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Introduction

The aim of the present work is to present the interplay between time-changed

stochastic processes (and pseudoprocesses) and partial differential equations. With

a certain abuse of language we refer to the time-change of the process X(t), t > 0,

as

X (Y (t)) , t > 0. (1)

A well-known example of time-changed process is the iterated Brownian motion

B1 (B2(t)), t > 0, (see Burdzy (1993a,b, 1998)) where Bi, i = 1, 2 are independent.

In DeBlassie (2004) it has been shown that the distribution q(x, t) of the iterated

Brownian motion solves the fourth-order equation

∂

∂t
q(x, t) =

1

23

∂4

∂x4
+

1

2
√

2πt

d2

dx2
δ(x), x ∈ R, t > 0. (2)

The study of the iterated Brownian motion has been stimulated by the fact that

it is able to model diffusions in cracks (Burdzy (1998), Chudnovsky and Kunin

(1987)). In the present work we choose Y (t), t > 0, with non-decreasing paths and

in particular we will focus on subordinators and their inverses. This restriction is

crucial.

Subordination, a brief overview

A subordinator σf (t) is a stochastic process with independent and stationary incre-

ments and non-decreasing paths. Furthermore a subordinator is a Lévy process and

thus one have (see Itô (1942))

σf (t) = bt+
∑

0≤s≤t

∆s, a.s. ∀t > 0, (3)

where ∆s, s > 0, is a Poisson point process with characteristic measure ν(ds) +aδ∞,

δ∞ is the Dirac point mass at infinity and ν, a, b, are known as the Lévy triplet and
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are such that

f(x) = a+ bx+

∫ ∞
0

(
1− e−sx

)
ν(ds),

∫ ∞
0

(s ∧ 1)ν(ds) <∞. (4)

We call X
(
σf (t)

)
, a subordinate process. The transition probabilities µt(B) =

Pr
{
σf (t) ∈ B

}
, B ⊆ [0,∞), of subordinators are convolution semigroups supported

on [0,∞), for which ∫ ∞
0

e−λsµt(ds) = e−tf(λ). (5)

We recall that in general a family of sub-probability measures pt, t ≥ 0, on Rn is

said to be a convolution semigroup if

1. pt (Rn) ≤ 1, ∀t ≥ 0,

2. pt ∗ ps = pt+s, ∀s, t ≥ 0,

3. pt → δ0, vaguely as t→ 0.

The concept of subordination has been introduced by Bochner (1949, 1955) and is

related to C0-semigroups. A bounded linear operator Tt acting on a function u ∈ B,

where (B, ‖•‖) is a Banach space, is said to be a C0-semigroup if ∀u ∈ B

1. T0u = u,

2. TtTsu = Tt+su, ∀u ∈ B, s, t ≥ 0,

3. limt→0 ‖Ttu− u‖ = 0, (strong continuity).

The operator

T fu =

∫ ∞
0

Tsuµt(ds), u ∈ B, (6)

where the integral must be meant in the Bochner sense, is said to be a subordinate

semigroup in the sense of Bochner and is again a C0-semigroup. A classical result

due to Phillips (1952) state that the infinitesimal generator of T fu is

Af = −f (−A)u = −a+ bAu+

∫ ∞
0

(Tsu− u) ν(ds). (7)



5 Introduction

The fractional case

If

ν(ds) =
αs−α−1

Γ(1− α)
ds, α ∈ (0, 1) (8)

one gets

f(x) = a+ bx+

∫ ∞
0

(
1− e−sx

) αs−α−1

Γ(1− α)
ds = xα (9)

which is the Laplace exponent of the α-stable subordinator. Consider the process

Lα(t) = inf {s > 0 : σα(s) ≥ t} . (10)

Such process is known in literature as the inverse of the α-stable subordinator

and has non-decreasing, non-independent and non-stationary increments (see Meer-

schaert and Sikorskii (2012)). In Baeumer and Meerschaert (2001) it has been shown

that a Lévy process time-changed with Lα(t), t > 0, solves the equation

R∂α

∂tα
u− u0 = Lu (11)

subjecto to suitable initial conditions. The time-derivative appearing in (11) is the

Riemann-Liouville fractional derivative defined for α ∈ (0, 1) as

Rdα

dtα
u(t) =

1

Γ(1− α)

d

dt

∫ t

0

u(s)

(t− s)α
ds, α ∈ (0, 1). (12)

Anomalous diffusions

The study of fractional equations has gained considerable popularity during the

past four decades. This is also due to the fact that a lot of applied scientists have

recognized the importance of fractional equations as a powerful tool able to describe

the reality. This is the case, for example, of Anomalous Diffusions (AD). It is well-

known that the mean-square displacement of a Brownian Motion (BM) is linear in

time and equal to 2t. However this is the way as the heat spreads over a homogeneous

media. When a diffusion process is obstructed or take place in a non-homogenous

media the mean-squared displacement is often non linear in time and equal to tα.

Such kind of diffusions are described by fractional equations.





Chapter 1

Space-time fractional telegraph

equations

Articles: D’Ovidio et al. (2012). Time-changed processes related to space-time frac-

tional telegraph equations.

D’Ovidio et al. (2014). Fractional telegraph-type equations and hyperbolic Brow-

nian motion.

Summary

In this work we construct compositions of vector processes of the form S2β
n (c2Lν(t)),

t > 0, ν ∈
(
0, 1

2

]
, β ∈ (0, 1], n ∈ N, whose distribution is related to space-time frac-

tional n-dimensional telegraph equations. We present within a unifying framework

the pde connections of n-dimensional isotropic stable processes S2β
n whose random

time is represented by the inverse Lν(t), t > 0, of the superposition of independent

positively-skewed stable processes, H ν(t) = H2ν
1 (t) + (2λ)

1
ν Hν

2 (t), t > 0, (H2ν
1 , Hν

2 ,

independent stable subordinators). As special cases for n = 1, ν = 1
2

and β = 1

we examine the telegraph process T at Brownian time |B| (Orsingher and Beghin

(2004)) and establish the equality in distribution B
(
c2L

1
2 (t)
)

law
= T (|B(t)|), t > 0.

Furthermore the iterated Brownian motion (Allouba and Zheng (2001)) and the two-

dimensional motion at finite velocity with a random time are investigated. For all

these processes we present their counterparts as Brownian motion at delayed stable-

distributed time. The last section of the paper is devoted to the interplay between

time-fractional hyperbolic equations and processes defined on the n-dimensional

Poincaré half-space.
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1.1 Introduction and preliminaries

1.1.1 Introduction

The study of the interplay between fractional equations and stochastic processes

has began in the middle of the Eighties with the analysis of simple time-fractional

diffusion equations (see Fujita (1990) for a rigorous work on this field, or more

recently Allouba and Nane (2012), where the compositions of Brownian sheets with

Brownian motions are considered). In some papers the connection between fractional

diffusion equations and stable processes is explored (see for example Orsingher and

Beghin (2009), Zolotarev (1986)). The iterated Brownian motion has distribution

satisfying the following fractional equation

∂
1
2

∂t
1
2

u(x, t) =
1

2
3
2

∂2

∂x2
u(x, t), x ∈ R, t > 0, (1.1)

(see for example Allouba and Zheng (2001)) and also the fourth-order equation

∂

∂t
u(x, t) =

1

23

∂4

∂x4
u(x, t) +

1

2
√

2πt

d2

dx2
δ(x), x ∈ R, t > 0, (1.2)

see DeBlassie (2004) (also for an interpretation of the iterated Brownian motion to

model the motion of a gas in a crack). Zaslavsky (1994) has studied the fractional

kinetic equation (derivatives are meant in the sense of Riemann-Liouville)

∂β

∂tβ
g(x, t) = Lg(x, t) + p0(x)

t−β

Γ(1− β)
, 0 < β < 1, x ∈ R, (1.3)

where p0 ∈ C∞ (R1) is the initial condition and

Lf = −a2
df

dx
+Dq

dαf

d(−x)α
+Dp

dαf

dxα
. (1.4)

For p = q = 1/2, the differential operator (1.4) is symmetric and Saichev and

Zaslavsky (1997) have given the solution to (1.3) in the form g(x, t) =
∫
p0(x −

y)h(y, t)dy where

f(x, t) =
t

β

∫ ∞
0

p(x, ξ)hβ

(
t

ξ
1
β

)
ξ−

1
β
−1dξ, (1.5)

where p(x, ξ) is the fundamental soution to

∂p

∂t
= Lp (1.6)

and the function hβ appearing in (1.5) is the law of a positively skewed stable r.v.

with Laplace transform ∫ ∞
0

e−sthβ(t)dt = e−s
β

. (1.7)
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Clearly lβ(ξ, t) = t
β
hβ

((
t

ξ
1
β

))
ξ−

1
β
−1 is the density of the inverse Lβ of Hβ since

Pr
{
Hβ(t) > ξ

}
= Pr

{
Lβ(ξ) < t

}
. (1.8)

Therefore the use of the inverse of subordinators in the solution of fractional equa-

tions with one time-fractional derivative can be traced back in the papers mentioned

above and in Baeumer and Meerschaert (2001).

When the fractional equation has a telegraph structure, with more than one

time-fractional derivative involved, that is for ν ∈ (0, 1](
∂2ν

∂t2ν
+ 2λ

∂ν

∂tν

)
u(x, t) = c2 ∂

2

∂x2
u(x, t), x ∈ R, t > 0, λ > 0, c > 0, (1.9)

the relationship of its solution with the time-changed telegraph processes is ex-

amined and established in Orsingher and Beghin (2004) . The space-fractional

telegraph equation (with M. Riesz space derivatives) has been considered in Ors-

ingher and Zhao (2003), while the connection between space-fractional equations

and asymmetric stable processes has been established in Feller (1952).

Fractional telegraph equations from the analytic point of view have been studied

by many authors (see Saxena et al. (2006) for equations with n time derivatives).

For their solutions have been worked out also numerical techniques (see, for example,

Momani (2005)). Telegraph equations have an extraordinary importance in electro-

dynamics (the scalar Maxwell equations are of this type), in the theory of damped

vibrations and in probability because they are connected with finite velocity random

motions.

In this paper we consider various types of processes obtained by composing sym-

metric stable processes S2β
n (t), t > 0, 0 < β ≤ 1, with the inverse of the sum of

two independent stable subordinators (instead of one as in Baeumer and Meer-

schaert (2001)) say Lν(t), t > 0, 0 < ν ≤ 1
2
. These time-changed processes,

Wn(t) = S2β
n (c2Lν(t)), t > 0, have distributions, wβν (x, t), x ∈ Rn, t > 0, which

satisfy telegraph-type space-time fractional equations of the form(
C∂2ν

∂t2ν
+ 2λ

C∂ν

∂tν

)
wβν (x, t) = −c2 (−∆)β wβν (x, t) , x ∈ Rn, t > 0, c > 0, λ > 0,

(1.10)

where 0 < β ≤ 1, 0 < ν ≤ 1
2
, subject to the initial condition

wβν (x, 0) = δ(x). (1.11)

The fractional Laplacian (−∆)β, appearing in (1.10), is defined and analyzed in

Section 1.3 below. The fractional derivatives appearing in (1.10) are meant in the
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Dzerbayshan-Caputo sense, that is, for an absolutely continuous function f ∈ L1 (R)

(for fractional calculus consult Kilbas et al. (2006)),

C∂ν

∂tν
f(t) =

1

Γ (m− ν)

∫ t

0

dm

dsm
f(s)

(t− s)ν+1−m ds, m− 1 < ν < m,m ∈ N. (1.12)

Equation (1.10) includes as particular cases all fractional equations studied so far

(including diffusion equations) and also the main equations of mathematical physics

as limit cases. Thus the distribution of the composed process S2β
n (Lν(t)), t > 0,

represents the fundamental solution of the most general n-dimensional time-space

fractional telegraph equation. We give the general Fourier transform of the solution

to (1.10) with initial condition (1.11) as

Eeiξ·S
2β
n (c2Lν(t)) =

=
1

2

1 +
λ√

λ2 − c2 ‖ξ‖2β

Eν,1 (r1t
ν) +

1− λ√
λ2 − c2 ‖ξ‖2β

Eν,1 (r2t
ν)

 ,
(1.13)

where

r1 = −λ+

√
λ2 − c2 ‖ξ‖2β, r2 = −λ−

√
λ2 − c2 ‖ξ‖2β. (1.14)

and

Eν,ψ (x) =
∞∑
k=0

xk

Γ (νk + ψ)
, ν, ψ > 0, (1.15)

is the two-parameters Mittag-Leffler function (see, for example, Haubold, Mathai

and Saxena (2011) for a general overview on the Mittag-Leffler functions). Our

result therefore includes all previous results in a unique framework and sheds an

additional insight into the literature in this field.

An important role in our analysis is played by the time change based on the

process Lν(t), t > 0. We consider first the sum of two independent positively

skewed stable r.v.’s H2ν
1 (t) and Hν

2 (t), t > 0, 0 < ν ≤ 1
2
,

H ν(t) = H2ν
1 (t) + (2λ)

1
ν Hν

2 (t), t > 0, (1.16)

whose distribution hν(x, t) is governed by the space fractional equation

∂

∂t
hν(x, t) = −

(
∂2ν

∂x2ν
+ 2λ

∂ν

∂xν

)
hν(x, t), x ≥ 0, t > 0, 0 < ν ≤ 1

2
. (1.17)

In (1.17) the fractional derivatives must be meant in the Riemann-Liouville sense

which, for a function f ∈ L1 (R), is defined as

∂ν

∂xν
f(x) =

1

Γ (m− ν)

dm

dxm

∫ x

0

f(s)

(x− s)ν+1−m ds, m− 1 < ν < m,m ∈ N.

(1.18)
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We then take the inverse Lν(t), t > 0, to the process H ν(t), t > 0, defined as

Lν(t) = inf
{
s > 0 : H2ν

1 (s) + (2λ)
1
ν Hν

2 (s) ≥ t
}
, t > 0, (1.19)

whose distribution is related to that of H ν(t), t > 0, by means of the formula

Pr {Lν(t) < x} = Pr {H ν(x) > t} . (1.20)

The distribution lν(x, t) of Lν(t), t > 0, satisfies the time-fractional telegraph equa-

tion (
∂2ν

∂t2ν
+ 2λ

∂ν

∂tν

)
lν(x, t) = − ∂

∂x
lν(x, t), x ≥ 0, t > 0, 0 < ν ≤ 1

2
, (1.21)

where the fractional derivatives appearing in (1.21) are again in the Riemann-

Liouville sense. We are able to give explicit forms of the Laplace transforms of

hν(x, t) and lν(x, t) in terms of Mittag-Leffler functions for all values of 0 < ν ≤ 1
2
.

For example, for the distribution lν(x, t) of Lν(t) we have that, for γ < λ2,∫ ∞
0

e−γxlν(x, t) dx =

=
1

2

[(
1 +

λ√
λ2 − γ

)
Eν,1 (r1t

ν) +

(
1− λ√

λ2 − γ

)
Eν,1 (r2t

ν)

]
, (1.22)

where

r1 = −λ+
√
λ2 − γ, r2 = −λ−

√
λ2 − γ. (1.23)

The distribution lν(x, t) of Lν(t), t > 0, has the general form

lν(x, t) =

∫ t

0

l2ν (x, s) hν(t− s, 2λx) ds+ 2λ

∫ t

0

lν(2λx, s)h2ν (t− s, x) ds, (1.24)

where the distributions of H2ν , Hν , and that of their inverse processes L2ν and

Lν appear. For our analysis it is relevant to obtain the distributions of H
1
2 (t),

t > 0, and L
1
2 (t), t > 0. We also obtain explicitely the distributions of H

1
3 (t)

and H
2
3 (t), t > 0, and also of their inverses L

1
3 (t) and L

2
3 (t), t > 0, in terms of

Airy functions. By means of the convolutions of these distributions we arrive at the

following cumbersome density of the random time L
1
3 (t), t > 0,

Pr
{

L
1
3 (t) ∈ dx

}
=

2λ√
π

∫ t

0

ds

∫ ∞
0

dw e−ww−
1
6 Ai

(
−x 3

√
22w

3(t− s)2

)
Ai

(
2λx
3
√

3s

)
·

· 3
3
√

3s
3

√
22

3(t− s)2

[
x

2s
+

s

t− s

]
dx. (1.25)
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For n = 1, β = 1 and ν = 1 in (1.10), we get the telegraph equation which is

satisfied by the distribution of the one-dimensional telegraph process

T (t) = V (0)

∫ t

0

(−1)N(s) ds, t > 0, (1.26)

where N(t), t > 0 is an homogeneous Poisson process, with parameter λ > 0,

independent from the symmetric r.v. V (0) (with values ±c). Properties of this

process (including first-passage time distributions) are studied in Foong and Kanno

(1994) and a telegraph process with random velocities has been recently considered

by Stadje and Zacks (2004).

For n = 1, β = 1 and ν = 1
2

the special equation
(
∂
∂t

+ 2λ ∂
1
2

∂t
1
2

)
w1

1
2

(x, t) = c2 ∂2

∂x2w
1
1
2

(x, t), x ∈ R, t > 0,

w1
1
2

(x, 0) = δ(x),
(1.27)

has solution coinciding with the distribution of T (|B(t)|), t > 0, where |B(t)|,
t > 0, is a reflecting Brownian motion independent from T (see Orsingher and

Beghin (2004)). For λ → ∞, c → ∞, in such a way that c2

λ
→ 1 the fractional

diffusion equation (1.1) is obtained from (1.27) and the composition T (|B(t)|), t > 0,

converges in distribution to the iterated Brownian motion. Our result, specialized

to this particular case gives the following unexpected equality in distribution

T (|B(t)|) law
= B

(
c2L

1
2 (t)
)
, t > 0, (1.28)

where

Pr
{
B
(
c2Lν(t)

)
∈ dx

}
=

λ dx

cπ

∫ t

0

1√
s(t− s)

e−
x2

4c2s
−λ

2s2

t−s

(
s

2(t− s)
+ 1

)
ds,

(1.29)

and

Pr {T (|B(t)|) ∈ dx} =

∫ ∞
0

Pr {T (s) ∈ dx} Pr {|B(t)| ∈ ds} . (1.30)

The absolutely continuous component of the distribution of the telegraph process

T (t), t > 0, reads

Pr {T (s) ∈ dx} =
dx e−λt

2c

{
λ I0

(
λ

c

√
c2t2 − x2

)
+
∂

∂t
I0

(
λ

c

√
c2t2 − x2

)}
,

(1.31)

where |x| < ct, t > 0, c > 0, and

I0(x) =
∞∑
k=0

(x
2

)2k 1

(k!)2
. (1.32)
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For n = 2, β = 1 and ν = 1, equation (1.10) coincides with that of damped planar

vibrations (we call it planar telegraph equation) and governs the vertical oscillations

of thin deformable structures. The solution to
(
∂2

∂t2
+ 2λ ∂

∂t

)
r(x, y, t) = c2

(
∂2

∂x2 + ∂2

∂y2

)
r(x, y, t), x2 + y2 < c2t2, t > 0,

r(x, y, 0) = δ(x, y),

rt(x, y, 0) = 0,

(1.33)

corresponds to the distribution r(x, y, t) of the vector T (t) = (X(t), Y (t)) related to

a planar motion described in Orsingher and De Gregorio (2007). This random mo-

tion T (t), t > 0, is performed at finite velocity c, possesses sample paths composed

by segments whose orientation is uniform in (0, 2π), and with changes of direction

at Poisson times. The distribution r(x, y, t) of T (t), t > 0, is concentrated inside a

circle Cct of radius ct and has an absolutely continuous component which reads

r(x, y, t) =
λ

2πc

e−λt+
λ
c

√
c2t2−(x2+y2)√

c2t2 − (x2 + y2)
, (x, y) ∈ Cct, t > 0. (1.34)

If no Poisson event occurs, the moving particle reaches the boundary ∂Cct of Cct

with probability e−λt. The vector process T (t), t > 0, taken at a random time

represented by a reflecting Brownian motion, |B(t)|, has distribution

q(x, y, t) =

∫ ∞
0

Pr {X(t) ∈ ds, Y (t) ∈ ds} Pr {|B(t)| ∈ ds} (1.35)

which satisfies the fractional equation(
∂

∂t
+ 2λ

∂
1
2

∂t
1
2

)
q(x, y, t) = c2

(
∂2

∂x2
+

∂2

∂y2

)
q(x, y, t), (x, y) ∈ R2, t > 0.

(1.36)

However, the distribution of B2

(
c2L

1
2 (t)
)

, t > 0, does not coincide with (1.35) (B2

is a two dimensional Brownian motion). In this case the role of T (t), t > 0, in (1.28)

is here played by a process which is a slight modification of T (t), t > 0. We take

the planar process with law

r(x, y, t) =
λ e−λt

2πc

[
e
λ
c

√
c2t2−(x2+y2) + e−

λ
c

√
c2t2−(x2+y2)√

c2t2 − (x2 + y2)

]
, x2 + y2 < c2t2, t > 0,

(1.37)

which also solves equation (1.33). The process with distribution

q(x, y, t) =

∫ ∞
0

r(x, y, s)

[
Pr {|B(t)| ∈ ds}+

1

2λ

∂
1
2

∂t
1
2

Pr {|B(t)| ∈ ds}

]
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=

∫ ∞
0

(
r(x, y, s) +

∂

∂s
r(x, y, s)

)
Pr {|B(t)| ∈ ds} , (1.38)

has the same law of a planar Brownian motion at the time L
1
2 (t), t > 0. The

process T(t), t > 0, possessing distribution (1.37) is obtained from T (t), t > 0, by

disregarding displacements started off by even-order Poisson events.

The last section of the paper is concerned with random motions on the hyper-

bolic Poincaré half-space, Hn = {x, y : x ∈ Rn−1, y > 0}, whose distributions are

governed by fractional equations of the form
(
∂2ν

∂t2ν
+ 2λ ∂ν

∂tν

)
pνn(η, t) = ∂

∂η

(
sinhn−1 η ∂

∂η

(
1

sinhn−1 η
pνn(η, t)

))
, η > 0, t > 0

pνn(η, 0) = δ (η) ,

(1.39)

for 0 < ν ≤ 1
2

and n ∈ N. The corresponding kernel

κνn(η, t) =
1

sinhn−1 η
pνn(η, t), η > 0, t > 0, (1.40)

solves instead the fractional equations
(
∂2ν

∂t2ν
+ 2λ ∂ν

∂tν

)
κνn(η, t) = 1

sinhn−1 η
∂
∂η

(
sinhn−1 η ∂

∂η
κνn(η, t)

)
, η > 0, t > 0,

κνn (η, 0) = δ (η) .

(1.41)

The process T ν
n (t), t > 0, in Hn which possesses distribution pνn(x, t) solving (1.39)

is obtained by means of the composition

T ν
n (t) = Bhp

n (Lν(t)) , t > 0, (1.42)

where Bhp
n is the hyperbolic Brownian motion in Hn. The hyperbolic Brownian

motion has been introduced in the plane by Gertsenshtein and Vasiliev (1959) and

in H3 by Karpelevich, Tutubalin and Shur (1959), in 1959. In successive papers

many properties of the hyperbolic Brownian motions have been explored (see for

example Getoor (1961), Gruet (1996), Lao and Orsingher (2007), Matsumoto and

Yor (2005)). The relationship between kernels in H2 and H3 and kernels in higher-

order spaces is represented by Millson formula

kn+2 (η, t) = − e−nt

2π sinh η

∂

∂η
kn(η, t), η > 0, t > 0, n ∈ N. (1.43)

Since php3 and k3 are considerably simpler than php2 and k2 we give explicit expressions

for the distribution

p
1
2
3 (η, t) =

λ η sinh η

2π

∫ t

0

e−s

s
3
2

√
t− s

e−
λ2s2

t−s −
η2

4s

(
s

t− s
+ 2

)
ds, (1.44)

where η > 0 and t > 0. This distribution solves the fractional-hyperbolic telegraph

equation (1.39), for ν = 1
2

and n = 3.
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1.1.2 Notations

For the reader convenience we list below the main notations used throughout the

paper.

• S2β
n (t) =

(
S2β

1 (t), S2β
2 (t), · · · , S2β

n (t)
)

, t > 0, 0 < β ≤ 1, n ∈ N is a isotropic

stable n-dimensional process with law vβ (x, t), x ∈ Rn, t > 0.

• Hν(t), t > 0, 0 < ν < 1, is a totally positively-skewed stable process (stable

subordinator), with law hν(x, t), x ≥ 0, t > 0.

• Lν(t), t > 0, is the inverse of Hν(t), t > 0, and has law lν(x, t), x ≥ 0, t > 0.

• H ν(t) = H2ν
1 (t) + (2λ)

1
ν Hν

2 (t), t > 0, is the sum of two independent stable

subordinators and has law hν(x, t), x ≥ 0, t > 0.

• Lν(t), t > 0, is the inverse of H ν(t), t > 0 and possesses distribution lν(x, t),
x ≥ 0, t > 0.

• T (t), t > 0, is a telegraph process with parameters c > 0 and λ > 0 and law

pT (x, t), −ct < x < ct, t > 0.

• Wn (t) = S2β
n (c2Lν(t)), t > 0, has law wβν (x, t), x ∈ Rn, t > 0.

• W (t) = T (|B(t)|), t > 0, has distribution w(x, t), x ∈ R, t > 0.

• T (t), t > 0, is the planar process with infinite directions, parameters c, λ > 0

and law r(x, y, t), (x, y) ∈ Cct = {(x, y) ∈ R2 : x2 + y2 < c2t2}, t > 0.

• T(t), t > 0, is the planar process with infinite directions, parameters c, λ > 0

and law r(x, y, t), (x, y) ∈ Cct = {(x, y) ∈ R2 : x2 + y2 < c2t2}, t > 0, con-

structed by disregading displacements started off only by even-labelled Poisson

events.

• Q(t) = T (|B(t)|), t > 0, has law q(x, y, t), (x, y) ∈ R2, t > 0.

• Bhp
n (t), t > 0, is the n-dimensional hyperbolic Brownian motion in Hn =

{(x, y) : x ∈ Rn−1, y > 0} and has law phpn (η, t), η > 0, t > 0 with kernel

kn(η, t), η > 0, t > 0.

• T ν
n (t) = Bhp

n (Lν(t)), t > 0, has distribution pνn(η, t), η > 0, t > 0 and kernel

κνn(η, t), η > 0, t > 0.

• By f̃ we denote the Laplace transform of the function f and by f̂ we denote

its Fourier transform.
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1.1.3 Preliminaries

Let us consider a stable process Sν(t), t > 0, 0 < ν ≤ 2, ν 6= 1, with characteristic

function

EeiξSν(t) = e−σ|ξ|
νt(1−iθ sign(ξ) tan νπ

2 ) (1.45)

where θ ∈ [−1, 1] is the skewness parameter and

σ = cos
πν

2
. (1.46)

For θ = 1 the distribution corresponding to (1.45) is totally positively skewed and

for θ = −1 is totally negatively skewed. The stable process with stationary and

independent increments, totally positively skewed will be denoted as Hν(t), t >

0. We note that the density hν(x, t), of Hν(t), is zero at x = 0 as the following

calculation show

hν(0, t) =
1

2π

∫ ∞
−∞

EeiξHν(t) dξ =
1

2π

∫ ∞
−∞

e−σ|ξ|
νt(1−i tan νπ

2 )dξ

=
1

2π

[∫ ∞
0

e−σ|ξ|
νt(1−i tan νπ

2 )dξ +

∫ 0

−∞
e−σ|ξ|

νt(1+i tan νπ
2 )dξ

]
=

1

2π

[∫ ∞
0

e−|ξ|
νte−

iνπ
2 dξ +

∫ ∞
0

e−|ξ|
νte

iνπ
2 dξ

]
=

1

2π

[∫ ∞
0

e−z
(z
t

) 1
ν
−1

e
iπ
2 dz +

∫ ∞
0

e−z
(z
t

) 1
ν
−1 1

t
e−

iπ
2 dz

]
=

cos π
2

π

∫ ∞
0

e−z
(z
t

) 1
ν
−1 1

t
dz = 0. (1.47)

The positively skewed stable r.v. Hν(t) has x-Laplace transform

h̃ν (µ, t) = Ee−µHν(t) = e−tµ
ν

, 0 < ν < 1, (1.48)

and therefore Fourier transform

ĥν (ξ, t) = EeiξHν(t) = E
(
e−(−iξ)Hν(t)

)
= e

−t
(
|ξ|e−

iπ
2 sign(ξ)

)ν
= e−t|ξ|

ν cos πν
2 (1−i sign(ξ) tan πν

2 ). (1.49)

This shows once again that the skeweness parameter is θ = 1.

The probability law hν(x, t), of Hν(t), t > 0, solves the boundary-initial problem
(
∂
∂t

+ ∂ν

∂xν

)
hν(x, t) = 0, x > 0, t > 0, 0 < ν < 1,

hν(0, t) = 0,

hν(x, 0) = δ(x).

(1.50)
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By taking the x-Laplace transform of the Riemann-Liouville fractional derivative

appearing in (1.50) we have that

L
[
∂ν

∂xν
hν(x, t)

]
(µ) =

∫ ∞
0

e−µx
∂ν

∂xν
hν(x, t) dx

=

∫ ∞
0

e−µx
[

1

Γ (1− ν)

d

dx

∫ x

0

hν(z, t)

(x− z)ν
dz

]
dx

=

∫ ∞
0

e−µx
[

1

Γ (1− ν)

∫ x

0

d

dx

hν(x− z, t)
zν

dz +
hν(0, t)

Γ (1− ν) xν

]
dx

=
hν(0, t)

Γ (1− ν)

∫ ∞
0

e−µxx1−ν−1 dx+
1

Γ (1− ν)

∫ ∞
0

dz

zν

∫ ∞
z

dx e−µx
d

dx
hν(x− z, t)

=hν(0, t)µ
ν−1 +

1

Γ (1− ν)

∫ ∞
0

e−µzz−νdz

∫ ∞
0

e−µx
d

dx
hν(x, t)dx

=hν(0, t)µ
ν−1 +

[∫ ∞
0

e−µxhν(x, t)dx

]
µ

1

µ1−ν − µ
ν−1hν(0, t) = µν h̃ν (µ, t) . (1.51)

Therefore  ∂
∂t
h̃ν (µ, t) + µν h̃ν (µ, t) = 0, µ > 0, t > 0,

h̃ν (µ, 0) = 1,
(1.52)

so that

h̃ν (µ, t) = e−µ
νt. (1.53)

In other words the density of a positively skewed stable r.v. solves the space-

fractional problem (1.50).

We will also deal with the inverse process of Hν(t), t > 0, say Lν(t), t > 0, for

which

Pr {Hν(x) > t} = Pr {Lν(t) < x} , x > 0, t > 0. (1.54)

Such a process has non-negative, non-stationary and non-independent increments.

Furthemore we recall that the law lν(x, t) of Lν(t), can be written as

lν(x, t) =
1

tν
W−ν,1−ν

(
− x
tν

)
, x ≥ 0, t > 0, (1.55)

where

Wa,b(x) =
∞∑
k=0

xk

k! Γ (ak + b)
, x ∈ R, a > −1, b ∈ C, (1.56)

is the Wright function, and has Laplace transform

l̃ν(x, µ) =

∫ ∞
0

e−µtlν(x, t)dt =

∫ ∞
0

e−µt
1

tν
W−ν,1−ν

(
− x
tν

)
dt = µν−1e−xµ

ν

.

(1.57)
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1.2 Sum of stable subordinators, H ν(t) = H2ν
1 (t) +

(2λ)
1
νHν

2 (t)

For the construction of the vector process Wn(t) = S2β
n (c2Lν(t)), t > 0, whose

distribution is driven by the general space-time fractional telegraph equation (1.10),

we need the sum H ν(t), t > 0, of two independent positively skewed processes. The

second step consists in constructing the process Lν(t), t > 0, inverse to H ν(t), t > 0.

We now start by considering the following sum

H ν(t) = H2ν
1 (t) + (2λ)

1
ν Hν

2 (t), t > 0, 0 < ν ≤ 1

2
, (1.58)

with H2ν
1 , Hν

2 , independent, positively-skewed, stable random variables, λ > 0. The

distribution of H ν(t) can be written as

hν (x, t) =

∫ x

0

h2ν(y, t)hν(x− y, 2λt) dy. (1.59)

Taking the double Laplace transform of (1.59), with respect to t and x, we get

˜̃hν (γ, µ) =

∫ ∞
0

e−µt
∫ ∞

0

e−γxhν(x, t) dx dt =

∫ ∞
0

e−µt−tγ
2ν−2λtγνdt

=
1

γ2ν + 2λγν + µ
=

[
1

γν − r2

− 1

γν − r1

]
1

r2 − r1

(1.60)

where, for 0 < µ < λ2, r1 = −λ−
√
λ2 − µ,

r2 = −λ+
√
λ2 − µ.

(1.61)

By means of formula ∫ ∞
0

e−γx xα−1Eα,α (ηxα) dx =
1

γα − η
, (1.62)

where Eν,ν(z) is the Mittag-Leffler function defined in (1.15), we can invert the

x-Laplace transform in (1.60) obtaining, for µ < λ2,

h̃ν (x, µ) =

=
xν−1

2
√
λ2 − µ

[
Eν,ν

((
−λ+

√
λ2 − µ

)
xν
)
− Eν,ν

((
−λ−

√
λ2 − µ

)
xν
)]

=
1

2
√
λ2 − µ

[
1

−λ+
√
λ2 − µ

∂

∂x
Eν,1

((
−λ+

√
λ2 − µ

)
xν
)

− 1

−λ−
√
λ2 − µ

∂

∂x
Eν,1

((
−λ−

√
λ2 − µ

)
xν
)]

. (1.63)
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Formula (1.63) gives the explicit form of the t-Laplace transform of hν(x, t) in terms

of Mittag-Leffler functions. In view of formula

Eν,1 (−λtν) =
1

π

∫ ∞
0

e−λ
1
ν txxν−1 sin πν

x2ν + 1 + 2xν cos πν
dx, 0 < ν < 1, (1.64)

we have that

h̃ν (x, µ) =
1

2
√
λ2 − µ

 1

−λ+
√
λ2 − µ

∂

∂x

∫ ∞
0

e
−xy

(
λ−
√
λ2−µ

) 1
ν

yν−1 sin πν dy

π (y2ν + 1 + 2yν cos πν)

+
1

λ+
√
λ2 − µ

∂

∂x

∫ ∞
0

e
−xy

(
λ+
√
λ2−µ

) 1
ν

yν−1 sin πν dy

π (y2ν + 1 + 2yν cosπν)


=

∫ ∞
0

dy yν sin πν

π (y2ν + 1 + 2yν cos πν)

1

2
√
λ2 − µ

[(
λ−

√
λ2 − µ

) 1
ν
−1

·

· e−xy
(
λ−
√
λ2−µ

) 1
ν

−
(
λ+

√
λ2 − µ

) 1
ν
−1

e
−xy

(
λ+
√
λ2−µ

) 1
ν

]

=E

{
Uν

2
√
λ2 − µ

[
(−r2)

1
ν
−1 e−xUν(−r2)

1
ν − (−r1)

1
ν
−1 e−xUν(−r1)

1
ν

]}

=
1

r2 − r1

∂

∂x
E

[
e−xUν(−r2)

1
ν

r2

− e−xUν(−r1)
1
ν

r1

]
, (1.65)

where Uν is the Lamperti distribution with density

Pr {Uν ∈ du}
du

=
sin πν

π

uν−1

1 + u2ν + 2uν cos πν
, u > 0, (1.66)

and represents the law of the ratio of two independent stable r.v.’s of the same order

ν.

Theorem 1.2.1. The law hν(x, t) of the process H ν(t) = H2ν
1 (t) + (2λ)

1
ν Hν

2 (t)

solves the fractional problem
∂
∂t

hν (x, t) = −
(
∂2ν

∂x2ν + 2λ ∂ν

∂xν

)
hν(x, t), x > 0, t > 0, 0 < ν < 1

2
,

hν(0, t) = 0,

hν(x, 0) = δ(x).

(1.67)

The fractional derivatives appearing in (1.67) are intended in the Riemann-Liouville

sense.

Proof. By considering (1.49), we have that the Fourier transform of hν(x, t) is written

as

ĥν(ξ, t) = EeiξH ν(t) = Eeiξ
[
H2ν(t)+(2λ)

1
ν Hν(t)

]
= EeiξH2ν(t)eiξH

ν(2λt)
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= e−t|ξ|
2ν cosπν(1−i sign(ξ) tanπν)−2λt|ξ|ν cos πν

2 (1−i sign(ξ) tan πν
2 )

= e
−t
(
|ξ|e−

iπ
2 sign(ξ)

)2ν

−2λt
(
|ξ|e−

iπ
2 sign(ξ)

)ν
, (1.68)

and thus

∂

∂t
ĥν (ξ, t) =

[
−
(
|ξ| e−

iπ
2

sign(ξ)
)2ν

− 2λ
(
|ξ| e−

iπ
2

sign(ξ)
)ν]

·

· e−t
(
|ξ|e−

iπ
2 sign(ξ)

)2ν

−2λt
(
|ξ|e−

iπ
2 sign(ξ)

)ν
(1.69)

In view of the relationship

|ξ| e−
iπ
2

sign(ξ) = −iξ (1.70)

we have that formula (1.69) can be rewritten as

∂

∂t
ĥν (ξ, t) =

[
− (−iξ)2ν − 2λ (−iξ)ν

]
e−t(−iξ)

2ν−2λt(−iξ)ν . (1.71)

In (1.51) we have shown that

L
[
∂ν

∂xν
hν (x, t)

]
(µ) =

∫ ∞
0

e−µx
∂ν

∂xν
hν(x, t) dx = µν h̃ν(µ, t) (1.72)

and thus for a sufficiently good function f we have the following Fourier transform

F
[
∂ν

∂xν
f(x)

]
(ξ) =

∫ ∞
0

e−(−iξ)x ∂
ν

∂xν
f(x) dx = (−iξ)ν f̂(ξ). (1.73)

In view of (1.73) we have that the Fourier transform of the right-hand side of the

equation (1.67), equipped with the boundary conditions, is written as

−F
[
∂2ν

∂x2ν
hν (x, t) + 2λ

∂ν

∂xν
hν (x, t)

]
(ξ) =

= −
∫ ∞

0

e−(−iξ)x ∂
2ν

∂x2ν
hν (x, t) dx − 2λ

∫ ∞
0

e−(−iξ)x ∂
ν

∂xν
hν (x, t) dx

= −
(
(−iξ)2ν + 2λ (−iξ)ν

)
ĥν (ξ, t)

= −
(
(−iξ)2ν + 2λ (−iξ)ν

)
e
−t
(
|ξ|e−

iπ
2 sign(ξ)

)2ν

−2λt
(
|ξ|e−

iπ
2 sign(ξ)

)ν
= −

(
(−iξ)2ν + 2λ (−iξ)ν

)
e−t(−iξ)

2ν−2λt(−iξ)ν , (1.74)

which coincides with formula (1.71). This is tantamount to saying that the Fourier

transform ĥν (ξ, t) is the solution to ∂
∂t

ĥν (ξ, t) = −
(
(−iξ)2ν + 2λ (−iξ)ν

)
ĥν (ξ, t) , ξ ∈ R, t > 0,

ĥν (ξ, 0) = 1,
(1.75)

and this completes the proof.
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1.2.1 The inverse process Lν(t)

Let Lν(t), t > 0, be the inverse process of H ν(t), t > 0, as defined in (1.19) for which

Pr {Lν(t) < x} = Pr {H ν(x) > t} , x, t > 0, (1.76)

and let lν(x, t) be the law of Lν(t), t > 0. We have the following result.

Theorem 1.2.2. The law lν(x, t) of the process Lν(t), t > 0, solves the time-

fractional boundary-initial problem
(
∂2ν

∂t2ν
+ 2λ ∂ν

∂tν

)
lν(x, t) = − ∂

∂x
lν(x, t), x > 0, t > 0, 0 < ν < 1

2
,

lν(x, 0) = δ(x),

lν(0, t) = t−2ν

Γ(1−2ν)
+ 2λ t−ν

Γ(1−ν)
,

(1.77)

and has x-Laplace transform which reads, for 0 < γ < λ2,

l̃ν (γ, t) =
1

2

[(
1 +

λ√
λ2 − γ

)
Eν,1 (r1t

ν) +

(
1− λ√

λ2 − γ

)
Eν,1 (r2t

ν)

]
, (1.78)

where

r1 = −λ+
√
λ2 − γ, r2 = −λ−

√
λ2 − γ. (1.79)

The fractional derivatives appearing in (1.77) are intended in the Riemann-Liouville

sense.

Proof. We first show that the analytical solution to the problem (1.77) has double

Laplace transform
˜̃lν (γ, µ) written as

˜̃lν (γ, µ) =
µ2ν−1 + 2λµν−1

µ2ν + 2λµν + γ
. (1.80)

By taking the t-Laplace transform of the equation in (1.77) we have that

µ2ν l̃ν (x, µ) + 2λµν l̃ν (x, µ) = − ∂

∂x
l̃ν (x, µ) . (1.81)

By taking into account the boundary condition and performing the x-Laplace trans-

form of (1.81) we have that(
µ2ν + 2λµν

) ˜̃lν (γ, µ) = l̃ν (0, µ)− γ ˜̃lν (γ, µ) . (1.82)

Now, by considering the boundary condition, we get that

l̃ν (0, µ) =

∫ ∞
0

dt e−µtlν (0, t) =

∫ ∞
0

dt e−µt
[

t−2ν

Γ (1− 2ν)
+ 2λ

t−ν

Γ (1− ν)

]
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= µ2ν−1 + 2λµν−1, (1.83)

and thus

˜̃lν (γ, µ) =
µ2ν−1 + 2λµν−1

µ2ν + 2λµν + γ
. (1.84)

Now we show that the double Laplace transform of the law lν (x, t) coincides with

(1.80). We first recall that

h̃ν(µ, x) =

∫ ∞
0

dt e−µthν(t, x) = Ee−µH ν(x) = Ee−µH2ν(x)Ee−µHν(2λx)

= h̃2ν (µ, x) h̃ν (µ, 2λx) = e−xµ
2ν−x2λµν , x > 0, (1.85)

where we used result (1.48). By considering the construction of the process Lν(t),

t > 0, as the inverse process of H ν(t), t > 0, as stated in (1.76), we get

lν(x, t) =
Pr {Lν(t) ∈ dx}

dx
= − ∂

∂x
Pr {H ν(x) < t} = − ∂

∂x

∫ t

0

hν(s, x) ds. (1.86)

In view of (1.86), the double Laplace transform of lν(x, t) can be obtained observing

that

˜̃lν (γ, µ) =

∫ ∞
0

dx e−γx
∫ ∞

0

dt e−µt
[
− ∂

∂x

∫ t

0

hν(s, x) ds

]
= −

∫ ∞
0

dx e−γx
∂

∂x

∫ ∞
0

dt e−µt
∫ t

0

hν(s, x) ds

= − 1

µ

∫ ∞
0

dx e−γx
∂

∂x
h̃ν (x, µ) = − 1

µ

∫ ∞
0

dx e−γx
[
∂

∂x
e−xµ

2ν−2λxµν
]

=
(
µ2ν−1 + 2λµν−1

) ∫ ∞
0

dx e−γx−xµ
2ν−2λxµν =

µ2ν−1 + 2λµν−1

µ2ν + 2λµν + γ
, (1.87)

which coincides with (1.80). Now we pass to the derivation of the x-Laplace trans-

form of lν (x, t). We can write

˜̃lν (γ, µ) =
µ2ν−1 + 2λµν−1

µ2ν + 2λµν + γ
=

µν−1

µν − r1

+
µν−1

µν − r2

− µ2ν−1

(µν − r1) (µν − r2)

=
µν−1

µν − r1

+
µν−1

µν − r2

−
[
µν−(1−ν)

µν − r1

− µν−(1−ν)

µν − r2

]
1

2
√
λ2 − γ

, (1.88)

where

r1 = −λ+
√
λ2 − γ, r2 = −λ−

√
λ2 − γ. (1.89)

Now we need the following results∫ ∞
0

e−µtEν,1 (rjt
ν) dt =

µν−1

µν − rj
, j = 1, 2,
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∫ ∞
0

e−µtt(1−ν)−1Eν,1−ν (rjt
ν) dt =

µ2ν−1

µν − rj
. (1.90)

Therefore

l̃ν (γ, t) = Eν,1 (r1t
ν) + Eν,1 (r2t

ν)− t−ν

2
√
λ2 − γ

[Eν,1−ν (r1t
ν)− Eν,1−ν (r2t

ν)] .

(1.91)

Since

Eν,1−ν (z) = zEν,1(z) +
1

Γ (1− ν)
(1.92)

we have that

l̃ν (γ, t) = Eν,1 (r1t
ν) + Eν,1 (r2t

ν)− t−ν

2
√
λ2 − γ

[r1t
νEν,1 (r1t

ν)− r2t
νEν,1 (r2t

ν)]

=

(
1− −λ+

√
λ2 − γ

2
√
λ2 − γ

)
Eν,1 (r1t

ν) +

(
1− λ+

√
λ2 − γ

2
√
λ2 − γ

)
Eν,1 (r2t

ν)

=
1

2

[(
1 +

λ√
λ2 − γ

)
Eν,1 (r1t

ν) +

(
1− λ√

λ2 − γ

)
Eν,1 (r2t

ν)

]
, (1.93)

which coincides with (1.78).

Now we check that the Laplace transform (1.93) solves the fractional equation(
∂2ν

∂t2ν
+ 2λ

∂ν

∂tν

)
l̃ν (γ, t) = −γ l̃ν (γ, t) + lν (0, t)

= −γ l̃ν (γ, t) +
t−2ν

Γ(1− 2ν)
+ 2λ

t−ν

Γ (1− ν)
(1.94)

which is the x-Laplace transform of the equation appearing in (1.77). Since

∂2ν

∂t2ν
l̃ν(γ, t)−

t−2ν

Γ (1− 2ν)
=

C∂2ν

∂t2ν
l̃ν(γ, t) (1.95)

∂ν

∂tν
l̃ν(γ, t)−

t−ν

Γ (1− ν)
=

C∂ν

∂tν
l̃ν(γ, t) (1.96)

we therefore need to show that(
C∂2ν

∂t2ν
+ 2λ

C∂ν

∂tν

)
l̃ν(γ, t) = −γ l̃ν(γ, t). (1.97)

In light of

C∂ν

∂tν
Eν,1 (rjt

ν) = rjEν,1 (rjt
ν) , j = 1, 2, (1.98)
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C∂2ν

∂t2ν
Eν,1 (rjt

ν) = r2
j Eν,1 (rjt

ν) +
t−νrj

Γ (1− ν)
, (1.99)

we are able to show that (1.78) solves (1.94). We first check result (1.99) as follows,

for 0 < 2ν < 1

C∂2ν

∂t2ν
Eν,1 (rjt

ν) =
∞∑
k=0

rkj
Γ (νk + 1)

C∂2ν

∂t2ν
tνk

=
∞∑
k=1

rkj
Γ (νk + 1)

νk

Γ (1− 2ν)

∫ t

0

sνk−1 (t− s)−2ν ds

=
∞∑
k=1

rkj t
νk−2ν

Γ (νk)

1

Γ (1− 2ν)

∫ 1

0

sνk−1 (1− s)1−2ν−1 ds

=
∞∑
k=1

rkj t
νk−2ν

Γ (νk − 2ν + 1)
=

∞∑
k=0

rk+1
j tνk−ν

Γ (νk − ν + 1)

= rjt
−ν

[
∞∑
k=1

(rjt
ν)k

Γ (νk − ν + 1)
+

1

Γ (1− ν)

]
= r2

j Eν,1 (rjt
ν) +

t−νrj
Γ (1− ν)

. (1.100)

Therefore(
C∂2ν

∂t2ν
+ 2λ

C∂ν

∂tν

)
l̃ν (γ, t) =

=
1

2

[(
1 +

λ√
λ2 − γ

)
C∂2ν

∂t2ν
Eν,1 (r1t

ν) +

(
1− λ√

λ2 − γ

)
C∂2ν

∂t2ν
Eν,1 (r2t

ν)

]

+ 2λ
1

2

[(
1 +

λ√
λ2 − γ

)
C∂ν

∂tν
Eν,1 (r1t

ν) +

(
1− λ√

λ2 − γ

)
C∂ν

∂tν
Eν,1 (r2t

ν)

]

=
1

2

[(
1 +

λ√
λ2 − γ

)(
r2

1 Eν,1 (r1t
ν) +

t−νr1

Γ (1− ν)

)

+

(
1− λ√

λ2 − γ

)(
r2

2 Eν,1 (r2t
ν) +

t−νr2

Γ (1− ν)

)]

+ 2λ
1

2

[(
1 +

λ√
λ2 − γ

)
(r1Eν,1 (r1t

ν)) +

(
1− λ√

λ2 − γ

)
r2Eν,1 (r2t

ν)

]

=
1

2

[
r1

(
1 +

λ√
λ2 − γ

)
Eν,1 (r1t

ν) (r1 + 2λ) + r2

(
1− λ√

λ2 − γ

)
·

· Eν,1 (r2t
ν) (r2 + 2λ)

]
= − γ

2

λ+
√
λ2 − γ√

λ2 − γ
Eν,1 (r1t

ν)− γ

2

√
λ2 − γ − λ√
λ2 − γ

Eν,1 (r2t
ν)

= − γ

[
1

2

[(
1 +

λ√
λ2 − γ

)
Eν,1 (r1t

ν) +

(
1− λ√

λ2 − γ

)
Eν,1 (r2t

ν)

]]
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= − γ l̃ν (γ, t) . (1.101)

In the last steps we used the fact that(
1 +

λ√
λ2 − γ

)
r1 t
−ν

Γ (1− ν)
+

(
1− λ√

λ2 − γ

)
r2 t
−ν

Γ (1− ν)
= 0, (1.102)

and

r1 + 2λ = −r2, r2 + 2λ = −r1, r1r2 = γ. (1.103)

Remark 1.2.3. The derivation of result (1.78) suggests an alternative proof for the

Fourier transform (Theorem 2.2 in Orsingher and Beghin (2004)) of the law of the

time-fractional telegraph process.

Remark 1.2.4. From (1.88) we get the time Laplace transform of lν(x, t), for x >

0, µ > 0, 0 < ν < 1
2
, as

l̃ν (x, µ) = µ2ν−1e−xµ
2ν

e−2λxµν + 2λµν−1e−2λxµνe−xµ
2ν

. (1.104)

Since (see formulas (1.55) and (1.57))

l̃ν(x, µ) =

∫ ∞
0

e−µt
1

tν
W−ν,1−ν

(
− x
tν

)
dt = µν−1e−xµ

ν

(1.105)

and (see formula (1.53))

h̃ν(µ, t) =

∫ ∞
0

e−µxhν(x, t) dx = e−tµ
ν

, (1.106)

we are able to invert (1.104) and we obtain the explicit distribution of the process

Lν(t), t > 0, which reads

lν(x, t) =
Pr {Lν(t) ∈ dx}

dx

=

∫ t

0

l2ν (x, s) hν(t− s, 2λx) ds+ 2λ

∫ t

0

lν(2λx, s)h2ν (t− s, x) ds

=

∫ t

0

1

s2ν
W−2ν,1−2ν

(
− x

s2ν

)
hν(t− s, 2λx) ds

+ 2λ

∫ t

0

1

sν
W−ν,1−ν

(
−2λx

sν

)
h2ν (t− s, x) ds. (1.107)

The densities hν and h2ν can be written down in terms of series expansion of stable

laws (see pag. 245 of Orsingher and Beghin (2009)).
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1.3 n-dimensional stable laws and fractional Lapla-

cian

Let

S2β
n (t) =

(
S2β

1 (t), S2β
2 (t), · · · , S2β

n (t)
)
, t > 0, β ∈ (0, 1], (1.108)

be the isotropic stable n-dimensional process with joint characteristic function

v̂2β
n (ξ, t) = v̂2β

n (ξ1, ξ2, · · · , ξn, t) = Eeiξ·S
2β
n (t) = e

−t
(√

ξ2
1+ξ2

2+···+ξ2
n

)2β

= e−t‖ξ‖
2β

. (1.109)

The density corresponding to the characteristic function v̂2β
n (ξ, t) is given by

v2β
n (x, t) = v2β

n (x1, x2, · · · , xn, t) =
1

(2π)n

∫
Rn
e−iξ·xe−t‖ξ‖

2β

dξ. (1.110)

The equation governing the distribution v2β
n (x, t) of the vector process S2β

n (t), t > 0,

is (
∂

∂t
+ (−∆)β

)
v2β
n (x, t) = 0, x ∈ Rn, t > 0, (1.111)

where the fractional negative Laplacian is related to the classical Laplacian by means

of the following relationships (Bochner representation, see for example Balakrishnan

(1960), Bochner (1949))

sin πβ

π

∫ ∞
0

dλ λβ−1 (λ−∆)−1 ∆ =
sinπβ

π

∫ ∞
0

λβ−1

(∫ ∞
0

e−w(λ−∆)dw

)
∆ dλ

=
sin πβ

π
∆ Γ(β)

∫ ∞
0

w1−β−1e−w(−∆)dw =
∆

Γ (1− β)

∫ ∞
0

w1−β−1e−w(−∆)dw

= − (−∆)β . (1.112)

A definition of the fractional negative Laplacian can be given in the space of the

Fourier transforms as follows

− (−∆)β u(x) = − 1

(2π)n

∫
Rn
e−ix·ξ

(
ξ2

1 + ξ2
2 + · · ·+ ξ2

n

)β
û (ξ) dξ, (1.113)

where

Dom (−∆)β =

{
u ∈ L1

loc (Rn) :

∫
Rn
|û (ξ)|2

(
1 + ‖ξ‖2β

)
dξ <∞

}
. (1.114)

An equivalent alternative definition of the n-dimensional fractional Laplacian is

(−∆)β u(x) = c(β, n) P.V.

