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Introduction

It may seem a long time ago, but it was only in 1995 that over the space of few
months, three independent and different approaches succeeded in realising Bose–
Einstein condensation (BEC) in dilute atomic vapor [1, 2, 3], establishing the first
clear experimental evidence of the prediction by Einstein1 [4].

In less than two decades the field of Bose–Einstein condensation of atomic gases
has grown explosively, driven by the combination of new experimental techniques
and theoretical advances. Condensate states have emerged as quantum systems
unique in the precision and flexibility wherewith they can be manipulated. The
ultracold vapour has become an ultralow-temperature laboratory for the communities
of atomic physics, quantum optics and condensed matter physics with a great variety
of applications: quantum fluids [5], qubits [6, 7], Josephson junctions [8], atom
lasers [9], and the very recent experiments on BEC of photons [10], just to mention
a few. Experiments on thin films [11] such as on gases in highly elongated magnetic
and pancake-shaped optical traps (see [12, 13] and ref. therein), have also pushed
forward the study of BEC in low dimensional systems.

However, in spite of its widespread experimental successes, BEC still challenges
us from a theoretical point of view. In fact, thus far, there are very few, also
quite special, models in which we are able to prove BEC for interacting bosons. In
particular BEC for an homogeneous system has been proved only in the special case
of hard core bosons on a lattice at half-filling in three or more dimensions [14].

More recently Bose condensation and superfluidity have been proved for three
and two dimensional bosons in a trap [15, 16], but only in the Gross-Pitaevskii (GP)
scaling limit, a special case of a dilute limit where the density goes to zero as the
particle number N goes to infinity2. However, even if the GP limit well reproduces
the actual experimental data, its results only apply to certain finite length scales. As
well known no claims of whatever phase transition can be made without performing
the thermodynamic limit, where the density is kept fixed while the size of the periodic
box where the system is defined tends to infinity.

1 Evidence for superfluidity in liquid He was already obtained in 1938, and although superfluidity
was almost immediately connected by London to Einstein’s theory of BEC, in these systems the
bosons are so closely packed that they can be only understood as strongly interacting systems, miles
away from the non interacting description by Einstein.

2 With “dilute” we mean that the scattering length a of the interacting potential is much smaller
than the mean particle distance, i.e. ρad � 1, with d the dimension of the system. In three
dimensions the GP scaling is obtained by requiring N/L to stay constant while N →∞; this implies
that the density of the system goes to zero as N−2 with increasing N .
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Figure i. BEC in a vapor of rubidium-87 atoms [1]. False–color images (200µm by
270µm) display the velocity distribution of the cloud. (A) just before the appearance of
the condensate, (B) just after the appearance of the condensate, and (C) after further
evaporation has left a sample of nearly pure condensate. The circulate pattern of the
not condensate fraction (mostly yellow and green) is an indication that the velocity
distribution is isotropic, consistent with thermal equilibrium. The condensate fraction
(mostly blue and white) is elliptical, indicative that it is a highly non termal distribution.
The elliptical pattern is in fact an image of a single, macroscopically occupied quantum
wave function.

The longstanding problem one would like to understand is the occurrence of
BEC for an homogeneous system of bosons interacting with a repulsive short range
potential, in the thermodynamic limit. This problem has an obvious interest from a
theoretical point of view, but it also has a great importance for the experimental
physics, since the increasing ability in creating larger and larger condensates is
making it necessary to better understand the behavior of bosonic systems beyond
the GP limit.

The usual picture of Bose condensation in the homogeneous interacting case is
based on the approximate exactly soluble Bogoliubov model [17], which predicts a
linear spectrum of excitations for small momenta. This property is considered typical
of superfluid behavior, according to Landau’s argument [18]. However Bogoliubov’s
approximation is a quite rough truncation based on assumptions that are not a priori
justified. Although Bogoliubov predictions are believed to be correct in the weak
coupling limit, a control of these approximations is to date beyond reach of rigorous
analysis. The problem is that in the attempt of developing a perturbation theory
around Bogoliubov solution, is faced with a theory plagued by ultraviolet and infrared
divergences, whose meaning could be that the interacting system has completely
different physical properties with respect to the ones predicted by Bogoliubov’s.

Since the early ’60, the problem of studying the corrections to Bogoliubov’s theory
has attracted the attention of the theoretical physics community. The literature on
perturbation theory (PT) for Bose condensation at zero or small temperatures is
huge; here we can just outline some of the main contributions in this line.

The first results date back to the works of Beliaev (1958, [19]) and Hugenholtz–
Pines (1959, [19, 20]). They both performed PT for zero temperature interacting
bosons in the low density limit and obtained series expansion for the ground state
energy and the phonon spectrum. The work of Hugenholts–Pines differs from
Beliaev’s for the fact that the zero–momentum state has been removed, in the
same spirit of Bogoliubov’s work. The choice of performing perturbation theory
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around Bogoliubov’s solution rather than the non interacting one was then acquired
in all the later papers on the subject. Hugenholts and Pines also showed, again
with perturbative arguments, that the condition of minimum free energy can be
equivalently posed as a condition on the structure of the perturbation theory, in
particular as a condition on the one particle irreducible diagrams with two external
lines.

In the same years, in the last paper of a series of five works [21], Lee and Yang
showed that the thermodynamic functions of an interacting system of bosons in the
condensed phase can be expressed in terms of the average occupation number. They
developed a variational principle which enabled them to compute the thermodynamic
functions and the occupation number of the single particle state with momentum k
in the condensed phase. As an example, the method was applied to a dilute system
of Bose hard spheres, obtaining a low–density expansion for the free energy, with
an explicit evaluation of the first few terms. A similar result was due to the same
authors with Huang by using a different method [22].

In the work of Gavoret and Noziéres [23] the excitation spectra for the interacting
Bose gas for low momenta was obtained by combining perturbation theory and the
use of Ward identities (WIs). The authors also showed that the spectra of quasi–
particles and of the density–fluctuations excitations are identical for low momenta,
i.e. they both correspond to phonons with the usual macroscopic sound velocity.
This is mathematically expressed by the identity of the poles of the one particle
Green’s function and of the correlation function of two elementary excitations. Other
results on the superfluid behavior at zero temperature were obtained in the later
works by Nepomnyashchii and Nepomnyashchii [24] and Popov and Seredniakov [25].

All the works we have just mentioned are based on diagrammatic techniques
borrowed from Quantum Field Theory. However the results which have been
achieved are obtained by summations over special classes of diagrams selected from
the divergent perturbative series, and do not provide a systematic study of the
divergences affecting the theory.

The first to obtain a fully consistent study of the infrared divergences for
the three dimensional weak interacting system at zero temperature, using exact
Renormalization Group (RG) techniques, was Benfatto in 1994 [26]. With the aim of
studying the occurrence of BEC, which only depends on the long–distance behavior
of the system, Benfatto considered a model with an ultraviolet momentum cutoff. For
this model he proved that the theory is order by order finite in the running coupling
constants, with explicit bounds on the coefficient of order n. The importance of
Benfatto’s work lies in the fact that it represents a strong justification of the generally
accepted picture of BEC in a scheme which is the only one allowing in some cases
to perform a full non perturbative construction, i.e. to control the convergence of
the series defining the generating functions. On the other side, Benfatto strategy
requires the study of the flow equations of six effective couplings and does not have
any chance to be extended to the two dimensional case, where the thee and four
body interactions are relevant in the RG sense.

After Benfatto’s work, Pistolesi et. al. [27, 28] showed that the study of the
flow equations for the effective parameters of the interacting boson problem can
be drastically simplified by implementing local Ward identities. These reduce the



xiv Introduction

number of independent running couplings to only two, allowing the authors to attack
the two dimensional problem, for which they have found a non trivial fixed point and
no anomalous dimensions. Pistolesi’s work is bases on a non–rigorous RG scheme,
which uses a dimensional regularization and does not allow, not even in principle, to
fully construct the theory. Still, the idea of exploiting the symmetries of the problem
represents a crucial benchmark for our work.

The inspiration of this thesis is to work up the ideas of Pistolesi et al. within the
same exact Renormalization Group approach used by Benfatto, based on a momentum
regularization scheme, in the same spirit of the RG approach by Wilson [29]. Here
by “exact RG” we mean that our method allows to obtain a construction at all
orders of the thermodynamic functions and correlations, with explicit bounds on
the n–th order coefficients. This result is obtained without neglecting the effects
of the irrelevant terms, i.e. the terms that become dimensionally smaller under the
iterations of the RG transformation, but can still give finite contributions to the
thermodynamic and correlation functions.

The technique we use is borrowed from the methods of rigorous or constructive
Renormalization Group, in the form developed by Gallavotti in the 80’s [30] to study
the ultraviolet stability of scalar fields. In the context of fermionic systems the
perturbative methods that we employ also provide, in certain cases, a way to fully
construct the ground state of the interacting system in the weak coupling regime,
i.e. to prove the convergence of the resummed perturbation theory. Examples in
this line, in the context of low dimensional condensed matter systems, are the
one–dimensional interacting fermions [31], the 2d Hubbard model on the square
lattice at positive temperature [32] and the short range half–filled 2d Hubbard model
on the honeycomb lattice [33, 34].

In the context of bosonic theories the situation is quite different. In fact a
non perturbative construction of the model cannot be obtained without combining
perturbation theory with complementary methods. For example, in the case of the
well known φ4

2 and φ4
3 real quantum field theories, the rigorous construction of the

theory is obtained by combining perturbation theory with “large fields” estimates
(see [30, 35, 36, 37] for reviews). Estimates of this sort are not available in the current
context, since the reference Gaussian measure, which we are perturbing around, is a
complex one, with semi–positive definite covariance; no method is currently available
for the construction of perturbations of such complex measures. See however [38]
for attempts in this direction.

In this thesis we do not seek to solve the problem of construct the bosonic
theory, but we aim to “just” construct the theory at all orders. Still in the latter
case it is crucial to understand the effect of a momentum regularization, being the
momentum regularization scheme the only one allowing in principle to perform a
full not perturbative construction of the theory. In fact if one wants in perspective
to built the model it is essential to introduce momentum cutoffs, and then prove the
convergence of the series defining the generating functions as long as the cutoffs are
removed.

It is also likely that WIs will play an important role in a future full construction
of the theory, and therefore it is important to understand how they are implemented
in a Wilsonian RG scheme.
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Regarding this issue, i.e. to combine local WIs within an exact RG scheme based
on a multiscale momentum decomposition, one should stress that this is not a trivial
task at all. In fact the momentum decomposition breaks the local gauge invariance,
which Ward identities are based on. The presence of cutoffs then produces corrections
to the “naive” (formal) WIs. Even if formally these corrections go to zero when we
remove the cutoffs, they cannot naively be neglected, since they are dimensionally
marginal in a RG sense. In some low dimensional systems of interacting fermions
they result to be crucial for establishing the infrared behavior of the system. For
example in Luttinger liquids if one uses the formal WIs, without their corrections,
the anomalous dimensions are not found. Then one may be worried that the presence
of these corrections may substantially change the structure of WIs, particularly in
the two dimensional case, as well as the results obtained by Pistolesi et al.

A control of the corrections to WIs coming from the presence of cutoffs may be
obtained thanks to a remarkable technique developed by Benfatto and Mastropietro
in [31], which allows to exactly implement WIs within constructive RG scheme.
Pursuing this analysis to our system, the correction terms to the formal WIs appear
as new marginal (in 3d) or relevant (in 2d) terms, which can be in turn written as
series in the effective parameters appearing in the generating functions and, again,
explicitly bounded at all orders. We remark that, since the corrections to WIs turn
out to have the same “dimensions”, in the RG language, of the other terms appearing
in the formal WIs, they may possibly be responsible for anomalous dimensions as
in the Luttinger liquid case. On the contrary, quite unexpectedly, one finds that
they are of higher order in the small parameter λ with respect to the terms already
present in the formal WIs, and do not change qualitatively the conclusions obtained
by Pistolesi et al., even in the two dimensional case.

It has to be stressed that from a quantitative point of view, the corrections to
local WIs, even if subleading, are possibly observable in the relations among the
thermodynamical and response functions which can be derived from local WIs.

In this thesis we have studied with exact RG techniques a simplified model for a
zero temperature three and two dimensional system of bosons interacting with a weak
repulsive short range potential, obtained by introducing an ultraviolet momentum
cutoff. In order to formulate our main result, we need to describe in some more
detail the strategy that we follow. For the purposes of this introduction we will
outline the model in a quite informal way, referring to chap. 1 for a more detailed
description.
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The model

We consider a system of N interacting bosons with mass m in a d–dimensional box
Ω of volume |Ω| = Ld with periodic boundary conditions. The Hamiltonian of the
system is

HΩ,N = − ~
2m

N∑
i=1

∆xi + λ
∑

1≤i<j≤N
v (xi − xj) (ii.)

where xi is the position of the i-th particle and λ v(x) is a weak repulsive short
range potential, with 0 < λ� 1 representing the intensity of the interaction. We
work in the grand canonical ensemble with chemical potential µ fixed in such a way
that the system has fixed density ρ as L→∞. We choose units in such a way that
~ = 2m = 1.

A formal but convenient way to calculate the partition function and every
correlation functions of the previous system consists in writing their coherent state
path integral representation [39]. The latter allows one to express in a compact way
the perturbative series in λ for the partition function and the correlations in terms
of the correlation functions of the free system. If Z0

Λ is the non–interacting partition
function, the partition function ZΛ of the interacting system at β−1 temperature in
terms of the coherent states, here denoted by ϕ+

x,t = (ϕ−x,t)∗, is given by

ZΛ
Z0

Λ
=
∫
P 0

Λ(dϕ) e−VΛ(ϕ) (iii.)

with Λ = [−β/2, β/2]× [−L/2, L/2]d and potential

VΛ(ϕ) = λ

2

∫
Ω×Ω

ddx ddy
∫ β/2

−β/2
dt |ϕx,t|2 v(x− y) |ϕy,t|2

− µ
∫

Ω
ddx

∫ β/2

−β/2
dt |ϕx,t|2 (iv.)

The measure P 0
Λ(dϕ) is a complex Gaussian measure whose covariance in the zero

temperature thermodynamic limit is given by

S0(x, y) = lim
β,L→∞

∫
P 0

Λ(dϕ)ϕ−x ϕ+
y = ρ0 + 1

(2π)d+1

∫
Rd+1 d

dk dk0
e−ikx

−ik0 + k2 (v.)

We remark that the function S0(x, y) is a correlation function generalized to imagi-
nary time – the so called Schwinger function – and the corresponding correlation
function for the free system is obtained by taking in (v.) the limit t → 0−. The
first part of the Schwinger function (v.) has the interpretation of the density of the
condensate; the second term is the slowly decaying part of the correlation function
in the non interacting case.

In order to study the occurrence of condensation in the interacting case, we
assume a spontaneous symmetry breaking of the U(1) symmetry of the system, by
fixing a priori the condensate density. Then we try to fix the chemical potential µ in



xvii

order to generate a model whose condensate physical density is the prescribed one.
This means that we require the interacting 2–point Schwinger function to converge to
ρ0 in the zero temperature thermodynamic limit. If under this requirement we man-
age to prove that the perturbation theory around Bogoliubov model can be expressed
in terms of series in the effective parameters with finite coefficients, this can be
interpreted by saying that the correlation function thus obtained describes a Bose con-
densate state with condensate density ρ0 and chemical potential µ. In this approach
we are regarding the condensate density ρ0 as a physical constant and µ as a bare
constant to be fixed to generate a model whose physical density is the prescribed one.

With this aim, the steps leading to Bogoliubov approximation are reinterpreted
within the functional integral scheme. First, inspired by (v.), we write the bosonic
field ϕ−x as the sum of two independent Gaussian fields: the first, translational
invariant, corresponds to the k = 0 component of the original fields, having average
ρ0; the second field, whose covariance is given by the second term in the r.h.s. of (v.),
represents the fluctuations with respect to the condensed state. Then the replacement
of the bosonic operators associated to the condensate state by c–numbers, the so
called c–number substitution (see e.g. [40]), corresponds to writing ϕ−x = √ρ0 + ψ−x ,
as explained with more details in sec. 1.4.

With this substitution the potential VΛ(ϕ) can be rewritten as the sum of three
terms: a first term depending only on ρ0, the term QΛ(ψ) which is quadratic in
the ψ fields and a third term VΛ(ψ) containing the cubic and quartic terms in the
fluctuation fields. Bogoliubov model is obtained by neglecting the latter term.

At this point we include the quadratic potential QΛ(ψ) into the free measure
of the ψ fields. The covariance gB−+(x) of the new measure PB,Λ(dψ) thus obtained
represents the two point Schwinger function in the Bogoliubov approximation. It
has a very different large distance behavior, with respect to the free correlation in
(v.):

gBαα′(x) = 1
(2π)d+1

∫
ddkdk0 e

−ikx gBαα′(k) (vi.)

with

(
gBαα′(k)

)−1
=
(
−ik0 + k2 + λv̂(k)ρ0 λv̂(k)ρ0

λv̂(k)ρ0 ik0 + k2 + λv̂(k)ρ0

)
(vii.)

with v̂(k) the Fourier transform of v(x−y). Since the condensation problem depends
only on the long–distance behavior of the system we consider a simplified model,
obtained by modifying (vi.) in

g
B (≤0)
αα′ (x) = 1

(2π)d+1

∫
ddkdk0 χ0(k) e−ikx gBαα′(k) (viii.)

with the function χ0(k) = χ0(|k)| playing the role of a prefixed ultraviolet cutoff.

With this formulation the calculation of the corrections to Bogoliubov model
for a system which exhibits condensation with condensate density ρ0 is effectively
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equivalent to the study of the effective potential WΛ(ρ0), defined by

e−|Λ|WΛ(ρ0) =
∫
P

(≤0)
B,Λ (dψ) e−VΛ(ψ) (ix.)

with P (≤0)
B,Λ (dψ) the measure with covariance (viii.) and

VΛ(ψ) = λ

2 v̂(0)
∫

Λ

(
ψ+
x ψ
−
x

)2
dx+ λv̂(0)√ρ0

∫
Λ
ψ+
x ψ
−
x

(
ψ+
x + ψ−x

)
dx

+ (λv̂(0)ρ0 − µ)
∫

Λ
ψ+
x ψ
−
x (x.)

the part of the interacting potential neglected in Bogoliubov approximation, after
the c–number substitution. Note that we have substituted everywhere v̂(k) with
v̂(0) since the cutoff function is chosen in such a way that the potential appears
local on the energy scales we consider.

The integral in (ix.) is studied by a multiscale analysis, that is we iteratively
integrate the fields of decreasing energy, starting from the momenta “close” to the
ultraviolet momentum cutoff moving towards smaller momentum scales. At each
step the integral is rewritten as an integral involving only the momenta smaller
than a certain value proportional to 2−h. At each step h of the integration the
effective potential may be written as the sum of a part containing the “relevant” and
“marginal” terms (i.e. terms which dimensionally tend to grow along the iterative
integrations and are responsible for the divergence of the theory) and a second part
containing the “irrelevant” terms in the RG language.

The marginal and relevant terms have the same structure of the initial potential
and then, modulo the irrelevant terms, we get an effective theory very similar to the
original one, except for the presence of new effective parameters and of a “dressed
propagator”, obtained by including the quadratic marginal terms in the measure.
The “effective” parameters differ from their “bare” counterparts because the physical
parameters appearing in their definitions are renormalized by the integration of the
momenta on higher scales.

Using estimates based on the Gallavotti–Nicolò tree expansion one may prove
that the irrelevant terms are all bounded if the effective couplings are bounded. The
problem we are left with is to study how the effective couplings evolve under the
multiscale integration. Each effective coupling at a fixed scale is exactly written as a
series in the effective couplings at larger scales. Even if the theory is renormalizable
(i.e. the number of effective parameters is finite), to prove that there exist some
initial values of the effective couplings such that the flow remains finite is quite
complicate in 3d and impossible in 2d, without the use of symmetries. The latter
point needs some attention. While in the 3d case the use of WIs allows us to solve
problem with a more satisfactory method than the one followed by Benfatto, but is
not crucial, the use of WIs in the two dimensional case is even more crucial than
what already pointed by Pistolesi et al.

In fact our RG scheme allowed us to identify in the 2d case three new effectively
marginal terms, which have not been identified before. As discussed in details in sec.
2.4.1, when one takes into account the non local terms which are present in the flow
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equations for the running coupling constants and does not neglect the interactions
among coupling constants at different momentum scales, one finds that the effective
scaling dimensions of the terms arising in the 2d perturbation theory are different
from the naïve scaling dimensions. The two dimensional problem then appears
incredibly complicate: not only two of the seven coupling constants already present
in the 3d case become relevant in 2d, but there are four additional marginal couplings.
The latter are the three–particle effective interaction λ6,h – already recognized by
Pistolesi et al. – and then three effectively marginal couplings arising from the
interaction among different scales. The goal of solving the flows of these eleven
couplings may seem hopeless. Amazingly, one finds that the additional four marginal
couplings present in the 2d case are related among them by three global WIs, which
again allow to reduce the number of independent couplings to one, namely λ6,h. In
the two dimensional case, thanks to WIs, the eleven flows equations are traced back
to the study of only two independent, coupled, flows equations. That is why the use
of WIs represents a key point of our analysis.

Main results

Using multiscale RG methods, we construct a renormalized expansion, allowing us
to express the partition function of the system as series in the effective couplings
with finite coefficients at all orders, admitting explicit n! bounds (see results (1), (2)
and (3) sec. 2.1). Now, if these effective couplings remain small in the infrared, the
informations obtained from our expansion by lowest order truncations are reliable at
weak coupling. Using the combination of multiscale methods and global and local
WIs we succeed in proving that:

Main Result (1). The flow equations for the effective couplings – which are
seven in the 3d case and eleven in the 2d case – are reduced to the study of a unique
effective parameter in 3d and two effective parameters in 2d.

Then all the running coupling constants stay small in the infrared, and the
interacting theory is well defined at all orders, provided that: in 3d the effective
parameter λh related to the intensity of the two–particles interaction stays small; in
2d the effective parameters λh and λ6,h are such that λλh and λ6,h/(λλ2

h) stay small.
Here λ6,h is the effective parameter related to the intensity of the three–particles in-
teraction and λ in the small parameter giving the intensity of the interacting potential.

Moreover, in 3d we prove that the flow of λh has an asymptotically free flow in
the infrared limit, as already established by Benfatto. In the 2d case a one–loop
calculation shows that both λλh and λ6,h/(λλ2

h) admit fixed points of order one
in the infrared limit h → −∞. This means that the perturbative scheme in 2d is
not completely consistent, unless the fixed points are numerically so small that the
perturbation theory makes sense. Of course, proving such a statement is beyond
reach of the rigorous methods that we employ here. It may in principle be possible
to play with other parameters, such as the condensate density or the range of the
interacting potential, to make those fixed points smaller, see discussion on sec. 3.5.2.

We stress here that in the work by Pistolesi et al. the study of the marginal
coupling λ6,h was completely neglected. Still the presence of λ6,h and of the other
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effectively marginal terms modify the leading order flow equation for λh, changing
the value of its fixed point. Remarkably, the presence of these new couplings do
not affect the conclusions on the behavior of the propagator, listed in the following,
which in the 2d case are only based on the fact that λh admits a fixed point.

Let us denote by g−+
λ (x) = (2π)−d−1 ∫ dd+1k eikxg−+

λ (x) the renormalized prop-
agator for the decaying fields ψ±x in the infinite volume limit; under the previous
hypothesis on the effective couplings our main result on the asymptotic behavior of
the propagator can be informally stated as follows.

Main Result (2). There exist a choice of the counterterm µ such that, both in
three and two dimensions, for k = (k0,k) small, the expression of the renormalized
propagator is

g−+
λ (k) ' A(λ)

k2
0 + c2(λ) k2 (xi.)

where “'” means that we are considering the dominant singularity in k as k → 0
and A(λ) and c(λ) are expressed by a series in the effective couplings with finite
coefficients that admit n!–bounds at all orders. The first non trivial contribution to
A(λ) is λρ0v̂(0). Regarding the singularity of the propagator ik0 = ±c(λ)|k|, which
has the physical interpretation of the dispersion relation of quasi–particles, we find
that in our effective model

c2(λ) = c2
B(1 + B(λ)) (xii.)

with cB =
√

2λρ0v̂(0) the speed of sound predicted by Bogoliubov approximation and
B(λ) given by a series whose construction is defined at all orders. In particular B(λ)
goes to zero as λ approaches zero.

It is an interesting feature that Bogoliubov linear spectrum is found to be
independent of the dimension of the system, being exactly constrained by Ward
identities. In particular the correlations do not exhibit anomalous dimensions, i.e.
the model is in the same universality class of the exactly soluble Bogoliubov model.
The latter result is absolutely not trivial since one would expect such a situation in
a super renormalizable and asymptotically free theory, but not in a case in which
we have, as in 2d, two not trivial fixed points.

Summary

The plan of the work we have just outlined is detailed along the thesis according to
the following scheme.

In chap. 1 we review the concept of BEC for interacting bosons and get the exact
solution of Bogoliubov by using a coherent state path integral representation for the
partition function of the system. The predictions of Bogoliubov approximation for
the ground state energy and the chemical potential are calculated, both in 3d and
2d. Then we state the effective model we are interested in. This will represent the
starting point for the subsequent perturbative analysis.
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In chap. 2 we describe the multiscale analysis applied to the partition function.
This chapter includes detailed analysis of the divergences affecting the “naive” per-
turbation theory, the definition of the renormalized expansions and the assumptions
on the effective couplings which make the expansion meaningful. We also describe
the expansion for the generating functional of the density and current correlation
functions, whose gauge invariance is used to derive global and local WIs.

Due to the fact that our unperturbed reference model is Bogoliubov’s two different
regimes arise, in which the RG procedure must be defined differently. A “high”
momenta regime, just below the ultraviolet momentum cutoff, in which Bogoliubov
potential is negligible and the reference unperturbed model is the non interacting
system; a “low” momenta regime, where Bogoliubov contribution dominates, which
shows the most interesting features. In particular in the two dimensional case, in
order to control the theory in the low momenta regime, it is necessary to introduce
an “effective scaling dimension” and three new effective marginal parameters, as
described in sec. 2.4.1.

In chap. 3 we study the flow of the running coupling constants in both regimes,
using the bounds previously derived in chap. 2 and some global and local WIs, which
reduce the number of independent running couplings, this fact being crucial for the
control of the two dimensional theory. In this chapter the main results are given in
a more detailed way than in this introduction.

In chap. 4 we derive the global and local WIs which have been used to control the
flow of the running coupling constants in the low momenta regime. The global WIs
also allow to classify the terms that can possibly appear in the theory by symmetry
reasons and to state the renormalization condition in terms of properties of the flow
of the effective chemical potential. The effect of the corrections to WIs due to the
presence of cut–offs is also analyzed.

Finally in chap. 5 we draw the conclusions and briefly overview some of the
perspectives which our work points to.

In the remaining Appendices we collect a number of technical lemmas needed
for the proof of the main result. Some second order computations have been also
reported, in particular to make clearer some of the statements that thanks to the
use of WIs are proved at all orders.

So, let’s start.
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Chapter 1

The model

1.1 Definition of the problem
We are interested in the study of the properties of a gas of bosons of mass m in a
d dimensional box Ω of side L interacting via a weak repulsive two-body potential.
The corresponding Hamiltonian is

HΩ,N = − ~2

2m

N∑
i=1

∆xi + λ
∑

1≤i<j≤N
v (xi − xj) (1.1)

where xj is the position of the j-th particle and the potential is assumed to be non-
negative, decreasing faster than 1/|x|d at infinity (such potentials are simply called
repulsive potentials, in quantum mechanics literature) and rotationally invariant. The
parameter λ ≥ 0 gives the strength of the interaction. We take periodic boundary
conditions and assume v can be periodically extended to R3. The operator HΩ,N
acts on the symmetric subspace of the Hilbert space ⊗N L2(Ω), which we denote
with HN,s. We will work in the grand canonical ensemble considering the following
Hamiltonian

HΩ =
⊕
N≥0

(HΩ,N − µΩ,βN) (1.2)

acting on the symmetric Hilbert space Hs ≡
⊕

N≥0HN,s, with µΩ the chemical
potential, fixed in such a way that the total density of the system ρ = 〈N〉 /Ld
is fixed. The thermodynamic properties of the system are obtained by averaging
with respect to the Gibbs measure at inverse temperature β. In particular we are
interested in the study of the ground state and low temperature properties of the
system, that is in computing:

• the specific free energy at low temperatures (i.e. β � 1):

f(β, ρ) = − lim
L→+∞

1
βLd

log TrHse−β(HΩ,N−µΩN) (1.3)

• the specific ground state energy eo(ρ) = limβ→+∞ f(β, ρ);

• the one-particle reduced density matrix

S(x,y) =
∑
N≥0

N

∫
dx2 . . . dxNΓN (x, x2, . . . , xN ; y, x2, . . . , xN )
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and higher order correlation functions. Here ΓN is the density matrix in the
sector with fixed number of particles N . In particular S(x,y) is related to the
occurrence of BEC for interacting systems. In fact, according to the definition
by Penrose and Onsager [41], BEC is said to occur if S(x,y) has an eigenvalue
of the order of 〈N〉 in the thermodynamic limit. This is in particular true
if the one–particle density matrix shows a long range order, i.e. tends to a
constant in the thermodynamic limit [42].

• the density–density and current–current response functions, respectively the
response of the system density to an infinitesimal perturbation proportional to
the density of particles or to the probability flux.

It is convenient to rewrite the Hamiltonian (1.1) in the second quantization
formalism, by introducing the creation and annihilitation operators a+

k and ak:

HΩ =
∑

k
K(k) a+

k ak + λ
2|Ω|

∑
k,q,p

v̂(k) a+
q+ka

+
p−kaqap (1.4)

where K(k) = ~2

2m k2, v̂(k) = ∑
x e

ik·xv(x) and k = 2π n/L, with n ∈ Zd. The
Hamiltonian in (1.4) acts on the Hilbert space of N -particles symmetric wave
functions Hs. In what follows we will choose units in such a way that ~ = 2m = 11.

Let now indicate with a±x the bosonic field operators, related to the annihilation
and creation operators as follows:

a±x = 1
L

∑
k∈DL

a±k e
±ik·x (1.5)

The equilibrium properties of the bosons system at β−1 temperature and in the grand
canonical ensemble with chemical potential µβ , i.e. the average of any observable on
the system, can be obtained once the following functions, the 2n–point correlation
functions or n–particle density matrices, are known:

S(x1 . . . x2n) = lim
L→∞

TrHs

[
e−β(HΩ−µΩ,βN)a+

x1 . . . a
+
xna−xn+1 . . . a

−
x2n

]
TrHse−β(HΩ−µΩ,βN) (1.6)

In particular each single particle observable can be calculated once the 2–point
correlation function is known. The first example one has in mind is the occupation
number Nk =

〈
a+

k a
−
k

〉
, i.e. the average number of particles with momentum k,

which corresponds to the Fourier transform of the two–point correlation function:

S+−(x,y) =
TrHse−β(HΩ−µΩ,βN)a+

x a−y
TrHse−β(HΩ−µΩ,βN) (1.7)

The linear response of a physical observable to an infinitesimal external perturbation
is also connected with the correlation functions. For instance the density–density
response can be computed from the density-density correlation function. In fact,

1With this choice, the dimensions of the physical quantities speed (c), momentum (k), frequency
(k0) and energy (E) are respectively: [c] = [k] = [L]−1 and [E] = [k0] = [L]−2.
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let consider the system described by the Hamiltonian H −
∫

Ω h(y)ρ(y)dy, with
ρ(x) = a+

x a
−
x the density of particle operator and h(x) an external field. The average

density at the point x is given by:

〈ρx〉 = TrHse
−β(HΩ−µΩ,βN)+β

∫
Ω dyh(y)ρ(y)a+

x a−x
TrHse

−β(HΩ−µΩ,βN)+β
∫

Ω dyh(y)ρ(y)
(1.8)

If one is interested in studying how the average density changes in x when the
external field is switched on, then can calculate the linear response χ(x,y), given by
the functional derivative of 〈ρ(x)〉 with respect to the external field in y, calculated
at equilibrium (i.e. with h(x) ≡ 0). An explicit calculation shows that the linear
response can be written in terms of the density–density correlation function:

χ(x,y) = 〈ρ(x)ρ(y)〉 − 〈ρ(x)〉〈ρ(y)〉 (1.9)

where the symbol 〈·〉 indicates TrHse−β(HΩ−µΩ,βN)·
TrHse−β(HΩ−µΩ,βN) .

In order to study the interacting theory it will result more convenient to study, in
place of the correlation functions defined by (1.6), the 2n-point Schwinger function,
i.e. the correlation functions generalized to imaginary times, defined as follows:

Sσ1,...,σ2n(x1 . . . x2n) = lim
L→∞

TrHs

[
e−β(HΩ−µΩ,βN)T{aσ1

x1 . . . a
σ2n
x2n}

]
TrHse−β(HΩ−µΩ,βN) (1.10)

where xi ≡ (xi, ti), 0 ≤ ti ≤ β and the operator T denotes the time-ordered product
of the operators in the brackets, i.e. arranges the times in decreasing chronological
order. In the (1.10) σi = ±, ∑2n

i=1 σi = 0 and a±x,t are the bosonic operators in the
imaginary time Heisenberg representation, i.e. a±x,t = e(H−µN)t a±x e

−(H−µN)t. The
equilibrium properties of the systems, i.e. the elements of the n–particle density
matrices, are obtained from the 2n–point Schwinger functions by taking the limit
t → 0−. Then the Schwinger functions contain more information then what we
really need. On the other hand they are a natural object in perturbation theory,
since admit an useful perturbative expansion in terms of the Schwinger functions of
the free system. Moreover, they can be usefully represented in terms of functional
integrals, as we will see in more details in section (1.3).

Our goal will be the study of the equilibrium properties of the interacting Bose
gas in presence of the phenomenon of Bose-Einstein condensation. As a first step,
with the aim of stressing some ideas which will result useful for the interacting case
treatment, we will recall in the following section the concept of Bose condensation
for free bosons both following the standard presentation and the Schwinger functions
point of view.

1.2 The non interacting case
The properties of the ideal Bose gas at β−1 temperature can be obtained from the
grand–canonical partition function:

Z0
Ω,β =

∑
N≥0

e−β(H0
Ω−µ

0
Ω,βN) (1.11)
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where H0
Ω is obtained by (1.1) taking λ = 0 and the chemical potential µ0

Ω,β is
determined by fixing the density of the system ρΩ,β:

ρΩ,β =
〈N〉Ω,β
|Ω| = 1

|Ω|β
∂

∂µ0
Ω,β

lnZ0
Ω,β (1.12)

One finds (see for example [40]) that Z0
Ω,β factorizes into the contributions from the

single particle energy levels K(k); the result is

Z0
Ω,β =

∏
k

1
1− e−β(K(k)−µ0

Ω,β) (1.13)

Note that in the non interacting bosonic case it is necessary that µ0
Ω,β < 0. For fixed

µ0
Ω,β < 0 the density of the finite system is given by:

ρΩ,β = 1
|Ω|

∑
k

1
eβ(K(k)−µ0

Ω,β) − 1
(1.14)

In the thermodynamic limit the latter formula gives:

ρβ = lim
|Ω|→∞

ρΩ,β = 1
(2π)d

∫
Rd

ddk 1
eβ(K(k)−µ0

β
) − 1

(1.15)

which is a monotonously increasing function of µ0
β , which for β finite is bounded as

µ0
β → 0 by a critical density ρcrβ in the three dimensional case. This phenomenon

was interpreted by Einstein [4] by saying that the particles exceeding the critical
number all go into the lowest energy state, i.e. in order to fix the system density at
some number greater than ρcrβ we have to let µ0

Ω,β to zero simultaneously with the
increasing volume of the system |Ω| → ∞ . Then for ρβ > ρcrβ the chemical potential
is null and the total density of the free system is

ρβ = ρ0 + ρcrβ (1.16)

with ρ0 the density contribution from the lowest energy level, given by

ρ0 = lim
|Ω|→∞

1
|Ω|

1

eβ
(
K(0)−µ0

Ω,β

)
− 1

(1.17)

The phenomenon that a single particle level of the non interacting system has a non
zero density in the thermodynamic limit, i.e. a macroscopic occupation, is called
Bose–Einstein condensation (BEC). It is simple to see that there is no condensation
into the excited energy levels, since K(k)− µ0

Ω ≥ K(k)−K(0) = const.L−2. In the
zero temperature case, i.e. the ground state, one finds ρcr+∞=0 in all dimensions
d, which means that all the particles are in the condensate state. In a sector of
fixed particle number, the ground state wave function is simply a product of single
particle wave–functions in the lowest energy state. This will not be true, as one may
expect, in the interacting ground state.

Once the total density ρβ is fixed we can determine the values of the condensate
density ρ0 = ρ0(ρβ, β) and chemical potential µ0

β = µ0
β(ρβ, β) in the thermodynamic

limit. In particular:
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• if β = +∞ then ρ0 = ρ+∞ and µ0
+∞ = 0;

• if β < +∞ then ρ0 = max(ρβ − ρcrβ , 0) and µ0
β is fixed using (1.12).

Note that for ρ0 6= 0 one can equivalently fix the condensate density ρ0 and then
calculate ρβ = ρβ(ρ0, β) through (1.16), while the dependence of µ0

Ω,β on |Ω| can be
determined using (1.17).

Let us consider now the Schwinger functions approach. Since the condensation
phenomena is related to the density of the system, the interesting object would be
the 2–point Schwinger function:

S−+
β,Ω(x1, x2) =


〈
ax1a

+
x2

〉
β,L

t1 > t2〈
a+
x2ax1

〉
β,L

t1 ≤ t2
(1.18)

The 2–point correlation function
〈
a+

x2ax1

〉
is obtained by S−+

β,L(x1, x2) by taking the
limit t1 − t2 → 0−. A standard calculation (see e.g. [39] ) gives:

S−+
β,Ω(x) = 1

Ld

∑
k
e−ik·x e−fΩ,β(k)t

(
ϑ(t > 0)

1− e−βfΩ,β(k) + ϑ(t ≤ 0)e−βfΩ,β(k)

1− e−βfΩ,β(k)

)
(1.19)

with x = x1 − x2 and fΩ,β(k) = K(k)− µ0
Ω,β . In this formalism the presence of the

condensate state corresponds to the fact that for µ0
Ω,β = 0 the term in the sum with

k0 = |k| = 0 involves a division by zero. However taking µ0
Ω,β going to zero with the

increasing volume |Ω| in such a way that the condensate density ρ0 is fixed, i.e.

eβµ
0
Ω,β

1− eβµ
0
Ωβ

= |Ω| ρ0 +O(1) |Ω| � 1 (1.20)

we can extract from limL→+∞ Sβ,L the contribution coming from the condensate
state, which is

S−+
0 (x) = lim

L→∞
ρ0 fixed

1
Ld

eµ
0
Ω,βt

ϑ(t > 0) + eβµ
0
Ω,β ϑ(t ≤ 0)

1− eβµ
0
Ω,β

= ρ0 (1.21)

At this point we can take µ0
Ω,β = 0 in the remaining part of the integral, obtaining

S−+
β (x) = ρ0 + 1

(2π)d
∫
ddk e−ik·xe−K(k)|t|

(
ϑ(t > 0)

1− e−βK(k) + ϑ(t ≤ 0)e−βK(k)

1− e−βK(k)

)
(1.22)

with S−+
β (x) = lim|Ω|→∞ S−+

β,Ω(x). Note that, using the definition

Nk =
∫
Rd

ddx eik·xSβ(x) (1.23)

with Sβ(x) obtained taking the limit t→ 0− in (1.22) one finds the expression (1.16)
for the density of a free Bose gas in the thermodynamic limit.
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In order to investigate the ground state properties of the system we take the
β → +∞ limit of (1.22):

S−+(x) = lim
β→+∞

S−+
β (x) = ρ0 + 1

(2π)d
∫
Rd

ddk e−ik·x e−K(k)tϑ(t > 0) (1.24)

Introducing the Matsubara frequency k0 we get a more covariant expression for
S(x):

S−+(x) = ρ0 + 1
(2π)d+1

∫
Rd+1 d

dkdk0
e−ikx

−ik0 + k2 (1.25)

where k = (k0,k). Then the first part of the function S(x) in (1.25) has the
interpretation of the density of the condensate; the second part is a slowly decaying
term which vanishes in the limit t→ 0−. As already stressed the knowledge of the
whole expression for S−+(x) is superfluous if we are interested in the equilibrium
properties of the free gas, but will result essential for the interacting case treatment.
For what concern the 2n–point Schwinger functions with n > 1 they can can be
obtained by the 2–point function by the Wick rule (as showed in [39]).

