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1. Abstract  

 

 

 

 

Clostridium difficile is the leading cause of antibiotic-associated diarrhea and pseudomembranous 

colitis. While toxins A and B are primarily responsible for the pathogenesis, determinants of bacterial 

adherence are also essential for intestinal colonization process. We focused our study on a novel 

member of the MSCRAMM family, named CbpA (Collagen binding protein A) for its adhesive 

properties towards these components of the extracellular matrix (ECM).  We demonstrate that CbpA, 

which carries an LPXTG-like cell wall anchoring domain, is expressed on the bacterial surface of C. 

difficile and that the recombinant form binds at high affinity to collagen I and V (apparent KD  in the 

order of 10
-8 

and 10
-9 

M
 
respectively). Such evidences were confirmed by confocal microscopy studies 

showing the association of the protein with Type I and V collagen fibers produced in human fibroblasts 

and mouse intestinal tissues. However, the collagen binding activity of the wild-type C. difficile 630 

strain was indistinguishable to cbpA knock-out strain. To overcome this apparent clostridial adherence 

redundancy, we engineered a Lactococcus lactis strain for the heterologous expression of CbpA. By 

this approach, we were able to demonstrate that when exposed on the surface of L. Lactis, CbpA 

significantly enhances the ability of the bacterium to interact with collagen and to adhere to ECM-

producing cells. To prove the specificity of the interaction, we showed that the binding activity of L. 

lactis-CbpA strain was prevented by pre-incubating bacteria with an antiserum raised against CpbA. 

The results reported in this study suggest a role for CpbA in the adherence to intestinal submucosa 

during C. difficile colonization of the gut.  
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2. Introduction  

 

 

 

 

2.1   Clostridium difficile: emergence of a significant human pathogen 

 

Clostridium difficile is a Gram-positive, spore-forming, obligate anaerobic, rod-shaped bacterium. 

Originally named Bacillus difficilis, it was originally isolated in 1935 by Hall and O’Toole, as part of 

neonatal intestinal flora. Later on, in 1978, C. difficile was identified as the agent of antibiotic-

associated pseudomembranous colitis (PMC) (Larson et al., 1978) and is now recognized as the major 

cause of hospital-acquired diarrhea. C. difficile infection (CDI) is primarily associated with the 

administration of antibiotics, most famously clindamycin, but particularly broad spectrum of penicillin, 

third generation cephalosporins and fluoroquinolones (Bartlett, 2006).  

CDI symptoms range from mild self-limiting diarrhea without appreciable lesions through colitis, PMC 

and finally, if left untreated, CDI culminates with colonic perforation, toxin megacolon, prolonged 

ileus, ascites and death (Kelly and LaMont, 1998). C. difficile is responsible for 15-25% of the cases of 

Antibiotic-Associated Diarrhea (AAD) and for almost cases of antibiotic-associated 

pseudomembranous colitis (more than 95%) with a mortality rate of approximately 6% (Barbut et al., 

2007; Bartlett, 2009).   

CDI develops in patient after hospitalization and antibiotic treatment, as C. difficile can colonize the 

gut if the normal intestinal flora is disturbed or absent. Although elderly hospitalized patients receiving 
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antibiotics are still the main group at risk of infection (fig 2.1), an increase in CDI in younger 

populations with no previous contact with the hospital environment is emerging (Rupnik et al., 2009).   

  

   

 

Fig. 2.1 | Model for the acquisition of Clostridium difficile infection (CDI). Patients are exposed to C. difficile spores 

through contact with the hospital environment or health care workers. After taking an antibiotic, they develop CDI if they 

acquire a toxigenic C. difficile strain and fail to mount an anamnestic serum immunoglobulin G (IgG) antibody response to 

toxin A (ToxA; also known as TcdA); if they can mount an antibody response they become asymptomatically colonized 

with C. difficile. If they acquire a non-toxigenic C. difficile strain, they also become asymptomatically colonized. Colonized 

patients have been shown to be protected from CDI (Rupnik et al., 2009). 

 

 

 

In late 2002 in Quebec, Canada, there was a marked increase noted in the incidence and severity of 

CDI from a baseline of 6 cases per 1000 admissions, with an attributable mortality of 1.5% reported in 

1997, to 22.5 cases per 1000 admissions, with an attributable mortality of 6.9% in 2003 (Loo et al., 

2005). A similar increase in the incidence of CDI in the United Stated was also observed (McDonald et 

al., 2005). This increase was found to be associated with the emergence of a new strain of C. difficile, 

alternatively designated as BI, NAP1, or ribotype 027 toxinotype III. This hypervirulent strain 
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produced increased levels of toxins A and B, as well as an additional toxin, named binary toxin. This 

previously uncommon strain now has become epidemic, and has been reported in populations that 

previously has been thought to be at low risk, including peripartum women and healthy persons living 

in the community (Hookman and Barkin, 2009). Delay in diagnosing and treating CDAD are due to the 

fact that it can mimic the more common antibiotic associated diarrhea that is not caused by C. difficile. 

Thus diarrhea from C. difficile will be ascribed to other causes: food poisoning, viral infection, 

Klebsiella pneumonia, Candida species and Staphylococcus aureus. Patients can be infected with this 

microorganism and may have no symptoms of colitis. These asymptomatic carriers become vectors 

during outbreaks and can transmit the pathogen to other susceptible patients.  

The standard assay for CDI is the detection of C. difficile toxin stool. However, the limitation of this 

test is the time required for results (24-48 hours), the work intensity and cost (Bartlett, 2006). Other 

tests include enzyme immunoassays to detect toxin A and B, that take less time to produce a result. 

Alternative methods include C. difficile detection by culture, by PCR testing, by analysis of the 

“common antigen” of C. difficile (glutamate dehydrogenase - GDH – detection) (Bartlett. 2006).  

Patients with CDI are usually treated by stopping current antibiotic therapy (if possible) and then 

treating with metronidazole or oral vancomycin, as presented in 2012 SHEA/IDSA guidelines. 

Metronidazole is usually recommended as a first line treatment whereas vancomycin is reserved for 

severe CDI.  No highly effective treatment has been found for severe complicated CDI, and if medical 

management with intravenous fluids, vasosoppressor, oral vancomycin, intravenous metronidazole and 

vancomycin enemas is not effective, surgical removal of the colon can be the only remaining life-

saving measure (Lamontagne et al., 2007). 

The major complication of CDI is relapses, which can occur in about 20% of patients treated with 

standard therapy (Bartlett, 2006). Usually patients with multiple recurrences of CDI typically respond 

to this treatment, but then diarrhea symptoms resume within days to week after therapy is stopped. 
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Between 20% and 50% of these recurrences are caused by new C. difficile organisms, indicating 

reinfection rather than a relapse of the original infection (Bartlett, 2006). No consensus exists regarding 

the treatment of relapses but several approaches have been proposed, including probiotics (Bartlett, 

2009) in combination with standard therapy. Another alternative is a tapering and pulse dosing of 

vancomycin given every third day in the hope of keeping C. difficile from regrowing while the normal 

flora recovers. The most effective treatment for these patients has been replenishment of the normal 

bacterial flora with a faecal transplant delivered either by nasogastric tube or by enema (Aas et al., 

2003). Trasmission of C. difficile occours by the faecal-oral route after transient contamination of the 

hands of healthcare workers and patients. Vegetative cells die within minutes after exposure to air, 

however, the spores are extremely resistant to most disinfectants and can survive up to 70 dalys in a 

hospital room after a patien with CDI has been discharged (Rupnik et al., 2009). C. difficile spores are 

persistent (they last for months to years) and difficult to eradicate, so they are a challenge to hospital 

control of infections. Several methodologies have been shown to reduce their persistence (Cohen et al., 

2010). Hand hygiene is essential for controlling CDI infections. Spores are resistant to alcohol, so it is 

recommended that healthcare workers use soap and water in presence of high or increasing rates of 

CDI. Contact precautions and single rooms are recommended for infected patients. Appropriate 

cleaning of the environment and medical equipment is useful in preventing CDI. Cleaning with 

stronger chlorine solutions seems to more effectively rid an area of C. difficile spores that less-

concentrated solutions.   