∫
Rn

u(x)− u(y)

‖x− y‖n+2β
dy, (1.115)
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where the multiplicative constant c(β, n) must be evaluated in such a way that∫
Rn
eiξ·x (−∆)β u(x) dx = ‖ξ‖2β

∫
Rn
eiξ·xu(x) dx. (1.116)

Let us focus our attention on the one-dimensional case of (1.115). In this case we

have that, for 0 < 2β < 1,(
− ∂2

∂x2

)β
u(x) = c(β, 1) P.V.

∫
R

u(x)− u(y)

|x− y|1+2β

= c(β, 1) lim
ε→0

[∫ 0−ε

−∞

u(x)− u(x− z)

|z|1+2β
dz +

∫ ∞
0+ε

u(x)− u(x− z)

|z|1+2β
dz

]
= c(β, 1) lim

ε→0

[∫ ∞
0+ε

u(x)− u(x+ z)

z1+2β
dz +

∫ ∞
0+ε

u(x)− u(x− z)

z1+2β
dz

]
=

Γ(1− 2β)

2β
c(β, 1)

[
1

Γ (1− 2β)

d

dx

(∫ x

−∞

u(z) dz

(x− z)2β
−
∫ ∞
x

u(z) dz

(z − x)2β

)]
, (1.117)

where in the intermediate steps, we considered the relation between the Marchaud

and the Weyl fractional derivatives. By setting

c(β, 1) =
2β

2 Γ (1− 2β) cos βπ
, (1.118)

we have that, for 0 < 2β < 1,

−
(
− ∂2

∂x2

)β
u(x) =

= − 1

2 cos βπ

[
1

Γ(1− 2β)

d

dx

∫ x

−∞

u(z) dz

(x− z)2β
− 1

Γ(1− 2β)

d

dx

∫ ∞
x

u(z) dz

(z − x)2β

]
= − 1

2 cos βπ

1

Γ(1− 2β)

d

dx

∫ ∞
−∞

u(z)

|x− z|2β
dz =

∂2β

∂|x|2β
u(x), (1.119)

where ∂2β

∂|x|2β represents the Riesz operator.

Remark 1.3.1. We notice that, for 0 < 2β < 1,

F
[
∂2β

∂|x|2β
u(x)

]
(ξ) = −|ξ|2β û(ξ). (1.120)

This is due to the calculation

F
[
∂2β

∂|x|2β
u(x)

]
(ξ) =

= − 1

2 cos βπ

1

Γ (1− 2β)

[∫ ∞
−∞

dx eiξx

(
d

dx

∫ x

−∞

u(z) dz

(x− z)2β
− d

dx

∫ ∞
x

u(z) dz

(z − x)2β

)]

=
iξ

2 cos βπ

1

Γ (1− 2β)

[∫ ∞
−∞

dx eiξx

(∫ x

−∞

u(z) dz

(x− z)2β
−
∫ ∞
x

u(z) dz

(z − x)2β

)]
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=
iξ

2 cos βπ

1

Γ (1− 2β)

[∫ ∞
−∞

dz u(z)

(∫ ∞
z

eiξx dx

(x− z)2β
−
∫ z

−∞

eiξx dx

(z − x)2β

)]

=
iξ

2 cos βπ

1

Γ (1− 2β)

[∫ ∞
−∞

eiξzu(z) dz

(∫ ∞
0

eiξy

y2β
dy −

∫ ∞
0

e−iξy

y2β
dy

)]
= − 2ξ

2 cos βπ

1

Γ (1− 2β)

∫ ∞
−∞

eiξzu(z) dz

∫ ∞
0

sin ξy

y2β
dy

= − ξ

cos βπ

1

Γ (1− 2β)

û(ξ)

Γ (2β)

∫ ∞
0

∫ ∞
0

sin ξy e−wyw2β−1 dw dy

= − ξ

cos βπ

1

Γ (1− 2β)

û(ξ)

Γ (2β)

∫ ∞
0

dww2β−1

∫ ∞
0

dy e−wy
(
eiξy − e−iξy

2i

)
= − ξ2

cos βπ

1

Γ (1− 2β)

û(ξ)

Γ (2β)

∫ ∞
0

dw
w2β−1

w2 + ξ2

= − ξ2

cos βπ

1

Γ (1− 2β)

û(ξ)

Γ (2β)

∫ ∞
0

dww2β−1

∫ ∞
0

dy e−y(w
2+ξ2)

= − ξ2

2 cos βπ

1

Γ (1− 2β)

û(ξ)

Γ (2β)

Γ (β) Γ (1− β)

|ξ|2−2β
= −|ξ|2β û(ξ). (1.121)

This concludes the proof of (1.120).

1.4 Space-time fractional telegraph equation

We consider now the composition of an isotropic vector of stable processes S2β
n (t),

t > 0, defined in (1.108), with the positively-valued process, defined in (1.76),

Lν(t) = inf
{
s > 0 : H ν(s) = H2ν

1 (s) + (2λ)
1
νHν

2 (s) ≥ t
}
, t > 0, (1.122)

where H2ν
1 , Hν

2 are independent positively skewed stable processes of order 2ν and ν,

respectively. The distribution wβν (x, t) of the process S2β
n (c2Lν(t)), t > 0, β ∈ (0, 1],

is the fundamental solution to the space-time fractional telegraph equation(
C∂2ν

∂t2ν
+ 2λ

C∂ν

∂tν

)
wβν (x, t) = −c2 (−∆)β wβν (x, t) , x ∈ Rn, t > 0. (1.123)

In our view the next theorem generalizes some previous results because we here have

fractionality in space and time and the equation (1.123) is defined in Rn.

Theorem 1.4.1. For ν ∈
(
0, 1

2

]
, β ∈ (0, 1] and c > 0 the solution to the Cauchy

problem for the space-time fractional n-dimensional telegraph equation
(
C∂2ν

∂t2ν
+ 2λ

C∂ν

∂tν

)
wβν (x, t) = −c2 (−∆)β wβν (x, t) , x ∈ Rn, t > 0

wβν (x, 0) = δ (x) ,
(1.124)
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coincides with the probability law of the vector process

Wn(t) = S2β
n

(
c2Lν(t)

)
, t > 0, (1.125)

and has Fourier transform which reads

ŵβν (ξ, t) =

=
1

2

1 +
λ√

λ2 − c2 ‖ξ‖2β

Eν,1 (r1t
ν) +

1− λ√
λ2 − c2 ‖ξ‖2β

Eν,1 (r2t
ν)

 ,
(1.126)

where

r1 = −λ+

√
λ2 − c2 ‖ξ‖2β, r2 = −λ−

√
λ2 − c2 ‖ξ‖2β. (1.127)

The time derivatives appearing in (1.124) must be meant in the Dzerbayshan-Caputo

sense. The fractional Laplacian is defined in (1.113).

Proof. By taking the Laplace transform of (1.124) we have

µ2νw̃βν (x, µ)− µ2ν−1δ(x) + 2λ

[
µνw̃βν (x, µ)− µν−1δ(x)

]
= −c2 (−∆)β w̃βν (x, µ) ,

(1.128)

where we used the fact that (see Kilbas et al. (2006) page 98, Lemma 2.24)

L
[
C∂ν

∂tν
wβν (x, t)

]
= µνw̃βν (x, µ)− µν−1wβν (x, 0). (1.129)

Now the Fourier transform of (1.128) yields

(
µ2ν + 2λµν

) ̂̃
wβν (ξ, µ)−

(
µ2ν−1 + 2λµν−1

)
= −c2 ‖ξ‖2β

̂̃
wβν (ξ, µ) , (1.130)

and thus ̂̃
wβν (ξ, µ) =

µ2ν−1 + 2λµν−1

µ2ν + 2λµν + c2 ‖ξ‖2β
, µ > 0, ξ ∈ Rn. (1.131)

The probability density of the process Wn(t), t > 0, defined in (1.125), can be

written as

wβν (x, t) =

∫ ∞
0

vβ
(
x, c2s

)
lν (s, t) ds, (1.132)

and has Fourier transform equal to∫
Rn
eiξ·xwβν (x, t) dx =

∫ ∞
0

e−c
2s‖ξ‖2β lν(s, t) ds. (1.133)
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In order to show that the Laplace transform of (1.133) concides with (1.131), we

have to derive the Laplace transform of lν(x, t), with respect to the time t. Since

Pr {Lν(t) < x} = Pr {H ν(x) > t} (1.134)

we have that

l̃ν (x, µ) =

=

∫ ∞
0

e−µt
∂

∂x

∫ ∞
t

Pr {H ν(x) ∈ ds} dt =

∫ ∞
0

e−µt
(
− ∂

∂x

∫ t

0

hν (s, x) ds

)
dt

= − ∂

∂x

e−xµ
2ν−2λxµν

µ
=
(
µ2ν−1 + 2λµν−1

)
e−xµ

2ν−2λxµν , (1.135)

where we used result (1.85). Now we can complete the proof by taking the Laplace

transform of (1.133) so that, in view of (1.135), we obtain∫ ∞
0

e−µtdt

∫ ∞
0

e−c
2s‖ξ‖2β lν(s, t) ds =

=
(
µ2ν−1 + 2λµν−1

) ∫ ∞
0

e−sc
2‖ξ‖2β−sµ2ν−2λsµν ds =

µ2ν−1 + 2λµν−1

µ2ν + 2λµν + c2 ‖ξ‖2β
, (1.136)

which coincides with (1.131). The unicity of Fourier-Laplace transform proves that

the claimed result holds. The proof that the Fourier transform of wβν (x, t) has the

form (1.126) can be carried out by means of the calculation performed in Theorem

1.2.2. We have that̂̃
wβν (ξ, µ) =

µ2ν−1 + 2λµν−1

µ2ν + 2λµν + c2 ‖ξ‖2β
=

µν−1

µν − r1

+
µν−1

µν − r2

− µ2ν−1

(µν − r1) (µν − r2)

=
µν−1

µν − r1

+
µν−1

µν − r2

−
[
µν−(1−ν)

µν − r1

− µν−(1−ν)

µν − r2

]
1

2

√
λ2 − c2 ‖ξ‖2β

,

(1.137)

where

r1 = −λ+

√
λ2 − c2 ‖ξ‖2β, r2 = −λ−

√
λ2 − c2 ‖ξ‖2β. (1.138)

and thus by inverting (1.137) by means of (1.90), we obtain result (1.126). An

alternative derivation of (1.126) can be carried out as follows

ŵβν (ξ, t) =

∫ ∞
−∞

eiξ·xdx

∫ ∞
0

Pr
{
S2β
n

(
c2s
)
∈ dx

}
Pr {Lν(t) ∈ ds}

=

∫ ∞
0

e−c
2s‖ξ‖2β Pr {Lν(t) ∈ ds} = (1.126) (1.139)

because of Theorem 1.2.2.
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1.4.1 The case ν = 1
2, subordinator with drift

The fractional equation (1.123), for n = 1, ν = 1
2
, reads(

∂

∂t
+ 2λ

C∂
1
2

∂t
1
2

)
wβ1

2

(x, t) = c2

(
∂2β

∂|x|2β

)
wβ1

2

(x, t) , 0 < β < 1, (1.140)

where ∂2β

∂|x|2β is the Riesz operator defined in (1.119). For β = 1 we have the special

case (
∂

∂t
+ 2λ

C∂
1
2

∂t
1
2

)
w1

1
2

(x, t) = c2 ∂
2

∂x2
w1

1
2

(x, t) (1.141)

dealt with in Orsingher and Beghin (2004). The construction of the composition

related to equation (1.140) involves the subordinator

H
1
2 (t) = t+ (2λ)2H

1
2 (t), t > 0, (1.142)

where H
1
2 (t), t > 0, is a positively-skewed stable process and has the same law as

the first-passage time of a Brownian motion through level t√
2
. We note that H

1
2 (t),

t > 0, has distribution with support [t,∞) and thus differs from H ν(t), t > 0,

0 < ν < 1
2
, which instead has support [0,∞). The distribution of (1.142) writes

Pr
{

H
1
2 (t) < x

}
=

∫ x−t
(2λ)2

0

t√
2

e−
t2

4z

√
2πz3

dz, x > t > 0. (1.143)

The inverse process

L
1
2 (t) = inf

{
s : s+ (2λ)2H

1
2 (s) ≥ t

}
= inf

{
s : H

1
2 (s) ≥ t

}
(1.144)

is related to (1.142) by means of the relationship

Pr
{

L
1
2 (t) < x

}
= Pr

{
H

1
2 (x) > t

}
=

∫ ∞
t−x

(2λ)2

x√
2

e−
x2

4z

√
2πz3

dz. (1.145)

From (1.145) we can extract the distributon of L
1
2 (t), t > 0, in the following manner

l 1
2
(x, t) =

Pr
{

L
1
2 (t) ∈ dx

}
dx

=
∂

∂x

∫ ∞
t−x

(2λ)2

x e−
x2

4z

√
4πz3

dz

=
2λx e−

(2λx)2

4(t−x)√
4π (t− x)3

+ 2λ
e−

(2λx)2

4(t−x)√
π(t− x)

, 0 < x < t. (1.146)

Remark 1.4.2. The distribution (1.146) can be also obtained from the general case

(1.107) which for ν = 1
2

becomes, for 0 < x < t,

l 1
2
(x, t) =

∫ t

0

δ(s− x)h 1
2
(t− s, 2λx) ds+ 2λ

∫ t

0

l 1
2
(2λx, s) δ (x− (t− s)) ds
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= h 1
2

(t− x, 2λx) + 2λ l 1
2
(2λx, t− x)

=
2λx e−

(2λx)2

4(t−x)√
4π (t− x)3

+ 2λ
e−

(2λx)2

4(t−x)√
π(t− x)

. (1.147)

In the last step we used the fact that

L
1
2 (t)

law
= |B(t)| , t > 0, (1.148)

where L
1
2 (t), t > 0, dealt with in section 1.1.3, is the inverse of the totally positively-

skewed stable process H
1
2 (t), t > 0.

The t-Laplace transform of (1.146) becomes

l̃ 1
2
(x, µ) =

∫ ∞
x

e−µt l 1
2
(x, t) dt =

=
2λx√

2

∫ ∞
x

e−µt
e−

(2λx)2

4(t−x)√
2π(t− x)3

dt+ 2λ

∫ ∞
x

e−µt
e−

(2λx)2

4(t−x)√
π(t− x)

dt

=
2λx√

2
e−µx

∫ ∞
0

e−µt
e−

(2λx)2

4t

√
2πt3

dt+ 2λe−µx
∫ ∞

0

e−µt
e−

(2λx)2

4t

√
πt

dt

= e−µxe−2λx
√
µ + 2λµ−

1
2 e−µxe−2λx

√
µ. (1.149)

Finally the x-Laplace transform of (1.149) becomes

˜̃l 1
2

(γ, µ) =

∫ ∞
0

e−γx
(∫ ∞

x

e−µt l 1
2
(x, t) dt

)
dx

=
1

µ+ γ + 2λ
√
µ

+
2λ
√
µ

1

µ+ γ + 2λ
√
µ

=
1 + 2λµ−

1
2

µ+ γ + 2λ
√
µ
, (1.150)

which coincides with (1.88), for ν = 1
2
. Let us now consider the process Wn(t) =

S2β
n (c2Lν(t)), t > 0, dealt with in Theorem 1.4.1. For β = 1, n = 1 and ν = 1

2
this

process becomes

W1(t) = S2
1

(
c2L

1
2 (t)
)

= B
(
c2L

1
2 (t)
)
, t > 0 (1.151)

where B represents a standard Brownian motion and L
1
2 (t), t > 0, is the process

defined in (1.144). With

p|B|(x, t) =
e−

x2

4t

√
πt
, x > 0, t > 0, (1.152)

we denote the law of the process |B(t)|, t > 0. In view of the previous results we

are able to prove the following theorem.
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Theorem 1.4.3. The law of (1.151) coincides with the law of the composition

W (t) = T (|B(t)|) , t > 0, (1.153)

where T is the telegraph process (1.26) with parameters c > 0, λ > 0 and law pT (x, t)

which has characteristic function

p̂T (ξ, t) =

=
1

2

[(
1 +

λ√
λ2 − c2ξ2

)
e−λt+t

√
λ2−c2ξ2

+

(
1− λ√

λ2 − c2ξ2

)
e−λt−t

√
λ2−c2ξ2

]
.

(1.154)

In other words we have the following equality in distribution

B
(
c2L

1
2 (t)
)

law
= T (|B(t)|) , t > 0. (1.155)

Proof. First we show that the Fourier-Laplace transform of the law w1
1
2

(x, t) of the

process W1(t) = S2
1

(
c2L

1
2 (t)
)

= B
(
c2L

1
2 (t)
)

, t > 0, is written as in (1.136) for

ν = 1
2
, β = 1, n = 1, and reads

̂̃
w1

1
2

(ξ, µ) =
1 + 2λµ−

1
2

µ+ 2λ
√
µ+ c2ξ2

. (1.156)

We have that

w̃1
1
2

(x, µ) =

∫ ∞
0

e−µt
(∫ t

0

pB
(
x, c2s

)
l 1
2
(s, t) ds

)
dt

=

∫ ∞
0

pB(x, c2s) ds

∫ ∞
s

e−µtl 1
2
(s, t) dt

=

∫ ∞
0

pB(x, c2s) ds

∫ ∞
s

e−µt

 2λs e−
(2λs)2

4(t−s)√
4π (t− s)3

+ 2λ
e−

(2λs)2

4(t−s)√
π(t− s)

 dt


=

∫ ∞
0

pB
(
x, c2s

) (
e−s(µ+2λ

√
µ) + 2λ

√
µe−s(µ+2λ

√
µ)
)
ds

=

∫ ∞
0

e−
x2

4c2s

√
4πc2s

e−s(µ+2λ
√
µ) ds+ 2λµ−

1
2

∫ ∞
0

e−
x2

4c2s

√
4πc2s

e−s(µ+2λ
√
µ) ds,

(1.157)

and thus taking the Fourier transform we get

̂̃
w1

1
2

(ξ, µ) =

∫ ∞
0

e−sc
2ξ2

e−s(µ+2λ
√
µ) ds+ 2λµ−

1
2

∫ ∞
0

e−sc
2ξ2

e−s(µ+2λ
√
µ) ds

=
1 + 2λµ−

1
2

µ+ 2λ
√
µ+ c2ξ2

. (1.158)
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Now we are going to prove that the law w(x, t) of the process W (t), t > 0, has

Fourier-Laplace transform that coincides with (1.156). We have that

w(x, t) =

∫ ∞
0

pT (x, s) p|B|(s, t) ds, (1.159)

and thus the Fourier transform of w(x, t) reads

ŵ (ξ, t) =

∫ ∞
−∞

eiξxdx

∫ ∞
0

pT (x, s) p|B|(s, t) ds

=
1

2

∫ ∞
0

[(
1 +

λ√
λ2 − c2ξ2

)
e−λs+s

√
λ2−c2ξ2

+

(
1− λ√

λ2 − c2ξ2

)
e−λs−s

√
λ2−c2ξ2

]
p|B|(s, t) ds. (1.160)

Passing now to the Laplace transform we have

˜̂w(ξ, µ) =
1

2

∫ ∞
0

e−µt dt

∫ ∞
0

[(
1 +

λ√
λ2 − c2ξ2

)
e−λs+s

√
λ2−c2ξ2

+

(
1− λ√

λ2 − c2ξ2

)
e−λs−s

√
λ2−c2ξ2

]
e−

s2

4t

√
πt
ds

=
1

2

∫ ∞
0

[(
1 +

λ√
λ2 − c2ξ2

)
e−λs+s

√
λ2−c2ξ2

+

(
1− λ√

λ2 − c2ξ2

)
e−λs−s

√
λ2−c2ξ2

]
e−s
√
µ

√
µ

ds

=
1

2
√
µ

[(
1 +

λ√
λ2 − c2ξ2

)(
1

λ+
√
µ−

√
λ2 − c2ξ2

)

+

(
1− λ√

λ2 − c2ξ2

)(
1

λ+
√
µ+

√
λ2 − c2ξ2

)]

=

(
λ+

√
λ2 − c2ξ2

)(
λ+
√
µ+

√
λ2 − c2ξ2

)
(

2
√
µ
√
λ2 − c2ξ2

) (
µ+ 2λ

√
µ+ c2ξ2

)
+

(√
λ2 − c2ξ2 − λ

)(
λ+
√
µ−

√
λ2 − c2ξ2

)
(

2
√
µ
√
λ2 − c2ξ2

) (
µ+ 2λ

√
µ+ c2ξ2

)
=

1 + 2λµ−
1
2

µ+ 2λ
√
µ+ c2ξ2

, (1.161)

which coincides with (1.156).

This shows that for each t we have the following equality in distribution

T (|B(t)|) law
= B

(
c2L

1
2 (t)
)
, t > 0, (1.162)
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where the role of the Brownian motion is interchanged in the two members of (1.162).

Thus, by suitably slowing down the time in (1.162), we obtain the same distributional

effect of a telegraph process taken at a Brownian time.

Remark 1.4.4. The probability distribution of the process

W1(t) = B
(
c2L

1
2 (t)
)
, t > 0, (1.163)

can be written as

w1
1
2
(x, t) =

λ

cπ

∫ t

0

1√
s(t− s)

e−
x2

4c2s
−λ

2s2

t−s

[
s

2(t− s)
+ 1

]
ds

=
λ

cπ

∫ t

0

1√
s(t− s)

e−
x2

4c2s
−λ

2s2

t−s

[
1

2

(
1 +

t

t− s

)]
ds

y=λs
=

√
λ

cπ

∫ λt

0

e
− λx2

4c2y e
− y2

t− y
λ

1
√
y
√
t− y

λ

[
1

2

(
1 +

t

t− y
λ

)]
dy. (1.164)

Taking the limit for c→∞, λ→∞, c2

λ
→ 1, formula (1.164) becomes

lim
λ,c→∞
c2

λ
→1

y1
1
2

(x, t) = 2

∫ ∞
0

e−
x2

4y

√
4πy

e−
y2

t

√
πt

dy (1.165)

which coincides with the distribution of an iterated Brownian motion B1 (|B2(t)|),
t > 0, with Bj, j = 1, 2, independent Brownian motions. From (1.164) we can see

that the distribution of W1(t), t > 0, has a bell-shaped structure.

Finally we show that the density w1
1
2

(x, t) integrates to unity in force of the

calculation∫ ∞
−∞

w1
1
2

(x, t) dx =

∫ ∞
−∞

dx

∫ t

0

ds
e−

x2

4s

√
4πs

l 1
2

(s, t) =

∫ t

0

ds

(
∂

∂s

∫ ∞
t−s

(2λ)2

s e−
s2

4z

√
4πz3

dz

)

=

[∫ ∞
t−s

(2λ)2

s e−
s2

4z

√
4πz3

dz

]s=t
s=0

=

∫ ∞
0

te−
t2

4z

√
4πz3

dz = 1. (1.166)

In the intermediate step, formula (1.146) has been applied.

Remark 1.4.5. The characteristic function of the process T 2β(t), t > 0, whose

distribution satisfies
(
∂2

∂t2
+ 2λ ∂

∂t

)
p2β
T (x, t) = c2 ∂2β

∂|x|2β p
2β
T (x, t), 0 < β < 1, β 6= 1

2

p2β
T (x, 0) = δ(x),

∂
∂t
p2β
T (x, t)

∣∣∣
t=0

= 0,

(1.167)
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reads

EeiξT
2β(t) =

=
e−λt

2

[(
1 +

λ√
λ2 − c2|ξ|2β

)
et
√
λ2−c2|ξ|2β +

(
1− λ√

λ2 − c2|ξ|2β

)
e−t
√
λ2−c2|ξ|2β

]
(1.168)

see Orsingher and Zhao (2003). Therefore by performing the same steps as in theorem

(1.4.3) we prove that

S2β
1

(
L

1
2 (t)

)
law
= T 2β (|B(t)|) , t > 0. (1.169)

1.4.2 The case ν = 1
3, convolutions of Airy functions

We first recall that the totally positively-skewed stable process H
1
3 (t), t > 0 has law

Pr
{
H

1
3 (t) ∈ dx

}
=

t

x 3
√

3x
Ai

(
t

3
√

3x

)
dx, x > 0, t > 0, (1.170)

where Ai(·) is the Airy function. Result (1.170) can be obtained from the general

series expansion of the stable law of order 1
3

(see Orsingher and Beghin (2009) page

245) which reads

h 1
3
(x, 1) =

1

3π

∞∑
k=0

(−1)k
Γ
(
k+1

3

)
k!

x−
1
3

(k+1)−1 sin
(π

3
(k + 1)

)
=

1

3π

∞∑
k=0

(−1)k
Γ
(
k+1

3

)
k!

x−
k+1

3
−1(−1)k sin

(
2π(k + 1)

3

)
=

1

3

3
2
3

x 3
√
x

Ai

(
1

3
√

3x

)
=

1

x 3
√

3x
Ai

(
1

3
√

3x

)
, (1.171)

where we used formula (4.10) of Orsingher and Beghin (2009), which reads

Ai(w) =
3−

2
3

π

∞∑
k=0

(
3

1
3w
)k sin

(
2π(k+1)

3

)
k!

Γ

(
k + 1

3

)
. (1.172)

Since

H
1
3 (t)

law
= t3H

1
3 (1), (1.173)

we have result (1.170). From the relatioship between H
1
3 (t), t > 0, and the inverse

process L
1
3 (t), t > 0,

Pr
{
H

1
3 (t) < x

}
= Pr

{
L

1
3 (x) > t

}
(1.174)
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we extract the density of L
1
3 (x), x > 0,

Pr
{
L

1
3 (x) ∈ dt

}
dt

= − ∂

∂t

∫ x

0

t

s

1
3
√

3s
Ai

(
t

3
√

3s

)
ds

= −
∫ x

0

1

s 3
√

3s
Ai

(
t

3
√

3s

)
ds−

∫ x

0

t

s 3
√

3s
Ai′
(

t
3
√

3s

)
ds
3
√

3s
.

(1.175)

Since
∂

∂s
Ai

(
t

3
√

3s

)
= − t

3s 3
√

3s
Ai′
(

t
3
√

3s

)
(1.176)

we conclude that, for x > 0, t > 0,

l 1
3
(t, x) =

Pr
{
L

1
3 (x) ∈ dt

}
dt

=

∫ x

0

−1

s 3
√

3s
Ai

(
t

3
√

3s

)
ds+

∫ x

0

3
3
√

3s

∂

∂s
Ai

(
t

3
√

3s

)
ds

=

∫ x

0

−1

s 3
√

3s
Ai

(
t

3
√

3s

)
ds+

[
3

3
√

3s
Ai

(
t

3
√

3s

)]s=x
s=0

+

∫ x

0

ds

s 3
√

3s
Ai

(
t

3
√

3s

)
=

3
3
√

3x
Ai

(
t

3
√

3x

)
. (1.177)

In the last step we took into account the asymptotic expansion 7.2.19 of Bleistein

and Handelsman (1986).

With similar calculation we obtain the law h 2
3
(x, t) of the process H

2
3 (t), t > 0,

which is expressed in terms of Airy function. From the general series expression of

the stable law (see Orsingher and Beghin (2009)) we have that,

h 2
3
(x, 1) =

=
2

3π

∞∑
k=0

(−1)k
Γ
(

2
3
(k + 1)

)
k!

x−
2
3

(k+1)−1 sin

(
2π

3
(k + 1)

)
=

2

3π
√
π

∞∑
k=0

(−1)k

k!

x−
2
3

(k+1)−1

21− 2
3

(k+1)
Γ

(
k + 1

3

)
sin

(
2π

3
(k + 1)

)∫ ∞
0

dw e−ww
k+1

3
+ 1

2
−1

=
1

x
3

√
22

3x2

1√
π

∫ ∞
0

e−ww−
1
6 Ai

(
− 3

√
22w

3x2

)
dw, (1.178)

and thus, in force of the fact that H
2
3 (t)

law
= t

3
2H

2
3 (1),

h 2
3
(x, t) =

t√
π

1

x

∫ ∞
0

dw e−ww−
1
6

3

√
22

3x2
Ai

(
−t 3

√
22w

3x2

)
. (1.179)



1.4 Space-time fractional telegraph equation 38

Remark 1.4.6. We check that the distribution (1.179) integrates to unity. We have

that ∫ ∞
0

h 2
3
(x, t) dx =

=
t√
π

∫ ∞
0

dw e−ww−
1
6

3

√
22

3

∫ ∞
0

dx x−
2
3
−1 Ai

(
−t 3

√
22w

3x2

)
y=x−

2
3 t

3
√

22w
3

=
t√
π

∫ ∞
0

dw e−ww−
1
6

3

√
22

3

3

2

(
t

3

√
22w

3

)−1 ∫ ∞
0

dyAi (−y)

=
1√
π

∫ ∞
0

dw e−ww−
1
6

3

√
22

3

(
3

√
22w

3

)−1

=
1√
π

∫ ∞
0

dw e−ww−
1
6
− 1

3 =
1√
π

∫ ∞
0

dw e−ww
1
2
−1 = 1, (1.180)

where we used the fact that ∫ ∞
0

dyAi(−y) =
2

3
. (1.181)

For the law of the process L
2
3 (x), x > 0, we therefore have that

Pr
{
L

2
3 (x) < t

}
= Pr

{
H

2
3 (t) > x

}
=

∫ ∞
0

∫ ∞
x

t√
π

1

z
3

√
22

3z2
Ai

(
−t 3

√
22w

3z2

)
e−ww−

1
6 dw dz (1.182)

and thus

l 2
3

(t, x) =

∫ ∞
0

∫ ∞
x

dw dz

z
√
π

3

√
22

3z2
Ai

(
−t 3

√
22w

3z2

)
e−ww−

1
6

−
∫ ∞

0

∫ ∞
x

t

z
√
π

3

√
22

3z2

3

√
22w

3z2
Ai′

(
−t 3

√
22w

3z2

)
dz dw

=

∫ ∞
0

∫ ∞
x

dw dz

z
√
π

3

√
22

3z2
Ai

(
−t 3

√
22w

3z2

)
e−ww−

1
6

− 3

2

∫ ∞
x

∫ ∞
0

1√
π

3

√
22

3z2
e−ww−

1
6
∂

∂z
Ai

(
−t 3

√
22w

3z2

)
dw dz

=

∫ ∞
0

∫ ∞
x

dw dz

z
√
π

3

√
22

3z2
Ai

(
−t 3

√
22w

3z2

)
e−ww−

1
6

−

[
3

2
√
π

∫ ∞
0

dw
3

√
22

3z2
e−ww−

1
6 Ai

(
−t 3

√
22w

3z2

)]z=∞
z=x

−
∫ ∞

0

∫ ∞
x

dw dz

z
√
π

3

√
22

3z2
Ai

(
−t 3

√
22w
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)
e−ww−
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=
3

2
√
π

∫ ∞
0

3

√
22

3x2
e−ww−

1
6 Ai

(
−t 3

√
22w

3x2

)
dw. (1.183)

For checking that (1.183) integrates to unity one can perform calculation similar to

that of Remark 1.4.6.

Now we have all the information to get the distribution of the process L
1
3 (t),

t > 0, by means of formula (1.107). We have that

l 1
3
(x, t) =

Pr
{

L
1
3 (t) ∈ dx

}
dx

=

∫ t

0

l 2
3
(x, t− s)h 1

3
(s, 2λx)ds+ 2λ

∫ t

0

l 1
3
(2λx, s)h 2

3
(t− s, x) ds

=

∫ t

0

ds

[
3

2
√
π

∫ ∞
0

dw 3

√
22

3(t− s)2
e−ww−

1
6 Ai

(
−x 3

√
22w
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)
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]
·

· 2λx

s 3
√

3s
Ai

(
2λx
3
√

3s

)
+ 2λ

∫ t

0

ds
3

3
√

3s
Ai

(
2λx
3
√

3s

)
·

· s√
π(t− s)

∫ ∞
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dw e−ww−
1
6

3

√
22

3(t− s)2
Ai

(
−x 3

√
22w

3(t− s)2

)

=
2λ√
π

∫ t

0

ds

∫ ∞
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dw e−ww−
1
6 Ai

(
−x 3

√
22w

3(t− s)2

)
Ai

(
2λx
3
√

3s

)
·

· 3
3
√

3s
3

√
22

3(t− s)2

[
x

2s
+

s

t− s

]
. (1.184)

Result (1.184) permits us to write explicitly the solution of the fractional telegraph

equation (1.10) for ν = 1
3
, β = 1 and n = 1, as

w1
1
3
(x, t) =

∫ ∞
0

e−
x2

4c2s

√
4πc2s

l 1
3
(s, t) ds, x ∈ R, t > 0. (1.185)

1.4.3 The planar case

Let us consider the planar process

T (t) = (X(t), Y (t)) , t > 0, (1.186)

with infinite directions and finite velocity c, investigated in Orsingher and De Gre-

gorio (2007), which has probability law (see formula 1.2 therein)

r(x, y, t) =
λ

2πc

e−λt+
λ
c

√
c2t2−(x2+y2)√

c2t2 − (x2 + y2)
, x2 + y2 < c2t2, t > 0, (1.187)
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which satisfies the telegraph equation(
∂2

∂t2
+ 2λ

∂

∂t

)
r(x, y, t) = c2

(
∂2

∂x2
+

∂2

∂y2

)
r(x, y, t). (1.188)

The distribution of T (t), t > 0, has a singular component uniformly distributed

on the circle ∂Cct = {(x, y) ∈ R2 : x2 + y2 = c2t2} with probability mass equal to

e−λt. The process T (t), t > 0, describes a random motion where directions change

at Poisson paced times and the orientation of each segment of the sample paths is

uniform in [0, 2π).

Let q(x, y, t) be the distribution obtained by means of the composition of the

process T (t) with a reflecting Brownian motion with law

p|B|(s, t) =
e
−s2
4t

√
πt
, t > 0, s > 0, (1.189)

which satisfies the equation

C∂
1
2

∂t
1
2

p|B|(s, t) = − ∂

∂s
p|B|(s, t) (1.190)

and also

∂

∂t
p|B|(s, t) =

∂2

∂s2
p|B|(s, t) (1.191)

We have the following theorem.

Theorem 1.4.7. The law of the composition

Q(t) = T (|B(t)|) , t > 0 (1.192)

written as

q(x, y, t) =

∫ ∞
0

r(x, y, s) p|B|(s, t) ds, (1.193)

satisfies the 2-dimensional time-fractional equation(
∂

∂t
+ 2λ

C∂
1
2

∂t
1
2

)
q (x, y, t) = c2

(
∂2

∂x2
+

∂2

∂y2

)
q (x, y, t) , x, y ∈ R, t > 0,

(1.194)

subject to the initial condition

q(x, y, 0) = δ(x, y). (1.195)
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Proof. By considering (1.193) and (1.190) we can write

C∂
1
2

∂t
1
2

q(x, y, t) =

∫ ∞
0

r(x, y, s)
C∂

1
2

∂t
1
2

p|B|(s, t) ds

=

∫ ∞
0

r(x, y, s)

(
− ∂

∂s
p|B|(s, t)

)
ds

=
[
−p|B|(s, t) r(x, y, s)

]s=∞
s=0

+

∫ ∞
0

p|B|(s, t)
∂

∂s
r(x, y, s) ds. (1.196)

In the previous step it must be taken into account that the boundary ∂Ccs is ex-

cluded. From (1.193) and (1.191) we have that

∂

∂t
q(x, y, t) =

∫ ∞
0

r(x, y, s)
∂

∂t
p|B|(s, t) ds =

∫ ∞
0

r(x, y, s)
∂2

∂s2
p|B|(s, t) ds

=

[
r(x, y, s)

∂

∂s
p|B|(s, t)

]s=∞
s=0

−
∫ ∞

0

∂

∂s
r(x, y, s)

∂

∂s
p|B|(s, t) ds

= −
[
p|B|(s, t)

∂

∂s
r(x, y, s)

]s=∞
s=0

+

∫ ∞
0

p|B|(s, t)
∂2

∂s2
r(x, y, s) ds.

(1.197)

Thus, by looking at (1.188), (1.196) and (1.197) we obtain

∂

∂t
q(x, y, t) + 2λ

C∂
1
2

∂t
1
2

q(x, y, t) =

=

∫ ∞
0

p|B|(s, t)

[
∂2

∂s2
r(x, y, s) + 2λ

∂

∂s
r(x, y, s)

]
ds

=

∫ ∞
0

p|B|(s, t) c
2

(
∂2

∂x2
+

∂2

∂y2

)
r(x, y, s) ds = c2

(
∂2

∂x2
+

∂2

∂y2

)
q(x, y, t). (1.198)

which means that q(x, y, t) satisfies equation (1.194).

It is easy to show that the process Q(t) = T (|B(t)|), t > 0, has not the same

law of the process W2(t) = B2

(
c2L

1
2 (t)
)

, t > 0. However it is possible to construct

a planar process, say T(t), t > 0 (which is a slightly different version of T (t), t > 0)

composed with a suitable ”time process” which has the same distribution as W2(t),

t > 0. The planar random motion T(t), t > 0, with distribution

r(x, y, t) =
λ e−λt

2πc

[
e
λ
c

√
c2t2−(x2+y2) + e−

λ
c

√
c2t2−(x2+y2)√

c2t2 − (x2 + y2)

]
, (1.199)

where (x, y) ∈ Cct = {(x, y) : x2 + y2 < c2t2}, can be constructed starting from the

model dealt with in Orsingher and De Gregorio (2007). The distribution is based

on the solution to the planar telegraph equation(
∂2

∂t2
+ 2λ

∂

∂t

)
r(x, y, t) = c2

(
∂2

∂x2
+

∂2

∂y2

)
r(x, y, t), (1.200)
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namely

r (x, y, t) =
e−λt√

c2t2 − (x2 + y2)

[
Ae

λ
c

√
c2t2−(x2+y2) +Be−

λ
c

√
c2t2−(x2+y2)

]
, (1.201)

with A = B = λ
2πc

and thus we can easily check that∫∫
Cct

dx dy r (x, y, t) = 1− e−2λt. (1.202)

We take a particle starting from the origin, moving at finite velocity c, and changing

direction (chosen with uniform distribution) at Poisson times and neglect displace-

ments started off by even-labelled times. The sample paths of this motion are

constructed by piecing together only odd-order displacements of the planar motion

T (t), t > 0. The process just described has distribution (1.199) as shown below

r(x, y, t) =

=
Pr {T(t) ∈ dx}

dx
=

λ e−λt

2πc

[
e
λ
c

√
c2t2−(x2+y2) + e−

λ
c

√
c2t2−(x2+y2)√

c2t2 − (x2 + y2)

]

=
λ2

c2

1

π
e−λt

[
∞∑
k=0

(
λ

c

√
c2t2 − (x2 + y2)

)2k−1
1

(2k)!

]

=
λ2

c2

1

π

∞∑
k=0

(
λ

c

)2k−1

(2k + 1)
(
c2t2 −

(
x2 + y2

))k− 1
2

e−λt

(2k)!(2k + 1)

(λt)2k+1

(λt)2k+1

= 2
∞∑
k=0

Pr {X(t) ∈ dx, Y (t) ∈ dy|N(t) = 2k + 1} e−λt (λt)2k+1

(2k + 1)!

= 2
∞∑
k=0

Pr {T (t) ∈ dx|N(t) = 2k + 1} e−λt (λt)2k+1

(2k + 1)!
, (1.203)

where, for x2 + y2 < c2t2 (see Orsingher and De Gregorio (2007)),

Pr {X(t) ∈ dx, Y (t) ∈ dy|N(t) = n}
dx dy

=
n

2n(ct)n
(
c2t2 −

(
x2 + y2

))n
2
−1
, (1.204)

and

2e−λt
∞∑
k=0

(λt)2k+1

(2k + 1)!
=

∞∑
k=0

2 Pr {N(t) = 2k + 1} = 1− e−2λt. (1.205)

The factor 2 appearing in (1.203) and (1.205) can be interpreted as follows. The

displacements generated by an even number of Poisson events are disregarded and

replaced by displacements produced by an odd number of deviations. Therefore,

odd-order Poisson events ignite twice the displacements considered in (1.203).
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Theorem 1.4.8. The composition with distribution

q(x, y, t) =

∫ ∞
0

ds r (x, y, s)

[
p|B| (s, t) +

1

2λ

∂
1
2

∂t
1
2

p|B| (s, t)

]
, (1.206)

which satisfies the time-fractional equation(
∂

∂t
+ 2λ

C∂
1
2

∂t
1
2

)
q(x, y, t) = c2

(
∂2

∂x2
+

∂2

∂y2

)
q(x, y, t), (1.207)

has the same law of the process W2(t) = B2

(
c2L

1
2 (t)
)

.

Proof. We begin by evaluating the Fourier-Laplace transform of (1.206).

̂̃q(ξ, α, µ)

=

∫ ∞
0

ds

∫ ∞
0

dt e−µt
∫
Cct

dx dy eiξx+iαyr(x, y, s)

[
p|B|(s, t) +

1

2λ

∂
1
2

∂t
1
2
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=
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√
µ

2λ
√
µ

∫ ∞
0

ds

∫
Cct

dx dy eiξx+iαy r (x, y, s) e−s
√
µ. (1.208)

Now we need the Fourier transform of the law r(x, y, t) of the process T(t), t > 0,

which reads

r̂(ξ, α, t) =

=
λ e−λt

2πc

∫∫
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eiξx+iαy

[
e
λ
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√
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√
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(1.209)
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Thus, from (1.208), we have that

˜̂q (ξ, α, µ) =
2λ+

√
µ

2λ
√
µ

∫ ∞
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ds r̂(ξ, α, t) e−s
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(1.210)

in force of the calculation∫ ∞
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21−2(k+m+1)
√
π

=
2λ(

λ+
√
µ
)2

∞∑
m=0

λ2m

m!
(
λ+
√
µ
)2m

∞∑
k=0

(−1)k
(√

ξ2 + α2
)2k

k!
(
λ+
√
µ
)2k

c−2k

∫ ∞
0

e−uuk+m du

=
2λ(

λ+
√
µ
)2

∫ ∞
0

du e
u λ2

(λ+
√
µ)2−u

c2(ξ2+α2)
(λ+
√
µ)2 −u

=

2λ

(λ+
√
µ)

2

1− λ2

(λ+
√
µ)

2 + c2(ξ2+α2)

(λ+
√
µ)

2

=
2λ(

λ+
√
µ
)2 − λ2 + c2 (ξ2 + α2)

=
2λ

µ+ 2λ
√
µ+ c2 (ξ2 + α2)

. (1.211)

The Fourier-Laplace transform of the law of the process B2

(
c2L

1
2 (t)
)

is written

as in (1.136) for n = 2, β = 1 and ν = 1
2

as the following calculation showŝ̃
w1

1
2

(ξ, α, t) =

∫ ∞
0

p̂B
(
ξ, α, c2s

)
l̃ 1
2

(s, µ) ds

=
(

1 + 2λµ−
1
2

)∫ ∞
0

e−µs−(ξ2+α2)c2s
[
e−2λs

√
µ + 2λ

e−2λs
√
µ

√
µ

]
ds

=
1 + 2λµ−

1
2

2λ
√
µ+ µ+ c2 (ξ2 + α2)

. (1.212)

In the previous calculation we use the Laplace transform of l 1
2
(x, t) obtained in

(1.149). The proof is complete since (1.212), coincides with (1.210) and with the

Fourier-Laplace transform of (1.207).
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Remark 1.4.9. Since for the first passage time τ s√
2

= inf
{
z : B(z) = s√

2

}
of a

Brownian motion through level s√
2

we have that∫ ∞
0

e−µt Pr
{
τ s√

2
∈ dt

}
= e−s

√
µ, (1.213)

and ∫ ∞
0

e−µt
∂

1
2

∂t
1
2

p|B|(s, t) dt = e−s
√
µ (1.214)

we can write ∫ ∞
0

r(x, y, s)
∂

1
2

∂t
1
2

p|B|(s, t) ds =

∫ ∞
0

r(x, y, s)
s√
2

e−
s2

4t

√
2πt3

ds

=

∫ ∞
0

∂

∂s
r(x, y, s)

e−
s2

4t

√
πt
ds =

∫ ∞
0

∂

∂s
r(x, y, s) p|B|(s, t) ds. (1.215)

This representation of the second term of (1.206) is extremely interesting because

by integrating (1.215) in Cct we get∫ ∞
0

∂

∂s
(1− e−2λs)p|B|(s, t) ds = 2λ

∫ ∞
0

e−2λsp|B|(s, t) ds (1.216)

and yields the missing probability of the first term of (1.206).

Remark 1.4.10. We check that the law

q(x, y, t) =

∫ ∞
0

r(x, y, s)

[
p|B|(s, t) +

1

2λ

∂
1
2

∂t
1
2

p|B|(s, t)

]
ds (1.217)

integrates to unity. By taking the t-Laplace transform, the integral with respect to

(x, y) becomes∫∫
Cct

dx dy

∫ ∞
0

dt e−µt q(x, y, t)

=

∫ ∞
0

(
1− e−2λs

) [∫ ∞
0

e−µt

(
p|B|(s, t) +

1

2λ

∂
1
2

∂t
1
2

p|B|(s, t)

)
dt

]
ds

=

∫ ∞
0

(
1− e−2λs

) [e−s√µ
√
µ

+
e−s
√
µ

2λ

]
ds

=

(
1
√
µ

+
1

2λ

)[∫ ∞
0

e−s
√
µds−

∫ ∞
0

e−s(2λ+
√
µ)ds

]
=

2λ+
√
µ

2λ
√
µ

(
1
√
µ
− 1

2λ+
√
µ

)
=

1

µ
=

∫ ∞
0

e−µtdt. (1.218)

The same check can be done directly by taking into account formulas (1.215) and

(1.216).
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Relationships similar to B
(
c2L

1
2 (t)
)

law
= T (|B(t)|), t > 0, and the analogous one

in the plane, cannot be established in spaces of dimension n ≥ 3, because random

motions governed by telegraph equations in such spaces have not been constructed.

Random flights in Rn have been studied (Orsingher and De Gregorio (2007)) but

their distributions are not related to higher-dimensional telegraph equations.

1.5 Hyperbolic fractional telegraph equations

The Hyperbolic Brownian motion is a diffusion on the Poincaré half-space

Hn =
{

(x, y) : x ∈ Rn−1, y > 0
}
, (1.219)

with generator, written in cartesian coordinates,

Hn =
1

2

[
y2

n−1∑
j=1

∂2

∂x2
j

+ (2− n)y
∂

∂y

]
. (1.220)

In the half-plane H2 the hyperbolic Brownian motion was introduced by Gertsen-

shtein and Vasiliev (1959) while in H3 it was introduced by Karpelevich, Tutubalin

and Shur (1959). The reader can also consult, for more details, Getoor (1961),

Gruet (1996), Lao and Orsingher (2007), Matsumoto and Yor (2005). The hyper-

bolic Poincaré half-space is equipped with the metric

ds2 =

∑n−1
j=1 dx

2
j + dy2

y2
, (1.221)

and thus the hyperbolic distance in Hn is given by the formula

cosh η(z′, z) = 1 +
‖z′ − z‖2

2yy′
, z, z′ ∈ Hn, (1.222)

where ‖·‖ is the usual euclidean norm. We define the operator H2 as the governing

operator of the planar hyperbolic Brownian motion Bhp
2 (t), t > 0, which is written

as

H2 = y2

(
∂2

∂x2
+

∂2

∂y2

)
(1.223)

in Cartesian coordinates and takes the form

Hhp
2 = G2 +

1

sinh2 η

∂2

∂α2
(1.224)

in hyperbolic coordinates, where

G2 =
1

sinh η

∂

∂η

(
sinh η

∂

∂η

)
. (1.225)
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Note that we disregard the factor 1
2

in Hhp
2 in the forthcoming calculation as in the

pioneering work by Gertsenshtein and Vasiliev (1959). The problem involving the

radial part of (1.224) which is written as ∂
∂t
k2(η, t) = G2k2(η, t), η > 0, t > 0,

k2(η, 0) = δ(η),
(1.226)

has the following solution

k2(η, t) =
e−

t
4

2
3
2

√
πt3

∫ ∞
η

ϕe−
ϕ2

4t

√
coshϕ− cosh η

dϕ (1.227)

to which we refer as the kernel of the law of Bhp
2 (t), t > 0. The law of Bhp

2 (t), t > 0

is therefore written as

php2 (η, t) = sinh η k2(η, t), η > 0, t > 0. (1.228)

The three-dimensional hyperbolic Brownian motion Bhp
3 (t), t > 0 is driven by the

operator

H3 = z2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
− z ∂

∂z
(1.229)

written in Cartesian coordinates. We are interested in the Cauchy problem ∂
∂t
k3(η, t) = G3k3(η, t), η > 0, t > 0,

k3(η, 0) = δ(η).
(1.230)

where

G3 =
1

sinh2 η

∂

∂η

(
sinh2 η

∂

∂η

)
(1.231)

represents the radial part of Hhp
3 which coincides with H3 in hyperbolic coordinates.

The solution to (1.230) is given by

k3(η, t) =
e−t

2
√
πt3

ηe−
η2

4t

sinh η
, (1.232)

and thus the probability law of Bhp
3 (t), t > 0, reads

php3 (η, t) = sinh2 η k3(η, t). (1.233)

In general, the law of a n-dimensional hyperbolic Brownian motion is written as

phpn (η, t) = sinhn−1 η kn(η, t), (1.234)
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and solves the heat equation

∂

∂t
phpn (η, t) =

∂

∂η

(
sinhn−1 η

∂

∂η

(
1

sinhn−1 η
phpn (η, t)

))
(1.235)

where

G?
n =

∂

∂η

(
sinhn−1 η

∂

∂η

(
1

sinhn−1 η

))
, n ∈ N, (1.236)

is the adjoint of

Gn =
1

sinhn−1 η

∂

∂η

(
sinhn−1 η

∂

∂η

)
, (1.237)

in the sense that

〈Gnkn, pn〉 = 〈kn, G?
npn〉 , n ∈ N. (1.238)

Thus the n-dimensional kernel satisfies

∂

∂t
kn (η, t) = Gn kn (η, t) . (1.239)

The kernels for n > 3 can be obtained from k2 and k3 by means of Millson

recursive formula (see Debiard, Gaveau and Mazet (1976))

kn+2 (η, t) = − e−nt

2π sinh η

∂

∂η
kn (η, t) . (1.240)

By working out the derivatives we obtain a more explicit version of Millson formula
k2j+1(η, t) = e

−(j2−1)t
(2π)j−1

(
− 1

sinh η
∂
∂η

)j−1

k3 (η, t) , j ≥ 1, n = 2j + 1,

k2j+2 (η, t) = e
−(j2+j)t

(2π)j

(
− 1

sinh η ∂
∂η

)j
k2 (η, t) , j ≥ 0, n = 2j + 2.