1.3 The interacting case

We want to approach the interacting case λ 6= 0. The first idea might be to
express both the interacting partition function Zβ,Ω(λ) and the interacting Schwinger
functions

S σ1,...,σ2n
β,Ω (x1 . . . x2n;λ) =

TrHs

[
e−β(HΩ−µβ,ΩN)T{aσ1

x1 . . . a
σ2n
x2n}

]
TrHse−β(HΩ−µβ,ΩN) (1.26)

as formal series in λ and µΩ with

HΩ = H0
Ω + V λ

Ω

µβ,Ω = µ0
β,ΩN + µβ,Ω (1.27)

Here H0
Ω is the Hamiltonian of the non interacting case, V λ

Ω the interacting potential
(the second term in the r.h.s. of (1.4)) and µβ,Ω the correction to the chemical
potential due to the interaction. A useful tool to develop a systematic perturbation
expansion in power of λ is provided by functional integrals. A functional integral
representation for the partition function and the Schwinger functions of our system
may be obtained using the coherent states |ϕ〉, i.e. the eigenstates |ϕ〉 of the
annihilation operator

ak|ϕ〉 = ϕ−k |ϕ〉 , 〈ϕ|a
+
k = ϕ+

k 〈ϕ|, (1.28)

with ϕ+
k = (ϕ−k )∗, see [39] for a reference. From (1.5) follows:

ϕ−x = 1
Ld

∑
k
e−ik·xϕ−k (1.29)
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With these definitions the expression for the partition function of the interacting
system defined by (1.1) in the coherent state representation is given by:

Zβ,Ω = TrHs e−β(HΩ−µβ,ΩN) = lim
M→∞

ZM
β,Ω (1.30)

ZMβ,Ω =
∫ [ M∏

j=1

∏
k

dϕ+
kτjdϕ

−
kτj

2πi

]
e−S

M
β,Ω (1.31)

where τj = jβ
M with index j = 0, · · · ,M , the fields are periodic in the τ index

ϕ−k,0 = ϕ−k,β and

SMβ,Ω = β
M

M∑
j=1

(
HΩ − µβ,ΩN

)
(ϕ+

k,τj−1
, ϕ−kτj ) +

∑
k

[
M∑
j=1

(ϕ+
kτj − ϕ

+
kτj−1

)ϕ−kτj ] (1.32)

with

(HΩ − µβ,ΩN)(ϕ+
kτj−1

, ϕ−kτj ) =∑
k

(K(k)− µβ,Ω)ϕ+
kτj−1

ϕ−kτj + λ
2|Ω|

∑
k,q,p

v̂(k) ϕ+
q+k,τj−1

ϕ+
p−k,τj−1

ϕ−q,τjϕ
−
p,τj (1.33)

We define the Fourier transform in τ

ϕ−τ = 1
M

∑
k0

e−ik0τϕ−k0

ϕ−k0
=
∑
τ

eik0τϕ−τ (1.34)

where k0 = (2πm)/β with m = 0, . . . ,M − 1. With this convention the Fourier
transform does not preserve the norm and ∑τ |ϕτ |2 = 1

M

∑
k0 |ϕk0 |2; the integral

(1.31) becomes

ZMβ,Ω =
∫ ∏

k,k0

dϕ+
k,k0

dϕ−k,k0

2πiM e−S
M
β,Ω(ϕk,k0 ) (1.35)

with

SMβ,Ω(ϕk) =
∑
k

1
M

[
β
M fk,Λ ei

k0β
M +

(
1− ei

k0β
M

)]
|ϕk|2

+ λβ
2|Ω|M4

∑
k,q,p

v̂(k) ei
(p0+q0)β

M ϕ+
q+kϕ

+
p−kϕ

−
q ϕ
−
p (1.36)

where

fk,Λ = K(k)− µΛ (1.37)

and we replaced k = (k0,k) and Λ = [−β/2, β/2]× [−L/2, L/2]d to make notations
compact. For λ = 0 the (1.31) is a gaussian integral

Z0
Λ = lim

M→∞

∫ ∏
k

dϕ+
k dϕ

−
k

2πiM e

− 1
2
∑

k

(
ϕ+
k ϕ−−k

)
C0,k
M,Λ

(
ϕ−k
ϕ+
−k

)
(1.38)
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with

C0,k
M,Λ = 1

M

1−
(
1− β

M fk,Λ
)
ei
k0β
M 0

0 1−
(
1− β

M fk,Λ
)
e−i

k0β
M

 (1.39)

If the real part of the eigenvalues of C0,k
M,Λ is positive, i.e. provided that µΛ < 0, the

integral is absolutely convergent2 and we have

Z0
Λ = lim

M→∞

∏
k

1
M

1√
detC0,k

M,Λ

=
∏
k

1
1− e−βfk,Λ

(1.40)

where we have used the identity

M−1∏
n=0

(
z − ei

2πn
M

)
= zM − 1 (1.41)

Note that in order to get the correct expression for the partition function, one
has to carry out the calculation with M finite and only at the end take the limit
M → ∞. On the contrary, if we are interested in the calculation of the 2–point
Schwinger functions we may consider from the beginning only the dominant terms
in β/M . For example, in the non interacting case, we recover (1.25) approximating
the exponential factor in (1.39) as e±i k0 β/M ' 1± ik0β/M :

S−+
Λ (x− y) =

〈
ϕ−x,x0ϕ

+
y,y0

〉
β,Ω

= lim
M→∞

1
M2 |Ω|

∑
k,k0,p0

e−ik·(x−y)e−ik0x0+ip0y0
〈
ϕ−k,k0

ϕ+
k,p0

〉
(1.42)

where

〈
ϕ−k,k0

ϕ+
k,p0

〉
= 1
Z0,M

Λ

∫ ∏
k

dϕ+
k dϕ

−
k

2πiM e
− 1

2
∑

k

∑
σ,σ′ ϕ

σ
σk(C0,k

M,Λ)σσ′ϕσ′−σ′kϕ−k,k0
ϕ+

k,p0

= (C0,k
M,Λ)−1

−+ δk0,p0 (1.43)

and

(C0,k
M,Λ)−1

−+δk0,p0 =


− M2

βµ0
β,Ω

= M2|Ω|ρ0 (1 +O (1/|Ω|)) k = 0

M2

β [fk,Λ − ik0 +O (1/M)]−1 k 6= 0
(1.44)

where we used (1.20). Then finally, by taking the limit β, |Ω| → +∞, eq. (1.42)
becomes

S−+(x− y) = ρ0 + 1
(2π)d+1

∫
ddkdk0e

−i
(

k·(x−y)+k0(x0−y0)
) 1
fk − ik0

(1.45)

2There is a further condition to be fulfilled in order to have positive eigenvalues, that is βfk/M < 1
for each k. Note that for M finite and large k this condition may be not satisfied. However if we
put an ultraviolet cutoff on k, as we will do in the following, for M sufficiently large the theory is
well defined.
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In the following we will use the formal notation

P 0
Λ(dϕ) = lim

M→+∞

∏
k
dϕ+

k
dϕ−

k
2πi e

− 1
2
∑

k

∑
σ,σ′ ϕ

σ
σk(C0,k

M,Λ)σσ′ϕσ′−σ′k∫ ∏
k
dϕ+

k
dϕ−

k
2πi e

− 1
2
∑

k

∑
σ,σ′ ϕ

σ
σk

(C0,k
M,Λ)σσ′ϕσ′−σ′k

“=”
∏
x
dϕ+

x dϕ
−
x

2πi e−
∫

Λ dxϕ
+
x (−∂0+∆)ϕ−y∫ ∏

x
dϕ+

x dϕ
−
x

2πi e−
∫

Λ dxϕ
+
x (−∂0+∆)ϕ−y

(1.46)

with σ, σ′ = ±1. The complex gaussian measure P 0
Λ(dϕ) satisfies the following

properties: ∫
P 0

Λ(dϕ) = 1 (1.47)∫
P 0

Λ(dϕ)ϕ−x ϕ+
y = S−+

Λ (x− y) (1.48)∫
P 0

Λ(dϕ)ϕ−x ϕ−y =
∫
P 0

Λ(dϕ)ϕ+
x ϕ

+
y = 0 (1.49)

The interacting partition function ZΛ can be formally written as:

ZΛ
Z0

Λ
=
∫
P 0

Λ(dϕ)e−VΛ(ϕ) (1.50)

with

VΛ(ϕ) = λ

2

∫
Λ×Λ

dxdy |ϕx|2v(x− y)δ(x0 − y0)|ϕy|2 − µΛ

∫
Λ
dx|ϕx|2 (1.51)

The expression for the Schwinger functions in terms of functional integrals is:

Sσ1,...,σn
Λ (x1 . . . xn) = 1

ZΛ

∫
P 0

Λ(dϕ)e−VΛ(ϕ)ϕσ1
x1 . . . ϕ

σn
xn (1.52)

The strategy so far depicted, i.e. to study the interacting system as a perturbation of
the free case, is not the most convenient. Based on Bogoliubov model [17], the well–
known approximate exactly solvable model for interacting bosons, one expects the
interacting Schwinger functions to have a large distance behavior very different from
the free ones. Then a natural approach is to use as starting point for the perturbative
expansion just Bogoliubov Hamiltonian. This idea was immediately recognized and
dates back to the work by Hugenholtz and Pines [20]. All the later attempts of
developing a perturbation theory free of infrared divergences and calculating the
corrections to Bogoliubov theory (as in the papers by Gavoret and Noziéres [23],
Nepomnyashchii [24], Popov [25], Yang [43], where partial summations are used to
remove the divergences), as the very recent works by Pistolesi et al. [27, 28] and
Benfatto [26], are based on this idea.

Since we are following the same strategy, the next section is devoted to the de-
scription of Bogoliubov theory in the grand canonical ensemble and in the functional
integral representation. In the section 1.5 we finally define the effective model we
are dealing with.
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1.4 Bogoliubov approximation
Bogoliubov approximate model [17] was the first attempt to explain BEC for inter-
acting bosons and predicts a linear spectrum for small momenta at zero temperature,
property which is considered typical of superfluid behavior, according to Landau
argument [18]. In this section we will reinterpret the steps leading to Bogoliubov
approximation within the functional integral scheme.

The first step of Bogoliubov approximation consists in keeping in SMβ,Ω defined in
(1.36) only the terms that are at most quadratic in the fields ϕk, with k 6= (0,0),
and write explicitly the terms containing ϕ0. The result is

SBΛ,M = β

M2

(
−µBΛ |ϕ0|2 + λv̂(0)

2|Ω|M2 |ϕ0|4
)

+ 1
2M

∑
k 6=0

{
2F̃k|ϕk|2 + β

M
λv̂(k)
|Ω|M2

[
ϕ+
k ϕ

+
−k(ϕ

−
0 )2 + (ϕ+

0 )2ϕ−k ϕ
−
−k

]}
(1.53)

where

F̃k = β
M

(
K(k)− µBΛ + λ(v̂(0) + v̂(k)) |ϕ0|2

|Ω|M2

)
ei
k0β
M +

(
1− ei

k0β
M

)
= 1− ei

k0β
M

(
1− β

M
Fk,M

)
(1.54)

and

Fk,M = K(k)− µBΛ + λ(v̂(0) + v̂(k)) |ϕ0|2
|Ω|M2 (1.55)

with v̂(k) real, being v(x) symmetric. Note that ϕ±0 = M
〈
ϕ±0,τ

〉
τ
. Then the

separation of the ϕ±0 fields corresponds in writing the zero spatial momentum field
as ϕσ0,τ = ξσ + ησ0,τ with ξσ =

〈
ϕσ0,τ

〉
τ
the average over the temporal index and

ησ0,τ = ∑
k0 6=0 e

iσk0τϕσk0
the fluctuation with respect to it. Note that in (1.53) also

the cubic and quartic term in the fields ϕσ0,k0
are neglected. Using the rescaling

ϕ±0 = ξ±M we obtain:

SBΩ,M = β
{
−µBΛ |ξ|2 + λv̂(0)

2|Ω| |ξ|
4 + 1

2
∑
k 6=0

(
ϕ+
k ϕ−−k

)
CB,kM,Λ

(
ϕ−k
ϕ+
−k

)}
(1.56)

where

CB,kM,Λ = 1
M

1−
(
1− β

MF
ξ
k

)
ei
k0β
M

β
M g

ξ,+
k

β
M g

ξ,−
k 1−

(
1− β

MF
ξ
k

)
e−i

k0β
M

 (1.57)

and

F ξk = K(k)− µBΛ + λ(v̂(0) + v̂(k)) |ξ|
2

|Ω| gξ,±k = λv̂(k)
|Ω| (ξ±)2 (1.58)

The partition function becomes

ZBΛ,M = M

∫
dξ+dξ−

2πi e
−β
{
−µBΛ |ξ|

2+ λv̂(0)
2|Ω| |ξ|

4
} ∏
k>0

IM,k(ξ) (1.59)
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where k > 0 means the first non zero coordinate in the four component vector k is
positive and

IM,k(ξ) = 1
M2

∫
dϕ+

k dϕ
+
−kdϕ

−
k dϕ

−
−k

(2πi)2 e

−
(
ϕ+
k ϕ−−k

)
CB,kM,Ω

(
ϕ−k
ϕ+
−k

)

= (M2 detCB,kM,Λ)−1 (1.60)

as long as the eigenvalues of CB,kM,Λ have a real positive part. The determinant of
CB,kM,Λ can written as

detCB,kM,Λ = 1
M2 (Ak −Bke

i
k0β
M )(Ak −Bke

−i k0β
M ) (1.61)

with

Ak −Bk = β

M

√
(F ξk)2 − |gξk|2

Ak +Bk = 2

√
1− β

M
F ξk + 1

4

(
β

M

)2
((F ξk)2 − |gξk|2) (1.62)

The eigenvalues of CB,kM,Λ are given by

λ± = 1
2

(
Tr CB,k

M,Λ ±
√

(Tr CB,k
M,Λ)2 − 4 det CB,k

M,Λ

)
(1.63)

where both the trace and the determinant of CB,kM,Λ are real. The conditions assuring
the eigenvalues to be positive result result in TrCB,kM,Λ > 0 and detCB,kM,Λ > 0. The
trace is positive as long as βFk/M < 1, which holds for M sufficiently big3. By
rewriting (1.61) as

detCB,kM,Λ = 1
M2

(
(Ak −Bk)2 + 2AkBk

(
1− cos(k0β/M)

))
(1.64)

we see that the determinant is positive for each k provided that

(F ξk)2 − |gξk|
2 > 0 ∀k ⇔ µBΩ < λv̂(0)|ξ|2/|Ω| (1.65)

Coming back to the computation of the partition function in (1.59), by using (1.61)
and the fact that Ak, Bk are symmetric in k and do not depend on k0, we get

∏
k>0

IkM (ξ) =
∏
k 6=0

1
(Ak −Bke

i
k0β
M )

= (A0 −B0)
∏
k

1
AMk −BM

k
(1.66)

3Note that for large |ξ| the trace might be negative; however the complete action SΛ,M , i.e. the
action before Bogoliubov approximation was made, is well defined. In the following we first integrate
over the |ξ| variable, by fixing its value at the critical point, and then we perform Bogoliubov’s
approximation.
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where we used the identity (1.41). The factor (A0 −B0) comes from the product
over k0 6= 0 of the k = 0 mode:

∏
k0 6=0

1
A0 −B0e

i
k0β
M

= (A0 −B0)
∏
k0

1
A0 −B0e

i
k0β
M

= A0 −B0

AM0 −BM
0

(1.67)

Inserting all these results in the partition function we have

ZBM,Λ = β

∫
dξ+dξ−

2πi e
−β|Ω|

{
−µBΛ

|ξ|2
|Ω| + 1

2λv̂(0) |ξ|
4

|Ω|2
− 1
β|Ω|C0(|ξ|)

}∏
k

1
AMk −BM

k
(1.68)

with C0(ξ) = 1
2 log

(
F 2

0 − |g0|2
)
. By taking the limit M which goes to infinity one

finds

lim
M→∞

AMk = e
−β2

(
F ξk−

√
(F ξk)2−|gξk|2

)
(1.69)

lim
M→∞

BM
k = e

−β2

(
F ξk+

√
(F ξk)2−|gξk|2

)
(1.70)

and

ZBΛ = β

∫
dξ+dξ−

2πi e−β|Ω|W
B
β,Ω(ξ) (1.71)

with WB
β,Ω(ξ) a specific free energy equal to

WB
β,Ω(ξ) =− µBΛ

|ξ|2
|Ω| + 1

2λv̂(0) |ξ|
4

|Ω|2 −
1

2|Ω|
∑

k

(
F ξk −

√
(F ξk)2 − |gξk|2

)
− 1

β|Ω| log
∏
k

1

1− e−β
√

(F ξk)2−|gξk|2
− 1
β|Ω|C0(|ξ|) (1.72)

Let us denote WB
Ω (ξ) = limβ→+∞WB

β,Ω(ξ), then

WB
Ω (ξ) =− µBΩ

|ξ|2
|Ω| + 1

2λv̂(0) |ξ|
4

|Ω|2 −
1

2|Ω|
∑

k

(
F ξk −

√
(F ξk)2 − |gξk|2

)
(1.73)

with F ξk and gξ,±k defined in (1.58) and the chemical potential µBΩ fixed by the density
of the system. The first two terms in the r.h.s. of (1.73) define a “Mexican hat”
potential in the ξ±/

√
|Ω| variables. Being the the last term in the r.h.s. of (1.73)

negative, one may be worried that this correction may destroy the double well
shape. In order to investigate this point, we first assume that WB

Ω (ξ) has a double
well shape, an hypothesis whose consistency can be checked as follows. Using a
saddle point approximation – as we will see below – we find the expression (1.81)
for the chemical potential in the thermodynamic limit, with Fk and gk defined in
(1.77). Then we verify that by substituting in (1.73) the approximate value for µBΩ
that has been found, the potential (1.73) shows actually a double well shape. A
straightforward asymptotic analysis of (1.73) in the ξ variable, with µBΩ given by
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Figure 1.1. Double well potential in the variable |ξ| in the three dimensional case for different
values of λ. Moving from the lowest to the highest curve we have λ = 0.1, 0.2, 0.3, 0.4.
The plain line represents the first two terms in the r.h.s. of (1.73); the dotted line is
obtained by numerical integration of (1.73). We see that the shape of the double well is
not affected by the last term in the r.h.s. of (1.73).

(1.82) and λ fixed and small, shows that the last term in (1.73) is subleading both
in λ and ξ with respect to the first two terms. This can also see in fig. 1.1, where
the plain lines represent the first two terms in (1.73) for different values of λ and
the dotted lines a numerical integration of (1.73), after the substitution (1.82).

The second step of Bogoliubov approximation consists in interpreting |ξ|2 as the
average number of particles at k = 0, that is

|ξ|2 = ρ0|Ω| (1.74)

This substitution corresponds in the Fock space representation to the fact that one
can replace the operators a0 and a+

0 everywhere in the Bogoliubov Hamiltonian (or
in the total bosonic Hamiltonian) by the c–number

√
N0 without making an error

in the ground state energy for particle in the thermodynamic limit, as proved in
appendix D of [40]. Then (1.71) becomes

ZBΛ = 2β|Ω|
∫ +∞

0
dρ0 ρ0 e

−β|Ω|WB
β,Ω(ρ0) (1.75)

with WB
β,Ω(ρ0) obtained from (1.72) with the substitution (1.74). Denoting by

WB
Ω (ρ0) = limβ→+∞WB

β,Ω(ρ0) we have

WB
Ω (ρ0) = −µBΩρ0 + 1

2λv̂(0)ρ2
0 −

1
2|Ω|

∑
k

(
Fk −

√
F 2

k − g2
k

)
(1.76)

where we are here denoting with

Fk = K(k)− µ+ λ(v̂(0) + v̂(k))ρ0

gk = λv̂(k)ρ0 (1.77)

the quantities in (1.58) after the substitution (1.74). The condensate density ρ0 is
fixed via a self–consistent equation, which will be written below.
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1.4.1 The ground state energy

We are interested in calculating the ground state energy per particle in the Bogoliubov
approximation and in the thermodynamic limit when the average total number of
particles 〈N〉 and L tend to infinity with density ρ = 〈N〉/|Ω| fixed:

eB0 (ρ) = lim
β→∞

lim
L→∞

EBβ,Ω(ρ)
|Ω|ρ (1.78)

For fixed Ω the ground state energy is obtained by

EBβ,Ω − E0
β,Ω = − lim

β→∞

1
β|Ω|

∂

∂β
log

ZBβ,Ω
Z0
β,Ω

+
(
µBβ,Ω − µ0

β,Ω

)
ρ|Ω| (1.79)

In the limit β →∞ (1.76) the integral in (1.75) will concentrate around the saddle
defined by

∂

∂ρ0
WB

Ω = 0 (1.80)

In the following we will skip the subscript β whenever β = +∞. The derivative of
(1.76) with respect to ρ0 can be computed explicitly and we obtain

µBΩ = λv̂(0)ρ0 + 1
2|Ω|

∑
k

(
λv̂(0) + λv̂(k)

)Fk−
√
F 2

k−g
2
k√

F 2
k−g

2
k
− 1

2|Ω|
∑

k

λv̂(k)gk√
F 2

k−g
2
k

(1.81)

At the leading order in λ we have

µBΩ = λv̂(0)ρ0 (1.82)

To obtain the first corrections we insert this value in Fk. In the regime λv̂(0)ρ0R
2
0 ≤ 1,

with R0 the range of the interacting potential, we obtain the following corrections in
the three and two dimensional cases:

µB3d = λv̂(0)ρ0

(
1− c2

1 λ+ c2λ
√
λρ0R3

0 + o(λ5/2)
)

(1.83)

µB2d = λv̂(0)ρ0
(
1 +O(λ | log λρ0R

2
0|)
)

(1.84)

with c1 and c2 explicit and explicitly computable integrals; however for the aim
of this work it is not necessary to write them explicitly. Note that the second
order correction to µB must be negative, in order to satisfy the condition (1.65).
We also stress that, differently from the free case, the chemical potential in the in-
teracting case depends on λ and is different from zero also in presence of condensation.

We can now calculate Bogoliubov prediction for the ground state energy. Inserting
in (1.76) the leading order term for the chemical potential µB = λv̂(0)ρ0 and taking
ρ = ρ0 (as we will see in the next paragraph ρ− ρ0 = O(λd/2)) one obtains, up to
an error term of order O(λ(d+2)/2) :

eB0,Ω = 1
2λv̂(0)ρ0 −

1
2ρ0|Ω|

∑
k

(k2 + λv̂(k)ρ0 −
√

k4 + 2k2λv̂(k)ρ0) (1.85)
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where eB0,Ω = limβ→∞ e
B
β,Ω. The (1.85) corresponds to the expression for Bogoliubov

ground state energy calculated in the canonical ensemble (as showed for example in
appendix A of [40]). In the thermodynamic limit (1.85) becomes:

eB0 = 1
2λv̂(0)ρ0 −

1
2ρ0(2π)d

∫
ddk

(
k2 + λv̂(k)ρ0 −

√
k4 + 2k2λv̂(k)ρ0

)
(1.86)

In the following we will review the predictions of Bogoliubov model for the ground
state energy in the regime λv̂(0)ρ0R

2
0 ≤ 1, both for two and three dimensions. We

will choose the interaction potential as

vR0(x) = R−2
0 e

− |x|
R0 (1.87)

then the condition becomes λρ0R
d
0 ≤ 1. This particular choice of vR0(x) is not

relevant and has been done only for simplicity reasons.

Three dimensional prediction of the ground state energy for ε� 1

In the 3d case, the regime ε = λρ0R
3
0 ≤ 1 corresponds to a0/R0 ≥

√
ρ0a3

0, with
a0 = λv̂(0)/8π the first term in the Born series for the scattering length a of the
interacting potential. Under the conditions

1� a0
R0
�
√
ρ0a3

0 �
(
a0
R0

)2
(1.88)

it is convenient to rewrite the integral in (1.86) as I = I0 + I1 where

I0 = 1
16π3ρ0

∫
d3k

(
k2 + λv̂(k)ρ0 −

√
k4 + 2k2λv̂(k)ρ0 −

λ2v̂2(k)ρ2
0

2k2

)
(1.89)

and

I1 = λ2ρ0
32π3

∫
d3k v̂

2(k)
k2 (1.90)

The integral I1 converges since v̂(k) goes to zero faster then |k|−1. In I0 the integrand
goes to zero faster then |k|3 and is absolutely convergent. If we replace v̂(k) by v̂(0)
(this substitution leads to errors of order o(λ5/2)) the integral can be calculated
exactly, giving:

I0 = 4πρ0a0
128

15
√
π

√
ρ0a3

0 (1.91)

For what concern I1, this is proportional to second term a1 of the Born series, in
particular I1 = 4πρ0a1. Then we get the following expression for the ground state
energy in the Bogoliubov approximation:

e3d
0,B = 4πρ0

(
a0 + a1 + 128

15
√
π
a0

√
ρ0a3

0 + o(a0

√
ρ0a3

0)
)

(1.92)

where the error term comes from the substitution v̂(k) ' v̂(0) and from considering
only the leading order expressions for the chemical potential and the total density.
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The right side condition of (1.88) allows to write a ' a0 + a1 to the desired accuracy
(i.e.up to error terms that are much smaller than a0

√
ρ0a3

0, i.e. o(λ5/2) ) and to
write the (1.92) as

eB0,3d = 4πρ0a

(
1 + 128

15
√
π

√
ρ0a3 + o(

√
ρ0a3)

)
(1.93)

The leading term of (1.93) was proved to be correct for the non approximate Hamil-
tonian (1.1) by Dyson (upper bound) [44] and Lieb-Yngvason (lower bound) [45].
The second order correction was first derived by Lee, Huang and Yang [46, 22],
this is why eq.(1.93) is known as the Lee-Huang-Yang formula. The proof of the
latter formula is, so far, an open problem, even if a few recent papers present partial
results [47, 48, 49, 50].

Note that the condition a0/R0 �
√
ρ0a3

0 is necessary to have eB0 ≤ 4πρ0a0, i.e.
the right side of (1.92) must be equal to 4πρ0a0 plus a negative correction, which
requires |a1| � a0

√
ρ0a3

0. The condition ρ0a
3
0 � 1 also guarantees that Bogoliubov

theory is asymptotically correct up to term of order ρ0a0
√
ρ0a3

0, i.e. that the contri-
butions coming from the cubic and quartic terms of the interaction (neglected in
Bogoliubov theory) are smaller.

Two dimensional prediction of the ground state energy for ε� 1

For what concerns the 2d case, in the regime λρ0R
2
0 � 1, Bogoliubov theory predicts

the following leading order for the ground state energy

e2d
0,B = 1

2λρ0v̂(0)
[
1 +O

(
λ log(λρ0R

2
0)
)]

(1.94)

while the corrections due to the quartic terms are of order λ2. In the 2d case the
relation between the first order of the scattering length and the strength of the
interaction is a0 = R0e

−4π/λ. Then, in the case ρ0R
2
0 = 1 we find the prediction for

the ground state energy to be

e2d
0,B = 4πρ0

| log ρ0a2
0|

[
1 +O

(
log(| log ρ0a

2
0|)
)]

(1.95)

The leading term of the latter formula, first calculated by Schick [51], was rigorously
proved to be correct for nonnegative finite range two–body potential in [52]. The
(negative) correction to the leading term in (1.95) is of the same order of what has
been found for a two dimensional hard core gas of bosons [53].

1.4.2 Choice of the free parameter

As we have already stressed in the non interacting case the three parameters ρβ,Ω, ρ0
and µβ,Ω are dependent and their relation depends on the strength of interaction λ
and on the temperature. We have two different options to choose the free parameter.

Option 1 The natural choice, even if not the most convenient from a technical
point of view, is to fix the total density of the system ρ and then choose ρ0(β,Ω) as
a function of µβ,Ω via (1.81) and µβ,Ω as a function of ρ via (1.98).
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Option 2 A second possible choice consists in keeping the density of the condensate
ρ0 fixed. Then µβ,Ω is adjusted as a function of ρ0 so that (1.81) is satisfied. In this
case the total density particle ρβ,Ω is computed as a function of µβ,Ω by the formula

ρβ,Ω = 1
|Ω| 〈N〉B = 1

|Ω|β
∂

∂µ
lnZBβ,Ω. (1.96)

This second choice is the one we will use in our treatment of the full interacting prob-
lem, i.e. we will fix the density of the condensate and then prove that we can choose
the correction to the chemical potential coming from the cubic and quartic terms of
the interaction (neglected in Bogoliubov theory) in such a way that (1.80) is satisfied.

In order to calculate the relation between the total and the condensate densities
in the Bogoliubov approximation, we use the relation (1.96) with ZBβ,Ω defined in
(1.75), by taking into account that the integral over ρ0 is concentrated around the
saddle point we fixed by the choice of µβ,Ω. We obtain

ρβ,Ω =− ∂

∂µ
WB
β,Ω = − ∂

∂µ
WB

Ω + 1
|Ω|

∑
k

e−βEk

1− e−βEk

Fk
Ek

(1.97)

with WB
β,Ω(ρ0) and WB

Ω (ρ0) defined in (1.72) and (1.76) respectively and Ek =√
F 2

k − g2
k. For β → ∞ the contributions from the last term in (1.97) can be

neglected (due to the e−βEk factor) and in the limit β, |Ω| → ∞ we get

ρ = ρ0 +
∫

ddk
(2π)d

(
Fk
Ek
− 1

)
= ρ0

(
1 +O(λ

d
2 )
)
, (1.98)

where d = 2, 3. We see as the total density of the system in Bogoliubov model is
not equal to ρ0 even at zero temperature. For d = 1 the integral over k in (1.98)
diverges for small momenta, i.e. Bogoliubov approximation fails. This is due to the
fact that in the one–dimensional case, in the presence of repulsive interaction, no
condensation is expected, not even at zero temperature.

The expression of the total density in the Bogoliubov approximation for β finite
and in the thermodynamic limit is obtained by taking the limit |Ω| → ∞ of (1.97):

lim
|Ω|→∞

ρβ,Ω = ρ+
∫

ddk
(2π)d

Fk
Ek

1
eβEk − 1 (1.99)

The latter expression diverges for small momenta in the two dimensional case. This is
related to the fact that in the two dimensions condensation does not occur at non zero
temperature, due to the very general Mermin-Wagner-Hohenberg theorem [54, 55].
In particular Hohenberg [54] proved a rigorous inequality that can be used to rule
out the existence of long–range order for bosonic and fermionic systems in one or
two dimensions and T 6= 0.

1.4.3 Schwinger functions for Bogoliubov approximation

The two point Schwinger functions for Bogoliubov model is calculated by using
(1.42) and (1.43), once the matrix C0,k

M,Λ is substituted with CB,kM,Λ defined in (1.57).
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We find:

SBσσ′(x) = ρ0 + gBσσ′(x) (1.100)

where

gBσσ′(x) = 1
(2π)d+1

∫
dd+1k gBσσ′(k) (1.101)

and (
gBσσ′(k)

)−1
= lim

M→∞

1
M2|Ω|

(
CB,k 6=0
M,Λ

)
σσ′

=
(
−ik0 + k2 + λρ0v̂(k) λρ0v̂(k)

λρ0v̂(k) ik0 + k2 + λρ0v̂(k)

)
(1.102)

where the first row and the second column correspond to σ = +, while the second
row and the first column to σ = −. The matrix gBσσ′(k) is the propagator of the
fluctuations fields ϕ±k with k 6= 0, which in the following will be denoted as ψ±k to
distinguish them from the fields ξ±.

We will denote the Gaussian measure with propagator (1.102) as PB,Λ(dψ). The
latter measure can be also thought as obtained by adding to the free measure P 0

Λ(dψ),
with propagator g0

αα′(x) obtained by setting λ = 0 in (1.102), the quadratic potential
in the ψ± fields given by Bogoliubov approximation, that is

PB,Λ(dψ) = P 0
Λ(dψ) e−VB,Λ(ψ) (1.103)

with VB,Λ(ψ) obtained by (1.51) by writing ϕ±x = |Ω|−1/2ξ± + ψ±ξ , then by substi-
tuting |Ω|−1|ξ|2 = ρ0 and finally by neglecting the cubic and quartic terms in the
fields ψ±x :

VB,Λ(ψ) =λ

2ρ0

∫
Λ×Λ

(ψ+
x + ψ−x )v(x− y)(ψ+

y + ψ−y )dxdy

+ (λρ0v̂(0)− µBΩ)
∫

Λ
|ψx|2dx (1.104)

Here (λρ0v̂(0)− µBΩ) is zero at leading order, see (1.82). Note that the two–point
Schwinger functions obtained by (1.102) have a singularity of the type (k2

0 +c2
Bk2)−1,

with c2
B = 2λρ0v̂(0), to be compared with the singularity (−ik0 + k2)−1 of the free

Bose gas, see (1.25). The anomalous behavior of S−+
B (x) is related to the emergence

in the Bogoliubov model of a linear spectrum for small momenta, as one can see
in the basis of the creator and annihilator operators (b+k , bk) which diagonalizes
Bogoliubov Hamiltonian. In this basis we have:

HB
β,Ω =

∑
k 6=0

E′kb
+
k bk +WB

β,Ω(ρ0) (1.105)

with WB
β,Ω defined in (1.72) and E′k =

√
k4 + 2λρ0v̂(k)k2 , i.e. E′k ' cB|k| for small

momenta. Then cB has the physical interpretation of the velocity of the Bogoliubov
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quasi-particles.

Remark. Introducing a functional representation of (1.105) in terms of the
eigenstates {ϕ̃−k } of the bk operators we get a diagonal propagator for the ψ̃k fields:

(
g̃Bσσ′(k)

)−1
=
(
ik0 + cB|k| 0

0 −ik0 + cB|k|

)
(1.106)

Since we intend to make perturbation theory around Bogoliubov model, it might
seem more intuitive to work in the ψ̃k representation. However in such a basis the
vertices of the interaction would depend on the momenta, even at the bare level,
which is not very convenient. In addition, the RG treatment is greatly simplified
by introducing an appropriate linear combination of the eigenvectors of the free
Hamiltonian, see (1.112).

The form (1.100) of the covariance of Bogoliubov approximate model shows that
Bogoliubov measure may be written as the product of two independent measures
over the fields ξ̃ = ξ/

√
|Ω| and ψ±x . As a consequence, the partition function of

Bogoliubov model can be written as

ZBΛ
Z0

Λ
=
∫
PΛ
(
dξ̃
) ∫

P 0
Λ
(
dψ
)
e−VB,Λ(ξ̃,ψ) (1.107)

with VB,Λ(ξ̃, ψ) Bogoliubov potential before the substitution |ξ̃|2 = ρ0. The measures
PΛ(dξ̃) and P ξ̃B,Λ(dψ) :=

∫
P 0

Λ
(
dψ
)
e−VB,Λ(ξ̃,ψ) have covariances ρ0 and gBσσ′(x) in the

thermodynamic limit. The expression (1.107) for ZBΛ has an exact correspondence
with (1.71) with the identification

PΛ(dξ̃) = dξ̃+dξ̃−

2πiN e|Λ|(µ|ξ̃|
2−λ2 v̂(0)|ξ̃|4) (1.108)

It is simple to see that the measure PΛ(dξ̃) concentrates around |ξ| = √ρ0 as |Λ|
goes to infinity. In fact, by the change of variable ξ̃± = r (cosϑ± i sinϑ) we obtain

P (dr, dϑ) = lim
|Λ|→+∞

PΛ(dr, dϑ) =
∫ 2π

0

dϑ

2π

∫ +∞

0
drδ(r −√ρ0) (1.109)

where we used (1.82). In the thermodynamic and zero temperature limits

lim
|Λ|→+∞

〈
ξ̃+ξ̃−

〉
Λ =

∫
P (dξ̃) ξ̃+ ξ̃− = ρ0 (1.110)

and

lim
|Λ|→+∞

∫
PΛ(dξ̃)

∫
PΛ(dψ)e−VB,Λ(ξ̃,ψ) =

∫
PΛ(dψ)e−VB,Λ(ψ) (1.111)

with VB,Λ(ψ) = VB,Λ(ξ̃, ψ)||ξ̃|=√ρ0
. The substitution |ξ̃| = √ρ0 in (1.71) corresponds

to a saddle point approximation. Since the specific free energy WB
Λ (ξ) in (1.72) has

a “Mexican hat” structure, in the thermodynamic limit the partition function of
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Figure 1.2. A pictorial representation of the fields ψlx and ψtx defined by (1.112); the latter
represent the longitudinal and transverse component of the fields ψ±x with respect to
the direction of the broken symmetry.

the system and each correlation function is given by the value of the integral in the
saddle, that is in fact |ξ̃|2 = ρ0 with ρ0 minimizing WB

Λ (ξ). Fixing ξ̃± = √ρ0, as we
do, corresponds in choosing a particular minumum and then in forcing a symmetry
breaking of the gauge symmetry of the theory, defined by the one–parameter group
of unitary transformations of the bosonic fields ϕ±x → eiϑϕ±x .4 This picture suggests
the introduction of the adimensional fields

ψlx = 1√
2ρ0

(
ψ+
x + ψ−x

)
, ψtx = 1√

2iρ0

(
ψ+
x − ψ−x

)
(1.112)

which represent the longitudinal and transverse component of the field ψ−x to the
direction of the broken symmetry, see fig. 1.2. As we will see in chap. 2.1, the ψl,tx
fields have a very convenient scaling, as was first noticed in [26]. Their propagator
is given by

gBαα′(x) = 1
(2π)d+1

∫
Rd+1 d

dkdk0 p
B
α1α2(k) e−ikx

k2
0 + k2(k2 + 2λv̂(k)ρ0) (1.113)

with

pBα1α2(k) = 1
ρ0

(
k2 k0
−k0 k2 + λv̂(k)ρ0

)
(1.114)

Here the first row and column correspond to α = l and the second row and column to
α = t. The expression of Bogoliubov potential (1.104) in the basis of the longitudinal
and transverse fields ψlx and ψtx is:

VB,Λ(ψ) = λρ2
0

∫
Λ×Λ

ψlx v(x− y)ψlydxdy (1.115)

while the part of the potential containing the cubic and quartic terms of the
4The gauge symmetry of the bosonic system described by (1.4) can be explicitly broken by

adding a term λ̃
√
|Ω|(a+

0 + a0) to the Hamiltonian. In the grand canonical state defined by the
so modified Hamiltonian the operator a0 has a non–zero expectation value, which goes to zero
as λ̃→ 0 for any fixed volume |Ω|. Gauge symmetry breaking means that this expectation value,
divided by

√
|Ω| remains non–zero even as λ̃→ 0, after the thermodynamic limit has been taken.
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interaction, neglected in Bogoliubov approximation, is given by:

V0,Λ(ψ) = ρ2
0

[
λ

8

∫
Λ×Λ

((
ψlx
)2 +

(
ψtx
)2)

v(x− y)
((
ψly
)2 +

(
ψty
)2)

dxdy

+ λ

2
√

2
∫

Λ×Λ
ψlyv(x− y)

((
ψlx
)2 +

(
ψtx
)2)

dxdy

]

+ ν

2 ρ0

∫
Λ

((
ψlx
)2 +

(
ψtx
)2)

dx (1.116)

with ν = λρ0v̂(0)− µB the correction to the chemical potential in the Bogoliubov
approximation, as in (1.82).

1.5 The effective model
Our goal is the exact calculation of the zero temperature properties of the interacting
system described by (1.50), in the presence of a condensate state. In particular
we want to investigate if the correlations of such model exhibit or not anomalous
dimensions with respect to Bogoliubov model. In fact, the infrared divergences
affecting the perturbation theory of the interacting problem may a priori completely
change the nature of the propagator at low momenta.

Our approach consists in assuming a spontaneous symmetry breaking of the
U(1) symmetry of the system, which means to fix a priori the condensate density ρ0,
and then in showing that the correction to the chemical potential with respect to
Bogoliubov’s one, ν = µ−µB , can be fixed in such a way that in the thermodynamic
limit the interacting 2–point Schwinger function converges to ρ0 as L, β → ∞. If
this program succeeds, in the sense that we manage to prove that the correlation
function of the interacting system can be expressed as a series in some effective
parameters, with finite coefficients that admits explicit bounds at all orders, this
will be interpreted by saying that the correlation function thus obtained describes a
Bose condensate state with condensate density ρ0 and chemical potential µ. In this
approach we regards ρ0 as a physical constant and ν as a bare constant to be fixed
to generate a model whose physical condensate density is the prescribed one.

In order to find an expression for the partition function (and then for the
correlation functions) of the interacting system as a perturbation around the exactly
solvable Bogoliubov approximation, we will be interested in studying the potential
WΛ(ξ̃), defined by the following functional integral

e−|Λ|WΛ(ξ̃) =
∫
P 0
B,Λ(dψ) e−V0,Λ(ξ̃,ψ) (1.117)

In developing the announced program, we will assume the structure of the minima
of the potential WB

Λ (ξ̃) to be qualitatively unchanged by the addition of the cubic
and quartic terms of the interaction. As a consequence the partition function and
the correlation functions for β, L→ +∞ will be given by the value of the functional
integral representing them in the saddle point ∂ξ̃WΛ(ξ̃) = 0. This means that ν
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will be chosen so that the free energy WΛ(ρ0) is minimum for the fixed value of ρ0.
With this assumption the study of the properties of the interacting system turn in
studying the specific free energy WΛ(ρ0), defined by:

e−|Λ|WΛ(ρ0) =
∫
PB,Λ(dψ) e−V0(ψ) (1.118)

with PB,Λ the measure with propagator (1.113) and V0(ψ) the potential containing
the cubic and quartic terms of the interaction, neglected in Bogoliubov approximation,
defined in (1.116).

Since the condensation problem depends only on the long-distance behavior of
the system, we shall consider a simplified model obtained by modifying the decaying
part of the propagator of the free measure P 0

Λ(dψ) into

gχ0
αα′(x) = 1

(2π)d+1

∫
ddkdk0 χ0(|k|) gαα′(k) (1.119)

where
|k|2 := k2

0 + k2(k2 + 2λv̂(0)ρ0k2) (1.120)

and χ0(|k|) is a regularization of the characteristic function of the set R−4
0 |k|2 ≤ 1,

playing the role of an ultraviolet cutoff at the scale of the inverse range R−1
0 of the

interaction potential. We will denote with Pχ0(dψ) the measure with covariance
(1.119). The choice of (1.120) as argument of the cutoff function will be clear in a
while. When we add to Pχ0(dψ) the quadratic Bogoliubov potential, we get a new
measure PB,χ0(dψ) with propagator

gB,χ0
αα′ (x) = 1

(2π)d+1

∫
ddkdk0 χ0(|k|) e−ikx p

B,χ0
αα′ (k)
|k|2

(1.121)

The matrix pB,χ0
αα′ (k) has a slight different expression with respect (1.114) due to the

presence of the ultraviolet cutoff. In fact:

pB,χ0
αα′ (k) = 1

ρ0

(
k2 k0
−k0 k2 + 2λv̂(k)ρ0χ0(k)

)
(1.122)

To get (1.121) we have used the fact that the product between the measure Pχ0(dψ)
and the exponential of a quadratic term in the ψ± fields gives a new gaussian measure

PQ0,χ0(dψ) = Pχ0(dψ) e−
1
2
∑

αα′
∫
ψαkQ

0
αα′ψ

α′
−kdk (1.123)

with propagator given by

gχ0,Q0
αα′ (x) = 1

(2π)d+1

∫
ddkdk0 χ0(k) gQ0

αα′(k)

(
gQ0
αα′(k)

)−1
= (gαα′(k))−1 + χ0(k)Qαα′(k) (1.124)

see (A.14). Note that:
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• The choice of R−1
0 as scale of the ultraviolet cutoff has been done since we are

interested in the weak coupling regime λρ0R
d
0 ≤ 1, which corresponds to the

regimes
√
λρ0 ≤ R−1

0 for d = 2 and
√
λa0 ≤ R−1

0 for d = 3, a0 being the first
order Born approximation to the three dimensional scattering length a of the
potential vR0(x).

• The model we are studying is “morally” a system of interacting bosons on a
lattice with size equal to the range of the potential; however we choose to put a
rotational invariant ultraviolet momentum cutoff rather then consider a lattice
since this choice preserves the original symmetries of the model. This will
greatly simplify the infrared problem. Two interesting open problems are: a)
to remove the ultraviolet momentum cutoff; b) to extend the results obtained
to a non rotational symmetric theory of bosons on a lattice.

Due to the presence of the ultraviolet cutoff, the short range potential appears as a
local potential, up to errors of order O

(
(kR0)2); from now on we will then consider

the local potential

VI(ψ) = ρ2
0v̂(0)

[
λ

8

∫
Λ

((
ψlx
)2 +

(
ψtx
)2)2

dx+ λ

2
√

2
∫

Λ

((
ψlx
)3 +

(
ψtx
)2
ψlx

)
dx

+ λ

∫
Λ

(
ψlx
)2
dx

]
+ ν

2 ρ0

∫
Λ

(
(
ψlx
)2 +

(
ψtx
)2)dx (1.125)

Here and in the following the subscript “I” will be used to indicate the full interacting
potential, including Bogoliubov quadratic term. Introducing the adimensional
parameter ε = 2λρ0v̂(0)R2

0 we get:

VI(ψ) = ρ0R
−2
0

[
ε

16

∫
Λ

((
ψlx
)2 +

(
ψtx
)2)2

dx+ ε

4
√

2
∫

Λ

((
ψlx
)3 +

(
ψtx
)2
ψlx

)
dx

+ ε

2

∫
Λ

(
ψlx
)2
dx+ ν

2 R
2
0

∫
Λ

((
ψlx
)2 +

(
ψtx
)2)

dx

]
(1.126)

where ρ0R
−2
0 is a dimension fixing factor introduced to keep track of the dimension

of the various quantities and has the physical dimension of an action density in
space time. Bogoliubov potential corresponds to the term ρ0R

−2
0

ε
2
∫

Λ(ψlx)2dx and
the correction to Bogoliubov potential is:

V0(ψ) = ρ0R
−2
0

[
ε

16

∫
Λ

((
ψlx
)2 +

(
ψtx
)2)2

dx+ ε

4
√

2
∫

Λ

((
ψlx
)3 +

(
ψtx
)2
ψlx

)
dx

+ ν

2 R
2
0

∫
Λ

((
ψlx
)2 +

(
ψtx
)2)

dx

]
(1.127)

With this new notations the inverse propagator of Bogoliubov measure is given by

g−1
αα′(k) = ρ0

(
k2 + εχ0(k)R−2

0 k0
−k0 k2

)
(1.128)
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Effect of the ultraviolet cutoff

The effective model we have introduced is representative of the long–distance behavior
of the system and is useful to approach the condensation problem. However in order
to obtain a prediction for the ground state energy or chemical potential, one have to
study also the ultraviolet problem, i.e. to integrate the momenta excluded by the
cutoff function. In fact the prediction of the physical quantities are affected by the
presence of the cutoff function, as one may already see at the level of Bogoliubov
approximation.

Let consider first the effect of the cutoff on the k variable. We consider the
expressions (1.81), (1.86) and (1.98) for the chemical potential, the ground state
energy and the density of the system in Bogoliubov approximation. Putting an
ultraviolet momentum cutoff corresponds to neglect the integration over momenta
such that |k| ≥ R−1

0 . One finds that:

• for d = 3 the ground state energy and the chemical potential are changed at
order O(λ2ρ0R0); in particular in the Lee–Huang–Yang formula the contribu-
tion coming from the ultraviolet is the one which permits of reconstruct the
series for the scattering length at the correct order;

• for d = 2 the ground state energy and the chemical potential are changed at
order O(ρ0λ

2); for what concerns the ground state energy the second order
correction is of order λ log(λρ0R

2
0) and then the presence of the cutoff functions

does not affect it.

• for d = 2, 3 the total density of the system is changed by O
(
ρ0(λ2ρ0R

d
0)
)
.