 

2.2   C. difficile physiopathology 

 

CDI typically occurs in hospitalized patients when the exposure to antibiotics treatment distrupted 

normal microbiota. Due to its anaerobic nature, C. difficile spores are recognized as the vector of 
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transmission, infection and persistence (Deneve et al., 2009). C. difficile spores are ubiquitously found 

in the environment but they are highly abundant in the surface of clinical setting, because patients with 

CDI infection enter in a contagious super-shedder state excreting high levels of infective spore (Fawley 

et al., 2007). After contamination by C. difficile spores, they pass through the stomach and, once 

exposed to bile acids germinate in vegetative cells in the small bowel (Poutanen and Simor, 2004) (fig. 

2.2).  

     

 

Fig. 2.2 | Pathogenesis of C. difficile. C. difficile vegetative cells produce toxins A and B and hydrolytic enzymes (1). 

Local production of toxins A and B leads to production of tumour necrosis factor-alpha and proinflammatory interleukins, 

increased vascular permeability, neutrophil and monocyte recruitment (2), opening of epithelial cell junctions (3) and 

epithelial cell apoptosis (4). Local production of hydrolytic enzymes leads to connective tissue degradation, leading to 

colitis, pseudomembrane formation (5) and watery diarrhea (Poutanen and Simor, 2004). 
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The primary bile salts produced by the liver consist mainly of cholate (CA) and chenodeoxycholate 

(CDCA) that can further conjugated with glycine or taurine (Sorg et al., 2009). When the primary bile 

salts pass in the lower bowel, they are deconjugated by the normal flora. CA - and CA derivates - and 

glycine act as co-germinants and are sufficient to stimulate germination and outgrowth of C. difficile 

spores (Sorg et al., 2008). Recent studies also demonstrated that C. difficile spore germination can be 

inhibited in vitro and in vivo by chenodeoxycholate and its derivates, that acts as competitive inhibitor 

of CA and its derivates with approximatately ten-times greater affinity than CA (Sorg et al., 2009).  

Despite the identification of germinants and how they modulate germination of C. diffcile spores in the 

host’s intestinal tracts, the identity of GRs remains unknown. There is kinetic evidence for a 

taurocholate and glycine GRs that suggests that these germinants bind to their receptors through a 

complex mechanism where the affinity of GRs for one co-germinant is affected by binding of the other 

(Ramirez et al., 2010). However, extensive bioinformatics analyses have failed to identify GR 

homologs in the C. difficile genome, so further research is needed. Once germinants bind to these 

receptors, some signal must be traduced to downstream effectors. The nature of this event has not been 

identified. After germination, C. difficile evades immune responses, multiplies and produces toxins A 

and B, that are the major virulence factors responsible for the clinical symptoms and signs of CDI 

(Thelestam and Chaves-Olarte, 2000). 

 

2.3   C. difficile virulence factors 

 

2.3.1  Toxins    

In the late 1970s, it was recognized that C. difficile toxins A (TcdA) and B (TcdB), are involved in 

AAD and PMC after colonization and proliferation of the pathogen in the human gut (Belyi and 
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Aktories, 2009). TcdA and TcdB are encoded together with TcdR (known as TcdD), which is an 

alterantive sigma factor that is involved in positive trascriptional regulation, TcdC, a negative regulator, 

and TcdE, a protein that has a similarity to phage holins, in a well-defined genetic element, the 

Pathogenicity locus (PaLoc) (fig. 2.3) (Rupnik et al., 2005).  The PaLoc is present in the same 

chromosomal integration site in all the toxigenic C. difficile strains that have been analyzed to date. In 

non-toxigenic (TcdA
-
 TcdB

- 
) strains, the locus is replaced by 115bp of non-coding sequence. The 

DNA sequence of the PaLoc is variable, and strains with changes in this region are defined as different 

toxinotypes (Rupnik, 2008). TcdA and TcdB are produced during the late log and stationary phases, 

and their production depends on the strain and environmental factors, such as nutrient levels, 

temperature and the presence of sub-inhibitory levels of antibiotics.           

   

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 | Toxins produced by Clostridium difficile. a) Two large toxins, toxin A and toxin B (TcdA and TcdB), are 

encoded on the pathogenicity locus (PaLoc), which comprises five genes. In non-toxigenic strains, this region is replaced by 

a short 115 bp sequence. b) A third toxin, the binary toxin or CDT, is encoded on a separate region of the chromosome 

(CdtLoc) and comprises three genes. The binary toxin is composed of two unlinked proteins, CdtB and CdtA. CdtB has a 

binding function and CdtA is the enzymatic component (Rupnik et al., 2009). 
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They are single-chain toxins of 308 and 270 kDa, respectively. They belong to the group of large 

clostridial toxins (LCT), that show a glucosyltrasferase (GT) activity and present a least four domains 

“ABCD”, which are involved in biological activity (A-domain), receptor binding (B-domain), auto-

proteolytic cleavage during toxin-processing (C-domain) and delivery of the A-domain into the cytosol 

(D-domain) (Belyi &Aktories, 2009) (fig 2.4). The B-domain contains polypeptide repeats called 

Combined Repetitive Oligopeptides (CROPs) and is located at the C-terminus of the toxins (Genth et 

al., 2008). 

 

                              

 

   

Fig. 2.4 | ABCD-model of clostridial glucosylating toxins. The clostridial glucosylating toxins are constructed of at least 4 

domains. The A-domain covers the glucosyltransferase activity (note, C. novyi α-toxin possesses GlcNAcylation activity). 

The B-domain consisting of polypeptide repeats is involved in receptor-binding. The C-domain is responsible for the auto-

catalytic cleavage of the toxins (arrow: cleavage site) and is a cysteine-protease with the catalytic residues DHC. Lysine-

600 (K) was identified to be involved in InsP6-binding. InsP6 is necessary for activation of the cysteine protease. The D-

domain is likely involved in the delivery of the A-domain into the cytosol. This domain contains a hydrophobic region 

(indicated) suggested to be important for insertion of the toxin into endosome membranes (Belvyi and Aktories, 2009). 
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 The receptors of both toxins are unknown, but studies have shown that CROPs exhibit homology to 

carbohydrate-binding regions of glycosyltransferases. TcdA binds to carbohydrates, including α-

Gal.(1,3)- β-Gal-(1,4)-β-GlcNAc on rabbit erythrocytes and hamster brush border membranes (Greco 

et al., 2006). While undefined, the receptor of toxin B seems to be ubiquitous (Voth and Ballard, 2005). 

After binding to their cellular receptors, toxins are taken up by endocytosis and end up in early acidic 

endosomes, from where only the active domains (A-domains) are traslocated into the cytosol (Belvyi 

and Aktories, 2009).  

 

                         

 

Fig. 2..5 | Processing of clostridial glucosylating toxins. Clostridial glucosylating toxins bind to the cell membrane 

through the C terminus. After binding, the toxins are endocytosed to reach an acidic endosomal compartment. Here, 

conformational changes occur enabling insertion of the toxin into the endosomal membrane and subsequent pore-formation. 

The toxins are processed by autocatalytic cleavage, which in the case of toxin B depends on the presence of inositol 

hexakisphosphate (InsP6). Only the glucosyltransferase domain of the N terminus of the toxins is released into the cytosol. 