Theorem 1.5.1. The distribution of the composition

T ν
n (t) = Bhp

n (Lν(t)) , ν ∈
(

0,
1

2

]
, t > 0, (1.241)

where Bhp
n is the n-dimensional hyperbolic Brownian motion in the Poincaré hy-

perbolic half-space Hn, satisfies the fractional hyperbolic telegraph equation for ν ∈(
0, 1

2

]
,
(
C∂2ν

∂t2ν
+ 2λ

C∂ν

∂tν

)
pνn (η, t) = ∂

∂η

(
sinhn−1 ∂

∂η

(
1

sinhn−1 pνn (η, t)
))
, η > 0,

pνn (η, 0) = δ (η) ,

and thus the kernel

κνn (η, t) =
1

sinhn−1 η
pνn(η, t) (1.242)
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satisfies, for ν ∈
(
0, 1

2

]
,

(
C∂2ν

∂t2ν
+ 2λ

C∂ν

∂tν

)
κνn (η, t) = 1

sinhn−1 η
∂
∂η

(
sinhn−1 η ∂

∂η
κνn (η, t)

)
, η > 0,

κνn (η, 0) = δ (η) ,

(1.243)

Proof. It is convenient to consider the Laplace transform, κ̃νn of the kernel κνn. We

have that

κ̃νn (η, µ) =

∫ ∞
0

dt e−µtκνn (η, t) =

∫ ∞
0

dt e−µt
∫ ∞

0

ds kn (η, s) lν(s, t) (1.244)

=

∫ ∞
0

kn (η, s)
(
µ2ν−1 + 2λµν−1

)
e−s(µ

2ν+2λµν) ds. (1.245)

Now we show that (1.245) satisfies the Laplace transform of (1.243) written as

(
µ2ν + 2λµν

)
κ̃νn (η, µ) =

1

sinhn−1 η

∂

∂η

(
sinhn−1 η

∂

∂η
κ̃νn (η, µ)

)
. (1.246)

By considering (1.239) and that κνn (η, 0) = δ (η) we have, for η > 0

1

sinhn−1 η

∂

∂η

(
sinhn−1 η

∂

∂η
κ̃νn (η, µ)

)
=

∫ ∞
0

ds

sinhn−1 η

∂

∂η

(
sinhn−1 η

∂

∂η
kn (η, s)

) (
µ2ν−1 + 2λµν−1

)
e−s(µ

2ν+2λµν)

=

∫ ∞
0

ds
∂

∂s
kn (η, s)

(
µ2ν−1 + 2λµν−1

)
e−s(µ

2ν+2λµν)

=
[
kn(η, s)

(
µ2ν−1 + 2λµν−1

)
e−s(µ

2ν+2λµν)
]s=∞
s=0

+
(
µ2ν−1 + 2λµν−1

) (
µ2ν + 2λµν

) ∫ ∞
0

kn (η, s) e−s(µ
2ν+2λµν) ds

=
(
µ2ν + 2λµν

)
κ̃νn (η, µ) . (1.247)

Remark 1.5.2. By taking profit of the simple structure of php3 (η, t) we can give, for

n = 3, an alternative direct proof of the result of theorem 1.5.1. We first evaluate

the Laplace transform κ̃ν3(η, µ), as follows

κ̃ν3 (η, µ) =

∫ ∞
0

k3(η, s)

∫ ∞
0

e−µtlν(s, t) dt ds =

∫ ∞
0

k3 (η, s) l̃ν (s, µ) ds

=
η (µ2ν−1 + 2λµν−1)

2
√
π sinh η

∫ ∞
0

e−s(1+µ2ν+2λµν) e
− η

2

4s

√
s3
ds

=
(µ2ν−1 + 2λµν−1)

sinh η
e−η
√

1+µ2ν+2λµν . (1.248)
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Now we show that (1.248) solves the Laplace transform of (1.243) for n = 3. We

have that

1

sinh2 η

∂

∂η

(
sinh2 η

∂

∂η
κ̃ν3 (η, µ)

)
=

1

sinh2 η

∂

∂η

(
sinh2 η

∂

∂η

(µ2ν−1 + 2λµν−1)

sinh η
e−η
√

1+µ2ν+2λµν
)

= − (µ2ν−1 + 2λµν−1)

sinh2 η

∂

∂η

[
e−η
√

1+µ2ν+2λµν
(

sinh η
√

1 + µ2ν + 2λµν + cosh η
)]

=
(µ2ν−1 + 2λµν−1) e−η

√
1+µ2ν+2λµν

sinh2 η

[√
1 + µ2ν + 2λµν·

·
(

sinh η
√

1 + µ2ν + 2λµν + cosh η
)
−
(

cosh η
√

1 + µ2ν + 2λµν + sinh η
)]

=
(µ2ν−1 + 2λµν−1) e−η

√
1+µ2ν+2λµν

sinh2 η

[
sinh η

(
1 + µ2ν + 2λµν

)
− sinh η

]
=

(µ2ν−1 + 2λµν−1)

sinh η
e−η
√

1+µ2ν+2λµν
((

1 + µ2ν + 2λµν
)
− 1
)

=
(
µ2ν + 2λµν

) (µ2ν−1 + 2λµν−1)

sinh η
e−η
√

1+µ2ν+2λµν =
(
µ2ν + 2λµν

)
κ̃ν3 (η, µ) .

(1.249)

Remark 1.5.3. For ν = 1
2

we know the explicit law of the process Lν(t), t > 0,

which is written as in (1.146). Thus we have an explicit representation for the law

of the process

T
1
2

3 (t) = Bhp
3

(
L

1
2 (t)
)
, t > 0 (1.250)

which reads

p
1
2
3 (η, t) = sinh2 η

∫ t

0

e−s

2
√
πs3

η e−
η2

4s

sinh η

 λse−
λ2s2

t−s√
π(t− s)3

+
2λ e−

λ2s2

t−s√
π(t− s)

 ds
=

λ η sinh η

2π

∫ t

0

e−s

s
3
2

√
t− s

e−
λ2s2

t−s −
η2

4s

(
s

t− s
+ 2

)
ds. (1.251)



Chapter 2

Generalized space-time fractional

equations

Article: Orsingher and Toaldo (2012). Space-time fractional equations and the re-

lated stable processes at random time.

Summary

In this paper we consider the general space-time fractional equation of the form∑m
j=1 λj

∂νj

∂tνj
w(x1, · · · , xn; t) = −c2 (−∆)β w(x1, · · · , xn; t), for νj ∈ (0, 1], β ∈ (0, 1]

with initial condition w(x1, · · · , xn; 0) =
∏n

j=1 δ(xj). We show that the solution

of the Cauchy problem above coincides with the distribution of the n-dimensional

vector process S2β
n (c2Lν1,··· ,νm(t)), t > 0, where S2β

n is an isotropic stable process

independent from Lν1,··· ,νm(t) which is the inverse of H ν1,··· ,νm(t) =
∑m

j=1 λ
1/νj
j Hνj(t),

t > 0, with Hνj(t) independent, positively-skewed stable r.v.’s of order νj. The prob-

lem considered includes the fractional telegraph equation as a special case as well

as the governing equation of stable processes. The composition S2β
n (c2Lν1,··· ,νm(t)),

t > 0, supplies a probabilistic representation for the solutions of the fractional equa-

tions above and coincides for β = 1 with the n-dimensional Brownian motion at the

random time Lν1,··· ,νm(t), t > 0. The iterated process Lν1,··· ,νm
r (t), t > 0, inverse to

Hν1,··· ,νm
r (t) =

∑m
j=1 λ

1/νj
j 1H

νj ( 2H
νj ( 3H

νj (· · · rHνj(t) · · · ))), t > 0, permits us to

construct the process S2β
n (c2Lν1,··· ,νm

r (t)), t > 0, the distribution of which solves a

space-fractional equation of the form of the generalized fractional telegraph equa-

tion. For r → ∞ and β = 1 we obtain a distribution, independent from t, which

represents the multidimensional generalisation of the Gauss-Laplace law and solves

the equation
∑m

j=1 λjw(x1, · · · , xn) = c2
∑n

j=1
∂2

∂x2
j
w(x1, · · · , xn). Our analysis repre-

sents a general framework of the interplay between fractional differential equations
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and composition of processes of which the iterated Brownian motion is a very par-

ticular case.

2.1 Introduction and preliminaries

2.1.1 Introduction

The study of the relationships between fractional differential equations and stochas-

tic processes has gained considerable popularity during the past three decades. In

pioneering works simple time-fractional diffusion equations have been considered

(see for example Fujita (1990)) and its connection with stable processes has been

established (see Orsingher and Beghin (2009); the reader can also consult Zolotarev

(1986) for details on stable laws). In such papers the authors have shown that the

compositions of processes have distributions satisfying fractional equations of dif-

ferent form. The iterated Brownian motion B1 (|B2(t)|), t > 0, (with B1 and B2

independent Brownian motions) has distribution solving the fractional equation (see

Allouba and Zheng (2001))

∂
1
2

∂t
1
2

u(x, t) =
1

2
3
2

∂2

∂x2
u(x, t), x ∈ R, t > 0.

as well as the fourth-order equation (see DeBlassie (2004))

∂

∂t
u(x, t) =

1

23

∂4

∂x4
u(x, t) +

1

2
√

2πt

d2

dx2
δ(x), x ∈ R, t > 0.

It has been shown by different authors (see Benachour et al. (1999)) that the solution

to the biquadratic heat-equation

∂

∂t
u(x, t) = − 1

23

∂4

∂x4
u(x, t), x ∈ R, t > 0,

coincides with

u(x, t) = E

{
1√

2π |B(t)|
cos

(
x2

2 |B(t)| − π
4

)}

and appears as the distribution of the composition of the Fresnel pseudoprocess with

an independent Brownian motion (see Orsingher and D’Ovidio (2011)).

When the fractional telegraph equation(
∂2ν

∂t2ν
+ 2λ

∂ν

∂tν

)
u(x, t) = c2 ∂

2

∂x2
u(x, t), x ∈ R, t > 0, (2.1)
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for ν ∈ (0, 1], λ > 0, c > 0, is considered, the solution of problem (2.1) for ν = 1
2

has been proved to coincide with the distribution of T (|B(t)|), t > 0, where T (t),

t > 0, is a telegraph process independent from the Brownian motion B(t), t > 0 (see

Orsingher and Beghin (2004)). From the analytical point of view, equations similar

to (2.1) have been studied in the form

∂α

∂tα
u(x, t) + a

∂β

∂tβ
u(x, t) = c2 ∂

γ

∂xγ
u(x, t) + ξ2u(x, t) + ϕ(x, t), x ∈ R, t > 0,

for α ∈ [0, 1], β ∈ [0, 1], γ > 0, by Saxena et al. (2006). These authors have provided

the Fourier transform of solutions of fractional equations of the form

a1
∂α1

∂tα1
u(x, t) + · · ·+ an+1

∂αn+1

∂tαn+1
u(x, t) = c2 ∂

β

∂xβ
u(x, t) + ξ2u(x, t) + ϕ(x, t)

for α1, · · · , αn+1 ∈ (0, 1) and β > 0, (see Saxena et al. (2007)) in terms of generalized

Mittag-Leffler functions (but no probabilistc interpretation has been given to these

solutions). Telegraph equations emerge in electrodynamics, in the study of damped

vibrations, in the analysis of the telegraph process. Its multidimensional version

appears in studying vibrations of membranes and other structures subject to fric-

tion. Equations with many fractional derivatives emerge in the study of anomalous

diffusions as pointed out by Saxena et al. (2006, 2007).

The symmetric stable laws have distribution satisfying the space-fractional equa-

tion
∂

∂t
u(x, t) =

∂ν

∂|x|ν
u(x, t), x ∈ R, t > 0,

where ∂ν

∂|x|ν is the Riesz fractional derivative. For asymmetric stable laws the connec-

tion with fractional equations has been established by Feller (1952). The connection

between fractional telegraph equations and stable laws has been established in a

recent paper by D’Ovidio et al. (2012), in which the authors considered the multi-

dimensional space-fractional extension of (2.1)(
∂2ν

∂t2ν
+ 2λ

∂ν

∂tν

)
u(x, t) = −c2 (−∆)β u(x, t), x ∈ Rn, t > 0, (2.2)

for ν ∈
(
0, 1

2

]
, β ∈ (0, 1]. The solution to (2.2) subject to the initial condition

u(x, 0) = δ(x) is given by the law of the composition of the form S2β
n (c2Lν(t)),

t > 0, where S2β
n (t), t > 0, is a n-dimensional isotropic stable vector process and

Lν(t) = inf
{
s : H2ν

1 (s) + (2λ)
1
νHν

2 (s) ≥ t
}

where H2ν
1 (t) and Hν

2 (t), t > 0, are independent positively-skewed stable processes,

with ν ∈
(
0, 1

2

]
. For β = 1 the composition above takes the form of a Brownian
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motion at the delayed time Lν(t), t > 0. For ν = 1
2

and n = 1 this establishes the

fine distributional relationship

T (|B(t)|) law
= B

(
c2L

1
2 (t)
)
, t > 0,

see D’Ovidio et al. (2012).

In the present paper we consider the further generalization of the space-time

fractional equation with an arbirtrary number of time-fractional derivatives
∑m

j=1 λj
C∂νj

∂tνj
wβν1,··· ,νm(x, t) = −c2 (−∆)β wβν1,··· ,νm(x, t), x ∈ Rn, t > 0,

wβν1,··· ,νm(x, 0) = δ(x),

(2.3)

for νj ∈ (0, 1], β ∈ (0, 1], λj > 0, j = 1, · · · ,m. The symbol
C∂ν

∂tν
stands for the

Dzerbayshan-Caputo fractional derivative which is defined as

C∂ν

∂tν
f(t) =

1

Γ (m− ν)

∫ t

0

dm

dsm
f(s)

(t− s)ν+1−mds, m− 1 < ν < m,m ∈ N,

for an absolutely continuous function f (for fractional calculus the reader can consult

Kilbas et al. (2006)). The fractional Laplacian (−∆)β, β ∈ (0, 1) is defined and

explored in Section 2.1.2 below. We show that the solution to (2.3) is given by the

law of the process S2β
n (c2Lν1,··· ,νm(t)), t > 0, where

Lν1,··· ,νm(t) = inf {s > 0 : H ν1,··· ,νm(s) > t} (2.4)

and

H ν1,··· ,νm(t) =
m∑
j=1

λ
1
νj

j H
νj
j (t), t > 0, (2.5)

for H
νj
j , j = 1, · · · ,m, totally positively-skewed stable processes (stable subordina-

tors), of order νj. In other words we show that the solution of a general space-time

fractional equation (which includes reaction-diffusion equations, telegraph equations,

diffusion equations as very special cases) coincides with the distribution of a stable

vector process taken at a random time Lν(t), t > 0, constructed as the inverse of

the combination of independent stable subordinators. For the classical Laplacian

(β = 1) we have that the solution to (2.3) is the distribution of a Brownian motion

at time Lν(t), t > 0.

We also prove that the law of the processes (2.4) and (2.5) are solutions of

fractional differential equations. In particular we show that

hν1,··· ,νm(x, t) =
Pr {H ν1,··· ,νm(t) ∈ dx}

dx
,
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is the solution to the space-fractional problem for νj ∈ (0, 1)
∂
∂t

hν1,··· ,νm(x, t) =
∑m

j=1 λj
∂νj

∂xνj
hν1,··· ,νm(x, t), x > 0, t > 0

hν1,··· ,νm(x, 0) = δ(x),

hν1,··· ,νm(0, t) = 0,

(2.6)

while the law of Lν2,··· ,νm(t) solves
∑m

j=1 λj
∂νj

∂tνj
lν1,··· ,νm(x, t) = − ∂

∂x
lν1,··· ,νm(x, t), x > 0, t > 0,

lν1,··· ,νm(0, t) =
∑m

j=1 λj
tνj

Γ(1−νj) ,
(2.7)

for νj ∈ (0, 1). In (2.6) and (2.7) the fractional derivatives must be meant in the

Riemann-Liouville sense that is, for an absolutely continuous function f ,

∂ν

∂xν
f(x) =

1

Γ (m− ν)

d

dx

∫ x

0

f(s)

(x− s)ν+1−mds, m− 1 < ν < m,m ∈ N.

A section is devoted to the case of the fractional equation with two time deriva-

tives of order α ∈ (0, 1] and ν ∈ (0, 1] with α 6= ν,
(
C∂α

∂tα
+ 2λ

C∂ν

∂tν

)
wβα,ν (x, t) = −c2 (−∆)β wβα,ν (x, t) , x ∈ Rn, t > 0,

wβα,ν (x, 0) = δ(x),
(2.8)

which takes a telegraph-type structure for α = kν, k ∈ N, kν ≤ 1. The Fourier-

Laplace transform of the solution of (2.8) for α = kν reads∫ ∞
0

dt e−µt
∫
Rn
dx eiξ·xwβkν,ν (x, t) =

µkν−1 + 2λµν−1

µkν + 2λµν + c2 ‖ξ‖2β
, (2.9)

where ‖·‖ is the usual euclidean norm. For k = 2, n = 1, β = 1, we have the classical

fractional telegraph equation studied in Orsingher and Beghin (2004). The Fourier

transform of w2ν,ν(x, t) reads

ŵ2ν,ν(ξ, t) =
1

2

[(
1 +

λ√
λ2 − c2ξ2

)
Eν,1 (−η1t

ν) +

(
1− λ√

λ2 − c2ξ2

)
Eν,1 (−η2t

ν)

]
(2.10)

where η1 and η2 are the solutions to µ2ν + 2λµν + c2ξ2 = 0 and

Eψ,ϑ(z) =
∞∑
k=0

zk

Γ (ψk + ϑ)
, ψ, ϑ > 0, z ∈ R,

is the two-parameter Mittag-Leffler function. For ν = 1, (2.10) coincides with the

characteristic function of the telegraph process. For k = 3 and ν ≤ 1
3

in (2.9) we
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obtain explicitely the Fourier transform of the solutions in terms of Mittag-Leffler

functions and the Cardano roots A, B and C of the third order algebraic equations

µ3ν + 2λµν + c2 ‖ξ‖2β = 0. For k > 3 we can write

˜̂wβkν,ν (ξ, µ) =
µkν−1 + 2λµν−1

µkν + 2λµν + c2 ‖ξ‖2β
= µν−1

k∏
i=1

µν−1

µν − Zi
+ 2λµν−1

k∏
i=1

1

µν − Zi

but the explict evaluation of Zi is, in general, impossible.

In Orsingher and Beghin (2009) n-times iterated Brownian motion

In(t) = B1 (|B2 (|B3 · · · (|Bn+1(t)|) · · · |)|) , t > 0,

is considered and its connection with the fractional diffusion equation

∂
1

2n

∂t
1

2n
u(x, t) = 2

1
2n
−2 ∂

2

∂x2
u(x, t)

investigated. Here we consider first the n-times iterated positively-skewed stable

process jH
νj with weights λj > 0, j = 1, · · · ,m,

Hν1,··· ,νm
r (t) =

m∑
j=1

λ
1
νj

j 1H
νj ( 2H

νj ( 3H
νj (· · · rHνj(t) · · · ))) , t > 0, (2.11)

We construct the inverse of the process (2.11) as follows

Lν1,··· ,νm
r (t) = inf {s > 0 : Hν1,··· ,νm

r (s) ≥ t} , t > 0.

We show that the distribution of the composition

Bn

(
c2Lν1,··· ,νm

r (t)
)
, t > 0,

where Bn represents the n-dimensional Brownian motion, is the solution to the

Cauchy problem for νj ∈ (0, 1], r ∈ N,
∑m

j=1 λj
C∂

νrj

∂t
νr
j
wβ,r
ν1,··· ,νm(x, t) = c2∆wβ,r

ν1,··· ,νm(x, t), x ∈ Rn, t > 0,

wβ,r
ν1,··· ,νm(x, 0) = δ(x).

We show that for the number r of iterations tending to infinity

Bn

(
c2Lν1,··· ,νm

r (t)
) law

=⇒
r →∞

Xm,n,

where Xm,n is a r.v. independent from t and possesses density equal to

Pr {Xm,n ∈ dx}
dx

=
1

(2π)
n
2


√∑m

j=1 λj

c


n+2

2

‖x‖−
n−2

2 Kn−2
2


√∑m

j=1 λj

c
‖x‖

 ,

(2.12)
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where Kν(x) is the modified Bessel function. For n = 1 the distribution (2.12)

becomes the Gauss-Laplace law

wm (x) =

√∑m
j=1 λj

2c
e−
√∑m

j=1
λj

c
|x|. (2.13)

Result (2.13) was obtained also in Orsingher and Beghin (2009) and by a different

approach for λ1 = 1, λj = 0 for j ≥ 2, c = 1
2
, was derived by Turban (2004) as the

limit of iterated random walks.

2.1.2 Preliminaries

One dimensional stable laws

Let us consider a stable process, say Sν(t), t > 0, ν ∈ (0, 2], ν 6= 1, for which, in

general,

EeiξSν(t) = e−σ|ξ|
νt(1−iθsign(ξ) tan νπ

2 ) (2.14)

where θ ∈ [−1, 1] is the skewness parameter and σ = cos πν
2

. In this paper we

consider positively skewed processes (θ = 1) say Hν(t), t > 0, whose characteristic

function writes

ĥν (ξ, t) = EeiξHν(t) = e−t|ξ|
ν cos πν

2 (1−i sign(ξ) tan πν
2 ) = e

−t
(
|ξ|e−

iπ
2 sign(ξ)

)ν
= e−t(−iξ)

ν

(2.15)

where we used the fact that |ξ| e−iπ2 sign(ξ) = −iξ. The process Hν(t), t > 0, has the

important property of having non-negative, stationary and independent increments,

and thus it is suitable to play the role of a random time. The law hν(x, t), x ≥ 0, of

Hν(t), t > 0, with Fourier transform ĥν(ξ, t) and Laplace transform

h̃ν(µ, t) = e−tµ
ν

, (2.16)

solves the fractional diffusion equation, for ν ∈ (0, 1],
(
∂
∂t

+ ∂ν

∂xν

)
hν(x, t) = 0, x > 0, t > 0,

hν(x, 0) = δ(x),

hν(0, t) = 0,

where the fractional derivatives are intended in the Riemann-Liouville sense. We

notice that the process given by the composition of r ∈ N independent stable sub-

ordinators of the same order ν ∈ (0, 1), say 1H
ν (2H

ν (· · ·rHν(t) · · · )), t > 0 has law

which reads

Pr {1H
ν (2H

ν (· · ·rHν(t) · · · )) ∈ dx}
dx

=
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=

∫ ∞
0

ds1 1hν(x, s1)

∫ ∞
0

ds2 2hν(s1, s2)

∫ ∞
0

ds3 3hν(s2, s3) · · ·
∫ ∞

0

dsr rhν(sr, t).

(2.17)

In view of (2.15) and (2.16) we can easily write the Laplace and Fourier transforms

of (2.17). For example the Laplace transform reads

Ee−µ 1Hν(2Hν(···rHν(t)··· )) =

∫ ∞
0

dx e−µx Pr {1H
ν (2H

ν (· · ·rHν(t) · · · )) ∈ dx}

=

∫ ∞
0

ds1 e
−s1µν

∫ ∞
0

ds2 2hν(s1, s2)

∫ ∞
0

ds3 3hν(s2, s3) · · ·
∫ ∞

0

dsr rhν(sr, t)

=

∫ ∞
0

ds2e
−s2µν

2
∫ ∞

0

ds3 3hν(s2, s3) · · ·
∫ ∞

0

dsr rhν(sr, t) = e−tµ
νr

(2.18)

and therefore we have the following Fourier transform

Ee−iξ 1Hν(2Hν(···rHν(t)··· )) = e−t(−iξ)
νr

(2.19)

Multidimensional stable laws and fractional Laplacian

Let us consider the isotropic n-dimensional process S2β
n (t), t > 0 , β ∈ (0, 1], with

density

vβ (x, t) =
1

(2π)n

∫
Rn
dξ e−iξ·x e−t‖ξ‖

2β

, x ∈ Rn, t > 0, (2.20)

and therefore characteristic function

v̂β (ξ, t) = Eeiξ·S
2β
n (t) = e−t‖ξ‖

2β

,

where the symbol ‖·‖ stands for the usual Euclidean norm. The law (2.20) is the

solution to the fractional Cauchy problem, for β ∈ (0, 1]
(
∂
∂t

+ (−∆)β
)
vβ (x, t) = 0, x ∈ Rn, t > 0,

vβ(x, 0) = δ(x).
(2.21)

The fractional negative Laplacian appearing in (2.21) has been considered by many

authors (see for example Balakrishnan (1960), Bochner (1949)). The Bochner rep-

resentation of the fractional Laplacian reads

− (−∆)β =
sin πβ

π

∫ ∞
0

dλ λβ−1 (λ−∆)−1 ∆.

Equivalently, an alternative useful definition can be given in the space of the Fourier

transforms, as

− (−∆)β u(x) =
1

(2π)n

∫
Rn
e−ix·ξ ‖ξ‖2β û (ξ) dξ
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where

Dom (−∆)β =

{
u ∈ L1

loc (Rn) :

∫
Rn
|û (ξ)|2

(
1 + ‖ξ‖2β

)
dξ <∞

}
.

In the one-dimensional case and for 0 < 2β < 1 we have that (see for example

D’Ovidio et al. (2012) for details on this point),(
− ∂2

∂x2

)β
u(x) =

∂2β

∂|x|2β
u(x),

where ∂2β

∂|x|2β is the Riesz operator usually defined as

∂2β

∂|x|2β
u(x) = − 1

2 cos βπ

1

Γ (1− 2β)

d

dx

∫ ∞
−∞

u(z)

|x− z|2β
dz

and for which the Fourier transform becomes

F
[
∂2β

∂|x|2β
u(x)

]
= − |ξ|2β û (ξ) .

2.2 Generalized fractional equations

2.2.1 Linear combination of stable processes

In this section we start by considering processes of the form

H ν1,··· ,νm(t) =
m∑
j=1

λ
1
νj

j H
νj
j (t), t > 0, νj ∈ (0, 1) , j = 1, · · · ,m, (2.22)

where H
νj
j (t), t > 0, are independent stable subordinators of order νj ∈ (0, 1]

introduced in section 2.1.2. Furthermore we will deal with the inverse process of

H ν1,··· ,νm , say Lν1,··· ,νm(t), t > 0, which can be defined as the hitting time of H ν1,··· ,νm

as

Lν1,··· ,νm(t) = inf

{
s > 0 : H ν1,··· ,νm(s) =

m∑
j=1

λ
1
νj

j H
νj
j (s) ≥ t

}
, t > 0. (2.23)

The definition (2.23) of the process Lν1,··· ,νm permits us to write

Pr {Lν1,··· ,νm(t) < x} = Pr {H ν1,··· ,νm(x) > t} . (2.24)

We present the following two results.

Theorem 2.2.1. We have that
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i) The solution to the problem for νj ∈ (0, 1), j = 1, · · · ,m,
∂
∂t

hν1,··· ,νm(x, t) = −
∑m

j=1 λj
∂νj

∂xνj
hν1,··· ,νm(x, t), x > 0, t > 0,

hν1,··· ,νm(x, 0) = δ(x),

hν1,··· ,νm(0, t) = 0.

(2.25)

is given by the law of the process H ν1,··· ,νm(t), t > 0, defined in (2.22).

ii) The solution to the problem for νj ∈ (0, 1), j = 1, · · · ,m,
∑m

j=1 λj
∂νj

∂tνj
lν1,··· ,νm(x, t) = − ∂

∂x
lν1,··· ,νm(x, t), x > 0, t > 0,

lν1,··· ,νm(0, t) =
∑m

j=1 λj
t−νj

Γ(1−νj) ,
(2.26)

is given by the law of the process Lν1,··· ,νm(t), t > 0, defined in (2.23).

The fractional derivatives appearing in (2.25) and (2.26) must be intended in the

Riemann-Liouville sense.

Proof of i). Since for the Riemann-Liouville fractional derivative we have that

F
[
∂ν

∂xν
u(x)

]
(ξ) = (−iξ)ν û(x) (2.27)

we can write the Fourier transform of the problem (2.25) as

∂

∂t
ĥν1,··· ,νm (ξ, t) = −F

[
m∑
j=1

λj
∂νj

∂xνj
hν1,··· ,νm(x, t)

]
(ξ) =

m∑
j=1

λj (−iξ)νj ĥν1,··· ,νm (ξ, t) ,

and therefore we have that ∂
∂t
ĥν1,··· ,νm(ξ, t) =

∑m
j=1 λj (−iξ)νj ĥν1,··· ,νm (ξ, t)

ĥν1,··· ,νm(ξ, 0) = 1.
(2.28)

The Fourier transform of the law hν1,··· ,νm(x, t) of the process (2.22) is written as

EeiξH ν1,··· ,νm (t) = Eeiξ
∑m
j=1 λ

1
νj
j H

νj
j (t) (2.15)

= e−t
∑m
j=1 λj(−iξ)

νj
. (2.29)

for which

∂

∂t
EeiξH ν1,··· ,νm (t) =

m∑
j=1

λj (−iξ)νj e−t
∑m
j=1 λj(−iξ)

νj
.

This is tantamount to saying that the Fourier transform of hν1,··· ,νm(x, t) is the solu-

tion to the problem (2.28) and thus hν1,··· ,νm(x, t) is the solution to (2.25).
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Proof of ii). In this proof we will make use of the Laplace transform of the Riemann-

Liouville fractional derivative which, in view of (2.27), can be written as

L
[
∂ν

∂tν
u(t)

]
(µ) = µν ũ (µ) .

Taking the Laplace transform of (2.26) with respect to t we get

m∑
j=1

λjµ
νj l̃ν1,··· ,νm(x, µ) = − ∂

∂x
l̃ν1,··· ,νm(x, µ), (2.30)

and performing the x-Laplace transform of (2.30) we arrive at

m∑
j=1

λjµ
νj˜̃l ν1,··· ,νm(γ, µ) = l̃ν1,··· ,νm(0, µ)− γ˜̃l ν1,··· ,νm(γ, µ). (2.31)

The boundary condition appearing in (2.31) can be derived from (2.26) as

l̃ν1,··· ,νm(0, µ) =

∫ ∞
0

dt e−µt
m∑
j=1

λj
t−νj

Γ (1− νj)
=

m∑
j=1

λjµ
νj−1

and thus from (2.31) we have that

˜̃l ν1,··· ,νm(γ, µ) =

∑m
j=1 λjµ

νj−1∑m
j=1 λjµ

νj + γ
. (2.32)

Now we show that the Fourier-Laplace transform of the law of the process Lν1,··· ,νm(t),

t > 0, coincides with (2.32). By taking into account the property (2.24) of the law

of Lν1,··· ,νm , we obtain

˜̃l ν1,··· ,νm(γ, µ) =

∫ ∞
0

dt e−µt
∫ ∞

0

dx e−γxlν1,··· ,νm(x, t)

=

∫ ∞
0

dt e−µt
∫ ∞

0

dx e−γx
[
− ∂

∂x

∫ t

0

dz hν1,··· ,νm(z, x)

]
= − 1

µ

∫ ∞
0

dx e−γx
[
∂

∂x
h̃ν1,··· ,νm(µ, x)

]
= − 1

µ

∫ ∞
0

dx e−γx

[
∂

∂x
Ee−µ

∑m
j=1 λ

1
νj
j H

νj
j (x)

]
(2.16)
= − 1

µ

∫ ∞
0

dx e−γx
[
∂

∂x
e−x

∑m
j=1 λjµ

νj

]
=

∑m
j=1 λjµ

νj−1∑m
j=1 λjµ

νj + γ
,

which coincides with (2.32). The proof of Theorem 2.2.1 is thus concluded.
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2.2.2 Generalized fractional telegraph-type equations

In this section we study equations of the form

m∑
j=1

λj
C∂νj

∂tνj
wβν1,··· ,νm(x, t) = −c2 (−∆)β wβν1,··· ,νm(x, t), x ∈ Rn, t > 0, (2.33)

for νj ∈ (0, 1], j = 1, · · · ,m, β ∈ (0, 1], c > 0, λ > 0. The symbol
C∂ν

∂tν
stands for the

Dzerbayshan-Caputo fractional derivative. Equation (2.33) generalizes the telegraph

equation in that an arbitrary number m of time-fractional derivatives appears and

the n-dimensional fractional Laplacian governs the space fluctuations. Concerning

the equation (2.33) we present the following result.

Theorem 2.2.2. The solution to the problem for νj ∈ (0, 1], j = 1, · · · ,m, β ∈
(0, 1],

∑m
j=1 λj

C∂νj

∂tνj
wβν1,··· ,νm(x, t) = −c2 (−∆)β wβν1,··· ,νm(x, t), x ∈ Rn, t > 0,

wβν1,··· ,νm(x, 0) = δ (x) .

(2.34)

is given by the law of the process

W ν1,··· ,νm
n (t) = S2β

n

(
c2Lν1,··· ,νm(t)

)
, t > 0, (2.35)

where S2β
n is the isotropic vector process dealt with in section 2.1.2 and Lν1,··· ,νm(t),

t > 0 is the process defined in (2.23).

Proof. Since for the Dzerbayshan-Caputo fractional derivative we have that,

L
[
C∂ν

∂tν
u(t)

]
(µ) = µν ũ(µ)− µν−1u(0), ν ∈ (0, 1) ,

we can write the Laplace transform of (2.34) as

m∑
j=1

λjµ
νj w̃βν1,··· ,νm (x, µ)−

m∑
j=1

λjµ
νj−1δ(x) = −c2 (−∆)β w̃βν1,··· ,νm (x, µ) .

The Fourier-Laplace transform of (2.34) is therefore written as

̂̃wβν1,··· ,νm (ξ, µ) =

∑m
j=1 λjµ

νj−1∑m
j=1 λjµ

νj + c2 ‖ξ‖2β
. (2.36)

Considering (2.24) we can derive the Fourier-Laplace transform of the process (2.35).

We have that

̂̃wβν1,··· ,νm (ξ, µ) =

∫
Rn
dx eiξ·x

∫ ∞
0

dt e−µt
∫ ∞

0

ds vβ
(
x, c2s

)
lν1,··· ,νm (s, t)
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=

∫ ∞
0

ds e−sc
2‖ξ‖2β

∫ ∞
0

dt e−µt
[
− ∂

∂s

∫ t

0

hν1,··· ,νm(z, s) dz

]
= − 1

µ

∫ ∞
0

ds e−sc
2‖ξ‖2β

(
∂

∂s
h̃ν1,··· ,νm(µ, s)

)
= − 1

µ

∫ ∞
0

ds e−sc
2‖ξ‖2β

(
∂

∂s
Ee−µ

∑m
j=1 λjH

νj
j (s)

)
(2.16)
= − 1

µ

∫ ∞
0

ds e−sc
2‖ξ‖2β

(
∂

∂s
e−s

∑m
j=1 λjµ

νj

)
=

m∑
j=1

λjµ
νj−1

∫ ∞
0

ds e−sc
2‖ξ‖2β−s

∑m
j=1 λjµ

νj
=

∑m
j=1 λjµ

νj−1∑m
j=1 λjµ

νj + c2 ‖ξ‖2β

= (2.36).

Since the Fourier-Laplace transform of the problem (2.34) coincides with that of the

law of the process S2β
n (c2Lν1,··· ,νm(t)), t > 0, the proof is complete.

2.2.3 Telegraph-type equations with two time-fractional deriva-

tives

When in the equation (2.33) only two time derivatives appear we can rewrite the

problem, for α, ν ∈ (0, 1] as
(
C∂α

∂tα
+ 2λ

C∂ν

∂tν

)
wβα,ν(x, t) = −c2 (−∆)β wβα,ν(x, t), x ∈ Rn, t > 0,

wβα,ν(x, 0) = δ(x).
(2.37)

For α = 2ν, ν ∈
(
0, 1

2

]
the reader can recongnize in (2.37) the standard form of

the classical fractional telegraph equation, investigated from a probabilistic point of

view in Orsingher and Beghin (2004) (for n = 1 and β = 1) and in D’Ovidio et al.

(2012) (for n ∈ N and β ∈ (0, 1)). In view of Theorem 2.2.2 is it not difficult to

prove the following result.

Corollary 2.2.3. The solution of the fractional Cauchy problem (2.37) is given by

the law of the process

W α,ν
n (t) = S2β

n

(
c2Lα,ν(t)

)
, t > 0. (2.38)

where

Lα,ν(t) = inf
{
s > 0 : H α,ν(s) = Hα

1 + (2λ)
1
ν Hν

2 (s) > t
}
,

for Hα
1 and Hα

2 independent stable subordinators.

Proof. The proof of this result can be carried out by repeating the arguments of

Theorem 2.2.2 and will not be reported here. It is sufficient to assume that λ1 = 1,

λ2 = 2λ, λ > 0 and λj = 0 for j > 2.
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2.2.4 The case α = kν

Let us consider α = kν, ν ∈
(
0, 1

k

]
, k ∈ N, in (2.37). The problem becomes

(
C∂kν

∂tkν
+ 2λ

C∂ν

∂tν

)
wβkν,ν(x, t) = −c2 (−∆)β wβkν,ν(x, t), x ∈ Rn, t > 0,

wβkν,ν(x, 0) = δ(x).

(2.39)

In view of Corollary 2.2.3 the solution to (2.39) is given by the law of the process

S2β
n

(
c2Lkν(t)

)
, t > 0. The Fourier-Laplace transform of wβkν,ν(x, t) can be now

written as

̂̃wβkν,ν (ξ, µ) =
µkν−1 + 2λµν−1

µnν + 2λµν + c2 ‖ξ‖2β
= µn−1

k∏
i=1

µν−1

µν − Zi
+ 2λµν−1

k∏
i=1

1

µν − Zi

where Zi are the roots of µkν + 2λµν + c2 ‖ξ‖2β = 0.

For k = 3 we get

̂̃wβ3ν,ν (ξ, µ) =
µ3ν−1

µν − A
1

µν −B
1

µν − C
+ 2λ

µν−1

µν − A
1

µν −B
1

µν − C
, (2.40)

where A, B and C are the solutions to µ3ν + 2λµν + c2 ‖ξ‖2β = 0. Formula (2.40)

can be rewritten as

̂̃wβ3ν,ν (ξ, µ) =
(µ3ν−1 + 2λµν−1)

µν − A

[(
1

µν −B
− 1

µν − C

)
1

B − C

]
=
(
µ3ν−1 + 2λµν−1

) [( 1

µν − A
− 1

µν −B

)
1

(A−B) (B − C)

−
(

1

µν − A
− 1

µν − C

)
1

(A− C) (B − C)

]
=
(
µ3ν−1 + 2λµν−1

) [ 1

µν − A
1

(B − A) (C − A)
+

1

µν −B
1

(A−B) (C −B)

+
1

µν − C
1

(A− C) (B − C)

]
. (2.41)

By considering now the relationship∫ ∞
0

e−µtt(1−2ν)−1Eν,1−2ν (Ctν) dt =
µν−(1−2ν)

µν − C

we can invert (2.41) with respect to µ. Thus we can explicitely write the character-

istic function of the process S2β
n (c2L3ν,ν(t)), t > 0, as

Eeiξ·S
2β
n (c2L3ν,ν(t)) =

t−2νEν,1−2ν (Atν) + 2λEν,1 (Atν)

(B − A) (C − A)
+
t−2νEν,1−ν (Btν) + 2λEν,1 (Btν)

(A−B) (C −B)

+
t−2νEν,1−2ν (Ctν) + 2λEν,1 (Ctν)

(A− C) (B − C)
.
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2.3 Multidimensional Gauss-Laplace distributions

and infinite compositions

In Orsingher and Beghin (2009) the authors have shown that the process

In(t) = B1 (|B2 (|B3 · · · (|Bn+1(t)|) · · · |)|) , t > 0,

converges in distribution for n → ∞ to a Gauss-Laplace (or bilateral exponential)

random variable independent from t > 0. In this section we show that the process

Bn (Lν1,··· ,νm
r (t)), t > 0, converges in distribution, for r →∞, to a multidimensional

version of the Gauss-Laplace r.v. and solves the equation, for νj ∈ (0, 1), r ∈ N,

m∑
j=1

λj
C∂ν

r
j

∂tν
r
j
wβ,r
ν1,··· ,νm(x, t) = c2∆wβ,r

ν1,··· ,νm(x, t), x ∈ Rn, t > 0.

The process Lν1,··· ,νm
r (t), t > 0, is defined as

Lν1,··· ,νm
r (t) = inf {s > 0 : Hν1,··· ,νm

r (s) ≥ t} , t > 0

where

Hν1,··· ,νm
r (t) =

m∑
j=1

λ
1
νj

j 1H
νj ( 2H

νj ( 3H
νj (· · · rHνj(t) · · · ))) , t > 0.

We start by presenting the following results.

Corollary 2.3.1. We have that

i) The solution to the problem for νj ∈ (0, 1), j = 1, · · · ,m, r ∈ N,
∂
∂t
hrν1,··· ,νm(x, t) = −

∑m
j=1 λj

∂
νrj

∂x
νr
j
hrν1,··· ,νm(x, t), x > 0, t > 0,

hrν1,··· ,νm(x, 0) = δ(x),

hrν1,··· ,νm(0, t) = 0,

(2.42)

is given by the law of the process

Hν1,··· ,νm
r (t) =

m∑
j=1

λ
1
νj

j 1H
νj ( 2H

νj ( 3H
νj (· · · rHνj(t) · · · ))) , t > 0.

ii) The solution to the problem for νj ∈ (0, 1), j = · · · ,m, r ∈ N,
∑m

j=1 λj
∂
νrj

∂t
νr
j
lrν1,··· ,νm(x, t) = − ∂

∂x
lrν1,··· ,νm(x, t), x > 0, t > 0,

lrν1,··· ,νm(0, t) =
∑m

j=1 λj
t
νrj

Γ(1−νrj )

(2.43)

is given by the law of the process

Lν1,··· ,νm
r (t) = inf {s > 0 : Hν1,··· ,νm

r (s) ≥ t} , t > 0. (2.44)
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Proof of i). The proof is carried out in the same spirit of Theorem 2.2.1, thus by

considering the Fourier transform of (2.42) we get ∂
∂t
ĥrν1,··· ,νm(ξ, t) = −

∑m
j=1 λj (−iξ)ν

r
j ĥrν1,··· ,νm(ξ, t)

ĥrν1,··· ,νm(ξ, 0) = 1.
(2.45)

The proof is completed by observing that the solution to (2.45) is given by the Fourier

transform of the law of the process Hν1,··· ,νm
r (t), t > 0, which can be obtained by

means of the calculation

EeiξH
ν1,··· ,νm
r (t) =Eeiξ

∑m
j=1 λ

1
νj
j 1H

νj( 2H
νj( 3H

νj(··· rHνj (t)··· ))) (2.19)
= e−t

∑m
j=1 λj(−iξ)

νrj
,

that is the solution to (2.45).

Proof of ii). By considering the double Laplace transform of (2.43) we have that

m∑
j=1

λjµ
νrj
˜̃
l rν1,··· ,νm (γ, µ) = l̃rν1,··· ,νm (0, µ)− γ̃̃l rν1,··· ,νm (γ, µ) ,

where the boundary condition is given by∫ ∞
0

dt e−µt
m∑
j=1

λj
tν
r
j

Γ
(
1− νrj

) =
m∑
j=1

λjµ
νrj−1,

and thus ˜̃
l rν1,··· ,νm (γ, µ) =

∑m
j=1 λjµ

νrj−1∑m
j=1 λjµ

νrj + γ
(2.46)

The definition (2.44) permits us to state that the processes Lν1,··· ,νm
r (t), t > 0, and

Hν1,··· ,νm
r (t), t > 0, are related by the fact that

Pr {Lν1,··· ,νm
r (t) < x} = Pr {Hν1,··· ,νm

r (x) > t} ,

and thus we can perform manipulations similar to those of Theorem 2.2.1. We have

that the double Laplace transform of the law lrν1,··· ,νm(x, t) is then given by

˜̃
l rν1,··· ,νm(γ, µ) =

∫ ∞
0

dt e−µt
∫ ∞

0

dx e−γx
[
− ∂

∂x

∫ t

0

dz hrν1,··· ,νm(z, x)

]
= − 1

µ

∫ ∞
0

dx e−γx
[
∂

∂x
h̃rν1,··· ,νm(µ, x)

]
= − 1

µ

∫ ∞
0

dx e−γx

[
∂

∂x
Ee−µ

∑m
j=1 λ

1
νj
j 1H

νj( 2H
νj( 3H

νj(··· rHνj (t)··· )))

]
(2.19)
= − 1

µ

∫ ∞
0

dx e−γx
[
∂

∂x
e−x

∑m
j=1 λjµ

νrj

]
=

∑m
j=1 λjµ

νrj−1∑m
j=1 λjµ

νrj + γ
,

and coincides with (2.46).
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Theorem 2.3.2. The solution to the problem for νj ∈ (0, 1], β ∈ (0, 1], j =

1, · · · ,m, r ∈ N,
∑m

j=1 λj
C∂

νrj

∂t
νr
j
wβ,r
ν1,··· ,νm (x, t) = −c2 (−∆)β wβ,r

ν1,··· ,νm (x, t) , x ∈ Rn, t > 0,

wβ,r
ν1,··· ,νm (x, 0) = δ (x) ,

(2.47)

is given by the law of the process

Wn (t) = S2β
n

(
c2Lν1,··· ,νm

r (t)
)
, t > 0. (2.48)

where the process Lν1,··· ,νm
r (t), t > 0, is defined in (2.44). For β = 1, the process

(2.48) becomes the subordinated Brownian motion Bn (c2Lν1,··· ,νm
r (t)), t > 0.

Proof. The Fourier-Laplace transform of (2.47) can be easily derived as in Theorem

2.2.2 and reads

̂̃wβ,r

ν1,··· ,νm(ξ, µ) =

∑j
j=1 λjµ

νrj−1∑m
j=1 λjµ

νrj + c2 ‖ξ‖2β
. (2.49)

By considering the law of the process S2β
n (c2Lν1,··· ,νm

r (t)) we have that∫ ∞
0

dt e−µtEeiξ·S
2β
n (c2Lν1,··· ,νmr (t))

=

∫
Rn
dx eiξ·x

∫ ∞
0

dt e−µt
∫ ∞

0

ds vβ
(
x, c2s

)
lrν1,··· ,νm (s, t)

=

∫ ∞
0

ds e−sc
2‖ξ‖2β

∫ ∞
0

dt e−µt
[
− ∂

∂s

∫ t

0

hrν1,··· ,νm(z, s) dz

]
= − 1

µ

∫ ∞
0

ds e−sc
2‖ξ‖2β

(
∂

∂s
h̃rν1,··· ,νm(µ, s)

)
= − 1

µ

∫ ∞
0

ds e−sc
2‖ξ‖2β

(
∂

∂s
Ee−µ

∑m
j=1 λ

1
νj
j 1H

νj( 2H
νj( 3H

νj(··· rHνj (t)··· )))

)
(2.18)
= − 1

µ

∫ ∞
0

ds e−sc
2‖ξ‖2β

(
∂

∂s
e−s

∑m
j=1 λjµ

νrj

)
=

m∑
j=1

λjµ
νrj−1

∫ ∞
0

ds e−sc
2‖ξ‖2β−s

∑m
j=1 λjµ

νrj
=

∑m
j=1 λjµ

νrj−1∑m
j=1 λjµ

νrj + c2 ‖ξ‖2β

which coincides with (2.49).

We now consider the limiting case for r →∞ where the iteration of the process

S2β
n (c2Lν1,··· ,νm

r (t)), t > 0, is infinitely extended. In the next theorem we have that

the limiting law of

lim
r→∞

S2β
n

(
c2Lν1,··· ,νm

r (t)
)
, t > 0,
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is, for β = 1, a generalization to Rn of the Gauss-Laplace probability density. This

result represents an extension to the n-dimensional case of the infinitely iterated

Brownian motion.

Theorem 2.3.3. The distribution of the limiting process

lim
r→∞

Bn

(
c2Lν1,··· ,νm

r (t)
) law

= Xm,n

does not depend on t and reads

wm(x) =
Pr {Xm,n ∈ dx}

dx
=

1

(2π)
n
2


√∑m

j=1 λj

c


n+2

2

‖x‖−
n−2

2 Kn−2
2


√∑m

j=1 λj

c
‖x‖

 .

(2.50)

The density (2.50) solves the equation(
m∑
j=1

λj

)
wm(x1, · · · , xn) = c2

n∑
j=1

∂2

∂x2
j

wm(x1, · · · , xn),

which is obtained from (2.47) by letting r →∞.

Proof. By assuming

A =
1

(2π)
n
2


√∑m

j=1 λj

c


n+2

2

, B =

√∑m
j=1 λj

c
,

the density

wm(x) = A

(
n∑
j=1

x2
j

)−n−2
4

Kn−2
2

B
√√√√ n∑

j=1

x2
j


has first-order derivative which reads

∂

∂xj
wm(x) =

=AB
xj(∑n

j=1 x
2
j

)n
4

K ′n−2
2

(
B
(
x2

1 + · · ·+ x2
n

) 1
2

)
− A

(
n−2

2

)
xj Kn−2

2

(
B (x2

1 + · · ·+ x2
n)

1
2

)
(∑n

j=1 x
2
j

)n
4

+ 1
2

= − ABxj

(
n∑
j=1

x2
j

)−n
4

Kn
2

(
B
(
x2

1 + · · ·+ x2
n

) 1
2

)
. (2.51)

In the last step we applied the relationship

d

dz
Kν(z) =

ν

z
Kν(z)−Kν+1(z) (2.52)
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of Lebedev (1965), page 110. The second-order derivative now becomes

∂2

∂x2
j

wm (x1, · · · , xn) =

= − AB 1(∑n
j=1 x

2
j

)n
4

Kn
2

(
B
(
x2

1 + · · ·+ x2
n

) 1
2

)
+
n

2
AB

x2
j Kn

2

(
B (x2

1 + · · ·+ x2
n)

1
2

)
(∑n

j=1 x
2
j

)n
4

+1

− AB2
x2
j(∑n

j=1 x
2
j

)n
4

+ 1
2

K ′n
2

(
B
(
x2

1 + · · ·+ x2
n

) 1
2

)

=AB2
x2
j(∑n

j=1 x
2
j

)n
4

+ 1
2

Kn
2

+1

(
B
(
x2

1 + · · ·+ x2
n

) 1
2

)
− AB

Kn
2

(
B (x2

1 + · · ·+ x2
n)

1
2

)
(∑n

j=1 x
2
j

)n
4

.

(2.53)

By considering the relationship

Kν+1(z) = Kν−1(z) + 2
ν

z
Kν(z)

of Lebedev (1965), page 110, the derivative (2.53) takes the form

∂2

∂x2
j

wm (x1, · · · , xn) = AB2x2
j

(
n∑
j=1

x2
j

)−n
4
− 1

2

Kn
2
−1

(
B
(
x2

1 + · · ·+ x2
n

))
.

The Laplacian of wm(x1, · · · , xm) therefore becomes

n∑
j=1

∂2

∂x2
j

wm (x) = AB2

(
n∑
j=1

x2
j

)−n+2
4

Kn−2
2

B( n∑
j=1

x2
j

) 1
2


and thus taking A and B explicitely we obtain the desired result

c2

n∑
j=1

∂2

∂x2
j

wm(x1, · · · , xn) =
m∑
j=1

λjwm(x1, · · · , xn).

Remark 2.3.4. For r →∞ the Fourier-Laplace transform (2.49) becomes

̂̃wβ

m(ξ, µ) =
1

µ

∑m
j=1 λj∑m

j=1 λj + c2 ‖ξ‖2β
,

and thus the Fourier transform takes the form

ŵβ
m (ξ) =

∑m
j=1 λj∑m

j=1 λj + c2 ‖ξ‖2β
. (2.54)
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The inversion of the Fourier transform (2.54) can be carried out by means of the

hyperspherical coordinates. Thus we have that

wβ
m (x) =

1

(2π)n

∫
Rn
e−iξ·x

∑m
j=1 λj∑m

j=1 λj + c2 ‖ξ‖2β
dξ

=
1

(2π)n

∫ ∞
0

dρ ρn−1

∑m
j=1 λj∑m

j=1 λj + c2ρ2β

∫ π

0

dθ1

∫ π

0

dθ2 · · ·
∫ π

0

dθn−2∫ 2π

0

dφ e−iρ[x1 sin θ1 sin θ2··· sin θn−2 sinφ+x2 sin θ1 sin θ2··· sin θn−2 cosφ]

e−iρ[x3 sin θ1 sin θ2··· sin θn−3 cos θn−2+ ··· +xn−1 sin θ1 cos θ2+xn cos θ1] sinn−2 θ1 · · · sin θn−2

=
1

(2π)n−1

∫ ∞
0

ρn−1

∑m
j=1 λj∑m

j=1 λj + c2ρ2β
dρ

∫ π

0

dθ1

∫ π

0

dθ2 · · ·
∫ π

0

dθn−2 sinn−2 θ1 · · · sin θn−2

e−iρ[x3 sin θ1 sin θ2··· sin θn−3 cos θn−2+ ··· +xn−1 sin θ1 cos θ2+xn cos θ1]

J0

(
ρ
√
x2

1 + x2
2 sin θ1 sin θ2 · · · sin θn−2

)
We now evaluate the integrals with respect to θj by means of formula 6.688 page

727 of Gradshteyn and Ryzhik (2007), which reads∫ π
2

0

sinν+1 x cos (β cosx) Jν (α sinx) dx =

√
π

2

αν

(α2 + β2)
ν
2

+ 1
4

Jν+ 1
2

(√
α2 + β2

)
.

valid for <(ν) > −1. We start with the integral with respect to θn−2∫ π

0

dθn−2 e
−iρx3 sin θ1··· sin θn−3 cos θn−2 sin θn−2 J0

(
ρ
√
x2

1 + x2
2 sin θ1 · · · sin θn−2

)
= 2

∫ π
2

0

dθn−2 cos (ρx3 sin θ1 · · · sin θn−3 cos θn−2) sin θn−2J0

(
ρ
√
x2

1 + x2
2 sin θ1 · · · sin θn−2

)
=
√

2π

(
ρ sin θ1 · · · sin θn−3

√
x2

1 + x2
2 + x2

3

)− 1
2

J 1
2

(
ρ
√
x2

1 + x2
2 + x2

3 sin θ1 · · · sin θn−3

)
and thus the integral with respect to θn−3 becomes

√
2π

∫ π

0

dθn−3e
−iρx4 sin θ1··· sin θn−4 cos θn−3 sin2 θn−3(

ρ sin θ1 · · · sin θn−3

√
x2

1 + x2
2 + x2

3

)− 1
2

J 1
2

(
ρ
√
x2

1 + x2
2 + x2

3 sin θ1 · · · sin θn−3

)
= 2
√

2π

(
ρ sin θn−1 · · · sin θn−4

√
x2

1 + x2
2 + x2

3

)− 1
2
∫ π

2

0

dθn−3 sin
3
2 θn−3

cos (ρx4 sin θ1 · · · sin θn−4 cos θn−3) J 1
2

(
ρ
√
x2

1 + x2
2 + x2

3 sin θ1 · · · sin θn−3

)
=
(√

2π
)2 (

ρ2 sin2 θ1 · · · sin2 θn−4

(
x2

1 + x2
2 + x2

3 + x2
4

))− 1
2
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J1

(
ρ
√
x2

1 + x2
2 + x2

3 + x2
4 sin θ1 sin θ2 · · · sin θn−4

)
.