For what concerns the ultraviolet cutoff on the k0 variable, it corresponds to ap-
proximate eik0 with ik0 in the Schwinger functions calculations. When this is done
Bogoliubov predictions change of order λ, e.g. the ground state energy (in the
canonical ensemble) becomes:

ẽB0 = 1
2λv̂(0)ρ0 −

1
2ρ0|Ω|

∑
k 6=0

(k2 −
√

k4 + εk2 ) (1.129)

to be compared with (1.85). This means that the parameters λ and µ appearing
in our effective model have to be considered effective parameters, different from
the physical ones. To get the correct values of the physical observables one might
first integrate the ultraviolet momenta to get the exact values of λ and µ at the
scale R−1

0 . The temporal ultraviolet integration is achievable with no much effort
and one can see that effectively the O(λ) term is restored. The integration on the
spatial ultraviolet also seems feasible but for the time being we have not make much
efforts in this direction; for the aims of the actual work we are only interested in
the qualitative properties of the correlations, in order to get information on the
occurrence of BEC.
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Chapter 2

Multiscale analysis

The present chapter is devoted to the description of the scheme we shall follow in
order to compute the functional integral defining the effective potential WΛ(ρ0),
introduced in the previous chapter, which contains all the informations on the large
distance behavior of the interacting bosonic system in presence of condensation. For
convenience we report here the definition of WΛ(ρ0) given in sec. 1.5:

e−|Λ|WΛ(ρ0) = 1
N

∫
PΛ
Q0,χ0(dψ)e−V0(ψ) (2.1)

with Λ the volume in the space time, V0(ψ) the correction to Bogoliubov potential

V0(ψ) = ρ0R
−2
0

[
ε

16

∫
Λ

((
ψlx
)2 +

(
ψtx
)2)2

dx+ ε

4
√

2
∫

Λ

((
ψlx
)3 +

(
ψtx
)2
ψlx

)
dx

+ ν

2 R
2
0

∫
Λ

((
ψlx
)2 +

(
ψtx
)2)

dx

]
(2.2)

and PΛ
Q0,χ0

(dψ) the measure with propagator

gχ0,Q0
αα′ (x) = 1

(2π)4

∫
ddkdk0 χ0(k)gQ0

αα′(k) e−ikx (2.3)

with (
gQ0
αα′(k)

)−1
= ρ0

(
k2 + εR−2

0 χ0(k) −k0
k0 k2

)
(2.4)

where the first row and column correspond to α = l, the second row and column
to α = t and ε = 2λρ0v̂0R

2
0. Note that ε = c2

BR
2
0, with cB the speed of sound of

Bogoliubov quasi particles. The function χ0(k) ≡ χ0(|k|2), with

|k|2 = k2
0 + k2(k2 + εR−2

0 k2) (2.5)

is a C∞ regularization of the characteristic function of the set R−4
0 |k|2 ≤ 1 playing

the role of an ultraviolet cutoff at the scale of the inverse range R−1
0 of the interaction

potential.
Given the formal functional expression for WΛ(ρ0), for any finite Λ (i.e. for each

finite temperature β−1 and volume |Ω| = Ld ) the theory is order by order finite,
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with the integrals in (2.3) representing sums over Dβ ≡ {k0 = 2πn/β, n ∈ Z} and
DL ≡ {k = 2πn/L,n ∈ Zd} and β and |Ω| playing the role of an infrared cutoff.
The problem is to perform suitable resummations that allows to re–express the
specific free energy in terms of a modified expansion, whose n–th order is uniformly
convergent as β and L go to infinity.

The goal just described can be achieved by rigorous Renormalization Group (RG)
method, in the form presented in [30] (see also [56] for an updated introduction)
and already applied to a certain number of infrared problems in condensed matter
systems [31, 32, 33, 34, 57, 58] as detailed in the introduction.

The Renormalization Group scheme consists in performing the integration in
(2.1) in an iterative way, starting from the momenta “close” to the ultraviolet cutoff
and moving towards smaller momentum scales. At the n–th step of the iteration
the functional integral (2.1) is rewritten as an integral involving only the momenta
smaller than a certain value, proportional to γ−n where γ > 1 is a constant. Both
the propagators and the interaction will be replaced by “effective” ones; they differ
from their “bare” counterparts because the parameters appearing in their definitions
are “renormalized” by the integration of the momenta on higher scales. In the
following will be convenient to introduce the scale label h ≤ 0 as h := −n. The
definition of the effective parameters is given in such a way that the new expansion
which is obtained, the so called renormalized expansion, may be bounded at all
orders uniformly in the infrared cutoff, under certain assumptions on the size of the
effective parameters.

The aim of this chapter is to describe the main steps of the Renormalization
Group scheme, as applied to our problem, to a reader which is not familiar with
this technique. For this reason instead of immediately state the final result, we
will proceed by progressive steps, first identifying the “dangerous” terms making
the perturbation theory divergent, then introducing a first renormalized expansion
without renormalization of the covariance, finally defining the effective potential we
are dealing with. This may be found needlessly long by the expert reader; however
we are persuaded that he could easily skip the introductory parts and select the
setup of the analysis and the final results, the latter contained in sect. 2.18 and in
the n! bounds described by results (1) pag. 66, (2) pag. 69 and (3) pag. 72.

The chapter is organized as follows:

Sec. 2.1 the multiscale decomposition scheme is introduced.

Sec. 2.2 The “naive” expansion in terms of “Gallavotti–Nicolò” trees is presented;
this part is not original but essentially taken by [30, 59, 60].

Sec. 2.3 The renormalized expansion is discussed, with a particular remark on the
ideas leading to the definitions of the effective parameters.

Sec. 2.4 A different renormalized expansion, in which also the covariance is renor-
malized by the integration over the higher momentum scales, is introduced;
n! bounds on the kernels of the effective interaction are stated, under
some assumptions on the size of the effective couplings, which will be
proven in the next chapter.
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Sec. 2.5 We describe how the same integration scheme can be applied to the
generating functional of the density and current correlations; the latter
object, from which the density and current response function can be
calculated, in this thesis is a crucial technical object, for which local Ward
identities will be derived.

2.1 Multiscale decomposition and trees expansion
Given a fixed positive number γ larger than 1, let us fix the following form for the
cutoff function χ0(k):

χ0(|k|2) =

 1 if |k|2 ≤ 2
γ2+1 R

−4
0

0 if |k|2 > 2γ2

γ2+1 R
−4
0

(2.6)

This particular choice of χ0 is not relevant; it is done only to simplify some calculations
in the following. The multiscale decomposition consists in integrating iteratively the
fields of decreasing energy scale, i.e. such that |k|2 ' γ2hR−4

0 with h a scale index
h ≤ 0. This can be done splitting the fields ψαx in a sum of independent bosonic
fields

ψαx =
0∑

h=−∞
ψα,(h)
x (2.7)

with propagators obtained by substituting χ0(k) in (2.3) with

fh(k) = χh(k)− χh−1(k) (2.8)

being χh(k) = χ(γ−hk). The latter decomposition, called “decomposition in scales”
is done in order to introduce, in spite of a propagator which decades too slowly at
infinity, a sum of propagators, each one with good decay properties at infinity, which
are described in the lemma 2.1.

Due to the form (2.4) of the propagator, two different behavior appear, depending
on the value of k2 with respect to εR−2

0 :

k2 > εR−2
0 : the contribution of the interaction in the measure is negligible and the

propagator behaves as the one of the free gas;

k2 < εR−2
0 : the contribution of Bogoliubov interaction dominates with respect to

k2 and the propagator becomes very different from the free one.

Let denote with h̄ the scale index which divides the two region, that is

k2 = γh̄R−2
0 = εR−2

0 ⇒ γh̄ = ε (2.9)

In the following it will be convenient to rewrite the propagator in terms of dimen-
sionless momenta k′ = (k′0,k′), defined in such a way that |k′|2 = R4

0|k|2, that
is

k′0 = R2
0 k0

k′2 = R2
0 k2 (2.10)
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In terms of the adimensional variable k′ the propagator at scale h becomes:

g
(h)
αα′(x) = 1

(2π)d+1

∫
dd+1k′ fh(|k′|) p

h
αα′(k′)
|k′|2

e−ik
′x (2.11)

where

phαα′(k′) ' ρ−1
0 R2

0

(
k′2 −k′0
k′0 k′2

)
|k′|2 ' k′20 + k′4 for h > h̄ (2.12)

phαα′(k′) ' ρ−1
0 R2

0

(
k′2 −k′0
k′0 ε

)
|k′|2 ' k′20 + εk′2 for h ≤ h̄ (2.13)

and the symbol “'” means that we are considering the dominant behavior in k.
Note that there is a natural connection between the propagators in two regions,
since for h = h̄ (2.12) and (2.13) coincide. The propagator at scale h defined in
(2.11) satisfies the following lemma, which is proved in appendix A.2.

Lemma 2.1. Let h̄ the scale index such that γh̄ = ε. Here ε = 2λρ0R
d
0 is an

adimensional parameter related to the intensity λ and the range R0 of the interacting
potential and to the density ρ0 of the condensed state. Then, the propagator g(h)

αα′(x)
defined in (2.11) satisfies the following bounds:∣∣∣g(h)
αα′(x)

∣∣∣ ≤ (ρ0R
−2
0

)−1
γ
d
2h

CN

1 +
[
(γhx0)2 + (γ h2 x)2

]N h > h̄

(2.14)∣∣∣g(h)
αα′(x)

∣∣∣ ≤ (ρ0R
−2
0

)−1
ε
d
2 (ε−1γh)(d−1+δαl+δα′l) CN

1 + [(γhx0)2 + (γh
√
εx)2]N

h ≤ h̄

(2.15)

with α, α′ = l, t, d the spatial dimension of the system and CN a constant depending
only on the integer N . The dimensional factor (ρ0R

−2
0 ) has the dimensions of an

action density in space time.

Note that in the region h ≥ h̄ the behavior of the propagator is independent on
α, α′; in fact the propagator is exactly equal to the free one, being the contribution to
coming from Bogoliubov interaction smaller than k2. On the contrary in the region
h < h̄ , due to Bogoliubov contribution, the fields ψl,(h)

x and ψt,(h)
x have different

scalings dimension. A dependence on ε also appears in the propagator due to the
fact that at each scale h we have εk2 ' γ2h.

Once the original field is decomposed into the ψα,(h) fields, using the addition
principle for gaussian measures (see (A.12)) we can rewrite (2.1) as

e−|Λ|WΛ(ρ0) =
∫ 0∏

h=−∞
PΛ
Q0,fh(dψ)e−V0(ψ) (2.16)

with PΛ
Q0,fh

(dψ) denoting the measure with covariance g(h)(x). Since we will get
uniform estimates in the volume Λ from now on we will skip the dependence on it
in the free energy and the measure.
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In order to calculate (2.16) we will consider a new potential Wh∗(ρ0) with an
infrared cutoff at scale h∗, i.e. defined by

e−|Λ|Wh∗ (ρ0) =
∫
PQ0,χ[h∗,0](dψ) e−V0(ψ) (2.17)

where we have introduced the notation

PQ0,χ[h,0](dψ) :=
0∏

j=h
PQ0,fj (dψ) (2.18)

with χ[p,q] = ∑q
i=p fi(k). With this definition

W(ρ0) = lim
h∗→−∞

W(h∗)(ρ0) (2.19)

and our result will consist in proving uniform bounds in h∗, allowing us to take the
limit h∗ → −∞.

The functional integral in (2.17) is evaluated by integrating one by one each of
the bosonic fields at a certain scale, starting from that with greater energy. After
the integration of the fields ψ(0), . . . , ψ(h+1) we can rewrite the effective potential in
a way similar to the (2.17) but with a new effective interaction V̄h:

e−|Λ|Wh∗ (ρ0) = e−Ēh(ρ0)
∫
PQ0,χ[h∗,h](dψ

(≤h)) e−V̄h(ψ(≤h)) (2.20)

Here Eh(ρ0) is the contribution to |Λ|Wh∗(ρ0) coming from the integration over the
first |h| energy scales. We define the effective potential at scale (h− 1) the potential
V̄h−1(ψ(≤h−1)) such that:

e−V̄h−1(ψ(≤h−1))−Ẽh(ρ0) =
∫
PQ0,fh(dψ(h)) e−V̄h(ψ(h)+ψ(≤h−1)) (2.21)

Using (2.21) one can see that the identity (2.20) is reproduced at scale (h− 1) with
Ēh−1 = Ēh + Ẽh. The reason for using the symbol “V̄” to indicate the effective
potentials {V̄h}h∈[h∗+1,0] is the fact that towards this chapter we will introduce a
second family of effective potentials, {Vh}h∈[h∗+1,0], obtained as a slight modification
of the first one.

Gallavotti–Nicolò trees expansion

Let now consider the first step of the iterative integration in (2.16), i.e. the integration
on the fields ψ(0). We get:

e−V̄−1(ψ(≤−1)) =
∫
PQ0,f0(dψ)e−V̄0(ψ(0)+ψ(≤−1)) (2.22)

It turns convenient to rewrite the integration over the ψ(0) fields in terms of the
truncated expectation ET (X;n) defined by

ET (X;n) = ∂n

∂λn
log

∫
P (dψ)eλX(ψ)

∣∣∣
λ=0

(2.23)
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−V̄−1 = + + + · · · =

−1 0 1 −101 −1 0 1 −1 0 1

Figure 2.1. Graphical representation of the expansion (2.25). We will refer to the elements
of the graphical sum as “trees”. We have explicitly indicated the label associated to the
vertical lines only for first tree, but the same labels hold for each of the trees in the sum.
The thick vertex corresponding to the vertical line with label 0 is a graphical way to
represent all the trees contributing to −V̄−1.

with X a function defined on the fields ψ and n a positive integer number. By using
the properties of the truncated expectations, see appendix A.1, we have∫

P (dψ)eX(ψ+φ) = exp
[ ∞∑
n=0

1
n!E

T (X(·+ φ);n)
]

(2.24)

with φ a non integrated field. By using (2.24) we can rewrite −V̄(−1) as a sum over
truncated expectations:

− V̄−1(ψ(≤−1)) =
∞∑
n=0

1
n! E0

T
(
−V̄0( ·+ ψ(≤−1)); n

)
(2.25)

The latter sum can be graphically represented as a sum over “trees”, as depicted in
the picture 2.1. For each of the trees showed in fig. 2.1

– i – the left index is called “root” of the tree; we can associate to it the label −1
to take in mind that we are calculating −V̄−1;

– ii – each of the points of the tree with label +1 (end points) represents a term
−V̄0(ψ(≤0));

– iii – the vertices with label 0 represent truncated expectations with respect the
field ψ(0), i.e. ET0 ;

– iv – to each of the trees is associated a combinatorial factor 1
n! with n the number

of end points.

The graphical representation of the effective potentials in terms of trees results very
useful in the iteration of the integration. In fact, if we consider the second step of
the integration, we get:

e−V̄−2(ψ(≤−2)) =
∫
P−1(dψ)e−V̄−1(ψ(−1)+ψ(≤−2)) (2.26)

which becomes

−V̄−2(ψ(≤−2)) =
∞∑
n=0

1
n!E

T
−1

(
−V̄−1( ·+ ψ(≤−2)); n

)
=
∞∑
n=0

1
n!E−1

T

( ∞∑
n′=0

1
n′!E

T
0

(
−V̄0; n′

)
; n
)

(2.27)
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−V̄−2 = + + + · · ·

−2 −1 0 −2 −1 0 −2 −1 0

= + +

−2 −1 0 1 −2 −1 0 1 −2 −1 0 1

+ + + + · · ·

−2 −1 0 1 −2 −1 0 1 −2 −1 0 1

Figure 2.2. Graphical representation of the expansion (2.27). The first line represents the
expansion of −V̄−2 in terms of −V̄−1, while the second and third lines is the graphical
representation of −V̄−2 in terms of the element of the interacting potential V̄I . The
latter expansion is obtained using the definition of the thick vertex at scale 0 given in
fig. 2.1.

The graphical representation of the equation (2.27) is given in picture 2.2.
Iterating the strategy so far discussed |h| times, we obtain a representation for the
effective potential at scale h, V̄h in terms of Gallavotti–Nicolò trees, that is:

− V̄h(ψ(≤h)) =
∞∑
n=1

∑
τ∈Th,n

V̄h(τ, ψ(≤h)) (2.28)

where the sum is over the set Th,n of the possible trees with n end points at scale 1
and a root with scale index h. A possible tree τ ∈ Th,n is depicted in picture 2.3.
It is useful to introduce some definitions and notations regarding the structure of
the trees in (2.27):

Scale or frequency: the integer index taking values in [h, 1] associated to the vertical
lines.

End–points: points of the tree associated to the vertical line with scale 1; the number
n of end points is called order of the tree. With each end point v we associate
a factor V̄0(ψ(≤0)) and a space–time point xv ∈ Λ, corresponding to the
integration variable in the x–space representation in the terms contributing to
V̄0(ψ(≤0)) .

Vertices: the n ≥ 1 points on the vertical lines labeled by a scale taking values in
[h+ 1, 1]. Since the structure of the tree induces a partial ordering between
the vertices, we will say that v1 < v2 if v1 is on the path which joins r with v2.
Given a vertex v we will denote with v′ the vertex immediately preceding v on
τ .
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r v0

v

1

2

3

n

h h+ 1 hv 0 1

Figure 2.3. Example of tree of order n contributing to the graphical representation of V̄h.
All the endpoints are on the vertical line with label 1.

Root of the tree: the point r in the tree with scale index h ≤ 0; note that it is not
considered a vertex according to the previous definition.

Trivial vertices: denoting with sv the number of vertices which immediately follow
the vertex v, v is non trivial if sv > 1 or sv = 0, while is called trivial if sv = 1.
The non trivial vertices with sv > 1 are the branching point of the trees; those
with sv = 0 are the endpoints.

Subtrees: given a tree τ and a vertex v, we will call τv the subtree of τ whose root
is v.

Labeled tree: a tree is said labeled if a scale index is associated to each of its vertices,
as in picture 2.3.

Unlabeled tree: for each labeled tree τ it exists an unlabeled tree which has the
same topological structure of τ , but don’t have either trivial vertices, or
frequency indices with the exception of the index r to distinguish the root.
The unlabeled tree corresponding to the tree of picture 2.3 is showed in picture
2.4. Two unlabeled trees are identified if they can be superposed by a suitable
continuous deformation, so that the endpoints with the same index coincide.
The combinatorial factor associated to an unlabeled tree is the same of one of
the corresponding labeled trees, i.e. 1/n(τ)!

Once introduced this definitions we see that it is convenient to expand the sum over
the labeled trees in (2.28) as ∑

τ∈Th,n

=
∑
τ∈T ∗n

∑
{hv}v∈τ

(2.29)
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r

Figure 2.4. The unlabeled tree corresponding to the tree in fig. 2.3. The topological
structure of the unlabeled tree is the same of the labeled one, but the trivial vertices are
absent. The only label is the letter r associated to the root.

where T ∗n is the set of the rooted unlabeled trees with n final points. The set of
indices {hv} satisfies the following properties: the labels take all values in [h+ 1, 0]
and are consistent with the vertices ordering induced by the tree structure; the label
of the end points is always equal to 1. Some technical results on the counting of
trees are resummed in appendix A.4.

Contribution to V̄h(τ, ψ(≤h)) from a single tree

In the following we will describe the rules to calculate the contribution to V̄h(ψ(≤h))
coming from a particular tree τ . First of all we notice that the factor −V̄0(ψ(≤0))
associated to the end points is a sum of different terms proportional to λ0, µ0 and
ν0; then it is convenient to associate to each end point a second label σ, with values
λ, µ, ν denoting the term of the potential associated to that particular end point.
The terms V̄h(ψ(≤h)) can be defined recursively as follows:

1) Let us denote with τ0 the trivial tree, that is the tree of order one given by a
single line connecting the root with a unique end point with identity index σ;
then the root index is h = 0 and

V̄0(τ0, ψ
(≤0)) = V̄σ0 (ψ(≤0)) (2.30)

with V̄σ0 representing one of the contributions of the terms of the interacting
potential in (2.2), i.e.

V̄λ0 (ψ(≤0)) = ρ0R
−2
0 λ0

∫
dx
(
ψtx
)4 V̄λ′0 (ψ(≤0)) = ρ0R

−2
0 λ′0

∫
dx
(
ψtx
)2(
ψlx
)2

V̄λ′′0 (ψ(≤0)) = ρ0R
−2
0 λ′′0

∫
dx
(
ψlx
)4 V̄µ0 (ψ(≤0)) = ρ0R

−2
0 µ0

∫
dxψlx

(
ψtx
)2

V̄µ
′

0 (ψ(≤0)) = ρ0R
−2
0 µ′0

∫
dx
(
ψlx
)3 V̄ν0 (ψ(≤0)) = ρ0R

−2
0 ν0

∫
dx
(
ψtx
)2 (2.31)

with 2λ0 = 2λ′′0 = λ′0 = ε/8, µ0 = µ′0 = ε
√

2/4 and ν0 = νR2
0/2.
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2) Let us consider a not trivial tree τ with scale h; if v0 is the first non trivial vertex
following the root in τ and τ1, . . . , τsv0 are the subtrees of τ having v0 as root,
then

V̄h(τ, ψ(≤h)) = 1
sv0 !E

T
h+1

(
V̄h+1(τ1, ψ

(≤h+1)), . . . , V̄h+1(τsv0 , ψ
(≤h+1))

)
(2.32)

3) The (2.32) can be iterated, obtaining

V̄h(τ, ψ(≤h)) =
∏

v∈V (τ)

1
sv!

ETh+1

(
ETh+2

(
. . . ET−1

(
ET0
(
V̄(τ0, ψ

(≤0)), . . .
)
, . . .

)
, . . .

)
, . . .

)
(2.33)

with V (τ) the set of vertices of τ . Note that the expectations in (2.33) have to
be calculated from the end points back to the root.

Each time we encounter a vertex v which is not an end point we have then to
calculate an expression similar to (2.32). The latter is a sum of several contributions,
differing for the choices of the fields contracted under the action of the truncated
expectation EThv associated to each not endpoint vertex v. In order to further expand
the expression (2.32), we introduce more definitions, allowing us to distinguish the
fields that are contracted or not in the expectations.

Field label f : it labels the field variables appearing in the monomials associated
with the endpoints, i.e. the lines going out of the vertices. For each field f we
denote with x(f) and α(f) respectively the space–point time and the α index
(α = l, t) associated to the bosonic field variable with label f . Then we may
have (or not) a further label ∂0(f) or ∂x(f) which indicates the presence (or
absence) of a derivative with respect the x0 or x variables, which will act on
the propagator as the field f will be contracted. Even if our initial potential
V̄0 does not contain any field with derivative, we will include this case since
this kind of lines will be appear in the bounds of sections 2.3 and 2.19.

Set of field labels Iv. Given an end point v, then Iv is the set of field labels associated
to v; if v is not an end point then we denote with Iv the set of field label
associated with the end points following the vertex v.

Set of external fields Pv. We denote with Pv ⊆ Iv the set of the external fields
coming out from the vertex v. In particular, if v is an endpoint, then Pv = Iv.
If v is not an end point and v1, . . . , vs are the sv ≥ 1 vertices immediately
following it, then Pv ⊆ ∪iPvi ; then Pv is the subset of Iv containing the labels
of the fields which result not contracted after the action of all the expectations
EThvi with i = 1, . . . , s.

Set of the internal fields Iv. If v is not an end point we define Qvi = Pv ∩Pvi with
vi one of the s vertices immediately following v on the tree. This definition
implies Pv = ∪iQvi The union of the subsets Pvi \Qvi is by definition the set
of the internal fields of v, and is not empty if sv > 1.
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We will use the symbols |Iv|, |Pv| and |Iv| in order to indicate the number of fields
respectively in the sets Iv, Pv and Iv. Using the previous definitions one can prove
(see [30, 60]) that each time we encounter a vertex v which is not an end point we
have to calculate an expression of the kind

1
sv!
EThv

(
ψ̃

(≤hv)
Pv1

, . . . , ψ̃
(≤hv)
Pvsv

)
)

(2.34)

with
ψ̃

(≤hv)
Pv

=
∏
f∈Pv

ψ
α(f), (≤hv)
x(f) (2.35)

i.e. a product of |Pv| fields on scale ≤ hv. Therefore the effect of the truncated
expectation EThv is to contract the fields on scale hv appearing in (2.34) in all the
possible ways.

Given τ ∈ Th,n, there are many possible choices of the subsets Pv, with v ∈ τ ,
compatible with all the constraints. We shall denote by Pτ the family of all these
choices and by {Pv}v∈τ the elements of Pτ . We can then rewrite V̄h(τ, ψ(≤h)) as

V̄h(τ, ψ(≤h)) =
∑

{Pv}v∈τ

∫
dxv0 K

h+1
τ,Pv0

(xv0) ψ̃(≤h)
Pv0

(2.36)

where xv0 = ∪f∈Iv0{x(f)} is the set of integration variables associated with τ and
ψ̃

(≤h)
Pv0

is the product of all the external fields of the tree τ , i.e. the fields which result
not contracted after the last expectation ETh+1. Using (2.32) and (2.36) we see that
the kernel Kh+1

τ,Pv0
(xv0) is defined inductively by the equation, valid for any v ∈ τ

that is not an endpoint

Khv
τ,Pv

(xv) =
∑

Pv1 ,...,Pvsv

1
sv!

sv∏
i=1

Khv+1
τ,Pvi

(xvi) EThv
(
ψ̃

(hv)
Pv1\Qv1

, . . . , ψ̃
(hv)
Pvsv \Qvsv

)
(2.37)

while if v is an endpoint, then we have

K
(1)
τ,Iv

(xv) = rv (2.38)

with rv the term in V̄0 associated to the endpoint v, i.e. rv = λ0, µ0, ν0. Iterating
(2.37) we get

Kh
τ,Pv0

(xv0) =

∑
{Pv}v∈τ

 ∏
v/∈Ve.p.(τ)

1
sv!
EThv
(
ψ̃

(hv)
Pv1\Qv1

, . . . , ψ̃
(hv)
Pvsv \Qvsv

) ∏
v∈Ve.p.(τ)

rv

 (2.39)

Feynman diagrams representation

The truncated expectations in (2.39) can be conveniently expressed into a sum of
Feynman diagrams. Let’s start to describe which are the diagrams contributing to
the truncated expectation in (2.34):
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Gv1

Gv2

Gv3

Gv4

Figure 2.5. A Feynman diagram obtained by joining some of the half lines Pv1 , . . . , Pvn
emerging from the clusters Gv1 , . . . , Gvn . The two different types of line, the plain and
the dashed one, are used to denote respectively the fields ψt and ψl.

1. Given a vertex v, for each of its subvertex v1, . . . , vvs we draw an element of a
diagram and some “half–lines” emerging from these elements representing the
fields in the sets Pv1 , . . . , Pvsv .

2. For each vertex vi we draw a box Gvi containing all the endpoints following v in
the tree τ . These boxes, which we will call clusters, are such that the external
lines to the vertex vi, labeled by the indices in Pvi , are also the external lines
of the box Gvi . Note that, by construction, there will be an inclusion relation
by clusters such that Gv ⊃ Gw if v ≺ w.

3. We consider the half–lines representing the fields belonging to the sets Pvi \Qvi
(i.e. the internal lines respect to the vertex v) and we contract them in pairs, in
such a way that the subclusters Gv1 , . . . , Gvvs , enclosing the sets Pv1 , . . . , Pvs
are all connected, see fig. 2.5. The latter property is required by the truncated
expectation EThv ; on the other hand it does not forbid the external lines of the
same cluster to be contracted between themselves.

4. To each line l obtained joining the half–line representing ψα,(≤hv)
xi with the

half–line representing ψα
′,(≤hv)

xj we associate a propagator

g
(hv)
l ≡ g(hv)

αα′ (xi − xj)

If l is a line contained in a diagram Γ, we shall write l ∈ Γ.

We denote by G(Pv) the set of all the Feynman diagrams which can be obtained
by following the given prescriptions. To each diagram Γ ∈ G(Pv) corresponds a
number, which will be called the value of the graph, given by the product of the
propagators of the lines l ∈ Γ:

Val(Γ) =
∏
l∈Γ

g
(hv)
l (2.40)

Then the following equality holds:

EThv
(
ψ̃

(hv)
Pv1\Qv1

, . . . , ψ̃
(hv)
Pvsv \Qvsv

)
=

∑
Γ∈G(Pv)

Val(Γ) (2.41)
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If we repeat the latter construction for each of the truncated expectations in (2.39)
we see that the kernel Kh

τ,Pv0
(xv0) can be written as a sum on the set G(Pv0) of

Feynman diagrams with the following properties

1) all the elements of the diagram are connected by the lines of Γ;

2) all the clusters Gv are connected by the lines of Γ; for each cluster Gv the set
Pv determine the external lines of any diagram Γv which can be obtained by
contracting the fields corresponding to the labels f ∈ Pw with v � w.

3) the propagators contained in the cluster Gv but not in some smaller cluster have
scale hv;

4) the diagram Γ has |Pv0 | external lines, with labels in Pv0 .

An element Γ ∈ G(Pv0) is constructed moving along the tree τ from the endpoints
to the root; when a vertex v is reached, we construct a diagram Γv formed by lines l
on scales hl ≥ hv. With these definitions we get:

K
(h)
τ,Pv0

(xv0) =
∑

Γ∈G(Pv0 )
Val(Γ) (2.42)

Note that once a structure of a cluster has been fixed, there will be a lot of diagrams
compatible with it: in fact we have a lot of different ways to contract between
themselves the lines Pv external to the each cluster Gv, once Pv0 has been fixed. We
stress some of the properties of the cluster structure we introduced:

1. The hierarchy structure of clusters provides an arrangement of endpoints which
is the same underlying the tree structure in (2.33). So, given a tree, we can
represent it as a set of clusters and viceversa, see fig. 2.4, where only the
clusters associated to nontrivial vertices are drawn.

2. Given a cluster Gv, if all the maximal subclusters Gv1 , . . . , Gvvs contained
inside Gv are thought as points, then the set of points so obtained is connected:
so it is possible to single out a set of sv − 1 lines connecting them. Such a set
will be called an anchored tree: it realizes a minimal connection between the
maximal subclusters of Gv.

3. We can associate a scale label to clusters. A cluster is said to be on scale h
if contains endpoints which are contracted by lines on scale h′ ≥ h such that
there is at least one line on scale h. By extension we can consider also the
endpoints as (trivial) clusters on scale h = 1.

4. We can associate a scale label to a line l ∈ Γ; this is defined as the label of the
smaller cluster which encloses the line.

An example of Feynman diagram, with the tree and the cluster structure associated
to it, is given in fig. 2.6
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τ =

−2 −1 0 1

1

2

3

⇔

0

−1

1 2 3 ⇐ Γ =

0

−1

2
1

3

Figure 2.6. An example of tree τ of order 3 with the corresponding cluster structure, where
only the non trivial vertices are depicted. The cluster structure uniquely identifies a tree
τ and viceversa. Down left an element of the class of Feynman diagrams compatible
with τ ; in the example all the elements of the diagram are assumed of type λ, in general
one has to consider all the different vertices in V̄0.

The final expression for the effective potential in terms of the trees and Feynman
diagrams described in this section

V̄h(ψ(≤h)) =
∞∑
n=1

∑
τ∈T ∗

h,n

∑
{hv}v∈τ

∑
{Pv}v∈τ

∫
dxv0ψ

(≤h)
Pv0

∑
Γ∈G({Pv})

Val(Γ) (2.43)

is called non renormalized expansion. This name comes from the fact that, as we
will see in the next section, it will be necessary to introduce a different expansion,
that will be called renormalized, in order to control the divergences emerging in
(2.43). In (2.43) G({Pv}) is the set of the connected Feynman diagrams compatible
with the cluster structure described by the set {Pv}.

We can write the (2.43) as a sum of kernels with fixed numbers net and nel of
external legs of type t and l:

V̄h(ψ(≤h)) =
∑

ne
l
+ne

t≥2

∫
dxP ∗v0

V
(h)
ne
l
ne
t
(xP ∗v0 )ψ(≤h)

P ∗v0
(2.44)

where the star in P ∗v0 represents that the set of |P ∗v0 | external fields is composed by
nel external fields are of type l and net of type t, that is

xP ∗v0
= {x1, . . . xne

l
; y1, . . . , yne

t
} (2.45)

ψ
(≤h)
P ∗v0

= ψlx1 . . . ψ
l
xe
nl
ψty1 . . . ψ

t
yne
t

(2.46)

and the kernels V (h)
ne
l
ne
t
are defined by:

V
(h)
ne
l
, ne
t
(xP ∗v0 ) =

∞∑
n=1

∑
τ∈Th,n

∑
{Pv}

ne
l ,n

e
t fixed

∑
Γ∈G({Pv})

∫
dxIv0\P ∗v0

Val(Γ) (2.47)
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2.2 Dimensional bounds
Let V (h);n

ne
l
ne
t

(xP ∗v0 ) be the contribution due to the trees of order n to the kernel
V

(h)
ne
l
ne
t
(xPv0 ) defined in (2.47). We are interested in bounding the following object:

||V (h);n
ne
l
, ne
t
|| = 1

βLd

∫
dxPv0 |V

(h);n
ne
l
, ne
t
(xPv0 )|

=
∑

τ∈Th,n

∑
{Pv}

ne
l ,n

e
tfixed

∑
Γ∈G({Pv})

∣∣∣∣ 1
βLd

∫
dxv0Val(Γ)

∣∣∣∣ (2.48)

Since the bounds we will derive are based only on dimensional arguments, such
bounds are called dimensional bounds. In the latter sum |P ∗v0 | = nel + net is the
number of external lines of the diagram, nel and net are the numbers of external lines
of type l or t. In the following we will use also the symbols ne∂0

and ne∂x
to indicate

the number of external lines which have a label ∂0 or ∂x respectively.
In the following we will describe how to get a dimensional bound for the contribu-

tion in the sum (2.48) coming from a generic Feynman diagram Γ. In the multiscale
integration of the effective potential, we need to consider two main sets of trees:
(1) the set of trees T >k,n contributing to the calculation of the potential V̄k with k ≥ h̄,

i.e. the trees with root at scale k and n endpoints at scale 1. The Feynman
diagrams compatible with these trees have propagators at scales hv > h̄, whose
behavior is described by (2.14).

(2) the set of trees T <h,n contributing to the calculation of the potential V̄h with
h < h̄. This may be conveniently seen as the set of trees with root at scale h
and n endpoints at scale (h̄+ 1), whose values correspond to the terms in V̄h̄
calculated as in step (1). The Feynman diagrams compatible with these trees
have propagators at scales hv ≤ h̄, whose behavior is described by (2.15). It
has to be stressed that the integration over the scale labels [h̄+ 1, 0] gives rise
to vertices at scale h̄ with every possible number of external legs. In order to
simplify the discussion, in the rest of the chapter we will consider only the case
in which the vertices at scale h̄ are of the same type of the vertices of the original
potential V0. In the two dimensional case also the vertex with six plain legs will
be considered, for reasons that will become clear at the end of this section. In
appendix (A.5) we show that the discussion is not changed when we consider
more general vertices.

From now on we will use the word “half–line” to refers to the fields ψl,t and the
word “line” when two of these fields are contracted. Referring to

∫
dxv0 |Val(Γ)|, let’s

consider the following steps.
a) We perform the integration over the xv0 variables along the lines of an anchored

tree which realizes a minimal connection inside each subclaster Gv with v > v0.
The anchored tree is made by ∑v>v0(sv − 1) lines and the following property
may be proved by induction:∑

v not e.p.
(sv − 1) = mv0 − 1 (2.49)
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with mv0 = |xv0 | the number of endpoints following v0 in τ . Then, using the
lemma 2.1 we can use the decaying part of the ghv(x) propagator to bound each
of the (sv − 1) integrations

∫
ddx with their dimensional estimate γ−δIhv , where

δI = d

2 + 1 for h > h̄

δI = d+ 1 for h ≤ h̄ (2.50)

being γ2h ' k2
0 + k4 for h > h̄ and γ2h ' k2

0 + k2 for h ≤ h̄. Note that, at the
end, all the integrations have been performed up to one, corresponding to a single
endpoint of the tree: such an integration gives a factor (βLd).

b) We bound each contracted half–line in Γ with its dimensional estimate, using
lemma 2.1. If we indicate with γδjh with j = l, t the dimensional estimate for the
fields ψl,tx on scale h we have

δl = δt = d

4 for h > h̄

δl = d+ 1
2 , δt = d− 1

2 for h ≤ h̄ (2.51)

c) For each derivative ∂0 or ∂x acting on a propagator g(hv)(x) we get an extra
contribution γδ0hv or γδ1hv to the dimensional estimates with

δ0 = 1 , δ1 = 1
2 for h > h̄

δ0 = δ1 = 1 for h ≤ h̄ (2.52)

Then, for each contracted half–line bringing a label ∂0 or ∂x we have a γδ0 or
γδ1hv factor in the bound.

d) We assume each initial coupling to be bounded by a constant η. With “initial
coupling” we mean the couplings {|ε|, |ν0|} at scale h = 0 for the τ> trees and
the couplings at scale h̄ for the trees τ< .

Putting together the previous estimate and taking into account the fact that the
number of lines of a diagram of order n is bounded by Cn, we get:
∥∥Val(Γ)

∥∥ = 1
βLd

∫
dxv0 |Val(Γ)|

≤ CnCd(Pv; ε, ρ0, R0)
∏

v not e.p.
γ−δIhv(sv−1)γ

(δlñin
l,v+δtñin

t,v+δ0ñin
∂0,v

+δ1ñin
∂x,v)hv

(2.53)

where ñinj,v is the number of half–lines of j-type contained in the cluster corresponding
to the vertex v but in none of the more inner clusters, the latter corresponding to the
vertices which follow v. Then 1

2
∑
j=l,t ñ

in
j,v is the number of contractions occurring

on scale hv.
The factor Cd(Pv; ε, ρ0, R0) contains the dependence of a generic Feynman graph

with labels {Pv} on the parameters ε, ρ0 and R0; it also depends on the number n of
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vertices, on the spatial dimension and on the region of momenta we are considering.
In order not to overwhelm the discussion, its calculation is postponed in appendix
(A.3). In the following we will only report its value in the different cases.

Now, for each factor γhvδv in (2.53) we can extract a factor γhδv (with h the
scale label of the vertex v0) and then rewrite the remaining (hv − h) factors using
the following properties, which can be proved by induction:∑

v not e.p.
ñinj,v = ninj,v∑

v not e.p.
(hv − h) (sv − 1) =

∑
v not e.p.

(hv − hv′) (mv − 1)
∑

v not e.p.
(hv − h) ñinj,v =

∑
v not e.p.

(hv − hv′)ninj,v (2.54)

where

mv is the total number of vertices contained in the cluster Gv. In the folloing we
shall consider only the case in which the vertices v ∈ τ are of same type of the
vertices of the original potential V̄0. However the extension of the result will
be trivial. We denote with m4,v,m

′
4,v,m

′′
4,v,m3,v,m

′
3,v and m2,v the number of

vertices of type λ, λ′, λ′′, µ, µ′and ν contained in the cluster Gv and with m6,v
the number of vertices with six plain legs, which will be considered only in the
two dimensional case, for h ≤ h̄.

mv = m6,vχ(d = 2, h ≤ h̄) +m4,v +m′4,v +m′′4,v +m3,v +m′3,v +m2,v (2.55)

nin
j,v is the total number of contracted half–lines contained in the cluster Gv, i.e. lines

which are contracted at scale equal or greater than hv. In particular we have

nint,v = 6m6,vχ(d = 2, h ≤ h̄) + 4m4,v + 2m′4,v + 2m3,v + 2m2,v − net,v
ninl,v = 2m′4,v + 4m′′4,v +m3,v + 3m′3,v − nel,v
nin∂,v = −ne∂,v (2.56)

Note that for h ≥ h̄, since the propagator does not distinguish the lines l from t’s,
the vertices with same number of external legs have the same dimensional behavior.
Then it is sufficient to consider the total number of vertices with fixed number of
external legs, e.g. m̄4,v = m4,v +m′4,v +m′′4,v. Using the (2.54)–(2.56) we can rewrite
the product in (2.53) as

γh δ̃v0
∏

v not e.p.
γ(hv−hv′ ) δ̃v (2.57)

with γhδ̃v0 coming from

γ
h
∑

v

(
−δI(sv−1)+δlñin

l,v+δtñin
t,v+δ0ñin

∂0,v
+δ1ñin

∂x,v

)
(2.58)
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and δ̃v depending on the region of momenta we are considering. In particular for
h̄ < h ≤ 0 and h ≤ h̄ we have respectively

δ̃>v = d

2 + 1− d

4n
e
v −

1
2n

e
∂x,v − n

e
∂0,v +

(
d

2 − 1
)
m̄4,v +

(
d

4 − 1
)
m̄3,v − m̄2,v

δ̃<v = d+ 1−
(
d+ 1

2

)
nel,v −

(
d− 1

2

)
net,v − ne∂,v + (d− 3)m4,v

+ (d− 1)m′4,v + (d+ 1)m′′4,v +
(
d− 3

2

)
m3,v +

(
d+ 1

2

)
m
′
3,v − 2m2,v

(2.59)
with ne∂,v = ne∂0,v

+ne∂x,v
. In the last expression it turns to be convenient to recompose

the factors depending on the number of vertices, as in the following example:
hm2,v0 +

∑
v not e.p.

(hv − hv′)m2,v =
∑
v e.p.

hv χ(m2,v) (2.60)

where χ(m2,v) is equal to 1 if v is of type m2, otherwise is zero. For each endpoint
hv = 1, but we prefer to maintain the writing hv in (2.60) for reasons that will
become clear in the following section. Moving the contribution of the vertices to the
endpoint as done in (2.60) and writing explicitly the factor dependence on ε, ρ0 and
R0 (see appendix A.3 for details) the (2.53) becomes:

Region h̄ < h ≤ 0

∥∥Val(Γ)
∥∥ ≤ Cn (ρ0R

−2
0

) (
λε−1

)1−
ne
l
+ne

t
2 γh δ

>
v0

∏
v not e.p.

γ(hv−hv′ ) δ>v

∏
v e.p.

[
λ γhv(

d
2−1)]χ(m4,v) [√

λε γhv(
d
4−1)]χ(m3,v)

γ−hvχ(m2,v) (2.61)

with

δ>v = d

2 + 1− d

4n
e
v −

1
2n

e
∂x,v − n

e
∂0,v (2.62)

where the expression of C(Pv; ε, ρ0, R0) in the region h̄ < h ≤ 0 is calculated in
(A.33). In (2.61) ρ0R

−2
0 is the dimension fixing factor (it is an action density in

space time), while λε−1 = (ρ0R
d
0)−1 is an adimensional factor that for the purposes

of this chapter may be though equal to one. The reason why we are keeping this
factor is related to the study of the two dimensional case and will be sufficiently
highlighted in the course of the work, see in particular sec. 3.5.2.

Region h ≤ h̄

In the three dimensional case the following bound holds:∥∥Val(Γ)
∥∥

3d ≤ C
n
(
ρ0R

−2
0

)
C̄3d(Pv; ε, λ) γh δ

3d,<
v0

∏
v not e.p.

γ(hv−hv′ ) δ
3d,<
v

∏
v e.p.

(
λε

3
2γ−2hv

)χ(m2,v)
γhv[2χ(m′4,v)+4χ(m′′4,v)+2χ(m′3,v)] (2.63)
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with

C̄3d(Pv; ε, λ) =
(
λε−

1
2
)L
ε−3+2ne

l+n
e
t+

1
2n∂x (2.64)

δ3d,<
v = 4− 2nel,v − net,v − ne∂,v (2.65)

see (A.44) for a calculation of C̄3d(Pv; ε, λ). Here L is the loop number, equal to
L = 1 +m4 + 1

2m3− 1
2n

e
l −

1
2n

e
t . With respect to the bound in the higher momentum

region, the order in the small parameter ε for a certain Feynman diagram with fixed
{Pv} depends on the number of loops, instead than the number of vertices. We
again remark that in this chapter ε = λρ0R

d
0 and λ may be identified, since we can

consider ρ0R
2
0 of order one. In the two dimensional case the following bound holds:∥∥Val(Γ)

∥∥
2d ≤ C

n
(
ρ0R

−2
0

)
C̄2d(Pv; ε, λ) γh δ

2d,<
v0

∏
v not e.p.

γ(hv−hv′ ) δ
2d,<
v

∏
v e.p.

(
εγ−2hv

)χ(m2,v)
λχ(m6,v)γhv[−χ(m4,v)− 1

2χ(m3,v)+χ(m′4,v)+3χ(m′′4,v)+ 3
2χ(m′3,v)]

(2.66)
with

C̄2d(Pv; ε, λ) = λLε−2+ 3
2n

e
l+

1
2n

e
t+

1
2n∂x (2.67)

δ2d,<
v = 3− 3

2n
e
l,v −

1
2n

e
t,v − ne∂,v (2.68)

see (A.45) for a calculation of C̄2d(Pv; ε, λ). The factors δ>v and δ<v are referred to
as the scaling dimensions of the kernels Gv with nev = nel,v + net,v external fields. The
factors associated to the endpoints are not important in the previous estimates and
give constant factors, however notice that the dimension appearing in front to the
χ(mv) functions depend on the dimension d, apart for the vertex m2,v.

The above estimates are of course finite, but the problems come out if one wants
to perform the sum over the scales {hv}v∈τ of τ ∈ Th,n in the limit h→ −∞. In fact
in order to get this sum we need the unrenormalized dimension δv to be negative,
being hv − hv′ ≥ 1 (see the lemma A.2). This is not true for each diagram or cluster,
in particular

Region h̄ < h ≤ 0. The “dangerous” diagrams giving δ>v ≥ 0, neglecting for the
moment the contributions coming from the derivatives, are those for which

nev ≤ 2 + 4
d

{
nev ≤ 4 for d = 2
nev ≤ 3 for d = 3

(2.69)

Region h ≤ h̄. If net,v = 0 the dangerous diagrams are those for which

nel,v ≤ 2 (2.70)

for all the spatial dimensions. If nel,v = 0 then the “dangerous” diagrams for
d = 2, 3 satisfies

net,v ≤ 2 d+ 1
d− 1

{
net,v ≤ 6 for d = 2
net,v ≤ 4 for d = 3

(2.71)
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Figure 2.7. Relevant and marginal clusters for d = 3 and h̄ < h ≤ 0. The solid lines
represent the ψt fields, the dashed lines the ψl fields. The number under each diagram
is its scaling dimension; for each external derivatives with respect to x0 or x the scaling
dimension is decreased by one or one–half respectively. The local part of the diagrams
on the second line is zero.