In the cytosol, Rho GTPases are glucosylated at Thr37 (e.g. RhoA) or at Thr35 (e.g. Rac or Cdc42) (Jank and Aktories, 

2008). 
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The autocatalytic cleavage of toxins occurs by a cysteine protease activity involving the C-domain, 

directly downstream of the glucosyltransferase domain (Egerer et al., 2007). The cysteine protease 

activity is enhanced by the inositol hexakisphosphate (InsP6) that binds the C-domain causing a 

conformational change inducing the auto-catalytic activity (Egerer et al., 2009). InsP6 is an eukaryotic 

host factor involved in the regulation of a large variety of the eukaryotic cells processes in the 

cytoplasm. The D-domain had been suggested to partecipate in the formation of transmembrane 

structure during pore formation, leading to the traslocation of toxins into the cytosol (Voth and Ballard, 

2005). The traslocation mechanism would be dependent on the low pH of endosomes (fig. 2.5).  

 

 

           

 

 

Fig. 2.6 | Rho sognalling pathway. a) Regulation and signaling of Rho proteins and b) functional consequences of the 

modification of Rho proteins by clostridial glucosylating toxins (Jank andAktories, 2008). 
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Once in the cytosol, TcdA and TcdB glucosylate small GTPases of the Rho and Ras superfamily (Just 

et al., 1995a-b). Small GTPases proteins in eukaryotic cells are involved in signal transduction 

associated with apoptosis and the maintenance and regulation of the cell actin cytoskeleton. They bind 

and hydrolyze GTP to GDP and it is the alternation between the GTP-bound (active, membrane 

associated) and GDP-bound (inactive, cytosol) states that regulates their activity (fig. 2.6). 

Glucosylation of Rho or Ras GTPases inhibits their interaction with their effectors, loss of this 

regulation at cellular level results in shrinking and rounding of cells via retraction of neurite-like fibers 

and finally, cell death (Voth and Ballard, 2005; Jank and Aktories, 2008). Cordially, this cytoskeletal 

perturbation and loss of cell polarity results in breakdown of tight junctions, resulting in increased 

paracellular permeability of mucosal surfaces 

The gut damage and toxin induce inflammation results in CDI symptoms. In presence of the toxins, 

there is massive infiltration of neutrophils, the production and release of various inflammatory 

mediators from mast cells and macrophages, which includes prostaglandins, leukotrienes, IL8 nd 

TNFα. Moreover toxin A activates NF-κB, with subsequent release of various cytokines. Similarly, 

intestinal epithelia cells and macrophages are activated to release macrophage inflammatory protein 2 

(MIP2). Toxins A and B also seem to activate intestinal nerves to release the neuropeptide substance P, 

which has a proinflammatory properties (Aktories and Babieri, 2005; Genth et al. 2008). 

In addition to toxins A and B, some C. difficile strains, including 027 epidemic strains, produce a 

binary toxin CDT, that belongs to the clostridial binary toxins, a group of toxins that are unrelated to 

TcdA and TcdB, and is composed of two subunits, CdtA and CdtB. CdtB binds to host cells and 

traslocates CdtA, the catalytic component, into the cytosol where it ADP-rybosylates actin molecules. 

The genes that encodes for CdtA and CdtB are located in the binary toxin locus (CdtLoc), together with 

another gene, that codify for the regulatory factor CdtR (Carter et al., 2007) (fig. 2.3). The role of CDT 
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in disease is not well understood, it is demonstrated that wild-type strains that produce CDT but do not 

produce TcdA or TcdB colonize but do not kill hamsters (Geric et al., 2006). Recent studies have also 

shown that CDT induces the redistribution of microtubules and formation of long microtubule-based 

protrusions at the surface of intestinal epithelial cells, increasing the adherence of C. difficile (Schwan 

et al., 2009). 

 

2.3.2  Colonization and adhesion factors 

After germination, C. difficile must be implanted in the gut and attached to epithelial cells, which are 

protected by a layer of dense mucus, in order to induce its pathogenicity (Pechine et al., 2007).  C. 

difficile can adhere to the mucus, the first barrier encountered during colonization, thanks to flagellar 

components such as cap protein (FliD), and flagellin (FliC), which possesses immunogenic properties 

(Tasteyre et al., 2001).  

Surface layer proteins (SLPs) are additional potential virulence factors. These proteins mediate 

adherence to the mucus and/or to the intestinal epithelial cells. They are within the S-layer, a 

paracristalline proteinaceous array, in the outer cell surface that coats the bacterium. The S-layer is 

formed of two proteins: the high-molecular-weight P47 (HMW) and the low-molecular-weight P36 

(LMW). Both subunits are encoded by the slpA gene and are produced by posttranslational cleavage of 

the SlpA precursor (fig. 2.7b). After the cleavage, the resulting HMW and LMW SLPs interact via 

defined domains to form a stable heteromeric complex. Interestingly, while the HMW SLP is localized 

in the internal surface of the bacteria and is immunologically conserved, the LMW SLP localized to the 

external surface of the bacteria and is immunologically variable, suggesting a possible role of LMW in 

evasion of immune system (Fagan et al., 2009) (fig. 2.7a).  
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Fig. 2.7 | Model of the cell wall of C. difficile. a) The two SLPs are shown above the peptidoglycan layer: the HMW SLP 

(light grey), the LMW SLP (dark grey). Other minor cell wall proteins are shown as two-lobed structures (white); the filled 

areas, indicating domains predicted to be exposed to the environment, are variable between these proteins. Putative cell wall 

polymers (Ganeshapillai et al., 2008) including putative lipid-containing polymers (Poxton and Cartmill, 1982) are shown 

as vertical black bars. b) The precursor protein SlpA showing the cleavage sites generating the signal peptide (▲) and the 

mature HMW SLP and LMW SLP (▲) (Fagan et al., 2009). 

 

 

 

Indeed, the hypervirulent C. difficle 027 and 001 strains have a LMW SLP variant with unique 

immunogenic properties (Spigaglia et al., 2011). Interestingly, HMW P47 shows strong and specific 

binding to gastrointestinal tissues of both human and mouse and some extracellular matrix proteins, 

like type I collagen, thrombospondin and vitronectin (Emerson et al., 2009; Janoir et al., 2007), yet the 

precise host receptor has not been identified.  

Besides the SLP, C. difficile strain 630 genome contains 28 paralogs of HMW SLP, which are known 

as the family of cell wall protein (CWP). All of the factors that belong to this family contain up to three 

copies of the cell wall-binding motif and a variable motif that might be function-specific (Sebaihia et 

a 

b 
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al., 2006). Among these paralogs, there are the Cwp66 and CwpV, which have been fairly well studied. 

The C-terminal of Cwp66 seems mediate in vitro adherence to Vero cells; the CwpV is regulated by 

phase variation and had the ability to autoaggregate forming denser and more randomly packed cellular 

organizations (Reynolds et al., 2011). Moreover, C. difficile displays some surface proteolytic proteins 

that seem to contribute to the release of essential nutrients and therefore promote establishment of the 

pathogen in the gut (Seddon et al., 1990). In particular the most characterized protease of C. difficile, is 

Cwp84, a cysteine protease, which degrades several extracellular matrix components thus contributing 

to the disruption of host tissue integrity (Janoir et al., 2007). Another putative cysteine protease, 

Cwp13, shares 62% amino acid similarity to Cwp84, but play an auxiliary role in the assembly of the 

S-layer (De La Riva et al., 2011). Unfortunately, the lack of information on the other CWPs paralogs 

make difficult to understand the role of these cell surface proteins in the pathogenesis of C. difficile.  

Among the additional surface proteins, the heat shock protein GroEL has shown to have a role in 

adherence. Immunoelectron microscopy reveals that is localized in the spore surface, predominantly 

membrane bound, and released extracellularly after heat shock (Hennequin et al., 2001).  