After n− 2 integrations we arrive at the integral with respect to ρ which reads

wβ
m (x) = (2π)−

n
2

∫ ∞
0

dρ

∑m
j=1 λj∑m

j=1 λj + c2ρ2β
Jn−2

2

ρ
√√√√ n∑

i=j

x2
j

 ρ
n
2(√∑n

i=j x
2
j

)n−2
2

(2.55)

which, for β = 1 and after the change of variable ρ2c2 = y2, becomes

wm (x) = (2π)−
n
2

1

c

∫ ∞
0

dy

∑m
j=1 λj∑m

j=1 λj + y2
Jn−2

2

y
c

√√√√ n∑
j=1

x2
j

 (
y
c

)n
2(√∑n

j=1 x
2
j

)n−2
2

for n<5
=

1

(2π)
n
2


√∑m

j=1 λj

c


n+2

2
√√√√ n∑

j=1

x2
j

−
n−2

2

Kn−2
2


√∑m

j=1 λj

c

√√√√ n∑
j=1

x2
j



=
1

(2π)
n
2


√∑m

j=1 λj

c


n+2

2

‖x‖−
n−2

2 Kn−2
2


√∑m

j=1 λj

c
‖x‖

 ,

where we used formula 6.566 page 679 of Gradshteyn and Ryzhik (2007), which

reads∫ ∞
0

dx xν+1Jν(ax)
1

x2 + b2
= bνKν(ab), a > 0, <(b) > 0, −1 < <(ν) <

3

2
.

Remark 2.3.5. We can check that (2.50) for all n ∈ N is a true probability density.

∫
Rn

wm(x) dx =
area (Sn1 )

(2π)
n
2


√∑m

j=1 λj

c


n+2

2 ∫ ∞
0

ρn−1−n−2
2 Kn

2
−1

ρ
√∑m

j=1 λj

c

 dρ

=
(2π)

n
2

Γ
(
n
2

) 1

(2π)
n
2


√∑m

j=1 λj

c


n+2

2 ∫ ∞
0

ρ
n
2Kn

2
−1

ρ
√∑m

j=1 λj

c

 dρ = 1

in force of formula 6.561(16) of Gradshteyn and Ryzhik (2007) page 676∫ ∞
0

xµKν (ax) = 2µ−1a−µ−1Γ

(
1 + µ+ ν

2

)
Γ

(
1 + µ− ν

2

)
, (2.56)

valid for < (µ+ 1± ν) > 0 and <(a) > 0. The non-negativity of (2.50) is shown by

the following integral representation

Kν(z) =

∫ ∞
0

e−z cosh t cosh νt dt
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valid for |arg(z)| < π
2

(see Gradshteyn and Ryzhik (2007) page 917 formula 8.432).

By considering that

K− 1
2
(z) = K 1

2
(z) =

√
π

2z
e−z, (2.57)

from (2.50) we derive the following probability density for x ∈ R3,

wm(x1, x2, x3) =

=

∑m
j=1 λj

(2c)2π
∑n

j=1 x
2
j

e−
√∑m

j=1
λj

c

√∑n
j=1 x

2
j =

∑m
j=1 λj

(2c)2π ‖x‖2 e
−

√∑m
j=1

λj

c
‖x‖

In the two dimensional case the distribution (2.50) has a simple structure which

reads

wm(x1, x2) =
1

2π

∑m
j=1 λj

c2
K0


√∑m

j=1 λj

c
‖x‖

 .

In view of (2.57) it is also easy to show that the distribution (2.50) coincides for

n = 1 with the classical Gauss-Laplace distribution. We have that for n = 1 (2.50)

becomes

wm(x) =
1√
2π


√∑m

j=1 λj

c


3
2 √
|x|
√√√√ πc

2
√∑m

j=1 λj |x|
e−
√∑m

j=1
λj

c
|x|

=

√∑m
j=1 λj

2c
e−
√∑m

j=1
λj

c
|x| (2.58)

Furthermore, for λ1 = 1, λ2 = 2λ, λ > 0 and λj = 0 for j = 3, · · · ,m, we note that

(2.58) coincides with formula (3.18) of Orsingher and Beghin (2009).

Remark 2.3.6. By considering the iterated random walk

Yn(k) = S1 (S2 (· · · (Sn(k)) · · · )) , k ∈ N,

with Sj, j = 1, · · · , n, independent random walks, Turban (2004) has shown that for

n→∞, Yn(k) converges to a stationary r.v. (independent from k) which possesses

Gauss-Laplace distribution, in accord with result (2.50) of the present work and

with (3.12) of Orsingher and Beghin (2009).



Chapter 3

On the subordinate Poisson

process

Article: Orsingher and Toaldo (2013). Counting processes with Bernstein intertimes

and random jumps.

Summary

We consider here point processes N f (t), t > 0, with independent increments and

integer-valued jumps whose distribution is expressed in terms of Bernštein func-

tions f with Lévy measure ν. We obtain the general expression of the probability

generating functions Gf of N f , the equations governing the state probabilities pfk
of N f , and their corresponding explicit form. We give also the distribution of the

first-passage times T fk of N f , and the related governing equation. We study in detail

the cases of the fractional Poisson process, the relativistic Poisson process and the

Gamma Poisson process whose state probabilities have the form of negative bino-

mial. The distribution of the times τ
lj
j of jumps with height lj (

∑r
j=1 lj = k) under

the condition N(t) = k for all these special processes is investigated in detail.

3.1 Introduction

In this paper we consider a class of point processes with stationary independent

integer-valued increments of arbitrary range. These processes can be regarded as

generalizations of the Poisson process where jumps can take any positive value.

Furthermore we shall show that these processes N f (t), t > 0, can be viewed as time-

changed Poisson processes N
(
Hf (t)

)
where Hf (t) are subordinators, independent
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from N , associated with the Bernštein function f . The probabilistic behaviour of the

processes Pf (t), with related counting process N f (t), is described by the following

properties.

i) Pf (t) has independent increments;

ii)

Pr
{
N f [t, t+ dt) = k

}
=

dtλ
k

k!

∫∞
0
e−λsskν(ds) + o(dt), k ≥ 1,

1− dt
∫∞

0

(
1− e−λs

)
ν(ds) + o(dt), k = 0,

(3.1)

where

f(λ) =

∫ ∞
0

(
1− e−λs

)
ν(ds) (3.2)

is the integral representation of the Bernštein functions. By ν we denote a

non-negative Lévy measure on the positive half-line such that∫ ∞
0

(s ∧ 1) ν(ds) < ∞. (3.3)

We often speak of Pf (t), t > 0, as generalized Poisson processes performing integer-

valued jumps of arbitrary height. These processes can be used to model many

different concrete and real phenomena. For example, if we consider the car acci-

dents in the time interval [0, t), the number of injured people in each clash can take

any positive number. Analogously in floods or earthquakes, the number of destroyed

buildings in each event can be clearly of arbitrary magnitude and thus can be repre-

sented by Pf (t), t > 0, with suitably chosen Bernštein function f and Lévy measure

ν.

We observe that for

ν(ds) =
αs−α−1

Γ(1− α)
ds, α ∈ (0, 1), (3.4)

we obtain the space-fractional Poisson process studied in Orsingher and Polito

(2012). In this case the subordinator corresponding to the space-fractional Pois-

son is a stable process of order α and positively skewed. If the Lévy measure is the

Dirac point mass at one, then the corresponding subordinated Poisson process is

N1 (N2(t)) , t > 0, (3.5)
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where Ni, i = 1, 2, are independent homogeneous Poisson process with rate λ > 0.

Such process has been investigate in Orsingher and Polito (2012). The subordinator

Hf has Laplace transform

Ee−µHf (t) = e−tf(µ) = e−t
∫∞
0 (1−e−sµ)ν(ds) (3.6)

and thus in the case of the space-fractional Poisson process, f(µ) = µα. The prob-

ability distributions pfk(t) = Pr
{
N f (t) = k

}
are governed by difference-differential

equations of the form

d

dt
pfk(t) = −f(λ)pfk(t) +

k∑
m=1

λm

m!
pfk−m(t)

∫ ∞
0

e−sλsmν(ds), k ≥ 0, t > 0, (3.7)

with the usual initial conditions. From (3.7) we extract the probability generating

function Gf (u, t) of N f (t) as

Gf (u, t) = e−tf(λ(1−u)) = e−t
∫∞
0 (1−e−sλ(1−u))ν(ds). (3.8)

We prove also that

EuN(Hf (t)) = e−tf(λ(1−u)) (3.9)

and thus we show that

N f (t)
law
= N

(
Hf (t)

)
. (3.10)

By means of the shift operator Bmpfk(t) = pfk−m(t) we can rewrite equation (3.7) as

d

dt
pfk(t) = −f (λ (I −B)) pfk(t), t > 0, k ≥ 0, (3.11)

which for f(x) = xα coincides with the equation (2.4) of Orsingher and Polito (2012).

We also present a further representation of the generalized Poisson process Pf (t),
t > 0, as the scale limit of a continuous-time random walk with steps Xj having

distribution

Pr {Xj = k} =
1

u(n)

∫ ∞
0

Pr {N(s) = k} I[k≥n] ν(ds), k ∈ N, (3.12)

where

u(n) =

∫ ∞
0

Pr {N(s) ≥ n} ν(ds). (3.13)

For example, for the space-fractional Poisson process the distribution (3.12) becomes

Pr {Xj = k} =
Γ(k − α)

/
k!∑∞

j=n Γ(j − α)
/
j!
, k ≥ n. (3.14)
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For the hitting-times

T fk = inf
{
t > 0 : N f (t) ≥ k

}
(3.15)

we show that

Pr
{
T fk ∈ ds

}/
ds = − d

ds

k−1∑
l=0

(−λ)l

l!

dl

dλl
e−sf(λ). (3.16)

We note that for f(λ) = λ (case of the homogeneous Poisson process) formula (3.16)

yields the Erlang distribution

Pr {Tk ∈ ds} = λke−λs
sk−1

(k − 1)!
ds, k ≥ 1, s > 0. (3.17)

In some special cases it is possible to write down the distribution pfk(t), t > 0,

k ≥ 0, and to analyse many related random variables. When the Lévy measure is

ν(ds) = αs−α−1/Γ(1 − α), and therefore f(λ) = λα, we have the space-fractional

Poisson process whose distribution is written in many alternative forms as

pαk (t) =
(−1)k

k!

∞∑
r=0

(−λαt)
r!

Γ(αr + 1)

Γ(αr + 1− k)

=
(−1)k

k!

dk

duk
e−tλ

αuα
∣∣∣∣
u=1

=
e−λ

αt

k!

[
ck,kt

k + ck−1,kt
k−1 + · · ·+ c1,kt

]
, (3.18)

where ck,j, j = 1, . . . , n, are suitable coefficients. In this case the conditional distri-

butions of the instants of occurrence of jumps of Nα(t) is analyzed. The possibility

of multiple jumps makes the form of the conditional distributions

Pr

{
r⋂
j=1

{
τ
lj
j ∈ dtj

} ∣∣∣∣Nα(t) = k

}
(3.19)

rather complicated and can be given in closed form for small values of k, only. By τ
lj
j

we mean the instant of occurrence of the j-th jump of length lj. The space-fractional

Poisson process has the drawback of having infinite mean values as emerges from

the form

Gα(u, t) = e−tλ
α(1−u)α , |u| ≤ 1, α ∈ (0, 1), (3.20)

of the p.g.f.. This defect is circumvented when the Poisson process with relativistic

stable subordinator is considered, that is for

ν(ds) =
αs−α−1e−θs

Γ(1− α)
, θ > 0, 0 < α < 1, s > 0, (3.21)
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with corresponding Bernštein function

f(µ) = (θ + µ)α − θα. (3.22)

In this case the probability distribution of Nα,θ(t), t > 0, writes

pα,θm (t) =
(−1)m

m!

λmeθ
α

(θ + λ)m

∞∑
k=0

(−t(λ+ θ)α)k

k!

Γ(αk + 1)

Γ(αk + 1−m)
(3.23)

and has p.g.f.

Gα,θ(u, t) = e−t{[θ+λ(1−u)]α−θα}. (3.24)

Clearly for θ = 0, Nα,θ(t), t > 0, coincides with the space-fractional Poisson process

and (3.23) coincides with (3.18). From (3.24) we easily see that the moments of

Nα,θ(t) are finite and

ENα,θ(t) = λθα−1t,

VarNα,θ(t) = λtθα−2 (λ(1− α) + θ) . (3.25)

The most attractive subordinated Poisson process emerging in our analysis corre-

sponds to the Lévy measure

ν(ds) =
e−s

s
ds, s > 0, (3.26)

and thus as Bernštein function

f(x) = log(1 + x). (3.27)

We call this process Poisson with Gamma subordinator or simply Gamma Pois-

son process and we will denote it by NΓ(t), t > 0. It is well-known that for

λ = (1 − p)/p, p ∈ (0, 1) we obtain the negative binomial process studied in Brix

(1999), Kozubowski and Podgórski (2009) and fractionalized in Beghin (2013). The

distribution of NΓ(t) has the following form

Pr
{
NΓ(t) = k

}
=

λkΓ(k + t)

k!Γ(t) (λ+ 1)k+t
, k ≥ 0 (3.28)

with p.g.f.

GΓ(u, t) = (1 + λ(1− u))−t , |u| < 1. (3.29)

The independence of increments and the structure of the distribution (3.28) permits

us to obtain a number of interesting distributions related to the Gamma process.

For example, we have that

Pr

{
r⋂
j=1

{
τ
lj
j ∈ dtj

} ∣∣∣∣NΓ(t) = k

}
=

k!Γ(t)

Γ(t+ k)

r∏
j=1

dtj
lj

(3.30)
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for 0 < t1 < · · · < tj < · · · < tr < t, r ≤ k. In (3.29) τ
lj
j denotes the instant of the

occurrence of the j-th event of amplitude lj. Furthermore

Pr
{
NΓ(s) = r|NΓ(t) = k

}
= E

[(
k

r

)
Xr (1− x)k−r

]
(3.31)

where X is a Beta r.v. with parameter s and t− s. The result (3.31) generalizes a

fine feature of the homogeneous Poisson processes which relates it with the Bernoulli

r.v.. The correlation function of NΓ(t), t > 0, has the form

Cov
[
NΓ(s), NΓ(t)

]
= λ(λ+ 1) min(s, t) (3.32)

and

Cov
[
NΓ(s), NΓ(w)|NΓ(t) = k

]
=

k

t(t+ 1)

(
1 +

k

t

)
min(s, t) min(t− s, t− w),

(3.33)

for s, w ∈ (0, t). We also study the distribution of NΓ
1 (t)−NΓ

2 (t), with NΓ
1 and NΓ

2

independent and establish the relationship with the Skellam distribution of N1(t)−
N2(t) for the homogeneous Poisson process.

3.2 General result

We now examine in detail the main properties of the process N f (t), t > 0, with in-

dependent increments outlined in the introduction. Our first result is the difference-

differential equations governing their state probabilities

pfk(t) = Pr
{
N f (t) = k

}
, k ≥ 0. (3.34)

Theorem 3.2.1. The probabilities pfk(t) = Pr
{
N f (t) = k

}
, k ≥ 0, are solutions to

the equations

d

dt
pfk(t) = −f(λ)pfk(t) +

k∑
m=1

λm

m!
pfk−m(t)

∫ ∞
0

e−sλsmν(ds), k ≥ 0, t > 0, (3.35)

with initial conditions

pfk(0) =

1, k = 0

0, k ≥ 1.
(3.36)

The p.g.f. Gf (u, t) = EuNf (t), |u| < 1, satisfies the linear, homogeneous equation ∂
∂t
Gf (u, t) = −f (λ(1− u))Gf (u, t)

Gf (u, 0) = 1,
(3.37)
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and has the form

Gf (u, t) = e−tf(λ(1−u)) = e−t
∫∞
0 (1−e−sλ(1−u))ν(ds) (3.38)

Proof. Since N f (t) has independent increments and the distribution of jumps is

given by (3.1) we can write

pk(t+ dt) = Pr
{
N f [t+ dt) = k

}
= Pr

{
k⋃
j=0

{
N f (t) = j,N f [t, t+ dt) = k − j

}}

=
k−1∑
j=0

Pr
{
N f (t) = j

}
dt

λk−j

(k − j)!

∫ ∞
0

e−λssk−jν(ds)

+ Pr
{
N f (t) = k

}(
1− dt

∫ ∞
0

(
1− e−λs

)
ν(ds)

)
. (3.39)

A simple expansion permits us to obtain, in the limit, equation (3.35). From equa-

tion (3.35) we have that

∂

∂t
Gf (u, t) =

∞∑
k=0

uk
d

dt
pk(t)

= − f(λ)
∞∑
k=0

ukpfk(t) +
∞∑
k=1

uk
k∑

m=1

λm

m!
pfk−m(t)

∫ ∞
0

e−sλsmν(ds)

= − f(λ)Gf (u, t) +
∞∑
m=1

λm

m!

∫ ∞
0

e−sλsmν(ds)
∞∑
k=m

ukpfk−m(t)

= − f(λ)Gf (u, t) +Gf (u, t)

∫ ∞
0

(
e−sλ(1−u) − e−sλ

)
ν(ds)

= −Gf (u, t)

∫ ∞
0

(
1− e−sλ(1−u)

)
ν(ds)

= −Gf (u, t) f(λ(1− u)). (3.40)

In the last step we take into account the representation (3.2) of the Bernštein func-

tions.

Remark 3.2.2. The appearence of pk−j(t), k ≥ j ≥ 2, in (3.35) makes the master

equation of the state probabilities pfk(t), substantially different from the case of the

classical Poisson process. This fact is related to the possibility of jumps of arbitrary

height. We also observe that

N f (t)
law
= N

(
Hf (t)

)
(3.41)

where Hf is the subordinator with Laplace transform (3.6). This can be ascertained

by evaluating the p.g.f. of N
(
Hf (t)

)
, t > 0, as follows

EuN(Hf (t)) =
∞∑
k=0

uk
∫ ∞

0

Pr {N(s) = k}Pr
{
Hf (t) ∈ ds

}
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=

∫ ∞
0

e−sλ(1−u) Pr
{
Hf (t) ∈ ds

}
=Gf (u, t). (3.42)

In view of (3.41) we can write the distribution of N f (t) as

Pr
{
N f (t) = k

}
= Pr

{
N
(
Hf (t)

)
= k
}

=

∫ ∞
0

e−λs
(λs)k

k!
Pr
{
Hf (t) ∈ ds

}
=

(−1)k

k!

dk

duk

∫ ∞
0

e−λsu Pr
{
Hf (t) ∈ ds

} ∣∣∣∣
u=1

=
(−1)k

k!

dk

duk
e−tf(λu)

∣∣∣∣
u=1

. (3.43)

Remark 3.2.3. The equation (3.35) can alternatively be written as

d

dt
pfk(t) = −f (λ (I −B)) pfk(t), t > 0, k ≥ 0, (3.44)

where B is the shift operator such that Bpfk(t) = pfk−1(t). This can be shown as

follows

− f (λ(I −B)) pfk(t)

= −
∫ ∞

0

(
1− e−λs(I−B)

)
ν(ds) pfk(t)

= −
∫ ∞

0

(
1− e−λs

∞∑
m=0

(λsB)m

m!

)
ν(ds) pfk(t)

= −
∫ ∞

0

(
pfk(t)− e

−λs
k∑

m=0

(λs)m

m!
pfk−m(t)

)
ν(ds)

= −
∫ ∞

0

(
1− e−λs

)
ν(ds)pfk(t) +

k∑
m=1

λm

m!
pfk−m(t)

∫ ∞
0

e−λssmν(ds)

= − f(λ)pfk(t) +
k∑

m=1

λm

m!
pfk−m(t)

∫ ∞
0

e−λssmν(ds). (3.45)

Clearly (3.45) coincides the with right-hand member of (3.35).

A further representation of N f (t), t > 0, can be obtained as the limit of a suitable

compound Poisson process.

Theorem 3.2.4. Let

u(n) =

∫ ∞
0

Pr {N(s) ≥ n} ν(ds), n ∈ N, (3.46)
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where N(s), s > 0, is a homogeneous Poisson process with rate λ > 0. The compound

Poisson process

Zn(t) =

N( tλ u(n))∑
j=1

Xj, t > 0, (3.47)

where Xj, j = 1, 2, . . . , are discrete i.i.d. r.v.’s with probability law

Pr {Xj = k} =
1

u(n)

∫ ∞
0

Pr {N(s) = k} ν(ds), k ≥ n ∈ N,∀j = 1, 2, . . . ,

(3.48)

converges in distribution to the subordinated Poisson process N f (t) as n → 0. In

other words

N f (t)
law
= N

(
Hf (t)

) law
= lim

n→0
Zn(t). (3.49)

Proof. The p.g.f. of Zn(t) writes

EuZn(t) = e−tu(n)(1−EuX)

= exp

{
−tu(n)

∞∑
k=0

(
1− uk

)
Pr {X = k}

}
(3.48)
= exp

{
−tu(n)

∞∑
k=0

(
1− uk

) 1

u(n)

∫ ∞
0

Pr {N(s) = k} I[k≥n] ν(ds)

}

= exp

{
−t
∫ ∞

0

∞∑
k=n

(
1− uk

)
Pr {N(s) = k} ν(ds)

}
. (3.50)

By taking the limit for n→ 0 of (3.50) we have that

lim
n→0

EuZn(t) = exp

{
−t
∫ ∞

0

∞∑
k=0

(
1− uk

)
Pr {N(s) = k} ν(ds)

}

= exp

{
−t
∫ ∞

0

(
1− e−λs(1−u)

)
ν(ds)

}
= e−tf(λ(1−u)). (3.51)

Remark 3.2.5. If we take into account processes whose probabilities satisfy the

time-fractional equation

dν

∂tν
pfk(t) = −f(λ)pfk(t) +

k∑
m=1

λm

m!
pfk−m(t)

∫ ∞
0

e−sλsmν(ds), k ≥ 0, t > 0,

(3.52)
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for ν ∈ (0, 1) the corresponding p.g.f. has the form

Gf
ν(u, t) = Eν,1

(
−tν

∫ ∞
0

(
1− e−sλ(1−u)

)
ν(ds)

)
(3.53)

where Eν,1(x) is the Mittag-Leffler function and the fractional derivative appearing

in (3.52) must be understood in the Caputo sense. For the space fractinal Poisson

process f(λ) = λα, 0 < α < 1, the distribution of the process related to (3.53) is

explicitely given by formula (2.29) of Orsingher and Polito (2012). The processes

whose distribution is governed by (3.52) admits the following representation

B
(
Hf (Lν(t))

)
, t > 0, (3.54)

where Lν and the stable subordinator Hν are related by

Pr {Lν(t) > x} = Pr {Hν(x) < t} . (3.55)

3.3 Hitting-times of the subordinated Poisson pro-

cess

In this section we study the hitting-times

T fk = inf
{
t > 0 : N f (t) ≥ k

}
, (3.56)

of the subordinated Poisson processes. The fact that N f (t) performs jumps of

random length makes T fk substantially different from the Erlang process related to

the homogeneous Poisson process. Indeed, the law of T fk can be written down as

follows

Pr
{
T fk ∈ ds

}
= Pr

{
k⋃
j=1

{
N f (s) = k − j, N f [s, s+ ds) ≥ j

}}

= ds
k∑
j=1

Pr
{
N f (s) = k − j

} ∞∑
m=j

Pr
{
N f [s, s+ ds) = m

}
= ds

k∑
j=1

∫ ∞
0

Pr {N(z) = k − j}Pr
{
Hf (s) ∈ dz

} ∞∑
m=j

λm

m!

∫ ∞
0

e−λuum ν(du)

= ds
k∑
j=1

∫ ∞
0

(λz)k−j

(k − j)!
e−λz Pr

{
Hf (s) ∈ dz

}∫ ∞
0

Pr {N(u) ≥ j} ν(du)
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= ds
k∑
j=1

(−λ)k−j

(k − j)!

∫ ∞
0

dk−j

dλk−j
e−λz Pr

{
Hf (s) ∈ dz

}∫ ∞
0

Pr {N(u) ≥ j} ν(du)

= ds

k∑
j=1

(−λ)k−j

(k − j)!
dk−j

dλk−j
e−sf(λ)

∫ ∞
0

Pr {N(u) ≥ j} ν(du)

= ds
k−1∑
l=0

(−λ)l

l!

dl

dλl
e−sf(λ)

∫ ∞
0

(
1−

k−l−1∑
r=0

(λu)r

r!
e−λu

)
ν(du). (3.57)

The distribution of T fk can be also obtained by observing that

Pr
{
T fk < s

}
= Pr

{
N f (s) ≥ k

}
=

∞∑
j=k

∫ ∞
0

e−λz
(λz)j

j!
Pr
{
Hf (s) ∈ dz

}
(3.58)

and thus

Pr
{
T fk ∈ ds

}/
ds =

d

ds

∞∑
j=k

∫ ∞
0

e−λz
(λz)j

j!
Pr
{
Hf (s) ∈ dz

}
=
d

ds

∫ ∞
0

Pr {N(z) ≥ k}Pr
{
Hf (s) ∈ dz

}
=
d

ds

∫ ∞
0

(
1−

k−1∑
l=0

(λz)l

l!
e−λz

)
Pr
{
Hf (s) ∈ dz

}
= − d

ds

k−1∑
l=0

(−λ)l

l!

∫ ∞
0

dl

dλl
e−λz Pr

{
Hf (s) ∈ dz

}
= − d

ds

k−1∑
l=0

(−λ)l

l!

dll

dλl
e−sf(λ), s > 0. (3.59)

Remark 3.3.1. In particular, we observe that from (3.57) and (3.59) we have that

Pr
{
T f1 ∈ ds

}
= f(λ)e−sf(λ) ds, s > 0, (3.60)

This proves that the waiting time of the first event for all subordinated Poisson

processes is exponential. Instead

Pr
{
T f2 ∈ ds

}
= e−sf(λ) (f(λ)− λf ′(λ) + λsf ′(λ)f(λ)) ds, s > 0, (3.61)

and for f(λ) = λ (ordinary Poisson case) we recover the Gamma distribution with

parameters (2, λ). Result (3.61) can also be obtained from (3.57). For f(λ) = λα

(space-fractional Poisson process) we have that

Pr {Tα2 ∈ ds} = dsλαe−sλ
α

(1− α + λαs) , s > 0. (3.62)
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Clearly (3.61) cannot be the distribution of the sum of exponantial r.v.’s (3.60)

because the second event can also be obtained as a jump of magnitude equal to two.

Finally we observe that

Pr
{
T fk ∈ ds

}
= Pr

{
T fk−1 ∈ ds

}
− (−λ)k−1

(k − 1)!

d

ds

dk−1

dλk−1
e−sf(λ)ds s ∈ (0,∞),

(3.63)

so that the distributions of Tk can be derived successively.

Here we derive the equation governing the distribution of Tk. First we note that

Gf (u, s) =
∞∑
k=1

uk
Pr {Tk ∈ ds}

ds
=

u

1− u
f (λ(1− u)) e−sf(λ(1−u)). (3.64)

This can be proved as follows

Gf (u, s) =
∞∑
k=1

uk
Pr {Tk ∈ ds}

ds

=
d

ds

∞∑
j=1

j∑
k=1

uk
∫ ∞

0

e−λz
(λz)j

j!
Pr
{
Hf (s) ∈ dz

}
=
d

ds

∞∑
j=1

uj+1 − u
u− 1

∫ ∞
0

e−λz
(λz)j

j!
Pr
{
Hf (s) ∈ dz

}
=
d

ds

∫ ∞
0

u

u− 1

(
e−λz(1−u) − 1

)
Pr
{
Hf (s) ∈ dz

}
=

u

1− u
f(λ(1− u))e−sf(λ(1−u)) (3.65)

Theorem 3.3.2. The probability density

qfk (t) = Pr
{
T fk ∈ dt

}/
dt (3.66)

solves the equation

f(λ(1−B))qfk (t) = − d

dt
qfk (t). (3.67)

Proof. Since

f(λ(1−B))qfk (t) = f(λ)qfk (t)−
k−1∑
m=1

∫ ∞
0

e−λs
(λs)m

m!
ν(ds)qfk−m(t) (3.68)

we can write, since q0 = 0,

∞∑
k=1

ukf(λ(1−B))qfk (t)
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= f(λ)Gf (u, t)−
∞∑
k=1

uk
k∑

m=1

∫ ∞
0

e−λs
(λs)m

m!
ν(ds)qfk−m(t)

= f(λ)Gf (u, t)−
∞∑
m=1

∞∑
k=m

(∫ ∞
0

e−λs
(λs)m

m!
ν(ds)

)
ukqfk−m(t)

= f(λ)Gf (u, t)− Gf (u, t)
∫ ∞

0

e−λs
(
euλs − 1

)
ν(ds)

= f (λ(1− u)) Gf (u, t). (3.69)

From (3.65) we get

f (λ(1− u))Gf (u, t) = − d

dt
Gf (u, t), (3.70)

which completes the proof.

3.4 Some particular cases

In this section we specialize the function f in order to analyse some particular cases

of N f (t), t > 0.

3.4.1 The space-fractional Poisson process

If

ν(ds) =
αs−α−1

Γ(1− α)
ds, α ∈ (0, 1), (3.71)

we obtain the space-fractional Poisson process Nα(t), t > 0, studied in Orsingher

and Polito (2012). The distributions of jumps (3.1) and (3.2) specialize to

Pr {Nα[t, t+ dt) = k} =


(−1)k+1λα

k!
α(α− 1) · · · (α− k + 1)dt+ o(dt), k > 0

1− λαdt+ o(dt), k = 0,

(3.72)

since f(λ) = λα. The distribution of Nα can be written in three different ways as

pαk (t) = Pr {Nα(t) = k} =
(−1)k

k!

∞∑
r=0

(−λαt)r

r!

Γ(αr + 1)

Γ(αr + 1− k)

=
(−1)k

k!

∞∑
r=0

(−λαt)r

r!
(αr)(αr − 1) · · · (αr − k + 1)

=
(−1)k

k!

dk

duk
e−tλ

αuα
∣∣∣∣
u=1

(3.73)

and we note that the probabilities (3.72) can be obtained directly from (3.73).



3.4 Some particular cases 86

Remark 3.4.1. In light of (3.73) the distribution of the space-fractional Poisson

process has the following alternative form

pαk (t) =
e−λ

αt

k!

[
ck,kt

k + ck−1,kt
k−1 + · · ·+ c2,kt

2 + c1,kt
]

(3.74)

where the coefficients cj,k, j = 1, . . . k, can be computed by means of successive

derivatives. In particular, we have that

ck,k = (αλαt)k , ck−1,k = αk−1 (1− α)
k(k − 1)

2
(λαt)k−1,

c2,k = (λαt)2 α2

k−2∏
j=1

(j − α)
k(k − 1)

2
, c1,k = αtλα

k−1∏
j=1

(j − α).

(3.75)

For α = 1 all the coefficients cj,k, j = 1, . . . , k − 1, are equal to zero and we recover

from (3.74) the distribution of the homogeneous Poisson process. The coefficients

(3.75) are sufficient to obtain pαj (t), 1 ≤ j ≤ 4 as
pα2 (t) = e−λ

αt

2

[
(λααt)2 + α(1− α)λαt

]
pα3 (t) = e−λ

αt

3!

[
(λααt)3 + 3 (λααt)2 (1− α) + (λααt) (1− α) (2− α)

]
pα4 (t) = e−λ

αt

4!

[
(αλαt)4 + 6 (λααt)3 (1− α) + 6 (αλαt)2 (1− α)(2− α)

+λααt(1− α)(2− α)(3− α)]

(3.76)

Remark 3.4.2. From (3.73) we obtain that, for k ≥ 1,

Pr {Nα[t, t+ dt) = k} =
(−1)k+1

k!
λαα (α− 1) · · · (α− k + 1) dt

=λαdt
(−1)k+1Γ(α + 1)

k!Γ(α + 1− k)
. (3.77)

Since
∞∑
k=1

Pr {Nα[t, t+ dt) = k} =λαdtΓ(α + 1)
∞∑
k=1

(−1)k+1

k!Γ(α + 1− k)

=
λα dtΓ(α + 1) sinπα

π

∞∑
k=1

Γ(k − α)

k!

=
λαdtΓ(α + 1) sinπα

π

∫ ∞
0

e−w
∞∑
k=1

wk−α−1

k!
dw

=
λα dtΓ(α + 1) sinπα

π

∫ ∞
0

e−w (ew − 1)w−α−1dw

=
λαdt sin παΓ(α + 1)Γ(1− α)

απ
= λαdt (3.78)

we get

Pr {Nα[t, t+ dt) = 0} = 1− λαdt (3.79)
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Remark 3.4.3. In light of the independence of increments for the space-fractional

Poisson process we have that

Pr {Nα(s) = r|Nα(t) = k} =
Pr {Nα(s) = r}Pr {Nα(t− s) = k − r}

Pr {Nα(t) = k}

=

(
k

r

) dr

dur
e−sλ

αuα dk−r

duk−r
e−(t−s)λαuα

dk

duk
e−λαtuα

∣∣∣∣∣
u=1

=

(
k

r

)∑r
j=1 cj,rs

j
∑k−r

n=1 cn,k−r(t− s)n∑k
l=1 cl,kt

l
, (3.80)

where we used (3.74). For α = 1 we get that cr,r, ck−r,k−r, ck,k 6= 0 and cj,r = cn,k−r =

cl,k = 0, for j < r, n < k − r, l < k and thus we recover from (3.80) the binomial

distribution.

In the time interval [0, t] the instants of occurences of the upward jumps are

denoted by τ
lj
j , 1 ≤ j ≤ r, lj ≥ 1, where r is the number of jumps in [0, t] and lj is

the height of the j-jumps. We can write the following distribution

Pr

{
r⋂
j=1

{
τ
lj
j ∈ dtj

} ∣∣∣∣Nα(t) = k

}
=

k! (λαΓ(α + 1))r (−1)k+r
∏r

j=1
dtj

lj !Γ(α+1−lj)∑k
n=1 cn,kt

n

(3.81)

for 0 < t1 < · · · < tr < t, where we used the independence of the increments and

(3.72). If Nα(t) = k, and lj = 1, ∀j, we have that

Pr

{
k⋂
j=1

{
τ 1
j ∈ dtj

} ∣∣∣∣Nα(t) = k

}
=

k! (αλα)k∑k
j=1 cj,kt

j
(3.82)

on the simplex

St = {ti, i = 1, . . . , k : 0 < t1 < t2 < · · · < tk < t} . (3.83)

Clearly, for α = 1, we retrive from (3.82) the uniform distribution on the set St.

Since the coefficients cj,k can be calculated in some specific cases, the distribution

can be written down explicitely for small values of k. For example, for k = 2 we

have that

Pr

{
2⋂
j=1

{
τ 1
j ∈ dtj

} ∣∣∣∣Nα(t) = 2

}
=

(αλα)2 dt1dt2

(αλαt)2 + α(1− α)λαt
, 0 < t1 < t2 < t,

(3.84)

Pr
{
τ 2

1 ∈ dt1|Nα(t) = 2
}

=
1
2
α(1− α)λαdt1

(αλαt)2 + α(1− α)λαt
, 0 < t1 < t.

(3.85)
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3.4.2 Poisson process with relativistic (tempered) stable sub-

ordinator

In the case the Lévy measure has the form

ν(ds) =
αs−α−1e−θs

Γ(1− α)
ds, θ > 0, 0 < α < 1, (3.86)

we obtain an extension of the space-fractional Poisson process. This new Poisson

process has the form Nα,θ(t) = N
(
Hα,θ(t)

)
where Hα,θ is the relativistic or tempered

stable subordinator. Such process is calles relativistic since it appeared in the study

of the stability of the relativistic matter (see Lieb (1990)). From (3.38) we obtain

the p.g.f. as

Gα,θ(u, t) =EuNα,θ(t)

= exp

{
−t
∫ ∞

0

(
1− e−λ(1−u)s

) αs−α−1e−θs

Γ(1− α)
ds

}
= e−t{[θ+λ(1−u)]α−θα}

= eθ
αt

∞∑
k=0

[−t (θ + λ(1− u))]α

k!

= eθ
αt

∞∑
k=0

[−t (θ + λ)α]
k

k!

(
1− λu

θ + λ

)αk
= eθ

αt

∞∑
k=0

(−t(θ + λ))k

k!

∞∑
m=0

Γ(αk + 1)

Γ(αk + 1−m)m!

(
− λu

θ + λ

)m
=

∞∑
m=0

um

[
(−1)m

m!

λmeθ
αt

(θ + λ)m

∞∑
k=0

[−t(θ + λ)α]k

k!

Γ (αk + 1)

Γ (αk + 1−m)

]
. (3.87)

From (3.87) we extract the distribution of Nα,θ as follows

Pr
{
Nα,θ(t) = m

}
=

(−1)m

m!

λmeθ
αt

(θ + λ)m

∞∑
k=0

(−t (λ+ θ)α)
k

k!

Γ(αk + 1)

Γ(αk + 1−m)
, m ≥ 0.

(3.88)

For θ = 0, formula (3.88) yields the distribution of the space-fractional Poisson

process (see formula (1.2) of Orsingher and Polito (2012)). An alternative form of

(3.88) is

Pr
{
Nα,θ(t) = m

}
=

(−1)m

m!

(
λ

λ+ θ

)m
eθ
αt d

m

dum
e−tu

α(θ+λ)α
∣∣∣∣
u=1

(3.89)
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and can be derived either from (3.88) or from (3.43). From (3.89) (and also from

(3.1)) we have that, for m ≥ 1,

Pr
{
Nα,θ[t, t+ dt) = m

}
=

(−1)m+1
(

λ
λ+θ

)m
m!

(λ+ θ)α α(α− 1) · · · (α−m+ 1)dt

(3.90)

and this represents the distribution of the jumps during [t, t + dt). Formula (3.90)

shows that high jumps have less probability to occur than in the space-fractional

Poisson process. Since

∞∑
m=1

Pr
{
Nα,θ[t, t+ dt) = m

}
=

∞∑
m=1

(−1)m

m!

(
λ

λ+ θ

)m
(λ+ θ)α α(α− 1) · · · (α−m+ 1) dt

= dt (θ + λ)α
∞∑
m=1

(−1)m+1

m!

(
λ

λ+ θ

)m
Γ (α + 1)

Γ (α + 1−m)

= dt (θ + λ)α
Γ(α + 1) sinπα

π

∞∑
m=1

(
λ

λ+ θ

)m
1

m!
Γ(m− α)

= dt (θ + λ)α
Γ (α + 1) sinπα

π

∫ ∞
0

w−α−1e−w
∞∑
m=1

(
wλ

λ+ θ

)m
1

m!
dw

= dt (θ + λ)α
Γ(α + 1) sinπα

π

∫ ∞
0

w−α−1
[
e−

θw
λ+θ − e−w

]
dw

= dt (θ + λα)
sin πα

π

[
Γ(1− α)Γ(α)−

(
θ

λ+ θ

)α
Γ(1− α)Γ(α)

]
= dt [(θ + λ)α − θα] (3.91)

we get

Pr
{
Nα,θ[t, t+ dt) = 0

}
= 1− dt [(θ + λ)α − θα] (3.92)

Remark 3.4.4. We notice that

ENα,θ(t) = λθα−1t,

Var
[
Nα,θ(t)

]
= λtθα−2 (λ(1− α) + θ) ,

Cov
[
Nα,θ(t)Nα,θ(s)

]
= λsθα−2 (λ(1− α) + θ) (s ∧ t) . (3.93)

From (3.93) it is apparent that in the space-fractional Poisson process (θ = 0) the

mean values diverge.



3.4 Some particular cases 90

3.4.3 Poisson process with Gamma subordinator

For the Lévy measure

ν(ds) =
e−s

s
ds, s > 0, (3.94)

the distribution of the related Poisson process has a particularly simple and interest-

ing form. We note that the Bernštein function corresponding to the Lévy measure

ν(ds) = e−s

s
ds is

f(x) =

∫ ∞
0

(
1− e−sx

) e−s
s
ds = log(1 + x). (3.95)

Therefore the probability generating function (3.38) reduces to the form

GΓ(u, t) = e−t log(1+λ(1−u) = (1 + λ(1− u))−t , (3.96)

and thus the intertime T between successive clusters of events has law

Pr {T > t} =
1

(1 + λ)t
. (3.97)

Formula (3.96) is clearly the p.g.f. of NΓ(t)
law
= N

(
HΓ(t)

)
where HΓ is the Gamma

subordinator with Laplace transform

Ee−µtHf (t) = (1 + µ)−t . (3.98)

The distribution of NΓ(t), t > 0, can be extracted from (3.96) as the next Theorem

shows.

Theorem 3.4.5. The process NΓ(t), t > 0, has the following distribution

Pr
{
NΓ(t) = k

}
=


λkt(t+1)···(t+k−1)

k!
1

(λ+1)t+k
, k ≥ 1

1
(1+λ)t

, k = 0,

=
λkΓ(k + t)

Γ(t)k! (λ+ 1)t+k
. (3.99)

Proof. From (3.96) we have that

GΓ(u, t) = (1 + λ(1− u))−t

=

(
1− λu

1 + λ

)−t
(1 + λ)−t

= (1 + λ)−t
∞∑
k=0

Γ(−t+ 1)

k!Γ(−t+ 1− k)

(
− λu

1 + λ

)k
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= (1 + λ)−t
∞∑
k=0

uk
(
− λ

1 + λ

)k
Γ(t+ k)

k!Γ(t)
(−1)k

=
∞∑
k=0

uk

[
λkΓ(t+ k)

k!Γ(t)

1

(1 + λ)t+k

]
. (3.100)

A second, alternative derivation of (3.99) proceeds as follows

Pr
{
NΓ(t) = k

}
=

1

k!

∂k

∂uk
GΓ(u, t)

∣∣∣∣
u=0

=
(−1)kλk(−t) (−t− 1) · · · (−t− k + 1)

k!
(1 + λ(1− u))−t−k

∣∣∣∣
u=0

=
λkt(t+ 1) · · · (t+ k − 1)

k!

1

(λ+ 1)t+k
. (3.101)

The probability of zero events is therefore

Pr
{
NΓ(t) = 0

}
= GΓ(0, t) =

1

(1 + λ)t
. (3.102)

Remark 3.4.6. The distribution (3.101) of NΓ(t) can also be written as

Pr
{
NΓ(t) = k

}
=

λk

(1 + λ)k+t

Γ(k + t)

Γ(t)

1

k!
= EPr {N(T ) = k} (3.103)

where T is gamma distributed with parameters (1, t) (that is the distribution of HΓ)

and N is a homogeneous Poisson process with parameter λ, independent from T .

Furthermore (3.99) can be regarded as an extension of the negative binomial Bi where

Pr
{
Bi = k

}
=

Γ(i+ k)

Γ(i)Γ(k + 1)
piqk (3.104)

for i = t, p = 1/(1 +λ), q = λ/(1 +λ) (see also Kozubowski and Podgórski (2009)).

Corollary 3.4.7. The distribution of jumps in this case has the form

Pr
{
NΓ[t, t+ dt) = k

}
=


(

λ
λ+1

)k 1
k
dt, k ≥ 1,

1− log(1 + λ)dt, k = 0,
(3.105)

as can be inferred from (3.1) and also from (3.99). The jumps possess logarithmic

distribution.

Remark 3.4.8. We observe that, for s < t, r ≤ k,

Pr
{
NΓ(s) = r|NΓ(t) = k

}
=

(
k

r

)
Γ(t)

Γ(t− s)Γ(s)

Γ(s+ r)Γ(t− s+ k − r)
Γ(k + t)
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=

(
k

r

)
B(s+ r, t− s+ k − r)

B(s, t− s)
. (3.106)

Furthermore from (3.106) we can write, for 0 ≤ r ≤ k,

Pr
{
NΓ(s) = r|NΓ(t) = k

}
=

(
k

r

)∫ 1

0
xs+r−1(1− x)t−s+k−r−1dx

B(s, t− s)

=E
[(
k

r

)
Xr (1−X)k−r

]
(3.107)

where X is a r.v. with Beta distribution with parameter s and t− s, that is

Pr {X ∈ dx} =
xs−1(1− x)t−s−1

B(s, t− s)
dx. (3.108)

Formula (3.107) shows that in the Gamma Poisson process the conditional number

of events at time s < t is a randomized Bernoulli if N(t) = k.

Remark 3.4.9. In view of (3.99), (3.105), and the independence of the increments

of the Gamma Poisson process we have that

Pr

{
r⋂
j=1

{
τ
lj
j ∈ dtj

} ∣∣∣∣NΓ(t) = k

}
=

k!Γ(t)

Γ(t+ k)

r∏
j=1

dtj
lj

(3.109)

on the simplex 0 < t1 < t2 < · · · < tr < t and
∑r

j=1 lj = k. Some special cases of

(3.109) are

i) lj = 1, ∀j = 1, . . . , r, and thus r = k. In this case we have that

Pr

{
k⋂
j=1

{
τ 1
j ∈ dt1

} ∣∣∣∣NΓ(t) = k

}
=

k!Γ(t)

Γ(t+ k)

k∏
j=1

dtj, 0 < t1 < · · · < tk < t;

(3.110)

ii) l1 = k and thus r = 1 (unique jump of length k). Here we get

Pr
{
τ k1 ∈ dt1|NΓ(t) = k

}
=

dt1
k

k!Γ(t)

Γ(t+ k)
, 0 < t1 < t; (3.111)

iii) k = 2m, lj = 2, ∀j, and therefore r = m. We have that

Pr

{
m⋂
j=1

{
τ 2
j ∈ dtj

} ∣∣∣∣NΓ(t) = 2m

}
=

(2m)! Γ(t)

2mΓ(t+ 2m)

m∏
j=1

dtj, (3.112)

for 0 < t1 < · · · < tm < t.
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Remark 3.4.10. From (3.96) we obtain the n-th factorial moment of NΓ(t), t > 0,

as

E
[
NΓ(t)

(
NΓ(t)− 1

)
· · ·
(
NΓ(t)− r + 1

)]
=λrt(t+ 1) · · · (t+ r − 1). (3.113)

While ENΓ(t) = λt, the variance becomes VarNΓ(t) = λt(λ+ 1) and

Cov
[
NΓ(t), NΓ(s)

]
= λ(λ+ 1)(s ∧ t). (3.114)

Furthermore we have that

E
[∫ t

0

NΓ(s)ds

]
= λt2/2

Var

[∫ t

0

NΓ(s)ds

]
= λ(λ+ 1)t3/3 (3.115)

Remark 3.4.11. We can write also the following conditional mean values

E
[
NΓ(s)|NΓ(t) = k

]
=

ks

t
, 0 < s < t, (3.116)

E
[
NΓ(s)NΓ(w)|NΓ(t) = k

]
=
ks

t
+ k(k − 1)

(s(s+ 1)

t(t+ 1)
+ k(k − 1)

s(w − s)
t(t+ 1)

, for 0 < s < w < t (3.117)

Cov
[
NΓ(s), NΓ(w)|NΓ(t) = k

]
=

k

t(t+ 1)

(
1 +

k

t

)
min(s, t) min(t− s, t− w). (3.118)

As a special case we extract from (3.118) the conditional variance as

Var
[
NΓ(s)|NΓ(t) = k

]
=

sk(t− s)
t(t+ 1)

(
1 +

k

t

)
, 0 < s < t, (3.119)

and from (3.117)

E
[(
NΓ(s)

)2 |NΓ(t) = k
]

=
s

t
k + k(k − 1)

s

t

s+ 1

t+ 1
. (3.120)

As a check we observe that

VarNΓ(s) =E
[
VarNΓ(s)|NΓ(t)

]
+ Var

[
E
[
NΓ(s)|NΓ(t)

]]
=
s(t− s)
t(t+ 1)

ENΓ(t) +
s(t− s)
t2(t+ 1)

E
(
NΓ
)2

(t) +
s2

t2
VarN(t)

=
s

t

t− s
t+ 1

λt+
s

t2
(
λ(λ+ 1)t+ λ2t2

)
+
s2

t2
λ(λ+ 1)t

=λs(1 + λ). (3.121)
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Remark 3.4.12. We consider here the distribution of NΓ
1 (t)−NΓ

2 (t), t > 0, where

NΓ
j , j = 1, 2, are independent Gamma Poisson processes. This leads to a gener-

alization of the Skellam law of the difference of independent homogenous Poisson

processes. We have that

Pr
{
NΓ

1 (t)−NΓ
2 (t) = r

}
=

∞∑
k=0

λkΓ(k + t)λk+rΓ(k + r + t)

(1 + λ)k+tΓ(t)k!(1 + λ)k+r+t(k + r)!Γ(t)

=
1

(1 + λ)2tΓ2(t)

∞∑
k=0

λ2k+r

(1 + λ)2k+rk!(k + r)!

∫ ∞
0

dw

∫ ∞
0

dz e−w−zwk+t−1zk+r+t−1

=
1

(1 + λ)2tΓ2(t)

∫ ∞
0

∫ ∞
0

dw dz e−w−zwt−
r
2
−1z

r
2

+t−1

∞∑
k=0

(
λ

1+λ

√
wz
)2k+r

k!(k + r)!

=
1

(1 + λ)2tΓ2(t)

∫ ∞
0

∫ ∞
0

e−w−zwt−
r
2
−1z

r
2

+t−1Ir

(
2λ
√
wz

1 + λ

)
=

∫ ∞
0

∫ ∞
0

Pr {Nu
1 (1)−Ny

2 (1) = r} e−
u+y
λ

(uy)t−1dudy

λ2tΓ2(t)

=EPr
{
NU

1 (1)−NY
2 (1) = r

}
=EPr

{
N1

1 (U)−N1
2 (Y ) = r

}
(3.122)

where U and Y are independent Gamma r.v.’s with parameter 1 and t, and I0(x) is a

Bessel function. For the reader’s convenience we recall that the Skellam distribution

reads

Pr
{
Nλ

1 (t)−Nβ
2 (t) = r

}
= e−(β+λ)t

(
λ

β

) r
2

I|r|

(
2t
√
λβ
)
, r ∈ Z, (3.123)

for independent Poisson processes Nλ
1 , Nβ

2 , with rate λ, β.



Chapter 4

Convolution-type derivatives and

time-changed C0-semigroups

Article: Toaldo (2013). Convolution-type derivatives, hitting-times of subordinators

and time-changed C0-semigroups.

Summary

This paper takes under consideration subordinators and their inverse processes

(hitting-times). The governing equations of such processes is presented by means

of convolution-type integro-differential operators similar to the fractional deriva-

tives. Furthermore the concept of time-changed C0-semigroup is discussed in case

the time-change is performed by means of the hitting-time of a subordinator. Such

time-change gives rise to bounded linear operators governed by integro-differential

time-operators. Because these operators are non-local the presence of long-range

dependence is investigated.

4.1 Introduction

The study of subordinators and their hitting-times has attracted the attention of

many researchers since the Fourties. In particular a great effort has been dedicated

to the study of the relationships between Bochner subordination and Cauchy prob-

lems (Bochner (1949, 1955)). See Feller (1966), Jacob (2001), Schilling et al. (2010)

and the references therein for more information on Bochner subordination. A subor-

dinator fσ(t), t > 0, is a Lévy process with stationary and independent increments

and non-decreasing paths for which Ee−λ fσ(t) = e−tf(λ) where f is a Bernstein func-
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tion (see Bertoin (1996, 1997) for more details on subordinators). Its inverse process

is defined as
fL(t) = inf

{
s > 0 : fσ(s) > t

}
(4.1)

and is the hitting-time of fσ. When the function f is f(λ) = λα, α ∈ (0, 1),

the related subordinator is called the α-stable subordinator and the inverse pro-

cess Lα(t) = inf {s > 0 : σα(s) > t} is called the inverse stable subordinator (see

Meerschaert and Sikorskii (2012), Meerschaert and Straka (2013), Samorodnitsky

and Taqqu (1944) for more information on the stable subordinator and its inverse

process). The relationships between such processes and partial differential equa-

tions have been object of intense study in the past three decades and have gained

considerable popularity together with the study of fractional calculus (for fractional

calculus the reader can consult Kilbas et al. (2006)). As pointed out in Orsingher and

Beghin (2004, 2009), fractional PDEs are indeed related to time-changed processes

while the relationships between time-fractional Cauchy problems and the inverse of

the stable subordinator was explored for the first time by Baeumer and Meerschaert

(2001), Meerschaert et al. (2009), Saichev and Zaslavsky (1997), Zaslavsky (1994).

Equations of fractional order appear in a lot of physical phenomena (Meerschaert

and Sikorskii (2012)) and in particular for modeling anomalous diffusions (see for

example Benson et al. (2001), D’Ovidio (2012)).

In the present paper we deal with the inverse processes fL(t), t > 0, of subor-

dinators fσ(t), t > 0, with Laplace exponent the Bernstein function f having the

following representation

f(x) = a+ bx+

∫ ∞
0

(
1− e−sx

)
ν̄(ds) (4.2)

for a non-negative measure ν̄ on (0,∞) (Bernstein (1929), Schilling et al. (2010)).

We consider the case in which the tail s→ ν(s) = a+ ν̄(s,∞) is absolutely contin-

uous on (0,∞) and we define integro-differential operators similar to the fractional

derivatives. In particular we show how the operator

fDtu(t) = b
d

dt
u(t) +

∫ t

0

∂

∂t
u(t− s) ν(s) ds (4.3)

allows us to write the governing equations of

Ttu =

∫ ∞
0

Tsu lt(ds), u ∈ B, (4.4)

where lt(B) = Pr
{
fL(t) ∈ B

}
are the transition probabilities of fL and Ts is a C0-

semigroup on the Banach space (B, ‖·‖B). We call the operator Tt a time-changed
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C0-semigroup. In fact the main result of the present paper shows that Ttu, u ∈ B,

is a bounded strongly continuous linear operator on B and solves the problemfDtq(t) = Aq(t), 0 < t <∞,

q(0) = u ∈ Dom (A) .
(4.5)

where A is the infinitesimal generator of the C0-semigroup Ttu, u ∈ B.

A central role in our analysis is played by the tail ν(s) of the Lévy measure

ν̄ since it emerges through all the results of the paper. It appears in the defini-

tions of convolution-type derivatives of the form (4.3) we will discuss in Section 4.2.

Furthermore we prove the following convergence in distribution

lim
γ→0

bt+

N(t ν(γ))∑
j=1

Yj

 law
= fσ(t), t > 0, (4.6)

where Yj are i.i.d. random variables with distribution

Pr {Yj ∈ dy} =
1

ν(γ)
(ν̄(dy) + aδ∞) Iy>γ, γ > 0, ∀j = 1, . . . , n, (4.7)

and N(t), t > 0, is a homogeneous Poisson process. The symbol δ∞ stands for the

Dirac point mass at infinity.

List of symbols

Here is a list of the most important notations adopted in the paper.

• With L [u(•)] (λ) = ũ(λ) we denote the Laplace transform of the function u.

• F [u(•)] (ξ) = û(ξ) indicates the Fourier transform of the function u.

• With fσ(t), t > 0, we denote the subordinator with Laplace exponent f .

• µt(B) = Pr
{
fσ(t) ∈ B

}
indicates the convolution semigroup (transition prob-

abilities) associated with the subordinator fσ(t), t > 0. When the measure

µt has a density we adopt the abuse of notation µt(ds) = µt(s)ds where µt(s)

indicates the density of µt.

• fL(t), t > 0, indicates the inverse of the subordinator fσ(t), t > 0.

• The symbol lt(B) = Pr
{
fL(t) ∈ B

}
indicates the transition probabilities of

fL(t), t > 0. In case lt has a density we denote it, by abuse of notation, as

lt(s).

• With A we denote the infinitesimal generator of the semigroup Ttu for u ∈ B
(B is a Banach space).
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4.2 Convolution-type derivatives

In this section we define convolution-type operators similar to the fractional deriva-

tives. The logic of our definitions starts from the observation of the fractional

derivative of order α ∈ (0, 1) (in the Riemann-Liouville sense) to be considered the

first-order derivative of the Laplace convolution u(t) ∗ t−α/Γ(1 − α) (see Kilbas et

al. (2006))
dα

dtα
u(t) =

1

Γ(1− α)

d

dt

∫ t

0

u(s)

(t− s)α
ds. (4.8)

Formula (4.8) can be formally viewed as
(
d
dt

)α
for α ∈ (0, 1). Here we generalize

this idea respect to a Bernstein function (Bernstein (1929)). A Bernstein function

is a function f(x) : (0,∞)→ R of class C∞, f(x) ≥ 0, ∀x > 0 for which

(−1)kf (k)(x) ≤ 0, ∀x > 0 and k ∈ N. (4.9)

A function f is said to be a Bernstein function if, and only if, admits the represen-

tation

f(x) = a+ bx+

∫ ∞
0

(
1− e−sx

)
ν̄(ds), x > 0, (4.10)

where a, b ≥ 0 and ν̄(ds) is a non-negative measure on (0,∞) satisfying the integra-

bility condition ∫ ∞
0

(z ∧ 1) ν̄(dz) <∞. (4.11)

According to the literature we refer to the measure ν̄ and to the triplet (a, b, ν̄) as the

Lévy measure and the Lévy triplet of the Bernstein function f . The representation

(4.10) is called the Lévy-Khintchine representation of f .

The Bernstein functions are closely related to the so-called completely monotone

functions (see more on Bernstein function in Jacob (2001), Schilling et al. (2010)).

The function g(x) : (0,∞) → R is completely monotone if has derivatives of all

order satisfying

(−1)kg(k)(x) ≥ 0, ∀x > 0 and k ∈ {0} ∪ N. (4.12)

By Bernstein Theorem (see Bernstein (1929)) the function g is completely monotone

if and only if

g(x) =

∫ ∞
0

e−sxm(ds), x > 0, (4.13)

when the above integral converges ∀x > 0 and where m(ds) is a non-negative mea-

sure on [0,∞). Here and all throughout the paper the following symbology and

definitions will be the same. We call f(x), x > 0, the Bernstein function with

representation (4.10) and we consider the completely monotone function

g(x) =
f(x)

x
, x > 0, (4.14)
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with representation

g(x) = b+

∫ ∞
0

e−sx ν(s)ds, (4.15)

where ν(s) is the tail of the Lévy measure appearing in (4.10)

ν(s)ds = (a+ ν̄ (s,∞)) ds. (4.16)

The representations (4.14) and (4.15) define a completely monotone function and are

valid for every Bernstein function f (see for example Schilling et al. (2010) Corollary

3.7 (iv)). We observe that ν(s) is in general a right-continuous and non-increasing

function for which ∫ 1

0

(a+ ν̄(s,∞)) ds =

∫ 1

0

ν(s) ds <∞. (4.17)

Furthermore we note that

ν̄(s,∞) <∞, for all s > 0. (4.18)

In order to justify (4.18) we recall the inequality(
1− e−1

)
(t ∧ 1) ≤ 1− e−t, t ≥ 0, (4.19)

which can be extended as(
1− e−ε

)
(t ∧ ε) ≤

(
1− e−t

)
, for all 0 < ε ≤ 1, t ≥ 0. (4.20)

By taking into account (4.20) we can rewrite for all 0 < ε ≤ 1 the integrability

condition (4.11) as ∫ ∞
0

(t ∧ ε) ν̄(dt) <∞, for all 0 < ε ≤ 1, (4.21)

since ∫ ∞
0

(t ∧ ε) ν̄(dt) ≤ eε

eε − 1

∫ ∞
0

(
1− e−t

)
ν̄(dt) =

eε

eε − 1
f(1) < ∞ (4.22)

and this implies (4.18). When the Lévy measure has finite mass, that is

ν̄(0,∞) <∞, (4.23)

and if b = 0, the corresponding Bernstein function f is bounded.
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4.2.1 Convolution-type derivatives on the positive half-axis

In this section we define a generalization, respect to a Bernstein function f , of the

classical Riemann-Liouville fractional derivative and we discuss some of its funda-

mental properties. Here is the first definition.

Definition 4.2.1. Let u(t) ∈ AC([c, d]), 0 < c ≤ t ≤ d <∞ that is the space of ab-

solutely continuous function on [c, d]. Let f be a Bernstein function with representa-

tion (4.10) and let ν̄ be the corresponding Lévy measure with tail ν(s) = a+ ν̄(s,∞).

Assume that s→ ν(s) is absolutely continuous on (0,∞). We define the generalized

Riemann-Liouville derivative according to the Bernstein function f as

fD(c,d)
t u(t) :=

d

dt

[
bu(t) +

∫ t−c

0

u(t− s) ν(s)ds

]
. (4.24)

The representation (4.24) can be extenended for defining the derivative on the

half-axis R+ as it is done for the classical Riemann-Liouville fractional derivative

(see Kilbas et al. (2006) page 79). Hence we write

fD(0,∞)
t u(t) :=

d

dt

[
bu(t) +

∫ t

0

u(t− s) ν(s)ds

]
. (4.25)

Lemma 4.2.2. Let fD(c,∞)
t u(t), t ≥ c ≥ 0, be as in Definition 4.2.1 and let |u(t)| ≤

Meλ0t for some λ0,M > 0. We have the following result

L
[
fD(c,+∞)

t u(t)
]

(λ) = f(λ) ũ(λ)− be−λcu(c), <λ > λ0. (4.26)

Proof. The Laplace transform can be evaluated explicitely as follows

L
[
fD(c,+∞)

t u(t)
]

(λ) = bλũ(λ)− be−λcu(c) + L
[
d

dt

∫ t−c

0

u(t− s) ν(s)ds

]
(λ)

= bλũ(λ)− be−λcu(c) + λL
[∫ t−c

0

u(t− s) ν(s)ds

]
(λ)

= bλũ(λ)− be−λcu(c) + λ

∫ ∞
0

∫ ∞
s+c

e−λtu(t− s) ν(s)dt ds

=λg(λ)ũ(λ)− be−λcu(c)

= f(λ) ũ(λ)− be−λcu(c). (4.27)

In the last steps we used (4.14) and (4.15).

In view of the previous Lemma we note that our definition is consistent and gener-

alize the Riemann-Liouville fractional derivatives of order α ∈ (0, 1) in a reasonable

way.
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Remark 4.2.3. Let the function f of Definition 4.2.1 be f(x) = xα, x > 0, α ∈
(0, 1), for which (4.10) becomes

xα =

∫ ∞
0

(
1− e−sx

) αs−α−1

Γ(1− α)
ds, (4.28)

that is to say a = 0 and b = 0 and

ν̄(ds) =
αs−α−1

Γ(1− α)
ds (4.29)

and therefore

ν(s)ds = ds

∫ ∞
s

αz−α−1

Γ(1− α)
dz =

s−αds

Γ(1− α)
. (4.30)

By performing these substitutions in Definition 4.2.1 it is easy to show that

fD(0,+∞)
t u(t) =

Rdα

dtα
u(t) (4.31)

where

Rdα

dtα
u(t) =

1

Γ(1− α)

d

dt

∫ t

0

u(s)

(t− s)α
ds (4.32)

is the Riemann-Liouville fractional derivative.

By following the logic inspiring the fractional Dzerbayshan-Caputo derivative

(see Kilbas et al. (2006)) defined, for an absolutely continuous function u(t), t > 0,

as

Cdα

dtα
u(t) =

1

Γ(1− α)

∫ t

0

u′(s)

(t− s)α
ds, (4.33)

we can give the following alternative definition of generalized derivative respect to

a Bernstein function.

Definition 4.2.4. Let f and ν be as in Definition 4.2.1. Let u(t) ∈ AC ([c, d]),

0 < c ≤ t ≤ d < ∞. We define the generalized Dzerbayshan-Caputo derivative

according to the Bernstein function f as

fD
(c,d)
t u(t) := b

d

dt
u(t) +

∫ t−c

0

∂

∂t
u(t− s) ν(s)ds. (4.34)

As already done for the classical Dzerbayshan-Caputo derivative we can extend

(4.34) on the half-axis R+ (see for example Kilbas et al. (2006) page 97) as

fD
(0,∞)
t u(t) := b

d

dt
u(t) +

∫ t

0

∂

∂t
u(t− s) ν(s)ds. (4.35)

Throughout the paper we will write for the sake of simplicity fDt instead of fD
(0,∞)
t .
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Lemma 4.2.5. Let fDt be as in (4.35) and let |u(t)| ≤Meλ0t, for some λ0, M > 0.

We obtain

L
[
fDtu(t)

]
(λ) = f(λ)ũ(λ)− f(λ)

λ
u(0), <λ > λ0. (4.36)

Proof. By evaluating explicitely the Laplace transform we obtain

L
[
fDtu(t)

]
(λ) = bλũ(λ)− bu(0) +

∫ ∞
0

e−λt
∫ t

0

d

dt
u(t− s)ν(s)ds dt

= bλũ(λ)− bu(0) +

∫ ∞
0

∫ ∞
s

e−λt
d

dt
u(t− s) ν(s) dt ds

= bλũ(λ)− bu(0) +

∫ ∞
0

e−λsν(s)ds (λũ(λ)− u(0))

=λg(λ)ũ(λ)− g(λ)u(0)

= f(λ)ũ(λ)− f(λ)

λ
u(0) (4.37)

where we used the relationships (4.14) and (4.15).

Remark 4.2.6. By performing the same substitutions of Remark 4.2.3 it is easy to

show that

fDtu(t) =
Cdα

dtα
u(t) (4.38)

where
Cdα

dtα
is the Dzerbayshan-Caputo derivative defined in (4.33).

It is well known that the Riemann-Liouville fractional derivative of a function

u ∈ AC([c, d)] exist almost everywhere in [c, d] and can be written as (see Kilbas et

al. (2006) page 73)

Rdα

dtα
u(t) =

Cdα

dtα
u(t) +

(t− c)−α

Γ(1− α)
u(c). (4.39)

Here is a more general result.

Proposition 4.2.7. Let fD(c,d)
t and fD

(c,d)
t be respectively as in Definitions 4.2.1

and 4.2.4. We have that fD(c,d)
t u(t) exists almost everywhere in [c, d] and can be

written as

fD(c,d)
t u(t) = fD

(c,d)
t u(t) + ν(t− c)u(c). (4.40)

Proof. Let V (s) =
∫
ν(s)ds and

$(s) =

∫ s

0

ν(z)dz, 0 < s <∞, (4.41)
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such that ∫
ν(t− s)ds = −$(t− s)− V (0). (4.42)

Since u ∈ AC([c, d]) we have for c < s < d

u(s) =

∫ s

c

u′(z)dz + u(c) (4.43)

and therefore we can rewrite fD(c,d)
t u(t) as

fD(c,d)
t u(t)

= b
d

dt
u(t) +

d

dt

∫ t

c

(∫ s

c

u′(z)dz + u(c)

)
ν(t− s) ds

= − u′(t)V (0) + ν(t− c)u(t) +
d

dt

∫ t

c

u′(s)$(t− s) ds+
d

dt

∫ t

c

u′(s)V (0)ds

= ν(t− c)u(c) +

∫ t

c

u′(s)ν(t− s) ds

= ν(t− c)u(c) +

∫ t−c

0

u′(t− s) ν(s) ds. (4.44)

In the second step we performed an integration by parts.

4.2.2 Convolution-type derivatives on the whole real axis

In this section we develop a generalized space-derivative respect to a Bernstein

function f with domain on the whole real axis R, by following the logic inspiring

the Weyl derivatives.

Definition 4.2.8. Let f and ν(s) be as in Definition 4.2.1. We define the general-

ized Weyl derivative, according to the Bernstein function f , on the whole real axis

as

fD+
x u(x) :=

[
b
d

dx
u(x) +

∫ ∞
0

∂

∂x
u(x− s) ν(s)ds

]
, (4.45)

and
fD−x u(x) := −

[
b
d

dx
u(x) +

∫ ∞
0

∂

∂x
u(x+ s) ν(s)ds

]
. (4.46)

Some remarks on the domain of definition of (4.45) and (4.46) are stated in

Section 4.5.1.

Lemma 4.2.9. Let fD±x be as in Definition 4.2.8. We have that

F
[
fD+

x u(x)
]

(ξ) = f(−iξ)û(ξ) (4.47)
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and

F
[
fD−x u(x)

]
(ξ) = f(iξ)û(ξ). (4.48)

Proof. By evaluating the first Fourier transform explicitely, we obtain

F
[
fD+

x u(x)
]

(ξ) = − biξû(ξ)− iξF
[∫ ∞

0

u(x− s)ν(s)ds

]
(ξ)

= − biξû(ξ)− iξ
∫ ∞

0

∫
R
eiξz+iξsu(z) dz ν(s)ds

= − biξû(ξ)− iξ
∫ ∞

0

ds eiξs
(
a+

∫ ∞
s

ν̄(dz)

)
û(ξ) (4.49)

and by integrating by parts we get that

F
[
fD+

x u(x)
]

(ξ) = aû(ξ)− biξû(ξ) +

∫ ∞
0

(
1− eiξs

)
ν̄(ds) û(ξ)

= f(−iξ) û(ξ). (4.50)

By repeating the same calculation one can easily prove (4.48).

Remark 4.2.10. Definitions (4.45) and (4.46) are consistent with the Weyl defi-

nition of fractional derivatives on the whole real axis which are, for α ∈ (0, 1) and

x ∈ R, (see Kilbas et al. (2006))

+dα

dxα
u(x) =

1

Γ(1− α)

d

dx

∫ x

−∞

u(s)

(x− s)α
ds, right derivative, (4.51)

and

−dα

dxα
u(x) = − 1

Γ(1− α)

d

dx

∫ ∞
x

u(s)

(s− x)α
ds, left derivative. (4.52)

We have

fD±x u(x) =
±dα

dxα
u(x), x ∈ R. (4.53)

We resort to the fact that (see Kilbas et al. (2006) page 90)

F
[±∂α
∂xα

u(x)

]
(ξ) = (∓iξ)αû(ξ) (4.54)

and thus by combining (4.54) with Lemma 4.2.9 the proof of (4.53) is complete. The

reader can also check the result by performing the substitution b = 0 and

ν(s)ds =
s−α

Γ(1− α)
ds (4.55)

in (4.45) and (4.46) which yields (4.51) and (4.52) with a change of variable.
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4.3 Subordinators, hitting-times and continuous

time random walks

A subordinator fσ(t), t > 0, is a stochastic process in continuous time with inde-

pendent and homogeneous increments and non-decreasing paths (see more on sub-

ordinators in Bertoin (1996, 1997)). The transition probabilities of subordinators

µt(B) = Pr
{
fσ(t) ∈ B

}
, B ⊂ [0,∞) Borel, t > 0, are convolution semigroups of

sub-probability measure with the following property concerning the Laplace trans-

form

L [µt] (λ) = e−tf(λ) (4.56)

where f is a Bernstein function having representation (4.10). A family µt, t > 0, of

sub-probability measures on Rn is called a convolution semigroup on Rn if it satisfies

the conditions

• µt (Rn) ≤ 1, ∀t ≥ 0;

• µs ∗ µt = µt+s, ∀s, t ≥ 0, and µ0 = δ0;

• µt → δ0, vaguely as t→ 0,

where we denoted by δ0 the Dirac point mass at zero. The fact that the tail func-

tion s → ν(s) of the Lévy measure ν̄ is absolutely continuous on (0,∞) and that

ν̄(0,∞) = ∞ is a sufficient condition for saying the transition probabilities of the

corresponding subordinator are absolutely continuous (see Sato (1999), Theorem

27.7). We recall that a measure µ on B
(
Rd
)

is said to be absolutely continuous

if given B ∈ B
(
Rd
)

satisfying Leb (B) = 0 then µ (B) = 0 (B indicates the Borel

σ-algebra).

It has been shown that any subordinator has a Laplace exponent as in (4.56) and

that any Bernstein function with representation (4.10) is the Laplace exponent of a

subordinator (see for example Bertoin (1997)). A subordinator is a step process if

its associated Bernstein function f is bounded. Looking at the representation (4.10)

we see that a Bernstein function is bounded if ν̄(0,∞) < ∞ and b = 0. If these

conditions are not fulfilled (and thus b > 0 and ν̄(0,∞) =∞) the subordinator is a

strictly increasing process.

The inverse process of a subordinator is defined as

fL(t) = inf
{
s > 0 : fσ(s) > t

}
, s, t > 0, (4.57)

and thus fL is the hitting-time of fσ since fσ has non-decreasing paths (see Bertoin

(1996, 1997)). With this in hand we note that fL is again a non-decreasing process
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but in general it has non-stationary and non-independent increments. In what

follows we develop some properties of the transition probabilities of fL(t), t > 0,

denoted by lt(B) = Pr
{
fL(t) ∈ B

}
.

Lemma 4.3.1. Let fσ(t), t > 0, and fL(t), t > 0, be respectively a subordinator and

its inverse. Let f be the Laplace exponent of fσ represented as in (4.10) for a, b ≥ 0.

Let ν(s) be the tail of the Lévy measure ν̄ and lt(B) the transition probabilities of
fL. We have that

L [l•(s,∞)] (λ) =
1

λ
e−sf(λ). (4.58)

Proof. We resort to the fact that fσ has non-decreasing paths and thus, in view of

the construction (4.57) of fL we have

Pr
{
fL(t) > s

}
= Pr

{
fσ(s) < t

}
. (4.59)

In view of (4.59) we observe that∫ ∞
0

e−λtlt(s,∞] dt =

∫ ∞
0

e−λtµs[0, t)dt (4.60)

and thus ∫ ∞
0

e−λtlt[s,∞)dt =

∫ ∞
0

e−λt
∫ t

0

µs(dz) dt =
1

λ
e−sf(λ). (4.61)

Proposition 4.3.2. Let fσ(t), t > 0, be the subordinator with Laplace exponent

f represented by (4.10) for a ≥ 0, b ≥ 0. Let ν be the tail of the Lévy measure

ν̄. Let assume that ν̄(0,∞) = ∞ and that s → ν(s) = a + ν̄(s,∞) is absolutely

continuous on (0,∞). Let fL(t), t > 0, be the inverse of fσ, in the sense of (4.57),

with transition probabilities lt(B) = Pr
{
fL(t) ∈ B

}
. We have the following results.

1. The transition probabilities lt have a density such that lt(ds) = lt(s)ds and

lt(s) = bµs(t)+(ν(t)∗µs(t)) where with abuse of notation we denoted with lt(s)

and µs(t) respectively the density of lt(ds) and µs(dt) and the symbol ∗ stands

for the Laplace convolution
∫ t

0
µs(t − z)ν(z)dz. Furthermore L [l•(s)] (λ) =

f(λ)
λ
e−sf(λ).

2. limh→0 lt+h = lt ∀t ≥ 0 and limt→0 lt[0,∞) = δ0[0,∞).

3. lt(0) = ν(t), ∀t > 0.

4. lt[0,∞) = 1, ∀a, b ≥ 0.
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Proof. 1. Since we assume ν̄(0,∞) = ∞ and s → ν(s) absolutely continuous

on (0,∞), we have that from Theorem 27.7 in Sato (1999) the transition

probabilities µt(dx) are absolutely continuous and therefore have a density

µt(x). Thus we write

L [bµs(•) + (µs(•) ∗ ν(•))] (λ) = be−sf(λ) +

∫ ∞
0

e−λt
∫ t

0

µs(t− z)ν(z)dz dt

= be−sf(λ) +

∫ ∞
0

dz

∫ ∞
z

dt e−λt µs(t− z)ν(z)

=
f(λ)

λ
e−sf(λ), (4.62)

where we used (4.15). From (4.62) we get∫ ∞
s

L [bµw(•) + (µw(•) ∗ ν(•))] (λ) dw =

∫ ∞
s

f(λ)

λ
e−wf(λ)dw =

1

λ
e−sf(λ).

(4.63)

Since (4.63) coincides with (4.61) we can write∫ ∞
s

(bµw(t) + (µw(t) ∗ ν(t))) dw = lt(s,∞) (4.64)

which completes the proof.

2. We have

lim
h→0

lt+h[s,∞) = lim
h→0

∫ ∞
s

(
bµs(t+ h) +

∫ t+h

0

µs(t+ h− z)ν(z)dz

)
ds

= lt[s,∞) (4.65)

since µs(t) is a density. Furthermore

lim
t↓0

lt[0,∞) = lim
t↓0

∫ ∞
0

(
bµs(t) +

∫ t

0

µs(t− z)ν(z)dz

)
ds = δ0[0,∞). (4.66)

3. This is obvious since for t > 0, lt(0) = bµ0(t) + ν(t) ∗ µ0(t) = ν(t).

4. The proof of this can be carried out by observing that∫ ∞
0

e−λtlt[0,∞) dt =

∫ ∞
0

e−λtlt[s,∞) dt

∣∣∣∣
s=0

=
1

λ
e−sf(λ)

∣∣∣∣
s=0

=
1

λ
. (4.67)

Subordinators are related to Continuous Time Random Walks (CTRWs). The

CTRWs (introduced in Montroll and Weiss (1965)) are processes in continuous time
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in which the number of jumps performed in a certain amount of time t is a ran-

dom variable, as well as the jump’s length. For example, the stable subordinator

can be viewed (in distribution) as the limit of a CTRW performing a Poissonian

number of power-law jumps (see for example Meerschaert and Sikorskii (2012)). In

Meerschaert and Scheffer (2004), among other things, the authors pointed out that

the limit process of a CTRW with infinite-mean waiting times converge to a Lévy

motion time-changed by means of the hitting-time Lα(t), t > 0, of the stable sub-

ordinator σα(t), t > 0. Since subordinators are also Lévy processes they can be

decomposed according to the Lévy-Itô decomposition (Itô (1942)). By following the

logic of the Lévy-Itô decomposition we derive a CTRW converging (in distribution)

to a subordinator with laplace exponent f and having a hitting-time converging to

its inverse. Our CTRW is therefore the sum of a pure drift and a compound Pois-

son. The distribution of the jumps’ length need some attention. In particular we

define i.i.d. random variables Yj representing the random length of the jump, with

distribution

Pr {Yj ∈ dy} =
1

ν(γ)
(ν̄(dy) + a δ∞) Iy>γ, γ > 0, ∀j = 1, · · · , n, (4.68)

where δ∞ indicates the Dirac point mass at ∞ and a ≥ 0. In (4.68) ν̄ and ν

are respectively the Lévy measure and its tail as defined in equations from (4.10)

to (4.16) and upon which the definitions of convolution-type derivatives of previous

section are based. The parameter a ≥ 0 is that in (4.10) and it is known in literature

as the killing rate of the subordinator. The distribution (4.68) can be taken as

follows. The probability of a jump of length y > γ > 0 is given by the normalized

Lévy measure when a = 0. When a > 0 the probability of a jump of infinite

length increases since ν̄(y)
y→∞−→ 0 and thus Pr {Y ∈ dy} /dy y→∞−→ a/ν(γ). When

constructing a CTRW with Poisson waiting times and jump length’s distribution

(4.68) by choosing a > 0 we obtain a limit process (for γ → 0) assuming value

+∞ from a certain time ζ <∞. Usually ζ is called the lifetime of the process (see

Bertoin (1997)). The case a > 0 in (4.68) therefore gives rise to the so-called killed

subordinators. A killed subordinator f σ̂t, is defined as

f σ̂t =

fσt, t < ζ,

+∞, t ≥ ζ,
(4.69)

where

ζ = inf
{
t > 0 : fσ(t) =∞

}
. (4.70)

Obviously a = 0 implies ζ =∞. For simplicity we will use the notation fσt both for

killed and non-killed subordinators when no confusion arises. We are ready to prove
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the following convergences in distribution inspired by the Lévy-Ito decomposition

and usefull in order to understand the role of the Lévy measure ν̄ and its tail ν(s).

Proposition 4.3.3. Let N(t), t > 0, be a homogeneous Poisson process with param-

eter θ = 1 independent from the i.i.d. random variables Yj with distribution (4.68).

Let f be the Bernstein function with representation (4.10) Laplace exponent of the

subordinator fσ(t), t > 0, and let fL(t), t > 0 be the inverse of fσ as in (4.57). Let

ν(s) be the tail of the Lévy measure ν̄. The following convergences in distribution

are true.

1.

lim
γ→0

bt+

N(t ν(γ))∑
j=0

Yj

 law
= fσ(t), (4.71)

2.

lim
γ→0

inf

s > 0 : bs+

N(sν(γ))∑
j=0

Yj > t

 law
= fL(t). (4.72)

Proof. In order to prove (1) we consider the following Laplace transform

E exp

−λbt− λ
N(t ν(γ))∑
j=0

Yj


= e−λbtE

[
E
(
e−λY

)N(tν(γ))
]

= exp
{
−λbte−tν(γ)(1−Ee−λY )

}
= exp

{
−t
(
bλ+ ν(γ)

∫ ∞
γ

(
1− e−λy

)
Pr {Y ∈ dy}

)}
, (4.73)

where Pr {Y ∈ dy} is the one in (4.68). In the previous steps we used the indepen-

dence of the random variables Yj and the fact that

Ee−λN(tν(γ)) = e−tν(γ)(1−e−λ). (4.74)

By performing the limit for γ → 0 in (4.73) we obtain

lim
γ→0

E exp

−λbt− λ
N(t ν(γ))∑
j=0

Yj


= exp

{
−t
(
a+ bλ+

∫ ∞
0

(
1− e−λy

)
ν̄(dy)

)}
= e−tf(λ), (4.75)
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and this proves (1).

Now we prove (2). Let Z(t) = inf
{
s > 0 : bs+

∑N(sν(γ))
j=0 Yj > t

}
. By definition

we have that

Pr {Z(t) > s} = Pr

bs+

N(s ν(γ))∑
j=0

Yj < t

 (4.76)

and thus

L [Pr {Z(•) > s}] (λ) =L

Pr

bs+

N(s ν(γ))∑
j=0

Yj < •


 (λ). (4.77)

By taking profit of calculation (4.73) we obtain

L [Pr {Z(•) > s}] (λ) =
1

λ
exp

{
−s
(
a+ bλ+

∫ ∞
0

(
1− e−λy

)
ν̄(dy)

)}
(4.78)

and by performing the limit for γ → 0 we arrive at

lim
γ→0
L [Pr {Z(•) > s}] (λ) =

1

λ
e−sf(λ). (4.79)

Since (4.79) coincides with (4.61) the proof is complete.

Remark 4.3.4. For f(x) = xα, α ∈ (0, 1) result (4.71) becomes

lim
γ→0

N
(
t t−α

Γ(1−α)

)∑
j=0

Yj
law
= σα(t), (4.80)

where σα(t), t > 0, is the stable subordinator of order α ∈ (0, 1) and the i.i.d.

random variables Yj have power-law distribution

Pr {Y ∈ dy} /dy = αγα y−α−1 Iy>γ, γ > 0, (4.81)

which can be obtained from (4.68) by performing the substitutions

ν̄(y) =
αy−α−1

Γ(1− α)
dy, and ν(γ) =

γ−α

Γ(1− α)
, (4.82)

due to the fact that f(x) = xα = (4.28) (a = 0, b = 0). The result (4.80) is

well-known (see for example Meerschaert and Sikorskii (2012)) and represents the

convergence in distribution of a CTRW with power-law distributed jumps to the stable

subordinator.
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4.4 Densities and related governing equations

In this section we present in a unifying framework the governing equations of the

densities of subordinators and their inverses, by making use of the operators defined

in Section 4.2.

Theorem 4.4.1. Let fσ(t), t > 0, and fL(t), t > 0, be respectively a subordina-

tor and its inverse. Let ν̄ be the Lévy measure such that ν̄(0,∞) = ∞ and let

ν(s) = a + ν̄(s,∞). Assume s → ν(s) is absolutely continuous on (0,∞). Let

ζ = inf
{
t > 0 : fσ(t) =∞

}
.

1. The probability density µt(x) of the subordinator fσ is the solution to the prob-

lem 

∂
∂t
µt(x) = − fD(bt,+∞)

x µt(x), x > bt, 0 < t < ζ, b ≥ 0,

µt(bt) = 0, t < ζ,

µ0(x) = δ(x),

µζ(x) = δ(x−∞).

(4.83)

2. The probability density lt(x) of fL(t), t > 0, is the solution to the equation

fD(0,∞)
t lt(x) = − ∂

∂x
lt(x), t > 0, and

0 < x < t
b
< ζ, if b > 0,

0 < x < ζ, if b = 0,

(4.84)

subject to 
lt(t/b) = 0,

lt(0) = ν(t),

l0(x) = δ(x).

(4.85)

The operator fD(bt,+∞)
x is the one of Definition 4.2.1.

Proof. As already pointed out the conditions assumed on ν̄ and ν(s) ensure that

µt(B) and lt(B) are absolutely continuous and therefore have densities we denote

again by µt(x) and lt(x).

1. First we note that µt(x) = 0 for x ≤ bt, b ≥ 0, indeed from Proposition 4.3.3

Pr
{
fσ(t) > bt

}
= lim

γ→0
Pr

bt+

N(tν(γ))∑
j=0

Yj > bt
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= lim
γ→0

Pr


N(tν(γ))∑
j=0

Yj > 0

 = 1. (4.86)

The Laplace transform of µt(x) is L [µt(•)] (φ) = e−tf(φ) and therefore L [µ̃•(φ)] (λ) =

1/(f(λ) + φ). In view of Lemma 4.2.2 the Laplace transform of (4.83) with

respect to x is
∂

∂t
µ̃t(φ) = −f(φ)µ̃t(φ) + be−btφµt(bt) (4.87)

and therefore by performing the Laplace transform with respect to t we obtain˜̃µλ(φ) =
1

f(λ) + φ
(4.88)

where we used the facts that µ̃0(φ) = 1 and µt(bt) = 0. This completes the

proof of (1).

2. First we show that lt(x) = 0 for x ≥ t
b

when b > 0. By considering Proposition

4.3.3 we have

Pr

{
fL(t) <

t

b

}
= Pr

{
fσ

(
t

b

)
> t

}

= lim
γ→0

Pr

t+

N( tbν(γ))∑
j=0

Yj > t

 = 1. (4.89)

The double Laplace transform of lt(x) reads

L [L [lt(x)] (φ)] (λ) =
f(λ)/λ

φ+ f(λ)
, (4.90)

where we used Proposition 4.3.2. From this point we temporary assume that

b > 0. We consider the Laplace transform with respect to x of (4.84) and we

obtain

fD(0,∞)
t l̃t(φ) = −φl̃t(φ) + lt(0)− e−φ(t/b)lt(t/b). (4.91)

Considering the Laplace transform with respect to t of (4.91) and by taking

into account (4.85) we get

f(λ)̃l̃λ(φ)− bl̃0(φ) = −φ̃l̃λ(φ) +
f(λ)

λ
− b (4.92)

where we used the fact that∫ ∞
0

e−λtν(t)dt =
f(λ)

λ
− b (4.93)

and Lemma 4.2.2. The conditions (4.85) imply l̃0(φ) = 1 and thus˜̃
lλ(φ) =

f(λ)/λ

φ+ f(λ)
. (4.94)

The proof for b = 0 can be carried out equivalently.
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4.4.1 Some remarks on the long-range correlation

The operators fDt and fD(c,∞)
t are non-local and govern processes with different

memory properties. The presence of long-range correlation can be detected in several

ways (see for example Samorodnitsky (2006)). Here we will explore the rate by

which the correlation of the inverses of subordinators decays (a similar approach

can be found in Leonenko et al. (2013) applied to a fractional Pearson diffusion). In

Veillette and Taqqu (2010) the authors derive an explicit formula for the moments

of the inverse processes of subordinators. Such formula reads in our notation

E
[
fL(t1)m1 · · · fL(tn)mn

]
=

∫ tmin

0

n∑
i=1

miU (t1 − τ, . . . , tn − τ,m1, . . . ,mi−1,mi − 1,mi+1, . . . ,mn)U(dτ)

(4.95)

where tmin = min(t1, · · · , tn) and

U(x) = E
[
fL(x)

]
= E

[∫ ∞
0

I{ fσ(t)≤x}dx
]

(4.96)

is known as the renewal function and is the distribution function of the renewal

measure U(dx). The renewal measure is the potential measure of a subordinator

and it is given by

U (B) = E
∫ ∞

0

I[ fσ(t)∈B] dt =

∫ ∞
0

µt(B) dt, for B ⊆ [0,∞), (4.97)

the reader can consults Song and Vondraček (2009) for further information. We

recall the renewal function is subadditive that is

U(x+ y) ≤ U(x) + U(y), ∀x, y,≥ 0 (4.98)

and that ∫ ∞
0

e−λxU(dx) =
1

f(λ)

∫ ∞
0

e−λxU(x) dx =
1

λf(λ)
. (4.99)

Furthermore it is well-known (see, for example, Bertoin (1997), Proposition 1.4)

that there exist positive constants c and c′ such that

c U(x) ≤ 1

f
(

1
x

) ≤ c′ U(x). (4.100)

By applying (4.95) we write

E fL(s) fL(t) =

∫ s∧t

0

(U(s− τ) + U(t− τ))U(dτ) (4.101)
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which can be interpreted as a long-range dependency property. We can write for

w > 0,

E
(
fL(t) fL(t+ s)

)
=

∫ t∧(t+s)

0

(U(t− τ) + U(t+ s− τ))U(dτ)

≥
∫ t

0

U(s+ 2t− 2τ)U(dτ)

≥
∫ t

0

1

c′f
(

1
s+2t−2τ

)U(dτ) (4.102)

where we applied (4.98) and (4.100). We recall that 1/f is monotone and thus we

can write

lim
s→∞

∫ t

0

1

c′f
(

1
s+2t−2τ

)U(dτ) =

∫ t

0

lim
s→∞

1

c′f
(

1
s+2t−2τ

)U(dτ) > 0 (4.103)

since limz→0 f(z) ≥ 0. Fix w, t > 0 and use formula (4.103), we have∫ ∞
w

E fL(t) fL(t+ s) ds = +∞, ∀w, t > 0. (4.104)

4.5 On the governing equations of time-changed

C0-semigroups

In this section we discuss the concept of time-changed C0-semigroups on a Banach

space (B, ‖•‖B) (see more on semigroup theory in Engel and Nagel (2000), Jacob

(2001)) which we define as the Bochner integral

Ttu =

∫ ∞
0

Tsu lt(ds) (4.105)

where Ts is a C0-semigroup and lt are the transition probabilites of the inverse fL(t),

t > 0 of fσ(t), t > 0. We recall that a C0-semigroup of operators on B is a family

of linear operators Tt (bounded and linear) which maps B into itself and is strongly

continuous that is

lim
t→0
‖Ttu− u‖B = 0, ∀u ∈ B. (4.106)

In other words a bounded linear operator Tt acting on a function u ∈ B is said to

be a C0-semigroup if, ∀u ∈ B,

• T0u = u (is the identity operator),

• TtTsu = TsTtu = Tt+su, ∀s, t ≥ 0,
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• limt→0 ‖Ttu− u‖B = 0.

The infinitesimal generator of a C0-semigroup is the operator

Au := lim
t→0

Ttu− u
t

, (4.107)

for which

Dom (A) :=

{
u ∈ B : lim

t→0

Ttu− u
t

exists as strong limit

}
. (4.108)

The aim of this section is to write the initial value problem associated with Tt by

making use of the convolution-type time-derivatives of Definition 4.2.4.

Theorem 4.5.1. Let fL(t), t > 0, be the inverse process of a subordinator with

Laplace exponent f and let lt be the transition probabilities of fL. Let ν̄(0,∞) =∞
and s → ν(s) = a + ν̄(s,∞) be absolutely continuous on (0,∞). Let Ttu, u ∈ B,

be a (strongly continuous) C0-semigroup on the Banach space (B, ‖•‖B) such that

‖Ttu‖B ≤ ‖u‖B. Let (A,Dom (A)) be the generator of Ttu. The operator defined by

the Bochner integral

Ttu =

∫ ∞
0

Tsu lt(ds) (4.109)

acting on a function u ∈ B is such that

1. Ttu is a uniformly bounded linear operator on B,

2. Ttu is strongly continuous ∀u ∈ B,

3. Ttu solves the problemfDtq(t) = Aq(t), 0 < t <∞,

q(0) = u ∈ Dom (A)
(4.110)

where the time-operator fDt is the one appearing in Definition 4.2.4.

Proof. Now we prove the Theorem for b > 0 which is the case requiring some

additional attention. The proof for b = 0 can be carried out equivalently and

therefore is a particular case.

1. At first we show that the operator Ttu is uniformly bounded on (B, ‖•‖B).

From the hypothesys we have

‖Tt‖ ≤ 1, t ≥ 0, (4.111)
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In view of (4.111) we can write

‖Ttu‖B =

∥∥∥∥∫ ∞
0

Tsu lt(ds)

∥∥∥∥
B

≤
∫ ∞

0

‖Tsu‖B lt(ds) ≤ ‖u‖B , (4.112)

since lt[0,∞) = 1, ∀t ≥ 0, as showed in Proposition 4.3.2.

2. The strong continuity follows from the fact that

lim
h→0
‖Thu− u‖B =

∥∥∥∥∫ ∞
0

Tsu lh(ds)− u
∥∥∥∥
B

≤
∫ ∞

0

‖Tsu− u‖B lh(ds)
h→0−→ 0, (4.113)

since lh → δ0 as h→ 0 and Ts is strongly continuous.

3. Since Tt is a C0-semigroup generated by (A,DomA) we have

d

dt
Ttu = ATtu = TtAu, ∀u ∈ Dom (A) . (4.114)

Now let

As =
Tsu− u

s
. (4.115)

We note that

AsTtu =As

∫ ∞
0

Tzu lt(dz)

=

∫ ∞
0

Tz+su− Tzu
s

lt(dz)

=

∫ ∞
0

Tz

(
Tsu− u

s

)
lt(dz) (4.116)

and since for u ∈ Dom (A) the limit for s → 0 on the right-hand side exists

we have that Tt maps Dom (A) into itself.

By using Lemma 4.2.5 we note that the Laplace transform of (4.110) becomesf(λ)q̃(x, λ)− f(λ)
λ
q(x, 0) = Aq̃(x, λ)

q(x, 0) = u(x).
(4.117)

Now define the operator

fRλ,A :=

∫ ∞
0

e−λtTtdt =
f(λ)

λ
Rf(λ),A (4.118)
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where

Rf(λ),A =

∫ ∞
0

e−tf(λ)Ttdt. (4.119)

We recall that since we assume (A,Dom (A)) generate a C0-semigroup for

which ‖Ttu‖B ≤ ‖u‖B, we necessarily have that A is closed and densely de-

fined. Furthermore for all λ ∈ C with <λ > 0 we must have that λ ∈ ρ(A)

and ‖Rλ,A‖ ≤ 1
<λ , where

Rλ,A =

∫ ∞
0

e−λtTt dt (4.120)

is the resolvent operator and ρ(A) is the resolvent set of A. The integral

(4.119) is justified since every Bernstein function has an extension onto the

right complex half-plane H = {λ ∈ C : <λ > 0} which satisfies (see Schilling

et al. (2010), Proposition 3.5)

<f(λ) = a+ b<λ+

∫ ∞
0

(
1− e−s<λ cos=λ

)
ν̄(ds) > 0. (4.121)

By computing we can evaluate the following Laplace transform∫ ∞
0

e−λt fDtTtu dt =

=

[
b

∫ ∞
0

e−λt lim
h→0

Tt+h − Tt
h

u dt+

∫ ∞
0

e−λt
∫ t

0

lim
h→0

Tt+h−su− Tt−su
h

ν(s)ds dt

]
=

[
lim
h→0

b
eλh

h

∫ ∞
h

e−λtTtu dt− b lim
h→0

1

h

∫ ∞
0

e−λtTtu dt

+

∫ ∞
0

ds ν(s)

∫ ∞
s

e−λt lim
h→0

Tt+h−su− Tt−su
h

]
=

[
b lim
h→0

eλh − 1

h
fRλu − b lim

h→0

eλh

h

∫ h

0

e−λtTtu dt

+

(
f(λ)

λ
− b
)(

lim
h→0

eλh − 1

h
fRλu− lim

h→0

eλh

h

∫ h

0

e−λtTtu dt
)]

=

[
f(λ)

λ

(
lim
h→0

eλh − 1

h
fRλu−

eλh

h

∫ h

0

e−λtTtu dt
)]

= f(λ) fRλu−
f(λ)

λ
u, (4.122)

where in the third step we used (4.15).

With this in hand we note that fRλ,A satisfies∥∥ fRλ

∥∥ =
<f(λ)

<λ
∥∥Rf(λ)

∥∥ ≤ <f(λ)

<λ
1

<f(λ)
=

1

<λ
. (4.123)

Furthermore we can formally write∫ ∞
0

e−λtTtdt =
f(λ)

λ

∫ ∞
0

e−sf(λ)Ts ds =
f(λ)

λ

∫ ∞
0

e−s(f(λ)−A)ds
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=
f(λ)

λ

1

f(λ)− A
, (4.124)

where we used Proposition 4.3.2 to state that L [l•(s)] (λ) = f(λ)
λ
e−sf(λ) and

lt(s) represents by abuse of notation the density of lt(ds). In (4.124) we used

the exponential representation Tt = etA. Since we do not assume that A is

bounded the symbol etA should be intended as etAu = strong- limλ→∞ e
tAλu

(Yosida approximation) where Aλ := λARλ.

Now we have to prove that ∀u ∈ Dom(A) we must have fRλu ∈ Dom(A) and

(f(λ)− A) fRλu = fRλ (f(λ)− A)u =
f(λ)

λ
u. (4.125)

Now by the definition

Ah =
1

h
(Thu− u) (4.126)

for which limh→0Ah = A, we find

Ah
fRλu =

Th − I
h

∫ ∞
0

e−λt
∫ ∞

0

Tsu lt(ds) dt

=

∫ ∞
0

e−λt
∫ ∞

0

Ts+hu− Tsu
h

lt(ds) dt

=
f(λ)

λ

∫ ∞
0

e−sf(λ)Ts+hu− Tsu
h

ds

=
ehf(λ)

h

f(λ)

λ

∫ ∞
h

e−sf(λ)Tzu dz −
1

h

f(λ)

λ

∫ ∞
0

e−sf(λ)Tsu ds

=
f(λ)

λ

ehf(λ) − 1

hλ

∫ ∞
0

e−zf(λ)Tzu dz −
f(λ)

λ

1

h

∫ h

0

e−sf(λ)Tsu ds

h→0−→ f(λ) fRλu −
f(λ)

λ
u. (4.127)

This proves that fRλu ∈ Dom (A) and that (f(λ)− A) fRλu = f(λ)
λ
u. Furthe-

more we find

fRλAu =

∫ ∞
0

e−λtTtAudt =

∫ ∞
0

e−λt
∫ ∞

0

TsAu lt(ds) dt

=

∫ ∞
0

e−λt
∫ ∞

0

∂

∂s
Tsu lt(ds)

=
f(λ)

λ

∫ ∞
0

e−sf(λ) ∂

∂s
Tsu ds

= − f(λ)

λ
u+ f(λ) fRλu, (4.128)

which completes the proof.
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4.5.1 Convolution-type space-derivatives and Phillips’ for-

mula

Let Tt be a C0-semigroup acting on functions u ∈ B, where (B, ‖•‖B) is Banach

space. Let µt be a convolution semigroup of sub-probability measures on [0,∞)

such that L[µt] = e−tf where f is a Bernstein function. The operator defined by the

Bochner integral
fTtu =

∫ ∞
0

Tsuµt(ds), u ∈ B, (4.129)

is called a subordinate semigroup in the sense of Bochner. A classical result due to

Phillips (1952) state that the infinitesimal generator
(
fA,Dom

(
fA
))

of the subor-

dinate semigroup fT on u ∈ B is written as

fAu = −f (−A)u = −au+ bAu+

∫ ∞
0

(Tsu− u) ν̄(ds), (4.130)

with Dom (A) ⊆ Dom
(
fA
)
.

In Definition 4.2.8 we developed the convolution-type space-derivatives fD±x de-

fined on the whole real axis. We have shown that they becomes, for f(x) = xα,

α ∈ (0, 1), the Weyl space-fractional derivatives defined in (4.51) and (4.52). In

this section we show that − fD−x can be viewed as the infinitesimal generator of the

subordinate semigroup in the sense of Bochner

Qtu(x) =

∫ ∞
0

T lsu(x)µt(ds) (4.131)

where T ltu(x) = u(x+ t), u ∈ Lp (R), is the left translation semigroup.

Remark 4.5.2. We recall that the left translation operator T ltu = u(x+t), t > 0, u ∈
Lp (R), defines a strongly continuous C0-semigroup on Lp (R) (see for example Engel

and Nagel (2000) page 66) and has infinitesimal generator A = ∂
∂x

with Dom (A) =

W 1,p, 1 ≤ p <∞, where

W 1,p (R) = {u ∈ Lp (R) : u absolutely continuous and u′ ∈ Lp (R)} . (4.132)

This implies that − fD−x have to coincide with Phillips’ representation (4.130) with

A = ∂
∂x

.

Proposition 4.5.3. Let fσ(t) be a subordinator with Laplace exponent f and tran-

sition probabilities µt. Let ζ = inf
{
t > 0 : fσ(t) = +∞

}
. The solution to the initial

value problem  ∂
∂t
q(x, t) = − fD−x q(x, t), x ∈ R, 0 < t < ζ,

q(x, 0) = u(x) ∈ W 1,p (R) ,
(4.133)
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is given by the contractive strongly continuous semigroup of operators on Lp (R)

Qtu(x) =

∫ ∞
0

u(x+ y)µt(dy), t < ζ (4.134)

which is the subordinate translation semigroup T ltu(x) = u(x + t), in the sense of

Bochner. The operator fD−x is that of Definition 4.2.8 and W 1,p is defined in (4.132).

Proof. Since Qtu is a subordinate semigroup in the sense of Bochner, it defines again

a C0-semigroup on Lp (R). By applying Phillips’ result (Phillips (1952)) we know

that the infinitesimal generator of Qtu is written as

−f
(
− ∂

∂x

)
u(x) = −au(x) + b

∂

∂x
u(x) +

∫ ∞
0

(
T lsu(x)− u(x)

)
ν̄(ds). (4.135)

Since∥∥∥∥−f (− ∂

∂x

)
u(x)

∥∥∥∥
p

≤ a ‖u(x)‖p + b

∥∥∥∥ ∂∂xu(x)

∥∥∥∥
p

+

∫ ∞
0

∥∥T lsu(x)− u(x)
∥∥
p
ν̄(ds)

(4.136)

by applying the well-known inequality (see for example Jacob (2001))

‖Ttu(x)− u(x)‖ ≤ (t ‖Au(x)‖ ∧ 2 ‖u(x)‖) , u ∈ Dom (A) (4.137)

which is valid in general for a strongly continuous semigroup Ttu(x) on a Banach

space (B, ‖•‖) and infinitesimal generator (A,Dom (A)), we can write∥∥∥∥−f (− ∂

∂x

)∥∥∥∥
p

≤ a ‖u(x)‖p + b

∥∥∥∥ ∂∂xu(x)

∥∥∥∥
p

+

∫ ε

0

zν̄(dz)

∥∥∥∥ ∂∂xu(x)

∥∥∥∥
p

+ 2

∫ ∞
ε

ν̄(dz) ‖u(x)‖p . (4.138)

This shows that

Dom

(
−f
(
− ∂

∂x

))
=


W 1,p (R) , if b > 0,

W 1,p (R) , if b = 0 and ν̄(0,∞) =∞,

Lp (R) , if b = 0 and ν̄(0,∞) <∞.

(4.139)

since for ν̄(0,∞) <∞ we can choose ε = 0 in (4.138).

The Definition 4.2.8 of fD−x

− fD−x u(x) = b
∂

∂x
u(x) +

∫ ∞
0

∂

∂x
u(x+ s)ν(s)ds (4.140)
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for u ∈ Dom
(
∂
∂x

)
= W 1,p (R) can be rewritten as

− fD−x u(x) = b
∂

∂x
u(x) +

∫ ∞
0

∂

∂s
u(x+ s)

(
a+

∫ ∞
s

ν̄(dz)

)
ds

= − au(x) + b
∂

∂x
u(x) +

∫ ∞
0

ν̄(dz)

∫ z

0

∂

∂s
T lsu(x) ds

= − au(x) + b
∂

∂x
u(x) +

∫ ∞
0

ν̄(dz)
(
T lzu(x)− u(x)

)
(4.141)

which coincides with (4.135). This shows that Dom
(
− fD−x u(x)

)
= W 1,p (R).

4.6 Example: the tempered stable subordinator

By setting the Bernstein function considered in previous sections to be f(x) = xα,

α ∈ (0, 1), we retrive the stable subordinator σα(t), t > 0, for which Ee−λσα(t) =

e−tλ
α
, and its inverse process Lα(t), t > 0. Therefore by performing the substitution

f(x) = xα all throughout the paper we retrive the results related to fractional

calculus. In this section we take as example the Bernstein function

f(x) = (x+ ϑ)α − ϑα =
α

Γ(1− α)

∫ ∞
0

(
1− e−xs

)
e−ϑss−1−α ds, (4.142)

where ϑ > 0, α ∈ (0, 1). The Bernstein function (4.142) is the Laplace exponent of

the subordinator ϑσα(t) such that

Ee−λ ϑσα(t) = e−t((λ+ϑ)α−ϑα). (4.143)

The process ϑσα(t), t > 0, is known in literature as the relativistic stable subordi-

nator since it appears in the study of the stability of the relativistic matter (Lieb

(1990)) but it is also known as the tempered stable subordinator (see for example

Meerschaert and Sikorskii (2012) page 207, Rosiński (2007) or Zolotarev (1986),

Lemma 2.2.1). From (4.142) we know that the Lévy measure has the explicit repre-

sentation

ν̄(s)ds =
αe−ϑss−α−1

Γ(1− α)
ds, (4.144)

and has infinite mass (f(x) is not bounded). Furthermore its tail becomes

ν(s) =

(
αϑαΓ(−α, s)

Γ(1− α)

)
, (4.145)

where

Γ(−α, s) =

∫ ∞
s

e−zz−α−1 dz (4.146)
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is the incomplete Gamma function. It is well-known that the governing equations

of ϑσα(t), t > 0, is written by using the so-called tempered fractional derivative

∂ϑ,αx u(x) = e−ϑx
R∂α

∂xα
[
eϑx u(x)

]
− ϑαu(x), α ∈ (0, 1), (4.147)

as
∂

∂t
µϑ,αt (x) = −∂ϑ,αx µϑ,αt (x), x > 0, t > 0, (4.148)

see Meerschaert and Sikorskii (2012) page 209 and the references therein. According

to Theorem 4.83 we must have

∂

∂t
µϑ,αt (x) = − fD(0,∞)

x µϑ,αt (x), x > 0, t > 0, (4.149)

and indeed it is easy to show that if f(λ) = (λ+ ϑ)α − ϑα

fD(0,∞)
x u(x) =

d

dx

∫ x

0

u(x− s)
(
αϑαΓ(−α, s)

Γ(1− α)

)
ds = ∂ϑ,αx u(x). (4.150)

This can be done for example by observing that

L
[
d

dx

∫ x

0

u(x− s)
(
αϑαΓ(−α, s)

Γ(1− α)

)
ds

]
(λ) = L

[
∂ϑ,αx u(x)

]
(λ). (4.151)

The time operator fDt governing the density of

ϑLα(t) = inf
{
s > 0 : ϑσα(s) > t

}
, (4.152)

becomes in this case

fD(0,∞)
t lϑ,αt (x) =

∂

∂t

∫ t

0

lϑ,αt−s(x)

(
αϑαΓ(−α, s)

Γ(1− α)

)
ds, (4.153)

and therefore lϑ,αt (x), t > 0, is the solution to
∂
∂t

∫ t
0
lϑ,αt−s(x)

(
αϑαΓ(−α, s)

Γ(1−α)

)
ds = − ∂

∂x
lϑ,αt (x), t > 0, x > 0,

lϑ,αt (0) = αϑαΓ(−α, t)
Γ(1−α)

, t > 0,

lϑ,α0 (x) = δ(x).

(4.154)

Finally, in view of Proposition 4.3.3, we are able to write the CTRW converging

in distribution to ϑσα(t), t > 0. We have

lim
γ→0

N
(
t
(
αϑαΓ(−α,γ)

Γ(1−α)

))∑
j=0

Yj
law−→ ϑσα(t) (4.155)

where Yj are i.i.d. random variables with distribution

Pr {Yj ∈ dy} /dy =
e−ϑyy−α−1

ϑαΓ (−α, γ)
I[y>γ], γ > 0, ∀j = 1, . . . , n, (4.156)

and N(t), t > 0, is a homogeneous Poisson process with parameter θ = 1.



Chapter 5

Subordinate pseudoprocesses

Article: Orsingher and Toaldo (2013). Pseudoprocesses related to space-fractional

higher-order heat-type equations.

Summary

In this paper we construct pseudo random walks (symmetric and asymmetric) which

converge in law to compositions of pseudoprocesses stopped at stable subordinators.

We find the higher-order space-fractional heat-type equations whose fundamental

solutions coincide with the law of the limiting pseudoprocesses. The fractional equa-

tions involve either Riesz operators or their Feller asymmetric counterparts. The

main result of this paper is the derivation of pseudoprocesses whose law is governed

by heat-type equations of real-valued order γ > 2. The classical pseudoprocesses

are very special cases of those investigated here.

5.1 Introduction

In this paper we consider pseudoprocesses related to different types of fractional

higher-order heat-type equations. Our starting point is the set of higher-order equa-

tions of the form

∂

∂t
um(x, t) = κm

∂m

∂xm
um(x, t), x ∈ R, t > 0,m ∈ N > 2, (5.1)

whose solutions have been investigated by many outstanding mathematicians such

as Bernstein (1919), Lévy (1923), Pòlya (1923) and also, more recently, by means

of the steepest descent method, by Li and Wong (1993). In (5.1) the constant κm is
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usually chosen in the form

κm =

±1, m = 2n+ 1,

(−1)n+1, m = 2n.
(5.2)

In our investigations we assume throughout that κm = (−1)n when m = 2n + 1.

Pseudoprocesses related to (5.1) have been constructed in the same way as for the

Wiener process by Daletsky (1969), Daletsky and Fomin (1965), Krylov (1960),

Ladohin (1962), Miyamoto (1966). More recently pseudoprocesses related to (5.1)

have been considered by Debbi (2006), Lachal (2003, 2013), Mazzucchi (2013). For

equations of the form

∂

∂t
uγ(x, t) =

∂γ

∂|x|γ
uγ(x, t), x ∈ R, t > 0, (5.3)

where 0 < γ ≤ 2, and ∂γ

∂|x|γ is the Riesz operator, the fundamental solution has the

form of the density of a symmetric stable process as Riesz himself has shown. For

γ > 2 the equation (5.3) was studied by Debbi (see Debbi (2006, 2007)) who proved

the sign-varying character of the corresponding solutions.

For asymmetric fractional operators of the form

FDγ,θ = −
[

sin π
2
(γ − θ)

sin πγ

+∂γ

∂xγ
+

sin π
2
(γ + θ)

sin πγ

−∂γ

∂xγ

]
(5.4)

the equation

∂

∂t
uγ,θ(x, t) = FDγ,θuγ,θ(x, t), x ∈ R, t > 0, 0 < γ ≤ 2, (5.5)

was studied by Feller (1952) who proved that the fundamental solution to (5.5) is the

law of an asymmetric stable process of order γ. The fractional derivatives appearing

in (5.4) are the Weyl fractional derivatives defined as

+∂γ

∂xγ
u(x) =

1

Γ(m− γ)

dm

dxm

∫ x

−∞

u(y)

(x− y)γ+1−mdy

−∂γ

∂xγ
u(x) =

1

Γ(m− γ)

dm

dxm

∫ ∞
x

u(y)

(y − x)γ+1−mdy (5.6)

where m − 1 < γ < m. The Riesz fractional derivatives appearing in (5.3) are

combinations of the Weyl’s derivatives (5.6) and are defined as

∂γ

∂|x|γ
= − 1

2 cos πγ
2

[
+∂γ

∂xγ
+
−∂γ

∂xγ

]
. (5.7)

This paper is devoted to pseudoprocesses related to fractional equations of the

form (5.3) and (5.5) when γ > 2. Of course, this implies that Weyl’s fractional



125 Subordinate pseudoprocesses

derivatives (5.6) are considered in the case γ > 2. The fundamental solutions of

these equations are sign-varying as in the case of higher-order heat-type equations

(5.1) studied in the literature (compare with Debbi (2006)).

Fractional equations arise, for example, in the study of thermal diffusion in fractal

and porous media (Nigmatullin (1986), Saichev and Zaslavsky (1997)). Other fields

of application of fractional equations can be found in Debbi (2006). Higher-order

equations emerge in many contexts as in trimolecular chemical reactions (Gardiner

(1985) page 295) and in the linear approximation of the Korteweg De Vries equation

(see Beghin et al. (2007)).

In our paper we study pseudo random walks (for the definitions and properties

of pseudo random walks and variables see Lachal (2013)) of the form

W γ,2kβ(t) =

N(tγ−2kβ)∑
j=1

U2k
j (1)Qγ,2kβ

j (5.8)

where the r.v.’s Qγ,2kβ
j are independent from the Poisson process N , from the pseudo

r.v.’s U2k
j (1) and from each other and have distribution for 0 < β < 1, γ > 0, k ∈ N,

Pr
{
Qγ,2kβ
j > w

}
=

1, w < γ,(
γ
w

)2kβ
, w ≥ γ.

(5.9)

The U2k
j (1) are independent pseudo r.v.’s with law u2k(x, 1) with Fourier transform∫ ∞

−∞
eiξxu2k(x, 1) dx = e−|ξ|

2k

. (5.10)

The Poisson process N appearing in (5.8) is homogeneous and has rate λ = 1
Γ(1−β)

.

We prove that

lim
γ→0

W γ,2kβ(t)
law
= U2k

(
Hβ(t)

)
(5.11)

where U2k is the pseudoprocess of order 2k related to the heat-type equation (5.1)

for m = 2k and Hβ is a stable subordinator of order β ∈ (0, 1) independent from

U2k. We show that the law of (5.11) is the fundamental solution to

∂

∂t
v2kβ(x, t) =

∂2kβ

∂|x|2kβ
v2kβ(x, t), x ∈ R, t > 0, β ∈ (0, 1), k ∈ N. (5.12)

In other words, we are able to construct pseudoprocesses of order γ > 2 in the form

of integer-valued pseudoprocesses stopped at stable distributed times as the limit of

suitable pseudo random walks. We consider also pseudo random walks of the form

N(tγ−β(2k+1))∑
j=0

εjU
2k+1
j (1)Q

γ,β(2k+1)
j (5.13)
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where the Q
γ,β(2k+1)
j have distribution (5.9) (suitably adjusted), U2k+1

j (1) is an

odd-order pseudo random variable with law u2k+1(x, 1) and Fourier transform∫ ∞
−∞

eiξxu2k+1(x, 1) dx = e−iξ
2k+1

(5.14)

and the εj’s are random variables which take values ±1 with probability p and q.

All the variables in (5.13) are independent from each other and also independent

from the Poisson process N with rate λ = 1
Γ(1−β)

. In this case we are able to show

that

lim
γ→0

W γ,(2k+1)β(t)
law
= U2k+1

1

(
Hβ

1 (pt)
)
− U2k+1

2

(
Hβ

2 (qt)
)

(5.15)

where Hβ
j , j = 1, 2, are independent stable subordinators independent also from the

pseudoprocesses U1, U2. We prove that the law of (5.15) satisfies the higher-order

fractional equation

∂

∂t
wβ(2k+1)(x, t) = Rwβ(2k+1)(x, t), x ∈ R, t > 0, (5.16)

where

R = − 1

cos βπ
2

[
peiπβk

+∂β(2k+1)

∂xβ(2k+1)
+ qe−iπβk

−∂β(2k+1)

∂xβ(2k+1)

]
. (5.17)

The Fourier transform of the fundamental solution of (5.16) reads

ŵβ(2k+1)(ξ, t) = e−t|ξ|
β(2k+1)(1−i sign(ξ) (p−q) tan βπ

2 ) (5.18)

We note that (5.18) corresponds to the Fourier transform of the law of (5.15) with

a suitable change of the time-scale that is

E exp

{
iξ

[
U2k+1

1

(
Hβ

1

(
pt

cos βπ
2

))
− U2k+1

2

(
Hβ

2

(
qt

cos βπ
2

))]}
= e−t|ξ|

β(2k+1)(1−i sign(ξ) (p−q) tan βπ
2 (5.19)

The mean value here and below must be understood with respect to the signed

measure of the pseudoprocess (see for example Debbi (2006)). We study also the

pseudoprocesses governed by the equation

∂

∂t
zβ(2k+1),θ(x, t) = FDβ(2k+1),θzβ(2k+1),θ(x, t) (5.20)

where FDβ(2k+1),θ is the operator defined in (5.4) with γ replaced by β(2k + 1).

Also in this case we study continuous-time random walks whose limit has Fourier

transform equal to

EeiξZβ(2k+1),θ

= e−t|ξ|
β(2k+1)e

iπθ
2 sign(ξ)

, β ∈ (0, 1), k ≥ 1,−β < θ < β. (5.21)
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When we take into account pseudo random walks constructed by means of even-

order pseudo random variables we arrive at limits Z2βk,θ(t), t > 0, with Fourier

transform

EeiξZ2βk,θ(t) = e
−t|ξ|2kβ cos π2 θ

cos π2 β (5.22)

which shows the symmetric structure of the limiting pseudoprocess.

5.1.1 List of symbols

For the reader’s convenience we give a short list of the most important symbols and

definitions appearing in the paper.

• The right Weyl fractional derivative for m− 1 < γ < m, m ∈ N, x ∈ R

+∂γ

∂xγ
u(x, t) =

1

Γ(m− γ)

dm

dxm

∫ x

−∞

u(y, t)

(x− y)γ+1−mdy (5.23)

• The left Weyl fractional derivative for m− 1 < γ < m, m ∈ N, x ∈ R,

−∂γ

∂xγ
u(x, t) =

(−1)m

Γ(m− γ)

dm

dxm

∫ ∞
x

u(y, t)

(y − x)γ+1−mdy (5.24)

• The Riesz fractional derivative for m− 1 < γ < m, m ∈ N, x ∈ R,

∂γ

∂|x|γ
= − 1

2 cos γπ
2

[
+∂γ

∂xγ
+
−∂γ

∂xγ

]
(5.25)

• We introduce the operator R, for β ∈ (0, 1), k ∈ N, p, q ∈ [0, 1] : p + q = 1,

x ∈ R,

R = − 1

cos βπ
2

[
peiπβk

+∂β(2k+1)

∂xβ(2k+1)
+ qe−iπβk

−∂β(2k+1)

∂xβ(2k+1)

]
(5.26)

• The Feller derivative for m− 1 < γ < m, m ∈ N, θ > 0, x ∈ R,

FDγ,θ = −
[

sin π
2
(γ − θ)

sin πγ

+∂γ

∂xγ
+

sin π
2
(γ + θ)

sin πγ

−∂γ

∂xγ

]
(5.27)

• Um(t), t > 0 is a pseudoprocess of order m ∈ N with law um(x, t), x ∈ R,

t > 0, governed by (5.1)

• Hβ(t) is a stable subordinator of order β ∈ (0, 1) with probability density

hβ(x, t), x ≥ 0, t ≥ 0.
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5.2 Preliminaries and auxiliary results

In this paper we consider higher-order heat-type equations where the space derivative

is fractional in different ways.

5.2.1 Weyl fractional derivatives.

First of all we consider equations of the form

∂

∂t
uγ(x, t) =

±∂γ

∂xγ
uγ(x, t), x ∈ R, t > 0, γ > 0, (5.28)

where
±∂γ

∂xγ
are the space-fractional Weyl derivatives defined as

+∂γ

∂xγ
uγ(x, t) =

1

Γ(m− γ)

dm

dxm

∫ x

−∞

u(z, t) dz

(x− z)γ−m+1
, m− 1 < γ < 1,m ∈ N, (5.29)

−∂γ

∂xγ
uγ(x, t) =

(−1)m

Γ(m− γ)

dm

dxm

∫ ∞
x

u(z, t) dz

(z − x)γ−m+1
, m− 1 < γ < m,m ∈ N.

(5.30)

In our analysis the following result on the Fourier transforms of Weyl derivatives is

very important.

Theorem 5.2.1 (Samko et al. (1993), page 137). The Fourier transforms of (5.29)

and (5.30) read∫ ∞
−∞

dx eiξx
+∂γ

∂xγ
u(x, t) = (−iξ)γ û(ξ, t) = |ξ|γe−

iπγ
2

sign(ξ) û(ξ, t), (5.31)

∫ ∞
−∞

dx eiξx
−∂γ

∂xγ
u(x, t) = (iξ)γ û(ξ, t) = |ξ|γe

iπγ
2

sign(ξ) û(ξ, t). (5.32)

Clearly û(ξ, t) is the x-Fourier transform of u(x, t).

Proof. We give a sketch of the proof of (5.31) with some details.∫ ∞
−∞

dx eiξx
+∂γ

∂xγ
u(x, t) =

∫ ∞
−∞

dx eiξx
[

1

Γ(m− γ)

∂m

∂xm

∫ x

−∞
dz

u(z, t)

(x− z)γ−m+1

]
=

∫ ∞
−∞

dx eiξx
[

1

Γ(m− γ)

∫ ∞
0

dz
∂m

∂xm
u(x− z, t)
zγ−m+1

]
=

∫ ∞
−∞

dw eiξw
∂m

∂wm
u(w, t)

1

Γ(m− γ)

∫ ∞
0

dz eiξzzm−γ−1

= (−iξ)m
∫ ∞
−∞

eiξwu(w, t) dw
1

Γ(m− γ)

∫ ∞
0

dz eiξzzm−γ−1.

(5.33)
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The result
(−iξ)m

Γ(m− γ)

∫ ∞
0

dz eiξz zm−γ−1 = |ξ|γe−
iπ
2

sign(ξ) (5.34)

can be obtained for example by applying the Cauchy integral Theorem (see Samko

et al. (1993) page 138).

5.2.2 Riesz fractional derivatives

By means of the Weyl fractional derivatives we arrive at the Riesz fractional deriva-

tive, for m− 1 < γ < m, m ∈ N,

∂γ

∂|x|γ
u(x, t) =−

∂m

∂xm

2 cos πγ
2

Γ(m− γ)

[∫ x

−∞

u(y, t) dy

(x− y)γ−m+1
+

∫ ∞
x

(−1)m u(y, t) dy

(y − x)γ−m+1

]
= − 1

2 cos πγ
2

(
+∂γ

∂xγ
+
−∂γ

∂xγ

)
u(x, t) (5.35)

In view of Theorem 5.2.1 we have that, for γ > 0, γ /∈ N,∫ ∞
−∞

dx eiξx
∂γ

∂|x|γ
u(x, t) = − 1

2 cos πγ
2

[
|ξ|γe−

iπγ
2

sign(ξ) + |ξ|γe
iπγ
2

sign(ξ)
]
û(ξ, t)

= − |ξ|γ û(ξ, t). (5.36)

Remark 5.2.2. The general fractional higher-order heat equation

∂

∂t
uγ(x, t) =

∂γ

∂|x|γ
uγ(x, t), x ∈ R, t > 0, (5.37)

has solution whose Fourier transform reads

ûγ(ξ, t) = e−t|ξ|
γ

. (5.38)

For 0 < γ < 2, (5.38) corresponds to the characteristic function of the symmetric

stable processes (this is a classical result due to M. Riesz himself).

5.3 From pseudo random walks to fractional pseu-

doprocesses

We consider in this section continuous-time pseudo random walks with steps which

are pseudo random variables, that is measurable functions endowed with signed

measures, and with total mass equal to one (see Lachal (2013)). In order to obtain in
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the limit pseudoprocesses whose signed law satisfies higher-order fractional equations

we must construct sums of the form

N(tγ−β(2k+1))∑
j=0

εj U
2k+1
j (1)Q

γ,β(2k+1)
j , β ∈ (0, 1), k ∈ N, γ > 0, (5.39)

where

εj =

1, with probability p,

−1, with probability q,
p+ q = 1. (5.40)

The r.v.’s Q
γ,β(2k+1)
j have probability distributions, for β ∈ (0, 1), k ∈ N,

Pr
{
Q
γ,β(2k+1)
j > w

}
=


(
γ
w

)β(2k+1)
, for w > γ

1, for w < γ.
(5.41)

The Poisson process N(t), t > 0, appearing in (5.39) is homogeneous with rate

λ =
1

Γ(1− β)
, β ∈ (0, 1). (5.42)

The pseudo random variables (see Lachal (2013)) U2k+1
j (1) have law with Fourier

transform ∫ ∞
−∞

dx eiξxu2k+1(x, 1) = e−iξ
2k+1

(5.43)

and the function u2k+1(x, t), x ∈ R, t > 0, is the fundamental solution to the

odd-order heat-type equation, for k ∈ N, ∂
∂t
u2k+1(x, t) = (−1)k ∂2k+1

∂x2k+1u2k+1(x, t), x ∈ R, t > 0,

u2k+1(x, 0) = δ(x).
(5.44)

There is a vast literature devoted to odd-order heat-type equations of the form (5.44),

to the behaviour of their solutions, and to the related pseudoprocesses (Beghin et

al. (2007), Lachal (2003), Orsingher (1991), Orsingher and D’Ovidio (2012)).

The r.v.’s and pseudo r.v.’s appearing in (5.39) are independent and also inde-

pendent from each other. We say that two pseudo r.v.’s (or pseudoprocesses) with

signed density u1
m, u2

m, are independent if the Fourier transform F of the convolution

u1
m ∗ u2

m factorizes, that is

F
[
u1
m ∗ u2

m

]
(ξ) = F

[
u1
m

]
(ξ)F

[
u2
m

]
(ξ). (5.45)

We are now able to state the first theorem of this section.
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Theorem 5.3.1. The following limit in distribution holds true

lim
γ→0

N(tγ−β(2k+1))∑
j=0

εj U
2j+1
j (1)Q

γ,β(2k+1)
j

law
= U2k+1

1

(
Hβ

1 (pt)
)
− U2k+1

2

(
Hβ

2 (qt)
)
,

(5.46)

where Hβ
1 and Hβ

2 are independent positively-skewed stable processes of order 0 <

β < 1 while U2k+1
1 and U2k+1

2 are independent pseudoprocesses of order 2k+1. All the

random variables N(t), t > 0, εj, Q
γ,β(2k+1)
j are independent and also independent

from the pseudo random variables U2k+1
j (1). The Fourier transform of the limiting

pseudoprocess reads

EeiξU
2k+1
1 (Hβ

1 (pt))−U2k+1
2 (Hβ

2 (qt)) = e−t|ξ|
β(2k+1)(cos βπ

2
−i sign(ξ) (p−q) sin βπ

2 ). (5.47)

Proof. In view of the independence of the r.v’s and pseudo random variables ap-

pearing in (5.46) we have that

Eeiξ
∑N(tγ−β(2k+1))
j=0 εjU

2k+1
j (1)Q

γ,β(2k+1)
j

=E
[
E
(
eiξεU

2k+1(1)Qγ,β(2k+1)
)N(tγ−β(2k+1))

]
= exp

{
− λt

γβ(2k+1)

(
1− EeiξεU2k+1(1)Qγ,β(2k+1)

)}
= exp

{
− λt

γβ(2k+1)

(
1− pEeiξU2k+1(1)Qγ,β(2k+1) − qEe−iξU2k+1(1)Qγ,β(2k+1)

)}
= exp

{
− λt

γβ(2k+1)

(
p+ q − pEeiξU2k+1(1)Qγ,β(2k+1) − qEe−iξU2k+1(1)Qγ,β(2k+1)

)}
= exp

{
− λt

γβ(2k+1)

(
p
(

1− EeiξU2k+1(1)Qγ,β(2k+1)
)

+ q
(

1− Ee−iξU2k+1(1)Qγ,β(2k+1)
))}

.

(5.48)

We observe that

p
(

1− EeiξU2k+1(1)Qγ,β(2k+1)
)

+ q
(

1− Ee−iξU2k+1(1)Qγ,β(2k+1)
)

= p

∫ ∞
γ

dw

(
1− γβ(2k+1)β(2k + 1)

wβ(2k+1)+1
eiξ

2k+1w2k+1

)
+ q

∫ ∞
γ

dw

(
1− γβ(2k+1)β(2k + 1)

wβ(2k+1)+1
e−iξ

2k+1w2k+1

)
(5.49)

and therefore

Eeiξ
∑N(tγ−β(2k+1))
j=0 εjU

2k+1
j (1)Q

γ,β(2k+1)
j =
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= exp

{
− λt

γβ(2k+1)

[
p

∫ ∞
γ

dw

(
1− γβ(2k+1)β(2k + 1)

wβ(2k+1)+1
eiξ

2k+1w2k+1

)
+q

∫ ∞
γ

dw

(
1− γβ(2k+1)β(2k + 1)

wβ(2k+1)+1
e−iξ

2k+1w2k+1

)]}
= exp

{
−λt

γβ(2k+1)

[
p
(

1− ei(ξγ)2k+1
)
− p iξ2k+1(2k + 1)

∫ ∞
γ

dw γβ(2k+1)ei(ξw)2k+1

wβ(2k+1)−2k

+q
(

1− e−i(ξγ)2k+1
)

+ q iξ2k+1(2k + 1)

∫ ∞
γ

dw γβ(2k+1) e−i(ξw)2k+1

wβ(2k+1)−2k

]}
. (5.50)

By taking the limit we get that

lim
γ→0

Eeiξ
∑N(tγ−β(2k+1))
j=0 εjU

2k+1
j (1)Q

γ,β(2k+1)
j =

= exp

[
−λt(2k + 1)

(
−piξ2k+1

∫ ∞
0

dw ei(ξw)2k+1

wβ(2k+1)−2k
+ qiξ2k+1

∫ ∞
0

dw e−i(ξw)2k+1

wβ(2k+1)−2k

)]
= e
−λtΓ(1−β)

[
p(−iξ2k+1)

β
+q(iξ2k+1)β

]
. (5.51)

By setting λ = 1
Γ(1−β)

we obtain

lim
γ→0

Eeiξ
∑N(tγ−β(2k+1))
j=0 εjU

2k+1
j (1)Q

γ,β(2k+1)
j = e

−t
(
p|ξ|β(2k+1)e−

iπβ
2 sign(ξ)+q|ξ|β(2k+1)e

iπβ
2 sign(ξ)

)

= e−t|ξ|
β(2k+1)(cos πβ

2
−i sign(ξ) (p−q) sin πβ

2 ) (5.52)

Now we consider the Fourier transform of the law of the pseudoprocess

V (2k+1)β(t) = U2k+1
1

(
Hβ

1 (pt)
)
− U2k+1

2

(
Hβ

2 (qt)
)

(5.53)

which reads

EeiξV (2k+1)β(t) =EeiξU
2k+1
1 (Hβ

1 (pt))Ee−iξU
2k+1
2 (Hβ

2 (qt))

=

(∫ ∞
0

ds eiξ
2k+1s h1

β(s, pt)

)(∫ ∞
0

dz e−iξ
2k+1z h2

β(z, qt)

)
= e−t p(−iξ

2k+1)
β

e−t q(iξ
2k+1)

β

= e
−t
(
p|ξ|β(2k+1)e−

iβπ
2 sign(ξ)+q|ξ|β(2k+1)e

iβπ
2 sign(ξ)

)

= e−t|ξ|
β(2k+1)(cos πβ

2
−i sign(ξ) (p−q) sin πβ

2 ), (5.54)

and coincides with (5.52).

Remark 5.3.2. If β = 1
2k+1

the Fourier transform (5.54) becomes

EeiξU
2k+1
1 (Hβ

1 (pt))Ee−iξU
2k+1
2 (Hβ

2 (qt)) = e−t|ξ| cos π
2(2k+1)

+itξ sin π
2(2k+1) (5.55)
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which corresponds to the characteristic function of a Cauchy r.v. with position

parameter equal to t(p− q) sin π
2(2k+1)

and scale parameter t cos β
2(2k+1)

. This slightly

generalizes result 1.4 of Orsingher and D’Ovidio (2012).

For even-order pseudoprocesses we have the following limit in distribution.

Theorem 5.3.3. If U2k(t), t > 0, is an even-order pseudoprocess and N(t), t > 0,

is a homogeneous Poisson process, independent from U2k(t), t > 0, we have that

lim
γ→0

N(tγ−2kβ)∑
j=0

U2k
j (1)Qγ,2kβ

j
law
= U2k

(
Hβ(t)

)
, t > 0, (5.56)

where Hβ is a stable subordinator of order β ∈ (0, 1) and Qγ,2kβ
j are i.i.d. random

variables with distribution

Pr
{
Qγ,2kβ
j > w

}
=

1, w < γ,(
γ
w

)2kβ
, w > γ.

(5.57)

The pseudoprocess U2k(t) is governed by the equation

∂

∂t
u2k(x, t) = (−1)k+1 ∂

2k

∂x2k
u2k(x, t), x ∈ R. (5.58)

Proof. We start by evaluating the Fourier transform

Eeiξ
∑N(tγ−2kβ)
j=0 U2k

j (1)Qγ,2kβj

=E
[
E
(
eiξU

2k(1)Qγ,2kβ
)N(tγ−2kβ)

]
= exp

{
− λt

γ2kβ

(
1− EeiξU2k(1)Qγ,2kβ

)}
= exp

{
− λt

γ2kβ

∫ ∞
γ

dy
(

1− e−|ξ|2ky2k
)} 2kβγ2kβ

y2kβ+1

= exp

{
− λt

γ2kβ

[(
1− e−|ξ|2kγ2k

)
+

∫ ∞
γ

dy e−|ξ|
2ky2k

y2k−1−2kβ 2kγ2kβ

]}
(5.59)

By taking the limit we have that

lim
γ→0

eiξ
∑N(tγ−2kβ)
j=0 U2k

j (1)Qγ,2kβj = e−λt|ξ|
2k2k

∫∞
0 e−|ξ|

2ky2k
y2k(1−β)−1dy

= e−λt|ξ|
2kβ

∫∞
0 e−ww−βdw

= e−λt|ξ|
2kβΓ(1−β) (5.60)

which coincides with

EeiξU
2k(Hβ(t)) =

∫ ∞
0

e−sξ
2k

Pr
{
Hβ(t) ∈ ds

}
= e−t|ξ|

2kβ

(5.61)

since λ = 1
Γ(1−β)

.
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Remark 5.3.4. For β = 1
k

the composition U2k
(
Hβ(t)

)
has Gaussian distribution.

For β = 1
2k

we have instead the Cauchy distribution and for β = 1
4k

we extract

the inverse Gaussian corresponding to the distribution of the first passage time of a

Brownian motion. The case β = 1
6k

yields the stable law with distribution

f 1
3
(x) =

t

x 3
√

3x
Ai

(
t

3
√

3x

)
(5.62)

where Ai denotes the Airy function (see Orsingher and D’Ovidio (2012)).

In order to arrive at asymmetric higher-order fractional pseudoprocesses we con-

struct pseudo random walks by adapting the Feller approach (used for asymmetric

stable laws) to our context. This means that we combine independent pseudo ran-

dom walks with suitable trigonometric weights as in (5.4).

Theorem 5.3.5. Let X
γ,(2k+1)β
j and Y

γ,(2k+1)β
j be i.i.d. r.v.’s with distribution

Pr
{
Xγ,(2k+1)β > w

}
=


(
γ
w

)(2k+1)β
, w > γ

1, w < γ,
(5.63)

and let U2k+1(t), t > 0, be a pseudoprocess of odd-order 2k+1, k ∈ N. For 0 < β < 1

and −β < θ < β we have that

lim
γ→0

(sin π
2
(β − θ)

sin πβ

) 1
(2k+1)β

N(tγ−(2k+1)β)∑
j=0

X
γ,(2k+1)β
j U2k+1

j (1)

−
(

sin π
2
(β + θ)

sinπβ

) 1
(2k+1)β

N(tγ−(2k+1)β)∑
j=0

Y
γ,(2k+1)β
j U2k+1

j (1)

 law
= Zβ(2k+1),θ (5.64)

where

EeiξZβ(2k+1),θ

= e−t|ξ|
(2k+1)βe

iπθ
2 (5.65)

Proof. The Fourier transform of (5.64) is written as

Ee
iξ

(
sin π2 (β−θ)

sinπβ

) 1
(2k+1)β ∑N(tγ−(2k+1)β)

j=0 X
γ,(2k+1)β
j U2k+1

j (1)

×Ee
−iξ

(
sin π2 (β+θ)

sinπβ

) 1
(2k+1)β ∑N(tγ−(2k+1)β)

j=0 Y
γ,(2k+1)β
j U2k+1

j (1)
(5.66)

where the first member is given by

Ee
iξ

(
sin π2 (β−θ)

sinπβ

) 1
(2k+1)β ∑N(tγ−(2k+1)β)

j=0 X
γ,(2k+1)β
j U2k+1

j (1)
=
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= exp

− λt

γ(2k+1)β

1− Ee
iξ

(
sin π2 (β−θ)

sinπβ

) 1
(2k+1)β

U2k+1(1)X(2k+1)β


= exp

− λt

γ(2k+1)β

∫ ∞
γ

1− e
iξ2k+1

(
sin π2 (β−θ)

sinπβ

) 1
β
y2k+1

 γ(2k+1)β

y(2k+1)β+1
(2k + 1)β


γ→0−→ exp

{
−λt i−β ξ(2k+1)β

(
sin π

2
(β − θ)

sin πβ

)∫ ∞
0

e−ww−βdw

}
= e
−λt|ξ|(2k+1)βe−

iπβ sign(ξ)
2

(
sin π2 (β−θ)

sinπβ

)
Γ(1−β)

. (5.67)

The second member of (5.64) becomes, by performing a similar calculation,

Ee
−iξ

(
sin π2 (β+θ)

sinπβ

) 1
(2k+1)β ∑N(tγ−(2k+1)β)

j=0 Y
γ,(2k+1)β
j U2k+1

j (1)

γ→0−→ e
−λt|ξ|(2k+1)βe

iπβ sign(ξ)
2

(
sin π2 (β+θ)

sinπβ

)
Γ(1−β)

. (5.68)

and thus for λ = 1
Γ(1−β)

we obtain that

Ee
iξ

(
sin π2 (β−θ)

sinπβ

) 1
(2k+1)β ∑N(tγ−(2k+1)β)

j=0 X
γ,(2k+1)β
j U2k+1

j (1)

×Ee
−iξ

(
sin π2 (β+θ)

sinπβ

) 1
(2k+1)β ∑N(tγ−(2k+1)β)

j=0 Y
γ,(2k+1)β
j U2k+1

j (1)

γ→0−→ e
−t|ξ|(2k+1)βe−

iπβ sign(ξ)
2

(
sin π2 (β−θ)

sinπβ

)
e
−t|ξ|(2k+1)βe

iπβ sign(ξ)
2

(
sin π2 (β+θ)

sinπβ

)

= e−t|ξ|
(2k+1)βe

iπθ
2 sign(ξ)

(5.69)

By considering symmetric pseudo random walks with the Feller construction we

arrive in the next theorem at symmetric pseudoprocesses with time scale equal to
cos πβ

2

sin πβ
2

, 0 < β < 1, −β < θ < β.

Theorem 5.3.6. Let Xγ,2βk
j and Y γ,2βk

j be i.i.d. r.v.’s with distribution

Pr
{
Xγ,2βk > w

}
=


(
γ
w

)2βk
, w > γ

1, w < γ,
(5.70)

and let U2k(t), t > 0, be a pseudoprocess of order 2k, k ∈ N. If N(t) is a homo-

geneous Poisson process, with parameter λ = 1
Γ(1−β)

, independent from Xγ,2βk
j and

Y γ,2βk
j we have that

lim
γ→0

(sin π
2
(β − θ)

sinπβ

) 1
2βk

N(tγ−2βk)∑
j=0

Xγ,2βk
j U2k

j (1)



5.3 From pseudo random walks to fractional pseudoprocesses 136

+

(
sin π

2
(β + θ)

sinπβ

) 1
2βk

N(tγ−2βk)∑
j=0

Y γ,2βk
j U2k

j (1)

 law
= Z2kβ,θ, t > 0, (5.71)

for 0 < β < 1 and −β < θ < β and

EeiξZ2kβ,θ

= e
−t|ξ|2kβ cos π2 θ

cos π2 β (5.72)

Proof. The Fourier transform of (5.71) is written as

Ee
iξ

(
sin π2 (β−θ)

sinπβ

) 1
2βk ∑N(tγ−2βk)

j=0 Xj U
2k
j (1)

Ee
iξ

(
sin π2 (β+θ)

sinπβ

) 1
2βk ∑N(tγ−2βk)

j=0 Yj U
2k
j (1)

(5.73)

where the first member is given by

Ee
iξ

(
sin π2 (β−θ)

sinπβ

) 1
2βk ∑N(tγ−2βk)

j=0 Xγ,2βk
j U2k

j (1)
=

= exp

{
− λt

γ2kβ

[
1− Eeiξ

sin π2 (β−θ)
sinπβ

U2k(1)Xγ,2βk

]}

= exp

−
λt

γ2kβ

∫ ∞
γ

e
−

∣∣∣∣∣∣ξ
(

sin π2 (β−θ)
sinπβ

) 1
2kβ

∣∣∣∣∣∣
2k

y2k

(2kβ)
γ2kβ

y2kβ+1
dy




γ→0−→ exp

−λt|ξ|2k
(

sin π
2
(β − θ)

sin πβ

) 1
β

2k

∫ ∞
0

e
−|ξ|2k

(
sin π2 (β−θ)

sinπβ

) 1
β
y2k

y2k−1−2kβdy


= e
−λt|ξ|2kβΓ(1−β)

[
sin π2 (β−θ)

sinπβ

]
(5.74)

and by similar calculations the second member becomes

Ee
iξ

(
sin π2 (β+θ)

sinπβ

) 1
2βk ∑N(tγ−2βk)

j=0 Y γ,2βkj U2k
j (1) γ→0−→ e

−λt|ξ|2kβΓ(1−β)

[
sin π2 (β+θ)

sinπβ

]
. (5.75)

Thus we have that

Ee
iξ

(
sin π2 (β−θ)

sinπβ

) 1
2βk ∑N(tγ−2βk)

j=0 Xγ,2βk
j U2k

j (1)
Ee

iξ

(
sin π2 (β+θ)

sinπβ

) 1
2βk ∑N(tγ−2βk)

j=0 Y γ,2βkj U2k
j (1)

γ→0−→ e
−λt|ξ|2kβΓ(1−β)

[
sin π2 (β−θ)

sinπβ
+

sin π2 (β+θ)

sinπβ

]

= e
−t|ξ|2βk cos π2 θ

cos π2 β (5.76)
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5.4 Governing equations

In the previous section we obtained fractional pseudoprocesses as limit of suitable

pseudo random walks. In this section we will show that the limiting fractional

pseudoprocesses obtained before have signed density satisfying space-fractional heat-

type equations of higher-order with Riesz or Feller fractional derivatives. The order

of fractionality of the governing equations is a positive real number and this is

the major difference with respect to the pseudoprocesses considered so far in the

literature.

We start by examining space fractional higher-order equations of order 2kβ, β ∈
(0, 1), k ∈ N, which interpolate equations of the form (5.1).

Theorem 5.4.1. The solution to the initial-value problem ∂
∂t
vβ2k(x, t) = ∂2kβ

∂|x|2kβ v
β
2k(x, t), x ∈ R, t > 0, k ∈ N, β ∈ (0, 1)

vβ2k(x, 0) = δ(x)
(5.77)

can be written as

vβ2k(x, t) =
1

πx
E
[
sin

(
xG2k

(
1

Hβ(t)

))]
=

1

πx
E
[
sin

(
xG2kβ

(
1

t

))]
(5.78)

and coincides with the law of the pseudoprocess

V 2kβ(t) = U2k
(
Hβ(t)

)
, t > 0, (5.79)

where U2k is related to equation (5.1) for m = 2k and Hβ is a stable subordinator

independent from U2k. Gγ (t) is a gamma r.v. with density

gγ(x, t) = γ
xγ−1

t
e−

xγ

t , x > 0, t > 0, γ > 0. (5.80)

Proof. The Fourier transform of (5.77) leads to the Cauchy problem ∂
∂t
v̂β2k(ξ, t) = −|ξ|2kβ v̂β2k(ξ, t)

v̂β2k(ξ, 0) = 1,
(5.81)

whose unique solution reads

EeiξV 2kβ(t) =

∫
R
dx eiξx

∫ ∞
0

ds u2k(x, s)hβ(s, t)

=

∫ ∞
0

ds e−sξ
2k

hβ(s, t) = e−t|ξ|
2kβ

. (5.82)



5.4 Governing equations 138

In (5.82) u2k is the density of U2k and hβ(x, t) is the probability density of the

subordinator Hβ. Now we show that the Fourier transform of (5.78) coincides with

(5.82). We have that

v̂β2k(ξ, t) =

∫
R
dxeiξx

1

πx
E
[
sin

(
xG2k

(
1

Hβ(t)

))]
=

∫
R
dx eiξx

[∫ ∞
0

∫ ∞
0

sinxy

πx
Pr

{
G2k

(
1

s

)
∈ dy

}
Pr
{
Hβ(t) ∈ ds

}]
=

∫ ∞
0

∫ ∞
0

Pr

{
G2k

(
1

s

)
∈ dy

}
Pr
{
Hβ(t) ∈ ds

} [∫
R
dx eiξx

sinxy

πx

]
.

(5.83)

By considering that the Heaviside function

Hα(z) =

1, z > α,

0, z < α
(5.84)

can be represented as

Hα(z) =
1

2π

∫
R
dw eiwz

e−iαw

iw
= − 1

2π

∫
R
dw e−iwz

eiαw

iw
, (5.85)

we obtain that formula (5.83) becomes

v̂β2k(ξ, t) =

=

∫ ∞
0

∫ ∞
0

Pr

{
G2k

(
1

s

)
∈ dy

}
Pr
{
Hβ(t) ∈ ds

}
[H−y(ξ)−Hy(ξ)]

=

∫ ∞
0

∫ ∞
0

Pr

{
G2k

(
1

s

)
∈ dy

}
Pr
{
Hβ(t) ∈ ds

} [
I[−ξ,+∞](y)− I[−∞,ξ](y)

]
=

∫ ∞
0

∫ ∞
0

dy ds
(

2ksy2k−1e−sy
2k
)
I[0,∞](y)

[
I[−ξ,+∞](y)− I[−∞,ξ](y)

]
hβ(s, t).

(5.86)

For ξ > 0 (5.86) becomes

v̂β2k(ξ, t) =

∫ ∞
0

ds

[
1−

∫ ξ

0

dy 2ksy2k−1e−y
2ks

]
hβ(s, t)

=

∫ ∞
0

ds e−ξ
2kshβ(s, t) = e−t|ξ|

2kβ

, (5.87)

and for ξ < 0 (5.86) is

v̂β2k(ξ, t) =

∫ ∞
0

ds

[∫ ∞
−ξ

2ksy2k−1e−y
2ks

]
hβ(s, t)

=

∫ ∞
0

ds e−|ξ|
2ks hβ(s, t) = e−t|ξ|

2kβ

. (5.88)
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Since

Pr

{
G2k

(
1

Hβ(t)

)
∈ dy

}
/dy = 2ky2k−1

∫ ∞
0

se−sy
2k

hβ(s, t) ds

= − ∂

∂y

∫ ∞
0

e−sy
2k

hβ(s, t) ds

= − ∂

∂y
e−y

2kβt

= Pr

{
G2kβ

(
1

t

)
∈ dy

}
/dy (5.89)

the second form of the solution (5.78) follows immediately.

For k ≥ 1, β ∈
(
0, 1

k

]
the solutions (5.78) are densities of symmetric random

variables, while for β > 1
k

the functions (5.78) are sign-varying. Clearly for β = 1

we obtain the solution of even-order heat-type equations discussed in Orsingher and

D’Ovidio (2012). As far as space-fractional higher-order heat-type equations we

have the result of the next theorem where the governing fractional operator R is

obtained as a suitable combination of Weyl derivatives. The operator R governing

the fractional pseudoprocesses appearing in Theorem 5.3.1 is explicitely written for

{p, q ∈ [0, 1] : p+ q = 1}, {β ∈ (0, 1), k ∈ N : m− 1 < β(2k + 1) < m, m ∈ N} as

R vβ2k+1(x, t) =

= − 1

cos πβ
2

[
p eiπβk

+∂β(2k+1)

∂xβ(2k+1)
+ q e−iπβk

−∂β(2k+1)

∂xβ(2k+1)

]
vβ2k+1(x, t)

= − 1

cos πβ
2

Γ(m− (2k + 1)β))

∂m

∂xm

[
eiπβkp

∫ x

−∞

vβ2k+1(y, t)

(x− y)(2k+1)β−m+1
dy

+q e−iπβk (−1)m
∫ ∞
x

vβ2k+1(y, t)

(y − x)(2k+1)β−m+1
dy

]
, (5.90)

where the left and right Weyl fractional derivatives appear.

Theorem 5.4.2. The solution to the problem ∂
∂t
vβ2k+1(x, t) = R vβ2k+1(x, t), x ∈ R, t > 0, β ∈ (0, 1), k ∈ N,

vβ2k+1(x, 0) = δ(x),
(5.91)

is given by the signed law of the pseudoprocess

V̄ β(2k+1)(t) = U2k+1
1

(
Hβ

1

(
pt

cos βπ
2

))
− U2k+1

2

(
Hβ

2

(
qt

cos βπ
2

))
, (5.92)

where U2k+1
1 , U2k+1

2 are independent odd-order pseudoprocesses and Hβ
1 , Hβ

2 , are

independent stable subordinators.
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Proof. The Fourier transform of (5.90) is written as

F
[
R vβ2k+1(x, t)

]
(ξ) =

=F

[
− 1

cos πβ
2

[
p eiπβk

+∂β(2k+1)

∂xβ(2k+1)
+ q e−iπβk

−∂β(2k+1)

∂xβ(2k+1)

]
vβ2k+1(x, t)

]
(ξ)

= − 1

cos βπ
2

[
p eiπβk (−iξ)β(2k+1) + q e−iπβk (iξ)β(2k+1)

]
v̂β2k+1(ξ, t)

= − 1

cos βπ
2

|ξ|β(2k+1)
[
pe−

iπβ
2

sign(ξ) + qe
iπβ
2

sign(ξ)
]
v̂β2k+1(ξ, t)

= − |ξ|β(2k+1)

(
1− i sign(ξ) (p− q) tan

πβ

2

)
v̂β2k+1(ξ, t) (5.93)

and therefore we have that

v̂β2k+1(ξ, t) = e−t|ξ|
β(2k+1)(1−i(p−q) sign(ξ) tan βπ

2 ) (5.94)

In view of (5.54) we get

EeiξV̄ (2k+1)β(t) =Ee
iξV (2k+1)β

(
t

cos
βπ
2

)

= e−t|ξ|
β(2k+1)(1−i sign(ξ) (p−q) tan πβ

2 ) (5.95)

and this confirms that the solution to (5.91) is given by the law of the pseudoprocess

(5.92).

Remark 5.4.3. Since e±iπkβ

cos βπ
2

= 1
cosβ(2k+1)π

2
(because eiπkβ = (eiπ)

kβ
= (e−iπ)

kβ
=

e−iπkβ) the operator (5.90) takes the form of the Riesz fractional derivative of order

β(2k + 1) when p = q = 1
2
.

We now pass to the derivation of the governing equation of the fractional pseu-

doprocesses studied in Theorem 5.3.5. We first recall the definition of the Feller

space-fractional derivative which is

FDβ,θu(x) = −
[

sin π
2
(β − θ)

sin(πβ)

+∂β

∂xβ
+

sin π
2
(β + θ)

sin(πβ)

−∂β

∂xβ

]
u(x). (5.96)

We recall that

F
[
FDβ,θu(x)

]
(ξ) = −|ξ|βe

iπθ
2

sign(ξ)û(ξ), (5.97)

as can be shown by means of the following calculation∫
R
dx eiξx FDβ,θu(x) = −

[
sin π

2
(β − θ)

sin(πβ)
(−iξ)β +

sin π
2
(β + θ)

sin(πβ)
(iξ)β

]
û(ξ)
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= − |ξ|β

2i sinπβ

[(
e
iπ
2
βe−

iπ
2
θ − e−

iπ
2
βe

iπ
2
θ
)
e−

iπ
2
β sign(ξ)+

+
(
e
iπ
2
βe

iπ
2
θ − e−

iπ
2
βe−

iπ
2
θ
)
e
iπ
2
β sign(ξ)

]
û(ξ)

=

−ξβe
iπθ
2 û(ξ), ξ > 0,

−(−ξ)βe− iπθ2 û(ξ), ξ < 0

= − |ξ|βe
iπθ
2

sign(ξ)û(ξ) (5.98)

where we used the results of Theorem 5.2.1. The explicit form of the Fourier trans-

form of the solution to

∂

∂t
u(x, t) = FDβ,θu(x, t), u(x, 0) = δ(x), x ∈ R, t > 0, (5.99)

is written as

û(ξ, t) = e−|ξ|
βte

iπθ
2 sign(ξ)

(5.100)

and for β ∈ (0, 2], 4m − 1 < θ < 4m + 1, m ∈ N, represents the characteristic

function of a stable r.v.. The last condition on θ is due to the fact that

|û(ξ, t)| ≤ 1 if and only if cos
θπ

2
∈ (0, 1]. (5.101)

The condition (5.101) must be assumed also for β > 2 where (5.100) however fails

to be the characteristic function of a genuine r.v.. For θ = β < 1 (5.100) becomes

totally negatively skewed. By interchanging sin(β− θ)π
2

with sin(β + θ)π
2

we obtain

instead

û(ξ, t) = e−|ξ|
βte−

iπ
2 θ sign(ξ)

(5.102)

which is totally positively skewed for θ = β < 1.

We are now ready to prove the following Theorem.

Theorem 5.4.4. Let Zβ(2k+1),θ(t), t > 0, be the limiting fractional pseudoprocess

studied in Theorem 5.3.5. The signed density of Zβ(2k+1),θ(t) is the solution to ∂
∂t
zβ(2k+1),θ(x, t) = FDβ(2k+1),θzβ(2k+1),θ(x, t)

zβ(2k+1),θ(x, 0) = δ(x)
(5.103)

and coincide with the signed distribution of the composition for β ∈ (0, 1), −β <

θ < β,

Zβ(2k+1),θ(t) = U2k+1
1

(
Hβ

1

(
sin π

2
(β + θ)

sin πβ
t

))
− U2k+1

2

(
Hβ

2

(
sin π

2
(β − θ)

sin πβ
t

))
,

(5.104)
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where Hβ
j , j = 1, 2 are independent stable r.v.’s and the independent pseudoprocesses

U2k+1
j , j = 1, 2, are related to the odd-order heat-type equation

∂

∂t
u2k+1(x, t) = (−1)k

∂2k+1

∂x2k+1
u2k+1(x, t). (5.105)

The positivity of the time scales in (5.104) implies that −β < θ < β.

Proof. By profiting from the result (5.97) we note that the Fourier transform of

(5.103) is written as ∂
∂t
ẑβ(2k+1),θ(ξ, t) = −|ξ|β(2k+1)e

iπ
2
θ sign(ξ) ẑβ(2k+1),θ(ξ, t)

ẑβ(2k+1),θ(ξ, 0) = 1.
(5.106)

which is satisfied by the Fourier transform

ẑβ(2k+1),θ(ξ, t) = e−t|ξ|
β(2k+1)e

iπ
2 θ sign(ξ)

. (5.107)

We now prove that the Fourier transform of (5.104) coincides with (5.107). In view

of the independence of the r.v.’s and pseudo r.v.’s involved we write that

EeiξZβ(2k+1),θ(t) = Ee
iξ

[
U2k+1

1

(
Hβ

1

(
sin π2 (β+θ)

sinπβ
t

))
−U2k+1

2

(
Hβ

2

(
sin π2 (β−θ)

sinπβ
t

))]

=

[∫
R
dx eiξx

∫ ∞
0

ds u1
2k+1(x, s)h1

β

(
s,

sin π
2
(β + θ)

sin πβ
t

)]
×
[∫

R
dx e−iξx

∫ ∞
0

ds u2
2k+1(x, s)h2

β

(
s,

sin π
2
(β − θ)

sin πβ
t

)]
=

[∫ ∞
0

e−iξ
2k+1sh1

β

(
s,

sin π
2
(β + θ)

sin πβ
t

)
ds

] [∫ ∞
0

eiξ
2k+1sh2

β

(
s,

sin π
2
(β + θ)

sin πβ
t

)
ds

]
= e−t

sin π2 (β+θ)

sinπβ (iξ2k+1)
β

e−t
sin π2 (β−θ)

sinπβ (−iξ2k+1)
β

= e
− t|ξ|

β(2k+1)

sinπβ

[
sin π

2
(β+θ)e

iπ
2 β sign(ξ)+sin π

2
(β−θ)e−

iπ
2 β sign(ξ)

]

= e
− t|ξ|

β(2k+1)

2i sinπβ

[(
e
iπ
2 βe

iπ
2 θ−e−

iπ
2 βe−

iπ
2 θ
)
e
iπ
2 β sign(ξ)+

(
e
iπ
2 βe−

iπ
2 θ−e−

iπ
2 βe

iπ
2 θ
)
e−

iπ
2 β sign(ξ)

]

= e−t|ξ|
β(2k+1)e

iπθ
2 sign(ξ)

(5.108)

which coincides with (5.107).

5.5 Some remarks

We give various forms for the density vγ(x, t) of symmetric pseudoprocesses of ar-

bitrary order γ > 0. For integer values of γ = 2n or γ = 2n + 1 the analysis of
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the structure of these densities is presented in Orsingher and D’Ovidio (2012). We

give here an analytical representation of vγ(x, t) for non-integer values of γ, which

is an alternative to (5.78), as a power series and in integral form (involving the

Mittag-Leffler functions). Furthermore, in Figure 5.1 we give some curves for spe-

cial values of γ. We also give the distribution of the sojourn time of compositions of

pseudoprocesses with stable subordinators (totally positively skewed stable r.v.’s).

Proposition 5.5.1. For γ > 1 the inverse of the Fourier transform

v̂γ(ξ, t) = e−t|ξ|
γ

(5.109)

can also be written as

vγ(x, t) =
1

π

∫ ∞
0

cos(ξx) e−tξ
γ

dξ

=
1

πγ

∞∑
k=0

(−1)kx2k

(2k)!

Γ
(

2k+1
γ

)
t

2k+1
γ

=
1

πγ

∞∑
k=0

(−1)kx2k

t
2k+1
γ

B
(

2k+1
γ
, (2k + 1)

(
1− 1

γ

))
Γ
(

(2k + 1)
(

1− 1
γ

))
=

1

πγ

∞∑
k=0

(−1)kx2k

t
2k+1
γ

1

Γ
(

(2k + 1)
(

1− 1
γ

)) ∫ 1

0

dy y
2k+1
γ
−1(1− y)(2k+1)(1− 1

γ )−1

=
1

πγ

∫ 1

0

dy
∞∑
k=0

(−1)k
(
xy

1
γ (1− y)1− 1

γ

)2k

t
2k+1
γ Γ

(
(2k + 1)

(
1− 1

γ

)) y 1
γ
−1 (1− y)−

1
γ

=
t−

1
γ

πγ

∫ 1

0

dy E2(1− 1
γ ),1− 1

γ

(
−
(
xy

1
γ (1− y)1− 1

γ

)2

t−
1
γ

)
y

1
γ
−1 (1− y)−

1
γ

w=y/(1−y)
=

t−
1
γ

πγ

∫ ∞
0

dwE2(1− 1
γ ),1− 1

γ

−x2

(
w

1
γ

1 + w

)2

t−
1
γ

 w
1
γ

1 + w

1

w
(5.110)

and for γ < 2 coincides with the characteristic function of symmetric stable pro-

cesses.

Formula (5.110) is an alternative to the probabilistic representation (5.78) for

γ = 2kβ. For 1 < γ < 2 it represents the density of a symmetric stable r.v..