In the renormalization group approach, the diagrams with zero dimension are called
marginal, while the diagrams with positive dimension are called relevant.

In the following we will be interested in the local part of the clusters Gv. By
parity reasons some of the local diagrams are vanishing; in particular, indicating with
V̂

(hv)
ne
l
,ne
t
(0, . . . , 0) =

∫
dx1 . . . dxne

l
+ne

t
V

(hv)
ne
l
,ne
t
(x1, . . . , xne

l
+ne

t
) the local part of a cluster

Gv with nel,v external legs of type ψl and net,v external legs of type ψt we have

V̂
(hv)

01 (0) = 0

V̂
(hv)

11 (0, 0) = 0

V̂
(hv)

21 (0, 0, 0) = V̂
(hv)

03 (0, 0, 0) = 0 (2.72)

V̂
(hv)

31 (0, . . . , 0) = V̂
(hv)

13 (0, . . . , 0) = 0

V̂
(hv)

41 (0, . . . , 0) = V̂
(hv)

23 (0, . . . , 0) = V̂
(hv)

05 (0, . . . , 0) = 0

The previous identities guarantee that the only diagrams with two, three or
four external legs which can be generated at each scale are equal to the ones in
the original potential. They are some of the consequences of a more general Ward
identity, see in chapter 4.12 eq. (4.16). The marginal and relevant diagrams (with
non vanishing local part) with their dimensions, for both regions h > h̄ and h ≤ h̄
and for two and three spatial dimensions, are showed in figures 2.7 – 2.10, where the
solid lines represent the ψt fields and the dashed lines the ψl fields.

Since the diagrams for which δv ≤ 0 give “dangerous” contribution to the
effective potential, they need to be “renormalized”, that means that we need to
introduce a different expansion such that the contributions coming from them are
treated in a special way. Before we describe the renormalization procedure, we may
wonder what happens if we impose the requirement δ>v , δ<v < 0 for every diagram Γ,
which corresponds to remove “by hand” the dangerous subgraphs. If we make this
assumption, the contribution of order n to the kernel V (h);n

nl, nt of effective potential at
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Figure 2.8. Relevant and marginal clusters for d = 3 and h ≤ h̄. The scaling
dimension for each diagram is reported. For each external derivatives with respect to x0
or x the scaling dimension is decreased by one. The diagrams on the second line have
vanishing local part.

scale h with fixed external legs (nl, nt) can be bounded as follows:

||V (h);n
nl, nt

|| ≤
∑

τ∈Th,n

∑
{Pv}

nl, nt fixed

∑
G∈G({Pv})

CnCd(Pv; ε, ρ0, R0) γhδv0
∏

v not e.p.

1
sv!

γ(hv−hv′ )δv

≤
∑

τ∈Th,n

∑
{Pv}

CnCd(Pv; ε, ρ0, R0) γhδv0
∏

v not e.p.

(sv!)2

sv!
γ
− 1
d+3 (hv−hv′ )−

d
4(d+3)n

e
v

≤ CnCd(Pv; ε, ρ0, R0) γhδv0n! (2.73)

where in the first line

i) for each vertex v we bounded the number of Feynman diagrams formed by sv
elements and with Pv external lines by Cn1 (2sv!) ≤ Cn2 (sv!)2, see lemma A.4.
We see as the factor 1/sv! arising from the tree expansion is not enough to
compensate the number of Feynman diagrams and a factor sv! survives in the
estimate.

ii) the following bound, holding both for δ>v and δ<v ,

δv(hv − hv′) ≤ −
1

d+ 3(hv − hv′)−
d

4(d+ 3)n
e
v (2.74)

comes from the conditions δv ≤ −1, nev ≥ 2 and hv − hv′ ≥ 1.

Then, in the second line

i) we have bounded the sum on the labeled trees of the factors γ−
1
d+3 (hv−hv′ ) with

Cn, see lemma A.2, pag. 155;

ii) we have bounded the sum of the factors γ−
d

4(d+3)n
e
v over the choices of labels

{Pv} with Cn, see lemma A.5, pag. 156;

iii) we have used the bound ∏v sv! ≤ n! ;
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Figure 2.9. Relevant and marginal diagrams for d = 2 and h̄ < h ≤ 0, with their
scaling dimensions. Note that in the region h > h̄ there is no distinction between the ψl
and ψt fields. For each external derivatives with respect to x0 or x the scaling dimension
is decreased by one or one–half respectively. The local part of the diagrams on the third
line is zero.

iv) for simplicity of notation we have used always the same constant C, even if it is
changing in each of the previous estimates.

The bound (2.73) shows that if we manage to find an expansion such that the scaling
dimension is negative for each cluster, we can take the limit h → −∞ and prove
that the effective potential is order by order finite, with the coefficient of arbitrary
order n bounded by (const.)nn!. These are the so called “n!-bounds”.

On the other hand, due to the presence of the n! in (2.73), the estimate for the
contribution of order n to the effective potential at scale h is not summable with
respect to n, and we cannot prove the theory to be well defined, even in the case
with δv < 0, without the help of independent methods with respect to the ones of
perturbative theory1.

2.3 Localization and renormalized expansion

In section 2.1 we introduced a perturbative expansion for the effective potential
at scale h and found estimates on the terms contributing to it which are finite for
each finite h but not uniform in the limit h→ −∞, due to the presence of marginal
and relevant couplings. In this section we will describe how to construct a new
perturbative expansion, the renormalized expansion, which will allow us to overcame
the latter problem and prove n! bounds on the effective potentials.

1The problem of proving the convergence of the series defining the quantities of interest is a
problem intrinsic at all the bosonic theories. In fact, since these theories are not analytic in λ (they
only have sense for λ positive) there is no hope to find a perturbative expansion with coefficients
without the n! term.
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Figure 2.10. Relevant and marginal clusters for d = 2 and h ≤ h̄. The local part
of the diagrams on the second line is zero. With respect to the 3d case there is an
additional marginal diagram (V (h)

04 ) and the scaling dimensions of V (h)
04 and V (h)

12 are
higher, compare with fig. 2.8.

The first step in the costruction of the renormalized expansion is the definition of
the localization operator L that acts on the effective potential such that, if R = 1−L
then

V̄(h) = LV̄(h) +RV̄(h) (2.75)

In the following we will call LV̄(h) the relevant or local part of the effective potential
and RV̄(h) the irrelevant part. The action of L on the effective potential gives

LV̄(h)(ψ(≤h)) =
∑
i

ri,hF
i(ψ(≤h)) (2.76)

where F i(ψ(≤h)) is the integral of a monomial in the ψ fields and ri,h are called the
running coupling constants at scale h. The explicit form of the functions F i(ψ(≤h))
will depend on the dimension d and on the value of h with respect to h̄, then we
will discuss it later. For the moment we see that the definition of the localization
operator leads to a new tree expansion, in which a new label, with value L or R
appears. The renormalized tree of lower orders are shown in figure 2.11 and 2.12.
For what concern figure 2.11 note that we on the second line an endpoint at scale
h = 0 is defined, representing the sum of all the trees with an index L on the non
trivial vertex at scale h = 0. In figure 2.12 the latter construction is carried on the
second step of the perturbative expansion. As a consequence the trees giving −LV̄−2
have not only endpoints at scale h = 1 as usual, but also endpoints at scale h = 0,
representing the local terms −LV̄−1. In the same way we introduce the definition of
endpoints at scale h = −2, representing −LV̄−2.

The iteration of the latter definitions and constructions leads to the renormalized
expansion for the effective potential at scale h, which is obtained with some slight
modifications of the unrenormalized expansion described in section 2.1:

1) with each vertex different from v0 and from the endpoints a label R is associated
to;
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−RV̄−1 = +R R + R + R + · · ·

−1 0 1 −1 0 1 −1 0 1 −1 0 1

−LV̄−1 =

−1 0 1

= +L L + L + L + · · ·

−1 0 1 −1 0 1 −1 0 1 −1 0 1

Figure 2.11. The renormalized expansion at lowest order. Note the definition of the
endpoint at scale h = 0 given on the second line: it corresponds to the sum of all the
possible trees whose root has indices h = 0 and L.

2) with the vertex v0 is associated the index L or R according as the tree contributes
to the relevant or irrelevant part of V̄h;

3) there exist endpoints with scale labels in [h+ 2, 0]. An endpoint with scale label
h∗ < 1 corresponds to −LV̄(h∗−1). An endpoint with scale h = 1 corresponds to
a term LV̄I or RV̄I , with V̄I the correction to Bogoliubov potential.

A possible tree contributing to the renormalized expansion for V̄h is depicted in
picture 2.13.

Introducing a localization procedure corresponds in defining iteratively some
new effective couplings. Let denote with rh = {rih} the vector of the endpoints at
scale h of the renormalized tree expansion. Here the index i refers to the different
contribution to LV̄h. Let us consider the set of the trees with root at scale (h− 1)
and label L associated to the vertex v0, at scale h; then the renormalized expansion
provides a method to calculate the coupling rih−1 as a function of the couplings at
scales greater than (h− 1). In particular the sum of the trees with index L on v0
provides the form of the beta function defined by the following relation:

rh−1 = Γ rh + βh (rh, rh+1, . . . , r0) (2.77)

where Γ is a suitable linear transformation we shall define later on. The effective
couplings rh are called the running coupling constants at scale h. Referring to fig.
2.12 the beta function β−1 is given by the sum of the trees on the second and third
lines, with the index L on the vertex v0 at scale −1 and n > 1 endpoints; the two
diagrams on the first line of fig. 2.12 corresponds respectively to r−1 and r0.
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−LV̄−2 = L = L

−2 −1 0 1 −2 −1 0 1

+ L R + L
R

R + L
R

−2 −1 0 1 −2 −1 0 1 −2 −1 0 1

+ L R + L
R
R

R

+ L
R

R + L
R

+ . . .

−2 −1 0 1 −2 −1 0 1 −2 −1 0 1 −2 −1 0 1

Figure 2.12. The second iterative step of the renormalized expansion. The roots of the
trees in the figure are at scale h = −2, while the endpoints are both at scale h = 0 and
h = 1.The latter correspond to −LV̄−1, see fig. 2.11.

Once this definitions have been introduced we are faced with two problems: the
first one is to prove that, under some assumptions on the running coupling constants,
the beta function is well defined order by order (this will be done using the Feynman
diagrams expansion in way similar to the one used in the previous section). The
second problem is to control the flow of the running coupling constants generated by
the beta function, in order to prove that there exist some initial values r0 such that
the flow remains finite and the assumptions on rh, which have been used at first,
are verified. The rest of the chapter is devoted to prove the existence of the beta
function; then in chapter 3 we will discuss how to control the flow of the running
coupling constants. In order to estimate the contributions to the beta function
we need to define explicitly the action of the localization operator for the two and
three dimensional cases and in the two regions h ≥ h̄ and h < h̄. The discussion
of the section 2.2 suggests that the action of L would be not trivial only on the
contribution to V̄h coming from the marginal and relevant clusters shown in fig. 2.7
– 2.10. Let consider the kernels (2.47). The action of L on a marginal kernel will
correspond to extract the local part of that kernel, e.g. given the kernel V (h)

20 (x, y)
which is marginal for h ≤ h̄ we define

L
∫
dxdyV

(h)
20 (x, y)ψl,(h)

x ψl,(h)
y :=

∫
dxdyV

(h)
20 (x, y)ψl,(h)

x ψl,(h)
x (2.78)

Then, the relevant kernel will be localized trough a suitable Taylor expansion. For
example, given the kernel V (h)

02 (x, y) which is relevant with scaling dimension 2 for
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r v0

v

h h+ 1 hv 0 1

Figure 2.13. An example of renormalized tree contributing to the effective potential
at scale h. With each vertex different from v0 and from the endpoints a label R is
associated, which is not reported in the picture; to the vertex v0 is associated the index
L or R. The endpoints with scale h∗ ∈ [h+ 2, 0] represent −LV̄(h∗−1); the endpoints at
scale 1 corresponds as before to the elements of V̄0.

h ≤ h̄ we define

L
∫
dxdyV

(h)
20 (x, y)ψt,(h)

x ψt,(h)
y :=∫

dxdyV
(h)

02 (x, y)ψt,(h)
x

(
ψt,(h)
x +

3∑
i=0

(yi − xi)∂iψt,(h)
x

+ 1
2

3∑
i,j=0

(yi − xi)(yj − xj)∂i∂jψt,(h)
x

)
(2.79)

The action of the L operator results even plainer in momentum space. Let us rewrite
the expression for the effective potential (2.44) in the momentum space:

V̄(h)(ψ≤h) =
∑
ne
l
, ne
t

∫
dd+1k1
(2π)d+1 . . .

dd+1knl
(2π)d+1

dd+1p1
(2π)d+1 . . .

dd+1pnt
(2π)d+1

V̂ h
ne
l
,ne
t

(
{ki}, {pj}

)
δ
( ne

l∑
i=1

ki +
ne
t∑

j=1
pi
) ne

l∏
i=1

ψlki

 ne
t∏

j=1
ψtpj

 (2.80)

Then (2.79) and (2.78) correspond to the following actions on the kernels of the
potential in momentum space:

L V̂ (h)
02 (k, p) := V̂

(h)
20 (0, 0)

L V̂ (h)
02 (k, p) := V̂

(h)
02 (0, 0) + k∂kV̂

(h)
02 (0, 0) + 1

2k
2∂2
kV̂

(h)
02 (0, 0) (2.81)
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Following this plan we define the localization operator in the regions h̄ < h ≤ 0 and
h ≤ h̄ as follows.

2.3.1 Localization for h̄ < h ≤ 0

We remind that in this region the fields ψtx and ψlx have the same dimensional
behavior, then the dimensional estimate of the kernels of the effective potentials
W

(h)
ne
l
ne
t
depends only on the total number of external legs ne = nel +net , independently

on their type. That’s why the localization procedure for kernels with the same
number of external legs will be the same.

Three dimensions

In the three dimensional case we get:

L3d
> V̂

(h)
12 (k1, k2, k3) := V̂

(h)
12 (0, 0, 0)

L3d
> V̂

(h)
30 (k1, k2, k3) := V̂

(h)
30 (0, 0, 0)

L3d
> V̂

(h)
02 (k, p) := V̂

(h)
02 (0, 0) + 1

2

3∑
i,j=1

ki kj ∂ki∂kj V̂
(h)

02 (0, 0)

L3d
> V̂

(h)
20 (k, p) := V̂

(h)
20 (0, 0) + 1

2

3∑
i,j=1

ki kj ∂ki∂kj V̂
(h)

02 (0, 0)

L3d
> V̂

(h)
11 (k, p) := k0 ∂0V̂

(h)
11 (0, 0)

L3d
> V̂

(h)
ne
l
ne
t
(k1, . . . , kne

l
+ne

t
) := 0 otherwise (2.82)

We have not included in (2.82) some of the possibly local terms since they are
indentically zero for symmetry reasons. In particular the term∫

dxψt,(h)
x ∂jψ

t,(h)
x =

∫
dk ψ

t,(h)
k ikj ψ

t,(h)
−k (2.83)

is the integral of a total derivative with the fields satisfying periodic boundary
conditions. Besides the terms

∫
dkψ

l,(h)
−k ψ

t,(h)
k and

∫
dkψ

l,(h)
−k ikψt,(h)

k are identically
zero for parity reasons. We will use the following symbols to indicate the integrals
of monomials of the fields given by the localization procedure:

F
(h)
ne
l
,ne
t

=
∫
dk1 . . . dkne

l
dp1 . . . dpne

l
ψ
l, (h)
k1

. . . ψ
l, (h)
kne
l

ψt, (h)
p1 . . . ψt, (h)

pne
t

δ
(
k1 + . . .+ pne

t

)
F

(h)
α, ∂0α′

=
∫
dkdpψ

α,(h)
k ip0 ψ

α′,(h)
p δ(k + p)

F
(h)
∂0α, ∂0α′

=
∫
dkdpψ

α,(h)
k (−p2

0)ψα′,(h)
p δ(k + p)

F
(h)
∂xα, ∂xα′

=
∫
dkdp · ψα,(h)

k (−p2)ψα′,(h)
p δ(k + p) (2.84)
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L3d
> V̄h =

γ
h
4 µ̄h

+
γ
h
4 µ̄′h

+
γhν̄h

+
γhz̄h

+ ∂x ∂x

āh
+ ∂0

ēh
+ ∂x ∂x

ā′h

Figure 2.14. Local potential for d = 3 and h̄ < h ≤ 0. The running coupling constants
are defined with their dimensions, e.g. being the local term with two external t fields
relevant with dimension δ> = 1 the corresponding running coupling is defined as
γhνh.The diagram with two external derivatives with respect to k0 has negative scaling
dimension, however it is convenient to localize it, as will result clear in the next chapter.

The previous discussion implies that the local potential for d = 3 and h̄ < h < 0 is
of the form:

L3d
> V̄(h)(ψ) = ρ0R

−2
0

(
γ
h
4 µ̄h F12 + γ

h
4 µ̄′hF30 + γhν̄h F02 + 1

2 z̄h F20

+ 1
2 āh F∂xt, ∂xt + 1

2 ā
′
h F∂xl, ∂xl + ēh Ft, ∂0t

)
(2.85)

as graphically depicted in fig. (2.14), where the terms with derivatives on the
external legs represent the monomials F (h)

∂iα, ∂iα′
defined in (2.84). The running

coupling constants rh in (2.85) are defined with in front their dimensional estimate,
e.g. the running coupling constant corresponding to the local term with two external
t fields is defined as γhνh.

Two dimensions

Since the two legged vertices have the same scaling dimensions than in the three
dimensional case, the localization procedure for V̂ (h)

20 , V̂ (h)
02 and V̂

(h)
11 is the same

defined in (2.82). For what concern the diagrams with more than two legs we have:

L2d
> V̂

(h)
04 (k1, . . . , k4) := V̂

(h)
04 (0, . . . , 0)

L2d
> V̂

(h)
22 (k1, . . . , k4) := V̂

(h)
22 (0, . . . , 0)

L2d
> V̂

(h)
40 (k1, . . . , k4) := V̂

(h)
40 (0, . . . , 0)

L2d
> V̂

(h)
12 (k1, k2, k3) := V̂

(h)
12 (0, 0, 0)

L2d
> V̂

(h)
30 (k1, k2, k3) := V̂

(h)
30 (0, 0, 0)

L2d
> V̂

(h)
ne
l
ne
t
(k1, . . . , kne

l
+ne

t
) := 0 (2.86)
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L2d
> V̄h =

λ̄h
+

λ̄′h
+

λ̄′′h

+
γ
h
2 µ̄h

+
γ
h
2 µ̄′h

+
γhν̄h

+
γhz̄h

+ ∂x ∂x

āh
+ ∂0

ēh
+ ∂x ∂x

ā′h

Figure 2.15. Local potential for d = 2 and h̄ < h ≤ 0. Note that the scaling dimension
of the two–legged diagrams is independent on the spatial dimension.

In the previous definition we have taken into account the fact that the terms

∫
dx
(
ψα,(h)
x

)2
∂αψ

l,(h)
x =

∫
dk
(
ψ
t,(h)
k

)2
ikj ψ

α,(h)
−k ∀j = 0, . . . , d (2.87)

with α = l, t are zero being the integral of a total derivative with the fields satisfying
periodic boundary conditions. On the other side the term

∫
dk
(
ψ
t,(h)
k

)2
i ki ψ

l,(h)
k for

each i = 0, . . . , d is identically zero by parity reasons. The local potential for d = 2
and h > h̄ is of the form

L2d
> V̄h(ψ) = ρ0R

−2
0

(
λ̄h F04 + λ̄′h F22 + λ̄′′h F40 + γ

h
2 µ̄h F12 + γ

h
2 µ̄′h F30 + γhν̄h F02

+ 1
2 z̄h F20 + 1

2 āh F∂xt, ∂xt + 1
2 ā
′
h F∂xl, ∂xl + ēh Ft, ∂0t

)
(2.88)

as graphically depicted in fig. (2.15).

The values of the running coupling constants at h = 0, both in the three and
two dimensional case, are

λ̄0 = 2λ̄′0 = λ̄′′0 = ε

16
µ̄0 = µ̄′0 = ε

4
√

2

ν̄0 = ν

2R
2
0

z̄0 = ε ā0 = ā′0 = ē0 = 0 (2.89)

with the correction to the chemical potential ν fixed in such a way that the flow of
effective chemical potential is bounded for each h, see sec. 3.28.
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2.3.2 Localization for h ≤ h̄

Three dimensions

The action of the localization operator for h ≤ h̄ and in the three dimensional case,
which we denote with L3d

< is defined as follows. On the marginal kernels

L3d
< V̂

(h)
04 (k1, . . . , k4) := V̂

(h)
04 (0, . . . , 0)

L3d
< V̂

(h)
12 (k1, k2, k3) := V̂

(h)
12 (0, 0, 0)

L3d
< V̂

(h)
20 (k, p) := V̂

(h)
20 (0, 0)

L3d
< V̂

(h)
02 (k, p) := V̂

(h)
02 (0, 0) + 1

2

3∑
i,j=0

kikj∂ki∂kj V̂
(h)

02 (0, 0)

L3d
< V̂

(h)
11 (k, p) := k0∂0V̂

(h)
11 (0, 0) (2.90)

For the remaining kernels

L3d
< V̂

(h)
ne
l
ne
t
(k1, . . . , kne

l
+ne

t
) := 0 (2.91)

In the definition of the localization procedure it has been taken into account the fact
that some of the diagrams one would have to include in the localization procedure
are zero by symmetry reasons (as also detailed in the discussion of the localization
procedure in the region h̄ < h ≤ 0). The previous discussion implies that the local
potential for d = 3 and h < h̄ is of the form:

L3d
< V̄(h)(ψ) = ρ0R

−2
0

(
λhF

(h)
04 + µhF

(h)
12 + γ2hνhF

(h)
02 + 1

2 zh F
(h)
20

+ 1
2 ah F

(h)
∂xt, ∂xt

+ 1
2 bh F

(h)
∂0t, ∂0t

+ eh F
(h)
l,∂0t

)
(2.92)

as graphically depicted in fig. 2.16, where the terms with derivatives on the external
legs represent the monomials F (h)

∂iα, ∂iα′
defined in (2.84).

The initial values rh̄ of the running coupling constants at the beginning of the
second region are calculated studing the beta function in the region h > h̄, as showed
in section 3. One finds that:

λh̄ = λ0
(
1 +O

(
λε1/2

))
µh̄ = µ0

(
1 +O

(
λε1/2

))
zh̄ = z0

(
1 +O

(
λε1/2

))
νh̄ = O

(
λε1/2

)
ah̄ = O

(
λε1/2

)
eh̄ = O

(
λε1/2

)
bh̄ = O

(
λε−1/2

) (2.93)

Comparing 2.93 with 2.89 one notices that the integration on the fields in the region
h > h̄ has only effect on the higher order correction to the initial values of the
coupling constants at scale 0.
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L3d
< V̄3d

h =
λh

+
µh

+
γ2hνh

+
zh

+ ∂0 ∂0

bh
+ ∂x ∂x

ah
+ ∂0

eh

Figure 2.16. Local potential for d = 3 and h ≤ h̄. The running coupling constants
are defined with their dimensions, e.g. being the local term with two external t fields
relevant with dimension δ = 2 the corresponding running coupling is defined as γ2hνh.

Two dimensions

Since the two legged vertices have the same scaling dimensions than in the three
dimensional case, the localization procedure for V̂ (h)

20 , V̂ (h)
02 and V̂ (h)

11 will be the same
defined in (2.90). The action of the L operator on the marginal and relevant kernels
with more than two legs is defined as follows:

L2d
< V̂

(h)
06 (k1, . . . , k5) := V̂

(h)
06 (0, . . . , 0)

L2d
< V̂

(h)
04 (k1, k2, k3) := V̂

(h)
04 (0, . . . , 0)

L2d
< V̂

(h)
12 (k, p) := V̂

(h)
12 (0, 0) (2.94)

where
∫
dx(ψt,(h)

x )3 ∂iψ
t,(h)
x = 0 since it is a total derivative of the fields. The

localization gives zero on the irrelevant kernels. Then the local potential for d = 2
and h < h̄ is of the form:

L2d
< V̄h(ψ) = ρ0R

−2
0

(
λ6,h F06 + γhλh F04 + γ

h
2 µh F12 + γ2hνh F02

+ 1
2 zh F20 + 1

2 ah F∂xt, ∂xt + 1
2 bh F∂0t, ∂0t + eh Ft, ∂0t

)
(2.95)

as graphically depicted in fig. 2.17. The initial values of the running coupling
constants at the beginning of the second region are calculated studing the beta
function in the region h ≥ h̄, as showed in section 3. One finds:

λh̄ = 1
16 (1 +O (λ)) µh̄ =

√
2

4
√
ε (1 +O (λ))

zh̄ = z0 (1 +O (λ)) νh̄ = O (λ)

ah̄ = O (λ) eh̄ = O (λ) bh̄ = O
(
λε−1) (2.96)

2.3.3 Effect of the renormalization procedure

The renormalization procedure defined in the previous section is introduced precisely
to guarantee that each kernel of the renormalized expansion by construction has a
negative scaling dimension. We will prove this statement only in the case h ≤ h̄ and
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L2d
< V̄h =

λh6
+

γhλh
+

γ
h
2 µh

+
γ2hνh

+
zh

+ ∂0 ∂0

bh
+ ∂x ∂x

ah
+ ∂0

eh

Figure 2.17. Local potential for d = 2 and h ≤ h̄. The running coupling constants are
defined with their scaling dimensions. With respect to the three dimensional case the
three and four legged terms are relevant and there is a new six–legged marginal coupling.

d = 3 and in this section we will use simply L to refer to L3d
< . The extension of the

same ideas to the region h > h̄ and to d = 2 is trivial.
Let consider the kernel V̂ (h)

20 (k1, k2) and its local part, see (2.90). The action of
the R operator on this kernel corresponds to subtract from it the first term of its
Taylor expansion around k1 = k2 = 0:

RV̂ (h)
20 (k1, k2) = V̂

(h)
20 (k1, k2)− V̂ (h)

20 (0, 0)

= V̂
(h)

20 (k1, k2)− V̂ (h)
20 (k1, 0) + V̂

(h)
20 (k1, 0)−W (h)

20 (0, 0)

=
∫ 1

0
dt
d

dt
V̂

(h)
20 (k1, tk2) +

∫ 1

0
dt
d

dt
V̂

(h)
20 (tk1, 0)

=
∫ 1

0
dtk2∂k2 V̂

(h)
20 (k1, tk2) +

∫ 1

0
dtk1∂k1 V̂

(h)
20 (tk1, 0)

“ =′′
∫ 1

0
dtk∂kV̂

(h)
20 (k) (2.97)

The expression in the last line of (2.97) is only formal, but it is useful in order to
derive a dimensional estimate for the action of the renormalization operator. In
fact we will bound separately the external momentum k which multiplies the kernel
V̂

(h)
20 (k) and the derivative which acts on it. For what regards k it is associated to

one of the lines going out from the cluster V̂ (h)
20 (k) and it will be integrated with the

propagator g(hv1 ) corresponding to this line. Since the scale hv1 of a line external
to a cluster Gv is necessarily smaller than hv the momentum k gives a dimensional
gain γhv1 ≤ γhv′ , with hv′ the scale of the first non trivial vertex preceding v on τ .
On the contrary the derivative ∂k acts on one of the lines contained in the cluster
Gv, with scale hv2 ≥ hv. Then a dimensional estimate for the derivative is the factor
γ−hv2 ≤ γ−hv . Putting together the two estimates we get that the action of R on
V̂

(h)
20 (k) gives an extra dimensional factor

γ−(hv−hv′ ) (2.98)

with respect to the not renormalized extimate. In the same way we can prove that
the action of R on V̂ (h)

11 (k1, k2) corresponds in subtracting to it the first two terms
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of its Taylor expansion and that we can write

RV̂ (h)
11 (k1, k2) = V̂

(h)
11 (k1, k2)− V̂ (h)

11 (0, 0)

− (k1 ∂k1 + k2 ∂k2)V̂ (h)
11 (k1, k2)

∣∣
k1,k2=0

“ =′′
∫ 1

0
dtk2∂2

kV̂
(h)

11 (tk) (2.99)

Then RV̂ (h)
11 (k1, k2) has a dimensional gain γ−2(hv−hv′ ). The same discussion can be

repeated for the remaining kernels; one finds that the action of the R operator on a
generic vertex with (nel,v , net,v) external legs is dimensionally equivalent to a factor

γ−zv(hv−hv′ ) (2.100)

where zv is the improvement of the scaling dimension due to renormalization. In the
d = 3 case and in the region h ≤ h̄ the improvement of the scaling dimension is the
following

z3d,<
v =


4 (nel,v , net,v) = (0, 2)
3 (nel,v , net,v) = (0, 3), (1, 1)
2 (nel,v , net,v) = (0, 4), (1, 2), (2, 0)
0 otherwise

(2.101)

where we have also taken into account that some of the diagrams are null for
symmetry reasons.

Apart from the latter dimensional gain, it is important to check if there are
other factors coming from the definition of the renormalization procedure, which
may destroy the n! bounds. Even if we will not enter in the detail of this discussion
we list the problems which may arise and the respective solutions:

i) In the case of more renormalizations acting in clusters one inside the other we
could worry about to have m = O(n) derivatives acting on the same propagator
of some internal cluster. In fact in this case the bound for |∂mgh(x)| has a (m!)α
factor, α > 1, due to the fact that the propagator is not analytic. The (m!)α
will make the n! bounds lost. By studying in detail the action of the R operator
over a cluster which has already been renormalized, by using the complete
expression for the action of R rather than the formal expressions on the last
lines of (2.97) and (2.99), one sees that the derivatives do not accumulate on
the same propagator (see e.g. [61, sec. 3.3] or [62]).

ii) In the renormalization operation different contributions arise, since, given a
derivative, we are free of choosing on which of the internal propagator make the
derivative to act. We need to bound the number of these contributions. This
require a more precise definition of the renormalization procedure, consisting
in fixing for each cluster Gv two of the sv possible subclusters of Gv, on which
eventually make the two derivatives coming from the renormalization of v to act.
With the latter definition one can prove that the number of terms generated by
the renormalization operation is bounded by Cn.
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iii) Another problem may arise if the momenta k coming from the renormaliza-
tion accumulate on the same external line. However still this phenomenon
can be controlled, thanks to some freedom intrinsic in our definition of the
renormalization procedure. We refer to [61, sec. 3.3] for the discussion of this
point.

We can now get the bound for a generic Feynman graph ΓL which contributes
to LV̄h with h ≤ h̄ and in three dimensions. It is sufficient to add to the not
renormalized estimate (2.63) the extra dimensional factors (2.100) coming from the
action of R on the vertices of τ . Besides, with respect to the unrenormalized trees,
the trees contributing to the LV̄h have endpoints at each scales h ≤ h̄. Then we also
have a product over the values of the running coupling constants rhv . One gets:∥∥Val(ΓL)

∥∥ ≤ Cn (ρ0R
−2
0

)
C̄3d(Pv; ε, ρ0, R0) γh δ

3d,<
v0

∏
v not e.p.

γ(hv−hv′ ) (δ3d,<
v −zv)

∏
v e.p.

(λhv)
(
ε−1/2µhv

)
(ενhv) (ahv)(bhv)(ehvzhv) (2.102)

In (2.102) h the frequency of the root, δ3d,<
v = 4−2nel,v−net,v−ne∂,v the unrenormalized

scaling dimension and C̄3d(Pv; ε, λ) =
(
λε−

1
2
)L
ε−2+ 3

4n
e
l+

1
2n

e
t+

1
2n∂x , see (A.47). Note

that, due to the choice of defining the running coupling constants with their dimension,
the bound (2.102) does not contains the dimensional factors associated to the
endpoints. In fact, for each endpoint representing a local term at scale hv the bad
dimensional factor appearing in the product over the endpoints of type m2 in (2.63)∏

v e.p.
γ−2hvχ(m2,v) (2.103)

is exactly compensated by the dimension in front of the running coupling constant,
i.e. by the fact that for each endpoint of type m2 we have a factor γ2hvνhv . For
what concerns the product over the endpoints corresponding to irrelevant terms
(i.e. with negative scaling dimension) they can only have scale label h = 1 and then
the products on this points give a constant factor. Assuming that

η3d
∗ = sup

h∗<h≤h̄
max{|λh|, |ε−1/2µh|, |ενh|, |ah|, , |bh|, |zh|, |eh|} (2.104)

with η∗ a small constant we get∥∥Val(ΓL)
∥∥ ≤ Cn (η3d

∗ )n
(
ρ0R

−2
0

)
C̄3d(Pv; ε, ρ0, R0)

γh δ
3d,<
v0

∏
v not e.p.

γ(hv−hv′ ) (δ3d,<
v −z3d,<

v ) (2.105)

with z3d,<
v defined in (2.101) and

δ3d,<
v = 4− 2nel,v − net,v − ne∂,v (2.106)

The factor γhδv0 in (2.157) it is absorbed in the definition of the beta function.
Assume for example that we are calculating LV h

02(x− y) = γ2hνh: the beta function
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βνh+1 is given by the sum of all the renormalized trees with n > 1 vertices, root at
scale h and a label L on the first vertex following the root v0. The dimensional
estimate of each of these trees has in front a factor γ2h; then, defining the beta
function without this factor we find the following flow equation for νh:

γ2hνh = γ2(h+1)νh+1 + γ2hβνh+1

νh = γ2νh+1 + βνh+1 (2.107)

to be compared with (2.77). Note that the renormalization procedure is defined in
such a way that δ3d,<

v − z3d,<
v < 0 for every cluster. Since the renormalized scaling

dimension
D3d,<
v = δ3d,<

v − z3d,<
v (2.108)

is always negative, using the estimates discussed at the end of the section 2.1, we
can prove n! bounds for the renormalized expansion, under the assumptions (2.104).

A very analogous discussion can be carry forward also for h ≥ h̄ and in two
dimensions. We will not belabor on this part since in the next section we will
introduce a new family of effective potentials, for which we will give every detail.
We only report here for completeness the improvement of the scaling dimension for
the 2d case

z2d,<
v =



4 (nel,v, net,v) = (0, 2)
3 (nel,v, net,v) = (0, 5), (0, 3), (1, 1)
2 (nel,v, net,v) = (0, 6), (0, 4), (1, 2), (2, 0)
1 (nel,v, net,v) = (1, 3)
0 otherwise

(2.109)

with respect to the scaling dimension

δ2d,<
v = 3− 3

2n
e
l,v −

1
2n

e
t,v − ne∂,v (2.110)

The analogous of the assumption (2.104) in the two dimensional case is

η2d
∗ = sup

h∗<h≤h̄
max{|λλ6,h|, |λλh|, |

√
λε−1 µh|, |ενh|, |ah|, , |bh|, |zh|, |eh|} � 1

(2.111)
For what concerns the renormalized dimension for h > h̄ we remind that

δ3d,>
v = 5

2 −
3
4n

e
v −

1
2n

e
∂x,v − n

e
∂0,v

δ2d,>
v = 2− 1

2n
e
v −

1
2n

e
∂x,v − n

e
∂0,v (2.112)

while the improvements of the scaling dimensions are

z3d,>
v =


2 nev = 2
1 nev = 3
0 otherwise

z2d,>
v =


2 nev = 2
1 nev = 3, 4
0 otherwise

(2.113)
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Short memory property. An immediate collorary of the dimensional estimates
(2.102) for the three dimensional case is that contributions from trees in Th,n with
a vertex v on scale hv = k > h admit an improved bound with respect to the n!
bound in 2.157, of the form ≤ Cnηnn! γhD

3d,<
v0 γϑ(h−k), for any 0 < ϑ < 2. In fact, in

the basic power counting we have the product∏
v not e.p.
v>v0

γ−(hv−hv′ )D
3d,<
v (2.114)

with D3d,<
v < 2. However D3d,<

v < 0 is a sufficient condition to garantee the
convergence. Then, for any 0 < ϑ < 2 we can rewrite the previous product as∏

v not e.p.
v>v0

γ−(hv−hv′ ) (D3d,<
v −ϑ) γ−ϑ(hv−hv′ ) (2.115)

For a tree with a branch B going from scale h to scale k � h the product of the
factors γ−ϑ(hv−hv′ ) in (2.115) along the branch gives the factor∏

v∈B
γ−(hv−hv′ )ϑ = γ−(k−h)ϑ (2.116)

which can be thought as a dimensional gain with respect to the “basic” dimensional
bound. This improved bound is usually referred to as the short memory property,
since indicates that long trees (i.e. trees with non trivial interactions at scale more
and more distant from h) are exponentially suppressed.

The short memory factors that can be extracted from the dimensional estimate
of a generic diagram in three and two dimensions, above and below h̄ are:

0 < ϑ3d
> <

1
2 ; 0 < ϑ3d

< < 2

0 < ϑ2d
> <

1
2 ; 0 < ϑ2d

< <
1
2 (2.117)
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2.4 Effective potentials and renormalized measure
In the previous section we have seen that the effect of the localization operator L is
to identify at each step of the multiscale integration some new effective couplings.
For each dimension and each value of h we may write

LV̄h(ψ) = L0V̄h(ψ) + LQV̄h(ψ) (2.118)

with LQV̄h(ψ) defined by

LQV̄h(ψ) = ρ0R
−2
0

(
1
2 z̄h

∫
(ψlx)2dx

)
h̄ < h ≤ 0

LQV̄h(ψ) = ρ0R
−2
0

(
1
2 zh

∫
(ψlx)2dx+ 1

2 ah

∫
(∂xψ

t
x)2dx

+ 1
2 bh

∫
(∂0ψ

t
x)2dx+ eh

∫
ψlx∂0ψ

t
xdx

)
h ≤ h̄ (2.119)

In the high momentum region LQV̄h(ψ) contains only the local quadratic term
proportional to z̄h, with z̄0 = ε Bogoliubov contribution to the measure. In the low
momentum region, on the contrary, we define LQV̄h(ψ) so that it contains all the
local quadratic terms in the bosonic fields.

Now we can iteratively define a new family of effective potential Vh, as follows.
Let consider the functional integral in (2.20) after the first step of the integration:

e−|Λ|Wh∗ (ρ0) = e−E−1(ρ0)
∫
PQ0,χ[h∗,−1](dψ

(≤−1)) e−V̄−1(ψ(≤−1)) (2.120)

with PQ0,χ[h∗,−1](dψ(≤−1)) the measure with covariance

g
[h∗,−1]
αα′ (x) =

∫
dd+1k

(2π)d+1 e
−ikxχ[h∗,−1](k) g (0)

αα′(k) (2.121)

with α, α′ = l, t and

g
(0)
αα′(k)−1 = Q

(0)
αα′(k) = ρ0R

−2
0

(
k2 + εχ[h∗,0](k) k0

−k0 ε−1k2

)
(2.122)

We can renormalize the measure PQ0,χ[h∗,−1](dψ(≤−1)) by adding to the exponent of
its gaussian weight the local quadratic terms in LQV̄−1(ψ), by using the property
(1.124). In this way we get:

e−|Λ|Wh∗ (ρ0) = e−E−1(ρ0) e−t−1

∫
PQ−1,χ[h∗,−1](dψ

(≤−1)) e−V−1(ψ(≤−1)) (2.123)

where t−1 takes into account the different normalization of the functional integrals.
The measure PQ−1,χ[h∗,h](dψ(≤h)) is given by∫

PQ−1,χ[h∗,h](dψ
(≤h)) := e−t−1

∫
PQ0,χ[h∗,h](dψ

(≤h)) e−LQV̂h(ψ(≤h)) (2.124)



62 2. Multiscale analysis

with the matrix Q−1 defined as

Q
(−1)
αα′ (k) = Q

(0)
αα′(k) + q

(−1)
αα′ χ[h∗,−1](k) (2.125)

with Q(0)
ll (k) = z0 χ[h∗,0](k), Q(0)

tt = Q
(0)
ll = Q

(0)
b = 0 and q(−1)

αα′ the matrix of the local
terms LV̄−1 generated by the integration over the ψ(−1) fields:

q
(−1)
αα′ =

(
z−1 0
0 0

)
(2.126)

Its propagator has the same form than (2.121) but with g(0)
αα′ substituted by

g
(−1)
αα′ (k)−1 = g

(0)
αα′(k)−1 +Q

(−1)
αα′ (k)

=
(

k2 + εχ[h∗,0](k) + z−1χ[h∗,−1](k) k0
−k0 ε−1k2

)
(2.127)

At this point we can integrate (2.123) at scale −1; defining

e−V−2(ψ(≤−2))−Ẽ−1 =
∫
PQ−1,f−1(dψ(≤−1)) e−V−1(ψ(≤−1)) (2.128)

we get

e−|Λ|Wh∗ (ρ0) = e−E−2(ρ0)
∫
PQ−1,χ[h∗,−2](dψ

(≤−2)) e−V−2(ψ(≤−2)) (2.129)

with E−2 = E−1 + t−1 + Ẽ−1. Iterating the previous scheme we may write (2.120) as
follows:

e−|Λ|Wh∗ (ρ0) = e−E−2(ρ0)
∫
PQ−2,χ[h∗,−2](dψ

(≤−2)) e−V−2(ψ(≤−2))

= . . . = e−Eh(ρ0)
∫
PQh,χ[h∗,h](dψ

(≤h)) e−Vh(ψ(≤−2)) (2.130)

with Eh−1 = Eh + th + Ẽh at each step. The procedure so far described leads
to the definition of new families of measures PQh,χ(ψ(≤h)) and effective potentials
Vh(ψ(≤h)). The effective potentials are defined as in (2.128)

e−Vh(ψ(≤h))−Ẽh =
∫
PQh+1,fh+1(ψ(h+1)) e−Vh+1(ψ(≤h)+ψ(h+1)) (2.131)

For h̄ < h < 0 the difference between the potentials V̄h and Vh is only that the latter
does not contain the local term proportional to zh, which has been included in the
measure. For h ≤ h̄ the effective potential Vh(ψ(≤j) does not contain any of local
quadratic terms generated by the integration on scale h+ 1, that is:

LVh(ψ) = ρ0R
−2
0

(
λ6,h χ(d = 2)

∫ (
ψtx

)6
dx+ γ(d−3)hλh

∫ (
ψtx

)4
dx

+ γ
d−3

2 hµh

∫
(ψtx)2ψlxdx+ γ2hνh

∫
(ψtx)2dx

)
(2.132)
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For what concerns the family of measures PQh,fh(dψ(≤h)), they have the following
propagator

g
(h)
αα′(x) =

∫
dd+1k

(2π)d+1 e
−ikxfh(k) g (h)

αα′(k) (2.133)

with

(
g

(h)
αα′(k)

)−1
=
(
g

(0)
αα′(k)

)−1
+

0∑
j=h

q
(j)
αα′ χ[h∗,j](k)

=
(

k2 + Zh(k) Eh(k) k0
Eh(k) k0 Ah(k) k2 +Bh(k) k2

0

)
(2.134)

where for each scale h

Zh(k) = Zh−1 + zhχ[h∗,h](k) (2.135)

while we have

Eh(k) = Ah(k) = 1 Bh(k) = 0 h̄ < h ≤ 0 (2.136)

and

Eh(k) = Eh+1(k) + eh+1 χ[h∗,h](k)
Ah(k) = Ah+1(k) + ah+1 χ[h∗,h](k)
Bh(k) = Bh+1(k) + bh+1 χ[h∗,h](k) h ≤ h̄ (2.137)

with initial conditions

Z0(k) = εχ[h,0](k); A0 = E0 = 1; B0 = 0 (2.138)

Then it turns to be

Zh(k) =
0∑

j=h
zj χ[h∗, j](k)

Ah(k)− 1 =
h̄∑
j=h

aj χ[h∗, j](k)

Bh(k) =
h̄∑
j=h

bj χ[h∗, j](k)

Eh(k)− 1 =
h̄∑
j=h

ej χ[h∗, j](k) (2.139)

The functions {Ah(k), Bh(k), Eh(k), Zh(k)} are called wave function renormalization
functions, since they represent the renormalization of the propagator due to the
integration on the fields living on momentum scales greater then γh.
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Wave function renormalization constants

The wave function renormalization functions depends on |k| through the cutoff
function, see (2.139). When we evaluate them at a certain value of |k| we get the wave
function renormalization constants. Given a generic wave function renormalization
function Qh(k) with h ≥ h∗ we choose as scale of the localization k̃ such that |k̃|2 =
2 γ2

γ2+1 γ
2h. For this value of |k| we have that all the cutoff functions χ[h∗,j](|k|), with

j ≥ h appearing in the definition (2.139) are equal to one; then the renormalization
constants take their maximum value in |k̃|. We define:

Zh := max
k

Zh(k) =
0∑

j=h
zj

Ah := max
k

Ah(k) = A0 +
h̄∑
j=h

aj

Bh := max
k

Bh(k) =
h̄∑
j=h

bj

Eh := max
k

Eh(k) = E0 +
h̄∑
j=h

ej (2.140)

The definition of the renormalization constants is well defined if it is independent
on the particular choice of the cutoff function χ[h∗,0](k) appearing in the effective
potential, that is

Z
[h∗]
j ≡ Zj ∀j > h (2.141)

with the label [h∗] in Z [h∗]
j referring to the lower scale of the cutoff function. This is

of course an essential condition to have a definition which makes sense in the limit
h→ −∞ and is easily verified.