Finally, several pathogens are able to use extracellular matrix (ECM) components through bacterial 

adhesins localized on the cell surface. ECM, in addition to serving a structural function in tissues, is 

required for multiple cellular functions during development such us cell adhesion, proliferation and 

migration. C. difficile is able to interact with several proteins of ECM, such as fibronectin, fibrinogen, 

laminin and Collagen I, III, IV and V (Cerquetti et al., 2002), suggesting that vegetative cells use them 

as molecular bridges to increase their adherence to the colonic mucosa. One of the C. difficile ECM-

binding factors that is well studied is the fibronectin-binding protein Fbp68. Studies demonstrated the 

ability of this protein to bind fibronectin in manganese-dependent manner (Lin et al., 2011), fibrinogen 

and, to a lesser extent, vitronectin (Hennequin et al., 2003).  
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2.4    MSCRAMMs family 

 

The class of cell surface adhesins that specifically interact with ECM components is designed as 

MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules). First, to be 

classified as a component of this family, the adhesin must be localized to the microbial cell surface. 

Second, the microbial component must recognize a component of ECM. Third, this interaction must be 

of high affinity and specificity. A single MSCRAMM can bin several ECM ligands: for example the 

collagen-binding adhesin YadA of enteropathogenic yersiniae, can also bind laminin and fibronectin 

(Emody et al., 1989). In addition, a microorganism can express several MSCRAMMs that recognize 

the same ECM components: for example, Staphylococcus aureus express several fibrinogen-binding 

molecules (Boden and Flock, 1989). Usually, the surface proteins in Gram-positive bacteria present at 

the C-terminal an LPXTG or LPXTG-like motif, located just outside a hydrophobic segment that is the 

membrane-spanning domain, which is necessary for the anchoring to the cell wall peptidoglycan by 

specific enzymes, the sortases. At N-terminal, following the signal peptide, there are the domains 

involved in the interaction with ECM (Patti et al., 1994).  Several studies demonstrated that the 

fibronectin-binding MSCRAMMs on Gram-positive bacteria have structures that are similar overall, 

although the amino acid sequences may vary considerably. The ligand-binding domains are localized to 

segment composed of motifs repeated several times and positioned just outside the cell-wall spanning 

domains (Patti et al., 1994). The collagen-binding MSCRAMMs present repeated domain in the portion 

of the protein that protrudes outside the bacterial surface and the most characterized collagen-binding 

MSCRAMM is the S. aureus CNA protein. It contains from the N-terminus, a signal peptide, an A 

domain followed by 1–4 B repeats, the cell-wall anchoring region, a transmembrane segment, and a 

short cytoplasmic tail. The A domain is responsible for binding to several types of collagen, whereas 

the B repeats have no known effect on binding (Fig. 2.8) (Patti et al., 1993). The function of the B 
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repeats is unknown, but this region is thought to form a stalk that displays the A domain on the cell 

surface (Rich et al., 1998).  

 

 

                          

 

 

Fig. 2.8 | Schematic models of MSCRAMMs from S. aureus. The MSCRAMMs shown are the ones with affinity for 

fibronectin (FnbpA and FnbpB), collagen (CNA). S, signal sequence; U or A, unique nonrepetitive sequence; δ, upstream 

repeat sequences; D, B, or R: repeated domains; W, cell wall-spanning domain; M, hydrophobic membrane-spanning 

domain; C, positively charged carboxy terminus (Patti et al., 1994). 

 

 

 

Recently, CNA-like collagen-binding MSCRAMMs have been identified in other bacteria, among 

which are ACE (adhesin of collagen from Enterococcus faecalis) (Rich et al., 1999), Acm (adhesin of 

collagen from Enterococcus faecium) (Nallapareddy et al., 2003), and CNE (collagen-binding protein 

from Streptococcus equi) (Lannergard et al., 2003). These proteins all share a domain organization 

similar to that of CNA, in which the A domain is responsible for their collagen-binding activities; 

however, the specific binding mechanisms for each collagen adhesin may be somewhat different. 

Besides CNA, some other proteins involved in collagen binding have been characterized, nevertheless 

the domain responsible for specific adhesion to collagen still remains to be determined, e.g. Lsa63 
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(leptospiral surface adhesin of 63 kDa) (Vieira et al., 2010) or EhaB (enterohemorrhagic Escherichia 

coli autotrasporter B) (Wells et al., 2009).  The importance of MSCRAMMs as adhesins and their role 

in the colonization process can be established in few cases, because in an intact healthy organism, most 

of ECM is not exposed to environment and so is not accessible for interactions. However, these ligands 

may be exposed after tissue damage due to mechanical or chemical injury, primary infectious injury or 

early cytophatic changes associated with infection. So MSCRAMMs have an important role in 

particular in infections caused by opportunistic pathogens or microorganism using multiple adhesion 

mechanisms.  

The ECM has two basic forms in tissue: the basement membrane (also called basal lamina) and 

interstitial matrix. In some connective tissue such as blood or lymph tissue, the matrix is fluid and 

called plasma. The basement membrane is present at the basis of epithelial and connective tissues; it is 

composed by laminin, proteoglycans and collagens, especially the non-fibrillar-forming collagen IV, 

and collagen VII serves as an anchor to it (Amano et al., 2001). The interstitial matrix composition 

depends on the tissue, but contains principally collagens, in connective tissue, or fibronectin and 

vitronectin, in blood tissue. In dense connective tissues, such as cartilage and tendon, the principal 

component is type II collagen. Instead, collagen I is the most abundant collagen protein of the non-

cartilaginous tissues and Type V collagen is widely distributed in tissue as minor component. Collagen 

V is thought to be combined with collagen I in heterotypic fibers and to regulate the initiation of fibril 

assembly (Birk et al., 1988; Wenstrup et al., 2004).  
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Genome-based analysis of C. difficile demonstrated the presence of putative and known surface factors 

that could be involved in the interaction with ECM components (Sebaihia et al., 2006, Monot et al., 

2011) (table 2.1). Among them, there is the known Fbp68 that already is classified as MSCRAMM 

(Lin et al., 2011). Instead, the real localization and the role of the other factors, included in the table 1, 

remain unknown.  

 

 

 

Table 2.1 | C. difficile surface factors potentially involved in ECM interaction.  
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3. Aim  

 

 

 

 

In this study we functionally characterized a new protein of C. difficile, that we named CbpA, having 

features of typical MSCRAMMs to understand its role in the intestinal colonization process.  
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4. Results 

 

 

 

 

4.1 Domain organization of CbpA/CD3145 protein 

 

Collagen binding protein A (CbpA), encoded by the CD3145 gene of C. difficile strain 630, is a 

predicted protein of 1190 amino acids annotated as serine-aspartate repeat-containing protein SdrF 

(Sebaihia et al., 2006, Monot et al., 2011). The protein has an N-terminal putative leader peptide and a 

C-terminus region comprising an NVQTG-motif followed by a hydrophobic membrane-spanning 

domain and a series of positively charged residues (Fig.1).  

 

 

               

 

Fig. 4.1 | Schematic representation of CbpA (CD3145) protein organization.  
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These features suggest that CbpA is a putative substrate of C. difficile sortase B (Sebaihia et al., 2006) 

and belongs to the family of Gram-positive proteins anchored to the peptidoglycan. The mature 

polypeptide has a predicted molecular weight of 118,400 Da. Sequence analysis revealed the presence 

of three distinct repeat types (Fig.1): type I (amino acids 34-314), type II (amino acids 315- 525) and 

type III (amino acids 841-1145); the latter comprise a central core of consecutive KPDPDNGGNS 

motifs flanked by DXDGDG signatures which are similar to the calcium-binding sequences found in 

the trombosphondin-like proteins (Kvansakul et al., 2004, Rigden et al., 2004). 

 

      

4.2 Surface localization of CbpA 

 

The predicted external localization of CbpA was investigated by confocal microscopy of 630 strain 

using antibodies raised against the recombinant CbpAI-II protein, containing type I and II repeats 

(amino acids 29-841, Fig. 1). As shown in Fig. 2A, the protein was homogeneously detected on the 

bacterial surface of strain 630 (Fig. 2A). To further analyse CbpA cellular distribution phenotype, we 

created an insertional mutant within cbp, designated ΔcbpA, using ClosTron technology (Heap et al., 

2010). The cbpA mutant did not express CbpA on its surface, showing the specificity of the labelling. 

