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Abstract

This thesis handles the motion planning problem for various robotic platforms. This is a funda-

mental problem, especially referring to humanoid robots for which it is particularly challenging

for a number of reasons. The first is the high number of degrees of freedom. The second is that a

humanoid robot is not a free-flying system in its configuration space: its motions must be gener-

ated appropriately. Finally, the implicit requirement that the robot maintains equilibrium, either

static or dynamic, typically constrains the trajectory of the robot center of mass. In particular,

we are interested in handling problems in which the robot must execute a task, possibly requiring

stepping, in environments cluttered by obstacles. In order to solve this problem, we propose to

use offline probabilistic motion planning techniques such as Rapidly Exploring Random Trees

(RRTs) that consist in finding a solution by means of a graph built in an appropriately defined

configuration space. The novelty of the approach is that it does not separate locomotion from

task execution. This feature allows to generate whole-body movements while fulfilling the task.

The task can be assigned as a trajectory or a single point in the task space or even combining

tasks of different nature (e.g., manipulation and navigation tasks). The proposed method is also

able to deform the task, if the assigned one is too difficult to be fulfilled. It automatically detects

when the task should be deformed and which kind of deformation to apply.

However, there are situations, especially when robots and humans have to share the same

workspace, in which the robot has to be equipped with reactive capabilities (as avoiding moving

obstacles), allowing to reach a basic level of safety. Here, offline techniques cannot be used and

the reaction time (from the detection of the moving obstacle to start an evasive motion) should

be as small as possible. This is achieved by making use of closed-form expressions throughout

the proposed method, and results in an algorithm suitable for real-time implementation.

The final part of the thesis handles the rearrangement planning problem. This problem is

interesting in view of manipulation tasks, where the robot has to interact with objects in the

environment. Roughly speaking, the goal of this problem is to plan the motion for a robot whose

assigned a task (e.g., move a target object in a goal region). Doing this, the robot is allowed to

move some movable objects that are in the environment. The problem is difficult because we

must plan in continuous, high-dimensional state and action spaces. Additionally, the physical

constraints induced by the nonprehensile interaction between the robot and the objects in the

scene must be respected. Our insight is to embed physics models in the planning stage, allowing

robot manipulation and simultaneous objects interaction.

Throughout the thesis, we evaluate the proposed planners through experiments on different

robotic platforms.
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Chapter1
Introduction

Robots are starting to conquer the world! They are getting more and more importance in human

society, since they can replace humans in dangerous and repetitive tasks but also in services

tasks. Nowadays, it is common to use robots in factories (mainly manipulators) or in space

missions (e.g., rovers on Mars) but they are starting to appear also in everyday life tasks. Some

examples are aerial vehicles (e.g., Amazon wants to use quadrotors for delivering purposes)

or mobile robots (e.g., the Roomba robot for cleaning the houses). Robots today are making a

considerable impact on many aspects of modern life, from industrial manufacturing to healthcare,

transportation, and exploration of the deep space and sea. Human society have always the dream

of building autonomous and intelligent machine. Currently, in my humble opinion, we are just

one or two steps behind this dream and the next few years will be fundamental for having complete

autonomous robots in everyday human lives.

A robot is a device built from humans, whose goal is to take place or help humans, especially

in dangerous environments or manufacturing processes. The word “robotics” was derived from

the word “robot”, which was firstly introduced to the public by Czech writer Karel Čapek in his

play R.U.R. (Rossum’s Universal Robots), which was published in 1920. The play begins in

a factory that makes artificial people called robots, creatures who can be mistaken for humans

– very similar to the modern ideas of androids. Karel Čapek himself did not coin the word.

He wrote a short letter in reference to an etymology in the Oxford English Dictionary in which

he named his brother Josef Čapek as its actual originator. In an article in the Czech journal

“Lidové noviny” in 1933, he explained that he had originally wanted to call the creatures “laboři”

(“workers”, from the Latin word labor). The word robot comes from the Slavic word robota,

which means labour.

The community officially referred to Isaac Asimov as the first author that uses the word

“robotics” in a printed work. Just as anecdote, Asimov published in 1941 a fiction short story

named “Liar!” where he was unaware that he was coining the term; since the science and tech-

nology of electrical devices is electronics, he assumed robotics already referred to the science

and technology of robots. Asimov states that his first work where the word “robotics” was used

is “Runaround” (Astounding Science Fiction, March 1942). Since “Liar!” was published ten

9
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months before “Runaround”, the latter is generally referred as the word’s origin. The main con-

tribution from Asimov are the three laws of Robotics (firstly introduced in his play “Runaround”),

where it states the three fundamental rules that a robot has to obey

1. a robot may not injure a human being or, through inaction, allow a human being to come

to harm;

2. a robot must obey the orders given it by human beings except where such orders would

conflict with the First Law;

3. a robot must protect its own existence as long as such protection does not conflict with the

First or Second Laws.

These three laws (used also in Asimov’s most famous “Robot series”) have becoming a funda-

mental reference for the robotics community and are still referred nowadays to indicate what are

the fundamental skills that a robot has to have.

Following the ideas of the three laws, there are many definition of a robot. According to the

Encyclopaedia Britannica, a robot is “any automatically operated machine that replaces human

effort, though it may not resemble human beings in appearance or perform functions in a human-

like manner”. Merriam-Webster describes a robot as a “machine that looks like a human being

and performs various complex acts (as walking or talking) of a human being”, or a “device that

automatically performs complicated often repetitive tasks”. Finally, Oxford Dictionaries defines

as “a machine capable of carrying out a complex series of actions automatically, especially one

programmable by a computer”.

As it is evident, there is no unique definition accepted from the robotics community. For

example, Joseph Engelberger, a pioneer in industrial robotics, said ones: “I cannot define a robot,

but I know one when I see one”. In my humble opinion, the main reason for these multiple

definitions comes from the merging between the idea of a robot coming from fictions and plays

and what a robot really is, i.e. a programmable complex machine.

From a historical point of view, Leonardo Da Vinci designs in 1495 some drawings of a

mechanical knight in armour that was able to move its arms, jaw and head. In 1533, Johannes

Müller von Königsberg created an automaton iron eagle that was both to fly. The next refer-

ence to a robotics project was placed around 1700, when several automatons showed up. These

automatons were capable of drawing, flying and even playing music (e.g., the automaton flute

player and the digesting duck – powered by weights – from Jacques de Vaucanson in 1737). In

the last decades of the 19th century, the first remote controlled systems appeared, mainly torpe-

dos. Some famous examples of those controlled systems are the pneumatic torpedo from John

Ericsson, the electric wire torpedos from John Louis Lay and Victor von Scheliha. Archibald

Low (creator of “radio guidance systems”) worked on guided rockets and planes during the First

World War. In 1917, he demonstrated a remote controlled aircraft to the Royal Flying Corps and

in the same year he built the first wire-guided rocket.

10
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After the formulation of the above-mentioned robotics laws from Asimov, the robotics per-

formed another important step in its conceptual formulation when Norbert Wiener dictated in

1948 the principles of cybernetics, the basis of practical robotics.

An important year for the robotics community is 1950 when Alan Turing in his paper “Com-

puting Machinery and Intelligence” stated “I propose to consider the question, Can machines

think?”. He is the creator of the Turing machine, a mathematical model that manipulates sym-

bols on a strip of tape according to a table of rules. The goal of the Turing machine is to answer

to the following questions: i) does a machine exist that can determine whether any arbitrary ma-

chine on its tape is ”circular” (e.g. freezes, or fails to continue its computational task) ii) does a

machine exist that can determine whether any arbitrary machine on its tape ever prints a given

symbol1. Turing stated that a computer, by shuffling symbols as simple as the binary code (made

only by zeros and ones), are able to replicate any mathematical deduction. Another important

contribution from the same author was the “Turing test”, a test aimed to check if a machine is

intelligent or not. Even if the test was formulated in the next years (both for problems in the

original formulation and for the definition of an intelligent machine), it gave the first definition

of an intelligent machine and enabled the community to think about what an intelligent machine

is and how it can be defined.

Thanks to the industrial and computers improvements, the numerical control machines and

teleoperated manipulators started to appear in the early years of 1950s. The former are high-

precision machines capable of performing repetitive tasks over and over again while the latter

are rigid bodies connected by joints directly controlled by a human. Just in the 1960s and 1970s,

the features of the two above-mentioned categories were merged, bringing to the first installed

industrial robot from KUKA (1973). In 1974, ABB (a Swiss company leader in building manip-

ulator robots) builds the world’s first microcomputer controlled electric industrial robot, named

IRB 6, that was delivered to a small mechanical engineering company in southern Sweden. In

the same year, David Silver designed “The Silver Arm”, a robot capable of replicating the move-

ments of the human hand. It was equipped with touch and pressure sensors that can be processed

via a computer.

The real breakthrough for the robotics world came in the 1980s, when theoretical contribu-

tions coming from control theory (linear and non-linear systems and control laws), electronics

(integrated circuits), computer science (digital computers) and mechanics gave the opportunity

to program and design robots. These robots (mainly manipulators) had a wide usage in gen-

eral industry (e.g., chemical, electrical and food industries). In the same years, the first formal

definition was given as “the intelligent connection between perception and action” [102]. This

definition is particularly important because it summarizes, in few words, the core components of

a robot. In fact, the action of a robotic system is to transfer commands to a locomotion appara-

tus (wheels, legs, propellers, crawlers) and/or to a manipulation apparatus (hands, end-effectors,

1Definition taken from https://en.wikipedia.org/wiki/Turing machine
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arms) through actuators, that animate the mechanical structure of the robot. In addition, per-

ception is achieved through sensors that can provide information about the internal state of the

robot (proprioceptive sensors) or information about the surrounding environments (exterocep-

tive sensors). The intelligent connection is demanded to a planning and control architecture that,

given the information coming from the sensors and available model of the robot, exploits the

commands to be given to the actuators. In this context, Takeo Kanade created, in 1981, the first

“direct drive arm”, a manipulator arm whose motors were contained in the robot itself, avoiding

long external cables. In 1984, Wabot-2 was released. It had 10 fingers and its aim is to play an

organ. The Carnegie Mellon University developed, in 1989, two chess playing programs (HiTech

and Deep Thought) that were able to defeat chess masters (this was a real contributions in the

artificial intelligence field). Just as anecdote, Deep Thought was the father of Deep Blue, the fa-

mous computer algorithm developed by IBM that defeated in 1996 the chess world championship

Garry Kasparov.

In 1986, Honda began its research in humanoid robotics, whose aim is to develop robots that

are able to interact with humans. This is a really relevant fact since it was the first example of

modern humanoid robots. Three years later, a walking robot named Genghis was developed from

MIT. It was famous for the way it walks. It was so famous that its walking was defined as the

“Genghis’ gait”. In the same year, Rodney Brooks and A. M. Flynn (from MIT) published the

paper “Fast, Cheap and Out of Control: A Robot Invasion of the Solar System” in the Journal of

the British Interplanetary Society. This paper makes the idea that a rover should not be a huge,

expansive robot but that it can be accessed to the average people by building many (little) cheap

ones.

In 1993, a 8-legged walking robot named Dante (from Carnegie Mellon University) was de-

veloped for descending into Mt. Erebrus, Antarctica. The idea was to collect data from a harsh

environment, similar to what it might found into another planet (its final mission was in space

robotics). However, the mission failed when, after a short 20 foot decent, Dante’s tether snaps

dropping it into the crater. In the next year, DanteII was built and it successfully descent the

Alaskan volcano Mt. Spurr. In 1994, the robot RoboTuna was built at MIT. Its aim was to study

and replicate how fishes swim. As the name suggests, it was designed to replicate the swimming

behaviour of a blue fin tuna. In the same year, the Cyberknife offered an alternative treatment in

the surgery performed by human doctors. In 1996, Human developed the P2 (Prototype Model

2) humanoid robot. It had a more human-like walking behaviour w.r.t. its predecessors. It was

also the first self-regulating, bipedal humanoid robot. The 1990s was also an important decade

for space robotics. In fact, the Sojourner rover shut down after 83 operating days (with a starting

expectation of just seven days). It did semi-autonomous operations on the Mars surface as part

of the PathFinder space mission. It was equipped with an obstacle avoidance algorithm to au-

tonomously navigate on the Mars surface. It was also able to plan motion to study the surface of

the planet. In 1998, Honda released P3, while in the next year Sony produced AIBO, a robotic

dog able to interact with humans. The first models had a so huge impact that they were sold in

12



Chapter 1. Introduction Marco Cognetti

the first 20 minutes in Japan. This robot was also used a lot in research projects. As example,

the first version of the RoboCup2 made usage of this particular robot. In the same year, LEGO

developed the MINDSTORMS robotic development line. It enables the user to build his/her own

robot by composing LEGO bricks.

In 2000, the famous ASIMO was introduced from Honda. It was able to run, walk, interact

with humans and the environment. It was also equipped with facial, voice and posture recogni-

tion. ASIMO is still a work-in-progress project and it is aimed to be a personal assistant. In 2001,

the Canadarm2 (a manipulation arm) was launched in orbit and reached the International Space

Station. In 2002, Roomba from iRobot appeared for the first time in the market, as a robotic

vacuum cleaner device. In 2003, Spirit and Opportunity rovers was launched by NASA whose

destination was Mars (the latter successfully landed on the planet surface the next year and it

is still operating). Robonaut 2 is another example of space robotics. It was the first humanoid

in space and its goal was to teach to engineers how dexterous robots behave in space. In 2005,

Cornell University created the first robot that is able to self-replicate. It is made by a set of cubes

that are able of attaching or detaching and the robot is able to create copies of itself. In 2007,

Aldebaran Robotics released NAO, a small humanoid used also in the RoboCup challenge from

2008 to the last competition. NAO will be described in details in 4.4.1, since it is the main robotic

platform used in this thesis.

Self-driving cars are another example of nowadays increasing field of robotics application.

Google is currently working on this topic and there are some prototypes of autonomous cars that

are driving in real-life cities.

There are other important dates and facts that should be mentioned in this brief overview of

the robotics history. As example, there is a huge amount of omitted facts regarding aerial vehicles

and medical robotics. Since this thesis is focused on humanoid and manipulator robots, the idea

was to privilege historical details about these two kinds of robots. However, a complete historical

description is out of the scope of this thesis. The aim of this description is to give an idea of how

the concept and the features of a robot from the society changed over the years. Just few decades

ago, robots were just seen as machines used in factories and out from people lives. Nowadays,

they are starting to move out from factories. Some examples are the above-mentioned Roomba

vacuum cleaner robot and the Parrot ArDrone, an aerial vehicle available on the market. For

this reason, it is really important nowadays to build robots that are able to autonomously plan

and execute motion, given a task. This can be the first, rough definition, of the motion planning

problem, core topic of this thesis. In other words, the problem we want to face in this thesis is

how to generate the movements for a robot that must execute an assigned task (e.g., opening a

door).

Since this thesis faces the motion planning problem using different robotics platforms, it is

important to define the different types of existing robots.

2Currently its website is: http://www.robocup2015.org/
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Figure 1.1 Some examples of manipulator robots. From left to right: an industrial robot from

ABB, the KUKA LWR and the KINOVA JACO arm.

1.1 Manipulators

A manipulator can be defined as “a sequence of rigid bodies (links) interconnected by means of

articulations (joints)” [104]. In this section, as well in the next ones, we give a brief overview

about the fundamental principles of robotics. An expert can easily skip this chapter while a

reader can find more details about this topic in [102, 104].

A manipulator is composed by an arm that provides mobility, a wrist that gives to it the

dexterity and an end-effector to fulfil the task given to the robot. Some examples of this kind

of robot is given in Figure 1.1. Its structure is made by the serial of open kinematic chains. An

kinematic chain is referred to open when there is a unique sequence of links that connects the

two terminals of the chain. On the contrary, the chain is named closed when there is a loop in

the chain itself.

The movements of a manipulator (or a robot as general reference) are possible through joints,

i.e. the articulation between two consecutive links. Each joint provide to the robot a Degree

Of Freedom (DOF). There are two main joint types: prismatic and revolute. A prismastic joint

provides a translational motion between the two consecutive links, while a revolute joint provides

a rotational motion between the two consecutive links. In an open kinematic chain, the number

of joints and DOFs are equal each other, while they are not equal in case of a closed kinematic

chain (in details, the DOFs are less than the number of the joint due to the closure constraint).

The workspace of the robot is the portion of the environment that is reachable from the end-

effector of the robot. It heavily depends on the structure of the robot, as well from where the

joints are placed on the robot itself.

1.2 Mobile robots

A mobile robot is an automatic machine that is capable of locomotion. The industrial robots

(like the ones presented in the previous section) are fixed-based robots capable of very accurate

and repetitive capabilities. Their main limitation relies in the fact that they have a very limited

workspace. On the contrary, mobile robots are able to roam freely in an unstructured, uncertain
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Figure 1.2 Some examples of mobile robots. From left to right: the Roomba vacuum cleaner

robot from iRobot, the Spirit rover from NASA and the legged BigDog robot from Boston Dy-

namics.

and dynamic world. In other words, a mobile robot has a mobile base that enable it to freely

navigate in the environment. Some examples of mobile robots are depicted in Figure 1.2.

A mobile robot can be used both in service (if the environment is structured) and field robotics

(if the environment is unstructured). In the first category, robots are used for transportation (e.g.,

movements in factories), customer assistance (e.g., autonomous guide in museum) or cleaning

(e.g., the Roomba robot depicted in Figure 1.2). In the other category, a mobile robot is used for

exploration (e.g., the rovers used in space robotics), monitoring (e.g., aerial vehicles are used for

monitoring forests and seas), rescue, agriculture, transportation, entertainment (e.g., the ArDrone

from Parrot).

We already mentioned that the main difference between fixed-base and mobile robots is the

ability of the latter to move and explore the environment. This ability comes with a price that is

the spreading of the following problems

• localization: the robot should be able to localize in the environment it is exploring using

or not an initial guess or a map;

• planning: plan the motion of the robot by defining a path or a trajectory, respectively;

• motion control: control the robot to track the desired behaviour defined in the previous

point;

• perception: perceive the environment from sensors and process data coming from those

sensors.

Figure 1.3 summarizes the main blocks needed to control a mobile robot. Each block correspond

to the solution of the above-mentioned problems.

As it is evident from Figure 1.2, there are several different kinds of robots that can be defined

as mobile robots. In my opinion, they can be group in the following main categories

• underwater robots;

• aerial robots;

• wheeled robots;
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Figure 1.3 The principal blocks needed to control a mobile robot: localization, planning,

perception and control (courtesy of Oriolo’s slides).

• legged robots.

Even if each of the above-mentioned group are really interesting and promising from a research

point of view (and it would be worthwhile to describe all of them in details), we will focus on

the last two categories, since the planning algorithms presented in this thesis will be applied on

these kinds of robots.

1.2.1 Wheeled robots

A wheeled robot is typically formed by a main body (or chassis), and some wheels. There are

three types of wheels that a robot can be equipped with: fixed wheel, steerable wheel, caster

wheel. The fixed wheel can rotate about a single axis and it is usually not actuated. The wheel

is rigidly attached to the robot and its orientation is constant with respect to the body whose it

is attached. The steerable wheel has two main rotation axes: one is the same as the fixed wheel

while the second is orthogonal. This second rotation axis allows the wheel to have a different

orientation w.r.t. the main body of the robot. The caster wheel has two axes of rotation, as the

steerable wheel. Unlike the steerable wheel, the vertical axis does not meet the center of the

wheel but is has an offset. The latter enables the wheel to automatically rotate when the robot is

rotating, letting the wheel to quickly align with the direction assumed by the main body of the

robot.

By combining these wheel types and modifying their positions along the robot’s body, several

kinematic structures can be defined. The most famous and common one is the differential drive,

where there two fixed wheels (typically actuated) that share the same axis of rotation. The wheel

set is completed by a caster wheel (typically not actuated) whose main contribution is to provide

statical balance to the structure. As example, please refer to Fig. 1.4. An alternative kinematic

structure is the car-like. It has two fixed wheels on a rear axle and two steerable wheels on a front

axle. It embeds two motors: the first (as in the differential drive scheme) is the one that provides

traction while the second steers the two wheels in the front. The last structure we would like to

mention is the omnidirectional one. In this kinematic structure, three wheels are placed around a
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Figure 1.4 Examples of different wheeled robot types. From left to right: differential drive,

car-like and omnidirectional wheeled robot.

circle, having 120◦ of angle offset. There is one motor in each wheel that provides to the structure

the possibility to move instantaneously along any Cartesian direction. There exist other types of

wheels. A remarkable one is the Macanum (or Swedish) wheels, as the ones in rightmost robot in

Fig. 1.4. They consist in a fixed wheel with passive rollers, placed around a circular rim. The axis

of rotation of each roller has an inclination angle of 45◦ w.r.t. the plane of the wheel. Usually,

three or four Swedish wheels are employed for a robot, providing omnidirectional capabilities to

the robot itself.

In the rest of this thesis, we will refer to the differential drive as the kinematic structure for a

wheeled robot.

Any wheeled vehicle is subject to kinematic constraints that reduces its mobility while leav-

ing the possibility to reach any point in the workspace of the robot by composing appropriate

maneuvers. As example, let think about a driving car. Everybody knows that a car cannot move

along the orthogonal to its forward direction. For this reason, it is important to analyze in details

the constraints that apply to a wheeled robot.

Let define q as the configuration of the robot and as C (here Rn) its configuration space. The

robot will be subjected to several constraints that can be summarized into the form

hi(q) = 0∀i ∈ [1, . . . , k < n].

These constraints are called holonomic or integrable constraints. Their effect on the robot dynam-

ics is to reduce the space of accessible configurations. A trivial solution to solve the holonomic

constraints would be to use the implicit function theorem for expressing the k coordinates in

function of the remaining n− k coordinates. Although this is a valid, this is a local solution and

it might introduce singularities.

There is another type of constraints that involves both the coordinates and its derivative (ve-

locity). It can be expressed as

ai(q, q̇) = 0∀i ∈ [1, . . . , k < n].

These kind of constraints are called kinematic and they constraint the admissible motion of the

robot by reducing the set of velocities that can be attained at each configuration. Each constraint
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is usually expressed in Pfaffian form

aT
i q̇ = 0,

with ai assumed to be smooth. Stacking the single constraint, the complete Pfaffian form is

AT q̇ = 0.

It is obvious that if a robot has k holonomic constraints, then it embeds also k kinematic con-

straints
dhi(q)

dt
=

∂hi(q)

∂q
q̇ = 0, ∀i ∈ [1, . . . , k < n].

It is important to underline that the opposite is not true in general: k kinematic constraints do

not correspond to k holonomic constraint since some of those can be not integrable or non-

holonomic. A non-holonomic constraint modifies the mobility of the robot, but in a different

way w.r.t. a holonomic constraint. To convince the reader, if a Pfaffian constraint is integrable,

it can be expressed as hi(q) = c, with c an integration factor. This means that there is a loss of

accessibility in the configuration space, since the motion in the configuration space C is limited

to a particular level surface of the function hi. In case the function hi(q) is a dimension d, the

surface has dimension n − d. On the contrary, if the constraint hi(q) is non-holonomic, the

velocity are constrained to be in a subspace of dimension n − d, where d is the dimensionality

of the constraint. In this case, there is no accessibility loss in the configuration space for the

robot but the number of DoFs are reduced to n− d while the generalized coordinate are still the

same as in the original problem and they cannot be reduced even in a local representation of the

configuration space. In other words, if a system has k non-holonomic constraint (h(q)) it has

access to the whole configuration space C but its velocity is constrained to lie in a subspace of

dimensionality n− k, i.e. the null space of h(q).

Assume to have a system with k Pfaffian constraints. As stated before, this means that the

system have access to the whole configuration space C but its velocity are constrained in a sub-

space of dimensionality n− k, i.e. the null-space of AT (q). The same system can be expressed

in the following form

q̇ =

n−k
∑

z=1

gz(q)uz = G(q)u,

with gz(q), z ∈ 1, . . . , n − k is a base vector of the null-space of AT (q) and u is the input

vector.

As example of application of what we presented up to this point, there is the well-known

unicycle model. It is composed by a single orientable wheel. Its configuration q is defined as

q = [x y θ]T where (x, y) are the Cartesian coordinates of the contact point between the wheel

and the ground (in world frame) while θ is its heading w.r.t. the x-axis. It has a single constrain
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(named pure rolling constraint) that is expressed as a Pfaffian form

ẋ sin θ − ẏ cos θ = [sin θ − cos θ 0] q̇ = 0. (1.1)

In simple words, this constraint imposes a zero velocity for the contact point along the orthogonal

plane. This constraint is obviously non-holonomic, since it does not imply any loss of reachability

for the system but it constrains the velocity that can be apply on the system itself. The same

expression in eq. (1.1) can be rewritten as
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, (1.2)

that is the kinematic model of the unicycle. Moreover, the input v and ω has a physical inter-

pretation. The former is the driving velocity while the latter is the angular velocity along the

vertical axis of the contact point, respectively. Computing the Lie bracket over the two columns

of the last matrix in eq. 1.2, it can be demonstrated that these two columns and their Lie bracket

are linearly independent. Then, the unicycle is controllable with a degree of non-holonominity

equal to 2.

If one looks to the unicycle model in a strict manner (i.e., a robot composed by just a wheel),

it is obvious that it has a real serious problem regarding its stability. However, there are many

robotic system whose kinematic model is equivalent to a unicycle. The differential drive pre-

sented in this section is an example of such systems. Regarding this robot, denote with (x, y)

the position of the midpoint between the wheels w.r.t. a world reference frame and denote with θ

the common orientation of the fixed wheels. The kinematic model in eq. 1.2 applies also in this

case, if the inputs are expressed are

v =
r(ωR + ωL)

2
ω =

r(ωR − ωL)

d
,

where ωR and ωL are the angular speed of the left and right wheel, respectively. In addition, d

is the distance between the wheels centres and r is the radius of the wheels.

This model will be useful at the end of this thesis, when the problem of the rearrangement

planning is presented. The reader is referred to [104] for further details about the kinematics of

mobile robots.

1.2.2 Legged robots

A legged robot, as the name suggests, is a mobile robot equipped with a variable number of legs.

Even if bipedal legged robots will be the main topic of this thesis, it is important to mention

that there are other types of legged robots. In particular, quadrupedal robots and hexapod robots
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Figure 1.5 Examples of different legged robots. Left: quadrupedal robot; right: hexapod

robot.

are one examples of those, as depicted in Figure 1.5. The main difference between the above-

mentioned kinematic structures and a bipedal robot is in the way they maintain balance during

walking. Having a greater number of legs, they have a wider choice of foot placing to maintain

static balance.

In this thesis we will focus on bipedal robots and, in particular, on humanoid robots. A

humanoid robot is, by definition, a robot whose shape resemble a human body. This kind of

robot is attracting more and more attention by the robotics community for a variety for reasons.

The first is an historical reason: humans were always attracted to create a human-like robot. The

reader can be convinced of that thinking about movies and plays. Starting from the Capek’s

play “R.U.R.” mentioned in the previous section to some movies such as “Bicentennial Man”

(directed by Chris Columbus, 1999) and “I, Robot” (directed by Alex Proyas, 2004)3, it is clear

that, if one asks to a human how he/she imagines his/her ideal robot, there is an high probability

that he/she will reply by designing a humanoid robot. Moreover, it is well-known that people are

more inclined to accept a human-like robot w.r.t. a machine-like one (e.g., a manipulator or a

wheeled robot). In my opinion, this is due to the fact that people, unconsciously, find a “common

point” in the physical appearance of the robot and, for this reason, they are more prone to accept

it in every-day life activities. Finally, humans are social animals that generally like to observe

and interact with one another. Then, a robot whose appearance looks like a human has an higher

probability for a social interaction, if compared to other robotic platforms.

Second, a humanoid robot might be able to accomplish, in principle, every task that a human

can fulfil. In addition, they can be employed in activities where other kinds of robots cannot be

used. Consider the case where a robot should perform several tasks in an airplane cargo having

different levels, in an environment where the robot has to share its workspace with humans (that

will be treated as research case in this thesis). Here, a legged robot might outperform other

robotic platforms since it can handle stairs in a human-like way, without introducing any external

infrastructure such as ramps that would be needed for a wheeled robot.

Third, humanoid robots are challenging from a research point of view due to the high number

of DOFs with which they are equipped with. They are typically redundant in performing a task

and the management of the redundancy is fundamental to achieve a human-like accomplishment

3There would be hundreds of other movies that confirm the same concept.
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Figure 1.6 Examples of different humanoid robots. Left to right: Asimo from Honda; Atlas

from Boston Dynamics; HRP-2 from METI; REEM-C from PAL Robotics; REEM from PAL

Robotics.

of the task. Furthermore, the maintenance of the equilibrium during locomotion should be en-

sured at all time and it is not a trivial problem, mostly if compared with other robotic platform

where the problem of balance is not so central. With that we do not want to assert that the hu-

manoid is the best robotic platform but that there are cases in which it is more suitable to use

these robots, as in the airplane scenario described above.

Today, there exist humanoid robots having different sizes and shapes. Even the number of

DOFs with which they are equipped with can vary but there are some common points that defines

what is a humanoid robot: a head, two arms and a torso. Typically they have also two legs, like

the first four robots depicted in Fig. 1.6, but there is a fuzzy line in the definition of a humanoid

robot. In fact, someone defines as humanoid robot also the last robot robot in Fig. 1.6 where

the legs are replaced by a mobile platform. In this case, the locomotion problem is completely

different and the balance constraint (formally defined in the next chapter) is easier to be solved,

since the Center of Mass (CoM) of a mobile base is by definition in the support polygon defined

by the base itself. Then, a mobile robot is typically stable (at least statically). In this thesis we

will focus on legged humanoid robots.

The rest of this thesis is organized as follows.

• Chapter 2 is devoted to the introduction to the motion planning problem, core of this thesis

while Chapter 3 introduces the sampling-based motion planning methods;

• Part I describes a framework for solving the task-constrained motion planning problem for

a humanoid robot. In particular, Chapter 4 describes the basic version of the planner, while

Chapter 5 presents a modified version of the planner that generalizes the previous one and

allows a generic representation of the assigned task (a task can be formalized even as the

combination of tasks of different nature, e.g., manipulation and navigation tasks). Finally,

Chapter 6 uses the planner in Chapter 5 in a framework that is able to deform the task, if

it is needed;

• Part II handles the case in which the humanoid robot dows not have the time for running

an offline planner, as the ones in Part I. Here, an evasive motion should be executed as fast
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as possible, in order to prevent a collision with a moving obstacle (e.g., a human). This is

a basic level of safety with which each humanoid should be equipped with;

• Part III is devoted to solving the rearrangement planning problem. This problem is par-

ticularly important in case the robot has to fulfil manipulation tasks. Robot-centric and

object-centric primitives are combined in order to find fast solutions to a variety of sce-

narios;

• Chapter 9 ends the thesis with some considerations about the proposed planners and some

hints about future works.
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Chapter2
Motion planning

The main problem faced in this thesis is the motion planning problem. The chapter starts with

a brief introduction about this problem. Then, its particularization in presence of a task is pre-

sented. We will refer to this as task-constrained motion planning problem. Finally, the case of

humanoid robots is discussed. The reader is referred to [76, 79, 104] for additional information

about the concepts described in this chapter.

2.1 The motion planning problem

Informally, the motion planning problem can be defined as planning the motion of the robot

in such a way it is able to fulfil an assigned task while avoiding collisions with obstacles that

are in the environment. In this really rough definition of the planning problem, there are some

keywords that should be analized in more details. First, a robot operates in a workspace where

there might be obstacles. In particular, obstacles might be static (i.e., they do not move during

the execution of the motion), moving (i.e., they move during the execution of the motion but their

motions are known in advance by the motion planner) and dynamic (i.e., they move during the

execution of the motion and their motions are not known in advance by the motion planner). As

example, consider the scenario in Figure 2.1 and assume one wants to plan the motion of the

robot on the left. In this scenario, there are static obstacles (e.g., central body of the robot and its

vision system), moving obstacles (e.g., the other robot might move in a predefined way such that

it can be taken into account in a planning stage) and dynamic obstacles (e.g., the human whose

motion is not predictable). In such a situation, the robot should plan its motion in such a way

it is able to accomplish a task (e.g., pick and place objects in the example of Figure 2.1) while

avoiding collisions with all the obstacles in the environment.

In case there are only static and moving obstacles in the environment, the planning is referred

to as off-line planning. In case there are also dynamic obstacles, then the planning is said to be on-

line. In the former case, the robot can perform all the computations before executing the motion;

in the latter case, the planning should be performed on-line, by means of on-board sensors. Just
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Figure 2.1 Example of a scenario where the motion planning is fundamental for fulfilling the

pick and place task.

as reminder, in this thesis, we will first face the off-line motion planning problem and then we

will extend our framework towards the on-line motion planning.

Moving to a more formal definition, a robot R is made by a single rigid body (as in the case

of a mobile robot) or by a multiple kinematic chains whose base is fixed (as in the case of a

manipulator) or mobile (as in the case of a humanoid robot). The robot moves in a Euclidean

workspaceW . The description of the environment is completed by the obstacle set O = {O1 ∪

· · · ∪ Op}, with p the number of obstacles in the environment. The strongest assumption in

motion planning is that the geometries of the robot R and the obstacles O are assumed to be

known in advance. Moreover, even the poses of the obstacles in O w.r.t. W are supposed to be

known. Even if these assumptions seem confining, the information required are retrievable via a

scan of the environment, that it is possible to obtain through exteroceptive sensors of the robot.

In other words, the motion planning assumes that there exists an external module that provides

the information described above, but how to build this module is out the scope of this thesis.

In its basic formulation, the motion planning problem can be described as follows: find a

path (defined as a sequence of postures) for a robot R that has to move from a given initial to

a given goal posture of R in W , while avoiding collisions between R and O. In case a path

does not exist, report a failure. This formulation of the motion planning problem is known in

literature as piano mover’s problem. An implicit assumption of this problem is that the robot is

not subjected to any kinematic constraint, i.e., it is a free-flying system. Obviously, the above-

mentioned formulation has several assumptions that may be not applicable for a real system: first,

the free-flying assumption does not hold in case of non-holonomic constraints, such as for mobile

robots. Second, manipulation tasks cannot be included in this formulation, since a contact with

obstacles is required in order to manipulate objects in the environment. Finally, the assumption

that the robot is the only entity that is moving in the environment limits the formulation to static

obstacles, without having the opportunity to consider moving obstacles (such as humans or other

robots). All these assumptions are introduced to reduce the problem to a pure geometrical path

planning problem. In order to generalize the previous formulation, the concept of configuration

space should be introduced.
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2.2 Configuration space

The configuration space is the set of the possible transformations that could be applied to the

robot. Usually, it is composed by the Cartesian product of the following spaces

• Cartesian coordinates: they describe the Cartesian position of selected points on the robot;

• angular coordinates: they describe the orientation of bodies of the robot.

As example, the configuration space for a fixed-base manipulator havingn joints can be defined as

a subset of (R3×SO(3))n. If the dimension of the configuration space is n, then a configuration

can be defined as q ∈ R
n. However, this is valid just locally. In fact, the configuration space

C can be more complex than a Euclidean space. When the configuration of a robot includes

angular coordinates (as in the case of a humanoid), its configuration space is properly described

by a manifold, i.e., a space in which a neighbourhood of a selected point has a correspondence

with R
n through a homeomorphism.

As example, assume one wants to define a configuration space for a 3D rigid body (SE(3)).

We choose this example since it will be the main type of entities we will treat in this thesis.

The configuration space is R
3 × RP

3. The reason is straightforward: three dimensions from

translation; three dimensions from rotation. The real challenge is how to define the representation

for the angular part. A first choice would be to select three angles to represent the orientation,

such as roll, pitch and yaw. This choice is convenient since it is easy to describe and visualize

a kinematic chain using this parametrization. Furthermore, it is efficient from a computational

point of view, thanks to linear algebra libraries. However, this comes with a price. As everybody

knows, any Euler angle representation has a singularity, i.e., there exist multiple angle values that

refer to the same rotation matrix. These problems destroy the topology, that might bring to both

theoretical and practical issues. Obviously, other choices are possible, such as unit quaternions.

It is a four-dimension vector with the constraint that its norm is equal to 1. This representation

is indeed more general than the Euler angles one but it is not unique. If one denotes with h

the quaternion and with R its rotation matrix, it can be proved that R(h) = R(−h). In other

words, this means that a rotation of θ about the axis d is equivalent to a rotation of 2π− θ about

the axis −d. Fortunately, this is the only problem is using quaternions, that can be fixed by the

identification trick. As mentioned before, a quaternion is an element of R4, with the unitary

constraint. This projects the quaternion on S
3. Using identification, declare h ∼ −h for all unit

quaternions. With this assumption the antipodal points1 of S3 are uniquely identified. It can be

proved that, if the antipodal points are known, RPn ∼= S
n/ ∼. Finally, SO(3) can be defined

as the set of all lines through the origin of R4. As summary, the previous discussion was for

saying that SO(3) can be parameterized by picking points in S
3. This is an analogy with SO(2)

1To give an idea of what an antipodal point, let focus on the sphere case. The antipodal point of a point on the

surface of a sphere is the point which is diametrically opposite to it, i.e., it is situated by intersecting the line drawn

from the one to the other passes through the center of the sphere and forms a true diameter. Source: Wikipedia.
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where the same concept can be applied by picking points in S
1 and by ignoring the antipodal

identification problem for SO(3).

The reason for which the quaternion representation was introduced relies in its ability to

compose transformations, that is really simple. Then, quaternion multiplications can be used

instead of matrix computed (even more efficient from a computational point of view). Having

defined a valid representation for SO(3), the derivation of a representation for SE(3) is trivial.