Remark 5.5.2. We note that

vγ(0, t) =
t−

1
γ

π
Γ

(
1 +

1

γ

)
(5.111)
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as can be inferred from (5.110). In the neighbourhood of x = 0 the density vγ(x, t)

can be written as

vγ(x, t) ≈ 1

πγ

 1

t
1
γ

Γ

(
1

γ

)
− x2

2

Γ
(

3
γ

)
t

3
γ


= vγ(0, t)

(
1− x2 Cγ

2t
2
γ

)
(5.112)

where

Cγ =
Γ
(

1
γ

+ 1
3

)
Γ
(

1
γ

+ 2
3

)
3

3
γ
− 1

2

2π
. (5.113)

In the above calculation the triplication formula of the Gamma function (see Lebedev

(1965) page 14) has been applied

Γ(z)Γ

(
z +

1

3

)
Γ

(
z +

2

3

)
=

2π

33z− 1
2

Γ(3z). (5.114)

Remark 5.5.3. For even-order pseudoprocesses U2k(t), t > 0, the distribution of

the sojourn time

Γt
(
U2k
)

=

∫ t

0

I[0,∞)

(
U2k(s)

)
ds (5.115)

follows the arcsine law for all n ≥ 1 (see Krylov (1960)). Therefore the distribution

of the sojourn time of U2k
(
Hβ(t)

)
, t > 0, β ∈ (0, 1), reads

Pr
{

Γt
(
U2k

(
Hβ
))
∈ dx

}
=

∫ ∞
0

Pr
{

Γs
(
U2k
)
∈ dx

}
Pr
{
Hβ(t) ∈ ds

}
=
dx

π

∫ ∞
x

1√
x(s− x)

Pr
{
Hβ(t) ∈ ds

}
. (5.116)

In the odd-order case the distribution of the sojourn time

Γt
(
U2k+1

)
=

∫ t

0

I[0,∞)

(
U2k+1 (s)

)
ds (5.117)

is written as (see Lachal (2003))

Pr
{

Γt
(
U2k+1

)
∈ dx

}
= dx

sin π
2k+1

π
x−

1
2k+1 (t− x)−

2k
2k+1 I(0,t)(x) (5.118)

and thus we get

Pr
{

Γt
(
U2k+1

(
Hβ
))
∈ dx

}
=
dx sin π

2k+1

π

∫ ∞
x

1
2k+1
√
x(s− x)2k

Pr
{
Hβ(t) ∈ ds

}
.

(5.119)
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For β = 1
2

the integral (5.116) can be evaluated explicitly

Pr
{

Γt

(
U2k

(
H

1
2

))
∈ dx

}
=
dx

π

∫ ∞
x

1√
x(s− x)

te−
t2

2s

√
2πs3

ds

=
dx t

π
√

2πx

∫ 1
x

0

e−
t2

2
y

√
1− xy

dy

=
dx t

π
√

2πx3

∫ 1

0

e−
t2

2x
w

√
1− w

dw

=
dx t

π
√

2πx3

∞∑
k=0

(
− t

2

2x

)k
1

k!

∫ 1

0

wk (1− w)−
1
2 dw

=
dx t

π
√

2x3
E1, 3

2

(
− t

2

2x

)
, x > 0, t > 0, (5.120)

where

Eν,µ(x) =
∞∑
j=0

xj

Γ(jν + µ)
, ν, µ > 0, (5.121)

is the Mittag-Leffler function.

Figure 5.1: The density vγ(x, t) for γ > 2 displays an oscillating behaviour similar

to that of the fundamental solution of even-order heat equations.
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Chapter 6

Time-changed pseudoprocesses on

a circle

Article: Orsingher and Toaldo (2013). Even-order pseudoprocesses on a circle and

related Poisson kernels.

Summary

Pseudoprocesses, constructed by means of the solutions of higher-order heat-type

equations have been developed by several authors and many related functionals have

been analyzed by means of the Feynman-Kac functional or by means of the Spitzer

identity. We here examine even-order pseudoprocesses wrapped up on circles and

derive their explicit signed density measures. We observe that circular even-order

pseudoprocesses differ substantially from pseudoprocesses on the line because - for

t > t̄ > 0, where t̄ is a suitable n-dependent time value - they become real random

variables. By composing the circular pseudoprocesses with positively-skewed stable

processes we arrive at genuine circular processes whose distribution, in the form of

Poisson kernels, is obtained. The distribution of circular even-order pseudoprocesses

is similar to the Von Mises (or Fisher) circular normal and therefore to the wrapped

up law of Brownian motion. Time-fractional and space-fractional equations related

to processes and pseudoprocesses on the unit radius circumference are introduced

and analyzed.
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6.1 Introduction and preliminaries

Pseudoprocesses are connected with the fundamental solution of heat-type equations

of the form

∂

∂t
un(x, t) = cn

∂n

∂xn
un(x, t), x ∈ R, t > 0, n ∈ N, (6.1)

where

cn =

(−1)
n
2

+1, for even values of n

±1, for odd values of n,
(6.2)

subject to the initial condition

u(x, 0) = δ(x). (6.3)

For n > 2 the fundamental solutions to (6.1) are sign-varying. By means of a

Wiener-type approach some authors (see for example Albeverio et al. (2011), Dalet-

sky (1969), Daletsky and Fomin (1965), Krylov (1960), Ladohin (1962)) have con-

structed pseudoprocesses which we denote by X(t), t > 0 or Xn(t), if we spec-

ify the order of the governing equation. In these papers the set of real functions

x : t ∈ [0,∞)→ x(t) (sample paths) and the cylinders

C = {x(t) : aj ≤ x(tj) ≤ bj, j = 1, · · · , n} (6.4)

have been considered. By using the solutions un to (6.1) the measure of cylinders is

given as

µn (C) =

∫ b1

a1

dx1 · · ·
∫ bn

an

dxn

n∏
j=1

un (xj − xj−1, tj − tj−1) . (6.5)

In (6.5) we denote by un

un(x, t) =
1

2π

∫ ∞
−∞

dξ e−iξxecn(−iξ)nt. (6.6)

For n = 2k and c2k = (−1)k+1 the integral (6.6) always converge as it does for the

odd-order case. The measure (6.5) is extended to the field generated by cylinders

(6.4) for fixed t1 < · · · < tj < · · · < tn. The signed measure obtained in this way is

Markovian in the sense that

µx0

{
X (t+ T ) ∈ B

∣∣FT} = µX(T ) {X(t) ∈ B} , (6.7)

where FT is the field generated as

FT = σ {X(t1) ∈ B1, · · · , X(tn) ∈ Bn} , (6.8)
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where 0 ≤ t1 ≤ · · · ≤ tn = T . More information on properties of pseudoprocesses

can be found in Cammarota and Lachal (2012), Lachal (2003) and Nishioka (2001).

For pseudoprocesses with drift the reader can consult Lachal (2008).

In this paper we consider pseudoprocesses on the ring R of radius one, denoted

by Θ(t), t > 0, whose signed density measures are governed by ∂
∂t
vn(θ, t) = cn

∂n

∂θn
vn(θ, t), θ ∈ [0, 2π), t > 0, n ≥ 2,

vn(θ, 0) = δ(θ).
(6.9)

The signed measures of pseudoprocesses on the line X(t), t > 0, and those on the

unit-radius ring, Θ(t), t > 0, can be related by

{Θ(t) ∈ dθ} =
∞⋃

m=−∞

{X(t) ∈ d(θ + 2mπ)} , 0 ≤ θ < 2π. (6.10)

This means that the pseudoprocess Θ has sample paths which are obtained from

those of X by wrapping them up around the circumference R . Counterclockwise

moving sample paths of Θ correspond to increasing sample paths of X.

For n = 2 we have in particular the circular Brownian motion studied by Hartman

and Watson (1974), Roberts and Ursell (1960), Stephens (1963). The pseudopro-

cesses running on R are called circular pseudoprocesses and are denoted either by

Θ(t), t > 0, or Θn(t) if we want to clarify the order of the equation governing

their distribution. We concentrate our attention on the even-order case because

the odd-order wrapped-up pseudoprocesses pose qualitatively different problems of

convergence of their Fourier expansion. In view of (6.10) we can write

v2n(θ, t) =
∞∑

m=−∞

u2n(θ + 2mπ, t), 0 ≤ θ < 2π. (6.11)

Equation (6.11) shows that the solution to (6.9) can be obtained by wrapping up

the solution to (6.1) which reads

u2n(x, t) =
1

2π

∫ ∞
−∞

dξ e−iξxe−ξ
2nt, x ∈ R, t > 0. (6.12)

The function (6.12) has been investigated in special cases by Hochberg (1978),

Krylov (1960), Nishioka (2001) and more in general by Lachal (2003, 2008). The

sign-varying structure of (6.12) has been discovered in special cases by Bernstein

(1919), Lévy (1923), Pòlya (1923), as early as at the beginning of the Twentieth

century and has been more recently studied also by Li and Wong (1993).

The Fourier series of (6.11) has the remarkably simple form

v2n(θ, t) =
1

2π
+

1

π

∞∑
k=1

e−k
2nt cos kθ, θ ∈ [0, 2π) . (6.13)
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For n = 1 we obtain the Fourier series of the law of the circular Brownian motion

(see Hartman and Watson (1974)). The function

v2(θ, t) =
1

2π
+

1

π

∞∑
k=1

e−k
2t cos kθ (6.14)

is similar to the Von Mises circular normal

v(θ, k) =
ek cos θ

2πI0(k)
=

1

2π

(
1 + 2

∞∑
m=1

Im(k)

I0(k)
cosmθ

)
, θ ∈ [0, 2π) , (6.15)

where

Im(x) =
∞∑
j=0

(x
2

)2j+m 1

k! Γ (m+ j + 1)
(6.16)

is the m-th order Bessel function. The relationship between (6.14) and (6.15) is

investigated in the paper by Hartman and Watson (1974). The Von Mises circular

normal represents the hitting distribution of the circumference R of a Brownian

motion with drift starting from the center of R . The planar Brownian motion

(R(t), Ψ(t)), t > 0, with drift k = (k1, k2), ‖k‖ = k, has transition function

Pr {R(t) ∈ dρ, Ψ(t) ∈ dϕ} =
ρ

2πt
e−

ρ2

2t e−
k2t
2 eρk cosϕdρdϕ (6.17)

and marginal

Pr {R(t) ∈ dρ} =
ρ

t
e−

ρ2

2t e−
k2t
2 I0 (ρk) dρ. (6.18)

Therefore

Pr
{

Ψ(t) ∈ dϕ
∣∣R(t) ∈ dρ

}
=

eρk cosϕ

2πI0 (ρk)
dϕ (6.19)

and for ρ = 1 coincides with (6.15).

The analysis of the pictures of v2n(θ, t) for different values of t and different

values of the order 2n, n ∈ N, shows that the distributions (6.13) after a certain

time become non-negative. This means that pseudoprocesses on the circle R behave

differently from their counterparts on the line and rapidly become genuine random

variables. Furthermore we remark that in small initial intervals of time the circular

pseudoprocesses have signed-valued distributions with a number of minima which

rapidly unify into a single minimum (located at θ = π) which for increasing t

upcrosses the zero level. This is due to the fact that in a small initial interval of

time the effect produced by the central bell of the distribution has not yet spread

on the whole ring R .

The value of the absolute minimum of v2n(θ, t) for t > t̄ has the form

v2n(π, t) =
1

2π
+

1

π

∞∑
k=1

(−1)ke−k
2nt, t > t̄. (6.20)
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The graph of functions v2n(θ, t) slightly differ from that of the density of circular

Brownian motion as shown in figures 6.1 and 6.2. The term k = 1 in (6.13) is the

leading term of the series and the form of the distribution v2n(θ, t) is very close to

that of 1
2π

+ 1
π
e−t cos θ.

Figure 6.1: The distributions of the fourth-order circular pseudoprocess for different

values of t

Figure 6.2: The distributions (for t = 1) of the circular pseudoprocesses of various

order 2n

The odd-order case is much more complicated because the solutions to equation

(6.1) are asymmetric (with asymmetry decreasing for increasing values of the order

n). Some properties of solutions to odd-order heat-type equations can be found in

Lachal (2003, 2008). In the present paper the wrapped up solution to (6.1) gives

the fundamental solution of (6.9) as

v2n+1(θ, t) =
∞∑

k=−∞

u2n+1(θ + 2kπ, t), θ ∈ [0, 2π) , (6.21)
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whose Fourier series reads

v2n+1(θ, t) =
1

2π
+

1

π

∞∑
k=1

cos(k2n+1t+ kθ). (6.22)

We note that for n = 1 the series (6.22) becomes a discrete version of the solution

to (6.1) which reads

u3(x, t) =
1

3
√

3t
Ai

(
x

3
√

3t

)
(6.23)

where

Ai(x) =
1

π

∫ ∞
0

cos

(
αx+

α3

3

)
dα (6.24)

is the Airy function. The probabilistic representations of solutions of higher-order

heat-type equations show that for increasing values of n the solutions u2n+1(x, t)

and u2n(x, t) slightly differ. Therefore the corresponding circular version v2n+1(θ, t)

must have Fourier transform which converge since v2n(θ, t) do.

We consider also the wrapped up stable processes S2β(t), t > 0, and the related

governing space-fractional equation.In particular we show that the law of S2β(2−βt),

t > 0, is the fundamental solution of the space-fractional equations ∂
∂t
vβ2 (θ, t) = −

(
−1

2
∂2

∂θ2

)β
vβ2 (θ, t), θ ∈ [0, 2π) , t > 0, β ∈ (0, 1] ,

vβ2 (θ, 0) = δ(θ),
(6.25)

and has Fourier expansion

vβ2 (θ, t) =
1

2π

[
1 + 2

∞∑
m=1

e
−
(
m2

2

)β
t
cosmθ

]
. (6.26)

The fractional operator appearing in (6.25) is the one-dimensional fractional Lapla-

cian which can be defined by means of the Bochner representation (see, for example,

Balakrishnan (1960), Bochner (1949))

−
(
−1

2

∂2

∂θ2

)β
=

sin πβ

π

∫ ∞
0

(
λ+

(
−1

2

∂2

∂θ2

))−1

λβ dλ, β ∈ (0, 1). (6.27)

We show that formula (6.26) coincides with the distribution of the subordinated

Brownian motion on the circle, B
(
Hβ(t)

)
, t > 0, where Hβ(t), t > 0, is a stable

subordinator of order β ∈ (0, 1] (see, for example, Baeumer and Meerschaert (2001)).

Furthermore we notice that

B
(
2Hβ(t)

) law
= S2β(t), t > 0, (6.28)
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S2β(t), t > 0, is a symmetric process on the ring R with distribution which can be

obtained by its symmetric stable counterpart on the line as

pS2β(θ, t) =
∞∑

m=∞

1

2π

∫ ∞
−∞

dξ e−iξ(θ+2mπ)e−t|ξ|
2β

=
1

2π

[
1 + 2

∞∑
k=1

e−k
2βt cos kθ

]
. (6.29)

For β = 1
2

we extract from (6.26) the Poisson kernel

v1
2(θ, t) =

1

2π

1− e−t
√

2

1 + e−t
√

2 − 2e
− t√

2 cos θ
. (6.30)

The composition of the circular pseudoprocesses Θn(t), t > 0, with positively-

skewed stable processes of order 1
n
, say H

1
n (t), t > 0, leads also to the Poisson kernel.

In particular, we show that

Pr
{

Θ2n

(
H

1
2n (t)

)
∈ dθ

}
=

dθ

2π

1− e−2t

1 + e−2t − 2e−t cos θ
, θ ∈ [0, 2π) . (6.31)

In the odd-order case the result is different, depends on n and has the following form

for θ ∈ [0, 2π)

Pr
{

Θ2n+1

(
H

1
2n+1 (t)

)
∈ dθ

}
=
dθ

2π

1− e−2t cos π
2(2n+1)

1 + e−2t cos π
2(2n+1) − 2e−t cos π

2(2n+1) cos
(
θ + t sin π

2(2n+1)

) . (6.32)

The composition of pseudoprocesses with stable processes therefore produces gen-

uine r.v.’s on the ring R as it happens on the line (see Orsingher and D’Ovidio

(2012)). We note that the distribution of the composition in the even order case is

independent from n (formula (6.31)), while in the odd-order case the Poisson kernel

obtained depends on n and has a rather complicated structure. For n → ∞ the

kernel (6.32) converges pointwise to (6.31) since the asymmetry of the fundamental

solutions of (6.1) (as well as that of their wrapped up counterparts) decreases. The

result (6.31) offers an interesting interpretation. The Poisson kernel (6.31) can be

viewed as the probability that a planar Brownian motion starting from the point

with polar coordinates (e−t, 0) hits the circumference R in the point (1,Θ) (see Fig.

6.4a). Therefore this distribution coincides with the law of an even-order pseudo-

process running on the circumference and stopped at time H
1

2n (t), t > 0. This

result is independent from n and therefore is valid also for Brownian motion. A

similar interpretation holds also for circular odd-order pseudoprocesses taken at the

time H
1

2n+1 (t), t > 0, but starting from the point with polar coordinates (e−ant, bnt),

where an = cosπ/(2(2n+ 1)) and bn = sinπ/(2(2n+ 1)).
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6.2 Pseudoprocesses on a ring

In this section we consider pseudoprocesses Θ(t), t > 0, on the unit-radius circum-

ference R , whose density function vn(θ, t), θ ∈ [0, 2π), t > 0, is governed by the

higher order heat-type equation ∂
∂t
vn(θ, t) = cn

∂n

∂θn
vn(θ, t), θ ∈ [0, 2π) , t > 0, n ≥ 2,

vn(θ, 0) = δ(θ).
(6.33)

The pseudoprocesses Θn have sample paths obtained by wrapping up the trajectories

of pseudoprocesses on the line R. Increasing sample paths on R correspond to

counterclockwise moving motions on the ring R . The structure of sample paths of

pseudoprocesses has not been investigated in detail although some results by Lachal

(Theorem 5.2, Lachal (2008)) show that there is a sort of ”slight” discontinuity

in their behaviour (this is confirmed by Hochberg (1978)) and the fact that the

reflection principle fails (Beghin et al. (2001), Lachal (2003)).

It must be considered that the wrapping up of the sample paths and of the

corresponding density measures produces in the long run genuine random variables

(with non-negative measure densities in the case n is even). Our first result concerns

the distribution of Θn(t), t > 0.

Theorem 6.2.1. The solutions to the even-order heat-type equations (6.33) reads

v2n(θ, t) =
1

2π
+

1

π

∞∑
k=1

e−k
2nt cos kθ, for c2n = (−1)n+1, n ≥ 1, (6.34)

Proof. We can obtain the result (6.34) in two different ways. We start by considering

the even-order case where the wrapping up of the solutions to (6.1) which leads to

v2n(θ, t) =
∞∑

m=−∞

u2n(θ + 2mπ, t) =
∞∑

m=−∞

∫ ∞
−∞

dξ e−i(θ+2mπ)ξe−ξ
2nt. (6.35)

The Fourier series expansion of the symmetric function v2n(θ, t) has coefficients

ak =
1

π

∫ 2π

0

dθ cos kθ

[
∞∑

m=−∞

u2n(θ + 2mπ, t)

]

= 2
∞∑

m=−∞

∫ m+1

m

dy u2n(2πy, t) cos 2πky

=
1

π

∫ ∞
−∞

dz cos kz

(
1

2π

∫ ∞
−∞

dξ e−iξze−ξ
2nt

)
=

1

2π

∫ ∞
−∞

dξ e−ξ
2nt

[
1

2π

∫ ∞
−∞

dz
(
eiz(k−ξ) + e−iz(k+ξ)

)]
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=
1

2π

∫ ∞
−∞

dξ e−ξ
2nt [δ(ξ − k) + δ(ξ + k)] =

e−k
2nt

π
. (6.36)

An alternative derivation of v2n(θ, t) is based on the method of separation of vari-

ables. Thus under the assumption that v2n(θ, t) = T (t)ψ(θ) we get

T (1)(t)

T (t)
=

ψ(2n)(θ)

ψ(θ)
(−1)n+1 = −β2n. (6.37)

In order to have periodic solutions we must take integer values of β and thus the

general solution to (6.33) becomes

v2n(θ, t) =
∞∑

k=−∞

Ak e
−k2nt cos kθ = A0 + 2

∞∑
k=1

Ak e
−k2nt cos kθ. (6.38)

The initial condition

v2n(θ, 0) = δ(θ) =
1

2π
+

1

π

∞∑
k=1

cos kθ (6.39)

implies that Ak = 1
2π

, which confirms the result.

Proposition 6.2.2. We are able to give a third derivation of (6.34) by resorting

to the probabilistic representation of fundamental solutions to even-order heat-type

equations of Orsingher and D’Ovidio (2012) which reads

u2n(x, t) =
1

πx
E
{

sin

(
xG2n

(
1

t

))}
(6.40)

for cn = (−1)n+1, n ≥ 1. In (6.40) Gγ(t−1) is a generalized gamma r.v. with density

gγ(x, t) = γ
xγ−1

t
e−

xγ

t , x > 0, t > 0, γ > 0. (6.41)

Proof. We start the proof by wrapping-up the representation (6.40) as follows

v2n(θ, t) =
∞∑

m=−∞

1

π(θ + 2mπ)
E
{

sin

(
(θ + 2mπ)G2n

(
1

t

))}
. (6.42)

Now we evaluate the Fourier coefficients of (6.42) as

ak =
1

π2

∞∑
m=−∞

∫ 2π

0

dθ

θ + 2mπ
E
{

sin(θ + 2mπ)G2n

(
1

t

)}
cos kθ

=
1

π2
E
{∫ ∞
−∞

dz
cos kz

z
sin

(
z G2n

(
1

t

))}
=

1

π2
E

{∫ ∞
0

dz

[
sin
(
kz + z G2n

(
1
t

))
z

+
sin
(
z G2n

(
1
t

)
− kz

)
z

]}
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=
1

π
E
{
I[−G2n( 1

t )<k<G2n( 1
t )]

}
=

1

π
Pr

{
G2n

(
1

t

)
> k

}
=

1

π
e−k

2nt, (6.43)

where we used the fact that∫ ∞
0

dx
sinαx

x
=

π
2
, if α > 0,

−π
2
, if α < 0.

(6.44)

The calculation (6.43) shows that the density of even-order circular pseudopro-

cesses can be viewed as the superposition of sinusoidal waves whose amplitude cor-

responds to the tails of a Weibull distribution.

For the odd-order pseudoprocess we proceed formally as in the even-order case

and the Fourier cofficients of

v2n+1(θ, t) =
∞∑

m=−∞

u2n+1(θ + 2mπ, t) (6.45)

become

ak =
1

2π

∫ ∞
−∞

dξ e(−1)n(−iξ)2n+1t

[
1

2π

∫ ∞
−∞

dz
(
ei(k−ξ)z + e−i(k+ξ)z

)]
=

1

2π

∫ ∞
−∞

dξ e−iξ
2n+1t [δ(ξ − k) + δ(ξ + k)]

=
1

2π

[
e−ik

2n+1

+ eik
2n+1
]

=
1

π
cos k2n+1t. (6.46)

In a similar way we have that

bk =
1

2π

∫ ∞
−∞

dξ e(−1)n(−iξ)2n+1t

[
1

2πi

∫ ∞
−∞

dz
(
ei(k−ξ)z − e−i(k+ξ)z

)]
=

1

2πi

∫ ∞
−∞

dξ e−iξ
2n+1t [δ(ξ − k)− δ(ξ + k)] = − 1

π
sin k2n+1t, (6.47)

and thus the expression of the distribution of the odd-order pseudoprocess on the

circle v2n+1(θ, t) becomes

v2n+1(θ, t) =
1

2π
+

1

π

∞∑
k=1

cos
(
k2n+1t+ kθ

)
. (6.48)

For n = 1 the series (6.48) is similar to the integral representation of the Airy

function

Ai(x) =
1

π

∫ ∞
0

cos

(
αx+

α3

3

)
dα. (6.49)
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We are not able to give a rigorous proof of the convergence of the series (6.48) but

we are able to give an alternative derivation as follows. In particular we can obtain

the expansion (6.48) for circular odd-order pseudoprocesses by resorting again to the

probabilistic representation of the law of pseudoprocesses of Orsingher and D’Ovidio

(2012) which reads

u2n+1(x, t) =
1

πx
E
{
e−bnxG

2n+1( 1
t ) sin

(
anxG

2n+1

(
1

t

))}
, (6.50)

where c2n+1 = (−1)n, n ≥ 1, Gγ (t−1) is a generalized gamma r.v. with density

(6.41) and

an = cos
π

2(2n+ 1)
, bn = sin

π

2(2n+ 1)
. (6.51)

By wrapping-up (6.50) we obtain

v2n+1(θ, t) =

=
∞∑

m=−∞

1

π(θ + 2mπ)
E
{
e−bn(θ+2mπ)G2n+1( 1

t ) sin

(
an(θ + 2mπ)G2n+1

(
1

t

))}
.

(6.52)

We prove that the Fourier series expansion of (6.52) coincides with (6.48).We need

both the sine and cosine coefficients of the Fourier expansion because the signed

laws are asymmetric. The Fourier coefficients becomeak = 1
π

cos k2n+1t,

bk = − 1
π

sin k2n+1t.
(6.53)

We give with some details the evaluation of (6.53)

ak =
1

π2

∞∑
m=−∞

∫ 2π

0

dθ
cos kθ

θ + 2mπ
E
{
e−bn(θ+2mπ)G2n+1( 1

t ) sin

(
an(θ + 2mπ)G2n+1

(
1

t

))}
=

1

π2
E
{∫ ∞
−∞

dz
cos kz

z
e−bnzG

2n+1( 1
t ) sin

(
anzG

2n+1

(
1

t

))}
=

1

2π2
E

{∫ ∞
−∞

dz
sin
(
z
(
anG

2n+1
(

1
t

)
+ k
))

+ sin
(
z
(
anG

2n+1
(

1
t

)
− k
))

z
e−bnzG

2n+1( 1
t )

}

=
1

2i2π2
E
{∫ ∞

−∞

dz

z

[
eiz(anG

2n+1( 1
t )+k)−bnzG2n+1( 1

t ) − e−iz(anG2n+1( 1
t )+k)−bnzG2n+1( 1

t )

+eiz(anG
2n+1( 1

t )−k)−bnzG2n+1( 1
t ) − e−iz(anG2n+1( 1

t )−k)−bnzG2n+1( 1
t )
]}

. (6.54)

By considering the following integral representation of the Heaviside function

Hy(x) = − 1

2π

∫
R
dw e−iwx

eiyw

iw
=

∫
R
dw eiwx

e−iyw

iw
(6.55)
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the coefficients ak in (6.54) become

ak =
(2n+ 1)t

2π

∫ ∞
0

dww2ne−tw
2n+1

[Hk(w(an − ibn))−Hk(−w(an + ibn))

+Hk(w(an + ibn))−Hk(−w(an − ibn))]

=
i(2n+ 1)t

2π

∫ ∞
0

dww2ne−iw
2n+1tHk(w) +

i(2n+ 1)t

2π

∫ ∞
0

dww2neiw
2n+1tHk(−w)

−
[
i(2n+ 1)t

2π

∫ ∞
0

dww2neiw
2n+1tHk(w) +

i(2n+ 1)t

2π

∫ ∞
0

dww2ne−iw
2n+1tHk(−w)

]
=
i(2n+ 1)t

2π

(∫ ∞
−∞

dww2ne−iw
2n+1tHk(w)−

∫ ∞
−∞

dww2neiw
2n+1tHk(w)

)
=

1

2π

(
eik

2n+1t + e−ik
2n+1t

)
=

1

π
cos k2n+1t. (6.56)

In order to justify the last step we can either take the Laplace transform with respect

to t (see for example Orsingher and D’Ovidio (2012)) or we can apply the following

trick

ak = lim
ζ→0

i(2n+ 1)t

2π

(∫ ∞
k

dw e−ζw
2n+1

w2ne−iw
2n+1t −

∫ ∞
k

dw e−ζw
2n+1

w2neiw
2n+1t

)
.

(6.57)

The coefficients bk (6.53) can be obtained by performing similar calculation.

6.2.1 Circular Brownian motion

The circular Brownian motion B(t), t > 0, has been analyzed by Roberts and Ursell

(1960), Stephens (1963) and also by Hartman and Watson (1974). In a certain sense

it can be viewed as a special case of symmetric pseudoprocesses on the ring R . The

distribution of B(t), t > 0, has Fourier representation

pB(θ, t) =
1

2π

(
1 + 2

∞∑
k=1

e−
k2t
2 cos kθ

)
, θ ∈ [0, 2π) , (6.58)

and can be also regarded as the wrapped up distribution of the standard Brownian

motion

pB(θ, t) =
1√
2πt

∞∑
m=−∞

e−
(θ+2mπ)2

2t . (6.59)

Formula (6.58) corresponds to n = 1 of (6.34) for the even-order case with a suitable

adjustement of the time scale. The law (6.58) can be obtained directly by solving

the Cauchy problem ∂
∂t
pB(θ, t) = 1

2
∂2

∂θ2pB(θ, t), θ ∈ [0, 2π) , t > 0,

pB(θ, 0) = δ(θ).
(6.60)
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or as the limit of a circular random walk as in Stephens (1963). The distribution of

the circular Brownian motion is depicted in Figure 6.2 and looks like the Von Mises

circular normal (this is the inspiring idea of the paper by Hartman and Watson

(1974) in which the connection between the two distributions is investigated). For

t→∞ the distribution of B(t), t > 0, tends to the uniform law.

We note that

Pr
{
−π

2
< B(t) <

π

2

}
=

1

2
+

2

π

∞∑
k=0

(−1)k
e−

(2k+1)2t
2

2k + 1
(6.61)

and therefore

Pr
{
−π

2
< B(t) <

π

2

}
≤ 1

2
+

2

π
e−

t
2 , valid for t > −2 log

π

4
≈ 0.209. (6.62)

The relationship between circular Brownian motion B(t), t > 0, and Brownian

motion on the line B(t), t > 0,

{B(t) ∈ dθ} =
∞⋃

m=−∞

{B(t) ∈ d(θ + 2mπ)} , θ ∈ [0, 2π) , (6.63)

permits us to derive the distribution of

max
0≤s≤t

|B(t)| , t > 0, (6.64)

that is the distribution of the maximal distance reached by the circular Brownian

motion from the starting point. Of course the sample paths overcoming the angular

distance π at least once are assigned π as maximal distance which therefore has a

positive probability (converging to 1 as time tends to infinity).

Proposition 6.2.3. For the maximal distance (6.64) we have that

Pr

{
max
0≤s≤t

|B(s)| < θ

}
=

∫ θ

−θ
Pr

{
−θ < min

0≤s≤t
B(s) < max

0≤s≤t
B(s) < θ

}
=

∫ θ

−θ
dy

(
∞∑

m=−∞

e−
(y−4mθ)2

2t

√
2πt

−
∞∑

m=−∞

e−
(−y+2θ(2m−1))2

2t

√
2πt

)

=
∞∑

r=−∞

(−1)r
∫ (1−2r)θ√

t

− (1+2r)θ√
t

dw
e−

w2

2

√
2π
. (6.65)

The related first passage time of circular Brownian motion has density which has

the following form

Pr {Tθ ∈ dt} = − d

dt
Pr

{
max
0≤s≤t

|B(s)| < θ

}
dt
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=
∞∑

r=−∞

[
(−1)r e−

(1−2r)2θ2

2t

2
√

2πt3
θ(1− 2r) +

(−1)r e−
(1+2r)2θ2

2t

2
√

2πt3
θ(1 + 2r)

]

=

(
θ e−

θ2

2t

√
2πt3

)
∞∑

r=−∞

(−1)re−
2r2θ2

r

(
cosh

2rθ2

t
− 2r sinh

2rθ2

t

)
(6.66)

Curiously enough the factor θe−
θ2

2t /
√

2πt3 coincides with the first passage time

through θ of a Brownian motion on the line.

6.3 Fractional equations on the ring R and the

related processes

In this section we consider various types of processes on the unit radius circumference

R .

6.3.1 Higher-order time-fractional equations

We start by analyzing the processes related to the solutions of time-fractional

higher-order heat-type equations. We consider the time-changed pseudoprocesses

Θ2n (Lν(t)), t > 0, where

Lν(t) = inf {s > 0 : Hν(s) ≥ t} (6.67)

and where Hν(t), t > 0, is a positively skewed stable process of order ν ∈ (0, 1]. We

notice that the Laplace transform of the distribution lν(x, t) of (6.67) reads (see for

example Orsingher and Toaldo (2012))∫ ∞
0

dx e−γxlν(x, t) = Eν,1 (−γtν) (6.68)

where

Eν,1(x) =
∞∑
j=0

xj

Γ(νj + 1)
, x ∈ R, ν > 0, (6.69)

is the Mittag-Leffler function. For pseudoprocesses related to time-fractional equa-

tions we have the next theorem.

Theorem 6.3.1. The solution to the problem, for ν ∈ (0, 1], n ∈ N,
∂ν

∂tν
vν2n(θ, t) = −

(
− ∂2

∂θ2

)n
vν2n(θ, t), θ ∈ [0, 2π) , t > 0,

vν2n(θ, 0) = δ(θ),
(6.70)
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is the univariate (signed) distribution of Θ2n (Lν(t)), t > 0, which reads

vν2n(θ, t) =
1

2π

(
1 + 2

∞∑
k=1

Eν,1
(
−k2ntν

)
cos kθ

)
. (6.71)

The time-fractional derivative in (6.70) must be understood in the Caputo sense,

that is
∂ν

∂tν
vν2n(θ, t) =

1

Γ(1− ν)

∫ t

0

∂
∂s
vν2n(θ, s)

(t− s)ν
ds, 0 < ν < 1. (6.72)

Proof. The law of Θ2n (Lν(t)), t > 0, is given by

vν2n(θ, t) =
1

2π

∫ ∞
0

ds

(
1 + 2

∞∑
k=1

e−k
2ns cos kθ

)
lν(s, t)

=
1

2π

(
1 + 2

∞∑
k=1

Eν,1
(
−k2ntν

)
cos kθ

)
. (6.73)

Since, ∀k ≥ 1, we have that

∂ν

∂tν
Eν,1

(
−k2ntν

)
cos kθ = − k2nEν,1

(
−k2ntν

)
cos kθ

= (−1)n+1 ∂
2n

∂θ2n
Eν,1

(
−k2ntν

)
cos kθ, (6.74)

and therefore we conclude that (6.73) satisfies the fractional equation (6.70).

Remark 6.3.2. For n = 1, formula (6.73) becomes the distribution of subordinated

Brownian motion B (Lν(t)), t > 0. For ν = 1 we retrieve from (6.71) the solutions

(6.34) of the even-order heat-type equations on R .

6.3.2 Space-fractional equations and wrapped up stable pro-

cesses

The following Theorem represents the counterpart on R of the Riesz statement on

the relationship between space-fractional equations and symmetric stable laws (for

the non-symmetric case see the paper by Feller (1952)).

Theorem 6.3.3. The law of the process B
(
Hβ(t)

)
, t > 0, is given by

pβB(θ, t) =
1

2π

[
1 + 2

∞∑
k=1

e
−
(
k2

2

)β
t
cos kθ

]
(6.75)

and solves the space-fractional equation, for β ∈ (0, 1], ∂
∂t
pβB(θ, t) = −

(
−1

2
∂2

∂θ2

)β
pβB(θ, t), θ ∈ [0, 2π) , t > 0

pβB(θ, 0) = δ(θ).
(6.76)
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The fractional one-dimensional Laplacian in (6.76) is defined in (6.27) and Hβ(t),

t > 0, is a stable subordinator of order β ∈ (0, 1].

Proof. The law of B
(
Hβ(t)

)
, t > 0, is given by

pβB(θ, t) =

∫ ∞
0

ds pB(θ, s)hβ(s, t) =
1

2π

[
1 + 2

∞∑
k=1

e
−
(
k2

2

)β
t
cos kθ

]
, (6.77)

where pB is the law of circular Brownian motion and hβ is the density of a positively

skewed random process of order β ∈ (0, 1]. In order to check that (6.75) solves (6.76)

it is convenient to write the fractional derivative appearing in (6.76) as(
−1

2

∂2

∂θ2

)β
= − sin πβ

π

∫ ∞
0

(
λ+

(
−1

2

∂2

∂θ2

))−1

λβ dλ

= − 1

Γ(β)Γ(1− β)

∫ ∞
0

λβ
∫ ∞

0

e
−uλ−u

(
− 1

2
∂2

∂θ2

)
du dλ

=
1

Γ(−β)

∫ ∞
0

u−β−1e
−u
(
− 1

2
∂2

∂θ2

)
du. (6.78)

From (6.78) we have therefore that(
−1

2

∂2

∂θ2

)β
cos kθ =

1

Γ (−β)

∫ ∞
0

du u−β−1e
−u
(
− 1

2
∂2

∂θ2

)
cos kθ

=
1

Γ(−β)

∫ ∞
0

du u−β−1

∞∑
j=0

(−u)j

j!

(
−1

2

)j
∂2j

∂θ2j
cos kθ

=
1

Γ(−β)

∫ ∞
0

du u−β−1

∞∑
j=0

(−u)j

j!

k2j

2j
cos kθ

=
1

Γ(−β)

∫ ∞
0

du u−β−1e−u
k2

2 cos kθ

=

(
k2

2

)β
cos kθ, (6.79)

and this shows that (6.75) satisfies (6.76).

Remark 6.3.4. Another way to prove that(
−1

2

∂2

∂θ2

)β
cos kθ =

(
k2

2

)β
cos kθ (6.80)

can be traced in the paragraph 4.6, page 428 of Balakrishnan (1960), which confirms

our result.

Theorem 6.3.5. For the wrapped up version, say S2β(t), t > 0, of the symmetric

stable processes S2β(t), t > 0, with characteristic function EeiξS2β(t) = e−t|ξ|
2β

, we

have the following equality in distribution

S2β(t)
law
= B

(
2Hβ(t)

) law
= B

(
Hβ
(
2βt
))
, t > 0. (6.81)
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Proof. The density of S2β(t), t > 0, must be written as

pS2β(θ, t) =
Pr
{
S2β(t) ∈ dθ

}
dθ

=
1

2π

∞∑
m=−∞

∫ ∞
−∞

dξ e−iξ(θ+2mπ)e−t|ξ|
2β

. (6.82)

The Fourier expansion of (6.82) becomes

pS2β(θ, t) =
a0

2
+
∞∑
k=1

ak cos kθ (6.83)

where

ak =
1

π

∫ 2π

0

dθ
1

2π

∞∑
m=−∞

∫ ∞
−∞

dξ e−iξ(θ+2mπ)e−t|ξ|
2β

cos kθ

=
1

π

∞∑
m=−∞

∫ ∞
−∞

dξ e−t|ξ|
2β

∫ m+1

m

dθ e−iξ2πθ cos 2kπθ

=
1

(2π)2

∫ ∞
−∞

dξ e−t|ξ|
2β

∫ ∞
−∞

dy e−iξy
(
eiyk + e−iyk

)
=

1

2π

∫ ∞
−∞

dξ e−t|ξ|
2β

[δ(ξ − k) + δ(ξ + k)] =
1

π
e−tk

2β

. (6.84)

This permits us to conclude that

pS2β(θ, t) =
1

2π
+

1

π

∞∑
k=1

e−k
2βt cos kθ. (6.85)

While the integral in (6.82) (representing the Fourier inverse of symmetric stable

laws) cannot carried out, its circular analogue can be explicitely worked out and

leads to the Fourier expansion (6.85).

Corollary 6.3.6. In view of the results of Theorems 6.3.1 and 6.3.3 we have that

the solution to the space-time fractional equation, for β ∈ (0, 1], ∂ν

∂tν
pν,βB (θ, t) = −

(
−1

2
∂2

∂θ2

)β
pν,βB (θ, t), θ ∈ [0, 2π) , t > 0

pν,βB (θ, 0) = δ(θ).
(6.86)

can be written as

pν,βB (θ, t) =
1

2π
+

1

π

∞∑
k=1

Eν,1

(
−
(
k2

2

)β
tν

)
cos kθ, (6.87)

and coincides with the law of the process

F ν,β(t) = B
(
Hβ (Lν(t))

)
, t > 0. (6.88)

In (6.88) Hβ is a stable subordinator of order β ∈ (0, 1] and Lν is the inverse of Hν

as defined in (6.67).
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Proof. Here we only derive the distribution of F ν,β(t), t > 0. We have that

Pr
{

F ν,β(t) ∈ dθ
}

= dθ

∫ ∞
0

Pr {B(s) ∈ dθ}
∫ ∞

0

Pr
{
Hβ(w) ∈ ds

}
Pr {Lν(t) ∈ dw}

=
dθ

2π
+
dθ

π

∫ ∞
0

∞∑
k=1

e−
k2

2
s cos kθ

∫ ∞
0

Pr
{
Hβ(w) ∈ ds

}
Pr {Lν(t) ∈ dw}

=
dθ

2π
+
dθ

π

∫ ∞
0

∞∑
k=1

e
−
(
k2

2

)β
w

cos kθ Pr {Lν(t) ∈ dw}

=
dθ

2π

[
1 + 2

∞∑
k=1

cos kθ Eν,1

(
−
(
k2

2

)β
tν

)]
, (6.89)

where in the last step we applied (6.68).

6.4 From pseudoprocesses to Poisson kernels

In this section we show that the composition of pseudoprocesses of order n running

on the circumference R with positively skewed stable processes of order 1
n

leads to

the Poisson kernel. This is the circular counterpart of the composition of pseudo-

processes with stable subordinators which leads to Cauchy processes. In both cases

pseudoprocesses stopped at H
1
n (t), t > 0, yield genuine random variables.

We distinguish the case where n is even from the case of odd-order pseudopro-

cesses. We have the first result in Theorem 6.4.1.

Theorem 6.4.1. The composition Θ2n

(
H

1
2n (t)

)
, t > 0, of the pseudoprocess Θ2n

with the stable process H
1

2n (t), t > 0, has density

Pr
{

Θ2n

(
H

1
2n (t)

)
∈ dθ

}
=

dθ

2π

1− e−2t

1 + e−2t − 2e−t cos θ
, n ∈ N, (6.90)

and distribution function

Pr
{

Θ2n

(
H

1
2n (t)

)
< θ
}

=


1
π

arctan
(

1+e−t

1−e−t tan θ
2

)
, θ ∈ [0, π] ,

1 + 1
π

arctan
(

1+e−t

1−e−t tan θ
2

)
, θ ∈ (π, 2π) ,

(6.91)

which are independent from n.

Proof. We have that

Pr
{

Θ2n

(
H

1
2n (t)

)
∈ dθ

}
= dθ

∫ ∞
0

ds

[
1

2π
+

1

π

∞∑
k=1

e−k
2ns cos kθ

]
h 1

2n
(s, t)
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= dθ

[
1

2π
+

1

π

∞∑
k=1

cos kθe−kt

]

=
dθ

2π

[
1 +

e−t+iθ

1 + e−t+iθ
+

e−t−iθ

1− e−t−iθ

]
=
dθ

2π

1− e−2t

1 + e−2t − 2e−t cos θ
. (6.92)

The result (6.91) is derived by applying formula 2.552(3) page 172 of Gradshteyn

and Ryzhik (2007)∫
dx

a+ b cosx
=

2√
a2 − b2

arctan

√
a2 − b2 tan x

2

a+ b
, a2 > b2. (6.93)

Remark 6.4.2. The Poisson kernel (6.90) can be interpreted as the distribution of

the processB (TR ) whereB is a planar Brownian motion and TR = inf {t > 0 : B(t) ∈ R }.
In the case of Theorem 6.4.1 the planar Brownian motion starts from the point

(e−t, 0). Therefore we have that

B (TR )
law
= Θ2n

(
H

1
2n (t)

)
, t > 0. (6.94)

This means that a pseudoprocess running on the ring R and stopped at a stable

time H
1

2n (t), t > 0, has the same distribution of a planar Brownian motion starting

from (e−t, 0) at the first exit time from the unit-radius circle. The result (6.94)

holds for all n ∈ N and represents the circular counterpart of the composition of

pseudoprocesses on the line with stable subordinators H
1
n (t), t > 0, which possesses

a Cauchy distributed law. As t→∞ the distribution (6.90) converges to the uniform

law.

Remark 6.4.3. In view of (6.91) we note that for Θ2n

(
H

1
2n (t)

)
, t > 0, the proba-

bility of staying in the right-hand side of R has the remarkably simple form

Pr
{
−π

2
< Θ2n

(
H

1
2n (t)

)
<
π

2

}
=

1

2
+

2

π
arctan e−t, ∀t > 0. (6.95)

We now pass to the Poisson kernel associated to odd-order pseudoprocesses. The

asymmetry implies that the density of the composition Θ2n+1

(
H

1
2n+1 (t)

)
, t > 0, is

bit more complicated than (6.90).

Theorem 6.4.4. The composition Θ2n+1

(
H

1
2n+1 (t)

)
, t > 0, has density

Pr
{

Θ2n+1

(
H

1
2n+1 (t)

)
∈ dθ

}
=
dθ

2π

1− e−2ant

1 + e−2ant − 2e−ant cos (θ + bnt)
, (6.96)
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Figure 6.3: In the picture the density of the circular Brownian motion (dotted line)

and the kernel (6.90) are represented.

and distribution function

Pr
{

Θ2n+1

(
H

1
2n+1 (t)

)
< θ
}

=

=


1
π

[
arctan 1+e−ant

1−e−ant tan θ+bnt
2
− arctan 1+e−ant

1−e−ant tan bnt
2

]
, 0 < θ+bnt

2
< π,

1 + 1
π

arctan 1+e−ant

1−e−ant tan θ+bnt
2
− 1

π
arctan 1+e−ant

1−e−ant tan bnt
2
, π < θ < 2π − bnt

2
.

(6.97)

where

an = cos
π

2(2n+ 1)
, bn = sin

π

2(2n+ 1)
. (6.98)

Proof. Let h 1
2n+1

(s, t), s, t > 0, be the density of a positively skewed stable process

of order 1
2n+1

. Then, in view of (6.34), we have that

Pr
{

Θ2n+1

(
H

1
2n+1 (t)

)
∈ dθ

}
= dθ

∫ ∞
0

ds

(
1

2π
+

1

π

∞∑
k=1

cos
(
kθ + k2n+1s

))
h 1

2n+1
(s, t)

= dθ

[
1

2π
+

1

π

∞∑
k=1

e−antk cos (k(θ + bnt))

]

=
dθ

2π

[
1 +

eiθe−t(an−ibn)

1− eiθe−t(an−ibn)
+

e−iθe−t(an+ibn)

1− e−iθe−t(an+ibn)

]
=
dθ

2π

1− e−2ant

1 + e−2ant − 2e−ant cos (θ + bnt)
. (6.99)

The same result can be obtained by considering that X2n+1

(
H

1
2n+1 (t)

)
has the
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following Cauchy distribution (see Orsingher and D’Ovidio (2012))

Pr
{
X2n+1

(
H

1
2n+1 (t)

)
∈ dx

}
=

t cos π
2(2n+1)

π

[(
x+ t sin π

2(2n+1)

)2

+ t2 cos2 π
2(2n+1)

]dx.
(6.100)

By wrapping up (6.100) we arrive at (6.96) in an alternative way. In view of (6.93)

we can write

Pr
{

Θ2n+1

(
H

1
2n+1 (t)

)
< θ
}

=

=
1

2π

∫ θ

0

dy
1− e−2ant

1 + e−2ant − 2e−ant cos (y + bnt)

=


1
π

[
arctan 1+e−ant

1−e−ant tan θ+bnt
2
− arctan 1+e−ant

1−e−ant tan bnt
2

]
, 0 < θ+bnt

2
< π,

1 + 1
π

arctan 1+e−ant

1−e−ant tan θ+bnt
2
− 1

π
arctan 1+e−ant

1−e−ant tan bnt
2
, π < θ < 2π − bnt

2
.

(6.101)

(a) (b)

Figure 6.4: The distribution of the hitting point of a planar Brownian motion is

obtained as subordinated circular pseudoprocess in the even case (Fig. 6.4a) and

odd case (Fig. 6.4b).

Remark 6.4.5. From (6.101) we arrive at the following fine expression

Pr
{

Θ2n+1

(
H

1
2n+1 (t)

)
< θ
}

=
1

π
arctan

[
(1− e−2ant) tan θ

2

(
1 + tan2 bnt

2

)
(1− e−ant)2 + 4 tan θ

2
tan bnt

2
+ (1 + e−ant)2 tan2 bnt

2

]
, θ ∈ [0, 2π),

(6.102)
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Figure 6.5: Distributions related to odd-order Poisson kernels (for t = 1)

from which we are able to explicitely write for Θ2n+1

(
H

1
2n+1 (t)

)
the probability of

staying in the interval (0, π) as

Pr
{

0 < Θ2n+1

(
H

1
2n+1 (t)

)
< π

}
=

1

π
arctan

sinh ant

sin bnt
, ∀t > 0, (6.103)

while for
(
0, π

2

)
we obtain

Pr
{

0 < Θ2n+1

(
H

1
2n+1 (t)

)
<
π

2

}
=

1

π
arctan

(1− e−2ant)
(
1 + tan2 bnt

2

)
(1− e−ant)2 + 4 tan bnt

2
+ (1 + e−ant)2 tan2 bnt

2

=
1

π
arctan

sinh ant

2 sinh2 ant
2

cos2 bnt
2

+ eant sin bnt+ 2 cosh2 ant
2

sin2 bnt
2

=
1

π
arctan

sinh ant

cosh ant− cos bnt+ eant sin bnt
. (6.104)

By means of the same manipulations leading to (6.104) we arrive at the alternative

form of the distribution function for θ ∈ [0, π],

Pr
{

0 < Θ2n+1

(
H

1
2n+1 (t)

)
< θ
}

=
1

π
arctan

sinh ant tan θ
2

cosh ant− cos bnt+ eant sin bnt tan θ
2

.

(6.105)

Remark 6.4.6. In the third-order case we can arrive at the Poisson kernel (6.96)

for n = 1 by considering that (see Orsingher and D’Ovidio (2012))

Pr
{
X3

(
H

1
3 (t)
)
∈ dx

}
dx

=

∫ ∞
0

ds
3
√

3s
Ai

(
x

3
√

3s

)
t

s 3
√

3s
Ai

(
t

3
√

3s

)
=

√
3t

2π
[(
x+ t

2

)2
+ 3t2

4

] . (6.106)
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The wrapped up counterpart of (6.106) becomes for θ ∈ [0, 2π)

Pr
{

Θ3

(
H

1
3 (t)
)
∈ dθ

}
=

∞∑
m=−∞

Pr
{
X3

(
H

1
3 (t)
)
∈ d(θ + 2mπ)

}
=

= dθ
∞∑

m=−∞

∫ ∞
0

ds
3
√

3s
Ai

(
θ + 2mπ

3
√

3s

)
t

s 3
√

3s
Ai

(
t

3
√

3s

)

= dθ

√
3t

2π

∞∑
m=−∞

t(
θ + 2mπ + t

2

)2
+ 3 t

2

4

=
dθ
√

3t

2

∞∑
m=−∞

∫ ∞
0

ds
e−

(θ+2mπ+ t
2)

2

2s

√
2πs

e−
(
√

3t/2)2

2s

√
2πs3

=
dθ
√

3t

22π

∫ ∞
0

ds

[
1 + 2

∞∑
k=1

cos

[
k

(
θ +

t

2

)]
e−

k2s
2

]
e−

(
√

3t/2)2

2s

√
2πs3

=
dθ

2π

[
1 + 2

∞∑
k=1

e−
√

3
2
tk cos

[
k

(
θ +

t

2

)]]
=

dθ

2π

1− e−
√

3t

1 + e−
√

3t − 2e−
√

3t cos
(
θ + t

2

) ,
(6.107)

which coincides with (6.96) since a1 =
√

3
2

and b1 = 1
2
.





Chapter 7

Higher-order Laplace equations

Article: Orsingher and Toaldo (2012). Shooting randomly against a line in euclidean

and non-euclidean spaces.

Summary

In this paper we study a class of distributions related to the r.v. Cn(t) = t tan
1
n Θ, for

different distributions of Θ. The problem is related to the hitting point of a randomly

oriented ray and generalize the Cauchy distribution in different directions. We show

that the distribution of Cn(t) solves the Laplace equation of order 2n, possesses even

moments of order 2k < 2n − 1, and has bimodal structure when Θ is uniform. We

study also a number of distributional properties of functionals of Cn(t), including

those related to the arcsine law. Finally we study the same problem in the Poincaré

half-plane and this leads to the hyperbolic distribution Pr {η ∈ dw} = dw
π coshw

of

which the main properties are explored. In particular we study the distribution of

hyperbolic functions of η, the law of sums of i.i.d. r.v.’s ηj and the distribution of

the area of random hyperbolic right triangles.

7.1 Introduction

In this paper we consider the random variables of the form

Cn(t) =

t tan
1
n Θ, Θ ∈

(
0, π

2

)
, n ∈ N, t > 0,

−t tan
1
n |Θ| , Θ ∈

(
−π

2
, 0
)
,

(7.1)

under different assumptions on the distribution of Θ.



7.1 Introduction 172

First of all we consider the case where the random angle Θ has distribution

qn(θ) =
sin π

2n

π
cot

n−1
n |θ| , θ ∈

(
−π

2
,
π

2

)
, n ∈ N,

and we show that in this case Cn(t) has probability density

pn(x, t) =

(
n sin π

2n

π

)
t2n−1

t2n + x2n
, x ∈ R, t > 0. (7.2)

We regard (7.2) as a generalization of the classical symmetric Cauchy law under

many viewpoints. First of all because, for n = 1, the angle has uniform distribution

and the law of C1(t) becomes

p1(x, t) =
1

π

t

t2 + x2
, x ∈ R, t > 0.

Furthermore in this case C1(t) = t tan Θ represents the segment intersected by a ray

shooted from the point O against the parallel t units away.

In the case n > 1 we mantain the same interpretation but here the angle has a

law which becomes increasingly concentrated around θ = 0 as n increases.

For |x| < t the cumulative distribution of (7.2) has the form

Pr {Cn(t) < x} =
1

2
+
n sin π

2n

π

∞∑
k=0

(−1)k

2nk + 1

(x
t

)2nk+1

where

Oα(z) =
∞∑
k=0

(−1)k

2αk + 1
z2αk+1, z2 < 1, α > 0,

represents a generalization of the arctan z function and reduces to it for α = 1.

The density (7.2) is a solution to the 2n-th order Laplace equation(
∂2n

∂t2n
+

∂2n

∂x2n

)
pn(x, t) = 0.

However (7.2) differs from the classical Cauchy because even moments of order

2k < 2n− 1 exist and is non longer infinitely divisible as the characteristic function

shows.

Some other properties of the Cauchy are lost but by considering some other

related distributions we are able to give a picture of generalized higher-order Cauchy

distributions with interesting interlaced distributional properties. In the case Θ is

uniform in
(
−π

2
, π

2

)
the probability density of

Ĉn(t) =

t tan
1
n Θ, Θ ∈

(
0, π

2

)
, n ∈ N, t > 0,

−t tan
1
n |Θ| , Θ ∈

(
−π

2
, 0
)
,
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reads

p̂n(x, t) =
n

π

(
|x|
t

)n−1
t2n−1

t2n + x2n
, x ∈ R, t > 0. (7.3)

The distribution has a bimodal structure and thus substantially differs from (7.2).

The maxima of (7.3) are located at x = ±t
(
n−1
n+1

) 1
2n . For the r.v. Ĉn(t) the following

remarkable property holds

1

Ĉn
(

1
t

) i.d.
= Ĉn(t).

In our view it is relevant that the probability law (7.3) shares with the classical

Cauchy also the property that

Ẑn(t) =
t

1 +
(
Ĉn(t)
t

)2n

possesses arcsine distribution, that is

Pr
{
Ẑn(t) ∈ dw

}
=

dw

π
√
w(t− w)

, 0 < w < t.

Curiously enough the ratio of independent r.v.’s Ŵn(t) = Ĉ1
n(t)

Ĉ2
n(t)

has a distribution

which generalizes that of the ratio of independent Cauchy r.v.’s; that is

Pr

{
Ĉ1
n(t)

Ĉ2
n(t)
∈ dw

}
=

dw

π2

ntn|w|n−1

(t2n − w2n)
log

(
t

w

)2n

, w ∈ R, t > 0.

However the distribution (7.3) does not satisfy an higher-order Laplace equation as

(7.2) does.

The third r.v. considered below is

C̃n(t) = t tan Θ (7.4)

where Θ has distribution qn(θ), θ ∈
(
−π

2
, π

2

)
. The distribution of (7.4) is unimodal

and has analytical form

p̃n(x, t) =
1

π
sin

π

2n

t

t2 + x2

(
t

|x|

)n−1
n

, x ∈ R, t > 0. (7.5)

We note that for (7.5) the r.v.

Z̃n(t) =
t

1 +
(
C̃n(t)
t

)2
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has Beta distribution with parameters
(

1
2n
, 1− 1

2n

)
.

In the last section of the paper we consider the problem of shooting against a

geodesic line in the Poincaré half-plane H+
2 . We shoot from a point O of the x-axis,

representing the infinite in H+
2 against a half-circumference of radius t and center O

(see figure 7.6a below). The hyperbolic distance η between the points P and Q, is

given by

η =

− log tan θ
2
, θ ∈

(
0, π

2

)
,

log tan θ
2
, θ ∈

(
π
2
, π
)
,

(7.6)

because the metric in H+
2 is

ds2 =
dx2 + dy2

y2
.

Considering Θ uniformly distributed in (0, π), the random variable (7.6) has prob-

ability density

Pr {η ∈ dw} =
4

π

e−wdw

1 + e−2w
=

2

π

1

coshw
dw, w > 0.

The symmetric r.v.

η̂ = − log tan
Θ

2

has density

Pr {η̂ ∈ dw} =
1

π

1

coshw
dw, w ∈ R, (7.7)

and characteristic function

Eeiβη̂ =
1

cosh βπ
2

, β ∈ R.

The hyperbolic r.v. η̂ has the unusual property that its density and characteristic

function have the same analytic form. The even-order moments

Eη̂2n =
(π

2

)2n

|E2n|

show an interesting relationship with the Euler numbers E2n. We produce a direct

derivation of the distribution

Pr {η̂1 + η̂2 ∈ dw} =
2

π

w

sinhw
, w ∈ R,

by means of the Cauchy residue theorem and we give also the explicit distribution

of sums η̂n =
∑n

j=1 η̂j for any n ∈ N. We obtain the distribution of all hyperbolic
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functions of η̂ and of other related functionals. For example, we prove that the law

of sinh η̂ coincides with the standard Cauchy and that

Y =
1

cosh2 η̂
=

1

1 + sinh2 η̂

has arcsine distribution. In the last section of the paper we also derive the distri-

bution of the area K of the hyperbolic right triangle (see fig. 7.6a one side of which

has length η defined in (7.6). We show that the distribution of K is

Pr {K ∈ dw} =
2

π

dw

1 + sinw
, w ∈

(
0,
π

2

)
, (7.8)

with mean

EK =
2

π
log 2.

7.2 The higher order Cauchy random variables

We consider the angular distribution

qn(θ) =
sin π

2n

π
cot

n−1
n |θ| θ ∈

(
−π

2
,
π

2

)
(7.9)

which for n = 1 coincides with the uniform law in
(
−π

2
, π

2

)
. The distribution (7.9) is

concentrated around θ = 0 (see figure 7.1) and its spread around the mean decreases

as n increases. One expects that the shots must be concentrated around the target

and (7.9) satisfies this requirement. In order to check that (7.9) integrates to unity

we perform the following calculation∫ π
2

−π
2

qn(θ)dθ =
2 sin π

2n

π

∫ π
2

0

cot
n−1
n θ dθ

sin θ=
√
y

=
1

π
sin

π

2n

∫ 1

0

y
1

2n
−1 (1− y)−

1
2n dy

=
1

π
sin
( π

2n

)
Γ

(
1

2n

)
Γ

(
1− 1

2n

)
= 1,

because Γ
(

1
2n

)
Γ
(
1− 1

2n

)
= π

sin π
2n

for the reflection formula of the Gamma integral.

We note that the related random variable cos Θ with Θ distributed as (7.9) has

even-order moments equal to

E cosm Θ = 2

∫ π
2

0

cosm θqn(θ) dθ

=
1

π
sin

π

2n

Γ
(

1
2n

)
Γ
(
m
2

+ 1− 1
2n

)
Γ
(
m
2

+ 1
) .
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The special case m = 2 yields E cos2 Θ = 1− 1
2n

.

We now pass to the derivation of the distribution of

Cn(t) =

t tan
1
n Θ, Θ ∈

(
0, π

2

)
, n ∈ N, t > 0,

−t tan
1
n |Θ| , Θ ∈

(
−π

2
, 0
)
.

Theorem 7.2.1. The explicit law of Cn(t), where Θ possesses distribution (7.9),

reads

Pr {Cn(t) ∈ dx} =
n sin π

2n

π

t2n−1

t2n + x2n
dx x ∈ R, t > 0, (7.10)

and for |x| < t

Pr {Cn(t) < x} =
1

2
+
n sin π

2n

π

∞∑
k=0

(−1)k

2nk + 1

(x
t

)2nk+1

. (7.11)

Proof. For x > 0, we have that

Pr {Cn(t) < x} = Pr
{
t tan

1
n Θ < x

}
=

1

2
+

sin π
2n

π

∫ arctan(xt )
n

0

cot
n−1
n θ dθ. (7.12)

By taking the derivative of (7.12) with respect to x we readily have the density

(7.10). In the same spirit of the previous calculation we obtain the result for x < 0.

By means of the substitution tan θ = y we reduce (7.12) to the form

Pr {Cn(t) < x} =
1

2
+

sin π
2n

π

∫ (xt )
n

0

1

y
n−1
n

dy

1 + y2

=
1

2
+

sin π
2n

π

∞∑
k=0

(−1)k
∫ (xt )

n

0

y2k−1+ 1
n dy

=
1

2
+
n sin π

2n

π

∞∑
k=0

(−1)k
(
x
t

)2nk+1

2nk + 1
, |x| < t, (7.13)

which coincides with (7.11). The intermediate step shows why the cumulative func-

tion can be written as in (7.11) for |x| < t.

Remark 7.2.2. The density (7.10) has the alternative form

pn (x, t) =
n sin

(
π
2n

)
π

∫ ∞
0

e−ztE2n,1

(
−x2nz2n

)
dz, (7.14)
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Figure 7.1: The probabilty function (7.9) of the r.v. Θ (left column) and the related

distribution of Cn(t) (right column). The dotted lines represent the uniform law

and the Cauchy density.
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where

Eα,β(z) =
∞∑
k=0

zk

Γ (αk + β)
, z ∈ R, α > 0, β > 0,

is the Mittag-Leffler function, see for example Haubold, Mathai and Saxena (2011).

The representation (7.14) permits us to show that it satisfies the Laplace equation

of order 2n. Since

∂2n

∂x2n
E2n,1

(
−z2nx2n

)
= −z2nE2n,1

(
−z2nx2n

)
,

we have that

∂2n

∂x2n

∫ ∞
0

e−ztE2n,1

(
−x2nz2n

)
dz

= −
∫ ∞

0

e−ztz2nE2n,1

(
−x2nz2n

)
dz

= − ∂2n

∂t2n

∫ ∞
0

e−ztE2n,1

(
−x2nz2n

)
dz.

The probability density (7.10) is an unimodal function which for n→∞ converges

to the uniform law in (−t, t). For increasing values of n it takes the form of a

rectangular wave as figure 7.1 shows.

Remark 7.2.3. The distribution function of Cn(t), t > 0, can be represented in

terms of hypergeometric functions for all w ∈ R without the restriction
(
w
t

)2
< 1 .

For w > 0 we have that

Pr {Cn(t) < w} =
1

2
+
n sin π

2n

π

∫ w

0

t2n−1

t2n + x2n
dx

x=ty
=

1

2
+
n sin π

2n

π

∫ w
t

0

dy

∫ ∞
0

du e−u(1+y2n)

y=x
1

2n

=
1

2
+

sin π
2n

2π

∫ ∞
0

du e−u
∫ (wt )

2n

0

dx e−uxx
1

2n
−1

=
1

2
+

sin π
2n

2π

∫ ∞
0

e−u u−
1

2n γ

(
1

2n
, u
(w
t

)2n
)
du

=
1

2
+

sin π
2n

2π

w
t

Γ(1)

1
2n

((
w
t

)2n
+ 1
) F (1, 1;

1

2n
+ 1;

(
w
t

)2n(
w
t

)2n
+ 1

)

=
1

2
+
n sin π

2n

π

w t2n−1

w2n + t2n
F

(
1, 1;

1

2n
+ 1;

w2n

w2n + t2n

)
. (7.15)

In the above steps we denoted by

γ (a, x) =

∫ x

0

e−tta−1 dt
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the incomplete Gamma function. By

F (a, b; c; z) =
∞∑
k=0

(a)k (b)k
(c)k

zk

k!

=
∞∑
k=0

Γ (a+ k) Γ (b+ k)

Γ (c+ k)

1

B (a, b)

zk

k!
,

we denote the hypergeometric function. In the last step we used formula 6.455, page

657, of Gradshteyn and Ryzhik (2007), that is∫ ∞
0

xµ−1e−βx γ (ν, αx) dx =
ανΓ (µ+ ν)

ν (α + β)µ+ν F

(
1, µ+ ν; ν + 1;

α

α + β

)
,

valid for < (α + β) > 0, < (β) > 0, < (µ+ ν) > 0. With little changes we can see

that (7.15) holds also for w < 0. By means of formula (see Gradshteyn and Ryzhik

(2007), 9.131, page 1008),

F (a, b; c; z) = (1− z)c−a−b F (c− a, c− b; c; z)

the cumulative function (7.15) can also be written as

Pr {Cn(t) < w} =
1

2
+
n sin π

2n

π

w

(w2n + t2n)
1

2n

F

(
1

2n
,

1

2n
;

1

2n
+ 1;

w2n

t2n + z2n

)
.

(7.16)

We note that, for n = 1, the function (7.16) coincides with the expansion of the

arctangent function,

Pr {C1(t) < w} =
1

2
+

1

π

w√
w2 + t2

F

(
1

2
,
1

2
;
3

2
;

w2

w2 + t2

)
see Gradshteyn and Ryzhik (2007), 1.641, pag. 60

=
1

2
+

1

π
arctan

w

t
.

By applying the following formula

F (a, b; c; z) = (1− z)−b F

(
b, c− a; c;

z

z − 1

)
,

∣∣∣∣ z

z − 1

∣∣∣∣ < 1,

we can rewrite the distribution function (7.15), for w2

t2
< 1, as

Pr {Cn(t) < w} =
1

2
+
n sin π

2n

π

w

t
F

(
1,

1

2n
,

1

2n
+ 1,−w

2n

t2n

)
=

n sin
(
π
2n

)
π

(
π

2n sin
(
π
2n

) +
w

t

∞∑
k=0

(−1)k
(1)k

(
1

2n

)
k(

1
2n

+ 1
)
k

1

k!

w2nk

t2nk

)

=
n sin

(
π
2n

)
π

(
π

2n sin
(
π
2n

) +
∞∑
k=0

(−1)k
(

1
2n

)
k(

2n+1
2n

)
k

w2nk+1

t2nk+1

)
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=
n sin

(
π
2n

)
π

(
π

2n sin
(
π
2n

) +
∞∑
k=0

(−1)k

2nk + 1

w2nk+1

t2nk+1

)
. (7.17)

In (7.17) we retrive the result (7.13) which was obtained without resorting to the

hypergeometric functions.

Other useful representations of the cumulative function of Cn(t) can be given in

integral form as

Pr {Cn(t) < w} =
n sin

(
π
2n

)
π

(
π

2n sin
(
π
2n

) +
∞∑
k=0

(−1)k

2nk + 1

w2nk+1

t2nk+1

)

=
1

2
+
n sin π

2n

π

w

t

∞∑
k=0

(−1)k
(w
t

)2nk
∫ ∞

0

du e−u(2nk+1)

=
1

2
+
n sin

(
π
2n

)
π

∫ ∞
0

du e−u
w

t

∞∑
k=0

(
−e
−2nuw2n

t2n

)k
=

1

2
+
n sin

(
π
2n

)
π

w

∫ ∞
0

du e−u
t2n−1

t2n + w2ne−2nu
. (7.18)

Formula (7.18) can be also rewritten as

Pr {Cn(t) < w} =

=
1

2
+
n sin

(
π
2n

)
π

w

∫ ∞
0

du e−u
∫ ∞

0

dz e−ztE2n,1

(
−
(
we−u

)2n
z2n
)

=
1

2
+
n sin

(
π
2n

)
π

w
∞∑
k=0

(−1)kw2nk

Γ (2nk + 1)

∫ ∞
0

dz e−ztz2nk

∫ ∞
0

du e−u(1+2nk)

=
1

2
+
n sin

(
π
2n

)
π

w
∞∑
k=0

(−1)kw2nk

Γ (2nk + 1) (1 + 2nk)

∫ ∞
0

dz e−ztz1+2nk−1

=
1

2
+
n sin

(
π
2n

)
π

∞∑
k=0

(−1)k
(
w
t

)2nk+1

2nk + 1
,

which coincides with (7.12).

Remark 7.2.4. In force of formula 3.738 pag. 430 of Gradshteyn and Ryzhik (2007),

we can give a representation of the characteristic function of (7.10) as follows∫ ∞
−∞

eiβxpn(x, t)dx =
2n sin π

2n

π
t2n−1

∫ ∞
0

cos βx

x2n + t2n
dx

= sin
π

2n

n∑
k=1

e−|β|t sin
(2k−1)π

2n sin

(
(2k − 1)π

2n
+ |β| t cos

(2k − 1)π

2n

)
, (7.19)

which coincides, for n = 1, with the characteristic function of the Cauchy distribu-

tion.
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Remark 7.2.5. Other generalizations of the Cauchy are obtained by considering

two different types of r.v.’s. The first one is

Ĉn(t) =

t tan
1
n Θ, Θ ∈

(
0, π

2

)
−t tan

1
n |Θ| Θ ∈

(
−π

2
, 0
)
,

(7.20)

where Θ has uniform law. The distribution function of (7.20) is

Pr
{
Ĉn(t) < x

}
=


1
2

+ 1
π

∫ arctan(xt )
n

0 dθ, x > 0

1
π

∫ π
2

arctan(−xt )
n dθ, x < 0,

and thus the density reads

p̂n(x, t) =
n

π

(
|x|
t

)n−1
t2n−1

t2n + x2n
, x ∈ R, t > 0, n ∈ N, (7.21)

and possesses the following representation

p̂n (x, t) =
n

π

(
|x|
t

)n−1 ∫ ∞
0

e−ztE2n,1

(
−x2nz2n

)
dz.

In Figure 7.2a we give a picture of density (7.21) for different values of n. It is

interesting to note that the distribution is bimodal with two symmetric maxima at

x = ±t
(
n− 1

n+ 1

) 1
2n

, n > 1.

Furthermore, the characteristic function of the distribution (7.21), in force of formula

3.738 of Gradshteyn and Ryzhik (2007) pag 430, reads∫ ∞
−∞

eiβxp̂n (x, t) dx =
n∑
k=1

e−|β|t sin
(2k−1)π

2n sin

(
(2k − 1)π

2
+ |β| t cos

(2k − 1)π

2n

)
.

For the r.v.

C̃n(t) = t tan Θ, (7.22)

with Θ endowed with the distribution qn (θ) given in (7.9), we have that

p̃n (x, t) =
d

dx
Pr {t tan Θ < x}

=
d

dx

[
1

2
+

sin π
2n

π

∫ arctan x
t

−π
2

cot
n−1
n |θ| dθ

]

=
sin π

2n

π

t

x2 + t2

(
t

|x|

)n−1
n

. (7.23)
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(a) (b)

Figure 7.2: The probability density function of Ĉn(t), (A), and C̃n(t), (B), for

different values of n.

Remark 7.2.6. Since the following identity holds

n

π

(
|x|
t

)n−1
t2n−1

t2n + x2n
= n|x|n−1

∫ ∞
0

e−
x2n

2s

√
2πs

tn
e−

t2n

2s

√
2πs3

ds,

for the hyperCauchy (7.21) a subordination similar to that of the classical Cauchy

law can be established and reads

Pr
{
Ĉn(t) ∈ dx

}
=

∫ ∞
0

Pr
{
B̂(s) ∈ dx

}
Pr {Ttn ∈ ds} ,

where

B̂(s) =

|B(s)| 1n , B(s) > 0,

−|B(s)| 1n , B(s) < 0.

With B(s) we denote a standard Brownian motion and Ttn is defined as

Ttn = inf {s > 0 : B(s) = tn}

Now we pass to the derivation of the moments of (7.9).
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Theorem 7.2.7. For 2n > 2k + 1, k > 0, we have that

EC2k
n (t) =

sin π
2n

sin
(

2k+1
2n

π
) t2k

=
t2k

cos kπ
n

+ cot π
2n

sin kπ
n

. (7.24)

Proof.

EC2k
n (t) =

n

π
sin

π

2n
t2n−1

∫ ∞
−∞

x2k

x2n + t2n
dx

= 2
n

π
sin

π

2n
t2n−1

∫ ∞
0

x2k

∫ ∞
0

e−w(x2n+t2n) dw dx

x=y
1

2n

=
1

π
sin

π

2n
t2n−1

∫ ∞
0

e−wt
2n

dw

∫ ∞
0

e−wy y
2k+1

2n
−1 dy

=
Γ
(

2k+1
2n

)
π

sin
π

2n
t2n−1

∫ ∞
0

e−wt
2n

w−
2k+1

2n dw

=
Γ
(

2k+1
2n

)
π

sin
π

2n
t2k
∫ ∞

0

e−y y−
2k+1

2n
+1−1 dy

=
Γ
(

2k+1
2n

)
Γ
(
1− 2k+1

2n

)
π

sin
π

2n
t2k

=
sin π

2n

sin
(

2k+1
2n

π
) t2k.

Remark 7.2.8. For k = 1, formula (7.24) gives the variance of the hyperCauchy

EC2
n(t) = VarCn(t) =

sin π
2n

sin 3π
2n

t2 =
t2

1 + 2 cos π
n

.

The last expression shows that the variance is a decreasing function of n.

Furthermore we have the following interesting relationships:

EC2(n−1)
n (t) = t2n−2,

EC2(n−2)
n (t) =

sin π
2n

sin 3π
2n

t2(n−2) = t2n−4VarCn(t) =
t2n−2

1 + 2 cos π
n

,

EC4
n(t) =

t4VarCn(t)

2t2 cos π
n
− VarCn(t)

.

For the distribution (7.23) it is possible to evaluate only the moment E
∣∣∣C̃n(t)

∣∣∣
by performing the following calculation

E
∣∣∣C̃n(t)

∣∣∣ =
sin π

2n

π

∫ ∞
−∞
|x| t

x2 + t2

(
t

|x|

)n−1
n

dx
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= 2
sin π

2n

π

∫ ∞
0

t2−
1
nx

1
n

x2 + t2
dx

x=ty
=

2 sin π
2n

π
t

∫ ∞
0

y
1
n

1 + y2
dy

y=x
1
2

=
sin π

2n

π
t

∫ ∞
0

e−u
∫ ∞

0

x
1
2

+ 1
2n
−1e−uxdu dx

=
sin π

2n

π
Γ

(
1

2
+

1

2n

)
t

∫ ∞
0

e−u u1− 1
2
− 1

2n
−1 du

=
sin π

2n

π
Γ

(
1

2
+

1

2n

)
Γ

(
1− 1

2
− 1

2n

)
t

=
sin π

2n

sin
((

1
2

+ 1
2n

)
π
) t = t tan

π

2n
.

7.3 Distributional properties of the hyperCauchy

In this section we consider a number of r.v.’s related to the hyperCauchy previ-

ously introduced. We start by examining the properties of the reciprocal of the

hyperCauchy.

7.3.1 Distribution of the reciprocal

It is well known that the symmetrical Cauchy r.v. C1(t), t > 0, has the property

that

1

C1

(
1
t

) law
= C1(t).

For the hyperCauchy r.v.’s Cn(t), Ĉn(t) and C̃n(t) we have the following theorem

Theorem 7.3.1. We have that

i)

Pr

{
1

Cn
(

1
t

) ∈ dw} =
n sin π

2n

π

t2n−1

t2n + w2n

(w
t

)2n−2

dw

=
(w
t

)2n−2

Pr {Cn(t) ∈ dw} , w ∈ R, t > 0, (7.25)

ii)

Pr

{
1

Ĉn
(

1
t

) ∈ dw} = Pr
{
Ĉn(t) ∈ dw

}
, w ∈ R, t > 0,
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iii)

Pr

{
1

C̃n(t)
∈ dw

}
=

sin π
2n

π

t

t2 + w2

(
|w|
t

)n−1
n

dw

=

(
t

|x|

) 2n−2
n

Pr
{
C̃n(t) ∈ dw

}
, w ∈ R, t > 0.

Proof. The density of

Vn(t) =
1

Cn
(

1
t

)
reads

vn(w, t) =
d

dw

n sin π
2n

π

∫ ∞
1
w

(
1
t

)2n−1

1
t2n

+ x2n
dx

=
n sin π

2n

π

t2n−1

t2n + w2n

(w
t

)2n−2

, w ∈ R, t > 0, (7.26)

and for n = 1 we retrive the previous result of the classical Cauchy r.v.. The density

(7.25) has a bimodal structure (with maxima at x = ± (n− 1)
1

2n t) as illustrated in

figure 7.3a.

Instead, the r.v. Ĉn(t) preserves the fine property of the classical Cauchy distri-

bution because

Pr

{
1

Ĉn
(

1
t

) < w

}
=

n

π

∫ ∞
1
w

(t|x|)n−1

(
1
t

)2n−1

1
t2n

+ x2n
dx,

and so, by taking the derivative with respect to w we get

Pr

{
1

Ĉn
(

1
t

) ∈ dw} =
n

π

(
|w|
t

)n−1
t2n−1

t2n + w2n
dw,

which coincides with the law of Ĉn(t). For the law of the r.v. C̃n(t) we get that

Pr

{
1

C̃n
(

1
t

) < w

}
=

sin π
2n

π

∫ ∞
1
w

1
t

1
t2

+ x2

( 1
t

|x|

)n−1
n

dx,

and thus

Pr

{
1

C̃n
(

1
t

) ∈ dw} =
sin π

2n

π

t

t2 + w2

(
|w|
t

)n−1
n

dw. (7.27)

Distributions (7.26) and (7.27) are presented respectively in fig 7.3a and 7.3b, for

different values of n and the dotted line represents the classical Cauchy density.
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(a) (b)

Figure 7.3: The probability density function (7.26), (A), and (7.27), (B), for two

different values of n.
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7.3.2 Distributions of the ratio

For the ratios of the three types of hyperCauchy distributions dealt with so far we

have the following theorem.

Theorem 7.3.2. In the following table we have the ratios of the r.v.’s and the

corresponding densities

r.v. density for w ∈ R, t > 0

Wn(t) = tC
1
n(t)

C2
n(t)

wn(w, t) = n
2π

tan π
2n
t t

2n−2−w2n−2

t2n−w2n

Ŵn(t) = t Ĉ
1
n(t)

Ĉ2
n(t)

ŵn(w, t) = ntn|w|n−1

π2(t2n−w2n)
log
(
t
w

)2n

W̃n(t) = C̃1
n(t)

C̃2
n(t)

w̃n(w) = 1
2π

tan π
2n
|w|

1
n−1

1−w2

(
1− w2− 2

n

)
Proof. We give a hint of the derivation of the densities above. For w > 0,

Pr

{
t
C1
n(t)

C2
n(t)

< w

}
=

1

2
+ 2n2 sin2

( π
2n

) 1

π2

∫ ∞
0

dx

∫ wx
t

0

dy
t2n−1

t2n + x2n

t2n−1

t2n + y2n
.

The density is therefore

wn(w, t) = 2n2 sin2
( π

2n

) 1

π2

∫ ∞
0

dx
x

t
t4n−2 1

t2n + x2n

2

t2n +
(
wx
t

)2n

=
2n2 sin2

(
π
2n

)
1
π2

t2n − w2n

t4n−2

t

[∫ ∞
0

x dx

t2n + x2n
− w2n

t2n

∫ ∞
0

x dx

t2n +
(
w2nx2n

t2n

)] ,
(7.28)

and with the change of variable wx
t

= y in the second integral of (7.28) we obtain

wn(w, t) =
2n2 sin2

(
π
2n

)
1
π2

t2n − w2n

t4n−2

t

(
1− w2n

t2n
t2

w2

)∫ ∞
0

dx
x

t2n + x2n

x=ty
=

2n2 sin2
(
π
2n

)
1
π2

t2n − w2n
t4n−3

(
1− w2n−2

t2n−2

)
t2

t2n

∫ ∞
0

dy
y

1 + y2n

=
2n2 sin2

(
π
2n

)
1
π2

t2n − w2n

(
t2n−2 − w2n−2

) t2n−1

t2n
t2
∫ ∞

0

dy
y

1 + y2n

= 2n2 sin2
( π

2n

) 1

π2

t2n−2 − w2n−2

t2n − w2n

t

2n
Γ

(
1

n

)
Γ

(
1− 1

n

)
=

n

2π
tan

π

2n
t
t2n−2 − w2n−2

t2n − w2n
. (7.29)
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For the r.v. Ŵn(t) the density reads

ŵn(w, t) =
2n2

π2

∫ ∞
0

x

t

t2n−1

t2n + x2n

(x
t

)n−1 t2n−1

t2n +
(
wx
t

)2n

(wx
t2

)n−1

dx

=
2n2t3nwn−1

π2

∫ ∞
0

x2n−1

t2n + x2n

dx

t4n + (wx)2n

(xt )
2n

=y
=

2n2t3nwn−1

π2

1

t2n
1

2n

∫ ∞
0

1

1 + y

dy

t2n + w2ny
dy

=
ntnwn−1

π2 (t2n − w2n)

∫ ∞
0

(
1

1 + y
− w2n

t2n + w2ny

)
dy

=
ntnwn−1

π2 (t2n − w2n)
log

(
t

w

)2n

. (7.30)

For the r.v. W̃n(t) the density, not depending on t, has a structure different from

the previous ones and is obtained by means of the following calculation

w̃n(w) = 2

(
sin π

2n

π

)2 ∫ ∞
0

t

t2 + x2

(
t

x

)n−1
n t

t2 + w2x2

(
t

wx

)n−1
n

x dx

= 2

(
sin π

2n

π

)2
t2+2(n−1

n )

w
n−1
n

∫ ∞
0

x

x2 + t2
x−2(n−1

n )

t2 + w2x2
dx

= 2

(
sin π

2n

)2

π2

t2(
n−1
n )

w
n−1
n (1− w2)

(∫ ∞
0

x
2
n
−1

x2 + t2
dx− w2

∫ ∞
0

x
2
n
−1

t2 + w2x2
dx

)

= 2

(
sin π

2n

)2

π2

t2(
n−1
n )

w
n−1
n (1− w2)

(
π

2t2−
2
n sin π

n

− w2− 2
nπ

2t2−
2
n sin π

n

)

=
1

2π
tan

π

2n

w
1
n
−1

(1− w2)

(
1− w2− 2

n

)
. (7.31)

Similar calculation performed for w < 0 yield the previous distributions for w ∈
R.

Remark 7.3.3. We note that by setting n = 2 in the law wn(w, t) we retrive the

standard Cauchy density. Indeed

w2(w, t) =
1

π
tan

π

4
t
t2 − w2

t4 − w4

=
1

π

t

t2 + w2
.

This means that if C1
2(t) and C2

2(t) are two independent random variables with law

p2(w, t) =
1√
2π

t3

t4 + w4
,
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the distribution of

W2(t) =
C1

2(t)

C2
2(t)

is a standard Cauchy.

Furthermore we have that the distribution (7.30) coincides with formula (4.6) of

D’Ovidio and Orsingher (2010) for n = 1. We can check that the r.v.(
1

t

C1
1(t)

C2
1(t)

) 1
n

,

where C1
1 , C2

1 are two independent Cauchy r.v.’s, possesses distribution (7.30). In

other words we have the following equality in distribution

t
Ĉ1
n(t)

Ĉ2
n(t)

i.d.
=

(
1

t

C1
1(t)

C2
1(t)

) 1
n

.

Remark 7.3.4. In order to check that the density (7.31) integrates to unity we

perform the following calculation∫ ∞
−∞

w̃n(w) dw =

=
tan π

2n

2π

∫ ∞
−∞

|w| 1n−1
(

1− w2− 2
n

)
dw

(1− w2)
=

tan π
2n

π

∫ ∞
0

w
1
n
−1
(

1− w2− 2
n

)
dw

(1− w2)

=
1

π
tan

π

2n

∫ 1

0

w
1
n
−1
(

1− w2− 2
n

)
1− w2

dw +
1

π
tan

π

2n

∫ ∞
1

w
1
n
−1
(

1− w2− 2
n

)
1− w2

dw.

(7.32)

With the change of variable y = 1
w

in the second integral of (7.32), we get

∫ ∞
−∞

w̃n(w) dw =
1

π
tan

π

2n

∫ 1

0

w
1
n
−1
(

1− w2− 2
n

)
1− w2

dw+

+
1

π
tan

π

2n

∫ 1

0

(
1− y2− 2

n

)
y

1
n
−1

1− y2
dy

=
2

π
tan

π

2n

∫ 1

0

w
1
n
−1
(

1− w2− 2
n

)
1− w2

dw

=
2

π
tan

π

2n

∞∑
k=0

∫ 1

0

(
w

1
n
−1 − w−

1
n

+1
)
w2k

=
2

π
tan

π

2n

∞∑
k=0

[
w2k+ 1

n

2k + 1
n

− w2k− 1
n

+2

2k − 1
n

+ 2

]1

0
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(a) (b)

(c)

Figure 7.4: The probability density function wn(w, t), (A), ŵn(w, t), (B), and w̃n(w),

(C), for different values of n.
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=
2

π
tan

π

2n

∞∑
k=0

(
1

2k + 1
n

− 1

2(k + 1)− 1
n

)

=
2

π
tan

π

2n

(
n+

∞∑
k=1

(
1

2k + 1
n

− 1

2k − 1
n

))

=
2

π
tan

π

2n

(
n−

∞∑
k=1

2
n

(2k)2 − 1
n2

)
. (7.33)

Considering the relationship (see Smirnov (1964) pag 410)

z cot z = 1−
∞∑
k=1

2z2

k2π2 − z2
(7.34)

and setting z = π
2n

, we get

π

2n
cot

π

2n
= 1−

∞∑
k=1

2
(
π
2n

)2

k2π2 −
(
π
2n

)2

= 1−
∞∑
k=1

2
n2

(2k)2 − 1
n2

,

and thus

π

2
cot

π

2n
= n− 2

n

∞∑
k=1

1

(2k)2 − 1
n2

. (7.35)

Considering (7.35) we can rewrite (7.33) as follows∫ ∞
−∞

w̃n(w) dw =
2

π
tan

π

2n

(
n−

∞∑
k=1

2
n

(2k)2 − 1
n2

)
=

2

π
tan

π

2n

(π
2

cot
π

2n

)
= 1.

The previous calculation yields an interesting integral represention of the cotan-

gent function. Indeed, in light of (7.33) and (7.34) we can write

cot z =
1

z
−
∞∑
k=0

2z

(2k)2 − z2

=

∫ 1

0

wz−1

1− w2

(
1− w2(1−z)) dw

=
1

2

∫ ∞
0

wz−1

1− w2

(
1− w2(1−z)) dw.

For a representation of (7.29), (7.30) and (7.31), see Fig. 7.4a, 7.4b and 7.4c.
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7.3.3 The higher-order arcsine law

It is well-known that for the classical Cauchy r.v., C1(t), holds the following rela-

tionship (see Chaumont and Yor (2003) pag. 104)

Z1(t) =
t

1 + (C1(t))2

i.d.
=

1

π

1√
w (t− w)

, 0 < w < t.

which is known as the arcsine law. For the hyperCauchy we get similar relationships.

Theorem 7.3.5. We have the following distributions.

r.v. probability density for 0 < w < t

Zn(t) = t

1+( |Cn(t)|
t )

2n

sin π
2n

π
(t− w)

1
2n
−1 w−

1
2n

Ẑn(t) = t

1+

(
|Ĉn(t)|

t

)2n
1

π
√

(t−w)w

Z̃n(t) = t

1+

(
|C̃n(t)|

t

)2

sin π
2n

π
(t− w)

1
2n
−1 w−

1
2n

Proof. We get for 0 < w < t,

Pr
{
Ẑn(t) < w

}
= 2

n

π

∫ ∞
t( t−ww )

1
2n

(
|x|
t

)n−1
t2n−1

t2n + x2n
dx

and thus

ẑn(w, t) dw = Pr
{
Ẑn(t) ∈ dw

}
=

1

π

dw√
w(t− w)

.

For the r.v. Cn(t) the distribution becomes

Pr {Zn(t) < w} = 2
n sin π

2n

π

∫ ∞
t( t−ww )

1
2n

t2n−1

t2n + x2n
dx

and

zn(w, t) dw = Pr {Zn(t) ∈ dw} =
sin π

2n

π
w−

1
2n (t− w)

1
2n
−1 dw.

Similar calculations for Z̃n(t) yield

Pr
{
Z̃n(t) ∈ dw

}
=

sin π
2n

π
(t− w)

1
2n
−1 w−

1
2ndw.
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Figure 7.5

The density

zn(w, t) = z̃n(w, t) =
sin π

2n

π
(t− w)

1
2n
−1 w−

1
2n

is a Beta with parameters
(

1
2n
− 1,− 1

2n

)
and for increasing values of n its asymmetry

increases, as shown in Fig. 7.5 for t = 1 (the dotted line represents the classical

arcsine law).

7.4 The Hyperbolic case

Let us consider the Poincaré half-plane H+
2 = {x, y : x ∈ R, y > 0} (see for example

Gruet (1996), Lao and Orsingher (2007)) endowed with the metric

ds2 =
dx2 + dy2

y2
.

We assume that a particle is shooted from the point O(0, 0), see figure 7.6a, on the

x-axis (representing the infinite of H+
2 ), and moves along the geodesic line joining O

with an arbitrary point P on the half-circle centered at O, denoted by CO, and with

arbitrary radius t. The hyperbolic distance η between P and Q (Q is the intersection

of the vertical geodesic line through O and the half-circle CO), does not depend on

t, because the half-circumferences centered at O form a system of horocycles, and

will be denoted by η. Thus the hyperbolic distance η is obtained by evaluating the

line integral

η =

∫ π
2

Θ

√
(x′(s))2 + (y′(s))2

y(s)
ds, Θ ∈

(
0,
π

2

)
=

∫ π
2

Θ

ds

sin s
= − log tan

Θ

2
, (7.36)
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Table 7.1: In the following table we sum up our results on the hyperCauchy func-

tionals

Variable Law Transformation Law of the transformation

Cn(t)
n sin π

2n

π
t2n−1

t2n+x2n
1

Cn( 1
t )

n sin π
2n

π
t2n−1

t2n+w2n

(
w
t

)2n−2

tC
1
n(t)

C2
n(t)

n
2π

tan π
2n

t(t2n−2−w2n−2)
t2n−w2n

t

1+( |Cn(t)|
t )

2n

sin π
2n

π
(t− w)

1
2n
−1w−

1
2n ,

for 0 < w < t

Ĉn(t) n
π

t2n−1

t2n+x2n

(
|x|
t

)n−1
1

Ĉn( 1
t )

n
π

t2n−1

t2n+w2n

(
|w|
t

)n−1

t Ĉ
1
n(t)

Ĉ2
n(t)

ntnwn−1

π2(t2n−w2n)
log
(
t
w

)2n

t

1+

(
|Ĉn(t)|

t

)2n
1
π
w−

1
2 (t− w)−

1
2 ,

for 0 < w < t

C̃n(t)
sin π

2n

π
t

t2+x2

(
t
|x|

)n−1
n 1

C̃n( 1
t )

sin π
2n

π
t

t2+w2

(
|w|
t

)n−1
n

C̃1
n(t)

C̃2
n(t)

1
2π

tan π
2n
|w|

1
n−1

(1−w2)

(
1− w2− 2

n

)

t

1+

(
|C̃n(t)|

t

)2

sin π
2n

π
(t− w)

1
2n
−1w−

1
2n ,

for 0 < w < t
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where Θ is the random angle formed by OP and the x-line. Formula (7.36) can be

rewritten as

e−η = tan
Θ

2
which is the celebrated Lobachevsky law for the angle of parallelism.

(a) (b)

Figure 7.6: The probability density function of Ĉn(t), (A), and C̃n(t), (B), for

different values of n.

If Θ is uniformly distributed in (0, π), the non-negative random variable η (rep-

resenting the hyperbolic distance of P from Q)

η =

− log tan Θ
2
, Θ ∈

(
0, π

2

)
,

log tan Θ
2
, Θ ∈

(
π
2
, π
)
,

has distribution function

Pr {η < w} = 2 Pr

{
0 < − log tan

θ

2
< w

}
= 2 Pr

{
0 > log tan

θ

2
> −w

}
= 2 Pr

{
1 > tan

θ

2
> e−w

}
= 2 Pr

{π
2
> θ > 2 arctan e−w

}
= 2

∫ π
2

2 arctan e−w

dθ

π
= 1− 4

π
arctan e−w, w > 0. (7.37)

The density related to (7.37) reads

Pr {η ∈ dw} =
4

π

e−w

1 + e−2w
dw =

2

π

dw

coshw
, w > 0.

If we consider the symmetric r.v. (see fig 7.7)

η̂ = − log tan
Θ

2
, Θ ∈ (0, π) , (7.38)

we obtain that

Pr {η̂ ∈ dw} =
1

π

dw

coshw
, w ∈ R, (7.39)
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with distribution function

Pr {η̂ < w} = 1− 2

π
arctan e−w.

The distribution (7.39) appears in Feller (1966) pag. 503 and emerges in the

analysis of the successive overshoots by a Cauchy process in Pitman and Yor (1986).

The r.v.’s η and η̂ can be also viewed on the Poincaré disc, where the shooting

point O is on the circumference and η represents the distance between Q and P (see

figure 7.6b).

Figure 7.7: The density of the hyperbolic r.v. (black line) is compared with the

standard normal (which has high concentration of the probability around zero) and

the Cauchy law.

We give a derivation of the characteristic function of (7.39) different from the

series expansion of Feller (1966). Our approach is based on the residue theorem.

Theorem 7.4.1. The characteristic function of (7.39) is written as

Eeiβη̂ =
1

cosh βπ
2

. (7.40)

Proof. The integral (7.40) can be evaluated by means of the residue theorem applied

to the function

f(z) =
eiβπz

cosh πz
, z ∈ C,

By considering the contour of Fig. 7.8a we have that∫ r

−r

eiβπxdx

cosh πx
+

∫ i

0

eiβπ(r+iy)dy

cosh(r + iy)
+

∫ −r
r

eiβπ(x+i)dx

cosh π(x+ i)
+

∫ 0

i

eiβπ(−r+iy)dy

cosh π(−r + iy)
=
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= 2πi Resf(z)|z= i
2
,

where Resf(z)|z= i
2

is the residue of the pole at z = i
2
, the contour of integration is

represented in Fig. 7.8a. By taking the limit for r →∞ the second and the fourth

integral disappear and thus∫ ∞
−∞

eiβπxdx

cosh πx
+

∫ ∞
−∞

eiβπx−βπdx

cosh πx
= 2e−

βπ
2

(
1 + e−βπ

) ∫ ∞
−∞

eiβπx

cosh πx
= 2e−

βπ
2 .

In conclusion we have that∫ ∞
−∞

eiβπx

coshπx
dx =

2e−
βπ
2

1 + e−βπ
=

1

cosh βπ
2

,

which is the desired result.

From (7.40) we obtain that

Var η̂ =
(π

2

)2

.

The even-order moments of η̂ can be expressed in terms of the Euler numbers E2n

Eη̂2n =
(π

2

)2n

|E2n| ,

in view of formula 3.523 pag 376 of Gradshteyn and Ryzhik (2007). The Euler

numbers have generating function

1

cosh t
=

∞∑
k=0

En
tn

n!
, |t| < π

2
. (7.41)

Formula (7.41) gives, for |t| < π
2
, a possible representation of the density (7.39).

(a) (b)

Figure 7.8: The contours of integration for Theorems 7.4.1 and 7.4.2.
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7.4.1 Distributional Properties of the hyperbolic distribu-

tion

Theorem 7.4.2. Let η1 and η2 be two independent copies of (7.38). Thus the

distribution of

η̂2 = η̂1 + η̂2, (7.42)

is given by

Pr {η̂2 ∈ dx} =
2x

π2 sinhx
dx. (7.43)

Proof. In view of (7.40) we have

Pr {η̂2 ∈ dx} =
dx

2π

∫ ∞
−∞

e−izx

cosh2 zπ
2

dz. (7.44)

The inverse Fourier transform appearing in the right-hand side of (7.44) can be

evaluated by means of the residue theorem, applied to the function

f(z) =
e−ixz

cosh2 zπ
2

, z ∈ C, (7.45)

along the contour of the form in Fig. 7.8b. In the same spirit of Theorem 7.4.1 we

get

1

2π

[∫ r

−r

e−ixw

cosh2 wπ
2

dw +

∫ −r
r

e−ix(w+2i)

cosh2 π
2

(w + 2i)
dw +

∫ 2i

0

e−ix(r+iy)

cosh π(r+iy)
2

dy +

+

∫ 0

2i

e−ix(−r+iy)

cosh π(−r+iy)
2

dy

]
= i Resf(z)|z=i

and taking the limit for r →∞ we obtain∫ ∞
−∞

e−ixw

cosh2 wπ
2

dw =
i Resf(z)|z=i

1− e2x
= − i

2 sinhx
e−x Resf(z)|z=i . (7.46)

The residue in z = i is given by

Resf(z)|z=i = lim
z→i

d

dz

[
(z − i)2 e−ixz

cosh2 zπ
2

]

= lim
z→i

d

dz

[
(z − i)2 2e−ixz

1 + cosh πz

]
= lim

z→i
e−ixz

[
−2 (z − i)2 ix+ 4 (z − i)

1 + cosh πz
− 2π (z − i)2 sinh(πz)

(1 + cosh πz)2

]

=
22xi

π2
ex + lim

z→i
e−ixz

[
4 (z − i)

1 + cosh πz
− 2π (z − i)2 sinhπz

(1 + cosh zπ)2

]
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Taylor
=

22xi

π2
ex + lim

z→i
e−ixz

[
4 (z − i)
−π2

2
(z − i)2 +

2π2 (z − i)3(
−π2

2
(z − i)2)2

]

=
22xi

π2
ex, (7.47)

where, in the last step, we used the following Taylor’s series expansions in a neigh-

borhood of the point z = i

1 + cosh πz = −(z − i)2

2
π2 + o

(
(z − i)2)

sinhπz = − (z − i) π + o (z − i) .

In conclusion, considering (7.46) and (7.47), we obtain

Pr {η̂2 ∈ dx} =
2x

π2 sinhx
dx. (7.48)

Remark 7.4.3. In order to check that (7.48) integrates to unity we refer to formula

3.521 pag. 375 of Gradshteyn and Ryzhik (2007) obtaining∫ ∞
−∞

2x

π2 sinhx
dx = 1.

For a picture of distribution (7.43) see Fig. 7.9.

Figure 7.9: The dotted line represents the hyperbolic distribution (7.39) and the

bold one represents the density (7.48) of the sum η1 + η2.

In general, for

η̂n = η̂1 + η̂2 + · · ·+ η̂n, n ∈ N,
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we have, in force of formula 3.985 pag 512 of Gradshteyn and Ryzhik (2007),

Pr {η̂n ∈ dw} =


4kw

2(2k−1)!π2 sinhw

∏k−1
r=1

(
w2

π2 + r2
)
dw, n = 2k, 2 ≤ k ∈ N

22k

(2k)!π coshw

∏k
r=1

[
w2

π2 +
(

2r−1
2

)2
]
dw, n = 2k + 1, k ∈ N.

(7.49)

The proof of (7.49) is based on the evaluation of the integral∫
Γ

f(z) dz, z ∈ C,

where

f(z) =
e−ixz

coshn πz
2

, z ∈ C,

and the contour Γ is that of figure 7.8b. The proof follows the same line of Theorem

7.4.2 and we arrive at∫ ∞
−∞

e−iwx

cosh wπ
2

dw − e2x

(−1)n

∫ ∞
−∞

e−iwx

coshn wπ
2

dw = 2πi Resf(z)|z=i

where Resf(z)|z=i is the residue of f(z) at z = i. The inverse Fourier transform is

therefore
1

2π

∫ ∞
−∞

e−iwx

coshn wπ
2

dw =
i

1 + (−1)n+1 e2x
Resf(z)|z=i .

The evaluation of Resf(z)|z=i leads to (7.49). For n = 2 we clearly retrive the result

of Theorem 7.4.2.

A particle performing a random walk on the geodesic line QP of figure 7.6a, after

n steps occupies the position η̃n with distribution (7.49) and characteristic function

Eeiβη̂ =
1

coshn βπ
2

.

We present now some transformation of the hyperbolic distribution of η̂. We

start by showing that sinh η̂ has Cauchy distribution. We have for the r.v.

O (η) = sinh η

that

Pr {sinh η < y} = Pr {η < arg sinh y} = Pr
{
η < log

(
y +

√
y2 + 1

)}
=

∫ log
(
y+
√

1+y2
)

−∞

dx

π coshx
.
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and thus

Pr {O (η) ∈ dy}
dy

=
1

π

1

y +
√

1 + y2

(
1 +

y√
1 + y2

)
2

e
log
(
y+
√

1+y2
)

+ e
− log

(
y+
√

1+y2
)

=
1

π

y +
√

1 + y2

y2 + 1 + y
√

1 + y2

1√
1 + y2

=
1

π (1 + y2)
.

Furthermore, considering the r.v. cosh η we get, for w > 1

Pr {1 < cosh η < w} =
2

π

∫ arg coshw

0

dx

coshx

=
2

π

∫ log(w+
√
w2−1)

0

dx

coshx
,

and thus the density reads

Pr {cosh η ∈ dw} =
2

π

dw

w
√
w2 − 1

, w > 1. (7.50)

The distribution (7.50) integrates to unity since

2

π

∫ ∞
1

dw

w
√
w2 − 1

1
w2 =y
=

1

π

∫ 1

0

dy√
y(1− y)

= 1.

The last step suggests a relationship between the r.v. cosh η and the arcsine law.

The r.v.

Y =
1

cosh2 η

possesses arcsine distribution, as the following detailed calculation shows

Pr {Y < w} = Pr

{
η > arg cosh

1√
w

}
=

2

π

∫ ∞
log
(

1√
w

+ 1√
w

√
1−w

) dx

coshx

=
2

π

∫ ∞
− 1

2
logw+log(1+

√
1−w)

dx

coshx
,

and thus

Pr {Y ∈ dw}
dw

=
1

π

[
1

w
+

1√
1− w

[
1 +
√

1− w
]] 2

1√
w

(
1 +
√

1− w
)

+
√
w 1

1+
√

1−w

=
2

π

√
1− w(1 +

√
1− w + w)

w
√

1− w(1 +
√

1− w)

√
w(1 +

√
1− w)

(1 +
√

1− w)2 + w
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=
1

π

1 +
√

1− w
√
w
√

1− w
1(√

1− w + 1
) =

1

π

1
√
w
√

1− w
, 0 < w < 1.

(7.51)

Remark 7.4.4. Result (7.51) can be also obtained observing that

Y =
1

cosh2 η
=

1

1 + sinh2 η
=

1

1 +O (η)2 , (7.52)

and we have shown that O possesses Cauchy distribution. The transformation (7.52)

is the classical way to obtain the arcsine law from the Cauchy distribution.

Remark 7.4.5. Let us recall the hyperbolic version of the Pythagorean theorem

which reads

cosh a cosh b = cosh c,

where c is the hypotenuse of the right triangle with sides a and b. Considering a and

b distributed as (7.39) their hyperbolic cosine has law (7.50). The random length of

the hypotenuse is therefore written as

Pr {cosh η1 cosh η2 ∈ dw} = dw

(
2

π

)2
1

w

∫ w

1

dx√
x2 − 1

√
w2 − x2

dx

x= cosh y
= dw

∫ log(w+
√
w2−1)

0

1√
w2 − cosh2 y

dy. (7.53)

Remark 7.4.6. Considering the r.v.

η̃ = − log tanα
Θ

2
, α > 0,

with Θ uniformly distributed in (0, π) we get

Pr {η̃ ∈ dw} =
2

απ

e−
w
α dw

1 + e−
2w
α

=
1

πα

dw

cosh w
α

, w ∈ R. (7.54)

The density (7.54) is a generalization with paramater α of (7.39).

7.4.2 The area of hyperbolic random triangles

It is well known that the area A of an hyperbolic triangle is given by

A = π − (α + β + γ)

where α, β and γ are the angles pertaining to vertices not lying on the (x-axis). A

triangle which has three vertices on the x-axis has area A = π.

Let us consider the triangle with vertices O, P , and Q in Fig. 7.6a or 7.6b, thus

the area K is given by K = π
2
−α where α is the angle of the vertex ÔPQ, formally

we have K ∈
(
0, π

2

)
.
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Table 7.2: For the hyperbolic r.v. η̂ we have the following table of distributional

relationships for the related hyperbolic function.

Variable sinh η̂ cosh η̂ tanh η̂ tanh2 η̂

Density 1
π(1+z2)

2
πz
√
z2−1

1
π
√

1−z2

1

π
√
z(1−z)

z ∈ R z > 1 −1 < z < 1 0 < z < 1

Reciprocal 1
sinh η̂

1
cosh η̂

coth η̂ coth2 η̂

Density 1
π(1+z2)

2
π
√

1−z2

1
π|z|
√
z2−1

1
πz
√
z−1

z ∈ R 0 < z < 1 z ∈ R\ [−1, 1] z > 1

Theorem 7.4.7. For the random area K of the hyperbolic triangle OPQ where PQ

has length η with distribution (7.39), we have that

Pr {K ∈ dw} =
2

π

dw

1 + sinw
, w ∈

(
0,
π

2

)
. (7.55)

Proof. In view of formula

tan
A

2
= tanh

a

2
tanh

b

2

where a, b are the sides of an hyperbolic right triangle of area A, we have

tan
K

2
= tanh

η

2
.

For w > 0

Pr {K < w} = Pr
{
η < 2 argtanh tan

w

2

}
=

2

π

∫ log 1+sinw
cosw

0

1

coshx
dx

= 1− 4

π
arctan

cosw

1 + sinw
,

and thus

Pr {K ∈ dw} =
2

π

dw

1 + sinw
.

In view of formula 3.791 pag. 448 of Gradshteyn and Ryzhik (2007) we have

EK =
2

π

∫ π
2

0

x

1 + sin x
dx =

2

π
log 2.



Figure 7.10: The distribution (7.55) of the random area K.
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