Complementation of the mutant strain with a plasmid-encoded cbpA gene restored the surface 

expression of the protein (Fig. 4.2A). CbpA was present in the cell wall fraction as shown by Western 

blot analysis. Protein was detected in wild-type and complemented strains, but not in the cbpA mutant 

strain (Fig. 4.2B). 
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Fig. 4.2 | Surface exposure of CbpA protein in 630 strain 
A: Confocal microscopy analysis of surface-expression using anti-CbpAI-II antibody and a secondary fluorescent antibody 

(red). DNA was stained with DAPI (blue). Scale bars: 2 µm. 

B: Western blot analysis on cell-wall fractions obtained by mutanolysin extraction from 630erm (lane 1), cbpA (lane 2) 

and cbpA(pCbpA+) (lane 3) strains. The cbpA strain was used as negative control. Complementation of the mutant strain 

with a plasmid harboring the cbpA gene (cbpA(pCbpA+) strain) restored the surface expression of the protein.  

 

 

 

A 

 1             2            3 
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4.3 Recombinant CbpAI-II binds to extracellular matrix components in vitro 

 

The presence of CbpA on the surface of C. difficile led us to hypothesize a contribution of the antigen 

in the interaction of the pathogen with host tissues. ECM components present at the basolateral surface 

of organs are important in maintaining tissue integrity and known to be target of several surface-

exposed proteins contributing to bacterial colonization (Patti et al., 1994). The propensity of CbpA to 

interact with ECM was evaluated by ELISA using a recombinant CbpAI-II polypeptide incubated in the 

presence of several ECM proteins including fibronectin, laminin and multiple collagen types. By this 

approach, we observed that CbpAI-II was able to bind in a concentration-dependent and saturable 

fashion only to collagen I and V (Fig 4.3). The Kd values, defined as the concentration able to saturate 

50% of putative receptors, were 3x10
-8

M and 8x10
-9

M, respectively. No significant binding was 

reported for fibronectin, laminin and collagens II, IV and VI (Fig. S1). 

 

 

   

 

 

Fig.4.3 | Interaction of CbpA with immobilized ECM  

ELISA plates were coated with 10 µg ml
-1 

of purified ECM components and incubated with serially diluted recombinant 

CbpAI-II protein ranging from 4 nM to 0.23 uM. Binding of the protein was detected by anti-CbpAI-II antibody followed by 

HRP-conjugated-secondary antibody. BSA protein was used as negative control. 
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To demonstrate that the binding of CbpA to collagens is relevant to the interaction of C. difficile to the 

ECM components produced by host cells, we used a human fibroblast cell line (IMR-90) presenting a 

complex fiber organization mainly composed by fibronectin and collagens (data not shown). As shown 

in Fig. 4.4, confocal microscopy analysis of IMR-90 cells incubated with 20 µg/ml of recombinant 

CbpAI-II conjugated to Alexa-Flour 488 dye, revealed a spatial co-localization of the protein with 

collagens I and V, supporting the hypothesis of a cognate interaction of the antigen with such host 

determinants. As control, pre-incubation of cells with an excess of unlabelled CbpA I-II prevented the 

binding to collagens, confirming the specificity of this interaction (Fig. 4.4). 
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Fig. 4.4 | Interaction of CbpA with ECM-producing human fibroblasts. 

Cells were incubated with 10 µg ml
-1

 of CbpAI-II protein conjugated with Alexa-488 dye (green) for 1 h at 37°C. Collagens I 

(upper panel) and V (middle panel) were labelled using specific antibody (red). DNA and actin were stained with DAPI 

(cyan) and Phalloidin-Alexa647 (blue), respectively.  

In control experiments, cells were pre-incubated with an excess of unlabelled CbpA before binding to CbpA/488 (lower 

panel). Scale bars: 10 µm. 
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4.4 Recombinant CbpAI-II is able to bind to murine intestine 

 

In order to further investigate the intrinsic adhesive properties of the CbpA protein to host targets, we 

isolated different tracts of CD1 mice intestine (ileum, jejunum, duodenum and colon) and prepared 

cryo-sections for examination in binding experiments. Briefly, sections were incubated with 20 µg/ml 

of recombinant CbpAI-II conjugated to Alexa-Flour 488 dye and collagens I/V stained. BSA was used 

as control sample, while F-actin staining was used to monitor tissue morphology. Confocal microscopy 

analysis revealed a large distribution of collagen I and V in all intestinal tracts, with CbpAI-II showing a 

diffuse localization in all of them (data not shown) with a strongest affinity to portions of small 

intestine (Fig. 4.5). In particular, magnification of longitudinal section of villi of jejunum showed a 

preferential localization of the protein in the submucosa underlying the surface epithelium (Fig. 4.5, 

40x magnification). 
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Fig.4.5 | Binding of recombinant CbpAI-II to mouse gut crio-sections. 

Sections were incubated with the recombinant CbpAI-II conjugated to Alexa-Flour488 dye (green) for 2 h at room 

temperature. Collagens I and V were labelled using specific antibodies (red) and actin was stained with Phalloidin-647 dye 

(blue). Scale bars: 100 µm. 
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4.5 Engineering of L. lactis for surface-display of CbpA results in an increased 

adherence to collagen and ECM-producing human fibroblasts 

 

To understand the impact of CbpA protein on binding of C. difficile to collagens, the ability of the 

CbpA knock-out strain to bind immobilized collagen V and to adhere to IMR-90 cells was compared to 

the wild-type strain. As shown in Fig. 4.6, in both collagen and cell binding assays, we observed no 

significant difference between the 630erm and ΔcbpA strain, suggesting that redundancy of bacterial 

proteins potentially interacting with ECM components may mask the contribution of CbpA to collagen 

V binding.  

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.4.6 | Binding activity of C. difficile strains on immobilized collagen V and on IMR-90. 

A: Plates were coated with collagen V and adherence of 630erm (), cbpA () and cbpApCbpA+) (▲) strains was 

measured by detaching bacteria with trypsin and plating. Adhesion was expressed as percentage of total bacteria. P-values 

of cbpA strain compared with 630erm and cbpA(pCbpA+) strains are 0.31 and 0.78, respectively. 

B: IMR-90 cells were incubated for 2 h with 630erm (), cbpA () and cbpApCbpA+) (▲) strains at an MOI of 

100:1. After washing and saponin treatment, lysates were plated and the number of total adherent bacteria was expressed as 

percentage of total bacteria in starting infection. P-values of cbpA strain compared with 630erm and cbpA(pCbpA+) 

strains are 0.15 and 0.07, respectively. 
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To prove that the lack of an adhesive phenotype by the ΔcbpA mutant strain was due to a real cell-wall 

protein redundancy, we employed Lactococcus lactis as a heterologous system for the constitutive 

expression of CbpA. Indeed, this bacterium is known to have been frequently used as a tool to express 

heterologous adhesins and show their functionality (Buccato et al., 2006, Arrecubieta et al., 2007, 

Sinha et al., 2000). Since the cell wall anchoring motif of CbpA is not predicted to be recognized by 

sortase A of L. lactis (Dieye et al., 2010), we substituted it with a previously described motif (Edwards 

et al., 2008), to ensure CbpA exposure on L. lactis surface. As shown in Fig. 4.7, the successful export 

of CbpA onto the lactococcal cell surface was then assessed by confocal immunofluorescence (Fig. 

4.7A) and Western blot analysis (Fig. 4.7B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.7 | Expression of CbpA in L. lactis.  