A matrix in SE(3) is an homogeneous matrix in the form

(

R v

0 1

)

,

with R ∈ SO(n) and v ∈ R
n. Since it is well known that SO(3) ∼= PR

3 and the translation

component can be chosen freely, the C-space (that is the Configuration space) for a rigid body

in 3D (that is translates and rotates in R
3) is defined as

C = R
3 × PR

3 ,

that is a manifold of dimension six. As one might notice, the dimension of this manifold is equal

to the number of DOFs of a free-flying system that navigates in a three-dimensional space. Obvi-

ously, the configuration space can be generalized in case of multiple bodies as C = C1, . . . ,×Cm,

with m the number of rigid bodies that composes the kinematic chain that one is considering.

Note that there is no general rule for deriving the C-space for a rigid body and the definition of

the configuration space has to be faced case by case. In fact, the whole range can be not reach-

able for some kind of joints. As example, consider a revolute joint, whole range is rarely equal

to [0, 2π). If this happen, the C-space is homomorphic to R
1 instead of S1, obtaining a similar

situation than in the roll, pitch, yaw angles, that is the same arm configuration can be expressed

in multiple ways. In this case, the configuration space of a revolute joint is typically R, as we

will use in the next chapters.

2.3 Configuration space obstacles

Having defined the configuration space C, we can turn our attention to the obstacles. In particular,

the configuration space obstacles CO is the image of the obstacles, defined in the workspaceW

of the robot, in the configuration space C. In other words, it is the set of all the configurations of

the robot in which it collides with itself (self-collisions) or with an obstacle in the environment

W . Assume to have an obstacle Oi, i = 1, . . . , l inW . The image COi of the obstacle in C is

given by

COi = {q ∈ C : R(q) ∩ Oi 6= ∅} ,
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where we recall that R is the robot (composed by a single rigid body or a set of rigid bodies

R = R1, . . . ,Rn connected each other in a kinematic chain) and R(q) is the kinematic map

(direct kinematics) that projects a configuration of the robot in the workspace. Note that, in

the previous definition, we implicitly assumed that each obstacle is closed (i.e., it includes its

boundaries). The extension to the multiple obstacles case is pretty straightforward

CO = ∪li=1COi ,

that defines completely the C-obstacle region, with l the number of obstacles. The part of the

space that is not included in CO is called free space and it is formally defined as

Cfree = C − CO =
{

q ∈ C : R(q) ∩
(

∪li=1Oi

)

= ∅
}

,

that is the portion of the configuration space where there are no self-collisions nor collisions with

obstacles. Even in the case in which C is a connected space, there is the chance that Cfree is not

connected, due to the occlusions provided by the C-obstacle region. In the canonical problem

introduced before, the assumption of a free-flying system means that it is able to follow any path

in Cfree.

Thanks to the introduction of the new concepts, it is possible to introduce a more formal

definition of the canonical motion planning problem. Given a starting qstart and a goal qgoal

configuration (they can be also provided by inverse kinematics of postures of the robot R in

W), the aim of the motion planning is to define a collision-free path that lies entirely in Cfree.

Otherwise, the motion planner should report a failure.

Even if the previous definition of the C-obstacle region seems straightforward, it is really

hard to have an explicit representation of this space in real applications. In fact, there is no

general algorithm that is able to construct CO. In the case in which the obstacles are polygons,

the star algorithm can be used. Actually, this algorithm works in 2D and it assumes that the

obstacles are convex. It can be extended to the non-convex case since a non-convex object can

be approximated as a composition of multiple convex shapes. More details about this approach

can be found in [79]. We mentioned this algorithm to assert that, even if there are works whose

aim is to build an explicit representation of CO, it is really hard in general to create an explicit

representation for CO, due also to the computational effort that this representation requires. In

addition, even assuming that a representation exists, it would be not valid anymore in case the

robot or an obstacle moves, leading to the necessity of building from scratch a new representation.

For this reason, a complementary approach is used in this thesis (as in the majority of approaches

used today in the literature): use a collision-checker. It will be described in the next chapter.
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Chapter3
Sampling-based motion planning

The aim of this chapter is to introduce some concepts about the sampling-based methods for

motion planning. The structure and the main concepts are taken from [76, 79, 104]. Then, the

reader is referred to these books for further details. As for the previous chapter, the reason for

which we mention these concepts is to create a self-contained thesis.

The main idea under the sampling-based motion planning algorithms relies in avoiding the

explicit construction of CO. Instead, they sample configurations in the configuration space C,

checking if they are in collision or not through repetitive calls to a collision checker. The idea

is that, by iteratively sampling C, a finite set of collision-free configurations is found. In this

set, there can be found several paths that solve a given instance of the motion planning problem.

This approach is in contrast with the one described at the end of the previous chapter, where an

explicit representation of CO was built. The sampling approach was proved to be more effective

in real applications not limited to robotics but also to manufacturing and biological applications.

In these cases, it is impossible to build an explicit representation of CO, due to its complexity

and for the huge amount of time needed for that (even in the simplest cases). This is the reason

for which, in the last decades, sampling-based algorithms have been widely used.

This comes with a price that is the completeness of the algorithm. An algorithm is said to be

complete if, for any input, it tells if a solution exists in a finite amount of time. In other words,

it means that a solution should be returned in a finite amount of time, assuming that a solution

exists. In the sampling-based approaches, it cannot be ensured. For these algorithms, we talk

about resolution completeness for deterministic approaches while we said that an algorithm is

probabilistically complete if the algorithm is probabilistic. For the former, we mean that the

algorithm will find a solution in a finite amount of time, if it exists; in case a solution does not

exist, it may loop forever. On the other side, a probabilistically complete algorithm will find a

solution with a probability that goes to one as the time approaches infinity. In this thesis, we will

propose probabilistically complete algorithms. Fundamental for these algorithm is the concept

of distance in the configuration space that measures the distance between two configurations.

In case the C-space is R
n, a trivial choice is to define the distance as the Euclidean distance.
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Anyway, other choices are possible, even for Rn. A metric space (X, d) is a topological space

X embedding a metric function d : X ×X → R such that

• d(x1,x2) > 0, ∀x1,x2 ∈ X;

• d(x1,x2) = 0 ⇐⇒ x1 = x2;

• d(x1,x2) = d(x2,x1), ∀x1,x2 ∈ X ;

• d(x1,x2) + d(x2,x3) ≥ d(x1,x3), ∀x1,x2,x3 ∈ X.

Due to the generality of this definition, multiple choices are possible for the metric function. Just

as reference, one important and widely used metrics is the Lp

d(x1,x2) =

(

n
∑

i=1

‖x1,i − x2,i‖
p

)1/p

,

where xj,i is the ith component of xj . Changing the value of p, some of the most famous metrics

can be obtained. In fact, if p is set to 2, the Euclidean distance is obtained; if p is 1, the Manhattan

distance is the result; finally, if p is ∞, the L∞ is the metrics that one wants to use. A nice

property of the metric functions is that they nicely generalized in case the C-space is composed

by several subspaces. In fact, it can be composed by the Cartesian product. As example, assume

the C-space is composed by the union of two metric spaces (X, dx) and (Y, dy). The general

metric function (Z, dz) can be chosen as

dz(z1, z2) = α dx(x1,x2) + β dy(y1,y2) ,

where zi = (xi,yi) and α, β > 0 are weighted scalars, and xi ∈ X and yi ∈ Y, i = 1, 2.

As before, consider the case of SE(3) since it will be the space most used in this thesis. The

main challenge here is to define a proper metric function for the orientation part, i.e. to define a

proper distance function for SO(3). In case the orientation is represented by quaternions, note

that there is the identification problem, as discussed in the previous chapter. Recall in fact that

the unit quaternion lies in a subset S3 of R4. Anyway, a metric defines for S3 will not be valid for

the quaternion case, due to the identification problem of the antipodal points. A possible choice

for this metric is

d(h1,h2) = min {ds(h1,h2), ds(h1,−h2)} , (3.1)

where ds(h1,h2) = cos−1(a1a2+ b1b2+ c1c2+d1d2), hi = (ai, bi, ci, di) is the ith quaternion

and the reason for which there is the min term is due to the antipodal point constraint.

Having defined a distance function for SO(3), we can turn our attention to its definition in

SE(3). A trivial extension would be to use eq. (3.1) for the orientation component and another

metric for R3, introducing weights. Even if that is correct, it means that one has to tune these

weights. Other choices are possible, as the ones we will propose in the next chapter of this thesis.
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3.1 Single-query versus multi-query algorithms

First, the sampling-based algorithms can be grouped into two main categories

1. multi-query algorithms;

2. single-query algorithms.

In a single-query algorithm, the motion planning problem is solved from scratch every time

the algorithm is invoked. In other words, given a starting qstart and a goal qgoal configurations,

the motion planner searches for a solution, without having any information from previous runs

of the algorithm. For this reason, these algorithms are suitable for situations in which one wants

to solve the problem for a particular choice of qstart and qgoal. Then, it is clear that any form of

pre-computation is not useful. The main advantage in using this kind of algorithm relies in the

speed of convergence, usually faster than multi-query algorithms. On the other side, the main

disadvantage is the fact that it has to start from scratch when finding a new solution; in case it has

to be done for the same environment, it might be not efficient. The Rapidly-exploring Random

Trees (RRTs) [78] are one example of such algorithms. They will be used in the next chapter, for

solving the motion planning problem for humanoids.

On the contrary, a multi-query algorithm is used when several calls to the same motion plan-

ning problem has to be solved. Since one knows a priori that the motion planner has to be invoked

more than one time on the same robot model and the same environment, it makes sense to invest

some time in creating a sort of “preprocessing” information. In this way, future queries will be

answered efficiently. The main idea is then to solve the problem in two phases: in the first phase,

called learning phase, a roadmap is built; in a second phase, also referred to as query phase, a

given a couple of nodes qstart, qgoal is connected to the roadmap. A path is then found, since

the built roadmap is connected and a path can be found that connects qstart and qgoal. This

approach is known in literature as probabilistic roadmap. More in details, the learning phase

consists in randomly sampling the C-space and checking if these configurations lie in Cfree. At

each iteration, a random sample qrand is extracted and checked for collisions. In case it lies in

Cfree, it is attempted to be connected in the roadmap to its neighbours1 through a local planner.

As example, a really simple local planner consists in connecting two nodes by a straight line and

checking if this line lies in Cfree (this planner is valid only in case no kinematic constraints act on

the robot). Once the roadmap is built, a pair qstart, qgoal is given. The query phase then consists

in connecting those configurations to nodes of the roadmap. To this aim, the algorithm searches

for neighbours, that are listed in increasing order of distance w.r.t. qstart (resp. qgoal). The local

planner is again invoked to connect one configuration in this list and qstart (resp. qgoal). If a

valid path is found, both for the connection of qstart and qgoal to the roadmap, then a solution for

the motion planning problem is found. The main advantage using a multi-query algorithm relies

1A neighbour can be identified as a node in the roadmap whose distance is less than a predefined threshold.
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Figure 3.1 An example of task-constrained motion planning problem. The robot has to open

a cabinet. Courtesy of [8].

in the roadmap, that enables to find quick solution for future queries. The main disadvantage is in

the learning phase, that needs time to build the roadmap. The density of the roadmap is another

key point. If it is too dense, the path search in the query phase may be not so trivial and might

need time. On the other hand, the more sparse it is, the less classes of homotopy paths are given

as output. Both RRTs and probabilistic roadmaps are probabilistically complete.

In this thesis, we will focus on single-query algorithms since we want to extend the proposed

approaches towards the on-line case, where the environment is highly dynamic.

3.2 Task-constrained motion planning

Here, the motion planning problem defined in the previous sections is particularized in the case

in which there is an explicit task the robot has to fulfil. This problem is referred to as Task-

Constrained Motion Planning problem (TCMP in the rest of this thesis). As example, consider

Figure 3.1, where a humanoid robot has to open a cabinet. In this case, a trajectory for the right

hand of the robot should be defined and tracked.

Formally, a TCMP problem can be defined as generating the motion for a robot that should

satisfy some task space constraints (e.g., moving the right hand along a predefined trajectory

in Figure 3.1) while avoiding collisions with parts of itself (self-collision) or with workspace

obstacles. In this problem, the robot is usually redundant w.r.t. the task that it has to accomplish.

Just for sake of completeness, a robot is said to be redundant w.r.t. a task if its number of DOFs

n is strictly greater than the dimension of the task m. Obviously, if the robot is non-redundant

(n = m), the motion planning is not needed, since there is just one way to fulfil the task. In this

case, a standard Jacobian-based inverse kinematic scheme solves the problem. However, there

is no way to modify the joint motion in case of collisions, since there is just one joint motion

that fulfil the task. For this reason, we will assume, here and in the following, that the robot is

redundant w.r.t. the task it has to fulfil.

Up to the author’s knowledge, the first explicit reference to a TCMP problem is in [92] where

the MPEP (Motion Planning along End-effector Paths) problem was introduced for redundant

robots. Note that the anachronisms MPEP and TCMP refer to the same planning problem. Here

and in the following, we will use TCMP, to be consistent with the rest of the thesis. At the very
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Figure 3.2 An example where a pure kinematic control is not able to solve the TCMP problem

while a motion planning approach does. (left) The planning problem with the desired trajectory

for the right hand (red). (center) Final solution of the kinematic control. (right) Final solution

of a motion planning algorithm.

beginning, the TCMP problem was tackled and labelled as special case of redundancy resolu-

tion. An example is in [101] where kinematic schemes are used to solve the problem. Even if this

might sound trivial, it is important to underline that a pure kinematic scheme is not suggested for

facing the TCMP problem. In fact, it is inherently local and only suited for generating reactive

behaviours. Moreover, it has no backtracking capabilities and it may fail in finding a solution for

complex problems. To convince the reader, consider the scenario in Figure 3.2. In this figure, the

right hand of the humanoid robot is constrained along a predefined trajectory, depicted as a red

line. Using a kinematic control, the robot enters into the black box without having any opportu-

nity to move out from it, since the task will constraint the robot to move forward (in addition, the

robot cannot overcome the lateral obstacle with a step due its locomotive limitations). The result

is that the robot is not able to complete the task, even stretching its arm. On the other side, this

problem is solved by a motion planning algorithm, as in the right of Figure 3.2. The result is that

the robot completes the task by taking some lateral steps. Using really rough words, the motion

planner explores multiple paths, finding one that fulfils the task, embedding also backtracking

capabilities. This is the real reason for which we will focus on motion planning algorithms in

this thesis. Another approach for dealing with the TCMP problem is through the optimal con-

trol. Using this approach, the TCMP is formalized as a non-linear Two-Point Boundary Value

Problem (TPBVP). Just for completeness, a BVP can be defined as a system of ordinary differ-

ential equations with solution and derivative values specified at more than one point. In case the

solution and derivatives are specified at just two points, then it is defined as a TPBVP. A solution

can be found via numerical techniques. The main drawiback of this approach is that it has no

guarantee of success.

In its first formulation in [90, 92], the TCMP was formulated as finding a joint path q(σ) that

satisfies

y(σ) = f(q(σ)) ∀σ ∈ [0, 1] ,

where q is the configuration of the robot, y is the desired task in the dexterous task space, σ is

the parametrization of the path, f is the forward kinematic map. In addition to the fulfilment of

the task, the robot is requested to not collide with itself (self-collision) nor with an obstacle that

are in the environment. Furthermore, joint limits and velocity joint limits should not be violated.

In this formulation, an initial configuration q(0) can be assigned or not. The former is the case in
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Figure 3.3 Basic step of the RRT algorithm: (i) extract a random configuration qrand; (ii) find

the nearest configuration qnear; (iii) find qnew in the direction of qrand. The numbers on each

node refers to the depth of the node itself.

which the planning is invoked from sensor information, that defines the robot current state. The

latter is the case the planner is invoked off-line, letting to the planner itself the role to identify a

proper initial configuration. The problem was faced for fixed-based redundant manipulators (e.g.,

snake robots) in [92] and for mobile manipulators in [90]. The main idea in [92] (that will be

revised for humanoid robots in the next chapter) is to seek for a solution as the linear interpolation

of collision-free joint configurations q(σ0), . . . , q(σs), with the σi’s equally spaced and s the

number of samples one wants to sample the task. Finally y(σi) = f(q(σi)), ∀i ∈ [0, s]. Even

if the task might be not satisfied along the path interpolating two consecutive configurations, the

authors justified this by saying that the resolution can be increased by increasing the parameter

s. The authors then proposed two different methods for solving the TCMP problem: greedy and

RRT-like. In the first method, the algorithm favours the exploitation versus the exploration of the

configuration space. In few words, it divides the configuration space into two components: the

redundant and non-redundant one (the robot is supposed to be redundant w.r.t. the task it has to

accomplish). At each iteration, the algorithm starts from a configuration q(σi). Then, it samples

a random configuration q(σi+1) for its redundant part and uses an inverse kinematic scheme to

find a collision-free configuration that copes with the next task sample (y(σi+1)). The path

between the q(σi) and q(σi+1) is checked for collision. If it is collision-free, then it is added to

the configuration list, until the task is completely fulfilled. As it is evident from this very rough

description, the algorithm works, at each iteration, on the last valid sample found. This means

that a valid configuration found two or more iterations before is never expanded again. This

might cause some problems, since the redundancy of the robot is not explored in details. In fact,

this kind of solution works well for easy scenes, where there is (almost) no need to explore the

configuration space. This is the reason for which the authors introduced the RRT-like scheme.

The RRT-like algorithm builds a tree T in the configuration space of the robot in an itera-

tive way, rooted at q(σ0). In this framework, q(σ0) is computed by first choosing a random

value for the redundant variables and then using an inverse kinematic scheme for the rest of the

configuration vector. Then, at each iteration, a random configuration qrand is extracted and the

nearest one qnear is retrieved among the nodes in T , as depicted in Figure 3.3. A difference
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between a classical RRT and the RRT-like in [92] relies in this step. Given two configurations,

the former computes the minimum distance (appropriately defined for the C-space) for the whole

configuration vector while the latter computes the distance just for the redundant component, re-

turning also the corresponding task sample k (the task is supposed to be sampled in s points, as

for the greedy algorithm). The new configuration is set with an incremental distance ∆q from

qnear, in the direction of qrand (as in Figure 3.3). The RRT-like algorithm slightly modify it by

doing that just for the redundant part of qnear and by invoking an inverse kinematic scheme to

complete the definition of qnew. A local planner is finally invoked between qnear and qnew, in

order to check its path. In case there are no collisions, qnew is added as node of T while the

path joining qnear and qnew is added as an edge of T . Otherwise, the process is repeated. The

reader might be confused on which is the point where the algorithm ensures the fulfilment of

the task. To this aim, note that, when qnew is computed, the inverse kinematic scheme ensures

that y(σk+1) = f(qnew) lie. In this way, the task is again fulfilled on the sampled points. The

RRT-like (as the RRT) algorithm is probabilistically complete and the experiments in [92] show

that this method is particularly suitable for difficult scenes, where the greedy algorithm may fail

in finding a solution. On easy scenes, the greedy algorithm outperforms the RRT-like one in

terms of planning time, even if the latter is able to find a solution.

The same authors generalized the above-mentioned framework in [90] for mobile manipu-

lators. Here, the main difference is the definition of the configuration space, that is naturally

partitioned in the platform configuration (for the mobile base) and in the manipulator configura-

tion. The former plays the role of the redundant variables in [92], while the latter plays the role

of the non-redundant variables in [92]. Another contribution of [90] relies in the extension of

the TCMP framework for non-holonomic constraints (since the robot has a mobile base).

The TCMP framework was further extended in [91] for mobile manipulators. The main differ-

ence with the other approaches is in the introduction of a motion generation scheme that ensures

the continued satisfaction of task constraint. Recall that the fulfilment of the task in [90, 92] is

ensured only in the task samples but not during the motion between samples. The work in [91] is

based on the concept of control based motion planning, formally defined in [16]. The main idea

is that configuration samples are generated using a differential model of the robot (called motion

generation scheme). A tree T is built in the configuration space in order to find a collision-free

path. As for [90], the task is sampled in s points and an initial configuration q(σ0) may be as-

signed or not. In the latter case, a random configuration is chosen for the redundant part, while

an inverse kinematic algorithm completes the definition of q(σ0). At each iteration, a random

configuration qrand is extracted and the nearest configuration qnear is retrieved as the one in T

having the smallest distance to qrand. At this point, the motion generator is invoked, depicted

in Figure 3.4. Note that, since qnear has been already computed, also the corresponding task

sample k has been identified. The motion generation performs a forward motion, a self-motion

and a backward motion. The forward motion produces a subpath leading to a configuration on

the manifold associated with the next task sampleLk+1. This path is checked for collisions and it
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Figure 3.4 The extend procedure of [91]. Three configurations and subpaths are generated at

each step: forward motion (qfw); self-motion (qself ) and backward motion (qbw). The figure is

a courtesy of [91].

is, in case, added to T . The same happens for the self-motion that produces qself , a configuration

that lies in Lk. Within this motion, the end-effector is forced to remain fixed in the same pose,

action that is possible thanks to the redundancy of the robot w.r.t. the task. Finally, the backward

motion generates qbw (lying in Lk−1) that is eventually added to T in case of collision-free path

with qnear. The main difference w.r.t. [90, 92] relies in the generation of these subpaths. In [91]

the task is exactly satisfied along these subpaths in view of a Jacobian-based inverse kinematic

scheme, that will be described in details in the next chapter.

The reason for which we described in details the approach in [91] is because this thesis is

highly inspired by this work and some concepts will be used also in this thesis.

In the literature, other works faced the TCMP during the years. As example, three different

algorithms are proposed in [110] for solving the TCMP in case of fixed-based manipulators. This

approach is extended in [111] where the kind of tasks are generalized (e.g., opening a door). On

the other hand, sampled-based motion planners are proposed in [66, 105], taking into account

uncertainties. This is a really promising field of research since, even if a motion planner plans a

trajectory for each joint, the robot will be not able to exactly apply them. This is due to the robot

actuators, that are not able to apply instantaneously a given command and to the inevitable dif-

ferences between the robot and the environment models and the corresponding real counterparts.

However, this problem is not faced in this thesis.

The authors in [11] proposed a method for solving the TCMP problem in case of repetitive

tasks. In other words, the motion of the robot should be planned in such a way it returns in the

same configuration at the end of the task. To this aim, a bidirectional RRT is built (two trees

are grown respectively from the start and the goal configurations, that in this problem are equal

each other) and a loop closure is proposed in order to join the two trees. A similar approach is

proposed in [12], where the TCMP is proposed in case the environment is composed by moving

obstacles, i.e. in the case where the trajectories of the obstacles are known in advance. The same
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authors extended the framework in [12] including also the bounds on the actuator torques on the

robot motors. This leads to the adoption of a acceleration-level motion generation and this is the

main contribution of [10].

Most of the approached described in this section are applied for the fixed-base manipulators.

In this thesis, we propose an algorithm that is able to solve the TCMP problem for humanoid

robots. It is important to underline that the extension of an algorithm aimed for other robotic

platforms to humanoid robots is not trivial. This is true for a number of reasons, that will be

described in details in the next chapter.
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Chapter4
Task-oriented whole-body
motion planning for humanoids
based on step generation

This chapter describes and proposes an approach for solving the problem of planning the mo-

tion of a humanoid robot that must execute manipulation tasks, possibly requiring stepping, in

environments cluttered by obstacles. In other words, a method for solving the TCMP problem

(introduced in the previous chapter) for humanoid robots is proposed. The reason for which we

chose to face this problem was inspired from the intensive research activity on which humanoid

robots were subjected to in the last two decades. The long term objective is to create highly ver-

satile robotic platforms that can effectively assist – or even replace – humans in their (repetitive

and/or dangerous) daily activities.

In the past, many researchers have focused on the design of control models and algorithms

for achieving stable biped locomotion [51, 52, 53, 54, 115]. However, thanks to the high number

a humanoid robot is typically equipped with, humanoids are capable to achieve other complex

tasks in addition to locomotion, e.g., manipulation. To fully express their versatility, they must be

able to plan and perform whole-body motions in unstructured environments that are populated

by obstacles.

As already mentioned in the previous chapter, one possible approach for dealing with mul-

tiple tasks is the kinematic control [103], that can be extended in order to include collision-free

requirements [57]. A clever application of this technique for humanoid footstep generation in

manipulation tasks is presented in [58]. However, the kinematic control is a local technique

prone to local minima and without backtracking capabilities. Here and in the rest of the thesis

we will assume that the geometry of the scene is known in advance, as well as a model of the

robot. Within these hypotheses, the robot should execute a task, as declared above.

The motion planning problem for humanoid robots is challenging for a number of reasons.

The first is the number of degrees of freedom. A humanoid robot is typically equipped with more

joints w.r.t. other robot platforms. This brings to the definition of high dimensional configuration

spaces, as formally defined in the next section. Obviously, the higher is the dimension of the
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configuration space, the harder is to find a solution to the motion planning problem since the

space where to find a solution is wider and the cardinality of the infinite ways of fulfilling a task

becomes bigger and bigger. The second is that a humanoid robot is not a free-flying system in

its configuration space. The motion must be generated appropriately. Finally, the requirement

that the robot maintains equilibrium, either static or dynamic, typically constrains the trajectory

of the robot Center of Mass (CoM), thus reducing the dimension of the planning space. The

last point is a specific problem of legged robots: in fact, the CoM is not explicitly constrained

when planning the motion of, e.g., a mobile robot since this constraint is usually satisfied by

construction1. On the contrary, maintaining the equilibrium is a fundamental problem for a

humanoid robot, whose fulfilment is not as trivial as for a mobile platform. These points should

convince the reader that planning the motion for humanoid robots is an hard problem. For this

reason, even in the simple configuration-to-configuration case (i.e., find a collision-free motion

between two configurations qstart and qgoal), the motion planning problem for humanoids is

usually approached by introducing simplifications at various levels of the problem formulation.

For example, one may simplify the environment by taking into account collisions, at least in

a first phase, only at the footstep [15, 69, 70] or at the leg [95] level. A somewhat dual approach

consists in finding first a collision-free path for a simplified geometric model of the humanoid,

such as its bounding volume, and then approximating this path with a feasible locomotion trajec-

tory. This technique is used in [96] to animate digital characters and in [126] to plan dynamically

feasible motions of a humanoid. However, these methods may require to reshape the path if the

feasible trajectory is found to be in collision with obstacles. The whole configuration space of

a humanoid is considered in [68] to plan first collision-free, statically stable motions that are

then converted to dynamically stable collision-free trajectories; in this work, however, the robot

does not perform stepping motions. Due to the coarse approximation of the robot occupancy,

this method may fail to find a solution in cluttered environments; for example, extending over

a table to pick up an object is not possible. On the contrary, such a task can be performed us-

ing the techniques developed in this thesis, as we will show starting from the next section. The

method in [39] represents one of the few motion planning methods that simultaneously generates

footsteps and whole-body motions.

Most of the above works do not directly incorporate task constraints. It is clear that the

problem becomes even harder to solve in the presence of a task that the robot has to accomplish

(e.g., move an object from a start to an end location in a room). This is what we refer to as TCMP

problem, i.e., finding collision-free motions for a humanoid that is assigned a certain task (e.g., a

manipulation action) whose execution may require stepping. Some works in the literature faces

this problem and they can be grouped in three main categories

1. separate locomotion from task execution [8, 42];

1The CoM typically lies in the support polygon in a mobile robot.
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2. integrate them with a two-phase planner which first computes a collision-free, statically

stable paths for a free-flying humanoid base, and then approximates it with a dynamically

stable walking motion [22, 23, 56, 68, 126];

3. achieve acyclic locomotion and task execution through whole-body contact planning [5,

6, 32, 80].

The authors in [8] propose a framework for planning the motion of a humanoid robot whose goal

is to manipulate objects. More in details, it builds a RRT-Connect (a bidirectional tree, originally

introduced in [71]) in the configuration space of the robot (each node in the tree contains a whole-

body configuration of the robot and an information about the object handle trajectory, described

in the following). First, a catalogue of statically stable configurations (free of self-collisions

and respecting the joint limits) are precomputed and stored in a database. Then, two trees are

grown from the starting (the current state of the robot) and the goal (chosen through a inverse

kinematic solver, in function of the object to be manipulated) configurations. At each step, one

tree is expanded by sampling a random stable configuration from the database, computing the

nearest configuration in the tree and generating a new configuration starting from the nearest

one in the direction of the random sample, following the standard steps of a RRT. If the new

configuration is not valid, the two trees are swapped and the procedure is repeated. On the

contrary, the new configuration is added to the current tree while the other tree is expanded

towards the newly added configuration. In positive case, a valid path is found and the problem

is solved. Otherwise, the algorithm proceeds with a new iteration. In this approach, the hand is

enforced to track a given trajectory in order to manipulate an object. This trajectory is specified at

the beginning, in function of the object to be handled. When the new configuration is generated,

an inverse kinematic solver finds an arm configuration that minimizes the distance to the nearest

configuration found by the algorithm. This ensures that the new configuration will lie on the

specified trajectory. The main limitation of this approach is that it is not trivial to extend in case

the task requires stepping. Then, locomotion is not taken into account in [8]. On the contrary,

stepping motions appear naturally within our framework.

The works in the second group, as mentioned, propose a two-stage approach. The work in [23]

first computes a collision-free, statically stable paths for a free-flying humanoid base, and then

approximates it with a dynamically stable walking motion. More in details, a RRT is built in

the configuration space (defined by the robot joints and the pose of a representative point of the

robot in SE(3)). The aim of this motion planner is to find a collision-free path for a sliding-

feet robot, taking into account two constraints: (i) static balance (CoM in the support polygon);

(ii) end-effector pose. Since in reality a legged robot cannot slide on a regular floor, such paths

are physically unfeasible. For this reason, the statically balanced sliding path is converted to a

dynamically balanced walk. Footsteps are placed corresponding to the nominal walk pattern of

the robot. Given the footsteps, the Zero Moment Point (ZMP) trajectory is computed, together

with the desired trajectories for the feet. From that, a CoM trajectory is generated using the
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preview controller introduced in [51]. A standard Jacobian-based inverse kinematic scheme is

used for computing joint velocities. In particular, a prioritized task framework is used for the

following tasks, in decreasing order of priority: (i) positions and orientations of the feet; (ii)

horizontal position of the CoM; (iii) height of the CoM; (iv) verticality of the waist; (v) task

for a specific point of the robot. The authors prove, in the same paper, that a statically gait can be

converted to a dynamically one through the well-known concept in control theory of small-space

controllability.

There are two major differences between the approach in [23] and ours. First, we do not split

the approach into two stages but we generate the joint motion in a single one. We believe that

generating the motion in a single stage allows to fully take advantage of the robot DOFs. Second,

we do not adopt a prioritized scheme but we make usage of the augmented Jacobian. This because

we want to ensure that the task (assigned for a specific point of the robot) is fulfilled. With the

above-mentioned tasks list, the assigned task has the lowest priority and it will be fulfilled only if

the ones having higher priorities are satisfied. Consequently, there is no guarantee that it will be

accomplished. Second, thanks to the fact that we simultaneously generate footsteps and whole-

body motions, we can obtain plans where the robot steps over obstacles, a feature that is not

possible to obtain in [23]. Moreover, both static and dynamic walking gait are contemplated

within our framework, while collisions found in the first step of [23] can be avoided just with a

reshaping to a dynamic walking gait.

The third category mainly includes the works from Kheddar. The main idea under these works

is to plan the motion of a humanoid robot whose task is to maintain multi-contact stances with the

environment. The approach in [6] uses a depth-first motion planning algorithm in order to create

a path between two consecutive stances. An inverse kinematics-and-statics solver is used for

finding configurations and contact stances simultaneously. Finally, an optimization problem is

solved to find the path in such a way the following constraints are satisfied: (i) static equilibrium;

(ii) contact forces within friction cones; (iii) joints within joint limits; (iv) torques within torque

bounds; the path is collision-free. The major advantage in using our approach w.r.t. [6] is that

the latter does not allow to consider task paths nor it easily generalizes for dynamic walking.

As mentioned before, our approach does not separate locomotion from task execution. In par-

ticular, using the TCMP framework developed in [91] and the concepts introduced in Section 3.2,

the proposed method explores the submanifold2 of the configuration space that is admissible with

respect to tasks and possible other constraints, including humanoid equilibrium.

As we will see in the next section, our approach consists in growing a tree in the configuration

space of the humanoid robot, whose expansion in the constrained manifold is obtained via a

hybrid motion generation scheme that is able to generate, at the same time, feet positions and

and whole-body motions, that are validated by a collision checker.

To summarize, the method we will propose in this thesis has two main contributions

2It is a submanifold since there are some constraints, such as equilibrium, that limits the manifold dimensionality.
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1. motions are generated in a single phase;

2. walking emerges naturally from the solution of the planning problem as driven by the

assigned task.

Just for reference, this chapter is organized as follows. In Section 4.1, we formally introduce the

motion model for the humanoid robot, together with the definition of the configuration space and

a rigorous formulation of the addressed problem. The hybrid motion generation mechanism, that

is the core of our method, is presented in Section 4.2. The randomized planner is discussed in 4.3.

Finally, planning experiments performed in V-REP for the NAO humanoid robot are reported in

Section 4.4.

4.1 Problem formulation

In this section, we will formulate our planning problem. To this aim, it is convenient to first

introduce a convenient motion model for a humanoid robot.

4.1.1 Humanoid motion model

As discussed in Section 3.2, it is fundamental for a motion planning algorithm to define a con-

figuration space. Denote with n the number of joints of a humanoid robot. If we assume that

the humanoid is a free-flying system, one might specify its configuration by assigning the pose

(position plus orientation) of a specific body of the robot (e.g., the torso) and the values of the

n joints. Since we are interested in planning motions where at least one foot touches the ground

(i.e., we do not take into account jumping movements), we can choose the support foot as the

above-mentioned specific body and we can define a configuration simply as

q =

(

qspt

qjnt

)

, (4.1)

where qspt = (xspt yspt θspt)
T ∈ SE(2) is the planar pose of the support foot in a world

reference frame and qjnt ∈ Cjnt is the n-vector of joint angles, with the associated joint space

Cjnt. The humanoid configuration space SE(2)× Cjnt has therefore dimension n+ 3.

The above definition in eq. (4.1) of a configuration requires that the support foot is always

identified, even when the humanoid is in a double support phase (both feet on the ground). In

such a situation, our planner may arbitrary define the support foot as one of the two feet, since

both of them touch the ground. The same holds also for the starting configuration (supposed

to be assigned and corresponding to the current state of the robot), which is typically in double

support. Note that the identity of the support foot vary over time. In fact, whenever a step is

planned, the swing foot moves from its current to a different location on the ground, which is

defined as the new pose of the support foot, as shown in Figure 4.1.
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uspt
k

swing foot

     at 

support foot

     at tk

tk

support foot

     at tk+1

Figure 4.1 Support foot displacement after a step initiated at tk. The swing foot moves from

its initial pose to the selected final one (thick dashed blue), and becomes the new support foot.

The support foot displacement uk
spt is defined accordingly. Other possible final poses for the

swing foot are also shown (light dashed blue).

It is important to underline that the choice of the support foot pose as the specific body has

also an additional advantage. In fact, since the support foot always lies on the ground, its pose

can be completely defined in SE(2), rather than SE(3) (as for any other body of the humanoid

robot). This implies a reduction of the dimension of the configuration space. Moreover, the

partitioning that we made for the configuration vector in eq. (4.1) reflects the way the motion

is generated within our framework. In particular, the support foot pose qspt undergoes discrete

displacements achieved through steps; on the other side, qjnt changes with continuity. For this

reason, the specific mechanism is well represented by the following hybrid motion model

qk+1
spt = qkspt +A(qkspt)u

k
spt (4.2)

q̇jnt(t) = vjnt(t) t ∈ [tk, tk+1]. (4.3)

This model describes the evolution of the robot configuration within a generic time interval

[tk, tk+1] in which the robot performs a stepping motion, i.e., a whole-body motion that pro-

duces also a displacement of the support foot (see Figure 4.1). In particular:

• qkspt = qspt(tk) and qk+1
spt = qspt(tk+1) are the planar poses of the support foot respec-

tively at the start (tk) and the end (tk+1) of the time interval;

• A(qkspt) is the homogeneous transformation matrix from the support foot frame at tk to

the world frame;

• uk
spt is the pose displacement of the support foot expressed in its frame;

• vjnt is the velocity command for the humanoid joints.

Recall that we used the term hybrid for referring to the above-mentioned motion model. In fact,

note that qspt evolves discretely in [tk, tk+1], i.e., it changes instantaneously at tk+1 when the
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final pose of the support foot is defined. On the other side, qjnt evolves continuously, as we will

see in Section 4.2.

The discrete nature of eq. (4.2) comes from the fact that a step needs a finite (non-zero) time

Tk = tk+1− tk to be performed. It is important to emphasize that the joint velocity vjnt and the

support foot displacement uk
spt are not independent each other but they are highly coupled. In

fact, humanoid motions are generated at joint level. There is no way to assign in a decoupled way

a desired foot pose for one foot and a command for the joints. On the contrary, the joint motion

should be generated in such a way the foot reaches the desired pose. In other words, any desired

pose displacement of the support foot from tk to tk+1 will be the result of the motion of the

swing leg during the time interval. This will be appropriately handled by our motion generation

scheme in Section 4.2.

Up to this point, we focus on stepping motions. The motion model (4.2-4.3) is also valid

in case of non-stepping motions, i.e., motions where the robot changes its internal posture (i.e.,

it moves its joints) without moving its feet. In other words, the robot remains into the double

support phase. In this case, uk
spt = 0 and the support foot does not move. Moreover, the duration

Tk may be chosen arbitrary.

For this reason, we will use the motion model (4.2-4.3) to describe any elementary (i.e.,

stepping or non-stepping) humanoid motion. Our solution will be a composition of elementary

motions.

4.1.2 Task-constrained planning

As mentioned in the rest of the thesis, we are interested in solving the TCMP problem for a

humanoid robot. Having introduced a proper motion model, we can turn our attention to the

assigned task. In this chapter we will focus on manipulation tasks, expressed as the trajectory

(position and, possibly, the orientation) for one hand of the humanoid robot. Tasks that may be

described in this way include, e.g, opening a door, turning a valve or picking up an object.