Proof of (2.141). For simplicity of notation in the following we will take
|k̃| = γh for a certain scale h. Let consider two different models with cutoff functions
χ[ĥ,0](k) and χ[h∗,0](k) with ĥ < h∗; the renormalized wave functions at scale h are
respectively:

Z
[ĥ]
h (k) =Z0 +

0∑
j=h

zjχ[ĥ,j](k)

Z
[h∗]
h (k) =Z0 +

0∑
j=h

zjχ[h∗,j](k) (2.142)

Since χ[ĥ,j](γ
h) = χ[h∗,j](γh) for each h > h∗ then Z

[ĥ]
h = Z

[h∗]
h for each h > h∗.

Then, if h = h∗, the definition of Z [ĥ]
h∗ and Z [h∗]

h∗ are not equivalent but their difference
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is small, in fact:

Z
[h∗]
h∗ = Z0 +

0∑
j=h∗+1

zjχ[h∗,j](γh
∗) + zh∗fh∗(γh

∗)

= Z0 +
0∑

j=h∗
zjχ[ĥ,j](γ

h∗) + zh∗
(
fh∗(γh

∗)− χ[ĥ,h∗](γ
h∗)
)

= Z
[ĥ]
h∗ − zh∗χ[ĥ,h∗−1](γ

h∗) (2.143)

where zh∗χ[ĥ,h∗−1](γ
h∗) is a very small quantity, as discussed just below; note also

that χ[ĥ,h∗−1] which would equal to zero in case of sharp cutoff functions.

Let now consider the renormalized propagator (2.133). It is simple to see that
the dependence on k of the renormalized wave functions is in general very weak. In
fact, if we consider a propagator on scale h > h∗, with h∗ the infrared cutoff the
wave function renormalization constants have to be evaluated on the support of
fh(k). On this support χ[h∗,j](k) = 1 for all j > h and then we have, for example

fh(k)Zh(k) = fh(k)
( 0∑
j=h+1

zj + zhfh(k)
)

= fh(k)
(
Zh+1 + zhfh(k)

)
= fh(k)

(
Zh + zh(fh(k)− 1)

)
(2.144)

where zh is the last scale contribution to the beta function of V̂ (h)
20 (k) and is a small

quantity with respect to Zh:
zh
Zh

= O(λε−1/2λh) d = 3

zh
Zh

= O(λλh) d = 2 (2.145)

where ε−1λh � 1 and λλh � 1 are the assumption for the n!–bounds, see (2.104)
and (2.111). Under the same assumptions we can prove that also ah, bh and eh are
small quantities with respect to Ah, Bh and Eh. Then we may conclude that on the
support of fh(k) we can

a) neglect the dependence on k of Zh, Ah, Bh and Eh in the renormalized propagator

b) approximate the wave function renormalization constants at scale h+ 1 by the
corresponding constants at scale h, since Zh = Zh+1 + zh.
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2.4.1 Bounds for the renormalized propagator

We are now ready to derive the dimensional bound for the Feynman graphs produced
by the multiscale integration with the renormalized measure we have just introduced.
In order to do that we need it is crucial to find bounds for the renormalized propagator
defined by (2.133).

High momenta region h̄ < h ≤ 0

The discussion for the high momentum region h̄ < h ≤ 0 is trivial, since only the local
quadratic term has been included in the free measure. Then the trees contributing
to the expansion of the effective potentials Vh with h̄ < h ≤ 0 are the same than
the ones in the multiscale expansion for V̄h, except for the fact that there are no
endponts with two external dashed legs and that the propagator at scale h is given
by

g
(h)
αα′(k) =

(
k2 k0
k0 k2 + Zh(k)

)
k2

0 + (k2 + Zh(k)) k2 (2.146)

with Zh(k) ≤ k2 for each h ≥ h̄, by definition of h̄. We remind that g (h)
αα′(x) is ob-

tained by integrating g (h)
αα′(k) over the support of fh(k), see (2.133). The dimensional

estimate of the renormalized propagator in this region is not changed with respect
the non–renormalized one. The following bounds hold.

Result 1. (n!–bounds h̄ < h ≤ 0) Let consider the quantity ||V (h);n
ne
l
,ne
t
|| defined by

the expression (2.48) with h̄ < h ≤ 0, but with the sum over the trees running over
the renormalized trees obtained by the localization procedure defined in (2.82) and
(2.86), respectively for the 3d and 2d cases. Here ||V (h);n

ne
l
,ne
t
|| is an estimate for the

coefficient of order n of the renormalized expansion for the kernel of the effective
potential at scale h̄ < h ≤ 0 with fixed number of external legs. Let η̄ defined by

η̄ = sup
h̄<h≤0

{λε−1λ̄h,
√
λε−1 µ̄h, ν̄h, āh, ēh} (2.147)

be small enough (where in 3d the endpoint of type λ̄h can be present only at scale 0).
Then

||V (h);n
ne
l
,ne
t
|| ≤ Cn η̄n n!

(
ρ0R

−2
0

)
C0(Pv0 ; ε, ρ0, R0) γh δ

>
v0 (2.148)

for some constant C. Here ε = λρ0R
d
0, the scaling dimensions in three and two

dimensions are

δ3d,>
v = 5

2 −
3
4n

e
v −

1
2n

e
∂x,v − n

e
∂0,v

δ2d,>
v = 2− 1

2n
e
v −

1
2n

e
∂x,v − n

e
∂0,v (2.149)

and

C0(Pv0 ; ε, ρ0, R0) =
(
λε−1

)1− 1
2 (ne

l+n
e
t) =

(
ρ0R

d
0

)−1+ 1
2 (ne

l+n
e
t) (2.150)
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Low momenta region h ≤ h̄

Note that with respect to the multiscale expansion for V̄h, the trees contributing to
the expansion of the effective potentials Vh with h ≤ h̄ do not have any endpoint
with two external legs, since the local quadratic terms have all been included in the
measure. Let assume that

1 ≤ Ah ≤ 1 + o(1) 1− Eh ≤ εBh ≤ 1

0 ≤ Eh ≤ 1 1 ≤ Zh
εEh

≤ 1 + o(1) (2.151)

These bounds are proven in chapter 3 at all orders, using the beta function equation.
Using (2.151) we can prove that Dh(k) ≥ εZh

(
k2

0 + εk2) and then∣∣ g(h)
tt (k)

∣∣ ≤ (const.) εγ−2h

∣∣ g(h)
lt (k)

∣∣ ≤ (const.) γ−h∣∣ g(h)
ll (k)

∣∣ ≤ (const.)Z−1
h (2.152)

to be compared with the bounds for the unrenormalized propagator (2.15). We
see that the only difference is on the factor Z−1

h appearing in the longitudinal–
longitudinal correlation, instead of ε−1.

Bounds for the “last scale” propagator

We have proved that the renormalized propagator g(h)(k), under the assumptions
(2.151), has the same behavior of the unrenormalized one (apart for an extra Z−1

h

for the g
(h)
ll propagator) for each h > h∗, with h∗ the lower boundary of the

cutoff function in the effective potential Wh∗(ρ0). The behavior of the “last scale”
propagator, i.e. g(h∗)(x) is a bit more subtle to analyze; in fact let consider the
momenta k such that |k| ≤ 2γ2h∗/(γ2 + 1) with fh∗(k) 6= 0. In this region, which is
the very left tail of the cutoff function χ[h∗,0](k), all the cutoff functions χ[h∗,j](k)
contained in the definition of the wave function renormalization functions are right
equal to fh∗(k). Then we have:

Zh∗(k) = Zh∗fh∗(k)
Ah∗(k) = 1 + (Ah∗ − 1) fh(k)
Bh∗(k) = Bh∗fh∗(k)
Eh∗(k) = 1 + (Eh∗ − 1) fh(k) (2.153)

with Zh∗ , Ah∗ , Bh∗ and Eh∗ satisfying (2.151). If we are really around |k| = γ2h∗ then
fh∗(k) = 1 and we get Qh∗(k) = Qh∗ for each of the wave functions renormalization
functions. The problem appears for fh(k) going to zero, since the propagator in
momentum space g(h)

ll (k) and g(h)
lt (k) are not longer bounded. In fact we have

1
Dh∗(k) ≤

1
Eh∗ fh∗(k)γ2h∗ (2.154)
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while the numerators p(h∗)
ll (k) and p(h∗)

lt (k) are finite. However, if we consider the
behavior of the product of the propagator in the momenta space with the cutoff
function, i.e.

g̃
(h∗)
αα′ (k) = fh∗(k) g(h∗)

αα′ (k) (2.155)

then we may prove the following uniform bounds in k for g̃(h∗)
αα′ (k):∣∣ g̃(h∗)

tt (k)
∣∣ ≤ (const.) εγ−2h∗

∣∣ g̃(h∗)
lt (k)

∣∣ ≤ (const.) γ−h∗∣∣ g̃(h∗)
ll (k)

∣∣ ≤ (const.)Z−1
h∗ (2.156)

We see as the last scale renormalized propagators satisfy the same estimates than
the renormalized propagators at scale h > h∗ on the support of fh∗(k). The fact
that, in order to prove bounds which are also valid on the left tail of the cutoff
function χ[h∗,h](k), we need one cutoff function for each propagator will be crucial in
the analysis of the local WIs, see sec. 4.2.4. This is the reason why we have devoted
so much attention on this point.

Statement of the n! bounds for Vh(ψ)

We can now write the counterpart of (2.102) for the kernels of the effective potentials
Vh. With respect to (2.102) we have only endpoints with at least three external legs
and an extra factor Z−1

hv
must be added, for each longitudinal propagator at scale

hv. If Γ is a generic Feynman diagram contributing to LV (h);n
ne
l
,ne
t
the following bounds

hold:∥∥Val(Γ)
∥∥ ≤Cn (ρ0R

−2
0

)
C3d(Pv; ε, ρ0, R0) γh δ

3d,<
v0

∏
v not e.p.

γ(hv−hv′ ) (δ3d,<
v −z3d,<

v )

∏
v e.p.

(λhv)
(
ε−1/2µhv

)
(ενhv)

∏
nhv
ll

(
εZ−1

hv

)
d = 3

∥∥Val(Γ)
∥∥ ≤Cn (ρ0R

−2
0

)
C2d(Pv; ε, ρ0, R0) γh δ

2d,<
v0

∏
v not e.p.

γ(hv−hv′ ) (δ2d,<
v −z2d,<

v )

∏
v e.p.

(λλhv)
(√

λε−1 µhv

)
(ενhv) (λλ6,hv)

∏
nhv
ll

(
εZ−1

hv

)
d = 2

(2.157)

with z3d,<
v and z2d,<

v defined respectively in (2.101) and (2.109) and scaling dimen-
sions equal to

δ3d,<
v = 4− 2nel,v − net,v − ne∂,v

δ2d,<
v = 3− 3

2n
e
l,v −

1
2n

e
t,v − ne∂,v (2.158)
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The effect of the renormalization of the measure on the bound for a generic Feynman
diagram, under the assumptions (2.151), consists only in the product of Z−1

h ’s over
the longitudinal–longitudinal propagators. In order to bound this factor we consider
some assumptions on Zh and µh, which are a posteriori justified by two global Ward
identities relating λh, µh and Zh among them, as described in sect. 3.1. We assume
that

Zh ≥ (const.)µh d = 3 (2.159)
Zh ≥ (const.)(µh)2/λh d = 2 (2.160)

and also that in the two dimensional case

c1γ
h
2 λh ≤ µh ≤ c2γ

h
2 λh d = 2 (2.161)

We now note that to each propagator g(h)
ll (k) we can associate the two vertices of

type µ where the two dashed “half–lines” come from. In fact the vertices of type
µ are the only vertices carrying dashed lines. Due to the presence of the cutoff
function fh(k) in g

(h)
ll (k), at least one of these two µ vertices must be at scale h.

Then in the three dimensional case, using (2.159), we can always bound Z−1
h with

the corresponding vertex µh, i.e.

ε−1/2µh
ε−1Zh

≤ (const.) ε1/2 d = 3 (2.162)

In the three dimensional case the following bounds hold:

Result 2. (n!–bounds h ≤ h̄, d = 3) Let consider the quantity ||V (h);n
ne
l
,ne
t
|| defined by

the expression (2.48), but with the sum over the trees running over the renormalized
trees obtained by the localization procedure defined in (2.90). Here ||V (h);n

ne
l
,ne
t
|| is an

estimate for the coefficient of order n of the renormalized expansion for the kernel
of the effective potential at scale h ≤ h̄ with fixed number of external legs. Let η3d

∗
defined by

η3d
∗ = sup

h∗<h≤h̄
{λh, ε−1/2µh, ενh} (2.163)

be small enough. If Ah − 1 ≤ o(1), 0 ≤ Bh ≤ ε−1 , Zh
Eh

= ε(1 + o(1)) and
Zh ≥ (const.)µh, then

||V (h);n
ne
l
,ne
t
|| ≤ Cn (η3d

∗ )n−nll n!
(
ρ0R

−2
0

)
C3d(Pv0 ; ε, ρ0, R0) γh δ

<
v0 (2.164)

for some constant C. Here ε = λρ0R
d
0 and

C3d(Pv0 ; ε, ρ0, R0) =
(
λε−

1
2
)L
ε−2+ 3

2n
e
l+

1
2n

e
t+

1
2n∂x+ 1

2nll (2.165)

depends only on the loop number, once the labels {Pv0} of the external legs are fixed.
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Figure 2.18. Effective renormalized scaling dimensions of the kernels such that
δ̂2d,<
v > 0. For each kernel the effective renormalized dimension is reported, which is
equal to the renormalized scaling dimension D̂ 2d,<

v = δ̂ 2d,<
v − z2d,<

v , see (2.109) for a
definition of z2d,<

v . The kernels on the last line are effectively marginal.

The two dimensional case is much more subtle. In fact, as we can see from
(2.160) in order to bound Z−1

h both the two µ vertices must be at scale h. In this
case we have

λε−1 µ2
h

ε−1Zh
≤ (const.)λλh d = 2 (2.166)

where λλh is supposed to be bounded. On the opposite, if one of the two µ vertices
is at scale k > h, using (2.160) and (2.161), we find

λε−1 µhµk
ε−1Zh

≤ (const.)λλh
µk
µh
≤ (const.)λλk γ−

1
2 (h−k) (2.167)

where γ− 1
2 (h−k) = γ

1
2 |h−k| tends to infinity as |h − k| → +∞. If one tries to

compensate this bad factor by the short memory property, one immediately notes
that there are some kernels with external dashed lines for which the short memory
factor is not sufficient: for example the kernel V (k)

14 has renormalized scaling dimension
−1/2, so that, if the dashed line of this kernel is contracted with a dashed line at
scale h we can only extract a factor γϑ(h−k) with ϑ < 1/2, which is not sufficient to
compensate the divergence in (2.167).

To take into account the presence of the “dangerous” diagrams where all the
external dashed lines are contracted with other dashed lines at lower scales, we
define an effective scaling dimension δ̂ 2d,<

v obtained from the scaling dimension
δ2d,<
v = 3− 3

2n
e
l,v −

1
2n

e
t,v − ne∂,v by increasing of 1/2 the dimension of each dashed

line:

δ̂ 2d,<
v = 3− nel,v −

1
2n

e
t,v − ne∂,v (2.168)

The effective dimension (2.168) is negative in the following cases: nel ≥ 4; nel = 3
and net > 0; nel = 2 and net > 2; nel = 1 and net > 4. In the remaining cases,
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when δ̂ 2d,<
v is not negative, we can wonder if the effective renormalized dimension

D̂ 2d,<
v = δ̂ 2d,<

v − z2d,<
v , with z2d,<

v given by (2.109), is negative, i.e. if the bad
factor coming from the contraction of the dashed lines is compensated by the
renormalization procedure.

The renormalized effective dimensions D̂ 2d,<
v for the diagrams with positive

effective dimension δ̂ 2d,<
v are shown in fig. 2.18. There are five kernels for which the

effect of renormalization (the factor z2d,<
v ) is sufficient to compensate the increasing

of the dimensions due to the contraction of the external dashed legs. However three
new effective marginal kernels appears. One is then worried that the renormalized
perturbation theory is again affected by logarithmic divergences.

The solution of this apparent problem stays in defining a localization procedure
also on the new marginal kernels, even if they appear as irrelevant in a “naive”
dimensional analysis. As usual, we define

L2d
< V̂

(h)
14 (k1, . . . , k4) := V̂

(h)
14 (0, . . . , 0) = ρ0R

−2
0 ωh F14

L2d
< V̂

(h)
22 (k1, k2, k3) := V̂

(h)
22 (0, . . . , 0) = ρ0R

−2
0 γ−h λ′h F22

L2d
< V̂

(h)
30 (k, p) := V̂

(h)
30 (0, 0) = ρ0R

−2
0 γ−

3
2h µ′h F30 (2.169)

with Fne
l
,ne
t
defined in (2.84) and ωh, λ′h and µ′h defined with in front their “naive”

scaling dimensions. In this way the renormalized part of the kernels V̂ (h)
14 , V̂ (h)

22 and
V̂

(h)
30 has negative effective dimension. Then for each irrelevant kernel we can extract

a short memory factor equal to 1/2 times the number of dashed legs outgoing from
the kernel itself and control the bad factor Z−1

h coming from the propagators g(h)
ll .

The problem of controlling the bad factor γ− 1
2 (h−k), arising in the contraction of

two external legs coming from different scales, ends in controlling the flow equations
of the new couplings ωh, λ′h and µ′h. This may seem an hopeless perspective, since in
the two dimensional case we already have eight running couplings to be controlled.
The latter goal will be achievable thanks to the use of three additional global WIs
(with respect the WIs which we will also use in the three dimensional case) allowing
us to prove the following bounds on the new marginal couplings:

ωh ≤ (const.)λ6,hγ
h
2

λ′h ≤ (const.)λ6,hγ
h

µ′h ≤ (const.)λ6,hγ
3
2h (2.170)

The behavior in (2.170) is just what we need in order to control the “bad” factors
which may be generated by the contraction of the dashed external legs of the new
vertices λ′h, µ′h and ωh. Note that, due to the property of the cutoff functions
fj(k) the outgoing lines of the running coupling constants at scale h may be only
contracted at scale h − 1 or h + 1; then the dangerous situation expressed by eq.
(2.167) never occurs.
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By using (2.170) and (2.161) we get∥∥Val(Γ)
∥∥ ≤ (const.)ρ0R

−2
0 λ1− 1

2 (ne
l+n

e
t) ε−2+ 3

2n
e
l+

1
2n

e
t+

1
2n

e
∂

γh δ
2d,<
v0

∏
vnot e.p.

γ(hv−hv′ )( δ̂
2d,<
v0 −z2d,<

v )

∏
ve.p.

(λλhv )m4,v+m′4,v+ 1
2 (m3,v+m′3,v)+ 3

2m5,v+2m6,v (ενhv)m2,v

(
λ6,hv
ελ2

hv

)m6,v+m5,v+m′4,v+m′3,v (
ε−1γhvλhv

) 1
2 (m3,v+m5,v+2m′4,v+3m′3,v)−nvll

(2.171)

where δ̂ 2d,<
v is defined in (2.168) and m5,v, m′4,v, m′3,v and nvll are respectively the

number of vertices ωhv , λ′hv , µ
′
hv

or longitudinal propagator at scale hv. Note that
the exponent of λλh exactly reconstructs the number Lv of loop at scale hv, since

Lv − 1 + 1
2(nel,v + net,v) = m4,v +m′4,v + 1

2(m3,v +m′3,v) + 3
2m5,v + 2m6,v (2.172)

Besides, the factor on the last line of (2.171) may be bounded by one, under the
assumption that λh is finite; in fact this factor is one when all the internal dashed
lines at scale v are contracted among them and goes to zero with h→ −∞ if there
are internal dashed lines at a certain scale v which are not all contracted among
them. Let now assume that

λ6,h
ελ2

h

≤ (const.) (2.173)

and let

η2d
∗ = sup

h∗<h≤h̄
{λλh, ε νh} (2.174)

The following bounds hold.

Result 3. (n!–bounds h ≤ h̄, d=2) Let consider the quantity ||V (h);n
ne
l
,ne
t
||, with

h ≤ h̄, defined by the expression (2.48) but with the sum over the trees running
over the renormalized trees obtained by the localization procedure defined in (2.94)
and (2.169). Here ||V (h);n

ne
l
,ne
t
|| is an estimate for the coefficient of order n of the

renormalized expansion for the kernel of the effective potential at scale h ≤ h̄ with
fixed number of external legs. Let η2d

∗ defined by

η2d
∗ = sup

h∗<h≤h̄
{λλh, λ6,h/(ελ2

h), ε νh}

be small enough. If Ah − 1 ≤ o(1), 0 ≤ Bh ≤ ε−1, Zh
Eh

= ε(1 + o(1)) and the
assumptions (2.160), (2.161) and (2.170) hold, then

||V (h);n
ne
l
,ne
t
|| ≤ Cn (η2d

∗ )n n!
(
ρ0R

−2
0

)
C2d(Pv0 ; ε, ρ0, R0) γh δ

2d,<
v0 (2.175)
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for some constant C. Here ε = λρ0R
d
0 and

C2d(Pv0 ; ρ0, R0) = λ1− 1
2 (ne

l+n
e
t) ε−2+ 3

2n
e
l+

1
2n

e
t+

1
2n∂x (2.176)

depends only on the loop number, once the labels {Pv0} of the external legs are fixed.

Note that the factor δ2d,<
v0 in the bound (2.176) is the “naive” scaling dimension

of a kernel with nl external leg of type l and nt external legs of type t. The effective
scaling dimension we have discussed in the last pages only enters in the product
over the branches of the trees, as shown in (C.16). Since the effective renormalized
scaling dimension D̂ 2d,<

v is at least −1/2, we still can extract a short memory factor
γϑ(h/k), provided that 0 < ϑ < 1/2.

Remark. The assumption on η̄, η3d
∗ and η2d

∗ in the bounds 1, 2 and 3, so as the
assumptions on the behavior of the wave function renormalization constants, will be
verified in the next chapter. Note that the action of the R operator corresponds to
extract the non divergent part from a divergent diagram. The remaining divergent
parts of each kernel are enclosed in the definition of the running coupling constants,
which become the unknown parameters of the problem. To prove that they exist
some initial values r0 such that the flows of the running coupling constants stays
small corresponds to prove that there are some cancellations between the divergent
parts of the perturbative expansion, such that the resummed theory is finite at the
end. Note that all the analysis of this chapter is based on the fact that the scaling
dimension δv0 , both in three and two dimensions, is independent on the number
of endpoints of the tree τ and there is only a finite number of diagrams with non
negative dimensions, that is the model is renormalizable.



74 2. Multiscale analysis
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J0

m′J0

Ji

∂i
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Figure 2.19. The new vertices appearing in the non renormalized tree expansion for the
generating functional of density and current correlations. The external fields Jν are
depicted with a wiggly line. The index i assumes values between one and d, so the last
picture have to be imagined as repeated d times. Here mJ1 =

∑
imJi .

2.5 Generating functional of correlations

In order to study the flow of the running coupling constants we need to introduce
a new effective potential W(Jν), depending on (d + 1) external fields Jν with
ν = 0, . . . , d. The potential W(Jν) is defined by the following functional integral

e|Λ|W(ρ0,Jν) =
∫
PΛ
Q0,χ0(dψ)e−V0(ψ) + ρ0

∫
dx[J0

x((ψtx)2+(ψlx)2)+J1
i ·(ψli∂xiψtx−ψti∂xiψlx)]

(2.177)

where repeated indexes are summed. Here V0(ψ) and PΛ
Q0,χ0

(dψ(≤0)) are defined in
(2.2) and (2.3) respectively. The functional (2.177) corresponds to the generating
functional of density and current correlations, which are obtained by deriving
W(ρ0, Jν) twice with respect to one of the external fields. For example, by deriving
twice W(ρ0, Jν) with respect to the external fields J0, and then setting the external
fields equal to zero, we obtain the density response function, as defined at the
beginning of chapter 1.

As for the partition function, we introduce a reference potential Wh∗(ρ0, Jν)
with an infrared cutoff at scale h∗. Then we proceed in a way analogous to the one
described in the previous sections and iteratively integrate the fields ψ(0), . . . , ψ(h+1).
After the integration of the first |h| scales we are left with a functional integral
similar to (2.20) but now involving new terms depending on J .

The kernels of the effective potentials produced by the multiscale integration of
W[h∗,0](ρ0, J) can be represented as sums over trees, suitable modified with respect
to the ones used for the partition function, which in turn can be evaluated as sums
over Feynman diagrams.

The non renormalized trees contributing to W[h∗,0](ρ0, J) turn to have three new
type of endpoints, mJ0,v m

′
J0,v

and mJ1,v, as depicted in the picture 2.19 and that
we will be an extra label identifying an external fields of type Jν (here depicted as
a wiggly line) from a bosonic line. With respect to the bosonic fields, the external
fields are never contracted, so they always correspond to external lines. Analogously
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J0

µ̄J0
h

J0

γ
d
4 Z̄J0

h

J1

∂i

µ̄J1
h

∂i

J1

γ
d
4 ĒJ1

h

Figure 2.20. Vertices of the renormalized expansion for h ≥ h̄ and d = 2, 3 with
external fields. The other diagrams with external fields are irrelevant due to our choice
of the localization procedure. The fields J0 and J1 counts respectively as a plain line
with derivative with respect to x0 and a plain line with derivative with respect to x in
the dimensional estimate.

to (2.44) the effective generating functional on scale h reads:

Wh(Jν , ψ≤h) =
∑

nl+nt+m0+m1≥2

∫
dx1 . . . dxnldy1 . . . dyntdz1 . . . dzm0dw1 . . . dwm1

V (h)
nlnt;m0m1(x1, . . . xnl ; y1, . . . , ynt ; z1 . . . zm0 ; w1 . . . wm1)

ψlx1 . . . ψ
l
xnl
ψty1 . . . ψ

t
ynt
J0
z1 . . . J

0
zm0

J1
w1 . . . J

1
wm (2.178)

where the subscript m0 represent the total number of external field of type J0 and
the subscript m1 the total number of external field of type i, with i chosen between
1, . . . , d. Let W (h);n

nlnt;m0m1 be the contribution to the kernel W (h)
nlnt;m0m1 due to the

trees of order n. In the following we will get a bound for the quantity

||V (h);n
nlnt;m0m1 || =

1
βLd

∫
dx dy dz dw |V (h);n

nlnt;m0m1(x, y, z, w)|

=
∑

τ∈Th,n

∑
{Pv}

nl,ntfixed

∑
Γ∈G(τ)

∣∣∣∣ 1
βLd

∫
dxv0Val(Γ)

∣∣∣∣ (2.179)

where

– x = {x1, . . . , xnl}, y = {y1, . . . , ynt}, z = {z1, . . . , zm0}, w = {w1, . . . , wm1};

– Th,n is the set of the trees described in section 2.1 but with endpoints which may
also be of type mJ0 , m′J0

or mJ1 ;

– G(τ) is the set of the connected Feynman diagrams compatible with the tree τ ,
having nl and nt external lines of type l or t and m0 external lines of type J0 and
m1 external lines of type J1.
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2.5.1 Localization for h̄ < h ≤ 0
Introducing also the new vertices mJ0,v, m′J0,v

and mJ1,v we get the following
dimensional bound for the kernels of the unrenormalized theory:

||V (h);n
nlnt;m0m1 || ≤

∑
τ∈Th,n

∑
{Pv}

nj ,mi fixed

∑
G∈G(Pv)

Cn(λε−1)(1− 1
2 (ne

l+ν
e
t )) εmJ0−

1
2mJ1

γhδ
J,>
v0

∏
v not e.p.

1
sv!

γ(hv−hv′ )δ
J,>
v

∏
v e.p.

(
λγ( d2−1)χ(m4,v))(√λε γ( d4−1)χ(m3,v))(γ( d4−1)χ(m2,v)) (2.180)

where the scaling dimension – with respect to (2.61) – is

δJ,>v = d

2 + 1− d

4n
e
v −

1
2n

e
∂x,v − n

e
∂0,v −mJ0,v −

1
2mJ1,v (2.181)

and we are using the same definitions than section 2.1. We note that the scaling
dimension δ<v in (2.187) depends on the number of vertices containing J0 and J1
external fields. We can as usual move this contribution to the endpoints; we will get
the factor ∏

v e.p.
γ−χ(mJ0,v)− 1

2χ(mJ1,v) (2.182)

However, due to the fact that the J0 and J1 fields are not contracted with other
fields, there is an arbitrariness in the choice of their dimensions, in the sense that
we can arbitrarily improve the internal dimension of the clusters containing these
fields, at the expense of the external dimension. Let see in details what we mean
in the case of the J0 field. First of all we observe that we can choose to move to
the endpoints only a part of the contribution −χ(mJ0,v), let say (ε0 − 1)χ(mJ0,v),
as follows:

γ−hmJ0,v0
∏

v not e.p.
v>v0

γ−(hv−hv′ )mJ0,v

= γ−ε0hmJ0,v0
∏

v not e.p.
v>v0

γ−ε0(hv−hv′ )mJ0,v
∏
v e.p.

γ(ε0−1)hvχ(mJ0,v) (2.183)

Using the identity
neJ0,v = mJ0,v +m′J0,v (2.184)

we can also write

(2.183) = γ
−ε0h (ne

J0,v
−m′J0,v

) ∏
v not e.p.
v>v0

γ
−ε0 (hv−hv′ )(ne

J0,v
−m′J0,v

) ∏
v e.p.

γ(ε0−1)hvχ(mJ0,v)

= γ
−ε0hne

J0,v
∏

v not e.p.
v>v0

γ
−ε0(hv−hv′ )ne

J0,v
∏
v e.p.

γ
ε0hvχ(m′J0,v

)
γ(ε0−1)hvχ(mJ0,v)

(2.185)
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In this latter identity ε0 appears as the dimension of each external J0-field. As a
consequence of this choice the vertex m′J0

has dimension −ε0, while the vertex mJ0

has dimension 1 − ε0. Then mJ0 is relevant for 0 ≤ ε0 < 1, marginal for ε0 = 1
and irrelevant for ε0 > 1. The arbitrariness in the choice of ε0 does not gives any
ambiguity in the calculation of the physical observables: in fact when we improve
the external dimension, the gains from the short memory factors get worse; on the
contrary if the external dimension gets worse, the gains from the short memory
factor will improve.

Following the same ideas we can choose the dimension of the J1 external field;
in this case we denote as ε1 the part of the −1/2 factor we decide to move to the
endpoints and use the identity

neJ1,v = mJ1,v (2.186)

If we choose ε0, ε1 6= 0 we get an expression equal to (2.180) with a new scaling
dimension

δ̄J,>v = d

2 + 1− d

4n
e
v −

1
2n

e
∂x,v − n

e
∂0,v − ε0n

e
J0,v − ε1n

e
J1,v (2.187)

and the following term in the product over the endpoints

∏
v e.p.

γ
hv

[
(ε0−1)χ(mJ0,v)+ε0χ(m′J0,v

)+(ε1−1/2)χ(mJ1,v)
]

(2.188)

We choose the localization procedure in such a way that the dimension of the field
J0 is equal to dimension of the derivative with respect to ∂0 and the dimension of
the field J1 equal to dimension of a spatial derivative ∂i, that is:

ε0 = 1 ε1 = 1
2 (2.189)

both in three and two dimensions. This corresponds to the following localization
procedure. As far as the kernels with m = 0 are concerned, we use the same
definitions introduced for the effective potential, which will not be repeated here.
For the terms with m0,m1 ≥ 1, we choose the following localization procedure, both
for the three and two dimensional case:

L> V̂ (h)
02;10(k, p) := V̂

(h)
02;10(0, 0)

L> V̂ (h)
11;01(k, p) :=

3∑
i=1

ki∂ki V̂
(h)

11;10(k, p)
∣∣
k=p=0

L> V̂ (h)
10;10(k) := V̂

(h)
10;10(0)

L> V̂ (h)
01;01(k) :=

3∑
i=1

ki ∂ki V̂
(h)

01;01(0)
∣∣
k=0

L> V̂ (h)
nlnt;m0m1(k1, . . . , kn+m) := 0 otherwise (2.190)

The corresponding scaling dimension is:

δ̄J,>v = d

2 + 1− d

4nv −
1
2n∂,v − n∂0,v − nJ0,v −

1
2nJ1,v (2.191)
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With this choice of L> all vertices with two or more external J-fields and a non
trivial dependence on ψ are irrelevant. Note that all the terms with one external Jν
field different from J0ψl, J0∂0ψt, J0(ψt)2, J1∂xψt and J1∂xψtψl are zero by parity.
With the previous definitions we obtain an expansion for V (h);n

nlnt;m0m1 in terms of
renormalized Gallavotti-Nicolò trees, whose vertices are either on scale 0, or of the
form λ̄h, µ̄h, ν̄h and µ̄J0

h , µ̄J1
h , Z̄J0

h or ĒJ1
h , see fig. 2.20 for a representation of the

vertices with external fields.

2.5.2 Localization for h ≤ h̄

The unrenormalized dimensional bound for the kernel ||V (h);n
nlnt;m0m1 || in the region

h ≤ h̄ is the same obtained for the free energy, see (2.63) and (2.66), apart for a new
scaling dimension, given by

δJ,<v = d+ 1−
(
d+ 1

2

)
nel,v −

(
d− 1

2

)
net,v − ne∂,v − 2mJ0,v (2.192)

and a different order in ε, due to the the new vertices with external fields, as discussed
at the end of appendix A.3.

As discussed in the previous section we can arbitrarily fix the dimension of the
external field J0 and J1. In this case the scaling dimension δJ,<v in (2.196) does not
depend explicitly on the number of vertices containing a J1-external field. However
using the identity

neJ1,v = mJ1,v (2.193)

we can always multiply the external and internal dimensions by

1 = γ
ε1(mJ1−n

e
J1

) ∏
v not e.p.
v>v0

γ
ε1(mJ1,v−n

e
J1,v

) (2.194)

= γ
−ε1ne

J1
∏

v not e.p.
v>v0

γ
−ε1ne

J1,v
∏
mJ1,v

γε1hv (2.195)

so that mJ1,v becomes irrelevant once ε1 6= 0. As we choose ε0, ε1 6= 0 the scaling
dimension becomes

d̄J,<v = d+ 1−
(
d+ 1

2

)
nel,v −

(
d− 1

2

)
net,v − ne∂,v − ε0n

e
J0,v − ε1n

e
J1,v (2.196)

and we get a new contribution coming from the product over the endpoints with
one external field, that is

∏
v e.p.

γ
hv

[
(ε0−2)χ(mJ0,v)+ε0χ(m′J0,v

)+ε1χ(mJ1,v)
]

(2.197)

As a guide to fix the dimensions ε0 and ε1 in the lower region we will use some
Ward identities (WIs) relating the vertices with external J fields with the vertices
without external fields, derived in section 4 and depicted in fig. 2.21. We choose
the dimension of the external fields in such a way that the vertices related by the



2.5 Generating functional of correlations 79

∂0

Eh

'
J0

µJ0
h

√
2 ∂0 ∂0

Bh

' ∂0

J0

EJ0
h

√
2 ∂i ∂i

Ah

' ∂i

Ji

EJih

Figure 2.21. Local Word identities derived in section 4. The “'” symbol is used
since the identities are not complete as depicted: the extra term coming from the presence
of the cutoff function χ0 in our effective model has been neglected in this picture.

WIs have the same dimensions. This correspond to fix the dimension of the field J0
equal to dimension of a ψl field or, which is the same, of a ψt field plus a derivative
and the dimension of the field J1 equal to dimension of a ψt field plus a derivative,
that is

ε0 = ε1 = d+ 1
2 =

2 d = 3
3
2 d = 2

(2.198)

The corresponding scaling dimension results to be:

δ̄<v = d+ 1−
(
d+ 1

2

)(
nel,v + neJ0,v + neJ1,v

)
−
(
d− 1

2

)
net,v − ne∂,v (2.199)

The localization procedure for the terms with m0,m1 ≥ 1 which corresponds to
this choice is the following, valid both for the three and two dimensional case:

L< V̂ (h)
02;10(k, p) := V̂

(h)
02;10(0, 0)

L< V̂ (h)
10;10(k) := V̂

(h)
10;10(0)

L< V̂ (h)
01;10(k) := k0 ∂k0 V̂

(h)
01;10(k)

∣∣
k=0

L< V̂ (h)
01;01(k) :=

3∑
i=1

ki ∂ki V̂
(h)

01;01(k)
∣∣
k=0

L< V̂ (h)
nlnt;m0m1(k1, . . . , kn+m) := 0 otherwise (2.200)

With this choice of L< the fields J0 and J1 turn to have just the dimensions (2.198).
Then all vertices with two or more external J-fields and a non trivial dependence
on ψ are irrelevant, the terms J0ψ

l, J0∂0ψ
t and J1∂xψ

t are marginal and the term
J0(ψt)2 is marginal for d = 3 and relevant for d = 2, but with the same dimension
than µh by construction. The terms J0ψt, J0∂xψt, J1ψt, J1∂0ψt, J1ψl and J1(ψt)2
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c

d = 3

d = 2

J0

µJ0
h

γ
h
2 µJ0

h

J0

ZJ0
h

ZJ0
h

∂0

J0

EJ0
h

EJ0
h

∂i

J1

EJ1
h

EJ1
h

Figure 2.22. Vertices of the renormalized expansion for h < h̄ and d = 2, 3 with
external fields. The only difference between the three and two dimensional case is in
the different dimension of the µJ0

h vertex, which reflects the fact that µh is marginal for
d = 3 and relevant with dimension 1/2 in two dimensions. The fields J0 and J1 counts
as a dashed line or a plain line with derivative in the dimensional estimate.

are zero by parity. With these definitions we obtain an expansion for V (h);n
nlnt;m0m1 in

terms of renormalized Gallavotti-Nicolò trees, whose vertices are either on scale h̄,
or are of the form λh,µh , νh, λ6,h in the two dimensional case, µJ0

h , ZJ0
h , EJ0

h or EJ1
h ,

see fig. 2.22.

Additional running coupling constants for d = 2. Apart for the previous
running coupling constants, in the two dimensional case it is also crucial to localize
the following additional kernels, which correspond to µ′h, λ′h and ωh once the J0 field
is substituted with a dashed line:

L< V̂ (h)
20;10(k1, k2) := V̂

(h)
02;10(0, 0)

L< V̂ (h)
12;10(k1, k2, k3) := V̂

(h)
10;10(0, 0, 0)

L< V̂ (h)
04;10(k1, k2, k3) := V̂

(h)
04;10(0, 0, 0) (2.201)

At this stage of our analysis the localization seems not necessary, since the effective
scaling dimensions of the last kernels are all negative, this property depending on
the fact that the J0 lines is never contracted. However one finds that the localization
of these additional terms is necessary in order to study the flow of µJ0

h , as stressed
in sec. 3.4.2. The running coupling constants defined in (2.201) are graphically
represented in fig. 3.6 pag. 3.6.

Remark. The reader may wonder why we have not used the WIs in fig. 2.21 to fix
the dimensions of the external field also in the higher momentum region h̄ < h ≤ 0.
A first reason is that in this case the dimension of the ψl field and that of ∂0ψ

t are
different and we can not satisfy both the requirements that the vertices appearing in
the first and the second WIs in fig. 2.21 have the same dimensions. A second more
important reason is that we will use WIs are used only in the region h ≤ h̄ and the
choice to have WIs relating running coupling constants with the same dimensions
will simplify the discussion.
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On the n! bounds

The n! bounds as the ones obtained for the kernels of the effective potentials and
described by results (1), (2) and (3) can be also proved for the kernels ||V (h);n

nl,nt;m0,m1 ||
of the functional W(ρ0, J). In particular we get exactly the same result, which will
not repeated here, but with scaling dimensions δ̄J,>v and δ̄J,<v , given by (2.191) and
(2.199), provided that also the product over the new vertices at each scale hv can be
bounded.

In particular, as discussed in appendix A.3, in the region h̄ < h ≤ 0 the product
over the vertices µ̄J0

h and µ̄J1
h gives an extra factor to the estimate for ||V (h);n

nl,nt;m0,m1 ||
with respect to the one for the kernels of the effective potentials, which is∏

v e.p.

(
εµ̄J0

hv

)mJ0,v
(
ε−

1
2 µ̄J1

hv

)mJ1,v (2.202)

We stress that µ̄J0
h and µ̄J1

h are the unique running coupling constants with external
J fields which can contribute to local diagrams, since Z̄J0

h and ĒJ1
h have only one

bosonic line. The prove that εµ̄J0
hv

and ε− 1
2 µ̄J1

hv
are bounded will given in sec. B.2.

Regarding the region h ≤ h̄, here the kernel J1ψ
l∂iψ

t becomes irrelevant and we
are left with an unique running coupling constant, µJ0

h . Then we only have to prove
that ∏

v e.p.

(
εµJ0

hv

)mJ0,v (2.203)

can be bounded. We advance here that by studying the flow equation of µJ0
h we

will find µJ0
h ≤ ε−1µh both in 3d and 2d, and then the product over endpoints of

type µJ0
h endpoints is equivalent to product over endpoints of type µh, apart for a

different contribution to the order in ε, as we will see in more detail in the next
chapter.

A summary of the running coupling constants defined with the localization
procedure can be found in table 2.1.



82 2. Multiscale analysis

h̄ < h ≤ 0 h ≤ h̄

d = 3 d = 2 d = 3 d = 2

V
(h)

06;00 irrelevant irr. λ6,h

V
(h)

04;00 irr. λh λ̄h γhλh

V
(h)

12;00 γh/4µ̄h γh/2µ̄h µh γh/2µh

V
(h)

02;00 γhν̄h γ2hνh

V
(h)

20;00 γhZ̄h Zh

V
(h)
l ∂0t;00 Āh Ah

V
(h)
∂0t,∂0t;00 irrelevant Bh

V
(h)
∂xt,∂xt;00 Ēh Eh

V
(h)

02;10 µ̄J0
h µJ0

h γh/2µJ0
h

V
(h)

02;01 µ̄J1
h irrelevant

W
(h)
10;10 γ3/4Z̄J0

h γ1/2Z̄J0
h ZJ0

h

W
(h)
∂0t;10 irrelevant EJ0

h

W
(h)
∂xt;01 γ3/4ĒJ1

h γ1/2ĒJ1
h EJ1

h

Table 2.1. Comparison between the dimension of the vertices of the
renormalized expansion in the two regions h̄ < h ≤ 0 and h ≤ h̄ and for
two and three spatial dimensions.
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Chapter 3

The flow of the running
coupling constants

In chap. 2.1 we proved that the effective model we introduced is order by order
finite in the renormalized coupling constants – α3d

i,h = {λh, ε−1/2µh, ενh} in the three
dimensional case and α2d

i,h = {λλh, λ6,h/(λλ2
h), ενh} in the two dimensional case –

provided these are bounded for all h ≤ 0 and that

Ah − 1 ≤ o(1)
ε ≤ Bh ≤ ε−1

Zh
Eh

= ε (1 + o(1)) (3.1)

Under the previous assumptions the dominant behavior of the renormalized propa-
gator as k → 0 is not changed with respect to the Bogoliubov propagator, except
for the effective longitudinal propagator, which is renormalized by Z−1

h , with Zh the
longitudinal wave function renormalization constant. In order to control the effect
of the renormalization of the longitudinal propagator in the three dimensional case
we must have

|Zh| ≥ (const.)|µh| (3.2)

while in the two dimensional case the following assumptions are needed

Zh ≥ (const.)µ2
h/λh > 0

0 < c1γ
h
2 λh ≤ µh ≤ c2γ

h
2 λh

|ωh| ≤ (const.)|λ6,h|γ
h
2

|λ′h| ≤ (const.)|λ6,h|γh

|µ′h| ≤ (const.)|λ6,h|γ
3
2h (3.3)

Even if we do not prove the convergence of the series but only n! bounds we expect
that our series gives meaningful information only as long as the running coupling
constants satisfy these conditions.
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In this chapter we will describe how to control the flow of the running coupling
constants under the iteration of the RG transformation and to prove the previous
assumptions. We will refer in particular to the asymptotic region h ≤ h̄, while the
discussion of the transient region is postponed in appendix B.

We will prove the following result.

Main Result 1. (Coupling constants flow h ≤ h̄) Both in 3d and 2d there are
three exact relations (see eq. (3.17), (3.18), (3.22)) relating µh, Zh and Eh to λh and
two relations allowing to control the flows of Ah and Bh, see eq. (3.23) and (3.24).
Moreover in 2d there are three additional exact relations (see eq. (3.20) ) relating
ωh, λ′h and µ′h to λ6,h.

So the a priori seven running coupling constants of the three dimensional case
are reduced to the study of two independent running couplings, λh and νh, with
νh controlled by the choice of the chemical potential. Similarly the a priori eleven
couplings of the two dimensional case are reduced to the study of three independent
running couplings, λh, λ6,h and νh, with νh fixed by the choice of the chemical
potential.

Then, the flows of all the renormalized coupling constants are bounded (with
explicit bounds) provided that the following conditions are verified:

(i) 3d case: λh is smaller than one for each h;

(ii) 2d case: the effective parameters λh and λ6,h are such that λλh and λ6,h/(ελ2
h)

are smaller than one for each h.

In the three dimensional case we can prove that λh vanishes for h→ −∞, i.e the
flow is asymptotically free, see sec. 3.5.1. In the two dimensional case a one–loop
calculation suggests λλh and λ6,h/(ελ2

h) to be of order one in the infrared limit, as
showed in sec. 3.5.2.

The second result that we will prove in this chapter is concerned with the
renormalized propagator, which in the region h ≤ h̄ is given by

g
(h)
αα′(x) = 1

(2π)d+1

∫
dk0d

dk fh(k2
0 + εk2) e−ikx g(h)

αα′(k)

g
(h)
αα′(k) = (ρ0R

−2
0 )−1

(
Ahk2 +Bhk

2
0 Ehk0

−Ehk0 k2 + εZh

)
(
E2
h +BhZh

)
k2

0 +AhZhk2 + k2 (Ahk2 +Bhk
2
0
) (3.4)

The behavior of Ah, Bh and Eh is constrained by three local Ward Identities. In
particular we will prove that both in 3d and 2d

Eh = ε−1Zh
(
1 +O

(
λ
))

Ah = 1 +O
(
λ ε(d−2)/2)

Bh = ε−1 (1− Eh +O(λ)) (3.5)
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Moreover, an additional local WI allows to prove that for each h ≤ h̄

E2
h + ZhBh = Zhε

−1 (1 +O(λ)) (3.6)

The identity (3.6) implies that, if we denote with Dh(k) the denominator of g(h)
αα′(k)

in (3.4)

Dh(k) ' Zhε−1
(
k2

0 + εk2
)

(3.7)

with the symbol “'” here and below referring to the dominant contribution as k → 0.
Using the relation between Zh and λh we also have

Zh = ε

1 + λε
1
2 |h− h̄|

d = 3

Zh = 16 γhλh 1 ≤ λh < λ∗ d = 2 (3.8)

with λ∗ = O(λ−1) the fixed point for λh. Let us now consider only the dominant
behavior of the propagator as k → 0. As a consequence of the fact that Zh/Eh = ε
at leading order in λ and E2

h +BhZh = ZhB−∞ we have

g
(h)
αα′(k) ' (ρ0R

2
0)−1

(
Bh(k2

0 + Ah
Bh

k2) Ehk0
−Ehk0 Zh

)
ZhB−∞

(
k2

0 + Ah
B−∞

k2
) (3.9)

In the deep infrared limit h → −∞, which corresponds to k → 0, both the
longitudinal–longitudinal and the transverse–longitudinal propagator vanish, and
the interacting pair Schwinger function of the fields ψ±, here denoted with gσσ′ε (k),
behaves as:

g−+
λ (k) ' −g−−λ (k) ' −g++

λ (k) ' ρ0
2 g

(−∞)
tt (k) = R2

0
2

(B−∞)−1

k2
0 + A−∞

B−∞
k2

(3.10)

Using A−∞ = 1+A(λ) and B−∞ = ε−1(1+B(λ)) and coming back to the dimensional
variables k′0 = R−2

0 k0 and k′2 = R−2
0 k2 we obtain

g−+
λ (k) ' −g−−λ (k) ' −g++

λ (k) ' λρ0v̂(0) (1 + B(λ))−1

k2
0 + c2(λ) k2 (3.11)

with c(λ) the renormalized speed of sound, given by

c2(λ) = R−2
0

A−∞
B−∞

= c2
B

(
1 +O

(
λ
))

(3.12)

with cB =
√

2λρ0v̂(0) the speed of sound predicted by Bogoliubov approximation.
It remains to be seen if the ultraviolet integration changes the magnitude in λ of the
correction term in (3.12). The previous discussion is enclosed in the following result.



86 3. The flow of the running coupling constants

Main Result 2. (Renormalized propagator) Let us consider the fields ϕ±x
defined in sec. 1.3, with x = (x0,x). Let us write ϕ±x0,x = ξ± + ψ±x0,x, with
ξ± = 〈ϕ±x0,x〉x0,x the fields with covariance equal to the condensate density in the
thermodynamic limit and ψ±x0,x the fluctuation fields with respect to the average ξ±.
Order by order in perturbation theory the interacting propagator of the fields ψ±x for
spatial dimensions d = 2, 3 is equal to

g−+
ε (x) '

∫
ddkdk0 e

−ikx G(λ)
k2

0 + c2(λ) k2 (3.13)

where “'” means that we are considering the dominant singularity as k → 0 and

c(λ) = c2
B (1 + C(λ)) (3.14)

with cB the speed of sound in the Bogoliubov approximation. Here G(λ) and C(λ)
are expressed by series in the effective couplings with finite coefficients that admit
n!–bounds at all orders. Moreover: (i) the first non trivial contribution to G(λ) is
λρ0v̂(0); (ii) C(λ) goes to zero as λ→ 0.

The interacting propagator shows the linear dispersion relation of quasi–particles
predicted by Bogoliubov theory with a renormalized speed of sound c(λ).

The scheme of the present chapter is the following:

Sec. 3.1 In this section we list the global and local Ward identities necessary to
control the flow in the region h ≤ h̄. In order to conceptually separate
how to prove and how to use these identities, their derivation has been
postponed to the next chapter. The expression of the global and local
WIs in the transient region can be found in appendix B.

Sec. 3.2 We show how the flow of the relevant coupling νh is controlled by the
choice of the chemical potential, under some assumptions on the coupling
constants that will be verified in the next sections.

Sec. 3.3 The values of the running coupling constants at h = h̄ are reported. The
detailed study of the flow of the coupling constants in the first region
h̄ ≤ h ≤ 0 can be found in appendix B.

Sec. 3.4 In this section we discuss how to prove the results (3.5) for the renormalized
wave functions Ah, Bh and Zh. The proof is based on the use of local WIs,
which relate Ah, Bh and Zh with the coupling constants with external
fields µJ0

h , EJ0
h and EJ1

h . The flows of µJ0
h and EJ0

h are studied by a
comparison with the flows equation for µh and Eh respectively, while EJ1

h

is studied using a dimensional argument. The derivation of (3.6) is also
discussed.

Sec. 3.5 We present the one–loop computations for the two particles effective
interaction λh in the 3d case and for the three and two particles effective
interactions λh and λ6,h in the 2d case. The first computation shows that
in the three dimensional case λh is asymptotically free in the infrared
limit. In two dimensions, the leading order computations suggests λλh
and λλ6,h to have non trivial fixed points of order one.
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We find convenient to remind here the scaling dimensions for the kernels of the
effective potential both in the transient region than for h ≤ h̄:

d = 3

δ
>
v = 5

2 −
3
4n

e
v − neJ0,v

− 1
2n

e
J1,v
− ne∂0,v

− 1
2n

e
∂x,v

δ<v = 4− 2nel,v − net,v − ne∂,v − 2neJ0
− 2neJ1

(3.15)

d = 2

δ
>
v = 2− 1

2n
e
v − neJ0,v

− 1
2n

e
J1,v
− ne∂0,v

− 1
2n

e
∂x,v

δ<v = 3− 3
2n

e
l,v −

1
2n

e
t,v − ne∂,v −

3
2n

e
J0
− 3

2n
e
J1

(3.16)
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λh−1

=
λh

+ + + + . . .

µh−1

=
µh

+ + + . . .

Zh−1

=
Zh

+

∂0

Eh−1
=

Eh
+ ∂0

νh−1

=
νh

+ + +

Figure 3.1. Flow equations for d = 3, h ≤ h̄, at leading order in ε. The dots on
the first two lines denote the fact that some of the leading order diagram have not
been depicted; these are the three and four vertex diagrams obtained by a different
contraction of the plain and dashed legs. The flow equation of Ah and Bh are obtained
by deriving twice with respect to p or p0 the diagrams on the last line, with p the
external momentum. In the two dimensional case the six t legged flow equation must to
be added in addition to those depicted.

3.1 Role of the symmetries

A crucial aspect of our approach is the subtle use of Ward identities (WI), which
reduce the number of independent running couplings. In fact, in order to prove
the theory to be renormalizable, one need to control one relevant and six marginal
couplings in three dimensions and three relevant and eight marginal couplings in
two dimensions. Moreover the flow equations of the latter couplings are not trivial
even at leading order, as one can already see in the “simpler” three dimensional case,
see in fig. 3.1. The Ward identities simplify (at least from a methodological point of
view) the three dimensional case treatment and turn to be crucial for the control of
the two dimensional theory.

The derivation of the WIs will be discussed in more details in the next chapter.
These are related to the gauge invariance of the generating functional W(φ, J0, J1),
defined in section 2.5, with φ, J0 and J1 external fields, under the transformation of
the bosonic fields ψ±x → eiϑψ±x , with ϑ depending on x (local gauge invariance) or
not (global gauge invariance).

It is important to stress that while global WI are exact identities, the multiscale
momentum decomposition breaks the local gauge invariance, which local WI are
based on. However the corrections to the formal WI may be studied within the RG
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approach, following a strategy proposed and developed in [31]. The discussion of the
correction terms to the local WIs and of the techniques to control them has been
postponed to the next chapter.

A last remark regards the use of the symbol “'” which in this chapter, as along
all the thesis, refers to identity which are true at leading order in γh, as h→ −∞.

Global WIs. The following two global Ward identities give relations between
the effective three and four body interactions λh and µh and the effective longitudinal
wave function renormalization Zh:

h ≤ h̄ d = 3 d = 2

µh ' 4
√

2λh µh ' 4
√

2 γ
h
2 λh (3.17)

Zh ' 2
√

2µh + 2 γ2hνh Zh ' 2
√

2 γ
h
2 µh + 2 γ2hνh (3.18)

The meaning of these global WI’s at the lowest order in perturbation theory is shown
in appendix C.3. Regarding the term γ2hνh it is subdominant in the small parameter
ε at the beginning of the lower region (i.e. for h . h̄,see sec. 3.28) and becomes
subdominant in h as |h| grows. Then in the asymptotic region h→ −∞ we have

16λh ' 2
√

2µh ' Zh d = 3

16 γh λh ' 2
√

2 γ
h
2 µh ' Zh d = 2 (3.19)

Note that in the two dimensional case the identity relating Zh with λh implies that
if λh → λ∗ then Zhγ−h must be finite, i.e. Zh = (const.) γh where only the constant
may depend on the value of the interaction. The statements Zh ∼ γh or λh → λ∗
are equivalent, and in fact we will study the simpler RG equation for Zh in spite of
the one for λh.

In the two dimensional case three additional global WIs must been used to
control the flow of the marginal couplings ωh, λ′h and µ′h, i.e.

6
√

2λ6,h − γ−
h
2ωh ' 0

γ−hλ′h − 24λ6,h ' 2γhλh
γ−

3
2hµ′h − 16

√
2λ6,h ' 4

√
2 γhλh (3.20)

By using these identities and being 0 < γhλh ≤ ε we see that the last three
assumptions in (3.3) are satisfied. In the asymptotic region, assuming λ∗ to have a
fixed point, the terms on the r.h.s. of the last two lines in (3.20) vanish and we get

ωh ' 6
√

2 γ
h
2 λ6,h

λ′h ' 24 γh λ6,h

µ′h ' 16
√

2 γ
3
2h λ6,h (3.21)
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Note that the behavior in h of the coupling constants ωh, λ′h and µ′h is exactly what
occurs to compensate the divergences arising by the contraction of all the dashed
legs of these kernels with other dashed legs at lower scale.

Local WIs. Through the following local Ward identities the flows of the coupling
constants with an external field J0 or J1 are used to get information on the behavior
of the wave function renormalization constants Eh, Ah and Bh in the lower region
h ≤ h̄.

Local WIs h ≤ h̄ d = 2, 3

γ
3−d

2 h 2µJ0
h (1 +O(λ)) ' Eh (3.22)

EJ1
h (1 +O(λ ε)) '

√
2 (1−Ah) (3.23)

EJ0
h (1 +O(λ)) ' −

√
2Bh (3.24)

The three identities (3.23), (3.23) and (3.22), together with the global WIs allows
to control the flow.

In the three dimensional case the flow of the three coupling constants λh, µh and
νh and the four single scale renormalization constants Ah, Bh, Eh, Zh can be also
studied by using only the two global WIs and by a leading order computation, as
done by Benfatto in [26]. On the contrary in the two dimensional case the use of
the local WIs is essential to solve the flow.
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3.2 Choice of the chemical potential
In this section we prove that, under the assumptions (3.1), (3.2) and (3.3), we can
control the flow of νh by properly choosing the values of the chemical potential ν0
at the scale of the interacting potential. In particular we will prove that

sup
k≤h̄
|νh| < ν̃ (3.25)

with ν̃ a suitable constant and then the factor ενh appearing in the dimensional
bounds (2) pag. 69 and (3) pag. 72 is small for each h. One can wonder if the choice
|νh| ≤ ν̃ is compatible with the fact that the chemical potential must be fixed in such
a way that the effective potential W(ξ) reaches its minimum for the fixed density ρ0.
However in sec. 4.1.1 we will show that the condition ∂ξW (ξ) = 0 corresponds to
the requirement

lim
h→−∞

γ2hνh (3.26)

which is of course satisfied by (3.25).
We will proceed as follows: first we will show that we can fix νh̄ is such a way

that νh is bounded for each h ≤ h̄. The value of νh̄ is then related to ν̄h̄ by a
continuity condition at h = h̄. Finally we show that νh̄ fixes the initial value ν̄0 of
the chemical potential in our effective model. Then the couplings ν̄h and νh satisfies
the following system:

|νh| ≤ (const.) boundary condition

νh−1 = γ2νh + βνh h ≤ h̄

γh̄ν̄h̄ = γ2h̄νh̄ continuity condition at h̄

ν̄h−1 = γ ν̄h + β̄νh h > h̄

(3.27)

In the following we will also prove that limh→−∞ νh = ν∗ with ν∗ a constant.
The beta functions βνh and β̄νh can be expressed as sums over Gallavotti–Nicolò

(GN) trees with at least two endpoints and with at least one endpoint on scale h, the
reason being that the local part of the trees with only endpoints at scale lower than
h− 1 is zero by the support properties of the single–scale propagators that enter the
definition of β#

h . Iterating the first equation in (3.27) we obtain that for each h ≤ h̄:

γ2hνh = γ2h̄ νh̄ +
h̄∑

j=h+1
γ2(j−1) βνj (3.28)

with νh̄ fixed by the condition ν−∞ = ν∗

νh̄ = −
∑
j≤h̄

γ2(j−h̄−1) βνj (3.29)

the beta function βνj appearing in (3.29) is a function of all the running coupling
constants, included νk with k ≥ j. Substituting (3.29) in (3.28) we obtain the flow
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equation for νh under the condition on ν−∞:

νh = −
∑
j≤h

γ2(j−h−1)βνj (ζj , νj ; . . . ; ζh̄, νh̄) (3.30)

where we have denoted with {ζk} the set of all the running coupling constants at
scale k except νk. We note that the solution to the flow equation induced by the
beta function βνj with initial condition limh→−∞ νh = ν∗ is a fixed point of the map
T : MK →MK defined as

(Tν)h = −
∑
j≤h

γ2(j−h−1)βνj (ζj , νj ; . . . ; ζh̄, νh̄) (3.31)

with MK,d with d = 2, 3 the space of sequences ν = {νh}h≤h̄ such that

|νh| ≤ K|λε−
1
2 | d = 3

|νh| ≤ K d = 2 (3.32)

We shall think MK,d as a Banach space with norm || · || where ||ν|| = supk≤h̄ |νh|.
The fact that, for K sufficiently large, T is a map from MK,d to itself is a simple
consequence of the bound |βνh| ≤ c0|λε−1/2| in 3d and |βνh| ≤ c0 in 2d. For example,
in the 3d case

|(Tν)h| ≤
∑
j≤h

γ2(j−h)c0|λε−
1
2 | ≤ c′0|λε−

1
2 | (3.33)

In order to prove that the map T admits a fixed point it is sufficient to show that T
is a contraction on MK,d, i.e. if ν, ν ′ ∈MK,d

||Tν − Tν ′|| ≤ L||ν − ν ′|| (3.34)

with L < 1. First note that, we can always split the beta function βνh as the sum of
two parts: a first part βνh,1 containing the diagrams which not contain any vertex νk
and a second part containing at least a vertex νk:

βνh(ζh, νh; . . . ; ζh̄, νh̄) = βνh,1(ζh; . . . ; ζh̄) + βνh,2(ζh, νh; . . . ; ζh̄, νh̄) (3.35)

The one–loop diagrams contributing to βνh,1 are shown in the last line of fig. 3.1; the
one–loop diagrams contributing to βνh,2 are shown in fig. 3.2. Using the expansion in
GN trees, the short memory factor and the fact that the trees contributing to βνh,2
have at least two endpoints, we find that

|βνh,2(ν)− βνh,2(ν ′)| ≤ C λε−
1
2 |ζ∗||ν − ν ′| d = 3

|βνh,2(ν)− βνh,2(ν ′)| ≤ C |ζ∗||ν − ν ′| d = 2 (3.36)

with

|ζ∗| =

maxh≤h̄{|λh|} d = 3

maxh≤h̄{|λλh|, |λ6,h/(λλ2
h)|} d = 2

(3.37)
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βνh,2 = + +

Figure 3.2. Leading order diagrams contributing to the beta function βνh,2 defined in (3.35).
For each additional νk vertex the estimate (3.36) is improved of ε|νk|.

The bounds (3.36), plugged back into eq. (3.31), imply (3.34) provided that λε− 1
2 |ζ∗|

is sufficiently small in three dimensions and |ζ∗| is sufficiently small in two dimension.
Under the previous conditions T has a unique fixed point ν∗ in MK,d such that

νh̄ = −
∑
j≤h̄

γ2(j−h̄−1) βνj (ν∗) (3.38)

In three dimensions we will prove that 0 < λε−
1
2 |ζ∗| < λε

1
2 and the discussion is com-

pletely consistent. In two dimensions the chemical potential is controlled provided
that λλh and λ6,h/(λλ2

h) are sufficiently small, which is the same condition we need
to have a consistent perturbation theory. However, as shown in sec. 3.5.2 a one–loop
computation shows that λλh and λ6,h/(λλ2

h) admit fixed points of order one; the
possibility of proving that these fixed points are sufficiently small that the perturba-
tion theory makes sense is beyond reach of the methods that we employ in this thesis.

Remark. In (3.35) we have neglected the fact that also the couplings {ζk} depends
on νk. In fact this dependence is weak, due to the fact that νk does not appear in
the flow equation of ζk at leading order. However one can take into account this
dependence, fixing ζh = ζh(ν) as a function of ν, see e.g. [63, Appendix A5].

Let us consider the flow equation (3.38). The dominant diagrams contributing
to βνj are the one–loop diagrams without ν vertices. By using the short memory
property, one can prove that it exists a constant C such that:

|βνj | ≤

C λε
− 1

2 d = 3
C λε−1 d = 2

(3.39)

and then

|γ2h̄ νh̄| ≤

(const.)λ ε 3
2 d = 3

(const.)λ ε d = 2
(3.40)
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Initial value of the chemical potential

The flow in the higher momenta region is obtained by iterating the first equation in
(3.27):

ν̄h = γ−h ν0 +
0∑

j=h+1
γ j−h−1 β̄νj (3.41)

with ν0 fixed by the value of ν̄h̄:

ν0 = γh̄ ν̄h̄ −
0∑

j=h̄+1

γ j−1 β̄νj (3.42)

The leading order contributions to the beta function β̄νj are the tadpole diagram
obtained or by contracting two out the four legs of λ̄h or by contracting two µ̄h
vertices. In fact, as we refer to the order in perturbation theory, two µ̄h vertices
count as a λh vertex, see (A.32). In three dimensions the tadpole exists only at
scale h = 0, being the four–legged diagram irrelevant; moreover µ̄h ≤ εγ−

h
4 . In two

dimensions both the tadpole and the diagrams with two vertices µh are bounded by
(const.)λ, since λ̄h = ε and µh ≤

√
ε. We then have

|β̄νj | ≤
{
c1λδj0 + c2λεγ

− j2 d = 3
c3 λ d = 3

(3.43)

with c1, c2 and c3 suitable constants. Using the latter estimates on the beta function
and the estimates (3.40) on νh̄ we get

|ν̄0| ≤ Cλ
(
1 + c′1 ε+ c′2 ε

3
2
)

d = 3
|ν̄0| ≤ Cλ

(
1 +O(ε)

)
d = 2 (3.44)

Remark. We remind that the leading order value of the chemical potential in
the Bogoliubov approximation is µB = λρ0v̂(0) = εR−2

0 /2. The correction to this
value in our effective model is given by ν = ν0R

−2
0 /2, where R−2

0 restores the exact
physical dimensions, being ν0 adimensional. In the three dimensional case, the
terms of order λε and λε 3

2 we find are of the same order of the expected corrections
to the leading order value, see (1.83). However as already stressed in chap. 1 the
coefficients of these terms do not represent the values of the first corrections to µB
in the Hamiltonian model, due to the presence of the ultraviolet momentum cutoff
on the k variable. As an example of this fact, the term of order λ in ν̄0, which is
not compatible with Bogoliubov prediction, comes from the ultraviolet cutoff in the
k0 variable, as discussed at the end of chap. 1 .
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3.3 Values of the running coupling constants at h = h̄

We report below the initial values of the running coupling constants at scale h̄,
for the three and two dimensional case, with their lower scaling dimensions. The
estimates in the following table are discussed in appendix B.

RCC at h = h̄

δ3d
< r3d

h̄
δ2d
< r2d

h̄

λ6,h̄ 0 O
(
λε
)

λh̄ 0 1
16 ε (1 +O

(
λε

1
2 )
)

1 1
16
(
1 +O

(
λ
))

µh̄ 0
√

2
4 ε (1 +O

(
λε

1
2 )
)

1/2
√

2
4
√
ε
(
1 +O

(
λ
))

Wave function renormalization constants

Zh̄ 0 ε (1 +O
(
λε

1
2 )
)

0 ε
(
1 +O

(
λ
))

Eh̄ 0 1 +O(λ ε 1
2 ) 0 1 +O(λ)

Ah̄ 0 1 +O(λ ε 1
2 ) 0 1 +O(λ)

Bh̄ 0 O(λ ε− 1
2 ) 0 O

(
λ ε−1)

Coupling constants with external fields

µJ0
h̄

0 1 +O(λ ε 1
2 ) 1/2 ε−

1
2
(
1 +O

(
λ
))

µJ1
h̄

−2 ε2(1 +O(λ ε 1
2 )
)

−3/2 ε
3
2
(
1 +O

(
λ
))

ZJ0
h̄

0 O(λ) 0 O
(
λ2)

EJ1
h̄

0 O(λ ε 1
2 ) 0 O

(
λ2)

EJ0
h̄

0 O(λ ε− 1
2 ) 0 O

(
λ2 ε−1)

Table 3.1. Values of running coupling constants at h = h̄ for d = 3 and d = 2. Here
ε = λρ0R

d
0. Note that, while Āh̄ and Ēh̄ are smaller than one, Ah̄ and Eh̄ starts from 1,

since we have included the local quadratic terms in the free measure. The values of the
other endpoints at scale h̄ are λ′

h̄
= ε2λh̄, λ′′h̄ = ε4λh̄, µ′h̄ = ε2µh̄.

It will be also useful in the following the value at h̄ of the kernel with two J0
external fields, JJ0

h̄
, which is

JJ0
h̄

=
{
O
(
λε−1) d = 3

O
(
λ2ε−1) d = 2

(3.45)
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3.4 Coupling constants with external fields for h ≤ h̄

In this section we will discuss how to control the running coupling constant with
external fields J0 and J1. The discussion of the three and two dimensional cases are
quite different, since in the two dimensional case, as described in chap. 2.1 we need
to localize some extra effectively marginal kernels.

As already discussed in the previous sections in the region h ≤ h̄ the localization
scheme is defined including at each step the local quadratic terms in the measure.
Including the local quadratic terms at scale h = h̄ in the free measure, we obtain
the following renormalized propagator:

g
(h̄)
αα′(k) = (ρ0R

−2
0 )−1

(
Ah̄k2 +Bh̄k

2
0 Eh̄k0

−Eh̄k0 k2 + Zh̄

)
(E2

h̄
+Bh̄Zh̄)k2

0 + Zh̄Ah̄k2 + k2(Ah̄k2 +Bh̄k
2
0)

' (ρ0R
−2
0 )−1

(
k2 k0
−k0 ε

)
k2

0 + εk2 (3.46)

where “'” means leading order in k, as k goes to zero, and in ε, see the values of
Ah̄, Bh̄, Eh̄ and Zh̄ in table 3.1 in three and two dimensions. The structure k2

0 + εk2

in the denominator is preserved along the flow in the second region (this is also a
consequence of WIs, as discussed up ahead). This property justifies the choice of
the cutoff function in the second region as: χh(k) := χh(k2

0 + εk2).

3.4.1 Three dimensions

Aim of this subsection is to prove the results (3.5) for the 3d case. With this purpose
we study the flow of the coupling constants with an external field Jν , which are
related to Eh, Ah and Bh through the local WIs.

Below we will use many times the dimensional estimate (2) and the short memory
property (2.115). We remind the reader that the short memory factor we can extract
along each branch of a tree in the lower momenta region h ≤ h̄ is γϑ(h−h̄) with
0 < ϑ < 2.

Let us start with the discussion of the flows of the three coupling constants
with the external field J0. These are studied by analogy with the flows of the
“corresponding” couplings without external fields, where the correspondence is given
by the substitution of the vertex giving the external field J0 with a vertex µh, as
better explained below.

I. Flow for µJ0
h , d=3

The flow of µJ0
h is studied by analogy with the flow of µh. In fact it is sufficient

to note that the dashed external line in µh may only belong to a vertex µk for
h ≤ k < h̄ or to an irrelevant vertex at scale h̄. Similarly, the external J0 field in
µJ0
h can only come from a vertex µJ0

k , for h ≤ k < h̄ or from an irrelevant vertex
at scale h̄. The two legged relevant vertices with one dashed or J0 line, which are
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Zh, ZJ0
h and EJ0

h , cannot contribute to the beta function of µh or µJ0
h since they

only have two external legs and then the local part of the diagrams made with them
is zero. Then, apart for diagrams containing irrelevant vertices, the beta function
βJ0,µ
h for µJ0

h is equal to the beta function of µh, once the vertex µk, k ≥ h, giving
the external dashed line is replaced by a vertex µJ0

k .

In the following we will denote with βµh the part of the beta function of µh such
that the external dashed lines comes from a vertex µk, and with β∗µh the diagrams
contributing to the same beta function where the external dashed line comes from
an irrelevant vertex at scale h̄. In three dimensions µh and µJ0

h are marginal. Their
flow equations are

µh−1 − µh = βµh + β∗µh (3.47)
µJ0
h−1 − µ

J0
h = βJ0,µ

h (3.48)

where βµh and βJ0,µ
h differ only for a vertex, that is we can write

βµh =
∑

h+1≤k≤h̄

µk β
µ
h,k

βJ0,µ
h =

∑
h+1≤k≤h̄

µJ0
k βµh,k (3.49)

with µk βµh,k the sum of all the diagrams contributing to the beta function for µh
where the external dashed line comes from a vertex µk and equivalently µJ0

k βµh,k
is the sum of all the diagrams contributing to the beta function for µJ0

h where the
external wiggly line J0 comes from a vertex µJ0

k . Then, assuming

µJ0
k

µk
= µJ0

h

µh

(
1 +O(λε

1
2 )
)

(3.50)

we can rewrite βJ0,µ
h as follows

βJ0,µ
h =

∑
h+1≤k≤h̄

µJ0
k

µk
µk β

µ
h,k = µJ0

h

µh
βµh

(
1 +O(λε

1
2 )
)

(3.51)

Then, by using (3.47) and (3.48), we can express the flow of µJ0
h in terms of the

flow of µh as follows

µJ0
h

µJ0
h̄

=
h̄∏

k=h+1

(
1 + βµk

µk

(
1 +O(λε

1
2 )
))

=
h̄∏

k=h+1

µk−1
µk

(
1− β∗µk

µk−1
+O(λε

1
2 )
)

= µh
µh̄

h̄∏
k=h+1

(
1− β∗µk

µk−1
+O(λε

1
2 )
)

(3.52)
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βµh =
µh

λh + + +

β∗µh = λ′
h̄ + λ′

h̄

+
µh̄

+
µh̄

+
µh̄

Figure 3.3. Flow of µh, d = 3. On the first line the diagrams contributing to βµh at
the main order in ε, which corresponds to the one loop diagrams without irrelevant
vertices. On the second line the leading order diagrams contributing to β∗µh , i.e. the
diagrams with only one irrelevant vertex at scale h̄; these are obtained by the first line by
substituing the vertex λh with λ′

h̄
or the vertex µh giving the external l line an irrelevant

vertex µ′
h̄
.

Here β∗µh contains the diagrams where the external dashed line of µh−1 comes from
one of the irrelevant vertices λ′

h̄
or µ′

h̄
, as shown in fig. 3.3. With respect to the

dimensional estimate for βµh , the beta function β∗µh has a factor ε2λh/Zh coming
from the substitution of a vertex at scale h with an irrelevant vertex. The Z−1

h

factor comes from the fact that when we substitute λh with λ′h or µh with µ′h we
get an additional g(h)

ll propagator1.
Moreover, by the short memory property 2.115, these diagrams are exponentially

suppressed as h→ −∞. In fact, due to the long branch connecting the irrelevant
vertex to the vertex at scale h + 1 in the tree expansion for β∗µh , we can always
extract a factor γ−(h̄−h) from the usual estimate. By a leading order calculation one
finds

β∗µh = O
(
λ ε

1
2Zh γ

−(h̄−h)
)

d = 3 (3.53)

Using (3.53) one get the following estimate:

µJ0
h

µJ0
h̄

= µh
µh̄

(1 +M1,h(λ) +M2,h(λ)) (3.54)

1 Regarding the substitution of one vertex µh with µ′h, one can convince immediately that there
is a unique additional g(h)

ll (k) propagator, even if we are changing two internal plain legs with dashed
legs, looking at the dominant diagrams in the asymptotic limit. These are the second diagrams on
the first and third lines of fig. 3.3. For h ≤ h̄ but not “close” to the infrared limit if one sums all
the diagrams with three three-legged vertices contributing to βµh and β∗µh one finds the same result.
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βµh =
∂0

βµ,J0
h =

J0

∂0

βE,∗h =
∂0

µ′
h̄

Figure 3.4. Flow of EJ0
h , d = 3. On the first line the beta function of Eh and EJ0

h at
leading order; the beta function of EJ0

h at leading order is obtained by substituting the
vertex µh with external dashed line in βµh with a vertex µJ0

h . On the second line the
leading order diagram contributing to βE,∗h .

withM1,h(λ) = O(λε 1
2 ),M2,h(λ) = O(λε− 1

2γh) andM1,h̄(λ) = −M2,h̄(λ). Asymp-
totically, being µh = µh̄

(
1 + c λ ε

1
2 |h− h̄|

)−1 we have

µJ0
h = 1

1 + c λε
1
2 |h− h̄|

(
1 +O(λε

1
2 )
)

(3.55)

The (3.54) also shows that the assumption (3.50) is verified. By using the WI (3.22)
and the flow equation (3.54) we get

Eh ' ε−1 µh (1 +O(λ)) d = 3

II. Flow for EJ0
h , d=3

The flow for EJ0
h is obtained by comparing the beta function for EJ0

h with the
one for Eh, following the same ideas used in the study of the flow of µJ0

h . Let denote
with βEh the part of the beta function of Eh where the external dashed line comes
from a relevant vertex µk and with βE,∗h the graphs for which the external dashed
line is given by an irrelevant vertex at scale h̄. The beta function of EJ0

h is obtained
by substituting µk with µJ0

k , see fig. 3.4. We have:

Eh−1 = Eh + βEh + βE,∗h

EJ0
h−1 = EJ0

h + βE,J0
h (3.56)

and then

EJ0
h − E

J0
h̄

=
h̄∑

k=h+1
βE,J0
k (3.57)
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Denoting with βEh,k the sum of all the diagrams contributing to βEh where the external
dashed line comes from a vertex µk at scale h < k ≤ h̄ we can write:

βEh =
h̄∑

k=h+1
µk β

E
h,k

βE,J0
h =

h̄∑
k=h+1

µJ0
k β

E
h,k = ε−1βEh

(
1 +O(λε

1
2 )
)

(3.58)

where we have used (3.54) to estimate µJ0
k /µk . Then

EJ0
h − E

J0
h̄

= ε−1(1 +O(λ ε
1
2 )
)(
Eh − Eh̄ +

h̄∑
k=h+1

|βE,∗k |
)

(3.59)

with

βE,∗k = O
(
λ ε

1
2 γ−(h̄−k)

)
(3.60)

Being

EJ0
h̄

= O
(
λ ε−

1
2
)

Eh̄ = 1 +O
(
λε

1
2
)

(3.61)

we find

EJ0
h = −ε−1 (1− Eh) +O(λ ε−

1
2 ) (3.62)

with

Eh =
(
1 + λ ε

1
2 |h− h̄|

)−1
(3.63)

In the infrared limit h→ −∞ we get

EJ0
h = −ε−1

(
1 +O(λ ε

1
2 )
)

(3.64)

The local WI (3.24) together with (3.62) give
√

2Bh ' ε−1 (1− Eh +O
(
λ
))

d = 3 (3.65)

The cancellation making Bh finite (instead than logarithmically divergent as one
could expect by the naïve dimensional estimate) can be easily seen at the one–loop
level, see appendix C.3.2. However it has to be stressed that the one–loop calcu-
lations do not say much: if we could not exclude that a similar cancellation takes
place at all orders there would always be the possibility that higher orders produce
a completely different behavior. That is why the WIs results to be crucial.

III. Flow for EJ1
h , d=3

The argument allowing us to control the flow of EJ1
h is based on a dimensional

estimate. In fact, the beta function of the marginal coupling EJ1
h can be easily
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J1

∂p =
J1

∂p
∂x

+
J1

∂x ∂p + . . .

J1

∂x ∂p + . . .

Figure 3.5. Flow for EJ1
h . Diagrams contributing to the flow of EJ1

h−1 at the main order
in ε. The symbol ∂p on the external leg denotes the derivation of the diagrams with
respect to the external momentum p. The symbol ∂x over a propagator means derivation
of the propagator with respect the variable x.

estimated, noting that the external J1 line can only be originated by an irrelevant
vertex µJ1

h̄
or from a marginal vertex of type EJ1

k , as shown in figure (3.5). However,
the local part of the diagrams in which the external J1-line comes from a vertex EJ1

k

are zero due to the presence of the cutoff function fh(k), which is zero for vanishing
external momentum.

For what regards the remaining diagrams, i.e. the ones where the wiggly line
comes from µJ1

h̄
, we can extract from then a short memory factor. Denoting with

βE,J1
h the beta function of EJ1

h we have

βE,J1
h = O

(
λ ε

1
2γ−(h̄−h)

)
(3.66)

This implies that Eh is not log-divergent as a priori expected by the dimensional
estimate, but tends to a constant. In particular, being EJ1

h̄
= O(λε 1

2 ) we have

EJ1
h = O(λε

1
2 ) (3.67)

Using the local WI (3.23) and (3.67) we find:

Ah − 1 ' O(λ ε
1
2 ) d = 3 (3.68)

Note that Ah is marginal and then a priori logarithmic divergent. The cancellation
making Ah finite order by order in perturbation theory can be easily seen at level
of the one–loop computation (see appendix C.3) and it is a consequence of the
symmetry of the integrals under the change of variable (p + k,−p)→ (−p,k + p).
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µh µ′h λ′h ωh

J0

µJ0
h

J0

µ′J0
h

J0

λ′J0
h

J0
ωJ0
h

Figure 3.6. Local terms, d = 2. Correspondence between the coupling constants with at
least one dashed leg and the coupling constants with one external J0 field.

√
2

J0
+

J0
=

J0

4
√

2
J0

=
J0

Figure 3.7. Global WIs relating the coupling constant with one external J0 field.

3.4.2 Two dimensions

In this subsection we prove the results (3.5) in the 2d case. With this purpose
we study the flow of the coupling constants with an external field Jν in the two
dimensional case.

In 2d there are four running coupling constants with external dashed legs, as
shown in the first line of fig. 3.6. However for each of this coupling there is a
corresponding coupling with external J0 field, which can be obtained by substituting
one of the dashed legs with the J0 fields, see the second line of fig. 3.6.

The reason why we have chosen to localize also the vertices µ′J0
h , λ′J0

h and ωJ0
h

is exactly to use the analogy between the coupling constants with dashed legs and
J0 fields to control the flows of the latter. In fact, if one do not localize the kernels
V

(h)
20;10, V

(h)
12;10 and V (h)

04;10 and try to repeat an argument similar to the one pursued in
three dimensional case, immediately realize that the short memory is not sufficient
to extract the short memory factor we need to prove that the sum over the scale
labels is summable, as happens in (3.54).

We also remark that the couplings µJ0
h , µ′J0

h , λ′J0
h and ωJ0

h satisfies the two global
WIs represented in fig. 3.7, as proved in chap. 4. These identities corresponds exactly
to the last two identities in (3.20) relating the vertices µh, µ′h, λ′h and ωh, once the
wiggled line is substituted by a dashed line, apart for different combinatorial factors.
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I. Flow for µJ0
h , d=2

In the same spirit of what we have done in the three dimensional case we want
to control the flow of µJ0

h by the comparison with the one of µh (we remind that in
two dimensions both µh and µJ0

h are relevant with dimension 1/2). The difference
with respect to the much simpler 3d case is the fact that when we consider the flow
equation for µh in 2d the dashed line can come from four different vertices at scale
h ≤ k ≤ h̄, which are µk, µ′k, λ′k or ωk, or from one of the irrelevant vertices at scale
h̄. The flow equation for µh can be written as follows:

µh−1 − γ
1
2µh = β11

h + β12
h + β13

h + β14
h + β∗µh (3.69)

where β11
h , β12

h , β13
h and β14

h are respectively the parts of the beta function of µh
where the external dashed line comes from a vertex of type µk, µ′k, λ′k or ωk. The
remaining part of the beta function, β∗h, contains the diagrams where the external
dashed line comes from an irrelevant vertex at scale h̄. A similar decomposition can
be introduced for the beta function of µJ0

h :

µJ0
h−1 − γ

1
2µJ0

h = β11,J0
h + β12,J0

h + β13,J0
h + β14,J0

h + β∗J0
h (3.70)

with β11
h , β12

h , β13
h and β14

h the parts of the beta function of µJ0
h where the external

dashed line comes from a vertex of type µJ0
k , µ′J0

k , λ′J0
k or ωJ0

k and β∗J0
h containing

the diagrams where the external wiggly line comes from an irrelevant vertex at scale
h̄.

The main point here is that, similarly to what happens in the 3d case, each β1j,J0
h

can be written in terms of the corresponding β1j
h by substituting the relevant vertex

giving the external wiggly line (i.e. one of the vertices µJ0
k , µ′J0

k , λ′J0
k or ωJ0

k ) with
the corresponding vertex with the dashed external line. Some attention is needed
with the combinatorial factors, since when we exchange for example a µ′h vertex with
a µ′J0

h vertex, the combinatorial factor associated to the choice of the external leg
changes. A similar discussion can be repeated for the flow equations of the vertices
µ′h, λ′h, ωh and the corresponding vertices µ′J0

h , λ′J0
h , ωJ0

h . At the end if we define
the vectors

~rh = {µh, µ′h, λ′h, ωh} ~r J0
h = {µJ0

h , (µ′J0
h /3), (λ′J0

h /2), ωJ0
h } (3.71)

we can write in a compact way the flow equations of the couplings ~rh and ~rJ0
h :

~rh−1 = Γ~rh + Bh + ~β∗h

~r J0
h−1 = Γ~r J0

h + BJ0
h + ~β∗J0

h (3.72)

where Γ is a diagonal matrix with diagonal elements {γ 1
2 , γ−

3
2 , γ−1, γ−

1
2 } and takes

into account the external dimensions of the different coupling constants; Bh and
BJ0
h are the matrices with elements βpqh and βpq,J0

h , with p, q = 1, 2, 3, 4; the vectors
~β∗h and ~β∗J0

h contain the irrelevant parts of the beta functions. The matrices Bh and
BJ0
h are related by the fact that ∀p, q we have

βpqh =
∑

h≤k≤h̄

r
(q)
k β̃pqhk βpq,J0

h =
∑

h≤k≤h̄

r
J0,(q)
k β̃pqhk (3.73)
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−3
2 −1

Figure 3.8. Irrelevant kernels, d = 2. We report here the two irrelevant vertices
with internal effective scaling dimension 1/2. For each kernel the renormalized scaling
dimension δ2d,<

v − z2d,<
v is reported; the effective scaling dimension is obtained by adding

1/2 for each dashed line which can be contracted at some lower scale.

Now we are ready to discuss how to bound the flow equation of each coupling with
external J0 field. In the following we will detail only how the study of the coupling
µJ0
h , the study of the other couplings being similar. Starting from (3.69) and (3.70),

assuming that

µJ0
k

µk
= µ′J0

k

3µ′k
= µJ0

h

µh
(1 +O(λ)) (3.74)

and using the global WIs of fig. 3.7

2
√

2γ−hλ′J0
h = 3γ−

3
2hµ′h − 2γ

h
2 µh

4
√

2γ−
1
2hωJ0

h = γ−hλ′J0
h (3.75)

and the corresponding WIs for the couplings without J0 fields (see sec. 4.12)
√

2γ−hλ′h = γ−
3
2hµ′J0

h − γ
h
2 µJ0

h

2
√

2γ−
1
2hωh = γ−hλ′h − 2γhλ′h (3.76)

one finds

µJ0
h

µJ0
h̄

= ε−1
h̄∏

k=h+1

(
1− β∗µk

µk−1

)
(1 +O(λ)) +

h̄∑
k=h+1

γ(h+1−k)/2(β∗J0
k + β̂∗J0

k

)
(3.77)

with β̂∗J0
k containing the diagrams where the vertex rJ0

k giving the external wiggly
line is at scale greater than k̂, from which we can always extract a short memory
factor2.

It remains to bound the trees contributing to β∗µk , β∗J0
k and β̂∗J0

k . Let us
start from β∗µk . Having some attention one can check that we can always extract
from the branch connecting the irrelevant vertex giving the external dashed line
a short memory factor γϑ(h−h̄) with ϑ < 1. It is sufficient to remember that the
effective internal dimension in two dimensions and in the lower region is equal to the
renormalized scaling dimension δ2d,<

v − z2d,<
v plus 1/2 for each external dashed leg

which may be contracted at lower scale. There are two vertices with effective scaling
dimension lower than 1, as reported in fig. 3.8. However in our case the external

2We will inductively prove the condition (3.74) in the asymptotic regime; at scales close to h̄ the
relations among the couplings ~rh and ~rJ0

h may be different.
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dashed leg coming from scale h̄ remains external along all the path connecting
the irrelevant vertex to the root. Then the vertices along this path have effective
dimension −1 or lower. Then, by using (A.57) and the short memory property we
get

|β∗µh | ≤ λλ∗ γ
3
4h (3.78)

In the previous bound the factor γ− 3
4 h̄ which one had expected in the short memory

factor is compensated by the initial value of the irrelevant endpoint at h̄. The choice
of taking ϑ = 3/4 depends on the fact that we need a short memory larger than 1/2
to get a summable contribution, as discussed below. Using (3.78) we get

|β∗µk |
µk−1

≤ O
(
λ γ

k
4
)

(3.79)

which is summable over k thanks to the fact that we could extract from β∗µk a short
memory factor greater than 1/2. Regarding β∗ J0

h and β̂∗ J0
h we have in hand the

same short memory factor than for β∗µh , the discussion being very similar, since a
J0 line dimensionally behaves as a non contracted dashed line. Using (A.57) and
the short memory property we obtain the bound

|β∗ J0
h | ≤ ε−1λ γ

3
4 (h−h̄) (3.80)

Finally we obtain

µJ0
h

µJ0
h̄

= ε−1
(
1 + M̃1,h(λ) + M̃2,h(λ)

)
(3.81)

with M̃1,h(λ) = O(λ), M̃2,h(λ) = O(γh/2). Asymptotically we obtain

µh̄ =
√

2
4 ε−

1
2 (1 +O(λ)) µJ0

h̄
= ε−

1
2 (1 +O(λ)) (3.82)

Then

2
√

2µJ0
h = ε−1µh (1 +O(λ)) (3.83)

which also verifies (3.74) for p = 1. With similar discussions we can also see prove
the others assumptions in (3.74), i.e. that at leading order and asymptotically in h
we have µ′J0

h = 3ε−1µ′h, λ
′J0
h = 2ε−1λ′h and ωJ0

h = ε−1ωh. By using the WIs (3.18)
and (3.22) and the flow equation (3.81) we get

Eh ' ε−1 Zh (1 +O(λ)) d = 2 (3.84)

II. Flow for EJ0
h , d=2

Once the flow of µJ0
h , µ′J0

h , λ′J0
h and ωJ0

h are controlled, the flow equations of the
two–legged vertices with external fields are studied in complete analogy with the
three dimensional case, apart from the fact that now there are four vertices giving
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∂0 ∂0 (3.92)

Figure 3.9. Example of diagrams contributing to βE,∗k .

the external J0 line. Denoting with βE,∗k and βEJ0 ,∗
k the parts of the beta function

for Eh and EJ0
h with the external dashed or wiggly line coming from an irrelevant

diagram at scale h̄ we have:

EJ0
h − E

J0
h̄

= ε−1(1 +O(λ)
)(
Eh − Eh̄ +

h̄∑
k=h+1

|βE,∗k |
)

+
h̄∑

k=h+1
β
EJ0 ,∗
k (3.85)

Being

βE,∗k = O(λγϑk) β
EJ0 ,∗
k = O(λε−1γϑk) (3.86)

with 0 < ϑ < 1/2 and

EJ0
h̄

= O
(
λ2ε−1

)
Eh̄ = 1 +O (λ) (3.87)

we can conclude that

EJ0
h = −ε−1 (1− Eh +O(λ)) (3.88)

Since

Eh = ε−1 λ∗ γ
h (3.89)

in the infrared limit

EJ0
−∞ = −ε−1 (1 +O(λ)) (3.90)

Using the local WI (3.24) one obtains
√

2Bh ' ε−1 (1− Eh +O(λ)) d = 2 (3.91)

III. Flow for EJ1
h , d=2

The flow of EJ1
h is controlled with the same dimensional argument used in the

three dimensional case. From each diagram contributing to the beta function of
EJ1
h we can extract a short memory factor due to the presence of a long branch

connecting µJ1
h̄

to the root. We have

βE,J1
h = O

(
λ γ−

1
2 (h̄−h)

)
(3.93)
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Being EJ1
h̄

= O(λ2) in two dimensions we conclude that

EJ1
h = O(λ) (3.94)

By the local WI (3.23) we get

Ah − 1 ' 1 +O(λ) d = 2 (3.95)

3.4.3 A local WI for the propagator

Using the local Ward identity

Bh = Jh (1 +O(λ)) (3.96)

see (4.120) for a derivation, it is possible to proof an identity useful to control the
behavior of the propagator, i.e.

E2
h + ZhBh ' Zhε−1 (1 +O(λ)) (3.97)

holding both in three and two dimensions. The starting point of the proof is the
flow equation for Jh, which we can study through the analogy with the flow of Zh.
In fact we can image of substituting the two vertices giving the two external dashed
lines in Zh with identical vertices with wiggly dashed lines. In the three dimensional
case, denoting with µkµ′kβZh;k,k′ the diagrams contributing to the beta function of Z
where the external dashed lines comes from µk and µ′k we get

Jh−1 − Jh =
h̄∑

k,k′=h+1

µJ0
k

µk

µJ0
k′

µk′
βZh;k,k′ + β

∗JJ0
h (3.98)

where βJJ0∗
h contains the terms with the two J0 lines coming from irrelevant vertices.

Using that

µJ0
k

µk
= µJ0

h

µh
(1 +O(λ)) d = 2, 3 (3.99)

we obtain

Jh − Jh̄ =
(
µJ0
h

µh

)2 (Zh̄
2 −

Zh
2 −

h̄∑
k=h+1

β∗Zk

)
+

h̄∑
k=h+1

β
∗JJ0
k (3.100)

Using the estimates

βZ,∗h = O
(
λ ε

3
2 γ−(h̄−h)

)
d = 3

βZ,∗h = O
(
λ2 γϑ(h−h̄)) 0 < ϑ < 1/2 d = 2 (3.101)

and the analogous estimate for βJJ0∗
h one gets

Jh +
(
µJ0
h

µh

)2
Zh
2 = ε−1(1 +O(λ)

)
d = 3

Jh +
(
µJ0
h

µh

)2
Zh
2 = ε−1(1 +O(λ2ε−1)

)
d = 2 (3.102)

Finally, using the Ward identities (3.18), (3.22) and (3.96) we get (3.97).
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3.5 One-loop computations
As shown in appendix A.3 in order to keep in each flow equation only the leading
terms in the small parameter ε it is sufficient to consider the one loop graphs without
νh vertices. This property holds both at the beginning of the region h ≤ h̄ and in
the asymptotic region h→ −∞, but in the latter case the dominant diagrams for
h→ −∞ are those with all the internal dashed lines contracted among them, see
(A.52) and (A.57). We shall study the flow equations for the effective parameters
λh in 3d and {λh, λ6,h} in 2d, by keeping only these contributions; the properties of
the corresponding solutions will be used to justify the approximation.

3.5.1 3d case: one–loop computation for λh
We have seen how the use of WIs allows to reduce the flow of the running coupling
constants λh, µh, Eh and Zh to one unique independent coupling. In particular the
leading order calculation of the beta function for Zh is very simple, since only one
diagram contributes to it, see fig. 3.1. An explicit calculation (see appendix C) gives

Zh−1 = Zh −
1
8λ ε

− 1
2β3d

2 Z2
h (3.103)

with

β3d
2 =

∫
d4k

(2π)4
f0(k)(

k2
0 + k2)2 (3.104)

If we approximate in the integral for β3d
2 the cutoff function f0(k) with the charac-

teristic function ϑγ(k2
0 + k2) of the set {2γ−2/(1 + γ2) ≤ k2

0 + k2 ≤ 2γ2/(1 + γ2)}
we obtain

β3d
2,ϑγ = log γ

8π2 (3.105)

Then, being Zh̄ = ε, we find

Zh = ε

1 + c̄λ ε
1
2 |h− h̄|

(3.106)

with c̄ = 1/(64π2). Since all the neglected terms in the beta function are at least of
order 1/|h|3 (see (A.52), appendix A.3 ) they cannot change in a substantial way the
asymptotic properties of the flow: only the value of the constant c̄ depends on them.
Then the effective interactions λh and µh and the wave functions renormalization
constants Zh and Eh are asymptotically free in the infrared limit.

3.5.2 2d case: one loop computation for λh and λ6,h

In the two dimensional case the asymptotic flow of the running coupling constants
is reduced to the flows of the two independent effective parameters λλh and λλ6,h.
Let us consider the

xh = λλh yh = λλ6,h (3.107)
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whose initial values are

xh̄ = λ yh̄ = 0 (3.108)

A leading order explicit calculation in the case ρ0R
2
0 = 1 (see (C.2) for the details)

gives

xh−1 − γ xh = −(γ − 1)x2
h

4 β̃2d
2 − 3 β̃2d

1

(
yh
x2
h

)
+ 9

4 β̃
2d
0

(
yh
x2
h

)2
 (3.109)

yh−1 − yh = −(1− γ−1)
[

8β̃2d
3 x3

h − 12 β̃2d
2 yhxh + 27

8 β̃2d
0
y3
h

x3
h

]
(3.110)

with

β2d
n =

∫
d4k

(2π)4
f0(k)(

k2
0 + k2)n = (1− γ−1) β̃2d

n (3.111)

and limγ→1 β̃
2d
n = 1/π2 for n = 0, 1, 2, 3. The qualitative behavior of (3.109) and

(3.110) is equivalent to the differential equations obtained by taking the limit γ → 1,
which are:

π2dx

dt
= π2x− x2

[
4− 3 y

x2 + 9
4

(
y

x2

)2
]

(3.112)

π2dy

dt
= x3

[
8− 12 y

x2 + 27
8

(
y

x2

)3
]

(3.113)

with the limit h→ −∞ corresponding to t→∞. It is simple to see that the r.h.s.
of (3.112) is always positive; than x(t) grows starting from its initial value λ. Since
x(t) 6= 0 for each t, also the r.h.s. of (3.113) is always positive and y(t), starting
from zero, grows up to a fixed point, identified by the solution of the equation

8 − 12 z∗ + 27
8 z3
∗ = 0 (3.114)

with z(t) = y(t)/x2(t). As a consequence of that also x(t) reaches a fixed point
whose expression at leading order is

x∗ = 1
4− 3 z∗ + 9

4 z
2
∗

(3.115)

We see that the presence of the effective marginal terms changes the fixed point for
x, even at leading order, which otherwise would be x∗ = 1/4. Even if the qualitative
behavior is not changed by the addition of the new terms and it turns to be of
order one, as already stated in literature [27], this result is not trivial. In fact the
computation of (3.109) and (3.110) in presence of the new terms is quite subtle, as
shown in details in appendix C.2. A numerical analysis of the flow equations (3.109)
and (3.110) is shown in fig. 3.10.
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Figure 3.10. Effective parameters, d = 2. Numerical solution of the leading order flow
equations for λλh (long–dashed line) and λλ6,h (dashed line). The plain line represents
λ6,h/(λλ2

h) which is the additional factor to be added in the renormalized bounds for
each vertex of type λ6, ωh, λ′h and λ′h, see (C.16).

We conclude with a remark about the role of the parameter ρ0R
2
0, which we

have carefully carried along the calculation, the reason being that one could hope to
reduce the fixed point values by playing on the values of the condensate density and
range of the potential. This is not the case. In fact if ρ0R

2
0 6= 1 the flow equations

for xh and yh are the same that (3.109) and (3.109) apart for changing yh = λλ6,h
with y′h = (ρ0R

2
0)−1yh. So, while the fixed point for yh depends on ρ0R

2
0 and in

particular
yh
x2
h

= ρ0R
2
0 z∗ (3.116)

the fixed point for xh only depends on the solution of (3.114) which is unchanged.
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Chapter 4

Ward Identities

In this chapter we discuss how to derive the global and local Ward identities and
how to control the corrections to the formal Ward identities coming from the cutoffs.
Referring to the latter purpose we prove here the identities widely used in chap. 2.1:

Ah − 1 ' O(λ ε
d−2

2 )
√

2Bh ' ε−1 (1− Eh +O(λ))

Eh ' ε−1µh
(
1 +O(λ)

)
E2
h + ZhBh ' ε−1Zh(1 +O(λ)) (4.1)

where “'” means that the identity holds at the leading order in k as k → 0.
We will also compare these identities with the “formal” ones obtained by ne-

glecting the corrections coming from the ultraviolet cutoff. We will see that the
correction terms affects the local WIs at the second non trivial order in the small
parameter λ. Even if this does not change the way in which the local WIs are
used to control the flow equations, the prediction on the physical observables are
quantitatively changed. For example, the correction to the speed of sound with
respect to Bogoliubov prediction is changed at the first non trivial order in λ if one
consider the complete WIs instead of the formal ones. Regarding the magnitude in
λ of the prediction on the renormalized speed of sound it remains to understood if
it depends on the presence of the ultraviolet cutoff; however this is an example of
how the correction terms to the formal WIs may quantitatively change the relations
between physical observables.

The Ward identities we are going to derive are relations between the kernels of
the generating functional Wh∗(φ, J0,J1) defined in section 2.5 derived by performing
a phase transformation of the fluctuation fields ψ±. The expression of the functional
integral in terms of the original fluctuations fields

e|Λ|Wh∗ (φ,J0,J1) =
∫
P 0
χ[h∗,0]

(dψ)e−VI(ψ+φ)+
∫

Λ dx[ J0
x ψ

+
x ψ
−
x + J1

x·(ψ−x ∂xψ
+
x −ψ+

x ∂xψ
−
x )]

(4.2)
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where P 0
χ[h∗,0]

(dψ) is the measure with covariance

g
0,[h∗]
σσ′ (x) = 1

(2π)d+1

∫
dd+1k χ[h∗,0](k) g0

σσ′(k)

(g0
σσ′(k))−1 =

(
−ik0 + k2 0

0 ik0 + k2

)
(4.3)

and

VI(ψ + φ) = λ

2 v̂(0)
∫

Λ

[(√
ρ0 + ψ+

x + φ+
x

) (√
ρ0 + ψ−x + φ−x

)]2
dx

− µI
∫

Λ

(√
ρ0 + ψ+

x + φ+
x

) (√
ρ0 + ψ−x + φ−x

)
dx (4.4)

with µI = µB + ν the interacting chemical potential. We remark that the relations
between the kernels of the potential (4.2), which we will refer to as “one–step”
potential, are not the ones we are interested in. In order to control the flow equations
we need relations between the kernels of the effective multiscale potentials obtained
including at each step of the integration the local quadratic terms in the measure.
With this aim we will consider a sequence of “one–step” potentials, or reference
models, with infrared cutoff on scale h, which have trivial invariance properties under
the phase transformation of the ψ fields. For each h it is simple to proof that the
difference between the kernels of the effective potential and the kernels of the “one–
step” potential is subdominant both in h as h→ −∞ and in the small parameter of
the perturbation theory, see appendix D.3 for the discussion of this point. Since we
are interested in the behavior of the system in the infrared limit h→ −∞, for the
purposes of our work it is equivalent to use the reference model or the effective model.

The scheme of the chapter is the following:

Sec. 4.1 We derive the global WIs for the one–step potential, whose interpretation
at the one–loop level is also reported. By the use of a global WI, the
condition of minimum of the effective potential W(ξ) is shown to be
equivalent to a condition on the effective chemical potential νh.

Sec. 4.2 This section is devoted to the derivation of the local WIs, which is obtained
through the following steps:

a. We derive the formal WIs where “formal” means that we are neglecting
the corrections terms coming from the cutoff functions.

b. We derive the complete (i.e. “non–formal”) local WIs, taking into
account the contributions coming from the cutoff functions.

c. We describe the multiscale integration of the correction terms, which
correspond to new marginal (also relevant in 2d) kernels whose beta
functions can be again rewritten as a series in the running coupling
constants.

d. We study the flow of the new marginal running coupling constants cor-
responding to the correction terms and prove that they give corrections
of higher order in λ to the formal WI’s.
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Remark. The reader may notice that with respect to the works [31, 64] where
the Ward identities are derived for the Schwinger functions, i.e. by differentiation of
the potential

UΛ,h∗(φ, J0,J1) =

1
|Λ| log

∫
P 0
χ[h∗,0]

(dψ)e−VI(ψ)+
∫

Λ dx[ψ+
x φ
−
x +ψ−x φ+

x + J0
x ψ

+
x ψ
−
x + J1

x·(ψ−x ∂xψ
+
x −ψ+

x ∂xψ
−
x )]

(4.5)

here we analyze directly the kernels of the effective potentials, which can be obtained
by differentiation from eq. (4.2). In our context, to the purpose of deriving relations
between the running coupling constants, it is equivalent to study this slightly modified
potential rather than the one in eq. (4.5).
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4.1 Global WIs
The global WI’s are derived by the gauge invariance of the generating functional
W(φ, J0, J1) under the transformation of the bosonic fields ψ±x → e±iϑψ±x , with ϑ
constant. Note that the Jacobian of the latter transformation is one and the density
and current terms are invariant under a global phase transformation of the ψ±x fields,
then only VI(ψ) is effected by the rotation. We have:

Wh∗(φ, J) =
1
|Λ| log

∫
Pχ[h∗,0](dψ)e−VI(eiϑψ+φ)+

∫
Λ dx[ J0

x ψ
+
x ψ
−
x +J1

x·(ψ−x ∂xψ
+
x −ψ+

x ∂xψ
−
x )] (4.6)

Deriving the latter expression with respect to ϑ and then setting ϑ = 0 we obtain
the equality:

〈
∫
dx

[
∂VI
∂φ+

x

(
φ+
x +√ρ0

)
− ∂VI
∂φ−x

(
φ−x +√ρ0

)]
〉h∗ = 0 (4.7)

with

〈 · 〉h∗ = 1
Z

∫
Pχ[h∗,0](dψ) ( · ) e−VI(ψx+φx)+

∫
Λ dx[ J0

x ψ
+
x ψ
−
x + J1

x·(ψ−x ∂xψ
+
x −ψ+

x ∂xψ
−
x )]

(4.8)

Introducing the fields ψlx and ψtx such that ψ±x =
√

ρ0
2

(
ψlx ± iψtx

)
and φlx and φtx

such that φ±x =
√

ρ0
2

(
φlx ± iφtx

)
the generating functional becomes

Wh∗(φ, J) =
1
|Λ| log

∫
Pχ[h∗,0](dψ)e−VI(ψ+φ)+ρ0

∫
Λ dx[ J0

x
1
2 ((ψlx)2+(ψtx)2)+J1

x·(ψlxi ∂xψtx−ψtxi ∂xψlx)]

(4.9)

and the relation (4.7) may be written as

〈
∫
dx

[
∂VI
∂φtx

(
φlx +

√
2
)
− ∂VI
∂φlx

(
φtx

) ]
〉h∗ = 0 (4.10)

where 〈∂VI(ψ + φ)
∂φαx

〉
h∗

= −δWh∗(φ)
δφαx

α = l, t (4.11)

and we may rewrite (4.10) as∫
dx

[
δWh∗(φ)
δφtx

(φlx +
√

2)− δWh∗(φ)
δφlx

(φtx)
]

= 0 (4.12)

We remind to the reader the expression of the interacting potential in terms of the
ψl and ψt fields:

VI(ψ) = ρ0R
−2
0

(
ε

16

∫
Λ

((
ψlx
)2 +

(
ψtx
)2)2

dx+ ε

4
√

2
∫

Λ

(
ψlx
)2(
ψlx + ψtx

)
dx

+ ε

2

∫
Λ

(
ψlx
)2
dx+ ν

2 R
2
0

∫
Λ

((
ψlx
)2 +

(
ψtx
)2)

dx

)
(4.13)
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with ν = λρ0v̂(0) − µI the correction to the interacting chemical potential with
respect Bogoliubov chemical potential µB = λρ0v̂(0).

In order to obtain relations among the kernels of the one-step effective potential
Wh∗(φ), defined by

W (h∗)
mn (x1, . . . , xm; y1, . . . , yn) = 1

m!n!
δm+nWh∗(φ)

δφlx1 . . . δφ
l
xmδφ

t
y1 . . . δφ

t
yn

∣∣∣
φ=J0=0,J=0

(4.14)

all we have to do is apply to (4.12) an arbitrary functional derivative with respect
to the φα fields and then set all the external fields equal to zero. By deriving (4.12)
m times with respect to the field φl and n times with respect to φt we obtain the
following relations for the kernels W (h∗)

mn (x1, . . . , xm; y1, . . . , yn):
√

2m! (n+ 1)!
∫
dxW

(h∗)
m,n+1(x1, . . . , xm; y1, . . . , yn, x)

+ (m− 1)! (n+ 1)!
m∑
j=1

W
(h∗)
m−1,n+1(x1, . . . , xj−1, xj+1, . . . , xm; y1, . . . , yn, xj)

− (m+ 1)! (n− 1)!
n∑
j=1

W
(h∗)
m+1,n−1(x1, . . . , xm, yj ; y1, . . . , yj−1, yj+1, . . . , yn) = 0

(4.15)

This implies the following relation for the Fourier tranforms of the kernels evaluated
at zero external momentum:
√

2 (n+ 1)Ŵ (h∗)
0,n+1(0, . . . , 0)− Ŵ (h∗)

1,n−1(0, . . . , 0) = 0 for m = 0
√

2 (m+ 1)Ŵ (h∗)
m,1 (0, . . . , 0) + Ŵ

(h∗)
m−1,1(0, . . . , 0) = 0 for n = 0

√
2 (n+ 1)Ŵ (h∗)

m,n+1(0, . . . , 0) + (n+ 1)Ŵ (h∗)
m−1,n+1(0, . . . , 0)

− (m+ 1)Ŵ (h∗)
m+1,n−1(0, . . . , 0) = 0 for m,n 6= 0 (4.16)

As shown in appendix D.3 the difference between the zero momentum kernels
Ŵ

(h)
mn of the one–step effective potential Wh(φ, J) and the running coupling constant

at scale h, obtained by the multiscale integration, is small, since it comes only from
the integration on the last scale h. Then we can use the identities (4.16) to get
relations between the running coupling constants.

The identities relating λh, µh and Zh are obtained choosing m = n = 1 or m = 0
and n = 3; in these two cases we get:

√
2 Ŵ (h)

12 (0, 0, 0) + Ŵ
(h)
02 (0, 0)− Ŵ (h)

20 (0, 0) = 0

4
√

2 Ŵ (h)
04 (0, 0, 0, 0)− Ŵ (h)

12 (0, 0, 0) = 0 (4.17)

Since the difference between the kernels Ŵnlnt of the one–step potential and the
kernels V̂nlnt of the multiscale potential is subdominant in h as h → −∞, see
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appendix D.3, the previous relation correspond to

2
√

2µh + 2γ2hνh − Zh ' 0

4
√

2λh − µh ' 0 (4.18)

in the three dimensional case and

2
√

2 γ
h
2 µh + 2γ2hνh − Zh ' 0

4
√

2 γhλh − γ
h
2 µh ' 0 (4.19)

in the two dimensional case, where the symbol “'” denotes that the two sides are
equal apart for subdominant terms in h.

The global Ward identities necessary to control the flow of the three additional
marginal couplings λ′h, µ′h and ωh arising in the two dimensional case are:

6
√

2 Ŵ (h)
06 − Ŵ

(h)
14 = 0

2
√

2 Ŵ (h)
14 − Ŵ

(h)
22 = −2Ŵ (h)

04

2
√

2 Ŵ (h)
22 − 3Ŵ (h)

30 = −2Ŵ (h)
12 (4.20)

which correspond to

6
√

2λ6,h ' γ−
h
2ωh

2
√

2 γ−
h
2ωh − γ−hλ′h ' −2γhλh

2
√

2 γ−hλ′h − 3γ−
3
2hµ′h ' −2γ

h
2 µh (4.21)

Further global Ward identities are useful to individuate which are the null local
kernels of the effective potentials; in particular

√
2 Ŵ (h)

01 = 0 ⇒ Ŵ
(h)
01 = 0

2
√

2 Ŵ (h)
11 + Ŵ

(h)
01 = 0 ⇒ Ŵ

(h)
11 = 0

3
√

2 Ŵ (h)
03 − Ŵ

(h)
11 = 0 ⇒ Ŵ

(h)
03 = 0

3
√

2 Ŵ (h)
21 + Ŵ

(h)
11 = 0 ⇒ Ŵ

(h)
21 = 0

3
√

2 Ŵ (h)
13 + 3 Ŵ (h)

03 − 2 Ŵ (h)
21 = 0 ⇒ Ŵ

(h)
13 = 0

3
√

2 Ŵ (h)
31 + Ŵ

(h)
21 = 0 ⇒ Ŵ

(h)
31 = 0 (4.22)

Comparing the previous result with the expression of the potential VI(ψ) in (4.13)
we note that the previous Ward Identities fix that the kernels with four, three or
two legs that may be generated at each scale h cannot be different from the ones
already present in the original potential.
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β̄λh = + +

β̄µh = + + +

β̄Zh = + +

Figure 4.1. Flow equations h̄ < h ≤ 0. Second order contributions to the beta function
of λ̄h, µ̄h and ν̄h.

4.1.1 Renormalization condition

The condition that the effective potential WΛ(ξ) reaches its minimum for |ξ|2 = ρ0
corresponds to the request

0 = δ

δξ
WΛ(ξ) = −

〈 δ

δψlx
VI(ψ + ξ)

〉
−∞ (4.23)

where we have used (4.4) and that δ
δξ ϕ

±
x = δ

δψlx
ϕ±x . SinceW(ρ0) = limh∗→−∞Wh∗(ρ0),

the minimum condition corresponds to

lim
h∗→−∞

Ŵ
(h∗)
10 = 0 (4.24)

Then, using the global Ward identity

2
√

2 Ŵ (h∗)
02 − Ŵ (h∗)

10 = 0 (4.25)

we see that the minimum condition is equivalent to the requirement

lim
h∗→−∞

γ2h∗νh∗ = 0 (4.26)

which is certainly satisfied in our model, since we have fixed ν−∞ so that |νh| is
bounded for each h, see sec. 3.28.

4.1.2 Perturbative interpretation of the WIs

The interpretation of the global Ward identities (4.18) and (4.19) is plain if we look
at the leading order contributions to the beta function of the kernels W (h)

04 , W (h)
12

and W
(h)
20 . The interpretation is quite different in the higher momentum region

h̄ < h < 0 and lower momentum region h ≤ h̄.
In the higher momentum region the scaling dimensions of the kernels do not

depend on the type (plain or dashed) of the legs; then we have three four–legged run-
ning coupling constants, i.e. λh, λ′h and λ′′h, and two three–legged running coupling
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constant, i.e. µh and µ′h. Moreover the order in the small parameter ε increases with
the number of vertices, so the leading order contributions to the beta function come
from the second order diagrams, see fig. 4.1. The global WIs are an expression of the
fact that at each order the diagrams contributing to the beta functions of λ̄h, µ̄h and
Z̄h are exactly the same, the only difference staying in the external legs, see again
fig. 4.1. More precisely it is sufficient to change one of the vertices λk or λ′k on the
first line of fig. 4.1 with a vertex µk or µ′k to get the beta function for µ̄h instead of
the one for λ̄h. In the same manner, by changing both the two four–legged vertices
in β̄λh we obtain the beta function of Z̄h. With this exchanges the contracted legs
remains the same, but the combinatorial factors associated at each diagram change,
in such a way that the constants factor in (4.18) and (4.19) are obtained.

In the region h ≤ h̄ the dimensional scaling of the plain and dashed legs become
different and the running coupling constants with more than two external legs are
{λh, µh} in 3d and {λh, µh, λ′h, µ′h, ωh, λ6,h} in 2d. The order in ε in this region is
given by the number of loops instead than the number of vertices. This depends on
the identity

2
√

2µh
[
g

(h)
tt (k) g(h)

ll (k) +
(
g

(h)
tl (k)

)2] = g
(h)
tt (k) (4.27)

which implies that the sum of a certain combination of n–order diagrams gives the
same contribution in the small parameter ε than a (n− 1)–order diagram (the order
here refers to the number of vertices). For example, referring to the flow equation
of µh, on the second line of fig. 3.1 pag. 88, the identity (4.27) implies that the
sum of the three diagrams of third order contributing to the beta function gives
a contribution of the same order in ε with respect to the second order diagram in
the same figure. In this case the global WIs ensure that the sum of all the n–loop
diagrams for each n are proportional through (4.18) and (4.19). The validity of the
global WI for λh, µh and Zh at the one–loop level is easily checked, see appendix C.1
for an explicit computation.
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4.2 Local WIs
In this section we will derive the local Ward identities, which have been used in chap. 3
in order to control the flow of Ah, Bh, Eh and to bound the renormalized propagator.
Moreover one may also derive relations between the two point renormalization
functions and the density–density and current–current kernels. As well known the
latter identities are related to the physical relations between two points correlation
functions and the response functions.

4.2.1 Derivation of the formal WIs

In this section we discuss the “formal” local WIs, i.e. the local WIs obtained for a
modification of the generating functional (4.2), obtained by considering the measure
P 0(dψ), having the same propagator of P 0

χ[h∗,0]
(dψ) but without the cutoff function

χ[h∗,0](k). The corrections to the formal WI due to the presence of the cutoff function
in (4.2) will be discussed in the next section.

Under a local gauge transformation of the fluctuation fields ψ±x → e±iϑxψ±x the
measure P (dψ) is not invariant under the transformation. It is simple to see it using
the formal expression for the measure

P (dψ) = 1
N
Dψ e−

∫
dx[ψ+

x (−∂x0+∆)ψ−x ] (4.28)

with N a normalization factor. By performing a local gauge transformation of
Wh∗(φ, J0,J1), deriving with respect to ϑx and setting ϑx to zero we get a term
similar to the one in 4.12 (except for the absence of the integration over the x
variable) plus an extra term coming from the measure which is the media

〈
·
〉
h∗

of
the following derivative:

∂

∂ϑx

{
−
∫
dx[eiϑxψ+

x (−∂x0 + ∆)(e−iϑxψ−x )]
}
ϑx=0

= i
[
∂x0(ψ+

x ψ
−
x ) + ∂x(ψ−x ∂xψ

+
x − ψ+

x ∂xψ
−
x )
]

= i ρ0

[ 1
2 ∂x0

(
(ψlx)2 + (ψtx)2

)
+ i ∂x(ψlx∂xψ

t
x − ψtx∂xψ

l
x)
]

= i∂xν j
ν
x ν = 0, 1, 2, 3 (4.29)

with ∂xν = (∂x0 , ∂x) and

jνx =


ρ0
2

[
(ψlx)2 + (ψtx)2

]
ν = 0

ρ0
[
ψlx i∂xψ

t
x − ψtx i∂xψ

l
x

]
i = 1, 2, 3

(4.30)

Note that if we introduce the adimensional variables (x′0, x′i) = (R−2
0 x0, R

−1
0 xi) we

get that the terms ∂xν jνx have dimensions ρ0R
−2
0 , as expected. Taking into account

the definition in (4.29) we get the following local ward identity:

δWh∗

δφtx

(
φlx +

√
2
)
− δWh∗

δφlx
φtx − i

〈
∂xν j

ν
x

〉
h∗

= 0 (4.31)
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In the Fourier space, using ψαx = |Λ|−1∑
k e

ikxψαk we have

−i ∂xν jνx = |Λ|−2∑
k,p

eikx
[1

2 p0
(
ψlk+pψ

l
−k + ψtk+pψ

t
−k

)
+ p (p + k)ψlk+pψ

t
−k

]
(4.32)

The term
〈
jνx
〉
h∗

can be written as functional derivative of the potential Wh∗(φ, Jν)
with respect to the external fields J0 and J1:

〈
jνx
〉
h∗

= δWh∗(φ, Jν)
δJxν

∣∣∣∣
φ,Jν=0

(4.33)

In the following we will indicate the kernels with an external leg of type ν and one
or two external plain (or dashed) legs as follows

W
(h∗)
01;ν (y; x) = δ2Wh∗(φ, Jν)

δφtyδJ
ν
x

∣∣∣
φ,J=0

= −
〈δVI(φ)
δφty

; jνx
〉
h∗

2!W (h∗)
02;ν (y, z; x) = δ3Wh∗(φ, Jν)

δφtyδφ
t
zδJ

ν
x

∣∣∣
φ,J=0

= δ

δJνx

〈δ2VI(φ)
δφtyδφ

t
z

〉
h∗

= −
〈δ2VI(φ)
δφtyδφ

l
z

; jνx
〉
h∗

+
〈δVI(φ)
δφtz

; δVI(φ)
δφty

; jνx
〉
h∗

(4.34)

where the semicolon indicates the connected expectation and the 2! factor on the
second lines corresponds to the combinatorial factor nl!nt!. The Fourier transform
of (4.34) is defined by

W
(h)
11;ν(x, y; z) = 1

(βLd)2

∑
k,p

eipxeikye−i(k+p)z Ŵ
(h)
11;ν(p, k) (4.35)

when we have taken into account the fact that the kernels are translational invariant
in the x space. The local WI’s are obtained by 4.3 deriving with respect to φly or φty
an appropriate number of times. The local WIs which are used to control the flow
are listed in the following.

(1) Local WI for Ah. This identity is obtained by deriving (4.31) once with
respect to φty and then setting to zero the external sources:

2
√

2W (h)
02 (x, y)−W (h)

10 (x)δ(x− y)− i∂xν W
(h)
01;ν(y; x) = 0 (4.36)

In the momentum space the previous identity becomes

2
√

2 Ŵ (h)
02 (p)− Ŵ (h)

01 (0) + pνŴ
(h)
01;ν(p) = 0 (4.37)

Using the global Ward identity Ŵ (h)
01 (0) = 2

√
2 Ŵ (h)

02 (0) one gets

2
√

2
(
Ŵ

(h)
02 (p)− Ŵ (h)

02 (0)
)

= − pνŴ (h)
01;ν(p) (4.38)
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Now, choosing as external momentum p = (0,p) :

2
√

2
(
Ŵ

(h)
02 (p)− Ŵ (h)

02 (0)
)

= −p · Ŵ (h)
01;1(p) (4.39)

where p · Ŵ (h)
01;1(p) is a shortcut for ∑i pi Ŵ

(h)
01;i(p). We have

2
√

2
(
V̂

(h)
02 (p)− V̂ (h)

02 (0)
)
' −p · V̂ (h)

01;1(p) (4.40)

The previous relation at the second order in p gives
√

2 (Ah − 1) ' −EJ1
h (4.41)

both for the two and three dimensional case. The identity (4.41) is immediately
verified at h = 0 being EJ1

0 = 0 and A0 = 1.

(2) Local WI for Bh . This identity is obtained by choosing in (4.38) the external
momentum as p = (p0; 0):

2
√

2
(
Ŵ

(h)
02 (p0)− Ŵ (h)

02 (0)
)

= − p0Ŵ
(h)
01;0(p0) (4.42)

The latter relation at the second order in p0 gives:
√

2Bh ' −EJ0
h (4.43)

both for the two and three dimensional case. For h = 0 the (4.43) is immediately
verified since B0 = EJ0

0 = 0.

(3) Local WI for Eh . By deriving (4.31) twice with respect to the field φt we
get the identity

3
√

2W (h)
03 (x, y, z)−W (h)

11 (x, y)δ(x− z)−W (h)
11 (x, z)δ(x− y)

= 2 i ∂νW (h)
02;ν(y, z;x) (4.44)

that in momentum space corresponds to

3
√

2 Ŵ (h)
03 (p, k)− Ŵ (h)

11 (−k)− Ŵ (h)
11 (k + p) = −2 pνŴ (h)

02;ν(k; p) (4.45)

Choosing as external momentum p = (p0,0) we obtain the relation

3
√

2 Ŵ (h)
03 (k, p)−

(
Ŵ

(h)
11 (k + p)− Ŵ (h)

11 (k)
)

= −2 p0 Ŵ
(h)
02;0(k; p) (4.46)

that at the first order in p0 gives

Eh ' 2µJ0
h d = 3

Eh ' γ
h
2 2µJ0

h d = 2 (4.47)

in the lower momenta region. For h = h̄ in fact µh̄ = 1/2 and Eh̄ = 1. For
h̄ < h ≤ 0 one has to take into account the fact that the kernels on the two
sides of the equation have different scaling dimensions and that Ē0 is equal to
zero, while µ̄0 to 1/2. One obtains (B.3).
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(4) Alternative identity for Eh.
By deriving (4.31) once with respect to φly and then setting to zero the external
sources:

2
√

2W (h)
11 (x, y) +W

(h)
10 (x)δ(x− y)− i∂xν W

(h)
10;ν(y; x) = 0 (4.48)

which in the momentum space corresponds to

2
√

2 Ŵ (h)
11 (p) + Ŵ

(h)
01 (0) + pνŴ

(h)
10;ν(−p) = 0 (4.49)

Using the global Ward identity 2
√

2 Ŵ (h)
11 (0) = −Ŵ (h)

10 (0) and then choosing the
external momentum to be p = (p0,0) one get

2
√

2
(
Ŵ

(h)
11 (p0)− Ŵ (h)

11 (0)
)

+ p0Ŵ
(h)
10;0(−p0) = 0 (4.50)

The previous relation at the first order in p0 gives

2
√

2 (Eh − 1) ' ZJ0
h (4.51)

both for the two and three dimensional case and h ≤ h̄.

(5) Local WI for the density–density kernel Jh. By deriving (4.31) with
respect to the external field Jyν one gets the identity

√
2W (h)

01;µ(x; y)− i∂xν W
(h)
00;νµ(x, y) = 0 (4.52)

that is
√

2 Ŵ (h)
01;µ(p) + pν Ŵ

(h)
00;νµ(p) = 0 (4.53)

Choosing p = (p0,0) and µ = 0 we get
√

2 Ŵ (h)
01;0(p0) + p0 Ŵ

(h)
00;00(p) = 0 (4.54)

which at the first order in p0 gives
√

2EJ0
h ' −Jh (4.55)

Combining the latter identity with (4.43)

Bh ' Jh (4.56)

which is an useful identity in order to study the behavior of the propagator, as
seen in section 3.4.3.

(6) Local WI for the current–current kernel Kh. By using (4.53) and choosing
p = (0,p) and µ = j we get

√
2 Ŵ (h)]

01;j (p) + p · Ŵ (h)
00;1j(p) = 0 (4.57)

Combining the latter identity with (4.41)

2 (Ah − 1) ' Kh (4.58)

where Kh is the kernel with two J1 external fields.
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Global WIs between kernels with external fields

By applying to the identity (4.12) a functional derivative with respect one of the
external fields Jyν one obtains:∫

dx

[
δ2Wh∗(φ)
δJνy δφ

t
x

(φlx +
√

2)− δ2Wh∗(φ)
δJνy δφ

l
x

(φtx)
]

= 0 (4.59)

Starting from (4.59) and by applying an arbitrary functional derivative with respect
to the φα fields we obtain a new series of global WIs involving the kernel with
external Jν fields. Two particularly useful identities are obtained choosing ν = 0
and (m,n) = (1, 1), (0, 3) with m and n the number of derivatives with respect to
the fields ψl or ψt respectively:

√
2 Ŵ12;0(0, 0, 0) + 2Ŵ02;0(0, 0) = Ŵ20;0(0, 0)

4
√

2 Ŵ04;0(0, 0, 0, 0) = Ŵ12;0(0, 0, 0) (4.60)

where we are using the definitions (4.34) for the kernels with external fields. The
global WIs in (4.60) are represented in fig. 3.7 pag. 3.7 and useful to control the flow
of the running coupling constants with external fields in the two dimensional case.
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4.2.2 Corrections to WIs due to cutoffs

Now we are ready to include the corrections to local Ward Identities coming from
the presence of a cutoff function χ[h∗,0](k) in the generating functional (4.2). The
formal expression of the measure in this case is the following

Pχ[h∗,0](dψ) = 1
N
D(ψ) e−

∫
dxψ+

x D[h∗,0]ψ
−
x (4.61)

with D[h∗,0] an operator on the ψ fields whose action is defined by

D[h∗,0]ψ
−
x = 1

|Λ|
∑
k

e−ikxχ−1
[h∗,0](k)(ik0 − k2)ψ−k (4.62)

As in the previous section, the local Ward identities are derived by performing a
local gauge transformation of the fields ψ±x in the generating functional Wh∗(φ, J),
by deriving it with respect to the phase variable ϑx and then by setting ϑx to zero.
We obtain:

δWh∗

δφtx

(
φlx +

√
2
)
− δWh∗

δφlx
φtx

+
〈 ∂

∂ϑx

{∫
dx[eiϑxψ+

xD[h∗,0](e−iϑxψ−x )]
}
ϑx=0

〉
h∗

= 0 (4.63)

where ∫
dx[eiϑxψ+

xD[h∗,0](e−iϑxψ−x )] =
∫
dxψ+

xD[h∗,0]ψ
−
x

+ i

∫
dx
(
ϑxψ

+
xD[h∗,0]ψ

−
x − ψ+

xD[h∗,0](ϑxψ−x )
)

+O(ϑ2
x) (4.64)

The second term on the r.h.s. of (4.64) can be conveniently written in the Fourier
space, using ψ±x = |Λ|−1∑

k e
±ikxψ±k and ϑx = |Λ|−1∑

k e
−ikxϑk:

i

|Λ|2
∑
k,p

ϑk
{
ψ+
k+pχ

−1(k)(ik0 − k2)ψ−k − ψ
+
k χ
−1(k)(ik0 − k2)ψ−k−p

}
(4.65)

Once derived (4.64) with respect to ϑx and set ϑx = 0 we obtain:

Tx(ψ±) = i

|Λ|2
∑
k,p

eipxψ+
k+p

{
χ−1

[h∗,0](k)
[
ik0 − k2]

− χ−1
[h∗,0](k + p)

[
i(k0 + p0)− (k + p)2]}ψ−k

= 1
|Λ|2

∑
k,p

eipxψ+
k+p [2T0(k, p) + iT1(k, p)] ψ−k (4.66)

with

T0(k, p) = 1
2
[
(k0 + p0)χ−1(k + p)− k0χ

−1(k)
]

T1(k, p) =
[
(k + p)2χ−1(k + p)− k2χ−1(k)

]
(4.67)
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Changing the basic fields

ψ±k =
√
ρ0
2
(
ψl±k ± iψt±k

)
(4.68)

the first contribution to (4.66) becomes

T 0
x (ψl, ψt) = ρ0

|Λ|2
∑
k,p

eipx T0(k, p)
[
ψlk+pψ

l
−k + ψtk+pψ

t
−k

]
(4.69)

where we have used the fact that∑
k,p

eipxT0(k, p)
[
ψtk+pψ

l
−k − ψlk+pψ

t
−k

]
= 0 (4.70)

being T0(−(k + p), p) = T0(k, p). Similarly

T 1
x (ψl, ψt) = ρ0

|Λ|2
∑
k,p

eipx T1(k, p)ψlk+pψ
t
−k (4.71)

where we have used that∑
k,p

ψαk+pT1(k, p)ψα−p = 1
2
∑
k,p

[
ψαk+pT1(k, p)ψα−k + ψα−k (−T1(k, p))ψαk+p

]
= 0 (4.72)

being T1(−(k + p), p) = −T1(k, p). Taking into account the terms coming from the
derivative of the free measure we get the following identity:

δWh∗

δφtx

(
φlx +

√
2
)
− δWh∗

δφlx
φtx +

〈
Tx(ψl, ψt)

〉
h∗

= 0 (4.73)

where Tx(ψl, ψt) = T 0
x (ψl, ψt) + T 1

x (ψl, ψt). The term Tx(ψl, ψt) is the sum of two
pieces: one piece already present in the formal local WI (4.3) plus a correction term
which is different from zero only if the cutoff function is different from the identity.
In order to extract the correction term it is useful to rewrite T 0

x and T 1
x as follows:

T0(k, p) = 1
2 p0 + 1

2
[
(k0 + p0)(χ−1(k, p)− 1)− k0(χ−1(k)− 1)

]
= 1

2 p0 + C0(k, p)

T1(k, p) =
[
(k + p)2 − k2

]
+
[
(k + p)2(χ−1(k + p)− 1)− k2(χ−1(k)− 1)

]
= p · (p + 2k) + C1(k, p) (4.74)

to be compared with (4.32). Then (4.73) may be rewritten as:

δWh∗

δφtx

(
φlx +

√
2
)
− δWh∗

δφlx
φtx − i

〈
∂xν j

ν
x

〉
h∗

+
〈
Cx(ψl, ψt)

〉
h∗

= 0 (4.75)

with Cx(ψl, ψt) = C0
x(ψl, ψt) + C1

x(ψl, ψt) and C0
x and C1

x defined as T 0
x and T 1

x in
(4.69) and (4.71) with T ν(k, p) substituted by Cν(k, p).
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4.2.3 Multiscale integration of the correction terms to the WIs

In order to perform the multiscale integration of the correction terms to the local
WIs we introduce a new effective potential W̃[h,0](φ, J̃) defined by:

e|Λ| W̃[h,0](φ,J̃) :=
∫
P 0

[h,0](dψ)e−VI(ψ+φ)+B̃(J̃ ,φ) (4.76)

with

B̃(J̃ , φ) = ρ0R
2
0

∫
dd+1p

(2π)d+1

∫
dd+1k

(2π)d+1

[
J̃p0 C0(k, p)

(
ψtk+pψ

t
−k + ψlk+pψ

l
−k

)
+ J̃p1 C1(k, p)ψlk+pψ

t
−k

]
(4.77)

and

C0(k, p) = 1
2
[
(k0 + p0)(χ−1

[h,0](k, p)− 1)− k0(χ−1
[h,0](k)− 1)

]
C1(k, p) = (k + p)2(χ−1

[h,0](k + p)− 1)− k2(χ−1
[h,0](k)− 1) (4.78)

With these definitions the correction terms arising in the Ward identities can be
written as a convenient number of functional derivatives with respect to the fields φl
and φt of

C0(x) = δ

δJ̃x0
W̃[h,0](J̃ , φ)

∣∣∣
J̃=φ=0

C1(x) = δ

δJ̃x1
W̃[h,0](J̃ , φ)

∣∣∣
J̃=φ=0

(4.79)

In the following we will denote as W̃ (h)
nl,nt;ν({ki}; p) the generic kernel with one

external J̃ν line, nl external dashed lines and nt external plain lines. Here {ki} are
the momenta of the ψα fields α = l, t and p is the momentum flowing throught J̃ .
Then, for example

W̃
(h)
11; ν(k + p,−k; p) = δ3

δJ̃pν δφlk+pδφ
t
−k
W̃[h,0](J̃ , φ)

∣∣∣
φ=J̃=0

(4.80)

where ν = (0, i) is the space-time index with i = 1, 2, 3. The main difference with
respect to the generating functional of the kernels with external fields Jν is the
presence ot the correction term proportional to Cν(k, p).

The functional integral in (4.76) can be again studied by RG methods, see [31].
A crucial role is played by the properties of the function Cν(k, p); it is easy to verify
that, denoted with g̃(h)(k) = fh(k) g(h)(k) the quantity

g̃(i)(k + p)Cν(k, p) g̃(j)(k) (4.81)

is non vanishing only if at least one of the indices i or j is equal to 0 or both are equal
to the last scale h; moreover, when it is nonvanishing it is dimensionally bounded
from above by

(const.)|pν |γ−i−j
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J̃0 J̃0

Figure 4.2. Example of vertices with an outgoing J̃0 field. The kernel on the left is
the monomial W̃ (h)

02;0({ki}; p). The kernel on the right represents one of the correction
terms coming from the cutoff function; in particular the squared vertex in the picture
represents the matrix kernel C0(k, p).

see appendix D.2. If we start by integrating at scale 0 the integral in (4.76) we find

e|Λ| W̃[h,0](φ,J̃) = e|Λ|E−1+S̃(J̃)
∫
P[h,−1](dψ(≤−1)) e−V−1(ψ(≤−1)+φ)+B̃(−1)(ψ) (4.82)

where S̃(J̃ , φ) collects the terms depending on J̃ but independent on ψ and

B̃(−1)(ψ) = B̃
(−1)
J (ψ) + Q̃

(−1)
R (4.83)

with B̃
(−1)
J (ψ) linear in J̃ and Q̃

(−1)
R the rest, i.e. the kernels which are al least

quadratic in J̃ . The kernels appearing in B̃(−1)
J (ψ), in particular, are the kernels

W̃
(−1)
nl,nt;ν({ki}; p) with any number of external dashed and plain legs.

As usual the new kernels appearing in B̃(−1)(ψ) can be represented as sums over
Feynman graphs. By the properties of the Cν(k, p) function, see D.2 for details, it
follows that

W̃ (−1),C
nl,nt;ν

(
{ki}; p

)
:= pν W̄

(−1)
nl,nt;ν

(
{ki}; p

)
(4.84)

with W̄ (−1)
nl,nt;ν dimensionally bounded uniformely in p and having the same scaling

dimension of the kernels V̂ (−1)
nl,nt;ν of the effective potential V−1(ψ). Then we define

the action of the R = 1− L operator exactly as done in section 2.19 for the latter
kernels. This define new marginal effective couplings on scale (−1):

LW̄ (−1)
02;0 (k; p) = W̄

(−1)
02;0 (0; 0) := µ̄J̃0

−1

LW̄ (−1)
11;1 (k; p) = W̄

(−1)
11;1 (0; 0) := µ̄J̃1

−1

LW̄ (−1)
10;0 (p) = LW̄ (−1)

10;0 (0) := γ
d
4 Z̄ J̃0
−1

LW̄ (−1)
01;1 (p) =

d∑
i=1

pi∂iW̄
(−1)
01;1 (pi)

∣∣
pi=0 :=

d∑
i=1

pi · γ
d
4 ĒJ̃1

i,−1 (4.85)

We now iterate the same procedure, and step by step the local parts of the kernels
of type J̃p0ψtk+pψ

t
−k, J̃

p
1ψ

l
k+pψ

t
−k, J̃

p
0ψ

l
p and J̃pi1 ∂piψ

t
pi are collected together to form

new running coupling constants, µ̄J̃0
h , µ̄J̃1

h , Z̄ J̃0
h and ĒJ̃1

h respectively.
Note that starting from scale (−1) the J̃ν external line can be attached to a simple

vertex, corresponding to one of the monomials W̃ (h)
nl,nt;ν

(
{ki}; p

)
or to a “squared”
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vertex, representing J̃p0 C0(k, p)
(
ψtk+pψ

t
−k + ψlk+pψ

l
−k
)
or J̃p1 C1(k, p)ψlk+pψ

t
−k, see

fig. 4.2.
Once arrived at scale h̄, as already seen for the multiscale analysis of the potential

Vh(ψ, J), the scaling dimension of the kernels changes and we have to introduce a
new localization procedure and new running coupling constants. Even in the lower
momenta region the definition of localization is taken equal to the one described for
the kernels Ŵ (h)

nl,nt;ν , which we will repeat here. We only remind that the running
coupling constants with external field J̃ in the region h ≤ h̄ are

{µJ̃0
h , E

J̃0
h , Z

J̃0
h ;EJ̃1

h } d = 3

{µJ̃0
h , µ

′J̃0
h , λ′J̃0

h , ωJ̃0
h , E

J̃0
h , Z

J̃0
h ;EJ̃1

h } d = 2 (4.86)

In three dimension all the running coupling constants with external field are marginal;
in two dimensions µJ̃0

h is relevant with dimension 1/2, µ′J̃0
h , λ′J̃0

h and ω′J̃0
h are irrelevant

with dimensions −3/2, −1 and −1/2 respectively and the others couplings are
marginal.

Choice of the localization point

So far, in the definition of the localization procedure we have chosen to localize the
kernel of our effective potential at zero external momentum. However, as fare we
are interested to the leading order in γh∗ as h∗ → −∞, this choice is equivalent to
localize at finite external momentum of order γh∗ , with h the lowest scale in the
multiscale integration of Wh∗(ρ0, Jν).

In the next section we will see as this freedom in the choice of the localization
point is crucial to analyze the correction terms to the WIs coming from the cutoff.
In fact the lowest scale contributions to the correction terms is not bounded for zero
external momentum. However it is sufficient to choose the external momentum of
order |p| = γh

∗ to make all these terms well defined.

The differences arising when we localize |p| = γh
∗ rather than in |p| = 0 are all

subdominant in h as h→ −∞. In particular, in appendix D.3 we describe how to
prove the following properties:

i) the difference between the quadratic local terms of the one–step potential
{Âh∗ , B̂h∗ , Êh∗ , Ẑh∗} evaluated for external momentum γh

∗ and the wave func-
tion renormalization constants {Ah∗ , Bh∗ , Eh∗Zh∗} localized in γh∗ is subleading
both in the small parameter of the perturbation theory and h∗;

ii) the difference between to localize the kernels Ŵ (h∗)
12 (p), Ŵ (h∗)

12;0 (p) and Ŵ (h∗)
12;0 (p)

for |p| = γh
∗ or p = 0 is subdominant in the small parameter of the perturbation

theory;

iii) the kernels which by parity reasons vanish for zero external momentum, are of
order γh∗ when we localize in |p| = γη

∗ , and then dimensionally negligible with
respect to the other contribution to the WIs;
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iv) from the dimensional point of view, the discrete derivative with respect to pν
evaluated for pν = γh

∗ has the same behavior of the derivative with respect to
pν , with pν going to zero.

4.2.4 Lowest scale contributions and localization

In this section we will describe the reason why it is not possible to evaluate the local
WIs for external momentum equal to zero. The problem comes from the lowest scale
term generated by the contraction of both the bosonic fields of the correction terms
Cν(k, p)ψαk+pψ

α′
−k at scale h∗. In fact in this contraction one of the cutoff function

associated to the two propagators is “lost”, as described in appendix D.2. On the
other side we have already stressed in chap. 2.1 how in order to bound the last scale
propagators we need one cutoff function for each of the propagators, see (2.156).
One may wonder if is it still possible to get some bounds, even worst then (2.156),
in presence of a single cutoff function. The following example shows that this is not
possible.

Bound for gh∗ll (k + p)C0(k, p)gh∗ll (k)

Let consider a Feynman diagram containing a squared vertex C0(k, p) contracted
with two g(h∗)

ll (k) propagators. We can find such a diagram in the lowest order part
of the beta function for µJ̃0

h∗ or in the higher order contributions to the flow of µJ̃0
h∗

and EJ̃0
h∗ . The integral we would like to bound is

I =
∫

dd+1k

(2π)d+1 fh∗(k) g(h∗)
ll (k + p) g(h∗)

ll (k) (4.87)

with

g
(h∗)
ll (k) = [Ah∗(k)k2 +Bh∗(k)k2

0]
Dh∗(k) (4.88)

We remind that on the support of fh∗(k), we have Zh∗ = Zh fh∗(k), Ah∗ = 1 + (Ah−
1) fh∗(k), Eh∗ = 1 + (Eh − 1) fh∗(k) and Bh∗ = Bh fh∗(k), see (2.153). Now let
choose p = (0,0) and consider the following contribution to (4.87):

I1 =
∫

dd+1k

(2π)d+1 fh∗(k) k4(
k2

0 + Zh∗fh∗(k)k2)2
≤ 1

(2π)d+1

∫
k2∈supp.
fh∗ (k)

ddk k4 fh∗(k)
∫ +∞

0
dk0

1(
k2

0 + Zh∗fh∗(k)k2)2 (4.89)

The integral in the k0 variable can be calculated by the residua calculus (there are
two poles of order two in k0 = ±i

√
Zh∗fh∗(k) k2), getting∫ +∞

0
dk0

1(
k2

0 + Zh∗fh∗(k)k2)2 = 2π
4 (Zh∗fh∗(k)k2)

3
2

(4.90)
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Then, passing to spherical coordinates ddk = (2ρ)d−1πdρ

I1 ≤
1

8πd−1

∫ γh
∗+1

γh∗−1
dρ

ρd

(Zh∗)
3
2
√
fh∗(ρ)

(4.91)

which is a singular integral since fh(ρ) goes to zero as far ρ→ γh
∗−1.

Let’s now calculate the same integral than (4.89), but for small, finite, external
momentum, for example p = (p0,0):

I1(p0) ≤ 1
(2π)d+1

∫
k2∈supp.
fh∗ (k)

ddk k4fh∗(k)

∫ +∞

0
dk0

1(
k2

0 + Zh∗fh∗(k)k2) ((k0 + p0)2 + Zh∗fh∗(k)k2) (4.92)

Again the integral in k0, which we denote with Ik0(p0), can be calculated using the
residua theorem; now the the integrand function has four poles: k0 = ±i

√
Zhfhk2

and k0 = −p0 ± i
√
Zhfhk2.

Ik0(p0) = 2π√
Zh∗fh∗(k) k2 (p2

0 + 4Zh∗fh∗(k) k2) (4.93)

In the limit p0 → 0 of course Ik0(p0) gives (4.90). The integral I1(p0) turns to be

I1(p0) = 1
πd−2

∫ γh
∗+1

γh∗−1
dρ

ρd+2 fh∗(k)√
Zh∗fh∗(k)

(
p2

0 + 4Zh∗fh∗(k)ρ2) (4.94)

which is bounded since for fh∗(k) → 0 the integrand behaves as
√
fh∗(k). In

particular using that ρ2 = |k|2 ≤ ε−1γ2h∗ , Zh ≤ ε and p0 = γh
∗ one find

I1(p0) ≤ γ(d+1)h∗ε−
d+3

2 Z
− 1

2
h ≤ γ(d+1)h∗ε−

d
2Z−2

h∗ (4.95)

which is the same estimate holding for the integral of two longitudinal propagators
with their cutoff functions:

1
(2π)d+1

∫
dd+1k fh∗(k + p) fh∗(k) gh∗ll (k + p0) gh∗ll (k) (4.96)

Choosing p such that |p| = γh we are guaranteed that all the last scale diagrams
coming from the correction to the WIs are bounded and in particular have the same
bounds of the corresponding diagrams without the squared vertex Cν(k, p).
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4.2.5 Flow of the running coupling constants with J̃ν

In this section we want to describe how to control the flow of the new running
coupling constants appearing when we perform the multiscale integration of the
correction terms to the local WIs. The localization procedure is chosen at external
momentum of order γh∗ so that the lowest scale contributions are well defined.

In the following we will denote generically with αJ̃h one of the running coupling
constants with a J̃-field. We will describe only the evolution of the running coupling
constants in the region h ≤ h̄. With the same ideas one can see that in the higher
momentum region h̄ < h ≤ −1 the value of the couplings remains equal to their
initial value αJ̃−1. The coupling constant αJ̃h evolve according to the following flow
equation

αJ̃νh−1 − γ
δ αJ̃νh = βJ̃να,h + βJ̃ν , Iα,h + βJ̃ν ,Cα,h (4.97)

with δ the scaling dimension of the coupling αJ̃ . The beta function in (4.97) has
been split in three parts, which are:

βJ̃νh which collects the terms coming from diagrams where the J̃ν line comes from
a vertex of type µJ̃νk for some h ≤ k ≤ h̄. Note that for ν 6= 0 the vertex µJ̃1

k

only exists at scale h̄, since it is irrelevant.

βJ̃ν , Ih collects the terms where the J̃ν line comes from one of the irrelevant vertices
at scale h = h̄. Due to the short memory property, these diagrams can be
dimensionally bounded by (const.) εc′ γϑ(h−h̄) for any 0 < ϑ < 2 in 3d and
0 < ϑ < 1 in 2d, with c′ an appropriate constant.

βJ̃ν , Ch is the contribution to αJ̃h−1 coming from graphs where the J̃ν line is attached
to a squared vertex representing Cν(k, p) with outgoing ψ fields not both
contracted at scale 01. Due to the properties of the correction term βJ̃ν ,2h is
different from zero only if h is equal to the lowest scale included in the cutoff
function, i.e. the cutoff function definingWh∗(ρ0, Jν), which is χ[h∗,0](k). More
precisely the non zero contributions to βJ̃ν , Ch are given by the diagrams where
both the ψ fields outgoing from the squared vertex are contracted at scale h
or if one of them is contracted at scale h∗ and the remaining at scale h = 0.
However in the latter case we have at least a propagator on scale 0 or −1 and,
by the short memory property, the diagram can be dimensionally bounded by
(const.) εc γϑh for any 0 < ϑ < 1 with c an appropriate constant.

In order to study the flows of µJ0
h , EJ0

h , ZJ0
h and EJ1

h , for each h > h∗ we may
use exactly the same ideas used to study the couplings with external Jν field, see
sec. 3.4. This allow us to prove that the diagrams contributing to βα,J̃h have always
an extra λ with respect the diagrams contributing to βα,Jh . This simply depends on
the fact that µJ̃0

h̄
= λµJ0

h̄
and µJ̃1

h̄
= λµJ1

h̄
as proved in appendix D.4.1. When h is

1 In this case we get terms proportional to the vertex µJ̃ν−1, which have been already considered
in the definition of βJ̃νh .
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equal to the lowest scale h∗ of the multiscale integration it is sufficient to add to the
previous result the contribution coming from βJ̃ν , Ch∗ .

I. Flow of µJ̃0
h

For each h > h∗, since βJ̃0,C
µ,h = 0, the flow equation of µJ̃0

h can be studied with
exactly the same strategy used to study the flow equation of µJ0

h ; in fact the two
beta functions are identical once the vertex with the outgoing J̃0 line is replaced
with a the same vertex with outgoing J0 line. We do not repeat the details here
(see sec. 3.4 for the analogous discussion of the flow of µJ0

h ) but only present the
conclusions. One can proof that:

µJ̃0
h

µJ̃0
h̄

= µh
µh̄

(
c3 +O

(
λε

1
2
))

d = 3

µJ̃0
h

µJ̃0
h̄

= µh
µh̄

(
c2 +O

(
λ
))

d = 2 (4.98)

with c3 and c2 explicitly computable constants. Then

µJ̃0
h = c3 λµ

J0
h = c3λε

−1µh
(
1 +O

(
λε

1
2
))

d = 3

µJ̃0
h = c2 λµ

J0
h = c2 λε

−1 µh
(
1 +O

(
λ
))

d = 2 (4.99)

At scale h∗ we must add to (4.99) the lowest scale contribution βJ̃0,C
µ,h∗ which is

βJ̃0,C
µ,h∗ =


O
(
λε−1µh∗ λε

1
2
(
1 + λε

1
2 |h∗ − h̄|

)−1)
d = 3

O
(
λε−1µh∗ ζ∗

)
d = 2

(4.100)

with ζ∗ = maxh∗≤h≤h̄{λλh, λ6,h/(ελ2
h)}. We see that the lowest scale contribution

do not change (4.99) at leading order.

II. Flow of EJ̃0
h

For each h > h∗, since βJ̃0,C
E,h = 0, the flow equation of EJ̃0

h can be studied with
exactly the same strategy used to study the flow equation of EJ0

h , see sec. 3.4. The
only difference between the two contexts is the fact that

µJ̃0
h

µJ̃0
h

= cd λ
µJ0
h

µJ0
h̄

(4.101)

with cd an explicitly computable constant dependent on the dimension d, whose
second order expression can be found in appendix D.4.1. One obtains:

EJ̃0
h = −c3λ ε

−1
(
1− Eh +O(λε

1
2 )
)

d = 3

EJ̃0
h = −c2λ ε

−1
(
1− Eh +O(λ)

)
d = 2 (4.102)
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For what concerns the contribution βJ̃0,C
E,h∗ coming from the contractions of both

external legs of the correction terms on scale h∗ we obtain

βJ̃0,C
E,h∗ =


O
(
λε−1Eh∗ λε

1
2
(
1 + λε

1
2 |h∗ − h̄|

)−1)
d = 3

O
(
λε−1Eh∗ ζ∗

)
d = 2

(4.103)

with ζ∗ = maxh∗≤h≤h̄{λλh, λ6,h/(ελ2
h)}. We see that the lowest scale contribution

do not change (4.102) at leading order.

III. Flow of EJ̃1
h

Neglecting the contribution coming from the lowest scale, which again is sub-
dominant in |h|, the flow of EJ̃1

h is controlled with the same dimensional argument
used to control EJ1

h . The beta external J1-line in the beta function EJ̃1
h may only

come from an irrelevant vertex at scale h̄, as for example

µJ̃1
h̄

=
{
O(λε3) d = 3
O(λε 5

2 ) d = 2

Then we can always extract from the beta function for EJ1
h a short memory factor

and prove that

EJ̃1
h = O(λ2ε

3
2 ) d = 2, 3 (4.104)
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∂0

Eh

=
J0

µJ0
h

+
J̃0

∂0
+

J̃1

∂0

∂0 ∂0

Bh

= ∂0

J0

EJ0
h

+
∂2

0

J̃0

+
∂2

0

J̃1

∂p ∂p

Ah

=
∂p

J1

EJ1
h

+
∂2

p

J̃0

+
∂2

p

J̃1

Figure 4.3. Local WIs. The last two diagrams on each line represent the correction
terms to the formal WIs coming from the cutoffs. The meaning of the shaded vertices is
pictorically described in fig. 4.4 and 4.5.

4.2.6 Discussion of the complete local WIs

We are now ready to discuss the complete local WIs, where “complete” refers to
the fact that with respect to the formal WIs we consider here the correction terms
coming from the cutoff function. The local WIs are shown in fig. 4.3, with external
momentum pν taken of order γh. In the following discussion, using the result of the
last sections we will use that:

a) the kernels of the one–step potential evaluated in pν = γh are “equal” (at leading
order in h) to the same kernels evaluated at zero external momentum;

b) the kernels of the one–step potential and the corresponding kernels of the mul-
tiscale potential are “equal”, since they differ for a term which is subleading
both in γh and in the small parameter ε in 3d and λλh in 2d. This is due to the
fact that the difference between the two effective potentials depends only on the
integration over the lowest scale.

Local WI for Eh

The local WI for Eh is obtained by choosing in

Ŵ
(h)
11 (k + p)− Ŵ (h)

11 (−k)− 3
√

2 Ŵ (h)
03 (k, p)

= 2 p0Ŵ
(h)
02;0(k + p,−k) + 2 W̃ (h)

02;0(k + p,−k) + 2 W̃ (h)
02;1(k + p,−k) (4.105)

the external momentum p = (p0,0) and by developing the identity so obtained at
the first order in p0. We obtain the equation

Êh = 2µ̂J0
h + 2 ∂0W̃

(h)
02;0
∣∣
p0=0 + 2 ∂0W̃

(h)
02;1
∣∣
p0=0 (4.106)

as graphically represented on the first line of fig. 4.3. By the properties of the
C0(k, p) function, see D.2, it follows that

∂0W̃
(h)
02;0 = p0 µ

J̃0
h + ∂0∆(h)

02;0 (4.107)
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∂2
0

J̃0

= p0
J̃0

∂0
µJ̃0
k

+
J̃0

h

h

∂2
0 +

J̃0

0

h

∂2
0

Figure 4.4. Diagrams contributing to the beta function of the correction term ∂2
0W̃

[h∗]
01;0(p0),

appearing in the WI for Bh. The squared vertex with external J̃0 line represents C0(k, p).

with ∆(h)
02;0(k, p) the lowest scale contribution coming from the contraction at scale h

of at least one of the ψ fields outgoing from the squared vertex representing C0(k, p).
Note that the WIs are derived for the kernels of the one–step potentials at scale h,
then the lowest scale of the multiscale decomposition is just h.

Regarding the correction term ∂0W̃
(h)
02;1(k, p) it is zero for parity reasons for p0 = 0

and of order γh when p0 = γh. By using (4.99) and the estimate of ∂0∆(h)
02;0 we

finally find

Eh ' ε−1µh
(
1 +O(λ)

)
(4.108)

both in three and two dimensions.

Local WI for Bh

The identity useful to control the flow of Bh is obtained deriving (4.75) with
respect to φty, setting the external fields equal to zero and than choosing as external
momentum p = (p0,0):

2
√

2
(
Ŵ

(h)
02 (p0)− Ŵ (h)

02 (0)
)

= − p0Ŵ
(h)
01;0(p0)− W̃ (h)

01;0(p0)− W̃ (h)
01;1(p0) (4.109)

Developing the previous identity at the second order in p0 we get:
√

2 B̂h = −ÊJ0
h + ∂2

0W̃
(h)
01;0(p0) + ∂2

0W̃
(h)
01;1(p0) (4.110)

as pictorially showed in the second line of fig. 4.3, where the shaded vertices represent
the sum of the diagrams contributing to the kernels W̃ (h)

01;0 and W̃ (h)
01;1. The last two

terms in eq. (4.110) represent the corrections with respect the formal WI (4.43).
The flow of EJ0

h has been studied in chap. 3; one finds

EJ0
h = −ε−1

(
1− Eh +O(λ ε

1
2 )
)

d = 3

EJ0
h = −ε−1 (1− Eh +O(λ)) d = 2 (4.111)

For what concerns the first of the two correction terms coming from the cutoff
function we have

∂2
0W̃

(h)
01;0(p0) = ÊJ̃0

h + ∆E,J̃0
h (p0) (4.112)
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∂2
x

J̃1

= p ·
[

J̃1

∂x ∂xµJ1
k

+
J̃1 ∂x

∂xµJ1
k

]

+
J̃1

h

h

∂2
x +

J̃1

0

h

∂2
x

Figure 4.5. Diagrams contributing to the beta function of the correction term to the WI
for Ah. The squared vertex with external J̃1 line represents C1(k, p).

with ∆E,J̃0
h the last scale contribution coming from the second and third diagram on

the r.h.s. of the identity in fig. 4.4. Using (4.102) and the bounds

∆E,J̃0
h = O(λε−1Eh λε

− 1
2µh) d = 3

∆E,J̃0
h = O(λε−1Eh ζ∗µh) d = 2 (4.113)

we obtain
√

2Bh ' ε−1(1− Eh +O(λ)
)

(4.114)

both in three and two dimensions. We stress here that in 3d the formal WI gives√
2Bh ' ε−1(1 − Eh + O(λε 1

2 )
)
, i.e. the correction term coming from the cutoff

change the magnitude in λ of the second non trivial order. For what concerns the
second correction term ∂2

0W̃
[h]
01;1(p0), it is null for parity reasons, since the kernels

contributing to W̃ [h]
01;1(p0) are odd in the spatial variable k.

Local WI for Ah

In order to derive this identity we derive (4.75) with respect to φt, setting the
external fields equal to zero and than choosing as external momentum p = (0,p):

2
√

2
(
Ŵtt(p)− Ŵtt(0)

)
= p · Ŵ [h]

01;1(p0) + W̃
[h]
01;0(p) + W̃

[h]
01;1(p) (4.115)

By developing the previous identity at the second order in p we get:
√

2
(
Âh − 1

)
= ÊJ1

h + ∂2
pW̃

[h]
01;0(p)

∣∣∣
p=0

+ ∂2
pW̃

[h]
01;1(p)

∣∣∣
p=0

(4.116)

which is pictorially represented in fig. 4.5. In this figure the diagrams on the first
line of the r.h.s. represent the leading order to the part of the beta function where
the J1 line comes from µJ̃1

h̄
or other irrelevant diagrams at scale h̄; the diagrams on

the second line with squared vertex are the last scale contribution. We have

∂2
pW̃

[h]
01;0(p) = ÊJ̃1

h + ∆E,J̃1
h (p) (4.117)
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∂0
J0

EJ0
h

=
J0

J0
Jh

+
J0

J̃0
J̃h

Figure 4.6. Local WI useful to control the behavior of the propagator.

For what regards the third correction term, ∂p2∆[h]
01;0(p)

∣∣
p=0, it is null for parity

reasons. Finally we get

Ah − 1 ' O(λε
1
2 ) d = 3

Ah − 1 ' O(λ) d = 2 (4.118)

with the correction term coming from the cutoffs being of order o(λ2).

Local WI for the propagator

The complete local WI relating EJ0
h with Jh is shown in fig. 3.97, where the last

term is the correction with respect the formal WI (4.53). The flow of the coupling
J̃h is controlled as the one for Jh, the only difference being that the vertex with the
outgoing J̃ line has an extra λ with respect the vertex with outgoing J line and
then J̃h = O(λJh). Using (4.110) we have

Bh ' −EJ0
h (1 +O(λ)) (4.119)

and finally find

Bh ' Jh (1 +O(λ)) (4.120)

which has been used in chap. 3 to prove that

Bh + E2
h

Zh
' ε−1(1 +O(λ)) (4.121)
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Chapter 5

Conclusions

Summary

Let us now summarize the results of the analysis performed in this thesis.

With the aim of studying the condensation problem for a homogeneous three and
two dimensional system of bosons interacting with a repulsive short range potential
at zero temperature, we considered a simplified model, obtained by introducing an
ultraviolet momentum cutoff. Such a model was analyzed by exact Renormalization
Group methods, which have already been proved effective in the study of several
low dimensional condensed matter systems, see the introduction of [64] for a list of
references.

In the three dimensional case we proved that the renormalized expansion is order
by order finite in the running coupling constants. In two dimensions we proved
that the interacting theory is well defined at all orders in terms of two effective
parameters related to the intensity of the three and two particles interactions. In
both cases we have explicit bounds on the coefficient of order n.

In both dimensions the correlations do not exhibit anomalous dimensions, i.e. the
model is in the same universality class of the exactly soluble Bogoliubov model. We
stress that the power series expansion around Bogoliubov model, in the bare couplings,
is plagued by logarithmic divergences in the three dimensional case and even more
“dangerous” divergences in the two dimensional case. Then the absence of anomalous
dimensions is a quite remarkable result, since we may expect the summations of the
divergences to deeply change the qualitative behavior of Bogoliubov propagator.

Our results are obtained by implementing local Ward identities (WIs) within an
exact RG scheme, thanks to the technique developed in [31]. These identities reduce
the number of independent effective parameters, this fact being crucial for the control
of the two dimensional theory, where the four and three points effective interactions
are relevant and there are eleven effective running couplings to be controlled.

Since the momentum cut–offs, introduced in the momentum regularization scheme
we exploited, break the local gauge invariance, the study of the corrections term to
the formal local WIs is among the main goals of this thesis. In fact these terms may
a priori may be responsible for anomalous dimensions, since they are dimensionally
marginal in 3d and also relevant in 2d. Remarkably, the corrections terms to the
formal WIs can be rigorously bounded at all orders in renormalized perturbation
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theory (see chapter 4) and in our model turn out to be of higher order in the small
parameter λ, describing the intensity of the interaction. This means that the formal
WIs are exact at leading order, i.e. we may neglect the correction terms coming
from the cut–off as far as we are interested in the leading order relations between
the effective parameters of the system.

The proof that the renormalized expansion for a three dimensional system of
bosons, with an ultraviolet momentum cut–off, is order by order finite was already
obtained by Benfatto [26] some years ago. With respect to Benfatto’s our method
also applies to the much more subtle 2d case. Moreover also in the 3d case our
method appears more satisfactory from a conceptual point of view, since we exploit
the symmetries of the problem at best1. In fact, as showed in chap. 3, WIs exactly
constrain the behavior of the propagator and the unique effect of the summation
of the divergences appears in the renormalization of the speed of sound of quasi–
particles. Two less significant differences between our work and Benfatto’s one
are the study of the high momentum transient regime – where the contribution of
the quadratic Bogoliubov potential in the measure is negligible – which has been
discussed in great detail in this thesis and the analysis of the dependence of the
perturbative series by the dimensional quantities characterizing the problem, i.e. the
condensate density and the range of the interacting potential.

With respect to the work by Pistolesi et al., we have implemented local WI’s
in a exact RG scheme, where exact means that we have a complete control of all
the diagrams arising in the perturbation theory at each order, without neglecting
the irrelevant terms. Our methods allow to rigorously prove the relations between
the effective couplings stated by Pistolesi et al. The agreement with their result
comes from the fact that the correction terms coming from the ultraviolet cut–off
are subleading with respect to the terms already present in the formal WIs; however
these terms give effects which are in principle observable in the relations between
thermodynamical and response functions.

By using the Wilsonian RG scheme, rather than a dimensional regularization, we
found that in the 2d case – in addition to the eight running coupling constants which
comes from a “naïve” dimensional analysis – three new effective marginal coupling
constants arise, which have not been recognized before. Thanks to three additional
(w.r.t. the 3d case) global WIs these new couplings can be written in terms of the
three particle effective coupling λ6. The latter coupling was completely neglected
by Pistolesi et al. in their paper. The latter authors suggest that a study of this
coupling is not necessary, being it irrelevant in the 3d case2.

On the contrary not only the flow of the coupling λ6,h is not trivial but it changes
the leading order flow equation of the two–particles effective interaction λh, with
respect the one suggested by Pistolesi et al. To be more precise the leading order
flow equations of the two independent effective parameters λh and λ6,h are coupled

1From a technical point of view our method does not really simplify the treatment of the 3d
case. Even if we have to study only two flow equations, instead of the six of Benfatto’s work, the
analysis of the correction terms to WIs is quite hard–working.

2 Pistolesi et al. exploited an ε expansion with ε = d− 3, with d the spatial dimension of the
system; it is not clear within this scheme how to extrapolate the behavior of an effective parameter
in 2d which was irrelevant in the 3d case.
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among them at all orders. By a leading order calculation one finds that both λh
and λ6,h admit fixed points of order one. In particular our prediction for the fixed
point of λh is not significantly different from the one by Pistolesi et al. Remarkably
neither the presence of the new marginal couplings nor the fact that λ6,h has a non
trivial flow change the conclusions on the behavior of the propagator, which only
depends on the existence of the two fixed points.

Coming back to our main result, in this thesis we have proved that the behavior
of the renormalized propagator for small momenta is equal to Bogoliubov’s except for
a renormalized speed of sound. With exactly the same methods – here applied to the
multiscale analysis of the free energy, see sec. 2.1, and to the generating functional
of density and current correlations, see sec. 2.5 – without much additional efforts,
one can calculate the correlation functions and show that the result we have proved
for the renormalized propagator also holds for the two–point Schwinger function.
We will not belabor the details here, referring to [60, 62] for a description of how
the multiscale analysis applies to the generator of Schwinger functions.

Outlook

Several interesting open problems may be naturally faced with the same methods
used in this thesis; we plan to go through them in the immediate future.

1. In this work we were mainly interested in the study of the long–range behavior
of correlations, especially in the two dimensional case. For this reason we have
introduced a rotational invariant ultraviolet momentum cutoff, which greatly simplify
the problem without affecting the infrared behavior of the system.

However, the study of the renormalizability of the ultraviolet region turns to be
crucial to get quantitative predictions on physical quantities of interest, such as the
corrections to the ground state energy or to the chemical potential, with respect to
Bogoliubov’s predictions. Due to the presence of the ultraviolet momentum cut–off,
precise values of the subleading corrections to the thermodynamic and correlation
functions may be quantitatively different from those in the Hamiltonian model, as
stressed in the section 1.5.

A Renormalization Group analysis, similar to the one we have performed here,
may possibly be effective also for the continuum ultraviolet problem, the only
difference lying in the fact that for momenta greater than the inverse range of the
potential, the interaction does not appear local anymore.

An alternative direction which may be followed is the extension of the results
here obtained with the ultraviolet momentum cut–off to a non rotational symmetric
theory of bosons on a lattice. A motivation for this model is provided by the recent
experiments of condensation in optical traps. However the lattice case seems to be
much more subtle than the one considered in this thesis, since the symmetries we
have used to reduce the flow equations break down and one has to look for new
discrete symmetries which may play the same roles of the other continuous ones
that we employed above.
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2. In two dimensions the renormalized expansion is order by order finite provided
that the effective two–particles interaction λh is small with respect to λ−1, with
λ the intensity of the interaction. A second order calculation shows λλh to be of
order one, see sec. 3.5.2, independently of the values of the other parameters of the
problem, which are the condensate density ρ0 and the range R0 of the interacting
potential. Then it is audacious to state that the perturbation theory is well defined,
even order by order.

The flow of the effective coupling λh might of course be studied by numerical
analysis. However the effective model we considered is clearly not fundamental: a
more realistic microscopic model is needed to get trustworthy conclusions.

The regime λρ0R
d
0 ≤ 1 we have considered in the thesis is not the most general

one in which one expects Bogoliubov’s theory to be valid3. One may wonder if there
exists a different regime in which the two dimensional theory turns to be stable.
In particular in the weak coupling and high density regime ρ0R

d
0 � λ−1 � 1 the

choice of an ultraviolet momentum cut–off at the scale of the range of the interacting
potential is not justified. On the contrary the effective parameters at scale R−1

0
are renormalized by the integration over an higher region of momenta, where the
interaction is not local. The latter regime may possibly shows different features.

3. Last but not least, it would be interesting to extend our analysis to a system of
interacting bosons at finite temperature. In particular the computation of the critical
temperature, where the condensate density is zero but the correlation function has a
power low decay, is a debated point (see [65] and references therein), which also has
an undoubted experimental interest.

The perspective to make the treatment of BEC rigorous, i.e. to provide a full
non perturbative construction for the model, is far to be reached. As well known this
is an intrinsic problem for bosonic theories. The main missing point, in the context
of the Bose gas, is to solve the large field problem. This is not expected to be a
trivial generalization of known techniques – as those used to analyze the infrared φ4

problem in d = 2, 3 – since in the Bose gas case one has to use complex Gaussian
measures, instead of positive Gaussian measures, and this introduces new technical
problems. Some attempts of dealing with complex measures, using stationary phase
approximations techniques, have been recently developed by Balaban et al. (see
[38] and ref. therein) to control the temporal ultraviolet limit. However the problem
remains wide open.

On the other hand, to date it is not even clear how to recover the estimates
by Dyson [44] and Lieb-Yngvason [45] for the ground state energy in a functional
integral approach. The latter goal seems achievable and is expected to be good
warm up exercise to a deeper comprehension of the description of interacting bosons
in terms of functional integrals.

3 With “regime of validity of Bogoliubov theory” we refers here to the regime in which Bogoliubov
approximation is expected to be valid, i.e. in which the truncation of the interacting potential
performed in Bogoliubov approximation, see (1.53) pag. 10, is justified by the fact that the
contributions to the thermodynamic functions coming from the terms of the interacting potential
which are cubic or quartic in the bosonic fields with non zero momentum are subleading with respect
to those coming from the quadratic terms in the same fields.
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Appendix A

Multiscale analysis and power
counting

In the present appendix we list some definitions, properties and lemmas which
constitute main technical points in chapter 2.

A.1 Some properties of Gaussian measures
In this section we list some basic properties of the Gaussian integration and the
definition of truncated expectation, crucial in deriving the Feynman diagrams
expansion.

Let consider the complex fields ψ−x and ψ+
x = (ψ−x )∗, with x ∈ Λ. Let denote

with PM (dψ) the Gaussian measure in the fields ψ±x with covariance matrix M :

PM (dψ) =
∫ (∏

x∈Λ

dψ+
x dψ

−
x

2πi
)(

detM−1
)
e
−
∑

i,j
ψ+
i M

−1
ij ψ

−
j (A.1)

where
dψ+

x dψ
−
x

2πi := dRe (ψ−x ) dIm (ψ−x )
π

(A.2)

and M is a positive definite complex |Λ| × |Λ| matrix. By construction one has∫
PM (dψ) = 1,

∫
PM (dψ)ψ−i ψ+

j = Mij (A.3)

For each analytic function F (ψ) we can write

E(F ) =
∫
PM (dψ)F (ψ) (A.4)

It is useful to introduce the notion of truncated expectation, since it appears
naturally considering the integration of an exponential with respect to a Gaussian
measure. Given p functions X1, . . . , Xp defined on the fields ψ and p positive integer
numbers n1, . . . , np, the truncated expectation is defined as

ET (X1, . . . , Xp;n1, . . . , np) = ∂n1,...,np

∂λn1
1 , . . . , ∂λ

np
p

log
∫
P (dψ)eλ1X1(ψ)+...+λpXp(ψ)

∣∣∣
λ=0

(A.5)
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where λ = {λ1, . . . , λp}. It is easy to check that ET satisfies the following property

ET (c1X1 + . . .+ cpXp;n) =
∑

n1+...+np=n

n!
n1! . . . np!

cn1
1 . . . cnpp ET (X1, . . . , Xp;n1, . . . , np)

(A.6)

so that the following relations immediately follow:

(1) ET (X, 1) = E(X),

(2) ET (X, 0) = 0

(3) ET (X, . . . ,X;n1, . . . , np) = ET (X;n1 + . . .+ np)

Moreover one has

ET ( X1, . . . , X1︸ ︷︷ ︸
n1

, . . . , Xp, . . . , Xp︸ ︷︷ ︸
np

; 1, . . . , 1︸ ︷︷ ︸
n1+...+np

) = ET (X1, . . . , Xp;n1, . . . , np) (A.7)

We define also

ET (X1, . . . , Xp) = ET (X1, . . . , Xp; 1, . . . , 1) (A.8)

By (A.7) we see that all the truncated expectations can be expressed in terms of
(A.8); it easy to see that (A.8) is vanishing if Xj = 0 for at least one j. As a
particular case of (A.5) one has:

ET (X;n) = ∂n

∂λn
log

∫
P (dψ)eλX(ψ)

∣∣∣
λ=0

(A.9)

so that we can rewrite formally the integral of an exponential with respect to the
Gaussian measure P (dψ) as:

log
∫
P (dψ)eX(ψ) =

∞∑
n=0

1
n!

∂n

∂λn
log

∫
P (dψ)eλX(ψ)

∣∣∣
λ=0

=
∞∑
n=0

1
n!E

T (X;n) (A.10)

The following properties holds:

(1) Wick rule. Given two set of labels {α1, . . . , αn} and {β1, . . . , βn} one has∫
PM (dψ)ψ−α1 . . . ψ

−
αnψ

+
β1
. . . ψ+

βn
=
∑
π

n∏
i=1

Mαiβπ(i) (A.11)

where the sum is over all the permutations π = {π(1), . . . , π(n)} of the indices
{1, . . . , n}.

(2) Addition principle. Given two integrations PM1(dψ1) and PM2(dψ2), with co-
variance M1 and M2 respectively, for any function F = F (ψ) with ψ = ψ1 + ψ2
one has ∫

PM1(dψ1)
∫
PM2(dψ2)F (ψ1 + ψ2) =

∫
PM (dψ)F (ψ) (A.12)

where M ≡M1 +M2.
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(3) Invariance of exponentials. From the definition of truncated expectations, it
follows that, if φ is an “external field”, i.e. a not integrated field, then∫

PM (dψ)eX(ψ+φ) = exp
[ ∞∑
n=0

1
n!E

T (X(·+ φ);n)
]
≡ eX′(φ) (A.13)

This property says that integrating an exponential one still gets an exponential,
whose argument is expressed by the sum of truncated expectations.

(4) Change of integration. If PM (dψ) denotes the integration with covariance M ,
then for any analytic function F (ψ) one has

1
NN

∫
PM (dψ)e−

∑
i,j∈Λ ψ

+
i N
−1
ij ψ

−
j F (ψ) =

∫
PM̃ (dψ)F (ψ) (A.14)

where

M̃−1 = M−1 +N−1 (A.15)

and

NN =
∫
PM (dψ)e−

∑
i,j∈Λ ψ

+
i N
−1
ij ψ

−
j = detM−1

det (M−1 +N−1) =
[
det(1 +N−1M)

]−1

(A.16)



146 A. Multiscale analysis and power counting

A.2 Proof of lemma 2.1
We want to obtain a bound on the modulo of the propagator g(h)

αα′(x) defined as
follows:

g
(h)
αα′(x) = 1

(2π)d+1

∫
dd+1k fh(|k|) p

h
αα′(k)
|k|2

e−ikx (A.17)

where

phαα′(k) = (ρ0R
2
0)−1

(
k2 −k0
k0 k2

)
|k|2 = k2

0 + k4 for h ≥ h̄

phαα′(k) = (ρ0R
2
0)−1

(
k2 −k0
k0 ε

)
|k|2 = k2

0 + εk2 for h < h̄ (A.18)

with the first row and column referring to α = l and the second row and column to
α = t.

Case h̄ < h ≤ 0

Let start from the case h̄ < h ≤ 0 . The bound we want to prove is:∣∣∣g(h)
αα′(x)

∣∣∣ ≤ γ d2h CN (ρ0R
2
0)−1

1 +
[
(γhx0)2 + (γ h2 x)2

]N (A.19)

Let consider the modulo of the product (γhx0)2g(h)(x):∣∣∣(γhx0)2g
(h)
αα′(x)

∣∣∣ =
∣∣∣∣∣ 1
(2π)d+1

∫
dd+1k fh(|k|) p

h
αα′(k)
|k|2

γ2h ∂2
k0 e
−ikx

∣∣∣∣∣
≤ 1

(2π)d+1

∫
dd+1k

∣∣∣∣∣ e−ikxγ2h ∂2
k0

[
fh(|k|) p

h
αα′(k)
|k|2

]∣∣∣∣∣ (A.20)

where in the second line we have used the integration by parts. Now making a
change of variable

γ−hk0 → k0

γ−
h
2 k→ k (A.21)

|k|2 = k2
0 +k4 → γ2h |k|2 and the integral in (A.20) becomes equal to an adimensional

integral (which can be bounded by a constant independent on h) multiplying a
dimensional factor

(A.20) ≤ C (ρ0R
2
0)−1 γ( d2 +1) γ2h γ−2h γ−h = C (ρ0R

2
0)−1 γ

d
2h (A.22)

where the factor γ( d2 +1) comes from the integration over ddkdk0; the factor γ2h was
already present in the integrand; the factor γ−2h comes from the second derivative
with respect to k0; γ−h comes from p

(h)
αα′(k)/|k|2. Following the same strategy we

can obtain the general bound∣∣∣(γhx0)2Ng
(h)
αα′(x)

∣∣∣ ≤ CN (ρ0R
2
0)−1γ

d
2h (A.23)
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and the analogous result for the x variable:∣∣∣(γ h2 x)2Ng
(h)
αα′(x)

∣∣∣ ≤ CN (ρ0R
2
0)−1 γ

d
2h (A.24)

where the fact that the x variable in (A.23) is multiplied for a factor γ h2 instead of
γh comes from the different power of k0 and k in the definition of |k|2 for h ≥ h̄.
Putting together the bounds (A.23) and (A.24) one obtains:∣∣∣{1 +

[
(γhx0)2 + (γ

h
2 x)2]N}g(h)

αα′(x)
∣∣∣ ≤ CN (ρ0R

2
0)−1 γ

d
2h (A.25)

which is equivalent to (A.29).

Case h ≤ h̄

In order to prove the bound in lemma 2.1 for the behavior of the propagator for
h < h̄ we will follow the same strategy used in proving (A.23), but with a different
change of variable

k′0 = γ−h k0

k′ = γ−h
√
εk (A.26)

since in this region |k|2 = k2
0 + εk2. Besides, p(h)

αα′(k) has a dimensional scaling
depending on α and α′. We have:

p
(h)
αα′(k

′) = (ρ0R
2
0)−1

(
ε−1 γ2hk′2 −γhk′0
γhk′0 ε

)
(A.27)

From (A.27) we see that if one of the labels α, α′ are equal to l we get a factor γh;
if both are of type l we have γ2h; if both are of type t we have no dependence on
h. