protein convertase family (Seidah et al., 1996), and extracellularly by 

MMPs and plasmin (Lee et al., 2001; Pang et al., 2004; Bruno & Cuello, 2006). 

Recent studies demonstrate that proNGF can be released after adult CNS injury 

(Harrington et al., 2004) and detected in the brains of Alzheimer’s disease patients 

(Fanhestock et al., 2001; Peng et al., 2004), suggesting that an increased proNGF 

level might be a feature of some pathological conditions.  
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In adult life, sympathetic neurons are relatively resistant to cell death. 

However they continue to require target-derived NGF for their maintenance, growth 

and neurotransmitter release (reviewed in Cowen & Gavazzi, 1998).  Our data show 

that mature NGF is produced in great quantity by 6-7 weeks old mouse 

submandibular glands. This result was expected, since mouse submandibular gland 

served as the preferred starting material for isolation of NGF in most of the early 

studies on NGF (reviewed in Shooter, 2001), because of the large amount of this 

factor it contains. Nonetheless, NGF level was reduced in 6-7 weeks old mdx 

mouse submandibular gland compared to the wt, a result in accordance with the 

observed NGF mRNA level in this tissue. Anyway, the amount of NGF was very 

high, suggesting that it can be more than sufficient for neuron maintenance and 

survival. On the other hand, the total NGF levels are reduced in iris and heart of 

adult mdx mice compared to the controls and this may in part account for the 

innervation defects observed in these muscular target tissues in adult mdx mice. 

 

7.5 NGF and NGF receptors in SCG neurons 

Although the mRNA level for NGF TrkA receptor was higher in P5 and P10 

mdx mouse SCG compared to the wt, the protein level of TrkA was lower, 

suggesting that post-transcriptional mechanisms affect TrkA production and/or 

degradation in dystrophin-deficient mice. Protein level of the phosphorylated form of 

TrkA receptor was lower as well. Phospho-TrkA is the ligand-activated receptor, 

likely transported back from axon terminals, by means of retrograde transport. It is 

well-known that TrkA receptor, when ligand-activated, transmits positive signals 

such as enhanced survival and growth (reviewed in Kaplan & Miller, 2000), allowing 

to propose that mdx mouse sympathetic neurons might receive a weak survival 

signal from the periphery. This is certainly due to the presence of a decreased 

number of receptors in SCG neurons membrane, but also to a lower activation of 

TrkA receptors, as demonstrated by our Western immunoblot data. Thus, at P5, 

when the neuron number in SCG of wt and mdx mice is still similar, just before the 

beginning of the greater neuron death in mdx mouse SCG, there are approximately 

50% less “active” NGF receptors in mdx mouse SCG than in the wt.  

SCG neurons express p75NTR receptor, together with TrkA (Enfors et al., 

1992). While sympathetic neurons, between embryonic day 13 (E13) and E14, 
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become specified to up-regulate TrkA mRNA in culture, independently of added 

factors, p75 mRNA is up-regulated by NGF in the same conditions (Wyatt & Davies, 

1995), demonstrating that NGF can transcriptionally regulate p75. NGF is also 

necessary for expression of p75 in vivo (Kuruvilla et al., 2004). Thus, it is possible to 

infer that the lower levels of both NGF and TrkA are responsible for the reduced 

expression of p75 observed in mdx SCG neurons compared to the wt, in P5 mice at 

the mRNA level and in P10 mice at both the mRNA and protein levels. In addition, 

p75 and TrkA are reported to interact and determine sensitivity and affinity of SCG 

neurons to NGF (reviewed in Nykjaer et al., 2005). Lee et al. (1994) showed that 

p75-deficient post-natal SCG neurons are less sensitive to sub-saturating 

concentrations of NGF than wild-type neurons, suggesting that a decreased 

sensitivity to NGF may lead to increased loss of SCG neurons in vivo. In addition, 

the number of high affinity sites for NGF can be modulated by changing the ratio of 

expression of the two NGF receptors (Esposito et al., 2001). Data presented here 

revealed that the protein levels of the NGF receptors (i.e. TrkA or p75) are altered in 

mdx mouse SCG neurons compared to the age-matched controls, in all the post-

natal examined stages. This can probably lead to a reduced number of high affinity 

sites for NGF and thus to a reduced NGF survival signalling in mdx mice, at least 

partly explaining the higher number of neurons dying in mdx mouse SCG during the 

period of the physiological cell death. Such reduced survival signalling might also be 

due to alterations in cytoskeletal components in mdx mice neurons, since 

retrograde transport is strictly dependent on cytoskeleton. Although dynein protein 

levels were not different between wt and mdx SCGs, the reduced expression of NF 

proteins in mdx mice suggest that it is not possible to exclude this possibility. 

p75 is also a death receptor (reviewed in Hempstead, 2002; reviewed in 

Nykjaer et al., 2005). Proneurotrophins bind to p75 with higher affinity than that 

exhibited by mature neurotrophins and induce apoptosis more effectively than 

mature neurotrophins do (Lee et al., 2001), in particular when p75 forms a complex 

with sortilin (Nykjaer et al., 2004; Teng et al., 2005). Nonetheless, various groups 

demonstrated that p75 death signalling is silenced by an ongoing TrkA activation in 

many cell types (Bamji et al., 1998; Yoon et al., 1998; Majdan et al., 2001; Teng et 

al., 2005). Thus, if a sympathetic neuron reaches the appropriate target and 

sequesters NGF, TrkA is robustly activated and this activation silences any ongoing 
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apoptotic signal deriving from p75. Conversely, if in a neuron TrkA is only weakly 

activated, as a consequence of the lack of NGF, a p75-mediated death signal would 

cause the rapid apoptotic elimination of that neuron (Majdan et al., 2001). We 

hypothesize that this is the case for mdx mouse SCG neurons reaching dystrophic 

muscular targets, in particular the iris. P5 mdx irises, in fact, contain a higher level 

of the pro-apoptotic factor proNGF compared to P5 wt irises, possibly contributing to 

the activation of p75 death signalling.  