Collect the task variables in a vector y which takes values in an appropriate space. The task

coordinates are related to configuration coordinates by a forward kinematic map

y = f(qspt, qjnt) . (4.4)

This kinematic map is supposed to be known in advance. As example, in the manipulation case

for one hand, this would be the forward kinematics from the support foot to the hand, as depicted

in Figure 4.2. Note that our approach is general, in the sense that the constraint can be assigned to

any point of the robot. As it appears obvious from eq. (4.4), any point of the humanoid robot can

be constrained, assuming that a proper forward kinematic map is defined. We decide to constrain

one hand since manipulation is a common task for a humanoid robot. As we will see in the next

chapter, the same framework holds in the case of a navigation task, where the point of interest is

the middle point between the feet of the robot.
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Figure 4.2 An example of solution for the TCMP problem. (left) The initial state of the robot

with the task trajectory assigned for the right hand, aimed for a manipulation task. The motion

planner should avoid the obstacles on the ground (red cylinders) while fulfilling the assigned

task. (center) An intermediate posture assumed by the robot to fulfil the task and before ap-

proaching an obstacle. (right) The final state that completes the assigned task.

Suppose that a desired task trajectory y∗(t), t ∈ [ti, tf ], is assigned and that it is continuous

and differentiable over time. It is assumed that the initial configuration q(ti) of the robot is given,

and that f(qspt(ti), qjnt(ti)) = y∗(ti).

Informally speaking, a solution of the TCMP problem for humanoid robots consists in finding

a feasible (in a sense that will be clear soon) humanoid motion over [ti, tf ] that realizes the

assigned task while avoiding collisions with workspace obstacles, whose geometry is known in

advance. In general, a solution will consist of a sequence of elementary motions, either stepping

or non-stepping, fully described by the hybrid model (4.2-4.3) and starting at t1 = ti.

It is worthless to mention that the choice of the appropriate sequence of uk
spt among the

others, at each step, is totally left to the planner. The same holds also for the duration Tk of each

elementary motion. Pay attention that this does not mean that the planner should be greedy, i.e.,

it selects an action to take for a state and it will not never expand that state anymore. In fact, we

will derive a probabilistic planner and the reader is referred to Section 4.3 for further details. For

simplicity, and to keep the notation light, we consider all durations to be equal, i.e., Tk = T for

all k and tf − ti = N · T . It is important to underline that this assumption is not needed and

our framework can be naturally extended for elementary motions having different durations. The

only reason of introducing such an assumption is to present in a more clear way the planner to

the reader. This assumption will be removed in the next chapter, where a more general planner

will be introduced.

Finally, we have all the ingredients for formally define a solution for the TCMP problem in

case of humanoid robots. As already mentioned, once a motion is determined at the joint level,

the resulting sequence of steps (and in particular, the placements qkspt of the support foot, for

k = 1, 2, . . . ) is completely determined. In other words, the robot is able to move by assigning

values for its joint variables. When the joints move (in a proper way), the feet (in particular

the swing foot that varies over time) move as well. This movement generates the footprints that

completely defines the movements of the support and swing feet over time. Therefore, a solution

consists of a trajectory qjnt(t), t ∈ [ti, tf ], such that
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• the assigned task trajectory is realized; that is,

y(t) = f(qkspt, qjnt(t)) = y∗(t),

for all t ∈ [tk, tk+1], k ∈ [1, . . . , N ];

• self-collisions and collisions with workspace obstacles are avoided;

• position and velocity of the joints are within their bounds, respectively in the form qjnt,m <

qjnt < qjnt,M and vjnt,m < vjnt < vjnt,M;

• the robot is in equilibrium at all times.

The last two requirements express what we mean by feasibility of the humanoid motion. In

particular, the last may be declined differently, depending on the desired kind of equilibrium. We

will come back to this in the next section.

4.2 Motion generation

Our planner, which works in an iterative fashion, makes use of a motion generator. At each

iteration, the motion generator is invoked to produce a feasible (in the sense described at the end

of Section 4.1.2), collision-free elementary motion that realizes a portion of the assigned task

trajectory.

Our motion generation scheme reflects the way the configuration vector q is divided. In fact,

due to the hybrid nature of the humanoid model, motion for the two parts of the configuration

q is generated using two interleaved procedures. The first is called step generation and it is in

charge of deciding if and where to displace the support foot. Moreover, it produces an appropriate

trajectories for the swing foot and the CoM of the humanoid. The second is referred to as joint

motion generation and it computes the joint velocity commands so as to realize these trajectories

and, at the same time, comply with a portion of the assigned manipulation task.

As already mentioned, note that these two steps are consecutive and, then, interleaved. The

step generation (presented in Section 4.2.1) generates two major outputs, i.e., desired trajecto-

ries for the swing foot and for CoM. These trajectories should be fulfilled by the joint motion

generation module (presented in Section 4.2.2), together with a portion of the assigned task.

4.2.1 Step generation

The step generation is invoked with reference to a humanoid configuration qk = (qkspt qkint)
T at

time tk. Its goal is to generate a trajectory for the swing foot and a trajectory for the CoM of the

humanoid.
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Figure 4.3 Example of the step generation procedure. (left) Once qnear has been selected,

the planner has to choose among the set of right primitives. (right) Once the primitive has been

chosen, the SPG is invoked in order to generate a feasible trajectory for the CoM and for the

swing foot.

First, a displacement uk
spt is chosen for the support foot from the following set of step primi-

tives

0 ∪
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±γ δθ









, α, β, γ ∈ {0, 1, . . . ,M}















(4.5)

where 0 is the null displacement corresponding to a non-stepping motion. In any other case, uk
spt

is the linear combination of three basic displacements

1. a forward displacement of length δx;

2. a lateral displacement of length δy (to which one should add dmin, the minimum lateral

distance between the feet);

3. a rotation by an angle δθ,

whereM determines the size of the maximum displacement. As it is evident from eq. (4.5), there

are multiple primitives for the same motion (e.g., the forward step). In fact, if one changes the

value of α, the resulting primitive has a different step length in the forward direction. Moreover,

α, β, γ might have a non-zero value at the same time. In this way, a generic step can be obtained,

as shown in Figure 4.3. Their values should be defined in function of the robot gait capabilities,

as we will do in the experimental Section 4.4. Obviously, the richer is the set of primitives, the

more types of steps (and then movements) the robot can perform. On the other side, the motion

planner has more primitives with a richer set. Then, when the step generation module is called,

it is harder to find the most suitable primitive within the set, typically causing an increase of the

planning time. For this reason, a compromise between the richness of the primitive set and the

planning time should be found.

The primitive vector, uk
spt might also be state-dependent, i.e. the support foot displacements

may depend on the position of both feet or on the primitive that has generated qk. As example,

the algorithm should avoid to take the same decision (for instance a forward step) twice or take

a lateral step after a forward one. This is confirmed also by Figure 4.1 in which the lateral step

in the right direction is neglected to avoid that the robot assumes a undesirable configuration.
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Figure 4.4 Example of computing the CoM given the support foot at tk and a foot displace-

ment uk
spt, that defines the location of the support foot at tk+1. The green solid line represents

the CoM trajectory.

To explore the space of possible solutions, the choice of uk
spt in the set of primitives may be

performed either randomly or based on an appropriate heuristic. For example, minimizing the

angle between the final orientation of the support foot and the Cartesian tangent to the assigned

task trajectory at tk would lead to privileging foot placements that are locally aligned with the

manipulation task. In our experiments, we choose the former, since we saw that this choice

explores in a more uniform way the space of possible solutions.

After a foot displacement uk
spt has been identified by selecting a primitive, the new pose of

the support foot is uniquely identified through eq. (4.2). At this point, if uk
spt 6= 0, a Stepping

Pattern Generator3 (SPG for short) is invoked. The SPG is an external module that takes as input

the current configuration qk and the chosen displacement uk
spt of the support foot, and provides

as output (as shown in Figure 4.3)

1. a reference trajectory z∗
swg in [tk, tk+1] for the swing foot (position and orientation);

2. a reference trajectory z∗
CoM in [tk, tk+1] for the center of mass of the humanoid.

In this chapter, we say that the robot is in equilibrium in a configuration qk if and only if

the ground projection of the CoM (computed in qk) lies in the support polygon defined by the

feet. This is known in literature as static equilibrium. Just for completeness, we recall that the

support polygon is equal to the convex hull of the two feet, in case of double support. In case of

single support, it reduces to the support foot sole only. The static equilibrium will be replaced

3We do not discuss in detail the structure of this module, which is usually available as part of the basic software

suite of humanoid robots.
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Figure 4.5 Example of the joint motion generation procedure. (left) The output of the step

generation, i.e., a trajectory for the CoM and for the swing foot. (right) The generation of a

feasible motion from the joint motion generator. Its aim is to fulfil these trajectory, as well a

portion of the assigned task.

by the dynamic equilibrium in the next chapter, where a more general motion planner will be

introduced.

The procedure (for a SPG) in charge of computing the CoM, given the footprints, is depicted

in Figure 4.4. Roughly speaking, givenuk
spt and the actual poses of the swing foot and the support

foot at tk, the pose of the support foot is uniquely determined at tk+1, as mentioned before. When

performing a step (i.e., uk
spt 6= 0), the CoM is first moved on the support foot, in order to not

fall when stepping. Then, the line joining the support foot at tk and tk+1 is computed. The CoM

trajectory can be easily computed by a way-point trajectory, as the solid green line in Figure 4.4,

stopping in the middle point of this second line. The trajectory of the CoM is then smoothed by

means of a way-point technique, in order to generate a continuous and differentiable trajectory,

a feature that will be important in the next section.

If uk
spt = 0 (a non-stepping motion has been chosen) the SPG is not invoked. The reference

trajectory for the swing foot in [tk, tk+1] is simply z∗
swg(t) ≡ zswg(tk), whereas the equilibrium

constraint will be directly taken into account during the joint motion generation.

4.2.2 Joint motion generation

The joint motion generation is in charge of computing qjnt in [tk, tk+1]. It starts from qk =

(qkspt qkjnt)
T at tk and its goal is to realize the portion of the assigned task trajectory y∗(t)

between tk and tk+1. At the same time, it has to fulfil the reference trajectory z∗
swg for the swing

foot and (if uk
spt 6= 0) the reference trajectory z∗

CoM for the center of mass in the same interval.

Assume uk
spt 6= 0. Let stack the three above-mentioned tasks and let define the augmented

task vector ya = (yT zT
swg zT

CoM)T . Let Ja be the Jacobian matrix of ya with respect to qjnt.

Since qkspt represents the support foot pose and it remains constant throughout the interval

[tk, tk+1), all the kinematic chains described above are referred to the support foot reference

frame. Note that, while the swing foot trajectory and the CoM trajectory are typically expressed in

this reference frame, thanks to the procedure described in Section 4.2.1, an additional explanation

is needed for the assigned task. This task is typically expressed in world reference frame, as

introduced in Section 4.1.2. Since the support foot pose is known at tk (from the step generation

52



Chapter 4. TCMP for humanoids based on step generation Marco Cognetti

module), it is trivial to compute the relative transformation w.r.t. this reference frame and, then,

express all the tasks in the support foot reference frame.

Define the augmented task error as e = y∗
a − ya, where y∗

a(t) is the reference value of the

augmented task between tk and tk+1. Joint velocities can be computed through

vjnt = J†
a(qjnt) (ẏ

∗
a +Ke) + (I − J†

a(qjnt)Ja(qjnt)) w, (4.6)

where J†
a is the Moore-Penrose pseudoinverse matrix of Ja, K is a positive definite matrix

and w is a n-vector whose value does not affect the execution of the tasks in ya. In fact, I −

J†
a(qjnt)Ja(qjnt) is an orthogonal projection matrix in the null space of Ja. It is easy to prove

that, using eq. (4.6), ė = −K e. In fact, since e = y∗
a − ya, its derivative is

ė = ẏ∗
a − ẏa = ẏ∗

a − Ja(qjnt)q̇jnt = ẏ∗
a − Ja(qjnt)vjnt , (4.7)

since vjnt = q̇jnt from eq. (4.3). Substituting eq. (4.6) in eq. (4.7), one obtains ė = −K e, i.e.,

the augmented task reference trajectory is exponentially stable. This means that, in the case Ja

is full row-rank, all the three tasks are fulfilled. We prefer to use this approach with respect to

a prioritized task framework because, in the latter, we have no guarantee of convergence for all

the tasks in ya.

Regarding eq. (4.6), the last term to be discussed is w. This is the term that explores the

redundancy of the system. To uniformly explore this space, we set for the whole [tk, tk+1] interval

w = wrnd, (4.8)

where wrnd is a bounded-norm randomly generated n-vector.

Assume now uk
spt = 0, i.e., a non-stepping motion has been chosen. In this case, a trajectory

for the CoM cannot be defined as in Figure 4.4, since the robot does not have to perform a step.

For this reason, we let the CoM free to move in this case. Then, we refer to this primitive also as

free CoM. Recall that such a primitive corresponds to a double support phase with both feet in

the same initial pose for all the time interval. Moreover, its duration is not defined a priori and

this feature will be fundamental in our planner, topic of the next section. Since the CoM is not

constrained anymore, eq. (4.6) is still used but ya = (yT zT
swg)

T is the augmented task vector.

Furthermore, z∗
swg(t) = zswg(tk), ∀t ∈ [tk, tk+1]. The vector w is now chosen as

w = −η · ∇qjnt
H(qjnt) +wrnd, η > 0, (4.9)

where H(qjnt) is the squared distance between the centroid of the support polygon and the pro-

jection of the center of mass on the ground. The meaning of eq. (4.9) should be clear: since

the CoM is not constrained when uk
spt = 0 and one wants that it lies anyway in the support

polygon, the first right term of eq. (4.9) moves qjnt in the direction of the antigradient of H . In
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other words, this term is aimed at keeping the center of mass as close as possible to the center

of the support polygon, thereby preferring robot configurations that are statically further from

instability. The second right term (wrnd) is aimed to avoid deterministic actions. In fact, assum-

ing a deterministic w, eq. (4.6) is completely deterministic as well and the space of solutions in

not explored at all. In the case in which the deterministic solution results in a collision with an

obstacle in the environment, there would be no way to generate another solution. The random

term has the aim of introducing different solutions for the same desired augmented task vector

y∗
a, then exploring the space of possible solutions.

From a robotic point of view, the joint motion generation is a Jacobian-based inverse kine-

matic scheme with an augmented task vector.

During the integration of eqs. (4.6–4.8), or eqs. (4.6–4.9), collision avoidance is continuously

checked, together with position and velocity limits for the joints, in order to produce a feasible

motion. For a non-stepping motion, the equilibrium is also checked, since the CoM is not con-

strained along a trajectory. If any of these conditions is violated, the current motion generation

is prematurely terminated. Otherwise, integration stops when tk+1 is reached. At this point, a

feasible joint motion qjnt(t), t ∈ [tk, tk+1] has been generated and can be used by the planner.

The integration of eq. (4.6) can be performed using a numeric solver, whose integration step

might be taken as small as possible in order to achieve an arbitrary accuracy of trajectory tracking.

We have tested different integrators for this purpose, starting from the simple Euler one to the

4th order Runge-Kutta integrator. As it is well known, the former has the advantage of simplicity

and, then, it is really fast from a computational point of view. The latter is slower but it has

more accuracy than the former. Since our planner works offline, we decide to use the 4th order

Runge-Kutta integrator. An important reason for which we need to integrate eq. (4.6) is that our

platform accepts only joint position inputs, rather than joint velocity commands.

4.3 Planner overview

The proposed planner builds a tree T in the task-constrained configuration space

Ctask = {q ∈ C : f(qspt, qjnt) = y∗(t), t ∈ [ti, tf ]}

with the root at the initial configuration q(ti). Nodes of the tree are configurations of the hu-

manoid robot while arcs represent whole-body motions (both stepping or non-stepping) that join

two adjacent nodes and should contain feasible motions. It is important to underline that both

nodes and arcs are completely contained in Ctask. Every node is associated to a time instant tk,

k = 1, . . . , N + 1. The tree structure means that multiple nodes may be associated to the same

time instant tk.

A generic iteration of the proposed planner is depicted in Figure 4.6. It implements a strategy

(RRT-like) similar to the ones discussed in Section 3.2.
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(a)

y*
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Figure 4.6 A generic iteration of the proposed planner. (a) A random sample is chosen from

the assigned task trajectory and its projection on the ground is computed. (b) The most suitable

configuration qnear is extracted from those in the tree using a probability inversely proportional

to the distance between such projection and the midpoint between the feet. (c) The portion of

the assigned task trajectory starting from qnear is extracted (red) and the step generator is called

to choose a support foot displacement among the set of primitives (dashed blue). (d) The SPG

produces reference trajectories for the swing foot and the center of mass (both dashed red) and

the joint motion generator is invoked to produce a feasible elementary motion. If the motion is

feasible, its final configuration qnew is added to the tree as node and the motion is added as arc.

The first step consists in extracting a 3D random sample, denoted as y∗
rand, located on the

assigned task trajectory. The ground projection of this point is then computed, as shown in

Figure 4.6a. The next step is to compute the most suitable configuration, qnear, defined as the

configuration in the tree T picked with a probability inversely proportional to the Euclidean

distance between such projection and the midpoint between the feet (Figure 4.6b). The idea

behind this metric is to expand with more probability configurations where this distance is small.

These configurations are less prone to failure during the expansion, since the robot is not so close

to the boundary of its support polygon. In fact, it is reasonable to assume that configurations

where this distance is large are likely to be close to its joint limits or to losing equilibrium. The

reason for which we chose this metric instead of computing the usual nearest configuration is the

completeness. In fact, assume to have two configurations associated with the same time instant

tk having different distances w.r.t. the ground projection. If the nearest criteria is used, the

configuration with the larger distance will never be selected, compromising the completeness of

the algorithm.

Once qnear has been selected, even the starting time tk for the current iteration is identified as

well. In fact, at the beginning, the tree T contains just the starting configuration q(ti), associated

with the starting time ti. When a new configuration qnew is generated (as it will be described
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next) and inserted, the time interval [tk, tk+1] has been identified and qnew is associated with the

time tk+1. Then, at each iteration, the starting time tk is always available whenever qnear has

been identified.

At this point, the planner chooses a duration Tk for the current iteration. For simplicity, we

assumed all durations to be equal, i.e., Tk = T for all k and tf − ti = N · T . Then, the

time interval is uniquely identified as [tk, tk+1], with tk+1 = tk + T . Finally, the portion of

the assigned task y∗(t) between tk and tk+1 is acquired and the motion generation module is

invoked. As explained in Section 4.2.1, the step generation module chooses a displacement uk
spt

for the support foot in the set of primitives in eq. (4.5). This procedure in depicted in Figure 4.6c.

Then, the SPG is invoked and to produce reference trajectories for the swing foot and the CoM of

the humanoid robot. In case uk = 0 (non-stepping), the SPG is not called since the CoM is free

to move and the swing foot is simply constrained in its initial pose, as explained in Section 4.2.1.

Finally, the joint motion generation is invoked to compute the joint motions, as mentioned in

Section 4.2.2. This motion is able to fulfil the portion of the assigned task as well these reference

trajectories in [tk, tk+1). If the motion is feasible, the final humanoid configuration qnew is added

to the tree (Figure 4.6d) as node while the motion is added as arc connecting qnear and qnew. On

the contrary, the procedure is repeated.

We recall that a motion is feasible if the configurations that compose the motion never exceed

the joint limits as well the joint velocity limits. In addition, they do not have to contain collisions

with obstacles nor self-collisions, as clearly stated at the end of Section 4.1.2.

4.4 Planning experiments

The proposed planner has been implemented in V-REP (a robot simulator developed by Coppelia

Robotics) on a MacBook Pro dual-core running at 2.66 GHz. The chosen robotic platform is

NAO by Aldebaran Robotics. Section 4.4.1 will give an overview of the chosen robotic platform,

while Section 4.4.2 does the same for the simulator. Finally, Section 4.4.3 is devoted to describe

the planning experiments that validate and test the proposed planner.

4.4.1 The NAO robot

The NAO5 is a small (58 cm) humanoid robot, developed by Aldebaran Robotics. It has 5 degrees

of freedom in each leg, 5 in each arm, 1 in the pelvis, 2 in the neck, and 1 in each finger, for a

total of 25 DOFs. From a sensor point of view, NAO has two cameras (top and down) on its head,

as depicted in Figure 4.7. However, just one camera can be used at time, obtaining a monocular

vision system. This because the two camera cannot be activated at the same time due to the power

consumption that reduces a lot the autonomy of the robot. Moreover, the limited CPU (1.6 GHz)

does not allow to process data streaming from both cameras, together with data coming from

4http://doc.aldebaran.com/2-1/family/nao dcm/actuator sensor names.html
5https://www.aldebaran.com/en/humanoid-robot/nao-robot
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Figure 4.7 An overview of the NAO robot. (left) A schematic representation of NAO with its

main features and sensors: two cameras, four directional microphones, two sonar range-finders,

one IMU, two infrared emitters and receivers, three touch sensors, two bumpers, eight FSRs.

Image courtesy of Aldebaran Robotics4. (right) a figure of the real NAO robot.

the other sensors. Finally, NAO has problems with heating. Since each of its 25 motors and

each sensor need power, the more sensors are on, the more probability that the system goes to

overheating.

The sensor equipment is completed by

• four directional microphones (on its head), whose aim is to detect audio input, such as

vocal commands;

• two sonar range-finders (on its chest), whose aim is to compute the distance to the clos-

est obstacle. Its frequency is 40 Hz, its resolution is 0.1 m and its detection range is

[0.25, 2.55] m;

• two infrared emitters and receivers;

• one Inertial Measurement Unit (IMU), composed by three axis accelerometer (1% preci-

sion with an acceleration of∼ 2G) and two axis gyrometers (5% precision with an angular

speed of ∼ 500◦/s). It is mounted approximately inside the robot torso and it provides

linear accelerations of the main body, together with a measurement of the angular speed

and an estimation of the orientation of the robot, i.e. the roll, pitch and yaw angles;

• three touch sensors (one over its head and one for each hand), whose goal is to detect

physical interactions with the robot. They give an ON/OFF signal as output;

• two bumpers (in the tip of the feet). whose goal is to detect collision between the feet and

an object. They give an ON/OFF signal as output;
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Figure 4.8 The list of joints of the humanoid robot NAO. (left) names of the joints of NAO.

The first letter refers to the left (L) or right (R) leg or arm. (right) the joints of the NAO robot

in the V-REP simulator.

• eight Force Sensitive Resistors (FSRs) (under its feet), whose goal is to measure a resis-

tance change according to the pressure applied. Its range is [0, 25] N

In order to run the motion planner proposed in Section 4.3, one needs some forward kinematic

chains and their relative Jacobian matrices (to compute the augmented task vectorya in eq. (4.6)).

More in details, the following kinematic chains are requested: (i) from the support foot to the

specific point of the robot that has to accomplish the assigned task (in our case, the right hand);

(ii) from the support foot to the swing foot; (iii) from the support foot to the CoM.

In Figure 4.9, we report the kinematic chains starting from the support foot. We decided

to report both kinematics starting from both feet (instead of single ones from a common point,

e.g., the torso) since they are ready to be used in the framework presented in Section 4.3. An

additional comment regarding the kinematics of NAO should be given. As a clever reader might

notice, NAO has two particular joints. We are referring to RHYP and LHYP, i.e., the right and

left hip yaw pitch joints. These are the two joints in the hip of the robot, pointing in a oblique

direction, as shown in Figure 4.8. They are not independent, but highly coupled. In fact, just

one motor commands these two joints, forcing them to assume a mirrored value at each time.

This reflects in the kinematics expressed in Figure 4.9, where the RHYP and LHYP are reduced

to a single joint value. In particular, this affects the kinematic chain that starts in one leg and

ends into the other leg (i.e., the one for controlling the swing foot), since it is the only one that

involves these two joints. The major effect relies in the Jacobian derivation. In case one wants to

compute the analytical Jacobian, there is no additional work to do since it is sufficient to derive

the forward kinematics assuming the same joint variable for the two joints. On the other side,

if one wants to compute the geometric Jacobian, one has first to compute the Jacobian in the

standard way, i.e. considering RHYP and LHYP as two different joints. The result is a Jacobian

matrix J̄ having dimensions n× (n+1). For this reason, we introduce a matrix E ∈ R
(n+1)×n
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Figure 4.9 The main kinematic chains needed for the running the TCMP framework presented

in Section 4.3. The kinematics follows the well known Denavit-Hartenberg convention [25].

(left) Kinematic chains w.r.t. right foot support. (right) Kinematic chains w.r.t. left foot support.

The constant values reported are referred to NAO V4.0, since we have this version of the robot

in our lab.

that adapts the n-joint velocity vector q̇ for the Jacobian J̄

ẏ = J̄ E q̇ = J q̇ .

Suppose that ˙̄q is the n + 1-vector that considers the two coupled joints as two different joints

and assume i is the index of the first of these joints in ˙̄q while j is the index corresponding to

the second. The matrix E is composed by the identity matrix with an additional row inserted at

the j-th row. This row is composed by all zeros but with a 1 (or −1 if the joint is mirrored) at

the i-th column. In the case of NAO, since the two joints are consecutive in the support to swing
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foot kinematic chain, the result is

E =































1
. . .

1
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. . .

1































,

where the missing components in the previous equation is completed by zero elements. To con-

vince the reader, assume to have a simple robot having four joints, where the second and the third

are forced to assume the same value. In this case, the first step would compute a 4× 4 Jacobian

matrix. The E matrix is equal to

E =















1 0 0

0 1 0

0 1 0

0 0 1















,

where the second and third row expresses the kinematic constraint.

Using the Denavit-Hartenberg parameters, one can easily compute the forward kinematics

and their relative Jacobian matrices for all the chains needed but the CoM one. This is true if one

does not want to make the approximation of the CoM with the torso. Some authors, in fact, make

this assumption, justifying it by saying that the torso is the body having the biggest mass and the

contribution of other links can be neglected. It would be trivial to compute the CoM using this

formulation, given the Denavit-Hartenberg parameters in Figure 4.9. In fact, it is sufficient to

apply a rigid translation after computing the transformation matrix up to the last joint of the hip

(Q6 in Figure 4.9). Even if this is acceptable in some cases (e.g., the robot does not move its arm

or leg laterally), we prefer to use a more accurate estimation of the CoM.

More in details, our approach makes usage of the partial CoMs7. The main idea is to consider

a single link and compute the CoM considering this link as the root of a kinematic chain. Ro-

tating this vector in the support foot reference frame, its corresponding Jacobian matrix can be

computed. If this procedure is repeated for each link, one is able to compute the CoM Jacobian

matrix, as formally described below. In this procedure, we made the assumption that each link

has a uniform mass distribution and that a joint links two rigid bodies. Formally, the partial CoM

6This image can be found at http://doc.aldebaran.com/1-14/family/nao h25/links h25.html
7A nice explanation of the partial CoMs is given at http://www.elysium-labs.com/robotics-corner/learn-

robotics/biped-basics/com-jacobian/
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Figure 4.10 The dimensions of the NAO robot. The names are consistent with the NAO

constant values reported in Figure 4.8. In this figure, the dimensions are reported in mm. This

image is a courtesy of Aldebaran Robotics6.

z
j
CoM of the j-th link is computed as

z
j
CoM = Rj

∑n
i=j miyi
∑n

i=j mi
, (4.10)

whereRj is the rotation matrix that rotates a vector expressed in the j-th link reference frame into

the support foot reference frame, mj is the mass of the j-th link and yj is the forward kinematic

position up to the base of the j-th link, computed using the Denavit-Hartenberg parameters in

Figure 4.9. In other words, eq. (4.10) computes the CoM as seen by the j-th link and as depicted

in Figure 4.11. The geometric Jacobian of the partial CoM is computed as

J
j
CoM =





∑n
i=j mi∑n
i=0 mi

(

rj × z
j
CoM

)

rj



 ,

where rj is the third column of the rotation matrix Rj . In the previous equation, we made the

implicit assumption that the robot is composed by revolute joints, as for NAO. Stacking all the

partial CoM Jacobian matrices, the resulting CoM Jacobian is obtained as

JCoM =
[

J1
CoM . . .Jn

CoM

]

.

Note that, from the point of view of a link, a humanoid robot is composed by multiple kinematic

chains ending in different robot points (e.g., the head, the two hands, the leg from the point of

view of a link of one leg). The procedure described above can be trivially generalized for the
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Figure 4.11 An example of computing a partial CoM for the link depicted in green.

humanoid case, as we did for the NAO robot.

There is also another way for computing the CoM and its relative Jacobian matrix by using a

symbolic tool. Here, one has to compute the kinematic chain starting from the support foot ref-

erence frame to the CoM of each link. Again, we made the assumption that the mass distribution

of each link is uniform such that the CoM can be easily modelled as a rigid translation in the link

reference frame. The CoM is computed as

zCoM =

∑n
j=0mjz

j
CoM

∑n
j=0mj

,

where z
j
CoM comes from the Denavit-Hartenberg parameters in Figure 4.9, by applying a rigid

translation to the kinematic chain that ends into the base of the j-th link. Once zCoM is com-

puted in a symbolic way, one can compute also its Jacobian by deriving this expression, again

symbolically.

We implemented both the above-mentioned procedures. Even if they are valid, we prefer to

use the second formulation since it seems to be computationally faster.

An important remark about NAO is that it can be controlled only at joint level, meaning that it

does not accept joint velocity commands. This means that we need to integrate the joint velocities

coming from eq. (4.6), in order to control the robot using the framework presented in Section 4.3.

4.4.2 The V-REP simulator

4.4.2.1 V-REP overview

Now that we have all the kinematic information for running the TCMP framework, explained in

Section 4.3, we can turn our attention to V-REP8, a simulator from Coppelia Robotics, that we

use for our planning experiments. There are two main reasons for which we chose it

1. collision-checker. V-REP has an embedded collision checker, a fundamental tool for each

motion planning algorithm;

8http://www.coppeliarobotics.com/
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2. physics engine. V-REP allows to run both kinematic (i.e., with no physics engine running)

and dynamic playbacks of planned motions.

V-REP is a cross-platform, open-source robot simulator with integrated development environ-

ment. It is based on a decentralized framework: each object/model can be individually controlled

by an embedded script, a plugin, a ROS node, a remote API client or a custom solution. There

are already a number of sensors and robots that comes with V-REP. One good point of this sim-

ulator is its completeness. In fact, manipulators, mobile robots and humanoid are in it, as well

as vision, force and proximity sensors.

V-REP is composed by three central elements

1. scene objects (how you build a robot);

2. calculation modules (how you simulate the robot);

3. control mechanisms (how you can interface with the robot).

There are 12 scene objects that can be combined in V-REP. The most important ones (the ones

that we use for building the NAO model) are

• shape. It is a rigid mesh objects that is composed of triangular faces. There are different

types: (i) random shape: it not optimized but any mesh can be modelled with it; (ii)

convex shape: slightly optimized; (iii) pure simple shape: the most optimized shape.

Strongly suggested for dynamic simulation; (iv) heightfield: use for modelling terrain

with different heights;

• joint. There are four different types: (i) revolute: rotational movement; (ii) prismatic:

translational movement; (iii) screw: translational while rotational movement; (iv) spher-

ical: three rotational movements;

• tree. The tree gives the way one builds a robot in V-REP. Each object has its own dynamic

properties. Kinematic chains are built using a parent-child relationship. Two shapes are

connected with a joint using this relationship. Finally, there is the possibility to decouple

the visual and the dynamic part of shape. This is important because complex shapes can be

just visually displayed while a simple convex shape can be used for the dynamic simulation.

We use that approach for developing the NAO model in the simulator;

• camera. It is used for tracking an object while moving or for fixed visualization. There are

two camera models: (i) perspective; (ii) orthographic projection.

Regarding the central modules, they can be grouped in

• forward/inverse kinematics. It can be used to find a inverse kinematic solution for any kine-

matic chain including redundant, closed and branched. It includes also different techniques
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embedded script add-on plugin remote API ROS node

control entity is internal no no no yes yes

implementation difficulty easiest easiest easy easy hard

programming language LUA LUA C/C++ Matlab/Python/etc any

# of APIs > 280 > 270 > 400 > 100 > 100

simulation customization no yes yes no no

code execution speed slow slow fast variable variable

communication lag none none none yes yes

API mechanism regular API regular API regular API remote API ROS

API extensible LUA scripts LUA scripts C++ code remote API ROS

control relies on nothing nothing nothing socketsa sockets/ROSb

synchronous operationc no delay no delay no delay comm lag comm lag

asynchronous operation yesd no no yes yes

athe sockets use the remote API plugin
bthe sockets use the ROS plugin and the ROS framework
csynchronous means that each simulation step runs synchronously with the

control entity
dpossible with threaded scripts

Table 4.1 A comparison between the different control mechanisms in V-REP.

for finding an inverse kinematic solution such as pseudoinverse (faster, more unstable) and

damped least square (slower, more stable). When finding a solution, both joint limits and

obstacle avoidance might be taken into account;

• minimum distance computation. The minimum distance can be computed between any

meshes and it is very fast and optimized;

• dynamics. There are four embedded physics engine: (i) Bullet. An open source physics

library featuring 3D collision detection, rigid body dynamics. Mostly used for gaming

applications; (ii) ODE. An open source physics engine composed by rigid body dynamics

and collision detection; (iii) Vortex. A closed source, commercial physics engine produc-

ing high fidelity physics simulations. It is a really good physics engine but the free licence

is only for 20 seconds; (iv) Newton Dynamics. It is a cross-platform life-like physics sim-

ulation library. It implements a deterministic solver, which is not based on traditional LCP

or iterative methods, but possesses the stability and speed of both respectively. In our ex-

periments, we have used the ODE physics engine, since it is a good compromise between

high fidelity physics simulations and payload introduced by running a simulation with a

physics engine running (in addition there is no limitation for the simulation duration);

• collision detection. It can be computed between any mesh. One can select collidable

objects. The calculation is an exact mesh-mesh (or collection of meshes) interference

calculation. This is a fundamental tool for our motion planning algorithm, in particular

when the joint motion generator is called (Section 4.2.2);

• path planning. It enables holonomic/non-holonomic path planning using a starting and a

goal position, a set of obstacles and a robot model. Even if it seems promising for what

we want to do, it is hard to generalize for a humanoid robot.
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The last component to be described is the control mechanism. They are several ways for control-

ling a robot that can be grouped

• embedded script. It is written in LUA9 code and its power relies in the simplicity with

which one might control a robot. It is a script that can be attached to any scene object and

it is fast (but not the fastest).

• add-on. As the previous approach, it is written in LUA. It allows to quickly customize the

simulator itself. An add-on can start automatically and run in the background, or it can

be called as functions. Unlike the previous approach, it is not linked to any model in the

scene, but they are a global feature of the simulator;

• plugin. It is written in C++. It is the fastest way to control a robot in V-REP and it is the

reason for which we used it in our experiments. It can be used for customizing the simulator

and/or a particular simulation or for providing a simulation with custom LUA commands,

and so are used in conjunction with scripts. Roughly speaking, a plugin is a shared library

that is run at runtime by V-REP. This library should include three main function. The first

is called v repStart, that is an initialization function, called once at simulation start; the

second, named v repEnd is the function called by the simulator before exiting; the last one,

v repMessage is the loop function, i.e., the function called at each step by the simulator.

It is used for writing your own functionalities and for detecting/creating/destroying object

callbacks;

• remote API. It is aimed for controlling a model (or the simulator itself) from from an

external application or a remote hardware (e.g. real robot, remote computer, etc.). The

communication with V-REP is performed via socket communication in a way that reduces

lag and network load (this appears as a black box for the user);

• ROS interface. This method allows to connect a model to be interfaced via ROS10. There

are more than 30 publisher types as well as more than 25 subscriber types and extensions

are possible.

The first 3 methods are internal, i.e. the control entity is internal while the remaining one are re-

mote, meaning that the control entity is external. We reported in Table 4.1 a comparison between

the control mechanisms, reporting their most important features.

We decided to develop our motion planning algorithm as plugins of V-REP. The main reason

is for efficiency, since it is the fastest method to control a robot in the simulator. Moreover, it gives

to opportunity to integrate the code with other libraries, e.g., Eigen11 and one has the complete

control of all the entities in the simulator at once.

9http://www.lua.org/
10http://www.ros.org/
11http://eigen.tuxfamily.org/
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Figure 4.12 A snapshot of the NAO robot in V-REP. (left) Figure of the visual aspect of NAO,

as it appears in the simulator. (right) Figure of the dynamic aspect of NAO, as it appears from

the physics engine point of view.

4.4.2.2 NAO in V-REP

The first step is the development of the NAO model in V-REP, since such a robot was not in

the simulator library, at the beginning. A model for the NAO robot already exists in a simulator

called Webots12. However, the dynamic behaviour of the robot is not so reliable, in my humble

opinion. Moreover, Webots is not an open-source software while V-REP does. A snapshot of

the obtained model is depicted in Figure 4.12.

We tried to replicate, at the best of our knowledge, all the features and some of the sensors

of the humanoid robot NAO H25 V 4.0. First, we got the meshes from Aldebaran Robotics and

we optimized them for V-REP though a CAD tool (we use Blender13 for this purpose). Then, we

created the robot tree in V-REP developing, for each body, two layers. The first is a visual layer,

i.e., it is how the body is seen from a sensor and/or by the user in V-REP. The second is a dynamic

layer, i.e., it is how the body is seen by the physics engine. The reason for introducing two layers

is the efficiency. In fact, a body might be simulated in principle as one single layer. However,

a mesh, usually, it not convex and its propagation in a physics engine has a huge computational

payload. Using the two layers is a good compromise between visual appearance and computa-

tional efficiency in a physics propagation. The result is shown in Figure 4.12, where the two

layers are shown. From a user point of view, the robot appears as in the left part of Figure 4.12,

while the physics engine propagates the robot depicted in the right part of Figure 4.12.

Note that the dimensions14 were taken from the official NAO documentation, as well the joint

limits15 and the masses and the inertial matrices16 for each body. We also simulated the motors

by introducing a PID controller on each joint. When a desired value is given to a joint, the joint

cannot apply it instantaneously, but it is reached through a PID controller, as for the real robot.

We simulated also some of the sensors the real robot is equipped with. We have to say that

these sensors were just native with V-REP. We just applied them for NAO. In details, we set a

12https://www.cyberbotics.com/
13https://www.blender.org/
14http://doc.aldebaran.com/1-14/family/nao h25/dimensions h25.html
15http://doc.aldebaran.com/1-14/family/nao h25/joints h25.html
16http://doc.aldebaran.com/1-14/family/robots/masses robot.html
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Figure 4.13 Pick and place: snapshots from a solution.

IMU on the torso of the robot, the force sensors under the feet in order to measure the pressure

and the two cameras on the robot head.

4.4.3 Planning experiments

The planner proposed in Section 4.3 has been validated in V-REP, the simulator described in

Section 4.4.2. The tests were performed on a MacBook Pro dual-core running at 2.66 GHz.

We have performed several experiments but here we report just two of them. In the first

experiment, the robot has to pick up an object from a lower shelf of a bookcase and place it

on an upper shelf. To this purpose, a trajectory is assigned for the right hand of the humanoid

robot. The results are shown in Section 4.4.3.1. In a second experiment, the robot has to open

a door. The constrained point is again the right hand of the humanoid. The results are shown in

Section 4.4.3.2.

In both experiments, we have used the same parameter set. For step generation, uniform

probability is used to extract support foot displacements from the set of primitives, in which

δx = 0.03 m, dmin = 0.1 m, δy = 0.01 m, δθ = 7.5◦ and M = 2. For joint motion generation,

we use K = diag{2, 2, 2} in eq. (4.6) and η = 1.6 in eq. (4.9), while wrnd in eqs. (4.8-4.9) is

generated using uniform probability and a norm limit at 0.4 rad/sec. Numerical integration of

joint velocities is performed with a 4th order Runge-Kutta algorithm using a step size of 0.05 s.
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data pick and place opening a door

planning time (s) 5.41 2.61

tree size (# nodes) 81.6 55

mean task error (m) 4.44·10−4 4.2761·10−4

Table 4.2 Planner performance at a glance.

To further validate the proposed method, we have performed (for each proposed experiment)

a dynamic playback of the planned motions in V-REP; i.e., we have used the generated joint

trajectories as reference signals for the joint-level robot controllers and enabled a full physical

simulation of the humanoid, including multibody dynamics and interaction with the environment

(foot contact, object grasping and releasing). The obtained NAO motions are virtually identical to

the reference motions; in particular, this confirms that static equilibrium is effectively achieved17.

4.4.3.1 Picking and placing an object

As mentioned before, the goal of the first scenario is to pick an object from a lower shelf of a

bookcase and place it on an upper shelf of the same bookcase. The trajectory assigned for the

right hand lasts 18 s and the total length of the task path is 0.69 m. The duration of elemen-

tary motions is T = 2 s. Few snapshots of one solution found by our planner are depicted in

Figure 4.13.

Since the target object is far enough from the robot, the planner needs to generate multiple

steps to reach it. For this reason, it moves from its initial pose, performing four steps before

grasping the object at t = 9 s. The object is then placed on the upper shelf at t = 15.5 s.

Note that the robot grasps and releases the object in double support, using uk
spt = 0 in these

phases. It is important to underline that the choice of which primitive to use is totally left to

the planner and that step motions appear naturally, without introducing any form of biasing.

Moreover, collisions with the bookcase are carefully avoided. The object is finally released at

t = 15.5 s. The robot performs a final step completing the task at 18 s. Finally, it performs a

brief self-motion that lasts 0.7 s. This is done for achieving the best possible final posture from

the viewpoint of static balance. Results are reported in Table 4.2, where some data are collected

in order to evaluate the performance of the proposed planner. It reports the time needed by the

planner to generate a solution (planning time in Table 4.2), the number of nodes contained in the

final tree (tree size in Table 4.2) and the mean value of the norm of the task error (mean task

error in Table 4.2) throughout the duration of the task (not only at nodes). Since our planner is

randomized, these data are averaged over 20 executions of the planner for each problem. As one

might notice, the assigned task trajectory is fulfilled with high-precision. This precision can be

even increased if one decreases the step size of the Runge-Kutta integrator or if one increases

17For further details, see also http://www.dis.uniroma1.it/~labrob/research/HumWBPlan.html, where

there is also a video of the proposed approach.

68

http://www.dis.uniroma1.it/~labrob/research/HumWBPlan.html


Chapter 4. TCMP for humanoids based on step generation Marco Cognetti

Figure 4.14 Open a door: snapshots from a solution.

the gains in K. Moreover, if one substitutes the 4th order Runge-Kutta integrator with a simpler

one, e.g. Euler, the planning time decreases. However, we believe that our settings are a good

compromise between accuracy and planning time.

4.4.3.2 Opening a door

In the second scenario, the robot has to open a door by grasping its knob and moving it along

an arc of 45◦. The duration of this task is 8 s and the length of the task path is 0.59 m. In this

experiment, T was set at 1.6 s. All other parameters used by the planner are set to the same values

as declared in Section 4.4.3. Figure 4.14 reports some snapshots from a solution found by our

planner. At t = 0 s, the robot is standing in front of a door and the knob is in the workspace of

the robot. For this reason, NAO does not have to take steps to grasp the knob (at t = 1.5 s) with

its right arm. Since the feet are really close to the door, the latter cannot be opened standing in

the initial pose. In fact, the robot has to take few backward steps between t = 1.5 s and t = 7 s in

order to be able to open the door without colliding with it. Again, we remind that it is the planner

that naturally generates the steps and the user does not provide any form of biasing. At t = 7 s,

the door opening phase ends. Then, the robot releases the knob and takes one more backward

step. Also in this case, the plan is concluded by a self-motion, as in the previous experiment.

Table 4.2 reports the same data (planning time, tree size and mean task error) as for the previous

scenario.

For the sake of clarity, it is worth noting that in both experiments the grasping action is purely

demonstrative. Taking into account the physics of grasping is out of the scope of this thesis.

Note how both the planning time and the tree size are larger for the first problem than for the

second. The reason for this is twofold. First, the task duration for the pick and place scenario
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is longer. Second, the geometry of that scene requires the robot to stretch its arm to reach the

object on the lower shelf. As a consequence, many candidate configurations are discarded by the

planner for violating the joint limits or colliding with the bookcase, and therefore the planning

time increases. In both cases, the task accuracy is very high and insensitive to the complexity of

the problem.

4.5 Conclusions

In this chapter, we have presented a framework for solving the problem of planning the motion

of a humanoid robot that must execute a manipulation task, possibly requiring stepping, in an

environment cluttered by obstacles. The proposed method explores the submanifold of the con-

figuration space that is admissible with respect to the assigned task and at the same time satisfies

other constraints, including humanoid equilibrium. The exploration tree is expanded using a

hybrid scheme that simultaneously generates footsteps and whole-body motions. The algorithm

has been implemented for the humanoid robot NAO and validated through dynamic playback in

the V-REP environment.

A distinctive feature of the developed planner is that, differently from the existing literature,

its application is not limited to “regulation” tasks, i.e., tasks defined only in terms of a final

desired value, such as a grasp posture for one hand. Indeed, by handling tasks that are specified

through actual trajectories, we can allow the robot to perform more complicated operations, such

as opening a door. On the other hand, if only y∗(tf ) is assigned, a suitable approach trajectory

in the task space can be easily designed and incorporated in the assigned task to recover our

problem setting. Another possibility is to simply set y∗(t) = y∗(tf ) for all t; in this case, the

motion generation scheme (4.6) will naturally produce as approach trajectory a linear motion in

the task space with exponential convergence speed. This feature will be formally explored in the

next chapter.

Another interesting aspect of our approach is its independence from the Stepping Pattern

Generator, which is in fact assumed to be external to the planner. This means that both statically

and dynamically balanced walking can be embedded in our plan, without the need of any post-

processing phase. An actual Walking Pattern Generator may be also included to produce longer

sequences of stepping motions directly; this can be desirable when the assigned task implicitly

requires long transfers (‘open the door at the end of the corridor’).

Although we have essentially focused on manipulation tasks, we emphasize that the proposed

framework is general and therefore can be applied also to tasks of different nature, such as navi-

gation. This, together with the introduction of the CoM movement primitives, will be the subject

of the next chapter that presents another motion planner that generalizes the one presented so far.

The planner presented in this chapter has been published in [17]18.

18For further details, see also http://www.dis.uniroma1.it/~labrob/research/HumWBPlan.html, where

there is also a video of the proposed approach.

70

http://www.dis.uniroma1.it/~labrob/research/HumWBPlan.html


Chapter5
Task-oriented whole-body
motion planning for humanoids
based on CoM movement
primitives

This chapter describes another motion planner that generalizes the one presented in Chapter 4.

The idea is to replace the foot displacements that are the output of the step generation module

presented in Section 4.2.1 with a more general concept, the movements of the CoM. These are

movements associated with typical human actions, such as static walking, dynamic walking, and

more. We assume that a catalogue of CoM movement primitives has been precomputed and it

is available to the planner. A solution is composed by concatenating whole-body motions that

fulfil these primitives and, simultaneously, portions of the assigned task.

An important aspect under which the new planner improves over the previous is that it can

indifferently handle tasks specified as trajectories (e.g., opening a door) or as simple destinations

in the task space. Moreover, the task may be assigned as a single operation (e.g., ‘grasp this

object’, ‘open the door handle’) or a composite sequence of navigation and manipulation actions

(‘take the object on that table and bring it in the other room’).

Results obtained on a NAO humanoid will confirm the higher versatility gained by the use

of CoM movements primitives. For example, we obtain plans that automatically toggle between

dynamic and static walking gaits when required by the characteristics of the environment (e.g.,

obstacles) or the task itself. In addition, the possibility of assigning destination points allows a

simple definition of composite tasks. Moreover, since each primitive implicitly encapsulate the

information about feasible next primitives, we shrink the size of search space, hence the planner

performs better in terms of computational complexity.

Using primitives in humanoid motion planning is not new in the literature. These have been

exploited, for example, in [43, 44] for planning motions on varied terrain. However, those prim-

itives are actually whole-body motions (i.e., they specify the motion of all joints) whereas in our

approach they describe only the trajectory of the CoM and can therefore give rise to different

robot movements as required by the various phases of the plan; this results in a higher plasticity
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of our planning method. Moreover, the planners [43, 44] cannot directly handle the case in which

a task (e.g., manipulation) is assigned to the robot.

Some of the concepts we need to explain the motion planner were already introduced in

Chapter 4. For this reason, we avoid to explain again these concepts by providing reminders to

appropriate sections of the previous chapter. However, our goal is to provide a self-contained

chapter. This chapter is organized as follows. In Section 5.1 the humanoid motion model is

formalized since it changes w.r.t. the one presented in Section 4.1; the motion generation based

on CoM movement primitives is described in Section 5.2, while a randomized planner is shown

in Section 5.3. Finally, motion planning results are reported in Section 5.4 and the whole chapter

is discussed in Section 5.5.

5.1 Problem formulation

As for Section 4.1, we first introduce a humanoid motion model, and then we discuss the nature

of the considered tasks.

5.1.1 Humanoid motion model

As explained in Section 4.1.1, in order to specify a configuration of a free-flying humanoid, one

should assign the n values of the joint angles together with the pose (position and orientation) of

a reference frame linked to one of the robot bodies. Instead of linking this reference frame to the

support foot (as we did in Section 4.1.1), we choose to attach it to the center of mass (CoM in

the following) and oriented as the torso. The reason for choosing the torso for the orientation is

that the CoM is a virtual point that does not provide any form of orientation. The orientation is

represented as a unit norm quaternion. Furthermore, we motivate the choice of the CoM as part

of the configuration vector by saying that it will be helpful when the CoM movement primitives

will be introduced in Section 5.2. A configuration will be then defined as follows

q =

(

qCoM

qjnt

)

, (5.1)

where qCoM ∈ SE(3) is the pose of the CoM frame and qjnt ∈ Cjnt is the n-vector of joint

angles. The humanoid configuration space SE(3)× Cjnt has thus dimension n+ 6.

As for the planner presented in Section 4.3, the way the configuration vector is partitioned

reflects how we generate the motion within our motion planner. For the CoM, we shall concate-

nate whole movements (i.e., subtrajectories) rather than defining instantaneous motions (as for

the support foot). These subtrajectories will be extracted from a catalogue of CoM movement

primitives that are associated to typical human actions such as walking, jumping, squatting, etc.

An example of these primitives are depicted in Figure 5.1. Each primitive contains a movement

for the CoM. Moreover, it may actually specify the trajectory of other points of the robot: for ex-

ample, a stepping primitive will include also the trajectory of the swing foot. Note that selecting
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Figure 5.1 Examples of CoM movement primitives: (a) stepping (b) jumping (c) squatting

(d) climbing. Each primitive specifies a trajectory for the CoM (red, dotted) and possibly other

points of the robot, such as for the swing foot (blue, dashed). However, the planner can freely

choose the whole-body motion among the infinite that are compatible with the primitive.

a particular CoM primitive does not specify the whole-body motion, which can be freely chosen1

by the planner among those compatible with the primitive. This is a key point of the proposed

framework and it should be discussed in more details: a CoM primitive contains a desired move-

ment regarding the position of the CoM and the orientation of the torso, as mentioned before.

Moreover, in case the primitive is a stepping primitive, it contains also the position and the ori-

entation of the swing foot. Then, it may contain information regarding other points of the robot

(in addition to the CoM) even if it is called CoM movement primitive. The reason we named

it in this way is that it contains information regarding how to move the CoM. It is important to

underline that each primitive contains also the duration needed to perform the primitive.

Once a CoM movement primitive has been selected, the displacement of qCoM is defined

throughout its whole duration. At this point, the instantaneous motion of the joint coordinates

qjnt can be chosen so as to realize the chosen primitive, together with other planning require-

ments. This is well-described by the following hybrid model

qCoM(t) = qkCoM ⊕A(qkCoM)uk
CoM(t) (5.2)

q̇jnt(t) = vjnt(t) (5.3)

with t ∈ [tk, tk+1], an interval in which the CoM performs a certain primitive movement of

duration Tk = tk+1 − tk. In the previous equations, qkCoM = qCoM(tk) is the pose of the CoM

reference frame at tk, uk
CoM(t) is the pose displacement of the CoM frame at t relative to the

pose at tk, vjnt is the velocity input vector for the humanoid joints and ⊕ is an operator that

composes two poses2, i.e., it sums the two position vectors while it is equal to the quaternion

product operator for the quaternions3. Finally, A(qkCoM) is a transformation matrix from the

1In particular, repetition of the same primitive (e.g., a step) in different parts of the plan will correspond in general

to different whole-body motions, depending on the local task history and obstacle placement.
2Here, we suppose that a pose qCoM is a vector composed by 7 elements: the first three are the position while the

last four are the quaternion (with its unit norm constraint).
3We recall that we chose quaternions for representing the orientations of reference frames.
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CoM frame at tk to the world frame. In formula

A(qkCoM) =

(

R(qkCoM) 03×4

04×3 I4×4

)

,

where R(qkCoM) is the rotation matrix that rotates the position component of uk
CoM(t) into the

world frame.

The motion model in eqs. (5.2–5.3) is hybrid. In fact, the first equation is algebraic, because

the CoM motion is generated by patching whole subtrajectories extracted from the catalogue of

primitives; in fact, the primitive chosen for application at tk specifies the history of the relative

pose displacement uk
CoM(t) for all t ∈ [tk, tk+1]. The second equation is differential, as joint

variables are changed instantaneously to track the CoM motion and pursue other tasks.

Note that the motion model in eqs. (5.2–5.3) has a different hybrid nature w.r.t. the one

described in eqs. (4.2-4.3). In fact, even if the differential part is the same in both motion models

(eq. (4.3) and eq. (5.3) are the same), we recall that the motion model in eqs. (4.2–4.3) is hybrid

due to the discrete nature of the support foot pose qspt dynamics, while the one in eqs. (5.2–5.3)

is hybrid for the algebraic nature of the pose qCoM of the CoM reference frame.

It should be kept in mind that the CoM displacement uk
CoM(t) depends on the history of the

joint velocities vjnt(t) in [tk, t] up to time t. Indeed, any motion of the humanoid, including that

of the CoM, is generated at the joint level. In other words, eqs. (5.2–5.3) are not independent but

they are highly coupled. This fact must be appropriately taken into account within our motion

generation scheme (see Section 5.2).

5.1.2 Task-contrained planning

Since a motion model is now available, we can formally introduce the task. Its definition is

very similar to the one given in Section 4.1.2 with some minor modifications. Here, we want

to generalize the concept of a task. Suppose that a task is described as the trajectory for the

position (and possibly orientation) of a specific point (body) of the humanoid, as in Section 4.1.2.

For instance, a manipulation task may be specified as a trajectory assigned to one hand, while a

navigation task may be assigned in terms of motion of the midpoint between the feet. This simple

viewpoint makes it very easy to translate a task from natural language (‘pick up that object and

bring it to me’) to an assignment that can be directly used by our planner. We emphasize that the

task may be a geometric path rather than a trajectory, and in particular it may reduce to a goal

position in task space. The proposed planner works without any modification in these cases, as

shown in Section 5.4.

Then, the task is generalized in the sense that it might be expressed as a trajectory (as for

the motion planner described in the previous chapter) but also as a geometric path or even a

goal position in task space. Moreover, we will show how composite tasks can be handled in our
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framework, by combining tasks of different nature (e.g., manipulation and navigation tasks. See

Section 5.4 for an example of a composite task).

Formally, collect the task coordinates in a vector y taking values in an appropriate space. The

following kinematic map links task coordinates with configuration coordinates

y = f(qCoM, qjnt).

Suppose that a desired task trajectory y∗(t), t ∈ [ti, tf ], is assigned. In case the trajectory is

assigned via a geometric path, one has to replace t with a path parameter s. On the other side, in

case one wants to assign the task as a desired task set-point, its definition degenerates to a single

point y∗(tf ). Our framework is able to handle without any modifications all these definitions of

the assigned task.

To summarize, the planning problem considered in this chapter is to find a feasible whole-

body motion of the humanoid over [ti, tf ] that realizes the assigned task while avoiding collisions

with workspace obstacles, whose geometry is known in advance. In our approach, a solution is

identified by a concatenation of CoM movement primitives that has been ‘fleshed out’ by defining

collision-free whole-body motions which realize such movements while complying with the task.

In the end, however, the solution can be directly described in terms of joint motions.

Formally, a solution for our TCMP problem is a trajectory qjnt(t), t ∈ [ti, tf ] that satisfies

three requirements

1. the assigned task trajectory is exponentially realized; in formula,

lim
t→∞

(y(t)− y∗(t)) = 0

with an exponential rate of convergence;

2. self-collisions and collisions with workspace obstacles are avoided;

3. position and velocity of the joints are within their bounds, respectively in the form qjnt,m <

qjnt < qjnt,M and vjnt,m < vjnt < vjnt,M;

Note that if y(ti) = y∗(ti) (matched initial configuration, or ‘the robot starts on the task’),

the first requirement automatically becomes

y(t) = y∗(t), ∀t ∈ [ti, tf ],

i.e., the assigned task must be exactly realized at all times.

The first requirement is another small improvement w.r.t. the framework proposed in the

previous chapter. In fact, the initial configuration must be on the task in the formulation of

Section 4.1.2 while here we do not require it. This is due to the CoM movement primitives and

their role in determining the time interval of the generic iteration [tk, tk+1] (see Section 5.2.1 for
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Figure 5.2 Example of the CoM movement selection procedure. (left) Once qnear has been

selected, the CoM movement selector has to choose between the various primitive (depicted

each with a different color). Each primitive embeds a duration and a trajectory for the CoM

and possibly other points (here swing foot). (right) A primitive has been selected, uniquely

identifying the portion of the task to be fulfilled (red).

further details), leading also to recover an initial error in a natural way. On the other side, this is

not trivial to obtain by using the framework described in Chapter 4, since the time interval (for

each iteration of the planner) is defined by the planner itself (the Tk in Section 4.3) and the sum

of the durations might be not compatible with the total duration of the assigned task.

5.2 Motion generation

The proposed planner works in an iterative fashion by repeated calls to a motion generator. That is

the reason for which we present first this module and then we describe the planner in Section 5.3.

As for the motion generation scheme presented in Section 4.2, we use two interleaved pro-

cedures that reflects the way the configuration vector q is composed in eq. (5.1). First, the

CoM movement selector chooses a particular CoM movement from the set of primitives (that

we assumed to be available to the planner). Then, the joint motion generator computes feasible

collision-free joint motions that realize the chosen primitive as well as the corresponding por-

tion of the assigned task trajectory. The definition of feasible motion is the same as given in

Section 4.2, that we repeat here for completeness. A motion is feasible if the configurations that

compose the motion are collision-free. Moreover, none of these configurations has to exceed the

joint limits nor the joint velocity limits.

In Section 5.2.1 we describe the CoM movement selection mechanism while the joint motion

generation is depicted in Section 5.2.2.

5.2.1 CoM movement selection

This procedure is the main change w.r.t. the framework described in the previous chapter. The

CoM movement selector is invoked from the current configuration qk = (qkCoM qkjnt)
T at time

tk and its aim is to select a particular CoM movement in the primitive set. This is conceptually

different with respect to the step generation procedure described in Section 4.2.1, where a pose

displacement of the support foot was the quantity to be computed. Here, the CoM movement
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selection is has to compute uk
CoM, the pose displacement of the CoM reference frame at t relative

to the pose at tk.

For sake of illustration, we consider a precomputed catalogue of CoM movement primitives

that contains only stepping movements (as well as a non-stepping motion, see below). However, it

important to empathise that the proposed framework works with any set of primitives; indeed, the

richer this set, the larger the set of tasks for which we will be able to plan a whole-body motion.

For example, crouching and crawling primitives would allow to achieve tasks that require passing

below obstacles. On the other side, the richer is the set and higher would be the planning time,

since the planner has more primitive to choose and a wider space to explore.

As explained in Section 5.1, each primitive specifies the history of the relative pose displace-

ment uk
CoM(t) for all t ∈ [tk, tk+1], with tk+1 = tk+Tk. Recall that each primitive comes with a

duration Tk, that is embedded in its definition. In the following, we denote this history by uk
CoM

for compactness, removing the temporal dependence. A CoM movement uk
CoM is then selected

by picking one primitive from the catalogue

U =
{

US
CoM ∪ UD

CoM ∪ free CoM
}

(5.4)

where US
CoM and UD

CoM are subsets of static and dynamic steps, respectively, and free CoM a

non-stepping movement.

An example of the CoM movement selection procedure is given in Figure 5.2.

The primitives in US
CoM are extracted from a static walking gait, where equilibrium is stati-

cally guaranteed by checking that the ground projection of the CoM lies in the support polygon

of the humanoid robot. A primitive of this kind can be performed by recording the CoM (and

the swing foot) trajectory from, e.g., one step described in Section 4.2.1. This set will typically

include a forward step (uSF
CoM), a backward step (uSB

CoM), left (uSL
CoM) and right (uSR

CoM) steps,

and possibly others.

The stepping motions in UD
CoM are extracted from a dynamic walking gait, where the equi-

librium is dynamically guaranteed by checking that the Zero Moment Point (ZMP) is always

contained in the humanoid support polygon. More details about the ZMP are given in [51, 52,

53, 54, 115, 122]. This set will typically include a starting step, a cruise step and a stopping

step, for each direction of motion. As example, in the forward direction, the starting step will be

denoted with u
DF,start
CoM , the cruise step with u

DF,cruise
CoM and the stop step with u

DF,stop
CoM . Similar

notations will be used for left, right and backward steps4. See Figure 5.3 for examples of such

primitives.

Finally, free CoM is a primitive where the CoM is completely free to move as long as both

feet remain fixed and the robot maintains equilibrium. This is a fundamental primitive within

our framework. In fact, it is a stretchable primitive in the sense that its duration can be chosen

4The second letter in the superscript refers to the direction of motion. As example the “F” in u
DF,start
CoM refers to

the forward direction of motion. Similarly, we use “L”, “R”, “B” for left, right and backward motions, respectively.
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Figure 5.3 CoM movement primitives for the set UD
CoM. In order: (top row) a starting forward

step (u
DF,start
CoM ), a cruise forward step (u

DF,cruise
CoM ) and a stopping forward step (u

DF,stop
CoM ). (bot-

tom row) a left cruise step (u
DL,cruise
CoM ) and a right cruise step (u

DR,cruise
CoM ). The green lines in

the plot refer to right foot support phase; otherwise, the support foot is the left one (blue lines).

arbitrarily (as opposite to the other primitives). Then, it allows to build a sequence of movements

whose total duration is tf−ti (as specified by the task) using motion primitives whose individual

durations are otherwise fixed. To convince the reader, consider the following example where U

is composed by just one primitive with a duration of 2 s. Assume that the task has a duration of

5 s. Since there is just one primitive, this will be selected at each step. When arrived at t = 4 s,

the motion planner cannot complete the task choosing a primitive (since it lasts 2 s). Introducing

free CoM, this primitive can be used to cope with the final portion of the task5, adapting its

duration to be 1 s. Moreover, note that

• as stated before, a CoM movement primitives specify the motion of other points on the

robot body in addition to that of the CoM displacement. For example, stepping primitives

assign also the swing foot trajectory within the associated time interval;

• qCoM is completely defined in [tk, tk+1] by plugging the initial CoM pose qkCoM and the

selected primitive uk
CoM in eq. (5.2);

• the above stepping movement primitives can be precomputed using suitable Walking Pat-

tern Generators;

• at a given configuration qk, the set of primitives from which to choose is actually a subset

of U that depends on the configuration itself, and in particular on which CoM primitive

has produced qk. For example, only another cruise step or a stopping step are admissible;

5Note that the free CoM can be used also in fulfilling also other portions of the task, not only to cope the final

part.
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no static step can be selected after a dynamic cruise step. Similarly, the only dynamic step

that can follow a static step is a starting step; and so on.

The policy with which a primitive has to be selected in the primitive set U can be purely

random (in order to explore with uniform probability the set) or based on appropriate heuristics,

possibly designed for a specific task. Since we want to create a motion planner as general as

possible, we choose the random solution. However, it is trivial to specify an heuristic within our

framework.

To summarize, the CoM movement selector gives as output

1. a duration Tk for the movement and a time interval [tk, tk+1], with tk+1 = tk + Tk. It

comes from the primitive itself that embeds a duration (except for free CoM);

2. for all primitives but free CoM, a reference trajectory z∗
CoM for the position of the CoM

(the position component of qCoM) in [tk, tk+1], where tk+1 = tk + Tk;

3. for all primitives, a reference trajectory z∗
swg in [tk, tk+1] for the swing foot (position and

orientation).

Obviously, if free CoM has been selected as primitive, the swing foot reference trajectory is

simply z∗
swg(t) = z∗

swg(tk), ∀t ∈ [tk, tk+1].

Although the q∗CoM is a pose vector, we decided to constrain only its position, z∗
CoM. In fact,

some humanoid movements are more naturally described by the position rather than the pose of

the CoM. We prefer to leave the planner free to decide on how to move the orientation of the

CoM reference frame, using these additional degrees of freedom to cope with other constraints

(e.g., the assigned task). This is of course possible due to the fact that most WPGs generate CoM

trajectories just in position and we are focusing only on walking primitives. Furthermore, we

implemented both versions: the one where the CoM pose6 is constrained and the one where just

its position is constrained. As just explained, we found out that the latter outperforms the former,

giving more freedom to the motion planner to fulfil other planning requirements.

5.2.2 Joint motion generation

This section is mainly equal to Section 4.2.2. Here we summarizes the main concepts of that

section, in order to create a self-contained chapter. The reader is then referred to Section 4.2.2

for further details.

Once a CoM movement primitive with duration Tk has been selected, joint velocities can be

instantaneously generated. These velocities should enable the robot to realize the assigned task

y∗ in [tk, tk+1], with tk+1 = tk + Tk. Moreover, it has to fulfil the trajectory of the for the CoM

z∗
CoM and the swing foot z∗

swg, output of the CoM movement selector, within the same interval.

6We recall that, in this case, the orientation is the one of the torso, expressed in unit quaternion.
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Let ya = (yT zT
swg zT

CoM)T be the augmented task vector, in case free CoM has not been

selected as primitive. In such a case, the augmented task vector becomes ya = (yT zT
swg)

T ,

since the CoM is not constrained when using such a primitive. Define Ja as the Jacobian matrix

of ya w.r.t. the joint variables qjnt and e = y∗
a − ya as the augmented task error, with y∗

a(t) the

reference value of the augmented task in [tk, tk+1]. Joint velocity commands are generated as

vjnt = J†
a(qjnt) (ẏ

∗
a+Ke)+(I−J†

a(qjnt)Ja(qjnt))w, (5.5)

whereJ†
a is the pseudoinverse ofJa,K is a positive definite gain matrix andw is ann-vector that

may be chosen arbitrarily without perturbing the execution of the augmented task. Indeed, since

I−J†
aJa is the orthogonal projection matrix in the null space of Ja. If one substitutes eq. (5.5)

in eq. (5.3) and then computes the error dynamics, the result is ė = −K e, i.e., exponential

convergence of the augmented task to its reference trajectory.

Regarding w, in order to explore the space of possible solutions, we select it as

w = wrnd , (5.6)

where wrnd is a bounded-norm random n-vector. In case free CoM has not been selected as

primitive, we use a slightly different choice of w:

w = −η · ∇qjnt
H(qjnt) +wrnd, η > 0, (5.7)

whereH(qjnt) is the squared distance between the centroid of the support polygon and the ground

projection of the CoM. The first right term in eq. (5.7) tends to move the CoM in the direction

of the center of the support polygon, in order to privilege the generation of robot configurations

that are statically stable. The second right term in eq. (5.7) has the aim of avoiding deterministic

actions. Note that, if w is deterministic, eq. (5.5) is deterministic as well. In other words, given

ya and ẏa, eq. (5.5) produces every time the same output. If this causes a collision, this is

never avoided. On the contrary, if one imposes different values for w (even randomly), different

solutions are found, increasing the probability to find at least one of them that is not colliding.

Recall that any value assumed by w does not interfere with the fulfilment of the tasks in ya since

w is projected in the null space of Ja.

The trajectories generated by (5.5–5.6), or (5.5–5.7), are continuously checked for collisions

as well as for position and velocity joint limits. In case free CoM has been selected, static equilib-

rium is also explicitly checked, since the CoM is not explicitly constrained and it might leave the

support polygon region, in principle. If any of these conditions is violated, the current execution

of the motion generator is interrupted. On the contrary, a feasible collision-free joint motion

qjnt(t), t ∈ [tk, tk+1] has been produced, ready for a possible usage from the motion planner.

Finally, we integrate eq. (5.5) using a numeric solver, whose integration step might be taken

as small as possible in order to achieve an arbitrary accuracy of trajectory tracking. We tried
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Figure 5.4 Example of the joint motion generation procedure. (left) Output of the CoM move-

ment selector, i.e., a trajectory for the swing foot and for the CoM. (right) Joint motion can be

generated such that the robot fulfils a portion of the assigned task, together with the above-

mentioned trajectories.

different integrators, selecting the 4th order Runge-Kutta as best choice. One reason for which

we integrate eq. (5.5) is that our robotic platform accepts only joint position inputs, rather than

velocity commands. Moreover, joint limits should be checked and integration of eq. (5.5) is

needed also for this purpose.

5.3 Planner overview

Our planner builds a tree T in configuration space with the root at the initial configuration q(ti).

Nodes are configurations of the humanoid associated to a time instant, while arcs represent fea-

sible, collision-free whole-body motions that realize a portion of the task. As explained in the

previous section, each of these motions has been computed using a CoM movement primitive

as a ‘seed’. The planner is somehow similar to the one presented in Section 4.3 with a few key

modifications.

The motion planner makes usage of a task compatibility function, defined in the configura-

tion space. This function γ(q, ȳ) measures the compatibility of a configuration q with a certain

point ȳ of the assigned task trajectory y∗. For example, for a manipulation task, γ(q, ȳ) can

be defined as the inverse of the Euclidean distance between the ground projection of ȳ and the

midpoint between the feet when the robot is in q. The rationale here is that configurations where

this distance is large are more prone to failure, when invoking the motion generation described

in Section 5.2. This is due to the joint values, that result to be close to the limits of their available

ranges. This kind of compatibility function is also appropriate for a navigation task. Since ma-

nipulation and navigation tasks are the kinds of tasks we want to face, this function is chosen in

the planning experiments of Section 5.4. Tasks of a different nature (e.g., visual) would require

the definition of appropriate compatibility functions.

Some snapshots of a generic iteration of the proposed planner are depicted in Figure 5.5.

First, a random 3D point y∗
rand on the assigned task trajectory is sampled and its projection on the

ground is computed, as in Figure 5.5a. Then, the most suitable configuration qnear is randomly

extracted using a probability that is proportional to γ(q, ȳ). To this purpose, the compatibility
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(a)
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Figure 5.5 A generic iteration of the proposed planner. (a) A random sample y∗

rand is ex-

tracted from the assigned path and its ground projection is computed. (b) The task compatibility

function γ(q, ȳ) is computed w.r.t. each configuration q in the tree T . A configuration qnear

is extracted randomly using a probability proportional to the values assumed by the compatibil-

ity functions. (c) The motion generation is invoked and it selects a particular CoM movement

primitive that defines the time interval for the current iteration. It also defines a trajectory for

the CoM and the swing foot (respectively dashed red and blue) as well as the portion of the

assigned task to be executed (green). (d) The joint motion generator produces a whole-body

trajectory that complies with the task. If this trajectory is feasible and collision-free, its final

configuration qnew is added to the tree.

function γ(q, ȳ) is computed w.r.t. each configuration q in the tree T . In details, the following

probability is assigned to each configuration node q in the tree T

p(qk) =
γ(qk, ȳ)

∑N
i=1 γ(q

i, ȳ)
,

with qk the k-th node in T . The node qk is extracted as the most suitable configuration qnear

with probability p(qk). Obviously, qnear corresponds to q(ti) at the first iteration, since it is the

only node in T . The reason for introducing such a mechanism instead of selecting just the nearest

configuration is the completeness. Assume to have two configurations in T associated with the

same time instant tk and assume that their values for the task compatibility function are different.

If the nearest criteria is used, the configuration with the larger value of this function will never

be selected (given a task point ȳ) and that node will be never be expanded, compromising the

completeness of the algorithm. This process is depicted in Figure 5.5b.

Once qnear has been identified with its associated time instant tk, the motion generation is

invoked. First, the CoM movement selector chooses a primitive in the available set, as described
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Algorithm 1: Planner

root the tree T at q(ti);1

repeat2

i← i+ 1;3

select a random sample y∗
rand on the task trajectory;4

select a random node qnear from T with probability proportional to γ(·,y∗
rand);5

get the time instant tk associated with qnear;6

[qnew, qnearqnew, tk+1]← GenerateMotion(qnear, tk);7

if qnew 6= ∅ then8

add node qnew and arc qnearqnew to T ;9

end10

until tk+1 = tf or i = MAX IT ;11

Procedure GenerateMotion(qnear, tk)

select a random CoM primitive uk
CoM from the currently available subset of U given by1

eq. (5.4);

get the associated duration Tk, CoM trajectory z∗
CoM and swing foot trajectory z∗

swg;2

extract the portion of task trajectory y∗ in [tk, tk + Tk];3

build the extended task ya = (yT zT
swg zT

CoM)T ;4

repeat5

generate motion by integrating joint velocities (5.5);6

if collision or joint position/velocity limit violation then7

return [∅, ∅, ∅]8

end9

until t = tk + Tk ;10

return [qnew, qnearqnew, tk + Tk]11

Figure 5.6 Pseudocode of the proposed planner

in Section 5.2.1. As explained in the same section, this subset depends on qnear. The chosen

primitive comes with a duration Tk that defines the time interval in this iteration [tk, tk+1], with

tk+1 = tk+Tk. Moreover, the CoM movement selector provides a trajectory for the CoM (z∗
CoM)

and for the swing foot (z∗
swg). The portion of the task to be fulfilled is uniquely identified since

the time interval [tk, tk+1] has been already selected. This is depicted in Figure 5.5c.

As last step, the joint motion generator, described in Section 5.2.2, is invoked in order to

produce a whole-body trajectory that complies with the portion of the assigned task and, at the

same time, fulfils the trajectories of the swing foot and of the CoM (if free CoM has not been

selected as CoM movement primitive), output of the CoM movement selector. If the trajectory

is collision-free and feasible, its final configuration qnew is added to the tree; otherwise, a new

iteration is started. When tk+1 = tf , the planner ends and a solution is found by backtracking in

the tree T .

In order to perform a comparison with the motion planner described in Section 4.3, note the

following important points
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• the duration of the current iteration Tk is chosen by the planner in Section 4.3 (recall that

we also assumed a constant duration T for simplicity). Then, the duration comes from

the planner that decides which portion of the assigned task has to be fulfilled. In the new

planner, Tk comes from the CoM movement primitive and, then, the duration comes from

the primitive;

• tasks having a starting error or assigned as simple destinations in the task space are not

taken into account in the motion planner described in Section 4.3, while the novel version

complies naturally with them (see Section 5.4);

• the framework in Section 4.3 includes just static steps, while the one presented in this

chapter handles both static and dynamic steps, as described in Section 5.2.1. The extension

of the former for including dynamic steps is not so trivial as it may appear;

• composite tasks (i.e., tasks obtained by concatenating different tasks, even of different

nature) are not handled in Section 4.3, while they are discussed for the novel motion planner

(see Section 5.4).

The pseudocode of the proposed planner is provided in Figure 5.6.

Since it will be handled in Section 5.4, let explicitly analyse the case where the assigned task

is a simple destination in the task space, i.e., y∗(t) = y∗(tf ), ∀t ∈ [ti, tf ]. The main difference

is that the random point on the task y∗
rand is always equal to y∗(tf ). Moreover, the heuristic

used for the selection of qnear favours configurations that are closer to the task point during the

expansion of the tree. Moreover, the convergence on that point is guaranteed from eq. (5.5),

by setting ẏ∗ = 0. The motion generator will produce a linear motion in the task space with

exponential rate of convergence.

5.4 Planning experiments

The proposed planner has been implemented in V-REP for NAO, a small humanoid by Aldebaran

Robotics, and runs on an Intel Core 2 Quad at 2.66 GHz. A description of the NAO robot is given

in Section 4.4.1 while an overview of the simulation platform is given in Section 4.4.2.

The set of CoM movement primitives is defined as in eq. (5.4). The set of static steps US
CoM

has been precomputed using a Static Walking Pattern Generator (or, as example, the method

described at the end of Section 4.2.1). In details, we included different step lengths in the range

[0.03, 0.12] m for forward/backward steps and [0.01, 0.03] m for lateral steps. We also provided

static steps with different steps (in the range [0.02, 0.06] m), in order to let the robot to step over

low obstacles. All static steps have a duration of around 2 s. The stepping motions in UD
CoM

have been precomputed by a ZMP-based Walking Pattern Generator. In details, it includes a

starting step of length 0.038 m and duration 1.6 s, a cruise step of length 0.04 m and duration

0.425 s, and a stopping step of length 0.038 m and duration 1.325 s, all in the forward direction.

84



Chapter 5. TCMP for humanoids based on CoM movement primitives Marco Cognetti

In all dynamic steps, the maximum height for the swing foot is 0.02 m. These trajectories for the

CoM are depicted in Figure 5.3. The total number of CoM movement primitives in U is 16. As

mentioned in Section 5.2.1, we decided to use a uniform probability for selecting a primitive in

U . Again, recall that only a subset of U is available at each step of the motion planning phase,

depending on the state of qnear. As example, if qnear was the result of starting a dynamic motion,

the planner may only choose to stop the dynamic gait or to perform a dynamic cruise; no static

step is allowed.

Regarding the joint motion generation, we set K = diag{2, 2, 1} and η = 1.6 in eqs. (5.5-

5.6-5.7). Moreover,wrnd is chosen randomly with a norm in the range [0, 0.4] rad/sec. Numerical

integration of joint velocities is performed with a 4th order Runge-Kutta algorithm with a step

size of 0.025 s. As explained in Section 4.4, we preferred to use this integrator instead of a simple

one (e.g., Euler) for its accuracy in fulfilling the assigned task even if it is slower.

We present two planning experiments. In the first, the robot should pick an object (a ball)

placed on a low stool. Then, the robot has to reach a point across a corridor. This scenario

is discussed in Section 5.4.1. In the second planning scenario, the robot should reach a point

in a room. In doing it, it has to go through an automatic door whose guide rail represents a

ground obstacle. This is discussed in Section 5.4.2. To further validate our results, we have also

performed (for each proposed experiment) a dynamic playback of the planned motion in which

full physical simulation (including joint control) is enabled: this means that the joint motions

in the computed plan are feasible and can be effectively tracked by the NAO low-level joint

controllers. In this playback, a physics engine runs in the background, enabling to simulate

multibody dynamics and interaction with the environment (foot contact, object grasping and

releasing). In few words, we tried to perform a simulation as close as possible to the real robot

case7.

5.4.1 Grasping and walking

As briefly discussed above, the robot in this scenario must pick an object (a ball) that is placed

on a low stool, outside the robot workspace. Once the object has been grasped, the robot should

reach a point in the workspace. This can be translated as a composite task, consisting in two goals

that should be reached in sequence. First, a manipulation task is assigned for the right hand of

the humanoid robot in order to grasp the ball. Its definition is simply a desired position for the

right hand, then it is a regulation task. The second goal is to place the midpoint between the

feet to a desired position. Then, it is a navigation task. Its definition is again a regulation task.

The navigation task is automatically activated when the manipulation task is completed. In view

of the nature of our composite task, the task compatibility function γ is defined as described in

Section 5.3.

7For further details, please visit http://www.dis.uniroma1.it/~labrob/research/HumPrtvPlan.html,

where there is also a video of the proposed approach.
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Figure 5.7 Grasping and walking: snapshots from a solution.

It is important to underline how simple would be for a user to specify this task. In fact, he/she

just has to specify the two positions for the two specific points (in this case the right hand and

the midpoint between the feet) and the motion planner will automatically come up with the joint

motions that fulfil the assigned task.

In order to avoid unnatural motions, we decided not to constrain the hand during the early

stages of the manipulation phase. This is performed by deleting the task component y from the

augmented task vector ya in eq. (5.5). When the right hand is within a certain ball around the

desired position (in this scenario, the ball is centred into the object to be grasped), y is pushed

back in ya in eq. (5.5). It is important to underline that, even removing y from ya, the task

plays a fundamental role in the expansion of the tree. In fact, expansion of the tree towards the

manipulation goal point is still guaranteed in view of the metric γ used by our planner to select

qnear. In particular, the procedure for computing qnear remains the same also for a regulation

task, where the only difference is that y∗
rand = y∗(tf ) since it is the only point of the assigned

task. Once the hand enters the ball, the task is activated; as a consequence, the robot performs a

natural reaching motion only when is sufficiently close to the object. We motivate the activation

of the hand task just in the vicinity of the manipulation goal by saying that if the hand was always

constrained, the robot arm will stretch8 resulting in an unnatural approaching behaviour.

Some snapshots from a solution are depicted in Figure 5.7. At the beginning (t = 0 s),

the task is simply composed by the goal position (of the ball to be grasped) for the right hand

of the humanoid. Note how the planner is able to create an approaching phase composed by

8Recall that, in the case of regulation task, like the grasping point, the convergence is exponential in time and

linear in the task space.
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data grasp and walk step over obstacle

planning time (s) 6.4 8.3

tree size (# nodes) 144.2 72.1

motion duration (s) 27.5 18.0

Table 5.1 Planner performance at a glance.

11 dynamic steps. These steps are needed since the ball is out of the robot workspace. Then,

t = 7.8 s, it decides to switch to the free CoM primitive in order to grasp the object in double

support. Once the grasping has been completed, the navigation task is activated and a dynamic

walking gait is restored (at t = 12 s) in order to cross the automatic door and reach its final

destination at t = 27.5 s. It is important to underline that the selection of which primitive to use

at each stage is totally left to the planner. In other words, this sensible solution was automatically

produced by our planner by taking advantage of the catalogue of movements represented by the

set of primitives. For the sake of clarity, it is worth noting that the grasping action is purely

demonstrative.

Note that, using just a naive task description (two points), our framework is able to cope with

composite tasks of different nature and complexity. Moreover, the planner is able to automatically

switch between the primitives depending on the task it has to accomplish.

Table 5.1 collects some data (averaged over 20 runs since the proposed planner is probabilis-

tic) related to the planner performance in both experiments. It reports the time needed by the

planner to generate a solution (planning time), the dimension of the final tree (tree size) and the

time needed for executing the motion (motion duration).

5.4.2 Stepping over an obstacle

In the second scenario, the assigned task is composed by a navigation task. In particular, a goal

position is assigned for the midpoint of the feet of the humanoid robot. In order to reach it, the

robot has to go through an automatic door, whose guide rail represents a ground obstacle.

Figure 5.8 depicts some snapshots taken from a solution obtained with our planner. As shown

in these snapshots, the robot approaches the automatic door with a dynamic gait, stopping it at

t = 6 s. Once there, it takes two static steps, having appropriate heights, in order to overcome

the guide rail that acts as an obstacle (between t = 6 s and t = 11.5 s). Finally, it resumes

a dynamic gait in order to complete the task at t = 18 s. The planner is using exactly the

same set of primitives of the first scenario: here, the switch from a dynamic to a static gait

is triggered by the characteristics of the environment. In fact, the robot cannot complete the

task by using a dynamic gait since the height of the swing foot is not sufficient to overcome the

obstacle (the guide rail). Note that the switching between primitives in the first scenario was

a consequence of the composite nature of the task (the robot stopped to pick up the ball). On

the other side, the switching here is caused by the environment, proving the versatility of the
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Figure 5.8 Stepping over an obstacle: snapshots from a solution.

proposed planner. Once again, the planner takes full advantage of the richness of the set of CoM

movement primitives.

Table 5.1 reports some planning data (planning time, tree size and motion duration) for the

proposed scenario (the data refers to the average of 20 runs, since the proposed motion planner

is probabilistic).

Solutions for the first experiment have a longer duration and this is reflected in a larger explo-

ration tree. On the other hand, the time needed to find a solution is longer for the second scenario.

This is due to the difficulties that the motion planner encounters when overcoming the door guide

rail. In fact, many configurations in that area were rejected due to collisions (especially between

the feet and the ground obstacle).

5.5 Conclusions

In this chapter, we have presented an approach for planning motions of a humanoid robot that has

to fulfil an assigned task in an environment cluttered by obstacles. The motion planner is based

on the concept of CoM movement primitive, defined as precomputed trajectories of the CoM (and

possibly other points of the robot, e.g., the swing foot in case of stepping primitives). It builds a

tree in the configuration space by concatenating feasible, collision-free whole-body motions that

realize the selected CoM movement primitives and, at the same time, the assigned task. We have

tested the planner in different scenarios, proving that it takes full advantage from the CoM prim-

itive set. In particular, it is able to automatically switch between the primitives when required

from the task (e.g., the switching between the dynamic gait and the free CoM primitive, aimed
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to grasp the ball in Section 5.4.1) or the environment (e.g., the switching between a dynamic to

a static gait in order to overcome the guide rail in Section 5.4.2).

The planner generalizes and outperforms the one presented in the previous chapter since it

can indifferently handle tasks specified as trajectories or as simple points, as for the composite

task considered in Section 5.4. Moreover, it naturally includes dynamic gait, while they are

not considered in the previous formulation. Finally, composite tasks (i.e., tasks obtained as the

concatenation of subtasks, even of different nature) are easily handled within the framework

presented in this chapter. As example, we have showed that manipulation of a target object and

a navigation task can be performed using just two points as definition of the assigned task (in

Section 5.4.1).

Although we have essentially focused on walking primitives, we emphasize that the pro-

posed framework is general and can only benefit from a richer set of primitives, such as jumping,

crouching, and so on. Moreover, task-based heuristics for guiding the choice of the primitive can

be formulated in order to further reduce the planning time.

The planner presented in this chapter has been published in [19]9.

9For further details, please visit http://www.dis.uniroma1.it/~labrob/research/HumPrtvPlan.html,

where there is also a video of the proposed approach.
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Chapter6
Task-oriented whole-body
motion planning for humanoids
along deformable paths

The problem we want to face in this chapter is exactly the same as the one presented in Chapter 4

and Chapter 5, i.e., finding a collision-free motion for a humanoid robot whose assigned a task

that it has to fulfil. However, the main limitation of that approaches relies in the definition of the

task, supposed to be assigned a priori and unmodifiable. This means that, in the case in which

the task is hard to be fulfilled by the robot (e.g., it passes very close to an obstacle), the motion

planner has huge difficulties in finding a solution to the TCMP problem (taking a huge planning

time). What a user expects from an ideal motion planner is that it is automatically able to deform

the task, if needed.

Moreover, we motivate the task deformation in two points. First, it can significantly simplify

the planning problem, letting the motion planner to easily fulfil the (deformed) task. Second, a

user typically does not want to explicitly assign a trajectory for a task, but he/she wants to specify

high-level actions (such as “move an object from here to there” or “take the ball and bring it into

the other room”, as in the case described in Section 5.4.1). In the example of moving an object

from one location to another, what a user wants to specify is just the starting and the goal position

of the object to move, without giving the entire trajectory that it has to follow. The goal of this

chapter is to build a framework that deals with this. The overall idea is that a user just assigns a

rough initial task (e.g., a simple straight line joining the start and end pose of the object). The

motion planner tries first to fulfil this trajectory. In case of difficulties, it automatically deforms

the task in such a way a new call to the motion planner reveals in an easier motion planning

problem to be solved. It is important to underline that, even in the case in which an explicit task

trajectory is not assigned, a TCMP problem has to be solved anyway, since the task is implicitly

defined as a straight line with an exponential time history, as discussed in Section 5.4. Then, the

framework will be presented for the trajectory case, without loss of generality.

To summarize, we do want to propose another motion planner in this chapter. On the contrary,

we want to show how the framework described in Chapter 5 can be modified in order to allow the
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automatic deformation of the task, if needed. This new framework should include a deformation

detection, i.e., a module that detects when a deformation is needed and a deformation mechanism

that illustrates how the path should be deformed.

In the literature, there are different techniques for deforming a task path. The work in [37]

modifies it by minimizing its length and maximizing its clearance. It is a post-processing ap-

proach, i.e., it works on a solution already found by a motion planner. For the path length the

authors suggest three approaches: path pruning, shortcuts and partial shortcut. Without entering

into details, these techniques are known in the literature as shortcutting algorithms [36, 99]. The

idea is to sample two random configurations on the path, create an “alternative” path (it is done by

means of a local path planner. In the early papers, it was a simple straight line planner), check if it

is collision free and replace the correspondent segment of the original path with the new path. Re-

garding the clearance, two algorithms are described: W-RETRACTION and C-RETRACTION.

The first one is designed for rigid translational robots, so it is useless within our planning prob-

lem. The second one consists in picking a random direction and, for each node, move the joints

along this direction. In other words, it tries to move the entire path along a direction in the con-

figuration space, with a given step size, checking if it improves the clearance. Doing that for

some iterations, the clearance of the path is actually improved. Again, this approach seems in-

teresting but it lacks of computational time reliability, due to the collision checker calls. The two

metrics (path length and clearance) are then fused in order to produce high-quality paths. The

main concern is about the time needed by this algorithm (for some experiments, it is 10 times

bigger to the initial motion planning time). On the other hand, our idea is to deform the path

without performing any form of post-processing action. Moreover, our deformation mechanism

should be as fast as possible.

The work in [121] maintains multiple trajectories at the same time and deforms them using a

genetic algorithm, in real-time. Optimization is used in [127], where the authors uses functional

gradient techniques to iteratively improve the quality of an initial trajectory. Finally, the works

in [7, 124] try to combine the motion planning with the reactive behavior, enabling the task of a

mobile manipulator to be deformed in real-time.

Up to the author knowledge, there are very few works on deformable paths applied to hu-

manoid robots. In fact, most of the papers mentioned above are aimed for manipulators or mobile

robots. A rare exception is in [40], where a shortcutting algorithm is presented, aimed to smooth

jerky trajectories for many-DOFs robot manipulators subject to collision constraints, velocity

bounds, and acceleration bounds. The heuristic repeatedly picks two points on the trajectory and

attempts to replace the intermediate trajectory with a shorter, collision-free segment. Here, the

metrics used is the time (to be minimized). The algorithm consists in first converting the existing

path (it is assumed to be a piecewise-constant acceleration curve) into a trajectory that stops at

every milestone (through a bang-coast-bang trajectory). Then, repeatedly, the starting and ending

time for the current iteration are randomly sampled and the current position and velocity are ex-

tracted from the current path. The time needed in this iteration is first computed as the maximum
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time needed by each joint (supposed independent each other) to satisfy the starting and ending

position and velocity. In other words, first the time needed by the slowest joint is computed.

To this purpose, four primitives are considered and evaluated. The primitive that minimizes the

time is chosen. Once this time is known, a minimum-acceleration interpolant is computed for

each joint, again choosing between four primitives, picking the one that needs less acceleration.

Finally the trajectory is checked by a collision checking algorithm and, if it is collision-free, it

replaces the portion of the original trajectory. However, the approach proposed here is different:

we want an approach that is able to deform the path in such a way the task-constrained motion

planning problem would be easier to solve.

This chapter is organized as follows. In Section 6.1, we briefly recall the humanoid mo-

tion model and formulate our planning problem that slightly modifies the one presented in Sec-

tion 4.1.1. An overview of the framework is provided in Section 6.2. In Section 6.3, we perform

some minor modifications on the motion planner presented in Section 5.3, while the deforma-

tion mechanism is presented in Section 6.4. Motion planning experiments for the NAO humanoid

robot are presented in Sections 6.5 and 6.6. The overall chapter is finally discussed in Section 6.7.

6.1 Problem formulation

As usual, we first introduce a humanoid motion model.

6.1.1 Humanoid motion model

The humanoid motion model is exactly the same as in Section 5.1.1. The reader is then referred

to Section 5.1.1 for further details. Here we just repeat a small summary, in order to create a

self-contained chapter.

A configuration q of a free-flying humanoid with n joints can be identified by specifying the

joint angles qjnt ∈ Cjnt and the pose (position plus orientation) qCoM ∈ SE(3) of a reference

frame attached to the robot CoM

q =

(

qCoM

qjnt

)

.

The configuration space SE(3)× Cjnt has then dimension n+ 6.

The above mechanism for motion generation approach can be compactly represented by the

following hybrid (partly algebraic, partly continuous-time) model

qCoM(t) = qkCoM ⊕A(qkCoM)uk
CoM(t) (6.1)

q̇jnt(t) = vjnt(t) (6.2)

that describes the robot evolution over the interval [tk, tk+1] in which the CoM is performing a

certain primitive movement of duration Tk = tk+1 − tk. In the previous equations, qkCoM =

qCoM(tk) is the pose of the CoM at time tk in world frame, uk
CoM(t) is the pose displacement
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that is the output of the CoM selected primitive, vjnt is the velocity vector for the humanoid

joints and ⊕ is a operator whose aim is to sum two poses. Finally, A(qkCoM) is a transformation

matrix from the CoM frame at tk to the world frame. Please refer to Section 5.1.1 for additional

details about the humanoid motion module.

6.1.2 Task-contrained planning

Since a motion model is available, we can turn our attention to the task. Its formulation is slightly

different w.r.t. the one presented in Section 5.1.2.

Assume that a task is defined as a trajectory (path plus time history) for the position (and

possibly the orientation) of a specific point (body) of the humanoid. As example, a manipulation

task may be assigned as for one hand of the humanoid robot. For notation purposes, we will use

for brevity y[i] = y[i](s) and s[i] = s[i](t) for indicating a generic task path and time history,

respectively. We indicate the task trajectory with y[i](s[0](t)).

Denoting by y the task coordinates vector, this is related to generalized coordinates via the

forward kinematic map

y = f(q) = f(qCoM, qjnt).

Assume that an initial reference task trajectory y[0](t), t ∈ [ti, tf ], is assigned1 as a geometric

path y[0](s), s ∈ [si, sf ], plus a time history s[0](t), t ∈ [ti, tf ], with si = s(ti), sf = s(tf ).

Furthermore, the path y[0] is assumed to be a deformable curve in task space. This means that the

path endpoints (y[0](si) and y[0](sf )) are fixed, but the actual shape of the curve may be changed

if necessary by acting on certain parameters σ. As example, one might use – as we will do in the

rest of this thesis – the B-splines as deformable curves, and the action parameters will be control

points. Note that other choices are possible. Elastic strips [7] are another example of deformable

curves that can be used to this scope. The reason for which we are making such assumption is

that our planner will be able to change the shape of the task path (and consequently, the time

history), if this is deemed necessary to solve the considered problem.

We emphasize that our framework naturally extends to the case in which the task is a desired

set-point y(tf ) of a specific point of the robot (e.g., move the hand in a desired position) in task

space. In this context, the reference task path y[0] may be trivially chosen as a straight line (or

any other curve) joining the starting position (computed as y(ti) = f(q(ti))) and the set-point

task position y(tf ). The time history may be simply chosen as s[0](t) = t, ∀t ∈ [ti, tf ].

We have then all the ingredients for formally define our planning problem and its solutions.

The considered planning problem consists in finding a feasible whole-body motion for a hu-

manoid robot over [ti, tf ] that realizes the assigned task trajectory, possibly deformed as ex-

plained below, while avoiding collisions with workspace obstacles, whose geometry is known in

advance. Then, a solution to our problem consists of

1Since we are addressing a planning problem, it will be assumed that task value at the initial humanoid configu-

ration matches the starting point of the reference trajectory, i.e., y[0](ti) = f(qCoM(ti), qjnt(ti)).
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1. a final reference task trajectoryy∗(t), t ∈ [ti, tf ], composed by a geometric pathy∗(s), s ∈

[si, sf ], obtained by (repeated) deformation of y[0](s), and an appropriate time history

s∗(t), t ∈ [ti, tf ];

2. a whole-body motion of the humanoid over [ti, tf ] that satisfies the following requirements:

• the final reference task trajectory is realized; that is, for t ∈ [ti, tf ] it is

y(t)=f(q(t))=y∗(s∗(t))=y∗(t) ;

• self-collisions and collisions with workspace obstacles are avoided;

• joints and joint velocities are within their bounds, i.e., qjnt,m < qjnt < qjnt,M and

vjnt,m < vjnt < vjnt,M, respectively.

In the end, however, the solution may be described purely in terms of joint trajectories that achieve

the planned whole-body motion.

Note that the previous formulation handles the following specific cases

• Set-point task: as mentioned before, when the task reduces to a desired set-point y(tf )

(e.g., bring the humanoid hand to a certain placement), the initial task path y[0](s) may

be chosen as any deformable curve (e.g., a line) joining the starting task position y(ti) =

f(q(ti)) with the final task position y(tf ). The time history may be simply set as s[0](t) =

t, ∀t ∈ [ti, tf ];

• Partially deformable task: in some problems, it may be desiderable to allow deformation

only on a subset of task components. For example, consider a manipulation problem in

which the robot has to carry a glass containing some liquid. The glass should be kept

vertical, so as not to spill the liquid. A deformation can therefore be applied only to the

position components of the task (i.e., to the Cartesian trajectory of the glass), whereas the

orientation components should not be affected.

Just for comparison, the major different w.r.t. the task definition in Section 5.1.2 relies in the

explicit split of the task in path and time history. In fact, we recall that the task was directly for-

mulated as a trajectory in Section 5.1.2. The formulation we use in this chapter is useful in view

of the deformation mechanism (Section 6.4) that provides different procedures for deforming the

path and the time history of a task.

6.2 Planner overview

The overall idea of the motion planner is rather simple and summarized in Figure 6.1. It works

in an iterative way. First, it attempts to find a solution for the initial reference task trajectory

y[0](t) = y[0](s[0](t)), t ∈ [ti, tf ] by means of a task-constrained motion planner (described in
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task deformation request
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Figure 6.1 A block scheme that gives an overall idea of the planner. The task-constrained

motion planner is invoked on the initial reference task trajectory (i = 0). If a solution is found,

the algorithm ends; on the other side, a deformed task path y[i] and a time history s[i] are

computed by the deformation mechanism and the process is repeated.

Section 6.3). If this proves to be too difficult (in the sense formally described in Section 6.3),

the planner returns a partial solution whose limit task point ỹ (defined as the furthermost task

point realized by configurations contained in the tree T ) is different from y(tf ). In this case, the

deformation mechanism (characterized in Section 6.4) is in charge of deforming the reference

task path (and the time history) by means of appropriate heuristic functions which take place

at the limit task point. The output is a deformed reference task path y[i](s), s ∈ [si, sf ] and a

time history s[i](t)), t ∈ [ti, tf ], denoted at the generic i-th iteration. Then, the task-constrained

motion planner is invoked again on the deformed reference task. This deformation-planning cycle

is repeated until a task-constrained solution is found. The pseudocode of the proposed planner is

depicted in Algorithm 3.

In Section 6.3 and Section 6.4 we describe the two fundamental components of the planner:

the task-constrained motion planner and the deformation mechanism.

6.3 Task-constrained motion planner

The task-constrained motion planner takes as input, at the i-th iteration, a reference task trajectory

yd(t) = y[i](s[i](t)), t ∈ [ti, tf ]. We refer to yd(t) as yd for brevity. Its goal is to find a

feasible collision-free that fulfils the reference task trajectory yd while avoiding self-collisions

and collisions with workspace obstacles (in addition to joint and velocity joint limits, as described

at the end of Section 6.1.2).

At this point, the problem to be solved is exactly the same as in Section 5.3. In fact, from

the point of view of the task-constrained motion planner, the task is assigned and unmodifiable,

as for the one described in Section 5.3. We then use the planner presented in Section 5.3 also

in this case, since its results were really promising. We refer the reader to Section 5.3 for the

description of this module.

The pseudocode of the task-constrained motion planner is illustrated in Algorithm 4. It should

be mentioned that, with a slight abuse of notation, we denote with ỹ.x the quantity x associated

with the limit task sample ỹ in Algorithm 4 and Figure 5. The task-constrained motion planner

works in an iterative way, building a tree T rooted at q(ti). The nodes are configurations of the

robot associated with a time instant, while arcs represent whole-body motions that join adjacent

96



Chapter 6. TCMP for humanoids along deformable paths Marco Cognetti

Algorithm 3: Planner

sol found← false; i← 0;1

get the initial task path y[0] and time history s[0];2

repeat3

build the current task trajectory y[i]←y[i](s[i]);4

[T , ỹ]← ConstrainedMotionPlanner(y[i]);5

if ỹ = y[i](tf ) then6

sol found← true;7

y∗ ← y[i]; s∗ ← s[i];8

else9

[y[i+1], s[i+1]]← TaskDeformation(y[i], s[i], T , ỹ);10

end11

i← i+ 1;12

until sol found = true or i = MAX DEFORM ;13

Algorithm 4: ConstrainedMotionPlanner (yd)

root the tree T at q(ti);1

q̃ ← q(ti); ỹ ← yd(ti); j ← 0 ;2

ỹ.exp fail← 0; ỹ.coll fail← 0; ỹ.jnt fail← 0;3

repeat4

j ← j + 1;5

select a random sample yd
rand from the task trajectory;6

select a random node qnear from T with probability proportional to γ(·,yd
rand);7

get the time instant tk associated with qnear;8

[qnew,qnearqnew,tk+1,ỹ]←MotionGeneration(qnear,tk,ỹ);9

if qnew 6= ∅ then10

add node qnew and arc qnearqnew to T ;11

end12

until tk+1= tf or ỹ.exp fail=MAX FAIL or j=MAX IT ;13

return [T , ỹ];14

nodes and have been verified to be collision-free and feasible. First, a random sample yd
rand is

extracted from yd. Then, an high-compatibility node qnear is extracted among the nodes in the

current tree T , with a probability proportional to γ(·, ȳ) (the function γ(q, ȳ) defines the com-

patibility of the robot configuration q with respect to a certain sample ȳ). The motion generation

is invoked, in order to create a feasible collision-free whole-body motion for the current iteration.

The pseudocode of the motion generation procedure is depicted in Figure 6.2. First, a CoM

movement primitive is chosen within the following set

U =
{

US
CoM ∪ UD

CoM ∪ free CoM
}

, (6.3)

withUS
CoM andUD

CoM subsets of static and dynamic stepping movements, respectively; free CoM

is a special primitive having a stretchable duration. This step was denoted as CoM movement

selector and it is described in Section 5.2.1. The chosen primitive comes with a duration Tk and

the time interval for the current iteration is uniquely identified as [tk, tk+1], with tk+1 = tk+Tk.

The same module also provides a desired trajectory for the CoM (zd
CoM) and for the swing foot

(zd
swg) within the same time interval.
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Procedure MotionGeneration(qnear, tk, ỹ)

pick from (6.3) a random CoM primitive uk
CoM of duration Tk;1

compute the associated CoM trajectory zd
CoM and swing foot trajectory zd

swg;2

extract the portion of task trajectory yd in [tk, tk + Tk];3

build the augmented task ya = (y, zCoM, zswg) ;4

repeat5

generate motion by integrating joint velocities (4.6);6

if collision then7

if yd(tk) = ỹ then8

// (expanding from a limit configuration);9

ỹ.exp fail← ỹ.exp fail + 1;10

ỹ.coll fail← ỹ.coll fail + 1;11

end12

return [∅, ∅, ∅, ỹ];13

else if joint limit/velocity bound violation then14

if joint limit violation then15

if yd(tk) = ỹ then16

// (expanding from a limit configuration);17

ỹ.exp fail← ỹ.exp fail + 1;18

ỹ.jnt fail← ỹ.jnt fail + 1;19

end20

end21

return [∅, ∅, ∅, ỹ];22

end23

until t = tk + Tk ;24

if new limit task point reached then25

ỹ ← yd(tk + Tk) // (update the limit task point);26

ỹ.exp fail← 0; ỹ.coll fail← 0; ỹ.jnt fail← 0;27

end28

return [qnew, qnearqnew, tk + Tk, ỹ]29

Figure 6.2 The pseudocode of the motion generation procedure.

At this point, joint motions are generated so as to realize the portion of the task trajectory yd

between tk and tk+1, together with zd
CoM and zd

swg. This module was denoted as joint motion

generation and it is described in Section 5.2.2. In particular, let ya = (yT zT
CoM zT

swg)
T be the

augmented task vector, except for free CoM, for which we choose ya = (yT zT
swg)

T . Denote by

Ja the Jacobian matrix of ya w.r.t. qjnt, and by e = yd
a − ya the augmented task error, where

yd
a(t) is the reference value of the augmented task in [tk, tk+1]. Joint velocity commands are

then computed as

vjnt = J†
a(qjnt)

(

ẏd
a+Ke

)

+(I−J†
a(qjnt)Ja(qjnt))w, (6.4)

where J†
a is the pseudoinverse of Ja, K is a positive definite gain matrix, and w is a bounded

norm n-vector projected in the null space of Ja through the orthogonal projection matrix I −

J†
aJa. Use of eq. (6.4) guaranteed ė = −K e, i.e., exponential convergence to the desired

augmented task trajectory. The trajectories generated by eq. (6.4) are continuously checked for

collisions as well as for position and velocity joint limits. The static equilibrium is also explicitly
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checked for the free CoM movement primitive. If any of these conditions is violated, the motion

generation is interrupted and no node is added to the tree; otherwise, integration proceeds until

tk+1 is reached. In the latter case, we have obtained a feasible, collision-free joint motion qjnt(t),

t ∈ [tk, tk+1], that complies with a portion of the task. Its final configuration qnew is added as a

node in the tree T . Moreover, the motion joining qnear and its final configuration qnew is added

to the tree T as an arc.

Repeated calls to the above-mentioned procedure result in a solution to the motion planning

problem for the reference task trajectory yd. However, there are cases where it is better to abort

the search of a solution for yd and change the task. As example, the reference task path might be

really close to an obstacle or it is not compatible with the environment (see Section 6.4). To this

aim, at the end of each iteration of the task-constrained motion planner, the algorithm checks if

one of the following situation occurs

• a maximum number of iterations has been reached (MAX IT in Algorithm 4);

• the number of failed expansions from the limit task point ỹ (defined as the furthermost

task point met by the tree) exceeds a predefined threshold (MAX FAIL in Algorithm 4).

In such a case, the task-constrained motion planner is aborted and the task should be deformed.

These are the conditions that we denoted in Figure 6.1 as deformation detection, i.e., the condi-

tions for which a deformation would help in finding a solution for the motion planning problem.

The rationale behind the first deformation condition is trivial. In fact, even assuming that a

solution exists, a planner may fail in finding a solution because its time budget (or equivalently

a predefined number of iterations) is exceeded.

The second condition needs more attention. Let formally define the limit task point ỹ. It

is the furthermost task sample met by the task-constrained motion planner. Note that this point

changes over time. When the task-constrained motion planner is invoked, it is initialized as

ỹ = f(q(ti)) and its associated time is set to t̃ = ti (since q(ti) is the only configuration in

the tree). Then, whenever the task-constrained motion planner generates a feasible and collision-

free whole-body motion in [tk, tk+1], its endpoint becomes the limit task point if tk+1 > t̃. In

formula, if the motion is feasible in [tk, tk+1] (arriving in qnew at tk+1) and tk+1 > t̃, then the

limit task point is updated as ỹ = f(qnew), while its associated time is set to t̃ = tk+1. When the

limit task point is updated, the number of failing expansions is reset to zero. On the other side,

if the task-constrained motion planner fails in expanding a node associated with the limit task

sample, the number of fails is increased of one. It is important to mention that there are several

limit configurations in the tree associated with the limit task point. In fact, a configuration q̃ in

the tree is defined as a limit configuration if ỹ = f(q̃), with ỹ the limit task point. The role of

these configurations within our framework will be clear in the next section.

There is a reason for which we decide to deform the reference task when a predefined number

of expansions from the limit task point occurs. In fact, it is reasonable to deduce that the planner
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Algorithm 6: TaskDeformation(y[i], s[i], T , ỹ)

if ỹ.jnt fail ≥ ỹ.coll fail then1

// (robot-based heuristic);2

retrieve a limit configuration q̃ from the tree T ;3

compute the line joining the limit task point ỹ to the CoM at q̃CoM;4

deform y[i] by adding to σ[i] a new control point along this line, obtaining y[i+1];5

else6

// (obstacle-based heuristic);7

compute the line joining the limit task point ỹ to the closest obstacle point;8

deform y[i] by adding to σ[i] a new control point along this line, obtaining y[i+1];9

end10

compute s[i+1] proportional to the path length of y[i+1];11

return [y[i+1], s[i+1]]12

Figure 6.3 Pseudocode of the deformation mechanism.

has difficulties in fulfilling the task from the limit task point on. Deforming the task around the

limit task sample might solve this problem, since the deformed path will not contain the limit

task sample (where the motion planner encountered problems) anymore. Details on the task

deformation are given in Section 6.4.

If none of the above-mentioned deformation conditions occurs, the task-constrained motion

planner has found a solution for the motion planning problem. The current reference task path

and time history are assigned as the final reference task path y∗ = y[i] and time history s∗ = s[i].

Moreover, the joint motions that fulfil the above-defined task are found by backtracking in the

tree T , as in Section 5.3.

For reasons that will be clear in Section 6.4, we count the number of failings from the limit

task point due to collisions and joint limits, separately, as it can be seen in Algorithm 4.

6.4 Deformation mechanism

In this section, we describe the deformation mechanism we use to deform a reference task path.

The input of this module (denoted as deformation mechanism in Figure 6.1) is the latest task

path y[i](s), s ∈ [si, sf ] and the time history s[i](t), t ∈ [ti, tf ]. Moreover, the limit task point ỹ

and the associated exploration tree T complete the input for this module. The pseudocode of the

deformation mechanism is given in Algorithm 6.

Recall that the current task path2 y[i] is parametrized by a set of control points, collected in

a vector σ[i]; the endpoints are however fixed. The idea is to deform y[i](s) by inserting a new

control point in σ[i]. The time history s[i](t), t ∈ [ti, tf ] will then be adapted to the new path.

Two heuristics are used to choose where to place the new control point.

We define two heuristic functions for choosing where to insert the control points. Note that,

in case there are no obstacles in the environment, our task-constrained motion planner will be

2With a slight abuse of notation, in this section (and in Algorithm 6) y[i] stands for the path y[i](s), s ∈ [si, sf ],
rather than the full trajectory.
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Figure 6.4 Example of the heuristic functions. Solid black lines refer to the initial task paths;

dotted black lines refer to the deformed paths. (left) Obstacle-based heuristic: its aim is to push

the path away from the closest obstacle (here the table). (right) Robot-based heuristic: its aim

is to get the path closer to the robot CoM.

able to find a solution for the reference task, thanks to its randomness. The aim of this section is

to present heuristics that are able to deform the task in presence of obstacles.

We refer to the first heuristic function as obstacle-based heuristic. Its purpose is simply to

push the path away from the closest obstacle. Consider Figure 6.4. To this aim, a new control

point is inserted on the line joining a representative point of the closest obstacle (e.g., its closest

point) and ỹ, with a predefined distance w.r.t. the latter (as in the left side of Figure 6.4). The

height of the control point is set as the z-component of ỹ3. The result is that the entire task path

is pushed away from the obstacle, as shown in the left side of Figure 6.4.

Despite its simplicity, this heuristic is not general. In fact, there exist cases in which this

function is not the best strategy to be employed. As example, consider the scenario in the right

side of Figure 6.4. Here, the reference task path (defined for one hand of the humanoid robot)

passes over an obstacle (a table). If one applies the obstacle-based heuristic the result is that the

path is deformed along the vertical axis, making it even more difficult to accomplished. A more

suitable deformation in this case is along the lateral direction, as in the right side of Figure 6.4.

For this reason, we introduce the robot-based heuristic. Its purpose is to get the path (locally)

closer to the robot. More in details, it reduces the distance between the limit task point ỹ and

the robot CoM at the limit configuration (position component of q̃CoM). The intuition behind

this mechanism is that constrained planning is more difficult if the task path is far from the

humanoid CoM, because (1) motion generation must realize an extended task which includes

both the original task variables and the CoM position (2) outstretched postures typically push the

joints towards the limit of their available range. To bring the task path closer to the humanoid,

a limit configuration is associated to the limit task point ỹ by extracting from T a node q̃ such

that ỹ = f(q̃), and a new control point is inserted on the line joining ỹ with the humanoid

CoM at q̃, again at a predefined distance from ỹ (see Figure 6.4). We noticed that this heuristic

is particularly helpful for tasks whose execution requires the robot to stretch (as in the right of

3We emphasize that this choice for the z-component of the control point is arbitrary. Other choices are possible

and we are currently evaluating them.
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Figure 6.4), bringing some of its joints very close to their limits. The result of applying the robot-

based heuristic for such a case is that the robot has no need to stretch anymore to accomplish

the task. Then, it is able to fulfil the task in a more human-like way, without ‘stressing” its

joints. From a more practical point of view, the line joining ỹ and the robot CoM at the limit

configuration (position component of q̃CoM, the CoM part of q̃) is computed. A new control

point is inserted along this line, with a predefined distance w.r.t. the latter. This procedure can

be seen in the right of Figure 6.4. As for the other heuristic, the height of this control point is set

as the z-component of ỹ.

Assume that the task-constrained motion planner has identified that the reference task has

to be deformed (i.e., a predefined number of expansions from ỹ reveals in failures). A policy

for selecting which heuristics to use has to be introduced. We bound it to the two main reasons

for which an expansion may fail: joint limit violations and collisions. We choose the following

policy: if the number of failed expansions due to the former is greater than the one due to the

latter, then the robot-based heuristic is selected. On the other side, the obstacle-based heuristic

is picked. We motivate this policy by saying that, in the first case, the robot is likely trying to

fulfil the task by stretching itself and then violating some of its joint limits. The choice of using

the robot-based heuristic makes sense since its effect is to get the path closer to the robot so that

it is more compliant with the task. As said before, the result is that the robot has no need to stress

its joints to reach the task and, then, the joint limits violation problem is alleviated. On the other

side, if the main reason of failures is the collisions, the obstacle-based heuristic is chosen.

This is depicted in the pseudocode of Figure 6.2, where the number of failed expansions due

to joint limits and collisions are counted separately. Note that a failure is counted only if a node

pointing to the limit task point ỹ is expanded. The policy is then depicted in Algorithm 6.

At this point, it should be clear how to deform the reference task path y[i] and obtain y[i+1]

(i.e., by inserting a new control point based on the chosen heuristic function). Regarding the time

history s[i+1], it is adapted to the deformed task path y[i+1] via uniform scaling within a total

duration proportional to the new path length.

The reason for which we have defined such a deformation mechanism is that it is really fast

to be computed (any heuristic function is chosen, the computations to be performed are really

easy), then it is very good from a computational point of view. Here, we do not provide any form

of optimal deformation strategy and other heuristic functions can be taken into account. Our goal

was to introduce heuristics that easily deform the task path and are really computationally fast.

This because the task-constrained motion planner takes time to find a solution; then, the smallest

is the time to deform the path, the smallest is the time to find a solution for the planning problem.

6.5 Planning experiments

The proposed planner has been implemented in V-REP (an overview of this simulator is given in

Section 4.4.2) on an Intel Core 2 Quad at 2.66 GHz. We have chosen NAO (a description of the

102



Chapter 6. TCMP for humanoids along deformable paths Marco Cognetti

Figure 6.5 Planning experiment 1: snapshots from a final solution. The dotted black line

represents the initial reference task path while the solid black line is the deformed task path.

robot is provided in Section 4.4.1) by Aldebaran Robotics as humanoid robot for our experiments.

We impose the same parameter set as in the experiments shown in Section 5.4. Just as re-

minder, we set K = diag{2, 2, 1} for generating the joint motions in eq. (6.4), while w was

randomly chosen, with a bound norm limit at 0.4 rad/sec. The CoM movement primitive set is de-

fined as in eq. 6.3. Its static subsetUS
CoM is composed by different primitives in forward and back-

ward directions in the range [0.03, 0.08] m and in lateral directions in the range [0.01, 0.03] m.

Each primitive in US
CoM has a duration of 2 s. The dynamic subset UD

CoM contains a starting

step with length of 0.038 m and duration of 1.6 s, a cruise step with length 0.04 m and duration

0.425 s and a stopping step with length 0.038 m and duration 1.325, all in forward direction. The

total number of primitives is 16. We have used B-splines as representation for the task path.

Here we present two planning experiments. In Section 6.5.1, the robot must move an object

from one side to the other of a table, while avoiding collisions with the table itself. In the scenario

depicted in Section 6.5.2, the robot must place an object on a low stool while avoiding collisions

with the obstacle of the environment.

6.5.1 Experiment 1

As already mentioned, the robot has to pick an object (a ball) and move it from one to the other

side of a long table. This is a manipulation task, expressed as a constraint for the right hand of the

humanoid robot. Snapshots from a final solution are shown in Figure 6.5. As first reference task

path, we simply assign a simple composition of two straight lines: the first from the initial right

hand position to the point where the ball is placed and the second from that point to the position

where we want to place the ball (on the other side of the long table). The starting task is denoted
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data exp 1 exp 2

init planning time (s) 26.1 19.3

deformation time (s) 1.33 2.32

final planning time (s) 15.9 10.2

final tree size (# nodes) 68.1 61.9

motion duration (s) 17.2 13.3

Table 6.1 Planner performance at a glance.

in Figure 6.5 as a dotted black line. The time history is simply set to s[0](t) = t, ∀t ∈ [ti, tf ],

with ti = 0 s and tf = 17.2 s. The choice of the initial task path is motivated also from a user

point of view, since it is really simple and a user is able to assign such a task.

The task-constrained motion planner is invoked on the initial reference task.

The task-constrained motion planner is not able to find a solution for the initial task path: after

covering less than one third of it, further expansion fails repeatedly due to joint limit violations

as the robot extends its upper body and arm in order to stay on the path while avoiding collisions

between its legs and the table. Since the main reason of failures is the joint limit violation, the

robot-based heuristic is used. Note how our planner selects the appropriate heuristics. In fact,

the deformation would be along the vertical axis, by using the obstacle-based heuristic, causing

even an harder task to be fulfilled to the motion planner. The deformed reference task path is

depicted in Figure 6.5 with a solid black line. As one may expect, the deformed problem is

significantly easier to be solved since the task is closer to the robot (and more distant to the

table). Moreover, the “stretched” configurations (and consequently the joint limit violations) are

not generated anymore, since the hand is constrained along a curve significantly less influenced

by the table. The task-constrained motion planner is invoked again on the deformed reference

task and a solution is found. This solution includes different types of CoM movement primitives.

In fact, a dynamic gait copes with the initial part of the task while a free CoM places the ball on

its final position. Finally, Table 6.1 collects some data for this experiment. It reports the time

needed by the task-constrained motion planner to trigger a task deformation (init planning time),

the time needed for deforming the path (deformation time) and the time needed to find the final

solution on the deformed task (final planning time). In the same table, we also report the number

of nodes in the tree of the final solution (final tree size) and the overall duration of motion (motion

duration). Since our planner is randomized, the data refer to the average over 10 runs. Note that

the time needed for fulfilling just a portion of the initial task (init planning time) is bigger than

the time needed to fulfil the entire deformed task (final planning time). This confirms that a task

deformation can significantly help the planner in finding a solution to the TCMP problem.

This experiment validates the robot-based heuristic and shows the versatility obtained by the

introduction of the deformation mechanism, since the task-constrained motion planner was not

enough for solving this TCMP problem (or, at least, it would take a relevant amount of planning
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Figure 6.6 Planning experiment 2: snapshots from a final solution. The dotted black line

represents the initial reference task path while the solid black line is the deformed task path.

time to find a solution), even if the initial reference task is not in collision with any obstacle of

the environment.

6.5.2 Experiment 2

In the second experiment, the robot must place an object (again, a ball) on a low stool. The robot

has already grasped the ball. The task is again a manipulation task assigned for the right hand of

the humanoid robot. The initial reference task path is again assigned as a straight line joining the

initial right hand position and a point on the low stool where the object has to be released while

the time history is s[0](t) = t, ∀t ∈ [ti, tf ], with ti = 0 s and tf = 13.7 s. Snapshots from a final

solution are given in Figure 6.6.

The main difference w.r.t. the previous scenario is the low stool placed in the middle of the

room. At first sight, this stool seems to be not a problem for the planner. However, the task-

constrained motion planner is not able to solve the TCMP problem, mainly due to the collisions

between the stool in the middle and the left leg of the robot. Then collisions are the main reason

for invoking the deformation mechanism, that uses the obstacle-based heuristic to deform the

reference task path. Note how the deformation mechanism selects the appropriate heuristic. In

this case, the robot-based heuristic is not helpful. On the contrary, it would get the path closer to

the robot (then closer to the obstacle), causing even more difficulties in finding a solution. The

deformed path is shown in Figure 6.6 as a solid black line. Then, the task-constrained motion

planner is invoked again on the deformed path and a solution is found, since the (deformed) task

steers the robot away from the stool.
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Figure 6.7 The deformation mechanism in the two proposed experiments. Dotted black lines

refer to initial reference tasks while the solid black lines represent the deformed tasks. The

configurations shown are the limit task configurations. (left) The robot-based heuristic computes

the line joining the limit task point and the robot CoM (computed at the limit task configuration)

and inserts a new control point along that line. (right) The obstacle-based heuristic computes

the line joining the limit task sample and the obstacle closest point and places a new control

point along that line.

As for the other scenario, the final solution is composed by different CoM movement primi-

tives. A dynamic gait is selected for the first part of the assigned task, while a free CoM places

the ball over the low stool. This experiment validates the obstacle-based heuristic and illustrates

the advantage of introducing the deformation mechanism. In fact, the task-constrained motion

planner was not able to find a solution by itself, even if the initial reference task is valid, i.e., it

does not collide with any obstacle in the environment.

Data for this experiment are collected in Table 6.1. This table reports the initial planning time

before detecting that a deformation is needed (init planning time), the time needed for deforming

the reference task path (deformation time) and the planning time for the deformed path (final

planning time). It also reports the tree size for the final solution (final tree size) and the overall

duration of motion (motion duration). As for the previous experiment, note that the time needed

for fulfilling just a portion of the initial reference task (init planning time) is bigger than the time

needed to fulfil the entire deformed task (final planning time). This confirms the advantage of

introducing the deformation mechanism.

Figure 6.7 illustrates the deformations applied in the two proposed experiments.

6.6 An extension to the on-line planning

The approaches described so far work in an offline fashion, i.e., a snapshot of the environment

is taken once and the motions are compute to deal with that environment. If the environment is

static (i.e., it does not change), these motions perfectly solve the problem.

In this section, we present a modification of the proposed framework towards the on-line

planning scenario, i.e., assuming that the environment may change. This a key feature in case,

e.g., if an obstacle is not detected (due to an occlusion) and then not taken into account in the

planning phase. Or, even more importantly, if there are moving obstacles in the environment, e.g.,

humans. An ideal planner should be able to deal with this scenario, possibly in real-time. As first

step toward this direction, we propose a planner that is able to detect changes in the environment
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and then react by stopping the current motions and replanning new motions for the robot. These

motions have still to ensure the accomplishment of the task (possibly deformed), dealing with the

dynamic environment. It is worth mentioning that we do not want to propose a real-time motion

planner in this section, due to the computational payload of the framework presented in this

chapter. We just propose a modification of the framework that deals with dynamic environments.

Since the robot has to perceive changes of the environment, it is equipped with a exteroceptive

sensor. We have chosen a depth camera mounted on the robot head to this aim. We assume that a

nominal plan (which was computed for the initial environment) is available and some unexpected

obstacles appear. The idea is to use the approach presented so far to compute motions from the

current robot state. Clearly, we need a mechanism for detecting the occurrence of unexpected

obstacles and their relevance to the current plan.

6.6.1 Detecting possible dangerous situations

Assume to have a nominal plan, i.e., the TCMP problem was solved for the initial planning

problem and a joint motion is available (e.g., using the planner in Section 6.2). During the

nominal plan, we recorded also the distance between the robot and the closest obstacle (that may

vary over time), at each time step. This distance can be easily computed with the depth camera

mounted on the robot head, that gives as output a distance for each pixel of its image. A simple

feature extraction algorithm is able to provide the information needed. We use this information

d∗(t), ∀t ∈ [ti, tf ] to check if a change in the environment occurs.

Once the nominal plan and d∗(t), ∀t ∈ [ti, tf ] are available, the robot starts to execute this

plan. At the same time, the same algorithm used for computing d∗ runs in background. Its aim is

to compute the current distance d to the closest obstacle. A dangerous situation occurs if d and

the corresponding distance d∗ on the nominal plan verify the following two conditions

• ‖d∗ − d‖ ≤ d1, with d1 a predefined threshold;

• ‖d‖ ≥ d2, with d2 a predefined threshold.

The rationale behind the first condition is to check if a significant change w.r.t. the nominal

plan happens. In fact, if the distance to the closest object to the robot changes, it means that the

environment has been changed in a significant way. The aim of the second condition is to avoid

unnecessary planning actions. In fact, in the case the closest obstacle is far from the current robot

position, no change is needed from the nominal plan. The combination of these two conditions

provides a good policy to detect if there is a relevant change (and then a potential dangerous

situation) in the environment.

When a dangerous situation is detected, the reference task has to be deformed. The idea is

that, though the deformation, the robot is pushed away from the closest obstacle (that causes the

dangerous situation) while continuing to fulfil the (deformed) task. The deformation mechanism,

together with the heuristic to be used, are novelties with respect to the offline case and will be

described in the next section.
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6.6.2 Deformation mechanism and heuristic

Once a dangerous situation has been detected, the reference task should be deformed. The idea

is to push the robot away from the closest obstacle that caused the deformation mechanism acti-

vation. The deformation has the aim to steer the robot away from the closest obstacle. This kind

of deformation is different w.r.t. the one presented in Section 6.4. Here, the deformation to be

applied is local. On the contrary, it is global in the mechanism in Section 6.4. In fact, when a

new control point is inserted, the whole shape of the path changes. Here, we cannot allow that

because the robot has already executed a portion of the task when the deformation mechanism

is invoked and it will cause discontinuity on the reference task. The deformation is then applied

locally, in the sense that only the portion of the reference task between the task point where the

robot recognizes the dangerous situation and the end of the task is allowed to be deformed. The

complementary portion of the task should remain unchanged. This is equivalent to consider a

new curve, having as σ only a subset of the control points of the nominal curve. Finally, the

task-constrained motion planner is invoked on the (locally deformed) reference task and, in case

of other dangerous situations, the process is repeated.

Having defined the deformation, we can turn our attention to the heuristic to be used. Since

we stated that the aim is to push the task away to the closest obstacle, we use the obstacle-

based heuristic, with a minor modification. The line between the closest point of the obstacle

(now provided by the exteroceptive sensor) and the task point having the minimum distance

w.r.t. this point is computed. A control point is inserted along this line, with a predefined offset

w.r.t. the latter. Once the task is locally deformed, the task-constrained motion planner presented

in Section 6.2 is invoked on the deformed task. Note that the planner is invoked just for the

remaining portion of the reference task (the deformed part).

As summary, the on-line modification consists in the following steps

• compute a nominal plan and the distance to the closest obstacle w.r.t. the robot d∗(t), ∀t ∈

[ti, tf ];

• start to execute the nominal plan;

• if a dangerous situation is detected (Section 6.6.1), locally deform the reference task (Sec-

tion 6.6.2);

• invoke the task-constrained motion planner presented in Section 6.2 on the deformed task;

• repeat the procedure (except the first two points) if another dangerous situation is detected.

6.6.3 Planning experiments

We validate the on-line extension for the scenario depicted in Figure 6.8. We have used the

Kinect4 as exteroceptive sensor.

4https://www.microsoft.com/en-us/kinectforwindows/
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Figure 6.8 Extension to on-line scenario: snapshots from a solution. The dotted black line

represents the initial reference task path while the solid black line is the deformed task path.

The robot must place an object (a ball) on the low table of Figure 6.8, then a task is assigned for

the right hand of the humanoid robot. The initial reference path is a simple straight line joining the

initial right hand position and a point over the table. The time history is set as s = t, ∀t ∈ [ti, tf ],

with ti = 0 s and tf = 13.2 s. As it is evident from the first snapshot of Figure 6.8, the human

does not interfere with the task at the beginning and a nominal plan is found, e.g. by using the

task-constrained motion planner presented in Section 6.2.

The robot starts to execute the nominal plan and the human moves (second snapshot of Fig-

ure 6.8), completing its motion at t = 2.3 s (third snapshot of Figure 6.8). At this point, our

planner recognizes a dangerous situation, since the human is on the way of the path that the

robot should fulfil. In fact, the human is perceived as the closest obstacle, whose distance is

significantly smaller w.r.t. to the one in the nominal plan, then detecting a dangerous situation.

The robot stops and invokes the deformation mechanism that deforms the remaining portion of

the task (fourth snapshot in Figure 6.8). The task-constrained motion planner is invoked on the

deformed path and it computes feasible joint motions that fulfils the task (last two snapshots).

6.7 Conclusions

In this section, we have presented a motion planner able to deform the task, if needed, that is

hinged on the task-constrained motion planner described in Chapter 5. For this reason, it can be

seen as an extension of the framework presented in Chapter 5.
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The motion planner presented in this chapter is automatically able to detect when the reference

path path has to be deformed and we have proposed two heuristic functions to deform the path.

We also have provided a policy to select among the heuristics.

The algorithm has been validated in V-REP for the humanoid robot NAO. We also have pre-

sented an extension to the on-line scenario, showing how our framework can be modified to cope

with dynamic environments.

In the next future, we want to search for cases not handled from the proposed policy and extend

the framework to the on-line scenario, possibly in real-time. The real-time planning is indeed the

topic of the next chapter. Another interesting development would be to allow deformation (rather

than simple adaptation) on the time history as well. For example, this may allow to solve difficult

planning problems where the main reason for failed expansions is violation of joint velocity

bounds (rather that collision or violation of joint limits) by slowing down the motion.

The planner presented in this chapter has been accepted in [21] and it will be presented at the

2016 IEEE Int. Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016.
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Chapter7
Real-time planning and
execution of evasive motions for
a humanoid robot

The approaches we have developed so far are deliberative and they require the knowledge a priori

of the environment. There are situations, such as when a robot has to avoid an incoming obstacle,

in which the robot does not have the time to plan its motion in an off-line fashion but it has to

plan and execute a motion in real-time. This problem can be classified as a part of the safety

coexistence between humans and robots. Safety is a fundamental feature for letting robots out

of factories and to achieve safe behaviors, both for humans and robots. There are many works

that handles the collision avoidance problem in the presence of moving obstacles, especially

for manipulators [24, 35, 67] and for mobile robots [60, 61, 125]. However, there are very few

approaches that face the safety problem for humanoid robots. This is due to the difficulties intro-

duced by a humanoid. As example, a humanoid robot is not a free-flying system and its motion

must be planned appropriately, taking into account the equilibrium constraint.

In this chapter, we do not want to provide a framework for dealing with the entire safety prob-

lem for humanoid robots but we focus only on its lowest level. Motivated by an on-going research

project COMANOID1 which targets the deployment of humanoid robots in aeronautic assembly

operations, we address in this chapter the basic problem of performing real-time evasion maneu-

vers for a humanoid robot when a moving obstacle (such as a human) enters its vicinity. In other

words, we want to equip the humanoid robot with reactive capabilities, in order to provide a safe

coexistence between humans and humanoids. Solving this problem is important also for reacting

to unexpected situations that may happen in the environment (supposed to be highly dynamic).

Among the available fundamental tools we find basic layers allowing detection and avoidance of

moving obstacles as well as the definition of safety measures in [72].

As mentioned before, a humanoid introduces novel challenges for the reactive problem, i.e.,

the problem of avoiding a moving obstacle that moves towards the robot. In fact, it is able to

perform evasive motion by performing steps. Moreover, any movement must be planned so as to

1See www.comanoid.eu
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maintain balance [55]. A closely related problem, which also involves stepping and balancing, is

push recovery in humanoid robots. Several authors have investigated this issue; e.g., see [65, 86].

We propose an algorithmic framework which in principle can accommodate (and in which we

intend to test) various evasion strategies. The proposed method goes through several conceptual

steps. First, we define a safety area for the humanoid robot. When a moving obstacle enters

the safety area, its approaching direction with respect to the robot is computed. Based on this

information, a suitable evasion maneuver represented by footsteps is generated using a controlled

unicycle as a reference model. From the footstep sequence, we compute an appropriate trajectory

for the CoM of the humanoid, which is finally used to generate joint motion commands that track

such trajectory.

Another key point within the reactive problem (but in general in the safety context) is the

reaction time, i.e., the time from the detection of the incoming obstacle in the safety area and

the first reactive motion. This time should be kept as small as possible in order to provide real-

time capabilities to the robot. In recent years, some approaches proposed algorithms for on-line

generation of humanoid motions [46, 88]. Unlike these approaches, we rely on the existence

of analytical (closed-form) expressions relating a desired Zero Moment Point (ZMP) trajectory

to the associated bounded CoM trajectory, as illustrated in [74, 75]. Closed form solution, as

we will see through the chapter, are essential for a real-time implementation of the proposed

framework.

In the literature, there are also other approaches that faces the problem of the real-time mo-

tion planning. The approach in [94] treats the motion planning in dynamic environments as an

optimization problem in the configuration space. It interleaves planning and execution of the

robot in an adaptive manner to balance between the planning horizon and responsiveness to ob-

stacle. In other works, this approach consists in running two parallel threads, one aimed to the

execution of the motion and one devoted to the planning of the motion. Roughly speaking, while

the robot is executing an action, the planning thread computes the motion that will be executed at

the next iteration. At each cycle, the planning thread solves an optimization problem composed

by two cost functions: one is related to the static obstacles while the other is related to dynamic

obstacles. To do that, a simple obstacle prediction is performed, in order to know where the

obstacles will be and then predict a collision-free motion. The main idea is then to run a motion

planner (with a limited time budget) while the robot is already executing an action so that once

the current motion terminates, the motion computed from the motion planner are executed. At

this point, another instance of the motion planner is invoked and the interleaved procedure is

repeated. Due to limited time budget, the planner may not be able to compute an optimal solu-

tion of the optimization function and the resulting trajectory may be, and usually is, sub-optimal.

Obviously, the interleaving strategy is subject to the constraint that the current trajectory being

executed cannot be modified, in order to avoid discontinuities in the trajectory the robot has to

follow. One possible concern of this paper regards the computational time, since just spherical

obstacles are considered during the simulations. Spherical obstacles are really simple objects
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and their predictions are computational negligible. Moreover, planning result is guaranteed to

be safe only during a short time period (due to the rough trajectory prediction performed by the

authors). Finally, the sub-optimal solution of the motion planner may not be collision-free or

may violate some other constraints during the next execution interval. The authors alleviates

this problem by increasing the weights associated with the obstacles. However, it is important

to underline that if the optimization result is valid but not optimal, the planner can also improve

it incrementally during following time intervals. Moreover, the results shown in this paper are

really good in terms of performance. Unlike this paper, we want to show that a real-time solution

may be achieved using closed-form solutions.

The authors in [121] proposed a framework that, similarly to [94], faces the real-time motion

planning as an optimization problem. The idea here is to reject any form of precomputed motion

plan and create, at each cycle, new trajectories that the robot might follow. Multiple trajectories

(called population in their terminology) are maintained at the same time, in order to be able

to react also to drastic changes of the environment. A fitness function is associated to each

trajectory, in order to evaluate its feasibility and optimality (the optimization criteria is defined

as a combination of time, energy and manipulability associated to a trajectory). In other words,

they propose a framework that alternates planning and execution of trajectories, that the robot

has to follow. One of the advantages in this approach is that the robot does not have to wait

for a trajectory having a high fitting value. It will execute the trajectory with the highest fitting

function and, then, in future times, it will automatically switch to a trajectory having better fitting

values. In few words, the algorithm starts by creating a population (both randomly and/or based

on previous plans). To deal with moving obstacles, the planner predicts their future motions.

Since the planner needs just the future position for the next few samples, the obstacle model

does not need to be accurate for long times. In fact, a simple linear interpolator of two or more

samples is used for this purpose. At each cycle, the planner first predicts where the obstacles will

be in the next iteration. Then a operator is selected in order to modify the actual trajectories. The

selection is performed within a set of primitives, creating a new set of trajectories. Then, they are

evaluated (w.r.t. the optimization criteria) and inserted in the population. Just the trajectory with

the highest fitting function is maintained for the next iteration, in order to maintain the diversity

preservation. Even if the authors of [121] did not mention this explicitly, the algorithm sounds

like a genetic algorithm, for the concept of population, fitness and modification operators (that

stands for crossover or mutation operator). In addition, also the idea of preserving the diversity

is common in a genetic algorithm. The real good aspect of this work relies in the computational

time, that is in order of few milliseconds. However, this approach is different w.r.t. the one we

propose in this chapter for two main reasons. First, the work in [121] is proposed for free-flying

system. Second, there is no guarantee that the robot will avoid the obstacle.

The most complete and formal approach regarding the real-time motion planning is in [93]. It

115



Chapter 7. Planning and execution of evasive motions for a humanoid robot Marco Cognetti

nobs

neva

back
neva

aside

x

y

Figure 7.1 The situation of interest. A moving obstacle enters the safety area (yellow circle)

of a humanoid and heads towards it. The humanoid must plan and execute a fast evasive motion.

The figure also shows the moving frame associated to the humanoid.

is the first asymptotically optimal sampling-based motion planning algorithm for real-time nav-

igation in dynamic environments. The authors propose a framework for real-time planning/re-

planning whose goal is to minimize the path length. The framework is proved to be asymptoti-

cally optimal in static environments. A graph is built in the configuration space, growing from

the goal configuration. Again, the assumptions are the knowledge of the poses of static obstacles

and the ability of predicting the poses of dynamic obstacles. The procedure is similar to the

RRT∗algorithm, since the algorithm is ensured to be asymptotically optimal thanks to the rewire

procedure of RRT∗. This framework is developed for mobile robots and the results are shown for

a 2D scenario but its extension to the humanoid case is not trivial in my opinion. However, it is

really remarkable the mathematical derivation of the approach, very elegant and formal through

the paper.

This chapter is organized as follows. In Section 7.1 we formally define the reactive prob-

lem we want to solve. Section 7.2 outlines our solution approach, which mainly hinges on two

conceptual blocks. The first is described in Section 7.3 and it generates an appropriate evasive

maneuver in the form of a timed sequence of footsteps. The second is analysed in Section 7.4

and its aim is to compute a bounded CoM trajectory associated to these footsteps. Simulations

and experiments that validate the proposed framework are shown in Section 7.5. Finally, an

adaptation of the basic method for use in a replanning framework is discussed in Section 7.6.

7.1 Problem formulation

The problem that we want to solve in this chapter is completely summarized in Figure 7.1. A

humanoid robot is standing in a workspace. At some point, a moving obstacle (e.g., a human)
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Figure 7.2 A block scheme of the proposed approach for planning and executing evasive mo-

tions.

enters its safety area and moves toward its direction. The robot must plan and execute as soon as

possible an evasive maneuver in order to avoid the collision with the incoming obstacle.

We make the following assumptions for this problem. First, the robot is not executing any

particular task or, in case, it is ready to abort it and focus on the evasive motion only. To this aim,

safety should have higher priority with respect to any task the robot is executing. Otherwise, the

result is a collision with the obstacle. Second, the speed of the incoming obstacle is slow enough

to allow an evasive maneuver. This is obvious since, even assuming a very small reaction time,

the robot needs time to execute an evasive motion (that also depends on the robot actuators).

Third, the obstacle is pointing the robot and its direction does not change. This is the worst case

scenario since the problem would be easier in any other direction case. Finally, the robot can

freely move inside the safety area for performing the evasive motion.

Even if we intend to remove these assumptions in the future (for example, the hypothesis

of constant obstacle direction is relaxed in Section 7.6), the above situation may already be of

interest in practical situations. As example, straight lines are used by humans for moving to

one point to another (in order to minimize his/her energy consumption). It is of interest, as for

the on-going research project2 mentioned above, to consider humans as the moving obstacles in

view of safe coexistence between humans and humanoid robots. Then, the assumption about the

constant direction of the incoming obstacle is not so far from a realistic application. Obviously,

it is not the general case but it is a really good and realistic scenario.

7.2 Proposed approach

Our approach follows several successive steps

1. the entrance of the incoming obstacle is detected and its direction nobs with respect to the

robot is computed;

2. an evasive maneuver is generated, in order to react to the incoming obstacle. This module

gives as output the footsteps the robot has to follow, by means of the following procedure

2See www.comanoid.eu
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• one of the two proposed evasion strategy is chosen (see below);

• a trajectory for the evasive motion is determined;

• the footsteps are placed around the trajectory found at the previous step;

3. a suitable trajectory for the CoM of the humanoid robot is computed. This trajectory is

obtained by the ZMP that can be easily computed if one knows the footsteps;

4. joint motions are generated so as to track such CoM trajectory, and used to actually move

the humanoid, which we assume to be position-controlled.

A block scheme that describes these steps is represented in Figure 7.2. In this chapter, we will

focus on the second and third blocks of Figure 7.2. For the first block, we assume that the robot is

equipped with an exteroceptive sensor that perceives the environment. To this purpose, we have

used a depth-camera mounted on the robot head. A simple extraction of the closest point can be

used, in order to detect if an obstacle enters the safety area. In a similar way, we shall not dwell

on the structure of the last block; we assume that joint motion is straightforwardly generated

from the planned CoM trajectory by Jacobian-based kinematic control, as the one presented in

Section 5.2.2. The only difference between the joint motion generation we need here and the one

in Section 5.2.2 relies in the task constraint (y), that should be not included in the augmented task

vector (now it will be composed only by the CoM trajectory and by the swing foot trajectory). The

reader is then referred to Section 5.2.2 for further details about the joint motion generation. Then,

Section 7.3 is devoted to the description of the second block of Figure 7.2 (evasion maneuver

generation) while Section 7.4 analyses the third block of Figure 7.2 (CoM trajectory generation).

We empathize that all the computations in each block should be performed as fast as pos-

sible. The reason is obvious: the smaller the reaction time between stimulus (detection of the

moving obstacle) and action (beginning of the evasive motion), the more likely is the robot to per-

form successful collision avoidance. In view of this requirement, we shall look for closed-form

solutions and expressions at all stages.

7.3 Evasion maneuver generation

The Evasion Maneuver Generation block receives as input a unit vector nobs representing the

direction of an incoming obstacle and produces as output a sequence of footsteps that implements

an appropriate evasion maneuver. This is achieved by three conceptual steps, that are shown in

Figure 7.2

1. an evasion direction is chosen neva;

2. a planar trajectory that quickly aligns with this direction is generated as a reference for the

humanoid;

3. footsteps are appropriately placed around this trajectory.

Each step is the subject of the following section.
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7.3.1 Choice of evasion strategy

We propose two evasion strategies

• move back: the humanoid aligns with the direction of the moving obstacle and moves

backwards;

• move aside: the humanoid aligns with the direction orthogonal to that of the moving ob-

stacle and moves backwards.

First, it should be noted that both strategies dictate that the humanoid moves backwards. For

the move back strategy, this is obvious since if the robot moves forward it moves in the direction

of the obstacle. For the move aside, this requirement is related to the possibility of keeping the

obstacle in view, as moving backwards allows to maintain the obstacle in the half-plane in front

of the robot. In this way, it might monitor if there are changes in the direction of the obstacle and

eventually react.

The aim of the move back strategy is to maximize the distance between the robot and the

moving obstacle. This approach has been considered because it is, in human beings, the most

instinctive reaction. This is related to the concept of approach aversion presented, e.g., in [48].

However, since the robots remains on the direction of the obstacle, this strategy is not sufficient

to avoid a collision if the obstacle moves faster than the robot.

On the other side, the move aside embodies a different strategy. Its aim is to move, as fast

as possible, away from the course of the obstacle. If executed sufficiently fast, this strategy may

allow to avoid obstacles that are faster than the robot. Note that the distance to the obstacle may

also decrease, at the first stages, and then increase again.

In practice, the move back strategy is realized by setting nback
eva = nobs. On the contrary, the

move aside strategy is obtained by setting naside
eva = n⊥

obs, where n⊥
obs is the normal unit vector

to nobs in the half-plane behind the robot. Both strategy directions are shown in Figure 7.1.

7.3.2 Evasion trajectory generation

Once neva has been chosen, the next steps consists in computing a planar trajectory that imple-

ments this strategy. We use a controlled unicycle model as reference model for this section. This

model was described in Section 1.2.1 and the reader is referred to that section for further details.

Indeed, this choice is enforced from experimental studies on human locomotion [85, 117], that

have identified a gait model in which the orientation of the body is for most of the time tangent

to the path. In other words, human trajectories closely resemble those typical of nonholonomic

wheeled mobile robots, such as the unicycle. This kind of viewpoint was already effectively

assumed in [33].

119



Chapter 7. Planning and execution of evasive motions for a humanoid robot Marco Cognetti

nobs

neva

back

neva

aside

x

y

incoming
obstacle

robot

move back

move aside

Figure 7.3 Generation of the evasion trajectory by means of a controlled unicycle as reference

model.

Consider Figure 7.3. The reference unicycle is initially placed at the origin of the humanoid

frame, with the same heading, and obeys the model in eq. (1.2) that we report here for complete-

ness

ẋ = v sin θ (7.1)

ẏ = v cos θ (7.2)

θ̇ = ω , (7.3)

where x, y are the unicycle Cartesian coordinates, θ is its orientation w.r.t. the x axis, and v, ω

are the driving and steering velocity inputs. Let neva be the unit vector of the generic evasion

direction, and denote with ∠neva ∈ [0, 2π) its phase angle. A unicycle traveling backwards in

the direction of neva would have orientation θeva = ∠neva − π.

We propose a control law that aligns the unicycle with the desired orientation θeva while

traveling at a constant velocity v̄, typically chosen to realize the evasion maneuver as fast as

possible. In formula, the proposed control law is

v = v̄ (7.4)

ω = k sign(θeva − θ), (7.5)

where v̄ < 0 (since it is a backward movement) is a constant negative driving velocity and k is a

positive constant. The resulting trajectory is an arc of circle that starts at the origin of the plane

(as in Figure 7.3), having a radius equal to |v̄|/k. The desired orientation θeva is achieved at the

finite time instant ts = |θeva|/k. After ts, the trajectory becomes a line, as shown in Figure 7.3.

120



Chapter 7. Planning and execution of evasive motions for a humanoid robot Marco Cognetti

nobs

neva

aside

x

y

incoming
obstacle

move aside

¢

¢

Figure 7.4 Footstep placement around the evasion unicycle trajectory. In the figure, a step

aside maneuver is considered for illustration.

The fundamental aspect is that the integration of the model equations (7.1–7.3) under the control

law (7.4–7.5) readily provides a closed form for such trajectory, i.e.,

x(t) = v̄
sin kt

k
(7.6)

y(t) = sign(θeva) v̄
1− cos kt

k
(7.7)

θ(t) = sign(θeva) kt (7.8)

for t ≤ ts and

x(t) = x(ts) + v̄(t− ts) cos θeva (7.9)

y(t) = y(ts) + v̄(t− ts) sin θeva (7.10)

θ(t) = θeva (7.11)

The availability of a closed form expression for the evasion trajectory is of fundamental im-

portance within our framework for two main reasons. First, it perfectly suites in a real-time

framework since it is really fast to compute the unicycle trajectory given the desired orientation

θeva. Second, it is important also in view of the adoption of a replanning scheme that will be

presented in Section 7.6, since it allows to compute in real-time the trajectory in case the desired

θeva angle changes.
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Figure 7.5 The Linear Inverted Pendulum (LIP) in the sagittal plane.

7.3.3 Footstep generation

Once the trajectory for the controlled unicycle is available, the last step for creating an evasive

maneuver is to generate the footsteps for the humanoid robot. The basic idea is to sample the

footsteps around the unicycle trajectory by using a constant stepsize ∆, as shown in Figure 7.4.

This is obtained by evaluating the trajectory expressions (7.6–7.8) and (7.9–7.11) using a constant

time interval ∆t = ∆/|v̄|, and displacing the x, y, θ samples alternatively to the right and to the

left of the trajectory. In details, it is obtained by a discretization of the expressions in eqs. (7.6–

7.8) and eqs. (7.9–7.11) and then by computing

xr,i = x(ti) + d sinθ(ti)

yr,i = y(ti)− d cosθ(ti)

wherexr,i, yr,i are thex, y coordinates where the (right) footstep has to be placed; x(ti), y(ti), θ(ti)

is the pose of the evasive trajectory (sampled from (7.6–7.8) and (7.9–7.11)) evaluated at time ti

(a generic time instant). Finally, d is half of the distance between the feet at rest and ti = i ∆/v̄

is the time associated to the ith footstep, since we assumed a constant parametrization of the

length and the speed. Similar formulas hold for the left foot case. The first step is an exception,

because it is actually a half-step, i.e., its length is ∆/2.

We assume that the inner foot is the first to move. In formula, if θeva− θ(ti) > 0, the the first

foot that moves is the right, with θ(ti) the starting orientation. Otherwise, it is the left foot that

moves first.

7.4 CoM trajectory generation

The CoM trajectory generation block of Figure 7.2 is described in this section. Its input is the

footsteps generate by the procedure described in Section 7.3 and gives as provides as output the

CoM trajectory that the joint motion generation module has to fed.

As for the previous procedure, all the computations within this block should be performed as

fast as possible. This neglects the usage of the full humanoid dynamics. We shall instead resort
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to the Linear Inverted Pendulum (LIP, see Figure 7.5), a well-known approximate model that

describes the motion of the humanoid CoM when its height is kept constant and no rotational

effects are taken into account. The LIP model has already been used for real-time CoM trajectory

generation, as in [55].

7.4.1 The Linear Inverted Pendulum (LIP) model

As mentioned before, the LIP model is a common approximation of the motion of the CoM of a

humanoid robot. The lateral and sagittal motions of the CoM are completely decoupled and obey

to identical linear differential equations. For this reason, we can analyse the sagittal plane motion

and similar equations will hold for the lateral motion. For the sagittal plane, the dynamics of the

LIP model are described in [9, 54] and they are equal to

ẍCoM =
g

zCoM
(xCoM − xa) +

1

mz∗CoM

(τa − τh) +
F (t)

m
, (7.12)

where xCoM is the CoM position along the x-axis, g is the gravity acceleration constant, z∗CoM

is its constant height, xa is point foot location, m is the total mass of the humanoid robot, τa is

an ankle torque, τh is a hip torque acting on a reaction mass and F (t) is disturbance force in the

direction of the x-axis (that may vary over time). Denoting with η =
√

g/zCoM , eq. (7.12) can

be rewritten as

ẍCoM(t) = η2xCoM(t)− η2z(t) , (7.13)

where z(t) represents all external inputs to the dynamic equations of the CoM. The model in

eq. (7.13) has been used for different gaits model. As example, [65] treats the following gait

models

• point foot model. This model has a no torques applied and the pendulum is modelled

as a massless telescoping leg with point foot location at xa and a point mass m, kept at

constant height zCoM. The Center of Pressure (CoP) is fixed in xa if no step is taken. For

this reason, xa is the control input and the model can be written as

ẍCoM = η2xCoM − η2xa ; (7.14)

• finite-size foot model. This model has a torque located at the ankle (τa) and the CoP

location is related to the ankle torque through xCoP = xa − τa/(mg). The model can be

written as

ẍCoM = η2xCoM − η2xCoP ; (7.15)

• reaction mass model. Here, the torso and arms represented by an actuated reaction mass

that generates a momentum around the CoM and, as consequence, a torque around the

x-axis. The rotational dynamics of the reaction mass are not included in the following

123



Chapter 7. Planning and execution of evasive motions for a humanoid robot Marco Cognetti

formula, since they are not important for the concept we want to assert here. Defining the

Centroidal Moment Pivot (CMP) as

xCMP = xCoP +
τh
mg

= xa −
τa − τh
mg

;

the model can be represented as

ẍCoM = η2xCoM − η2xCMP . (7.16)

Since eqs. (7.14, 7.15, 7.16) are variations of eq. (7.13), we use the last as reference model.

7.4.2 Bounded CoM trajectory

This section follows the approach in [75], where a method for deriving a closed form solution

for the CoM trajectory, in certain conditions, is presented.

Eq. (7.16) can be seen as a linear system with state space x = (xCoM ẋCoM)T , input z(t) and

Ac =

(

0 1

η2 0

)

Bc =

(

0

−η2

)

. (7.17)

The idea is to apply a change of coordinates proposed in [116]

(

xu

xs

)

=

(

1 1/η

1 −1/η

)(

xCoM

ẋCoM

)

(7.18)

to the system represented in eq. (7.16), obtaining a decoupled system

ẋu = η xu − η z (7.19)

ẋs = −η xs + η z , (7.20)

where xs (resp. xu) represents the stable (resp. unstable) dynamics of the LIP model. The

unstable system corresponds to the extrapolated CoM in [47], to the divergent component of

motion in [31, 116] and to the capture point dynamics in [65].

The idea is now to select a trajectory for the CoM that remain bounded and avoid the divergent

behavior associated to the unstable eigenvalue η. According to [75], this can be done either by

a proper choice of xu(ti) at the starting time instant ti or by designing the input z(t) so as to

maintain xu(t) bounded.

Let focus on the unstable dynamics. Eq. (7.19) can be integrated for a generic input z(t),

obtaining

xu(t) = eη(t−ti)xu(ti)− η

∫ t

ti

eη(t−τ)z(τ)dτ . (7.21)
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Figure 7.6 ZMP and CoM trajectory generation for an evasion maneuver: geometric path.

If the initial condition satisfies

xu(ti) = x∗u(ti) = η

∫ ∞

ti

e−ητz(t+ τ)dτ (7.22)

we obtain the following solution

x∗u(t) = η

∫ ∞

ti

e−ητz(t+ τ)dτ , (7.23)

which is bounded under mild assumptions. We denote with x∗u(t) a trajectory for the system that

satisfied eq. (7.22). Note that this solution depends on future value of z, then it is anticausal.

This is a known fact (the CoM is anticausal w.r.t. the ZMP trajectory), e.g., in [54]. If one plugs

the change of coordinates in eq. (7.18) into eq. (7.22), one obtains

x∗u(ti) = xCoM(ti) +
1

η
ẋCoM(ti) , (7.24)

that is known as the boundedness constraint.

Regarding the stable LIP dynamics, for any initial condition xs(ti), the trajectory xs(t) will

converge to a steady-state solution, if it exists. Finally, the CoM trajectory is computed since it

is related to x∗u and x∗s through (using also eq. (7.18))

x∗CoM =
1

2
(x∗s + x∗u) ẋ∗CoM =

η

2
(x∗u − x∗s) . (7.25)

The CoM trajectory is then obtained by plugging eqs. (7.21, 7.22, 7.23) into eq. (7.25)

x∗CoM(t) = e−ηtxCoM(ti) +
xs(t)− e−ηtxu(ti) + xu(t)

2
, (7.26)

and using as reference input z(t) = x∗ZMP, i.e., the desired trajectory for the ZMP, that can
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Figure 7.7 ZMP and CoM trajectory generation for an evasion maneuver: time evolution.

be easily computed given the timed footsteps, as shown in Figure 7.6. The reader is referred

to [73, 74, 75] for further details about the CoM trajectory generation procedure described above.

Note that similar equations hold also for the lateral plane, defining y∗CoM. Moreover, eq. (7.26)

is valid for any ZMP trajectory. Typical choice of the ZMP trajectory (as ours) results in closed

form integrable expression. As consequence, also eq. (7.26) is in closed form. In the context

of evasive motions, being able to generate the CoM trajectory in a closed form expression and

therefore in real-time is of a fundamental importance. Having a parametric analytical expres-

sion of the CoM trajectory for a desired ZMP not only allows fast computational schemes but

also gives the necessary insight to solve replanning problems, as shown in Section 7.6. Some

references about the ZMP can be found in [51, 52, 53, 54, 115, 122].

Once z∗
CoM(t) = (x∗CoM(t) y∗CoM(t) z∗CoM)T has been computed, it can be used as a reference

trajectory for joint motion generation. While it is x∗CoM(ti) = xCoM(ti) by construction, the

initial reference velocity

ẋ∗CoM(ti) = η (xu(ti)− xCoM(ti)) (7.27)

will not match the humanoid initial condition in general. This reflects to a transient error for

the CoM and for the ZMP. In other words, if the humanoid starts with unmatched initial veloc-

ity ẋCoM(ti) 6= ẋ∗CoM(ti), a transient error in the CoM trajectory will be present and this will

generate consequently an error in the ZMP which, if possible, should be avoided in order to min-

imize the risk of tilting. One way to avoid this error (and the associated risk) is to perform an

anticipative motion aimed at achieving the correct initial velocity before actually starting to track

x∗CoM(t).

Typical result of the proposed CoM trajectory generation procedure is shown in Figure 7.6

and Figure 7.7. Here, the reference ZMP trajectory was built by choosing line segments to inter-

polate the evasion footsteps, then dividing each step into a double and single support phase, and
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Figure 7.8 Evasive motions using the move aside strategy: snapshots from a simulation.

choosing the ZMP to be cubic in time over the first and constant over the second.

Finally, z∗
CoM(t) = (x∗CoM(t) y∗CoM(t) z∗CoM)T is given as input to the joint motion gen-

eration, together with trajectories for the swing foot zswg(t) in the same time interval. These

trajectories can be easily computed since the footsteps are known from Section 7.3.33.

The joint motion generation is very close to the scheme in Section 5.2.2. The only difference

is in the augmented task vector defined as ya =
(

zT
swg zT

CoM

)T
. In other words, there is no task

for the specific point of the humanoid robot, as in Section 5.2.2. The reader is then referred to

that section for additional details about the joint motion generation.

7.5 Simulations and experiments

We have validated the proposed framework for the NAO robot, introduced in Section 4.4.1. We

have equipped the robot with a depth camera (Asus Xtion PRO Live4) mounted on its head. Using

this sensor, it can detect obstacles that enter its safety area, defined as a circle of radius 1.5 m,

and compute the unit vector nobs that represents the obstacle approach direction. In details, we

computed the closest obstacle point cp and derived the obstacle angle as θo = atan2(cp,y, cp,x).

The approaching angle is then ∠nobs = θo + θh, where θh is the yaw angle of the head (since

the depth camera is rigidly attached to the robot head), available from the joints readings.

The proposed method was first tested in simulation, using V-REP (Section 4.4.2)5. Snap-

shots from a typical simulation are depicted in Figure 7.8. The humanoid is standing at the

center of a room when a human (acting as a moving obstacle) walks in (first snapshot), directed

3The support and swing foot are uniquely determined by the footsteps. Then, appropriate trajectories can be easily

computed since the poses of the swing foot at the start and end of each iteration are known.
4https://www.asus.com/us/Multimedia/Xtion PRO LIVE
5For further details, please visit www.dis.uniroma1.it/~labrob/research/HumanoidEvasion.html,

where there is also a video of the proposed approach.
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Figure 7.9 Evasive motion using the move aside strategy: snapshots from an experiment.

towards the desk on the right. The humanoid detects that the human enters its safety area (set to

1.75 m) in the second snapshot and it starts the evasion maneuver using the move aside strategy.

Following the scheme depicted in Figure 7.2, an evasion trajectory is first generated using the

controlled unicycle model, with v̄ = 0.04 m/s, k = 0.2 and d = 0.1 m, and footsteps are placed

around this trajectory, using a stepsize ∆ = 0.08 m, in the range of NAO capabilities. Then, a

ZMP trajectory interpolating the footsteps is computed, with duration of the double and single

support respectively at 0.122 s and 0.425 s, and the corresponding bounded CoM trajectory is

generated. Finally, joint commands are computed via a joint motion generation. Overall, the

achieved response time (between the detection of the moving obstacle entering the safety area

and availability of the first joint command) is around 21 ms, confirming that the use of closed-

form expressions in all stages of the motion generation makes real-time evasion possible. The

result is that the humanoid aligns with the direction orthogonal to the moving obstacle’s one

(third snapshot) following an arc of circle and then moves backward, by performing 8 backward

steps (fifth snapshot). This allows the human to safely reach the desk. The simulation continues

with another human crossing the room (sixth snapshot) towards the automatic door. The robot

executes another successful move aside evasion maneuver (seventh to ninth snapshot).

Experimental validation of the proposed framework has been performed with two NAOs.

The first robot is teleoperated and acts as a moving obstacle. The other (the one with the camera

mounted on its head) runs the proposed evasive algorithm. Snapshots from a typical experiment

are shown in Figure 7.9. The moving obstacle starts walking (second snapshot), entering the

safety area of the other robot (third snapshot). As for the simulation, the robot starts an evasive

maneuver using the move aside strategy. The result is that the robot first aligns its orientation

with the direction orthogonal to the moving obstacle (fourth snapshot), by following an arc of

circle. Then, it moves back, by performing 6 backward steps (fifth snapshot). In this way, a the

evasive maneuver is successfully executed.

We should mention that the particular platform used for the simulation/experiment limits our

framework. In fact, NAO has limiting gait capabilities (e.g., its size does not allow a realistic

experiment with a real human having longer legs). So, we had to limit the velocity imposed to

the moving obstacle; otherwise, the robot would have no opportunity to avoid it. Using a robot
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having human-like gait capabilities, our framework can be even more effective and deal with real

human actors.

7.6 Replanning

Assume that the moving obstacle changes its orientation and it is malicious, in the sense that it

continuously changes its course so as to keep aiming at the humanoid while the latter performs

the evasive motion. Depending on the obstacle’s own motion model, this may result in different

approach trajectories, more or less aggressive. In this case, the humanoid cannot continue to

execute the evasive motion dictated by the first approaching direction of the obstacle but it has

to update its motion. The mechanism for achieving this replanning is already embedded in the

proposed scheme, and in particular in the unicycle feedback control law (7.4–7.5) that generates

the evasion trajectory.

In this section, we do not want to propose a complete study of the evasion trajectories resulting

from the interaction of the obstacle approach trajectory with the controlled unicycle model. On

the other side, we want to show how our framework may deal with the replanning problem, as a

preliminary step in that direction.

7.6.1 Replanning the evasion maneuver

The change of direction in the motion of the moving obstacle can be detected from the same

exteroceptive sensor that detected its entrance into the humanoid safety area. Once a new value

n′
obs is available, it is immediately used to compute a new n′

eva, the associated evasion trajectory

given by (7.6–7.8) and (7.9–7.11) with θ′eva in place of θeva. The corresponding footsteps are then

computed. It is essential to underline that these computations are extremely fast, thanks to the

closed-form expression. Obviously, the updated trajectory and footsteps start from the current

posture of the humanoid.

7.6.2 Replanning the CoM trajectory

Once the new set of footsteps is available, the ZMP and the CoM trajectories should be computed

as fast as possible. We assume that the robot has completed (or has the time to complete) the

double support phase and it is ready to perform a step in a single support phase, in order to

follow the new sequence of footsteps. The difficulty is that the CoM trajectory associated to the

current maneuver will be different from that corresponding to the new maneuver. In the light of

Section 7.4, this reflects in a discontinuity in the CoM initial velocity at the time of switching

and, consequently, in a transient error both on the CoM and the resulting ZMP. Moreover, we

cannot perform an anticipative motion to match the initial velocity, as in Section 7.4, since the

robot is already moving.

We propose to solve this issue by introducing some free parameters in the desired ZMP tra-

jectory x∗ZMP(t). The idea is to use these parameters to satisfy the boundedness constraint (7.24)

129



Chapter 7. Planning and execution of evasive motions for a humanoid robot Marco Cognetti

through xu(ti), which depends on x∗ZMP(t). This leaves xCoM(ti) and ẋCoM(ti) free. This ap-

proach can be seen as a simultaneous ZMP-CoM generation, as in [86, 89].

Assuming a point foot model (i.e., no double support phase) for simplicity, the ZMP is defined

as a sequence of Heaviside functions ustep(t), with amplitudes αk equal to the step lengths. For

n steps, the reference ZMP trajectory x∗ZMP(t) becomes

x∗ZMP(t) =

n
∑

k

αkustep(t− tk) , (7.28)

that brings to

xu(ti) =
n
∑

k

αke
−ηtk . (7.29)

Considering the presence of free parameters in the first step only, the boundedness constraint can

be written as

α1e
−ηt1 = −

n
∑

k=2

αke
−ηtk + xCoM(ti) +

1

η
ẋCoM(ti) .

From the previous equation, it is possible to choose as design parameter either the step length α1

or its duration t1. The corresponding solutions are in the first case

α1 = eηt1

(

xCoM(ti) +
ẋCoM(ti)

η
−

n
∑

k=2

αke
−ηtk

)

,

and in the second

t1 = −
1

η
log

1

α1

(

xCoM(ti) +
ẋCoM(ti)

η
−

n
∑

k=2

αke
−ηtk

)

.

An example of the replanning algorithm is in Figure 7.10. The CoM trajectory in the top

plot is obtained with an approach similar to the one shown in Section 7.4, i.e., by interpolating a

sequence of footsteps from a ZMP trajectory with fixed timing and lengths. Assume that t = 0 is

the time of switching and that the actual CoM velocity is −0.08 m/s, from a previous plan. The

nominal CoM velocity (obtained from the boundedness constraint) is ẋ∗CoM(0) = −0.108 m/s.

It is obvious that there is a mismatch between the two CoM velocities and that there would be a

transient error in tracking the nominal CoM trajectory. As alternative, a matched CoM trajectory

is computed by introducing a parameter in the ZMP trajectory and, in particular, in the first step,

as shown in this section. As we mentioned above, two parameters can be maintained as in the

nominal plan: the duration or the length of the first step. In the first case, a longer step length is

obtained (as in the center plot of Figure 7.10. In the second case, this results in a shorter step is

obtained (as in the bottom plot of Figure 7.10). These results are consistent with the observation

that the actual CoM velocity is larger than needed.

This example makes clear that choosing as free parameter the first step length actually leads

to modify the footstep sequence (at least for the first step) with respect to the updated sequence
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Figure 7.10 A replanning example. (top) The nominal CoM trajectory corresponding to an

updated evasion maneuver is mismatched w.r.t. the CoM initial velocity. (center) A matched

CoM trajectory computed by freeing the first step length. (bottom) A matched CoM trajectory

computed by freeing the first step duration.

coming from the evasion maneuver generation block described in Section 7.3. Consider now the

central plot in Figure 7.10. It is clear that the variable length approach may lead to high CoM

velocities. For this reason, it appears that the variable duration approach is the most convenient

choice for replanning the CoM trajectory without modifying the updated evasion maneuver.

7.7 Conclusions

In this chapter, we have described an approach for real-time planning and execution of evasive

motions of a humanoid robot. The proposed method follows some conceptual steps, depicted in

Figure 7.2. First, a moving obstacle is detected if it enters the safety area of the humanoid robot.

The approaching direction of the obstacle is then determined. On the base of this information,

an evasive trajectory is generated by means of footsteps. In particular, we propose two evasive

strategies (move back and move aside) from which a reference evasion trajectory is computed

for a unicycle reference model. The footsteps are then placed around this trajectory. Once the

footsteps are known, an appropriate trajectory is computed for the CoM of the humanoid. Fi-

nally, joint motion commands are generated so as to track such trajectory. We showed that all

these computations can be performed in real-time, thanks to the closed-form expressions of the

two central blocks of Figure 7.2. The proposed approach has been successfully validated via

simulations and experiments on a NAO humanoid. The possibility of adapting the basic method

so as to be used in a replanning framework has also been discussed.
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In the next future, we want to develop a gazing strategy for faster detection of obstacles en-

tering the robot safety area and we want to design and test of additional evasion strategies in

addition to the basic ones considered in this chapter. Finally, the replanning scheme should be

analysed in more details also for the case of finite-sized feet.

The framework presented in this chapter has been accepted in [20]6 and it will be presented

at the 2016 IEEE Int. Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May

2016.

6For further details, please visit www.dis.uniroma1.it/~labrob/research/HumanoidEvasion.html,

where there is also a video of the proposed approach.
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Chapter8
Nonprehensile rearrangement
planning using object-centric and
robot-centric action spaces

This chapter focuses on the problem of manipulation tasks, requiring the robot to interact with

the environment. This kind of tasks has received increasing emphasis by the robotic community

over the years. The reason is simple: if the robot is able to interact with the environment, it

can be used for performing (repetitive) tasks that might be dangerous for humans or for tasks in

collaboration with humans. Commonly, robots (e.g., manipulators) rely solely on the ability of

picking and placing objects through grasping actions. Humans use a much more diverse suite

of actions to fulfil everyday tasks. As example, consider grabbing an inner object in a cluttered

pantry. In this case, picking and placing each object in front the coveted one is not the best

option. On the contrary, one may push aside items using the elbow, forearm and the back of

the hand, while placing the coveted object in the palm of the hand and, finally, grasping it. In

order to perform such an action, nonprehensile interactions such as pushing or pulling should be

included even in the fulfilment of basic tasks. For this reason, we will develop techniques for

generating whole-body nonprehensile interactions to solve the rearrangement planning problem

by means of open-loop planners. In this problem, a robot should find a feasible trajectory in order

to achieve a goal. This trajectory allows the robot to physically interact with multiple objects in

the environment. As example, consider Figure 8.1. In this case, the robot has to move the green

parallelepiped into the goal region depicted with a green circle by means of pushing actions. To

this aim, the robot should interact with the objects in the environment, not only with the goal

object. In fact, as it is evident from the right part of Figure 8.1, the purple bottle and one of the

blue box are moved in order to fulfil the task.

We propose to solve the rearrangement planning problem at the planning stage. Our planners

have to be able to simultaneously allow object interaction and manipulation.

This problem is challenging for a number of reasons. First, the integration of nonprehen-

sile interactions is not a trivial problem. These kinds of actions were already been used for
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Figure 8.1 Example of the rearrangement planning problem. The robot should move the green

box to the goal region denoted with a green circle. Doing that, it has to perform nonprehensile

interactions with the green box but also with the other objects in the environment. (left) Initial

planning problem. (right) A final solution found by our planner.

pre-grasp manipulation [13, 62], large object manipulation [29] and simultaneous object inter-

action [38, 63]. Moreover, they can be used for performing manipulation task for robots not

designed for this scope. As example, a mobile robot may perform pushing actions and manipu-

late with the environment. The reader should then be convinced by the importance of introducing

nonprehensile interactions. Unfortunately, it is not possible to reasoning about these interactions

via geometric planners since an object does not move rigidly with the robot. On the contrary,

an object subjected to a nonprehensile action evolves under non-holonomic constraint that rep-

resent the physics of the environment and the contact between the robot and the object. Some

approaches face this problem by introducing some simplifications about the interaction (the ob-

jects move rigidly attached to the robot) or the objects (disc robot pushing disc objects) [1, 2].

On the other hand, we believe that the right way to proceed is to embed physical models directly

inside the motion planners, as in [45, 63]. Doing that, we do not need any assumption about the

robot nor the objects in the environment.

Another challenge relies in the dimension of the planning problem we want to solve. As

mentioned before, an interaction modifies the planning environment. This means that we have

to track all the poses of the objects that might move within the state of our motion planner. This

leads to a state space that is linearly depended on the number of movable objects. In other words,

the planning problem is defined in an high-dimensional space. The authors in [45, 63], on which

this chapter is highly inspired, propose to alleviate this problem by projecting actions into a lower

dimensional physics manifold. In fact, even if the contact is essential for this problem, there are

large portions of the state space that does not involve a contact (e.g., the left part of Figure 8.1).

It is shown that it is possible to project all actions to a lower dimensional manifold where contact

is likely to occur. This speeds planning by focusing our search to regions of state space we know

to be critical to goal achievement. Another way to reduce the high-dimensional problem is to

consider only dynamic actions that result in statically stable states. Including a physics engine

into the planning stage allows to model physical interaction between the robot and objects the

environment. However, it forces to consider a state space composed both by the poses and the
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velocities of the robot and the objects that might move in the environment (since a physics engine

works at the second order, a state should include the zero and the first order). Unfortunately, this

might have a negative impact on the planning time. The authors in [45, 63] observed that the

absence of any external forces but the gravity causes a manipulated object to eventually come

to rest due to friction. For this reason, the same authors showed that choosing dynamic actions

that result in statically stable states (e.g., the environment comes to rest after each action), the

planning problem can be analysed in a lower dimensional space that ignores the velocities.

From a research point of view, the rearrangement planning problem have been studied in

several works. The work in [123] proves that this problem in NP-hard while in its first formulation

it was denoted as Navigation Among Movable Obstacles (i.e., NAMO). Here, the task of the robot

is to navigate from a start to a goal configuration and in the environment there are objects that it

can move (i.e., movable obstacles). This problem was also further extended to the manipulation

task case, initially focusing on pick and place tasks [87, 113]. The main difference with the work

presented in this chapter relies in the fact that those works are limited to grasp actions. Some

works [4, 27, 28] showed the advantages of equipping the robot with nonprehensile capabilities,

allowing the robot to solve scenes where the object to be manipulated is too large or too heavy

to be grasped.

Some authors tried to face the rearrangement problem as a classical planning problem. As

example, the approach in [106] proposes two types of actions: (i) transit (the robot moves without

being in contact with any object) and (ii) transfer (the robot changes the state of one or more

objects). Another technique used especially for its speed are the Random Exploring Random

Tree (RRT) [78]. Here, edges represent those actions while nodes represent state of the system.

Only transfer actions are considered in [87] while the work in [2] extends this approach including

nonprehensile actions. Another kind of approaches for dealing with the high-dimensionality of

the problem is to decompose it in subproblems, as in [14]. The approach that will be described

in this chapter is a state-space approach (RRT). However, instead of using motion primitives as

in [3, 87] that forces a designer to develop effective and efficient actions, we believe that simple

actions are able to solve the rearrangement planning problem.

Another method for facing the problem is the backchaining. This method is inspired by the

concept of goal pre-images [81, 84]. Within this framework, a graph is built where the nodes

represent states and edges represent actions, as mentioned before. A pre-image of a state is the set

of all the states (and also the actions) that converges to the given state. This idea can be applied

also for solving the rearrangement planning problem, for which a planner starts from the goal.

The idea is to search for actions that move a set of objects such that the final state corresponds

to the desired state. This idea is the core of the work in [113] in case of transfer actions only. As

mentioned before, the works in [27, 28] extended this framework including also nonprehensile

actions such as pushing. At the end, the idea of backchaining is to reduce the problem to a list

of object to move, limiting the ability to have simultaneous object interaction.
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An alternative approach is to track the reachable free space, that is the workspace reachable

from the robot when no obstacle is within its workspace. The idea is to place the robot and

the goal in the component of the free space. This idea is particularly helpful when the number

of movable objects is large, since searching in a space composed by the robot and the movable

obstacles states becomes difficult as the number of movable obstacles increases. The works

in [112, 118, 119] explore this idea in a hierarchical framework. A high-level planner is in

charge of connecting disjoint regions while a low-level planner provides a path for the robot

inside a single free space component.

The aim of this chapter is to extend the approaches in [45, 63] (on which it is highly in-

spired) including also object-centric and robot-centric action spaces. In particular, robot-centric

actions move the robot without object relevant intent (as the transit action described above) and

object-centric actions are aimed for interacting with objects in the environment (as the transfer

action described above). These actions easily allow simultaneous objects contacts and whole

arm interaction.

The robot-centric primitives were used in [45, 63]. This kind of actions has the advantage of

allowing simultaneous contacts and that are independent w.r.t. the number of movable obstacles.

On the other side, in case the planner uses only these actions, the resulting planner often suffers

from long plan times due to the lack of goal directed motions available to the planner. This

is the reason for which we introduce the object-centric actions. They are often exposed to the

planner in the form of user-defined high-level primitives. They can be highly effective, allowing

the planner to perform large advancements toward the goal. On the other side, using only this

kind of actions (as in [2, 28, 50, 112, 113]) limits the types of solutions that can be obtained by

the planner. In fact, they involve the contact between an object and a single part of the robot, i.e.,

its end-effector. This neglects the opportunity to have simultaneous contacts between the robot

and two or more objects. Note that our idea is to use simple object-centric actions, in such a way

we do have to embed accurate or very precise primitives in the planner.

We then formulate a hybrid planner that uses both action types. Our idea is based on the

fact humans use a diverse set of actions when interacting with the world. While many of these

actions are object-centric, focusing on interacting in a specific way with a single object, other

interactions are purely coincidental. These interactions are the unplanned result of a motion with

different intent. In other words, our insight is that both types of actions are critical to generating

expressive solutions quickly. By integrating the two actions types, we can use the freedom of

interaction fundamental to the robot-centric actions while still allowing for the goal oriented

growth central to the object-centric methods. Consider the example of reaching for a milk jug in

the back of a refrigerator. One might first carefully slide the juice jug out of the way, then simply

reach for the milk, and trust that other objects that are touched will naturally be pushed out of

the way, without requiring specific actions to move them. The idea is to create a planner that is

able to solve this kind of problems.
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Figure 8.2 The planning environment.

This chapter is organized as follows. Section 8.1 formally introduces the rearrangement plan-

ning problem while our approach for solving this problem is presented in Section 8.2. Finally,

some planning experiments are proposed in Section 8.3 while Section 8.4 ends the chapter with

some considerations about this chapter.

8.1 The rearrangement planning problem

In this section, we provide a formal description of the rearrangement planning problem. Consider

Figure 8.2, where the problem is formulated for a mobile robot. In a bounded world W , we

assume to have a robotR and its configuration space CR. InW , there are a setM of m objects

that the robot is able to move (movable objects) and a setO composed by obstacles that the robot

cannot move (static obstacles), i.e., a contact with one object inO is not allowed. Each movable

object has its own configuration space, denoted with Ci, as depicted in Figure 8.2.

Our state space is composed by the Cartesian product space of the robot and the movable ob-

stacle states as X = CR×C1×· · ·×Cm. A state x ∈X is then defined as x =
(

q,o1, . . . ,om
)

,

with q ∈ CR a configuration assumed by the robot and oi ∈ Ci ∀i = 1, . . . ,m a configuration

of the ith movable obstacle. We define the free space X free ⊆ X as the set of all states in X

where the robot in not penetrating any movable or static obstacle. It is important to underline

that the previous definition of X free allows contacts between entities as limit case1 and this is

fundamental for manipulation tasks.

The goal of the rearrangement planning problem is to find a feasible robot trajectory ξ :

R
≥0 → X free starting from a given state ξ(ti) ∈ X free and ending in a goal region ξ(T ) ∈

XG ⊆X free, at some time T ≥ 0.

1Here, we use the term penetration to indicate two objects that not only are in contact but are colliding. Two

objects that are in contact are not penetrating.
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Figure 8.3 An example of solving the rearrangement planning problem with just one movable

object. The dark is the initial state while the light is the end state. In the second figure, the robot

moves into place to push the object while in the third figure it applies a pushing action in order

to set the object in the goal pose. Finally, the robot moves in its goal pose.

Having formally introduced the rearrangement planning problem, we can turn our attention

to the state dynamics. The state x evolves nonlinearly based on the physics of the manipulation,

i.e. the motion of the objects is governed by the contact between the objects and the manipulator.

This is expressed by the following non-holonomic constraint

ẋ = f(x,u) , (8.1)

where u ∈ U is a control input that can be instantaneously applied to the robot R. A path ξ is

feasible if there exists a control u ∈ U such that ξ̇(t) = f(ξ(t),u), i.e., the constraint in eq. (8.1)

is satisfied at all times while the robot is following ξ.

It is important to underline that the constraint in eq. (8.1) is really hard to model. In fact, it

has to propagate the state in case of contact between objects. This is the reason for which we will

include within our planner a physics engine, such as ODE or BOX2D (see Section 8.2), to have

an high accuracy propagation in the state space.

8.2 Planner overview

Our planner is based on the Random Exploring Random Tree (RRT) [78]. Traditional implemen-

tations of the algorithm solve the two-point boundary value problem (BVP) during tree extension.

Since, as explained in Section 8.1, we have to plan in a state space composed by the robot state

space and the movable objects state space, the two-point BVP problem is as hard as solving the

full problem. Note also that a movable object is not directly controllable but its motion is the

result of a pushing action performed by the robot. Therefore, solving the two-point BVP to con-

nect x1,x2 ∈ X free requires finding a path for the robot that moves each object inM from its

position in x1 to its position in x2. To convince the reader, consider the example where there is

just one movable object, as in Figure 8.3. The start state is then defined as x1 = (q1,o1) and

the goal state as x2 = (q2,o2). For solving this two-point BVP, the robot should first move to

a location near o1, then push the object in its goal location o2 and finally move to its goal pose

q2. All the actions performed by the robot must be collision-free and then feasible. It is evident

from this example that the movable obstacle is able to move just from an action taken from the

robot.
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The remaining part of this section is organized as follows. Section 8.2.1 and Section 8.2.2

show useful tools needed for each version of the algorithm. The aim of Section 8.2.3 and Sec-

tion 8.2.4 is to describe how previous works have handled this constraint. Finally, our planning

approach is depicted in Section 8.2.5.

8.2.1 Configuration sampling

When using a probabilistic planner such as a RRT, it is essential to be able to sample a random

state. In principle, one might sample from any distribution, as long as densely sampling from

the space X free is guaranteed. In practise, we uniformly sample the robot and all the movable

objects from a uniform distribution. We use rejection sampling to ensure the sampled configu-

ration is valid, i.e., discarding any sampled states that have object-object or manipulator-object

penetration.

8.2.2 Distance metric

The distance is another key point for a probabilistic planner. The authors in [2] claim that the

correct distance metric between two states x1 and x2 is the length of the shortest path traveled

by the robot that moves each movable object from its configuration in x1 to its configuration in

x2. However, computing such a distance (or even an approximation) is very difficult. For this

reason, we have used a weighted Euclidean distance metric defined as

Dist(x1,x2) = wq‖q1 − q2‖+
m
∑

i=1

wi‖o
i
1 − oi

2‖ ,

where x1 = (q1,o
1
1, . . . ,o

m
1 )T , x2 = (q2,o

1
2, . . . ,o

m
2 )T , wq ∈ R is the weight associated to

the robot and wi ∈ R, ∀i ∈ [1, . . . ,m] is the weight associated to the ith movable object.

8.2.3 Robot-centric planner using random action sampling

As suggested in [77], a useful alternative to solving the two-point BVP is to use a discrete time

approximation to eq. (8.1) to forward propagate all controls and select the best using a distance

metric defined on the state space. In particular, define an action set A : U × R
≥0 where a =

(u, d) ∈ A, where u describes a control and d its associated duration for which one wants to

apply the control. Then, a transition function, Γ : X × A → X , is used to approximate the

non-holonomic constraint.

Note that our control space U is continuous and this neglects the opportunity to enumerate all

the action set. Instead, an approximation of this space is performed by taking k actions, forward

propagating each under Γ and selecting the best from this discrete set.

Algorithm 7 describes a basic implementation of this algorithm. It builds a tree T in the

configuration space until the constraint imposed by the goal region is reached. At each iteration,

it samples a random configuration (Algorithm 7, line 3), as described in Section 8.2.1. Next,

141



Chapter 8. Nonprehensile rearrangement planning Marco Cognetti

Algorithm 7: Kinodynamic RRT with random action sampling and physics model propa-

gation

T ← {nodes = {x0 = x(ti)}, edges = ∅};1

while not ContainsGoal(T ) do2

xrand ← SampleConfiguration();3

xnear ← Nearest(T ,xrand);4

for i = 1 . . . k do5

(ui, di)← SampleUniformAction();6

(xi, di)← PhysicsPropagate(xnear,ui, di);7

end8

i∗ = argmini Dist(xi,xrand) if Valid((xnear,xi∗),ui∗ , di∗)) then9

T .nodes ∪ {xi∗};10

T .edges ∪ {((xnear,xi∗),ui∗ , di∗)};11

end12

end13

path← ExtractPath(T );14

the nearest configuration is retrieved (Algorithm 7, line 4) using the distance metric provided in

Section 8.2.2. At this point, the best action for the robot is chosen using robot-centric actions

(Algorithm 7, lines 5–8). In details, k samples are taken from a uniform distribution in the action

space. For the generic ith action, a physical propagation is performed starting from xnear and

applying the control ui for a duration di. The result is a new state xi. Within this thesis, the

physics propagation is seen as a black box that takes as input a state and an action and gives as

output the new state. Additional details about the physics propagation can be found in [45, 63].

This is attractive because it allows complex interactions like multi-object pushing and whole arm

manipulation to evolve naturally.

The best action (ui∗ , di∗) is selected as the one whose ending state xi (the state obtained from

xnear applying a physics propagation using the action (ui∗ , di∗)) is the one that has the smallest

distance, within the k actions, to the random state xrand (first argument in Algorithm 7, line 9).

The distance is again computed as in Section 8.2.2. If the path connecting xnear and xi∗ is valid,

xi∗ is inserted in the tree T as a node while the path as an edge (Algorithm 7, lines 9–12). Finally,

a path is extracted by backtracking (last line in Algorithm 7).

As it is evident from Algorithm 7, it relies on robot-centric actions. The drawback is its

lack of focused tree growth. In particular, during each extension, the tree is not strongly pulled

toward the sampled configuration. In fact, the tree is expanded by taking the best action from a

set of random actions. In Figure 8.4 we show the distance between the end of an extension and

the sampled state for several extensions of a tree grown to solve the scene from Figure 8.8. It is

evident that the tree makes very small progress toward the target state using robot-centric actions,

even using a large number of control samples (k in Algorithm 7). This is especially true if this

data is compared to the progress performed by the object-centric actions, shown in Figure 8.4.
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Figure 8.4 The distance between the achieved state and target state. As can be seen, sampling

object-centric actions leads to significant improvement in reaching the target state.

Algorithm 8: Kinodynamic RRT using motion primitives

T ← {nodes = {x0 = x(ti)}, edges = ∅};1

while not ContainsGoal(T ) do2

xrand ← SampleConfiguration();3

xnear ← Nearest(T , xrand);4

(a1, . . . ,aj)← GetPrimitiveSequence();5

xnew ← PrimitivePropagate(xnear, (a1, . . . ,aj));6

if Valid((xnear,xnew), (a1, . . . ,aj)) then7

T .nodes ∪ {xnew};8

T .edges ∪ {((xnear,xnew), (a1, . . . ,aj))};9

end10

end11

path← ExtractPath(T );12

The result is that the tree must randomly “stumble” on a goal rather than intentionally growing

in that direction. This often leads to higher than desired plan times.

8.2.4 Object-centric planner using high-level actions

Another way for approaching the action problem is to use a set of object-centric primitives capa-

ble of solving the two-point BVP in a lower dimensional subspace. This approach was already

used in [2, 50]. As example, consider the case of a push-object action. In this case, the primitive

is composed by a set of actions that moves an object from its current to a desired configuration,

as in Figure 8.3.

As explained above, object-centric actions have the advantage of allowing large extension of

the tree, as depicted in Figure 8.4. Then, their introduction in the planner is interesting since

it allows to reduce the planning time. Moreover, in [2], a clever sampling method is implored

that ensures the primitives can be used to fully solve the two- point BVP. Thus, in the absence

of obstacles, every extension will achieve the sample point. This is particularly useful when the

sample is a goal state: it allows the tree to grow to the goal and, then, to find a solution for the

rearrangement planning problem.
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Figure 8.5 An example of object-centric primitives and their susceptibility to failure. (left)

failed “push-object” primitive. The desired end-effector pose is not reachable when approaching

the target object (green box). (right) An alternative primitive that is able to grasp and push the

target object in the desired goal region (green circle).

On the other side, they have three main drawbacks. First, these actions limit the types of solu-

tions generated by the planner. In particular, they usually involve contacts between the robot and

one single selected object. This neglects the opportunity to have multiple contacts when apply-

ing an action (as it may happen using a robot-centric action). In fact, the PrimitivePropagate

function in Algorithm 8 explicitly forbids contact with any other movable object but the selected

one. Second, they might be difficult to design. Regarding the last problem, we just used really

simple primitives, as described in Section 8.2.5. Last but not least, applying this kind of actions

may result into a failure if the primitive cannot be successfully applied. As example, consider

Figure 8.5. Here, an object-centric primitive can be described by two components. First, the

robot arm moves close to the target movable object (the green box in Figure 8.5), with the palm

of the hand in the direction of the desired pose (the goal region denoted with a green circle in

Figure 8.5). Then, the robot pushes the target object along the direction of the desired push. Note

that the object is really close to the edge of the reachable workspace of the robot. The result is

that all the attempts in applying this primitive fail, as shown in the left of Figure 8.5. The reason

is straightforward: when the robot tries to reach the point close to the target object, it reveals in a

violation of the reachable workspace. Even more problematic, a solution to the scene cannot be

found given the current action space. To generate a feasible solution, the programmer must de-

fine alternative primitives, as in the right of Figure 8.5. This example should convince the reader

that object-centric primitives might be highly effective (in case of the alternative primitive in

the right of Figure 8.5 it allows to reach the goal region) but they transfer to the programmer

the responsibility to design an effective and general primitives, increasing the difficulty for the

programmer. However, this problem is particularly true in case just object-centric actions are in

the planner. As we will see in Section 8.2.5, our insight will be to provide to the planner both

robot-centric and (simple) object-centric actions in such a way, even if a object-centric primitive

144



Chapter 8. Nonprehensile rearrangement planning Marco Cognetti

Algorithm 9: Kinodynamic RRT using hybrid action sampling

T ← {nodes = {x0 = x(ti)}, edges = ∅};1

while not ContainsGoal(T ) do2

xrand ← SampleConfiguration();3

xnear ← Nearest(T , xrand);4

for i = 1 . . . k do5

r ← Uniform01();6

if r < prand then7

Ai ← SampleUniformAction();8

else9

Ai ← SamplePrimitiveSequence();10

end11

(xi,Ai)← PhysicsPropagate(xnear,Ai);12

end13

i∗ = argmini Dist(xi,xrand);14

if Valid((xnear, xi∗),Ai∗)) then15

T .nodes ∪ {xi∗};16

T .edges ∪ {((xnear,xi∗),Ai∗)};17

end18

end19

path← ExtractPath(T );20

fails in an iteration of the algorithm, it is not stuck in applying the same primitive over and over

again.

A basic implementation of this approach is given in Algorithm 8. As the approach in Sec-

tion 8.2.3, it builds a tree T in the configuration space until the constraint imposed by the goal

region is reached. At each iteration, it samples a random configuration (Algorithm 8, line 3),

as described in Section 8.2.1. Next, the nearest configuration is retrieved (Algorithm 8, line 4)

using the distance metric provided in Section 8.2.2. Then, the sequence of action imposed by a

object-centric primitive is selected. In practise, we select with a uniform probability which prim-

itive to use within an iteration. This is denoted with the sequence of actions A = (a1, . . . ,aj)

in Algorithm 8. As example, j = 3 in the primitive shown in Figure 8.3. The selected primitive

is then propagated (Algorithm 8, line 6) giving as output the new configuration xnew. In case

the path connecting xnear and xnew is valid, xnew is added as a node and the path is added as an

edge of the tree T (Algorithm 8, lines 7–10). The above-mentioned procedure is repeated until

the tree T does not contain a node in the goal region, i.e., the target object is in the goal region.

8.2.5 Hybrid planner

From Section 8.2.3 and Section 8.2.4, it should be clear that both robot-centric and object-centric

actions have their advantages and disadvantages. Just for completeness, here we recall them.

Robot-centric actions are useful because they do not depend on a specific object and they allow

multi-contact between the robot and multiple movable objects. On the other side, they lack in
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making progress toward a selected state. Object-centric actions allows large progresses but they

may bring to a failure and they can be very difficult to design. Furthermore, they do not allow

multi-contact when applying them.

For these reasons, we propose a method that allows for the freedom of interaction fundamental

to the robot-centric methods while still allowing for the goal oriented growth central to the object-

centric methods, i.e. we combine the two planner presented in Section 8.2.3 and Section 8.2.4.

Algorithm 9 depicts the proposed approach. A tree T is built in the configuration space

(composed by the robot pose and the movable object poses) and the starting state x0 = x(ti) is

supposed to be given and inserted as the root of the tree. At each iteration, a random configuration

is extracted (Algorithm 9, line 3) and the nearest configuration is computed on the basis of the

distance metric defined in Section 8.2.2. Then, as in the method described in Section 8.2.3, the

best of k possible actions is selected. However, each candidate extension i expresses a sequence

of actions,Ai = (a1, . . . ,aj), with j the number of actions in the primitive (j = 3 in Figure 8.3).

This process is described in Algorithm 9, lines 5–14. To this aim, we select with probability prand

a single action a = (u, d) drawn uniformly at random from the space of feasible actions (robot-

centric action as in Section 8.2.3). Otherwise, Ai contains a sequence of actions, (a1 . . .aj),

that are equivalent to the object-centric primitive described in Section 8.2.4 with noises applied

to the primitive parameters. As example, the “push-object” primitive shown in Figure 8.5 is

parameterized by the start point of the push, and the distance of the push and we use this primitive

within our algorithm. Note that, even this fails in that situation, it is not a problem for our

framework, since the algorithm is able to escape from the stuck situation by using a robot-centric

primitive or another object-centric primitive. As counterpart, the simple design of such object-

centric primitive allows to reduce the responsibility on the programmer.

In any case, the selected action is physically propagated using a physics engine. This prop-

agation removes the problem of the object-centric primitives shown in Section 8.2.4. In fact, it

is possible now to perform multi-contact between the robot and multiple objects by means of

the physics engine. In other words, any unintended contact with other objects in the scene can

be modeled now. Note that this unintended contact is not detrimental to overall goal achieve-

ment and it should be allowed. The result of the k physics propagations is a set of new states

{xi}, ∀i ∈ [1, . . . , k]. Within this set, the state having the smallest distance to the random state

xrand is the one selected for validation (xi∗). Again, we use the distance function defined in

Section 8.2.2. Finally, path between xnear and xi∗ is checked for collisions. In a positive case,

xi∗ is added as a node and the path connecting xi∗ and xi∗ as an edge of the tree T (Algorithm 9,

lines 15–18). Otherwise, no node is added to T and the process is repeated. When a node in T

satisfied the goal region (e.g., the target object pose is within the goal region). Note that we have

decided to validate just the state closest state (w.r.t. xrand) since the path connecting two states

should be checked for collisions, that is a computationally expansive operation.

This method is attractive because it combines the strengths of the methods described in Sec-

tion 8.2.3 and Section 8.2.4. Moreover, sampling random actions with some probability allows
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Figure 8.6 Rearrangement planning examples for the KRex robot. In each scenario, the robot

must push the green box from its start pose to the goal region indicated by the green circle.

Robot-centric (purple) actions are used to move the robot away from obstacles and into config-

urations where object-centric (orange) primitives can be applied. (left) A 3D CAD model of the

KRex robot. (right) An example of two planning scenes solved using our hybrid planner.

the planner to generate actions that move an object when all primitives targeted at the object

would fail (i.e., the example in Figure 8.5). Finally, using a physics engine at the planning stage

allows to have multiple contacts between the robot and movable objects, even when propagating

object-centric actions.

8.3 Planning experiments

We have implemented the planner described in Section 8.2.5 in the Open Motion Planning Li-

brary (OMPL) [114]. We have tested three versions of the planner that differ each other for the

values imposed to prand (see Algorithm 9)

1. prand = 0. This is equivalent to always sample primitive sequences (object-centric ac-

tions). We denote this planner as object centric in all results;

2. prand = 1. This forces the planner to always sample a random action (robot-centric ac-

tions). We denote this planner as robot-centric in all results;

3. prand = 0.5. This allows the planner to choose primitives or random actions with equal

probability. We denote this planner as hybrid in all results.

In this section, we want to prove the following two hypotheses

H1 on scenes easily solvable using object-centric actions, the hybrid planner performs

equivalent to the object-centric planner in both success rate and plan time. Additionally,

both the object-centric and hybrid planners outperform the robot-centric planner that sam-

ples only random actions;

H2 the hybrid planner achieves higher success rate and faster plan times than the object-

centric or robot-centric planners on difficult scenes.
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Figure 8.7 Two primitives defined for KRex (mobile manipulator). Dubins paths are used

to generate paths between two poses in SE(2). (left) Robot-centric (transit) motion primitive.

(right) Object-centric (push-object) motion primitive.

8.3.1 Mobile manipulator

We have tested our planner first on a mobile manipulator called KRex, depicted in Figure 8.6.

We mounted an end-effector (plate) in the front of the robot, enabling the latter to push objects

in the scene. The system acts as a steered car. For this robot, CR = SE(2) and a control

u = (v, δ) ∈ U describes the forward velocity and steering angle applied to the robot. We have

used the Open Dynamics Engine (ODE)2 as our physics model to forward propagate all actions.

In all the experiments, the task of the robot is to push a target object (depicted as a green box

in Figure 8.6) into a goal region with radius 0.5 m (depicted as a green circle in Figure 8.6). We

have bounded the robot to move in a world 15 m×10 m. This implies that any action that moves

the robot or any object outside of this bounded region is considered invalid. For this problem,

we use the following set of primitives

• robot-centric primitive. This primitive (a transit primitive) moves the robot from a start to

a goal configuration in SE(2) by finding the shortest length Dubins curves [30] connecting

the two configurations (see Figure 8.7). Within our planner, the goal configuration pose

is extracted randomly within the bounded world. Moreover, we randomly have selected a

constraint on the forward velocity in the range [−0.5, 0.5] m/s;

• object-centric primitive. This primitive (a push-object primitive) pushes an object along

the straight line connecting a start and goal configuration for the object. The primitive

returns a set of actions that first move the robot to a pose “behind” the object. In more

details, this pose is chosen by computing a path (e.g., a line) between the starting robot

pose and the starting object position and placing it with a distance randomly chosen in the

range [0.2, 0.3] m w.r.t. the latter. Finally, the primitive drives the robot straight along the

ray, pushing the object (see Figure 8.7). The velocity of this primitive is chosen as for the

robot-centric case.

The planner uses also random actions (another robot-centric action, see Algorithm 9, line 8). To

this aim, we sample forward velocity from the range [−0.5, 0.5] m/s and duration from the range

2See http://www.ode.org
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Figure 8.8 Example of solutions using the three planners for an easy scene. (left) Robot-

centric planner. (center) Object-centric planner. (right) Hybrid planner.
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Figure 8.9 Success rate of the three planners for an easy scene using KRex (mobile manipula-

tor). The planning time budget refers to the maximum time given to a planner to find a solution.

0.5s to 5s. Furthermore, we have defined the sampling range for steering angle using the same

minimum and maximum angles as used for generating the Dubins paths.

8.3.1.1 Easy scenes

First, we have tested our planner on three scenes easily solvable using the object centric primitives

defined above. Figure 8.8 shows an example scene and a single solution from each planner. We

have run each planner 50 times on each scene, for a total of 150 trials per planner. For each trial,

we record the total time to find a solution. Figure 8.9 reports the success rate for each planner,

up to 60 s of total plan time budget. As it can be seen by the same figure, both the hybrid and

the object-centric planners are able to solve the scenes in the allotted plan time, while the robot-

centric planner often fails in finding a solution. This is due to the small progress toward the target

state, randomly extracted at each iteration of the algorithm. This reflects into a planning time

often larger to the allotted planning time (causing a failure).

A one-way ANOVA with Tukey HSD post-hoc analysis reveals there is no significant differ-

ence in mean plan time between the hybrid and object-centric planners (p = 0.297). There is

a significant difference between hybrid and robot-centric (p < 0.001) and object-centric and

robot centric (p < 0.0001). This supports our hypothesis (H1): the hybrid planner outperforms

the robot-centric planner, and performs as well as the object-centric planner on simple scenes.
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Figure 8.10 In this scene, the wall (black) serves as a static obstacle preventing application

of the push primitive from the start configuration. Robot-centric actions are needed to grow

the tree until such a primitive can be applied. Once available, the object-centric push primitive

extends the tree to the goal. Top row: (left) start configuration; (center) a random robot-centric

action is taken to reverse the robot away from the boundary; (right) a transit primitive moves the

robot near the wall. Bottom row: (left) two robot-centric random actions are used to reverse the

robot away from the obstacle and then drive the robot into open space; (right) an object-centric

action is used to push the target to the goal region. Purple lines refer to robot-centric while

orange refer to object-centric actions.

8.3.1.2 Difficult scenes

Next, we have tested the planner on more difficult scenes (i.e., scenes that require more than 60 s

on average to be solved), where there are multiple static and movable obstacles. In this case,

the problem cannot be solved by simply applying an object-centric primitive (see Figure 8.8).

Figure 8.6, Figure 8.10 and Figure 8.11 report these scenes and an example of solutions found

by our planner. Again, we run 50 times for each scene.

In the scenario depicted in Figure 8.10 the robot has to place the green box (i.e., the target

object) into the green circle (i.e., the goal region). Unlike the scenario in Figure 8.8, an object-

centric primitive is not able to solve the problem, since it would cause a collision with the wall

depicted with a black box. Combinations of robot-centric and object-centric actions are used to

solve the problem. In fact, in the solution depicted in Figure 8.10, two robot-centric primitives

reverse the robot and moves it close to the wall. Then, another two robot-centric actions are

aimed to move the robot away from the wall and place it in an open space. Finally, in the last

snapshot, an object-centric primitive pushes the target object into the goal region. It is important

to underline that even portion of object-centric primitive can be used within our framework, as

it happens in the third snapshot of Figure 8.10. Even if the validation step fails in Algorithm 9

(line 15), one might save as node of the tree the last valid explored node (and the relative edge),

also for avoiding to waste the computations computed so far (both for the physics propagation

and the collision checks performed up to the last valid node).
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Figure 8.11 Example for a difficult scene (where object-centric actions alone fail) using KRex

(mobile manipulator). The use of robot-centric actions help in repositioning the robot when near

obstacles (gray boxes) or boundaries. Additionally, by using a physics model during plan time

the planner can generate solutions that allow the target object (green box) to be moved into place

by pushing another movable object (blue boxes) and creating a chain movement. Purple lines

refer to robot-centric actions while object-centric lines refer to object-centric actions. Top row:

(left) start configuration; (center) a random robot-centric action is taken to reorient the robot;

(right) an object-centric action moves one box. Bottom row: (left) a robot-centric action is used

to reverse the robot away from an obstacle; (right) an object-centric primitive is used to push the

target in the goal region. Purple lines refer to robot-centric while orange refer to object-centric

actions.

The other difficult scene on which we have tested our algorithm is depicted in Figure 8.11.

As for the other scenario, the target object is the green box while the goal region is depicted with

a green circle. The gray boxes are static obstacles while blue boxes are movable objects. Also

in this case, a single object-centric action is not able to solve the problem, since it reveals with a

collision with one of the static obstacles. The planner chooses a robot-centric action to reorient

the robot (second snapshot of Figure 8.11) and a object-centric action to move one box (third

snapshot of Figure 8.11). Finally, another robot-centric and an object-centric action is used to

first move the robot away from a static obstacle and then to push the target object in the goal

region (last two snapshots in Figure 8.11).

As it is evident from the above-mentioned experiments, our planner takes advantage of both

robot-centric and object-centric primitives. This enable to find solutions that would not be able

to find by using just one kind of these two actions. The success rate for the three planners in the

difficult scenes (Figure 8.10 and Figure 8.11) is depicted in Figure 8.12. As can be seen, the hy-

brid planner outperforms the object-centric or robot-centric planners. A one-way ANOVA with

Tukey HSD post-hoc analysis reveals that the difference in mean plan-time between the hybrid

and object-centric planners is statistically significant (p < 0.001). The same holds between the

hybrid and robot-centric planners (p < 0.05). This supports our hypothesis (H2): the hybrid

planner achieves higher success rate and faster plan times than the object centric or robot-centric

planners on difficult scenes.
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Figure 8.12 Success rate of the three planners for a difficult scene using KRex (mobile ma-

nipulator). The planning time budget refers to the maximum time given to a planner to find a

solution.

8.3.1.3 Analysis results

Next, we examine some qualitative aspects of the solutions. Neither the object-centric primitive

nor the robot-centric primitive allow the robot to move in reverse. As a result, in difficult scenes

like those in Figure 8.10 and Figure 8.11, we see random actions used to back the robot away

from obstacles and boundaries (as in the third snapshot Fig. 8.10 or in the secondo snapshot of

Figure 8.11).

Additionally, as mentioned before, in the difficult scenes (Figure 8.6, Figure 8.10 and Fig-

ure 8.11) a static obstacle blocks any path solving the problem by using a single object-centric

action. Thus, the push primitive fails in most applications from the start. Furthermore, the static

obstacles also cause many applications of the transit primitive to fail, as they often drive the robot

into an obstacle. Here, the use of random actions available to the hybrid planner is advantageous

because they can be used to start tree growth from the root. Then, after the tree begins growing,

the push primitive and transit primitive can be applied more freely. In fact, if we analyse all

solutions generated by the hybrid planner (across easy and difficult scenes), we see that 89.2%

(207/232) end in an object-centric primitive. This supports our intuition that object-centric ac-

tions help grow the tree to the goal.

8.3.2 Household manipulator

We have tested our framework on a manipulator called HERB, depicted in Figure 8.1. Informa-

tion about the robot can be found in [107, 108]. In all the experiments, the task of HERB is to

push a target object into a goal region, having radius 0.1 m. The motion is restricted to the top

of a table, then it is defined into a bounded 2D world. We plan for 7 DOFs left arm of the robot.

Then, CR = R
7. A control input is defined as u = q̇ ∈ U , with q̇ a vector of joint velocities.

Following the example in [63], the end-effector of the robot is constrained in a 2D plane parallel

to the top of a table. Any motion that pushes an object or the robot end-effector off of the table

is considered invalid. For this problem the primitive set includes
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• robot-centric primitive. This primitive (a transit primitive) moves the end-effector from a

start pose to a goal pose. The motion of the end-effector follows a straight line in workspace

along the plane parallel to the table surface. Within our planner, the goal pose is extracted

randomly into the bounded world and it is reached by the manipulator following a straight

line with a velocity randomly extracted in the range [0.1, 0.5] m/s;

• object-centric primitive. This primitive (a push-object primitive) pushes an object along

the straight line connecting a start and goal configuration for the object. The primitive

returns a set of actions that first move the robot to a pose “behind” the object. In more

details, this pose is chosen by computing a path (e.g., a line) between the starting robot

pose and the starting object position and placing it with a distance randomly chosen in the

range [0.3, 0.4] m w.r.t. the latter. Finally, the primitive drives the robot straight along the

ray, pushing the object (see Figure 8.7). The velocity of this primitive is chosen as for the

robot-centric case. The motion of the end-effector is confined to the plane parallel to the

table surface during the entire primitive.

The planner uses also random actions (another robot-centric action, see Algorithm 9, line 8). To

this aim, we sample forward velocity from the range [−0.5, 0.5] m/s and duration from the range

0.5s to 5s.

We use a quasistatic model of planar pushing as our physics model [82, 83]. Because we

only model objects moving in the plane, Ci = SE(2) for i = 1, . . . ,m. It is important to

underline that more sophisticated primitive can be easily included in our planner. As example,

we could implement a transit primitive by calling a motion planner for the arm and allowing

the end-effector to move out of the plane (like a 3D transfer from one to another side of the

table). The primitives we have used are selected to have computational complexity similar to

that of sampling random actions, allowing us to more fairly compare plan times between the

object-centric and robot-centric approaches.

8.3.2.1 Easy scenes

We first have tested the planner on simple scenes. Three scenes were used to this scope, like the

one depicted in Figure 8.13. In these scenes, the rearrangement planning problem can be easily

solved by using an object-centric primitive. We run each of the three planners (robot-centric,

object-centric, hybrid planner) 50 times on each scene, for a total of 150 trials per planner.

Figure 8.14 reports the success rate as a function of plan time for up to 300 s of total plan time

budget. As can be seen, both the hybrid and object-centric planners perform equivalently. A one-

way ANOVA with Tukey HSD post-hoc analysis confirms the hybrid and object-centric planners

to not differ significantly in mean plan time (p = 0.782). The hybrid and robot-centric do show

significant difference (p < 0.0001) as do the object-centric and robot-centric (p < 0.0001). This

further supports H1.
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Figure 8.13 A 3D and a top view of the execution of a trajectory that moves the target object

(green box) from its start configuration to the goal region (green circle). In easy scenes like this,

a path for HERB (household manipulator) can be found by the hybrid planner that uses mostly

robot-centric (transit) and object-centric (push) primitives. Purple lines refer to robot-centric

actions while object-centric lines refer to object-centric actions. Top row: (left) start configura-

tion; (center) the object-centric primitive is applied; (right) the same primitive moves the hand

behind the target object. Bottom row: (left) the primitive moves the hand in the direction of

pushing; (right) the hand pushes the target object in the goal region.
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Figure 8.14 Success rate of the three planners for an easy scene using HERB (household

manipulator). The planning time budget refers to the maximum time given to a planner to find

a solution.

8.3.2.2 Difficult scenes

We finally have tested our planner on four difficult scenes (i.e., scenes that require more than 300 s

on average to be solved), where an object-centric action is not sufficient to solve the problem.
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Figure 8.15 A 3D and a top view of the execution of a trajectory that moves the target object

(green box) from its start configuration to the goal region (green circle). In hard scenes like

this, a path for HERB (household manipulator) can be found by combining robot-centric and

object-centric primitives. Purple lines refer to robot-centric actions while object-centric lines

refer to object-centric actions. Top row: (left) start configuration; (center) a short robot-centric

action; (right) the robot uses the back of the forearm to move the box to a location where a

push primitive can be applied. Bottom row: (left) an object-centric push primitive is used to

move the box to the goal region; (right) the robot moves the object, the blue box and the glass

simultaneously to achieve the goal.
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Figure 8.16 Success rate of the three planners for an difficult scene using HERB (household

manipulator). The planning time budget refers to the maximum time given to a planner to find

a solution.

These scenes either have obstacles blocking the path to the goal, or the goal object near the edge

of the reachable workspace of the robot. Again we run each planner 50 times on each scene. As

example, consider the scenario depicted in Figure 8.15. Here, the robot has to push the target
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object (green box) into the goal region (green circle), as usual, but it cannot be achieved by

applying a single object-centric action. In order to fulfil the task, the planner chooses to first

apply a short random robot-centric action and then the robot uses the back of the forearm to

move the box to a location where a push primitive can be applied (third snapshot of Figure 8.15).

Finally, the planner ends with a object-centric primitive that first place the hand of the robot

behind the object in the direction of the push (forth snapshot of Figure 8.15) and then push it in

the goal region (last snapshot of Figure 8.15). Again, note how the planner takes advantage from

both robot-centric and object-centric primitive, as well from the random motion. Combining

those actions, our planner is able to solve this kind of scenes.

Figure 8.16 shows the success rate of all three planners as a function of plan time. These

scenes are difficult and each planner struggles to find a solution. The hybrid planner performs

slightly better than the other planners but a one-way ANOVA with Tukey HSV post-hoc analysis

reveals the difference in mean plan time is not significant when compared to the object-centric

(p = 0.629) or robot-centric (p = 0.566) planners. Even if the hybrid planner outperforms the

object-centric planner, we cannot assert that this data is statistically meaningful.

We believe this result is strongly tied to the expressiveness of our primitives enabled by

the physics propagation. More in details, the planner eliminates, by propagating the primitives

through a physics model, many of the failure cases that would prevent application of primitives

in our scenes, i.e., collisions with other movable objects. As a result, the object-centric planner

behaves well.

8.3.2.3 Analysis results

Even for the household manipulator, we have found similar results w.r.t. the mobile manipulator

presented in Section 8.3.1. In fact, random robot-centric actions are particularly helpful for

moving an object in a position where an object-centric primitive can be applied. As example,

this happens in Figure 8.15, where the target object cannot be moved using an object-centric

primitive at the beginning. Similar to KRex, 80.3% (155/193) of paths across all scenes end

with an object-centric primitive, further supporting our intuition that object-centric primitives

are important to goal achievement. In fact, both Figure 8.13 and Figure 8.15 end by using an

object-centric primitive.

8.3.2.4 Experiment with HERB

Finally, we have validated our planner on the real robot HERB on a easy scene (see Figure 8.17.

Even if our simulations were very accurate (at least at the best of the author’s capabilities), some

trajectories fail to achieve the goal when executed due to uncertainties in the object perception,

robot forward kinematics and physical model of robot-object interaction. Prior work has shown

that actions similar to the “push-primitive” used in Section8.3.2 can be uncertainty reducing [26].

Including such primitives, and guiding the planner to select them, may improve the robustness of
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Figure 8.17 A 3D and a top view of the execution of a trajectory that moves the target object

(green box) from its start configuration to the goal region (green circle). This experiment vali-

dates the proposed approach for the real robot HERB (household manipulator) for an easy scene.

In the execution, the robot take advantage of both object-centric (orange lines) and robot-centric

(purple lines) actions.

the generated trajectories to uncertainty, increasing the planner’s applicability in everyday use.

However, this proves the validity of our approach even for the real robot case. We will further

investigate this aspect, searching for approaches that will alleviate this problem. As example, the

robust planning approaches presented in [66, 105] can be used to this scope.

8.4 Conclusions

In this section, we have presented an approach for solving the rearrangement planning problem.

This approach consists in combining robot-centric and object-centric action spaces. Our exper-

iments have showed that by using a combination of the two action types, we are able to improve

success rate and plan time when compared to planners that use only a single action type (e.g.,

in [63]). Finally, by using a physics model to forward propagate object-centric primitives, we are

able to allow the primitives to express simultaneous object interaction and whole arm manipula-

tion without explicit encoding.

In all results, we used a value of prand = 0.5 for our hybrid planner. This value allows object-

centric primitives and robot-centric random actions to be selected with equal probability on each

extension (see Algorithm 9). However, we can vary this value to possibly improve performance.

Figure 8.18 shows the success rate as prand is varied for one of the easy KRex scenes and one

of the difficult KRex scenes. The results seem to indicate that low values of prand are move
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Figure 8.18 Success rate as a function of prand for the scenes in Figure 8.8 (red) and Fig-

ure 8.10 (blue).

effective. Our idea is to investigate more, in the next future, the impact of changing prand and its

influence in the planning time and success rate of the proposed planner.

Note that the planner presented in this section assumes perfect knowledge of the environment.

In reality, the robot has to face several sources of uncertainty when executing the trajectories

generated by the planner. Prior works have shown that actions similar to the “push-primitive”

used in Section 8.3 can be uncertainty reducing [26, 66]. Including such primitives, and guiding

the planner to select them, may improve the robustness of the generated trajectories to uncertainty,

increasing its applicability in activities of everyday lives.

Finally, it is important to underline that the randomized planner presented in Algorithm 9 has

no guarantee about the optimality of the solution. One approach for dealing with it is shortcutting

the paths as in [41, 98, 100, 120]. These techniques are usually performed in a post-processing

phase, since they need a path to be shortcutted. The optimality of the solution comes with a cost,

that is the planning time. In fact, searching for the optimal solution is harder than searching for a

generic one, causing higher planning times. Ideally, a planner should be able to find a solution as

fast as possible, embedding information about a criteria to be minimized. A good compromise

between the optimal solution and a generic solution is to assign a budget time to the planner,

finding first a solution as fast as possible and trying to increase the quality of the solution (w.r.t.

criteria) within the allotted time budget. In this way, there is still no guarantee that the optimal

solution is found but the quality of the solution increases as the allotted time budget increases.

To this aim, we are currently implementing the AnytimeRRT [34]. Roughly speaking, the

AnytimeRRT searches for a first, fast solution. In this phase, it is almost equal to a classical RRT.

The only differences are: (i) in addition to the total time budget, there is a maximum planning time

for searching a solution, after which the tree is reinitialized; (ii) instead of computing the nearest

neighbour, the algorithm searches for k nearest neighbours, as in the RRT∗ framework[59]; (iii)

the k neighbours are ordered using a selection cost function and expanded with ascending order

(an iteration of the algorithm stops at the first successful expansion). We use as cost function

the weighted sum of the distance (Dist) between the selected node to the random configuration

extracted (as for a RRT) and the cost (Cost) between the starting node and the selected node,
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as suggested in [34]. For the first search, the selection cost function takes into account only the

distance (ignoring the cost function), as for a classical RRT. Note that many choices for the cost

function are reasonable, such as the manipulator length or mechanical work.

When a solution is found, its cost Cs is computed as the sum of the costs of the edges in

the final path (available from the tree backtracking). At this point, the algorithm creates a new

RRT. The new tree searches for solutions that improve the quality of the best solution found so

far (w.r.t. the cost function defined above), by inserting only those nodes that could possibly

contribute to decrease the cost. To do that, the sum between the cost-to-go of the node selected

for the expansion and a heuristic function (that computes the heuristic cost from the selected

node to the goal) is computed. If this value is less than Cs and the expansion is feasible, the node

is added to the tree (since it might improve the quality of the solution). The cost-to-go is simply

the sum of the edges’ costs in the tree for connecting the tree root to the selected node.

At the time a new solution appears, the weight assigned to the cost in the selecting cost func-

tion is gradually increased, while the one associated to the distance function is gradually de-

creased. This results in expanding, with more probability, nodes having small costs that lead to

low cost solutions. Note that the more solutions are found, the more importance is given to the

cost (w.r.t. the distance function). This is important because the algorithm will produce more

costly solutions at the beginning, paying attention to the cost if additional time is available to

search for other solutions. Finally, Cs is gradually decreased, to ensure that the next solution will

have a smaller cost than the previous one. The reader is referred to [34] for further details about

the AnytimeRRT framework.

Even if the AnytimeRRT does not ensure any form of convergence to the optimal solution,

it embeds three main advantages. First, it ensures to increase, from one solution to the next

one, the quality of its output. Second, it combines the ability to find a fast solution (typical of

the RRT) with the usage of a cost function, leading to find less and less costly solutions within

a time budget. Finally, the time needed to for an optimal planner to find the optimal solution

might be considerable. Within the planning time, there is no intermediate solution that the robot

can execute. With this framework, a solution can be asked anytime, pointing to solutions that

minimize the cost function.

Instead of using the shortcutting as a post-processing technique, our idea is to run it in parallel

to the AnytimeRRT. The main advantage is that no additional time is requested. We motivate the

introduction of the shortcutter saying that it might find solutions that are extremely hard to be

found with the AnytimeRRT. In this way, we increase the number of solutions that can be found,

adding just a small overhead.

As mentioned, the resulting algorithm is composed by the AnytimeRRT with a shortcutter

running in parallel. The AnytimeRRT continuously searches for less and less costly solutions. In

the meantime, the shortcutting algorithm gets the solution having the smallest cost (if no solution

is found yet, it just waits for the first solution to appear). Then, it it gets two random samples

from the path and it tries to solve the two-points BVP between the two samples, by means of a
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Algorithm 10: Kinodynamic AnytimeRRT and shortcutting

T ← {nodes = {x0 = x(ti)}, edges = ∅, Cs =∞} sols = ∅, t = 0;1

ShortcuttingThread(sols, timeout);2

while t < timeout do3

t← GetCurrentTime();4

T ← {nodes = {x0 = x(ti)}, edges = ∅};5

[Cs, T ]← AnytimeRRT(Cs, T );6

path← ExtractPath(T );7

sols←AddSolution(path, Cs);8

end9

path← ExtractBestPath(sols);10

Algorithm 11: ShortcuttingThread (sols, timeout)

while t < timeout do1

t← GetCurrentTime();2

counter ← 0, sol found ← false;3

bestPath←GetSmallestCostPath(sols);4

if bestPath = ∅ then5

continue;6

end7

newPath← bestPath;8

while counter < MAX ITERATION do9

counter ← counter + 1;10

[xi, xj ]← SelectRandomSamples(newPath);11

[x̄i, x̄j ]← Shortcut(xi, xj);12

if Cost(x̄i, x̄j) < Cost(xi, xj) then13

checkPath← newPath \ [xi, xj ] ∪ [x̄i, x̄j ];14

if ValidatePath(checkPath) then15

newPath← checkPath;16

sol found ← true;17

end18

end19

end20

if sol found then21

Csh ← ComputeCost(newPath);22

sols←AddSolution(newPath, Csh);23

end24

end25

shortcutting algorithm (any of the above-mentioned approach, e.g. the one in [63] can be used

to this purpose). If the cost of the new path is less than the cost of the extracted samples, that

portion of the path is substituted and the new cost is computed. The path is again validated (and

propagated using the physics model) to check if it achieves the goal. In a positive case, the new

path is added to the solution list.

As remark, note that the smallest cost solution might come from both the AnytimeRRT or

the shortcutter itself (in case the path was already shortcutted). The pseudocode is illustrated in
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Algorithm 10 and Algorithm 11.

It is important to underline that we do not want to depict a complete description of the frame-

work in this section, since it is a work in progress algorithm. The aim of the final part is to

propose one possible improvement of the randomized planner presented in this chapter.

The planner presented in this chapter has been accepted in [64] and it will be presented at the

2016 IEEE Int. Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016.

161





Chapter9
Conclusions

In this thesis, the task-constrained motion planning problem has been faced. Here, the robot

must execute an assigned task, possible requiring stepping, in environments cluttered by obsta-

cles. This problem is particularly challenging for a humanoid robot since it is typically embedded

with an high number of degrees of freedom. Moreover, it is not a free-flying system, and the mo-

tion must be appropriately generated. Finally, the implicit requirement that the robot maintains

equilibrium, either static or dynamic, typically constrains the trajectory of the robot center of

mass. Note also that the task constraint drastically reduces the size of the admissible planning

space. We have faced this problem by means of probabilistic motion planning techniques that do

not separate locomotion from task execution. We believe that the generation of the motion in a

unique phase allows to fully take advantage of the humanoid capabilities. The proposed method

explores the submanifold of the configuration space that is admissible with respect to tasks and

all other constraints, including humanoid equilibrium. Expansion of the search tree within the

constrained manifold is obtained through a hybrid scheme that generates simultaneously feet

positions and whole-body motions, which are then validated via collision checking. This frame-

work has been extended, replacing the foot displacements with movements of the center of mass.

Assuming that a catalogue of primitive is available to the planner, solutions are built by concate-

nating feasible whole-body motions that realize such primitives and simultaneously accomplish

portions of the task. The new version of the planner outperforms the previous approach in the

sense that it can indifferently handle tasks specified as trajectories or as simple destinations in

the task space. In addition, the new planner is able to handle a wider variety of scenarios, thanks

also to the possibility of handling composite tasks (composition of manipulation and navigation

tasks). Building on this planner, we have presented a framework that is able to deform the task,

if needed. The framework tries to solve the motion planning problem on the first assigned task

and, in case it is too hard to be fulfilled, it appropriately deforms the latter. By repetitive calls on

the deformation mechanism and the planner, our framework is able to solve the motion planning

problem. Note that both the detection and the deformation mechanism is automatic, without any

input from a user. We have validated our framework through planning experiments and dynamic

playbacks in V-REP.
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However, there are situations in which a humanoid robot cannot plan its motion in an offline

way but it has to be equipped with reactive capabilities. As example, this is needed when a

robot and moving obstacles (e.g., humans) share the same environment. In order to guarantee a

basic level of safety (for both the humanoid and the obstacles), the robot must execute, as fast as

possible, an evasion maneuver whose aim is to prevent a collision. Our approach goes through

several conceptual steps. Once the entrance of the moving obstacle in the safety area is detected,

its approach direction relative to the robot is determined. On the basis of this information, a

suitable evasion maneuver represented by footsteps is generated using a controlled unicycle as

a reference model. From the footstep sequence, we compute an appropriate trajectory for the

Center of Mass of the humanoid, which is finally used to generate joint motion commands that

track such trajectory. In the interest of safety, it is obviously essential that the reaction time

(from detection of the moving obstacle to start of the evasive motion) is as small as possible.

This is achieved by making use of closed-form expressions throughout the method, and results

in an algorithm suitable for real-time implementation. We have validated the proposed method

through experiments and dynamic playbacks in V-REP.

Finally, probabilistic planners aimed at solving the rearrangement planning problem has been

proposed. In this problem, a robot must execute a manipulation task (e.g., move a target object

in a goal region) whose execution requires the interaction with movable objects that are in the

environment. The inclusion of physics models in the planners have revealed the opportunity

to create plans that exhibit robot manipulation and simultaneous object interaction. Moreover,

object-centric and robot-centric primitives were introduced to reduce the planning time. The

combination of such primitives have had great impact on the types of solutions the planner might

produce (with respect to using just one of the two primitive types). As for the other planners,

experiments were performed to validate the proposed planner.

During the Ph.D., we have also faced the problem of identification and control of an hetero-

geneous multi-robot team. Here, the team is composed by a single Unmanned Aerial Vehicle

(UAV) and multiple Unmanned Ground Vehicles (UGVs). The first step was the identification of

the ground robots, since we do not applied any form of tagging on the UGVs. This means that

the UGVs look like the same from the point of the view of the UAV, that is able to detect them

by means of a monocular camera. The unknown data association problem was tackled with the

Probability Hypothesis Density (PHD) filter. The information about the identities of the UGVs

is essential also for the control of the team, since one has to know, given a command, which is the

robot to which it has to be sent. Once the UGVs identities are known, our attention was devoted

to the control of the heterogeneous team. We have defined three tasks that the team has to fulfil.

First, the UGVs should be always in the field of view of the camera mounted on the UAV. This

is ensured by controlling the centroid and the variance of the features (a feature corresponds to

a UGV) in the image plane. This would ensure that the relative localization filter (PHD) will

provide position estimates of the UGVs. Second, a typical task of interest for ground robots is

formation control (e.g., place the ground robots on a circular formation). Finally, the last task
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is the navigation, in order to let the entire multi-robot system to navigate and then explore the

environment. Another important remark is related to obstacle avoidance, an essential feature for

any multi robot system including ground robots. We assume that each UGV is equipped with

an obstacle avoidance algorithm that runs separately on each robot. In our framework, we pro-

pose two different control schemes aimed at fulfilling the above-mentioned tasks, depending on

the robots devoted to the accomplishment of the visual task. The research on the heterogeneous

system have produced some publications [18, 97, 109].

In the future, we want to try to extend the probabilistic planner for humanoid robots by in-

troducing additional center of mass movement primitives and considering other heuristic for the

deformation mechanism. At the same time, we would like to develop a gazing strategy for faster

detection of the moving obstacle and formulate additional evasive strategies. A great improve-

ment would be to develop the replanning scheme in the case of finite-size feet. Finally, regarding

the rearrangement problem, we would like to improve the planning time by means of paralleliza-

tion at the planning stage (e.g., [49]). On the other side, a bidirectional version of the proposed

planner would be interesting to develop. Finally, we want to try to implement and compare other

algorithms, such as the Anytime plus shortcutting algorithm mentioned in Section 8.4, in order

to improve the quality of the solution.
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