A: Confocal microscopy analysis of surface-expression in L. lactis-CbpA strain using anti-CbpAI-II antibodies and a 

secondary fluorescent antibody (red). DNA was stained with DAPI (blue). An L. lactis strain carrying the empty vector (L. 

lactis-pAM401) was used as negative control. Scale bars: 2 µm. 

B: Western blot analysis of cell-wall fractions from L.lactis-pAM401 (1) and L. lactis-CbpA strains (2). 
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Notably, surface expression of CbpA conferred to L. lactis a significant increased ability to adhere to 

immobilized solid-phase collagen V compared to L. lactis carrying the pAM401 empty vector (L. 

lactis-pAM401) (Fig. 4.8A). The binding was inhibited by the anti-CbpAI-II serum, demonstrating the 

specificity of the activity (Fig. 4.8B).  

 

 

  

 

 

 

 

 

 

 

 
Fig.4.8 | Binding activity of L. lactis-CbpA strain to immobilized collagen V. 

A: Plates were coated with collagen V and adherence of L. lactis-pAM401 () and L. lactis-CbpA () was measured by 

detaching bacteria with trypsin and plating. Adhesion was expressed as percentage of total bacteria in starting infection. 

B: Adherence of L. lactis-CbpA strain to collagen V was inhibited by anti-CbpAI-II serum. Adhesion of L. lactis-CbpA 
strain treated with equally diluted pre-immune serum was assumed as 100% of adhesion. 

Values represent the mean ± SE; ***p<0.001. 

 

 

 

We also tested the ability of L. lactis-CbpA to adhere on IMR-90 cells by using both global 

quantification of viable adherent bacteria and confocal microscopy analysis. CFU counting of L. lactis-

CbpA strain incubated with IMR-90 fibroblasts for 2h, clearly showed a 2.5 fold increase in cell 

adherence compared to control cells (Fig. 4.9A). As for the binding to collagen, the adhesion of L. 
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lactis-CbpA strain to fibroblasts was inhibited by pre-incubation of bacteria with anti-CbpA antibody 

(Fig. 4.9B). These data were confirmed by immunofluorescence confocal microscopy analysis (Fig. 

4.9C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.9 | Adhesion of L. lactis-CbpA strain to IMR-90 human fibroblasts. 

A: IMR-90 cells were incubated for 2 h with L. lactis-pAM401 () and L. lactis-CbpA () strains at an MOI of 100:1. 

After washing and saponin treatment, lysates were plated and the number of total adherent bacteria was expressed as 

percentage of total bacteria in starting infection.  

B: Adherence of L. lactis-CbpA strain to IMR-90 cells was inhibited by anti-CbpA serum. Adhesion of L. lactis-CbpA 
strain treated with equally diluted pre-immune serum was assumed as 100% of adhesion. 

Values represent the mean ± SE; ***p<0.001 

C: IMR-90 cells were infected as in A and, after washing, were fixed and stained for confocal immunoflurescent 

microscopy. Bacteria were labeled by -whole bacteria serum and a secondary fluorescent antibody (green). DNA and 

cellular actin were stained with DAPI (blue) and Phalloidin-Alexa568 (red), respectively. Scale bars: 10 µm.  
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5. Discussion 

 

 

 

 

Antibiotic-induced disruption of the normal intestinal flora is a pre-requisite for C. difficile colonization 

of the gut and onset of disease (Rupnik et al., 2009), with toxins A and B being the major virulence 

factors responsible for the clinical symptoms and signs of infection (Thelestam et al., 2000). However, 

since adhesion to host tissues is considered a crucial step which allows pathogenic bacteria to persist in 

specific niches, it has been proposed that, other than toxins, surface-associated determinants are likely 

to be important in C. difficile pathogenesis (Rupnik et al., 2009). Bioinformatic analysis of predicted 

cell wall-anchored proteins has led us to the selection of the CD3145 gene (cbpA) coding for a 

polypeptide carrying at the C-terminus a NVQTG-motif. Based on functional evidences, CbpA can be 

ascribed to the MSCRAMM family which includes bacterial adhesins specifically interacting with 

ECM components (Patti et al., 1994). Direct binding assays using recombinant CbpA on immobilized 

ECM components or human fibroblasts demonstrated the ability of the protein to bind with high 

affinity to collagen I and V. The binding of CbpA conjugated with Alexa-Fluor 488 dye to fibroblasts, 

was impaired by pre-incubation of cells with unlabeled protein, indicating the specificity of the 

interaction. Interestingly, the protein showed a tropism to gut tissues in accordance to the wide 

distribution of collagens in the submucosa. To further evaluate the role of CbpA as adhesin in the 

bacterial background, we employed L. lactis as heterologous system. This model was used for the 

expression of other MSCRAMMs from several pathogens, such as Staphylococcus epidermidis or 

Staphylococcus aureus, to evaluate their adhesive capacity (Arrecubieta et al., 2007, Sinha et al., 
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2000). L. lactis displaying CbpA on the membrane acquired a potentiated ability to interact to 

immobilized collagen V and to adhere to human fibroblasts, and specific serum against the 

recombinant protein inhibits this capacity.  

Collagens are the major structural component of the ECM and participate in many cellular processes 

such as cell attachment, differentiation and migration (Hay, 1991). There are more than 20 types of 

collagen of which type I is the most abundant and in combination with type V is the main component 

of fibrils (Wenstrup et al., 2004). Many bacteria have evolved to express adhesins to interact with 

collagens (Foster et al., 1998, Arrecubieta et al., 2007). In particular, type I and V collagens have been 

identified as the target of enteropathogenic E. coli (Ljungh et al., 1990), enterobacteria (Tarkkanen et 

al., 1990) and Bifidobacterium adolescentis (Mukai et al., 1997). However, when we studied the role of 

CbpA in the clostridial background, we were not able to observe a significant contribution to the 

adhesion process. This result can be explained by the redundancy of the proteins targeting the ECM. 

Indeed, CbpA is one of a number of clostridial proteins sharing the common function of binding to the 

ECM. Examples are the high-molecular-weight subunit of SLP, which is able to mediate the attachment 

to collagen I, thrombospondin and vitronectin (Calabi et al., 2002) and the manganese-binding protein 

Fbp68, having binding activity toward fibronectin (Hennequin et al 2003; Lin et al, 2011). Moreover, 

several genes containing ECM–binding domains were predicted in the genome of C. difficile strain 630 

as potential virulence factors (Sebaihia et al., 2006). Thus, the apparent common function of predicted 

ECM adhesins highlights that, in C. difficile as in many other human pathogens, a diverse adhesive 

repertoire could be an added value in the competition for specific niches, in which affinity for specific 

substrates and their availability might be determinant to a successful colonization. On the other hand, 

the presence of multiple factors sharing functional similarity makes difficult to determine the relative 

contribution of individual adhesin to the colonization processes. 
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The expression level of CbpA in our in vitro experimental conditions could affect the evaluation of the 

contribution of the protein in the adhesion process. Indeed, it has been recently reported that the protein 

is up-regulated in a pig ligated loop model, set up to analyze bacterial genes involved in pathogenesis 

(Scaria et al., 2011). In particular, in this study, microarray analysis of strain C. difficile 630 

transcriptome at different time points after infection, revealed the up-regulation of cbpA/CD3145 

transcription at 8 and 12 hours. Interestingly, fbp68 and slpA are early up-regulated and other putative 

collagen binding proteins resulted up-regulated at 12 hours (e.g CD0386, CD2831 and CD3392). We 

can then hypothesize that variable expression of the protein may modulate the binding characteristics of 

the bacterium in response to environmental changes encountered within the host during the 

colonization. 