ProNGF is reported to be secreted also by SCG neurons, suggesting an 

autocrine or paracrine loop involving induction of cell death by activation of p75 

signalling (Hasan et al., 2003). Nevertheless, proNGF protein level was not different 

in P5 and 6-7 weeks old mdx mouse SCG and, rather, it was slightly but 

significantly lower in P10 mdx mouse SCG compared to the age-matched wild-type. 

It is, thus, possible to exclude a higher autocrine and/or paracrine triggering of p75 

death signalling in mdx mouse SCG neurons, at least in case this activation is due 

to proNGF. However, a very recent paper by Jansen and co-workers (2007) showed 

that in sortilin-deficient mice SCG neuron number during the period of the 

physiological cell death is not different from control animals, thus demonstrating that 

proneurotrophins are not accountable for developmental elimination of sympathetic 

neurons, even though they do not exclude that p75 death-signal may be activated 

by other ligands. 

As already underlined, in addition to being the principal mediator of 

sympathetic neuron survival, NGF also controls final target innervation. Target 

expression of NGF and neuronal expression of TrkA and p75 are both required for 

appropriate sympathetic innervation of peripheral tissues. Studies of mice having 

one functional allele for NGF or TrkA, in fact, revealed that reductions both in levels 

of NGF receptors and neuronal number together hinder the capacity of terminal 

sympathetic axons to undergo compensatory collateral growth in peripheral tissues, 

resulting in lower densities of sympathetic axons (Ghasemlou et al., 2004). 

However, studies conducted by using mice deficient for NGF or p75 receptor 

showed that requirements of these molecules for innervation of sympathetic 

peripheral targets are heterogeneous (Lee et al., 1994; Glebova & Ginty, 2004; 

Jahed & Kawaja, 2005), suggesting that other factors might be involved (reviewed 

in Glebova & Ginty, 2005). Thus, we can not exclude that different molecules may 
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also contribute to the innervation defects that we observed in mdx mouse SCG 

peripheral targets. These studies also suggest that different target tissues might be 

differently susceptible to reduced levels of NGF or its receptors. 

mRNA and protein levels of dynein heavy chain 1 (HC1), a component of the 

cytoplasmic dynein/dynactin complex, were also analyzed. Dynein is actually a 40 

nm-long complex of molecular mass 1.6 x 106 Da, which includes two heavy chains 

and a number of light chains (reviewed in Brady et al., 1999). The dynein/dynactin 

complex is involved in retrograde transport of Trk receptors (Bhattacharyya et al., 

2002; Heerssen et al., 2004) and in axonal transport of both microtubules and 

neurofilaments (He et al., 2005). To analyze whether reduced TrkA survival 

signalling in mdx mouse SCG neurons might depend on alterations in dynein 

expression, we evaluated mRNA and protein levels of this molecular motor. 

Changes in dynein levels might also have contributed to alterations in neuronal 

cytoskeleton, thus promoting the intrinsic defects observed in mdx mouse SCG 

neurons. Although the dynein mRNA level was slightly but significantly lower in P5 

mdx mouse SCG than in the wt, the amount of expressed protein did not differ 

between wt and mdx mice, at P5, nor in the other examined ages. However, our 

data are only an evaluation of total protein levels. Even though dynein is present in 

equal amount in wt and mdx mouse SCG, it is still possible that alterations in its 

functioning exist. Dynein is a microtubule-based motor and tubulin expression 

appears to be altered as well in mdx mice SCG. Further studies are needed to 

examine the functional role of dynein and other cytoskeletal components in growth 

and maintenance of SCG neurons of mice lacking Dp427. 

 
7.6 Conclusion 

In summary, we have shown that, the SCG of adult mdx mice has 36% fewer 

neurons than that of wt mice. The greater neuron loss occurs during the period of the 

physiological neuronal death, between P5 and P10. Our data also show that the major 

alterations in the levels of molecules involved in neuronal growth and survival (NGF 

and its receptors, NF proteins) are evident in neonatal mdx mice, in a critical period 

for neuronal survival and the establishment of synaptic contacts. They, thus, may 

account both for the SCG increased neuronal death and target innervation defects. 

Most, but not all, of these alterations are not observed anymore in the adult, 
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suggesting that some compensatory mechanisms exist. In fact, those neurons 

present in 6-7 weeks old mdx mice are the surviving neurons, which have 

successfully passed the period of greater neuron death, and most of them project to 

the undamaged submandibular gland. However, they still show signs of an altered 

phenotype, in their inability to establish, or recover, a normal adrenergic fibres 

network in peripheral target organs. Our data show that axonal growth and terminal 

sprouting is impaired in all SCG neurons, independently on the type of target organ. 

This is probably caused by the lack of Dp427 that leads to the loss of DGC 

components, essential for the linkage between the cortical cytoskeleton and the 

ECM. These alterations do not per se induce neuronal death. However, when 

intrinsic alterations combine with the functional damages in SCG muscular targets 

(i.e. EBD permeable membranes and increased levels of proNGF), neuronal loss 

occurs. We, therefore, suggest that alterations of both the sympathetic neurons and 

their muscular targets consequent to the lack of Dp427 may contribute to the 

autonomic dysfunction described in DMD patients. 
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