The interaction of bacterial pathogens with the ECM is an important virulence mechanism contributing 

to host colonization. While the ECM is not accessible to pathogens under normal conditions, it may be 

exposed to pathogen as consequence of tissue damage. Indeed, it has been reported that C. difficile has 

an intrinsic ability to bind fibronectin, fibrinogen, vitronectin and collage types I, III, IV and V 

(Cerquetti et al., 2002). Based on the current knowledge of C. difficile molecular mechanisms of 

pathogenesis and the data reported in this study, we propose a model of gut colonization in which the 

disruption of tight junctions mediated by TcdA and B (Nusrat et al., 2001), together with the 

degradative activity toward ECM components displayed by Cwp84 (Janoir et al., 2007) and other 

hydrolytic enzymes (Seddon et al., 1990, Seddon et al., 1992, Poilane et al., 1998), could cause 

destabilization of intestinal mucosa and allow C. difficile to gain access to ECM. This interaction may 

allow bacteria to use the submucosal matrix as a molecular bridge to increase their adherence to host 

tissues. In this context, surface determinants such as CbpA would play a fundamental role in the multi-

factorial colonization process of the intestinal mucosa 
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6. Experimental procedures 

 

 

 

 

6.1 Bacterial strains and growth conditions 

 

L. lactis MG1363 strain was cultured statically at 30°C in M17 growth medium supplemented with 

0.5% glucose and, when required, 20 ug ml
-1

 chloramphenicol.  

C. difficile strains were grown in anaerobiosis at 37°C in Brain-Heart Infusion (BHI) broth. 

Escherichia coli HK100 cells and BL21(DE3)T1
R
 strains, used to clone and express CbpAI-II, were 

cultured at 37°C in Luria-Bertani (LB) broth supplemented with 100 ug ml
-1 

ampicillin. 

 

 

6.2 Plasmid construction, DNA manipulation and mutant generations 

 

For the expression of recombinant CbpAI-II (amino acids 29-841), the corresponding sequence was 

amplified by PCR using chromosomal DNA from C. difficile 630 strain as template. The PCR product 

was cloned in pET15b vector (Novagen) using the PIPE method. BL21(DE3)T1
R
 chemically 

competent cells were used for expression of the N-terminal His-tag protein.  

A cbpA mutant was generated in C. difficile 630 Δerm strain by insertion of a bacterial group II intron 

containing a retrotransposition-activated marker (RAM) conferring erythromycin resistance using the 

ClosTron clostridial gene knockout system (Heap et al., 2010). pMTL007C-E5 CD3145-18Ua 
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(pHAS018) was generated to insert the group II intron 18 bp upstream of the transcriptional start site as 

no insertion sites were predicted within the gene sequence. CA434 E. coli transformed with pHAS018 

were grown in LB with 15 μg ml
-1

 chloramphenicol and conjugated into C. difficile strain ∆erm grown 

in TY media overnight. Conjugation was incubated overnight at 37°C under anaerobic conditions on 

non-selective Brazier’s agar. pHAS018 positive C. difficile were selected with thiamphenicol (15 μg 

ml
-1

), with Bioconnection’s cefoxitin and cycloserine counter-selection against E. coli. Transconjugates 

were tested for intron insertion by selection on Brazier’s agar with erythromycin selection (5 μg ml
-1

) 

and for thiamphenicol sensitivity.  

For complementation of the cbpA mutant the CD3145 gene was amplified from the predicted signal 

peptide cleavage site from C. difficile strain 630 genomic DNA. pRPF144 was modified to contain the 

slpA Sec signal sequence followed by a Strep II tag and an XhoI restriction site, producing pHAS007. 

CD3145 was ligated between XhoI and BamHI sites thus under control of the Cwp2 promoter, with an 

N-terminal Strep II tag generating pHAS033.  

For the construction of L. lactis strain surface-expressing CbpA, the CD3145 gene was amplified by 

PCR using chromosomal DNA from C. difficile 630 strain as template (primer1: 5’-

GAGGTTAAGGCTAACGGTTCAAATACTTTCGCAGATACTATAGAAGAAAG-3’ and primer2: 

5’-ACCTGTTGATGGTAATTGACCTACATTACTATCTAAACTTTCATCTG-3’) and cloned in 

pAM401 expression vector (Buccato et al., 2006). The sequence coding for the leader peptide (1-72 bp) 

and the NVQTG-motif at C-terminal (3463-3573 bp) were substituted with the same regions of the 

GAS M1 gene (1-129 bp and 1348-1455 respectively), to ensure the surface exposure in L. lactis as 

described by (Edwards et al., 2008). pAM401-M1 was used as template to amplify the expression 

vector containing the leader peptide and the C-terminal of M1 protein  (Primer3: 5’-

GATAGTAATGTAGGTCAATTACCATCAACAGGTGAAACAGCTAACCCA-3’; primer4: 5’-

GTATCTGCGAAAGTATTTGAACCGTTAGCCTTAACCTCTGTTTGATTCGC-3’). HK100 cells 
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were used to clone the two PCR products using the PIPE method. The new assembled vector was used 

to transform L. lactis subspecies cremoris MG1363 strain by electroporation. 

 

 

6.3 Expression and purification of recombinant CbpA 

 

A single colony of E. coli BL21(DE3)T1
R
 strain expressing CbpAI-II was inoculated in LB containing 

100 µg ml
-1

 ampicillin and grown overnight at 37°C. Bacterial suspension was diluted in fresh HTMC 

medium supplemented with 200 µg ml
-1 

ampicillin and grown for 30 h at 25°C. Recombinant CbpAI-II 

His-tagged protein was purified by affinity chromatography on Ni
2+

-NTA Superflow (Qiagen). The 

purity of the protein was checked by SDS-PAGE followed by Coomassie Blue staining and the protein 

concentration was determined by BCA reagent (Thermo Scientific). 

 

 

6.4 Production of a polyclonal antibody against CbpA 

 

5-week-old CD1 female mice were inoculated intraperitoneally three times (day 0, 21 and 35) with 10 

µg of recombinant CbpAI-II in the presence of Aluminum hydroxyde. The immune serum was obtained 

14 days after the last inoculation. The treatments were performed in accordance with internal animal 

ethical committee and institutional guidelines.  
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6.5 Cell fractionation and protein analysis 

 

To obtain cell wall-associated proteins of C. difficile strains, bacteria were grown until exponential 

phase, harvested by centrifugation at 3000  g for 10 minutes and washed in Tris-sucrose buffer (TS: 

10 mM Tris-HCl pH 6.9, 10 mM MgCl2, 0.5 M sucrose). Cells were resuspended in TS buffer, 

protease inhibitors cocktail (Complete Mini EDTA-free, Roche) and 250 µg ml
-1

 of mutanolysin 

(Sigma) and digestion was allowed to proceed for 2 h at 37°C with gentle agitation. The majority of 

intact protoplasts were removed by centrifugation at 3000  g for 30 min. The supernatant was then 

subjected to microcentrifugation at 17 000  g for 30 min to remove cell debris and any remaining 

protoplasts. The supernatant containing the solubilized cell surface proteins was recovered.  

To obtain cell wall-associated protein of L. lactis strains, bacteria were grown to exponential phase, 

centrifuged and resuspendend in protoplast buffer (0.1M KPO4 pH 6.2, 40% sucrose, 10 mM MgCl2 

and protease inhibitor) with 100 U µl
-1

 mutanolysin for 1 h at 37°C. The majority of intact protoplasts 

were removed by centrifugation at 3000  g for 30 min. The supernatant containing the solubilized cell 

surface proteins was recovered.  

Proteins were separated by SDS-PAGE electrophoresis using NuPage Gel System, according to the 

manufacturer’s instructions. Samples were transferred to nitrocellulose membranes for Western blot 

analysis. Membranes transferred proteins were blocked with PBS containing 0.05% Tween 20 (PBST) 

and 10% skim milk powder (MERK). Proteins on nitrocellulose membranes were detected with -

CbpAI-II serum followed by the HRP-conjugated secondary antibodies (DAKO) diluted in PBST and 

3% skim milk powder. Bands were visualized with Super Signal® West Pico Chemiluminescent 

Substrate (Thermo Scientific). 
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6.6    Cell culture 

 

IMR-90 cells (Human fibroblasts, ATCC) were maintained in Eagle’s Minimum Essential Medium 

(EMEM, ATCC) supplemented with 10% heat-inactivated fetal bovine serum (FBS, Gibco) and 

antibiotics. Cells were grown at 37°C with 5% CO2. 

 

 

6.7    Immunofluorescence analysis 

 

To verify the presence of CbpA on bacterial surface of C. difficile and L. lactis strains, bacteria were 

grown until exponential phase, washed with PBS and fixed in 3.7% paraformaldehyde (Sigma). After 

multiple washings, bacteria were spread on polylisine-coated slides and blocked with PBS +3% Bovine 

Serum Albumin (BSA) (Sigma) for 1 h at room temperature. Samples were washed and incubated with 

anti-CbpAI-II serum (1:500) for 1 h at room temperature. Bacteria were washed several time with PBS 

and incubated with Alexa Fluor 488 goat anti-mouse IgG (1:500) (Molecular Probes). Labeled samples 

were mounted with ProLong
®
 Gold antifade reagent with DAPI (Molecular Probes) and analyzed with 

Zeiss LSM710 confocal microscope. 

 

 

6.8    Labeling of recombinant protein 

 

Purified recombinant CbpAI-II was labeled with Alexa Fluor® 488 Microscale Protein Labeling Kit 

(Molecular Probes), according to the manufacturer’s instructions. 
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6.9    Binding assay with recombinant protein on eukaryotic cells 

 

IMR-90 cells were seeded on 8-well chamber slides coated with collagen I (2.5  10
4
/ well) (BD 

BioCoat) and cultured for 3 days. Cells were then incubated with 20 µg ml
-1

 of recombinant CbpAI-II 

conjugated with Alexa Fluor 488 dye for 2 h at 37°C. After washings to remove unbound protein, cells 

were fixed with 3.7% paraformaldehyde. Samples were washed extensively and incubated with rabbit 

monoclonal anti-ECM components antibodies (1:50) for 1 h at room temperature. After multiple 

washings, samples were incubated with Alexa Fluor 568 goat anti-rabbit IgG (1:500) and Alexa Fluor 

647-conjugated phalloidin (1:200) (Molecular Probes). Glass coverslips were mounted with ProLong
®

 

Gold antifade reagent with DAPI and analyzed with Zeiss LSM710 confocal microscope. To perform 

the competition assay, cells were incubated with 50 µg ml
-1

 of unlabeled CbpAI-II for 2 h at 37°C. After 

pre-incubation, wells were washed with PBS and were used for the binding assay described above. 

 

 

6.10    Binding assay with recombinant protein on mouse gut cryo-sections 

 

Samples from different intestinal tracts (duodenum, jejunum, ileum and colon) were collected from 

CD1 mice and stored at -80°C. 8 µm cryo-sections were fixed with 3.7% paraformaldehyde and, after 

multiple washings, were incubated with 20 µg ml
-1

 of recombinant CbpAI-II - Alexa Fluor 488 for 2 h at 

37°C. Samples were washed extensively and ECM and actin stained as described above. Glass 

coverslips were mounted with ProLong
®
 Gold antifade reagent with DAPI and analyzed with Zeiss 

LSM710 confocal microscope. 
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6.11    Enzyme-linked Immunosorbent Assays  

 

Flat bottom 96-well microtiter plates (Greiner Bio-One) were coated with 10 µg ml
-1

 of each ECM 

component (collagen I, II, III, IV, V, VI, laminin, fibrinogen and fibronectin) or BSA overnight at 4°C. 

Wells were washed with PBS + 0.05% Tween and blocked them for 2 h at 37°C with 

Polyvinylpyrrolidone (PVP, SERVA); after several washings plates were incubated overnight at 4°C. 

CbpAI-II was serially diluted (from 20 to 0.156 ug ml
-1

 and incubated for 2 h at 37°C. To detect the 

binding, plates were washed and incubated with anti-CbpAI-II serum for 1 h at 37°C followed by 

incubation with HRP-conjugated anti mouse antibodies. Wells were developed with o-

Phenylenediamine dihydrochloride (SigmaFast OPD; Sigma). The reaction was stopped by adding 

12.5% H2SO4 and finally the absorbance at 490 nm was measured. BSA was used as negative control. 

 

 

6.12    Bacterial adherence to immobilized collagen V 

 

Flat bottom 96-well microtiter plates were coated with 50 µg ml
-1

 of collagen V overnight at 4°C. After 

several washings with PBS, wells were blocked with PBS containing 2% skim milk powder (MERK) 

for 1 h. L. lactis or C. difficile strains were grown until exponential phase, resuspended in DMEM 

medium adjusted to an OD600 of 1 and added to the microtiter wells. After 2 h of incubation at 37°C, 

plates were washed with PBS and adherent bacteria were collected by treatment with Trypsin/EDTA 

for 5 min at 37°C. Bacterial suspensions were serially diluted and plated for CFU counting. BSA 

coating was used as negative control. To perform the inhibition of adherence to Collagen V, L. lactis 

cells were pre-incubated with anti-CbpAI-II serum (1:500) for 1 h at 37°C. As negative control, bacteria 

were incubated with the same concentrations of a pre-immune serum. After pre-incubation, bacteria 
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were centrifuged and re-suspended in DMEM without glucose and were used for the adherence assay 

protocol described above. 

 

 

6.13    Quantification of bacterial adhesion on eukaryotic cells by viable counting and 

    immunofluorescence analysis 

 

IMR-90 cells were seeded on 96-well tissue culture plates coated with collagen I (10
4
 cells / well) and 

cultured for 3 days. The day before infection, cells were incubated for 24 h in an antibiotic-free 

medium. L. lactis or C. difficile strains were grown to exponential phase and added at multiplicity of 

infection (MOI) of 100:1 in DMEM without glucose for 2 h at 37°C in 5% CO2. After several washings 

to remove non-adherent bacteria, cells were lysed with 1% saponin (Sigma), bacterial suspensions were 

serially diluted and plated onto appropriated culture solid medium for CFU counting. To perform the 

inhibition of adhesion, L. lactis cells were pre-incubated with -CbpAI-II serum (1:500) for 1 h at 37°C. 

As negative control, bacteria were incubated with the same concentrations of a pre-immune serum. 

After pre-incubation, bacteria were centrifuged and re-suspended in DMEM without glucose and were 

used for the adhesion assay as described above. For immunofluorescence analysis, cells seeded on 

chamber slides coated with collagen I were incubated with bacteria as described above. After 

incubation, wells were washed with PBS and fixed with 3.7% paraformaldehyde. Subsequently, 

samples were blocked with PBS containing 3% BSA for 1 h at room temperature and incubated with 

mouse polyclonal serum against PFA-fixed whole bacteria (1:1000) for 1 h at room temperature. Wells 

were washed several time with PBS and incubated with Alexa Fluor 488 goat anti-mouse IgG (1:500) 

and Alexa Fluor 568-conjugated phalloidin (1:200). Labeled samples were mounted with ProLong
®

 

Gold antifade reagent with DAPI and analyzed with Zeiss LSM710 confocal microscope. 
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6.14    Statistical analysis 

 

Results were assessed by the Student t test for unpaired data. P ≤ .05 was considered statistically 

significant (*,P ≤ .05; **, P ≤ .01; ***, P ≤ .001). 
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7. Supplementary figures 

 

 

 

 

            

 
Fig. S1 | Interaction of CbpA with immobilized ECM  

ELISA plates were coated with 10 µg ml
-1 

of purified ECM components and incubated with serially diluted recombinant 

CbpAI-II protein ranging from 4 nM to 0.23 uM. Binding of the protein was detected by anti-CbpAI-II antibody followed by 

HRP-conjugated-secondary antibody. BSA protein was used as negative control. 
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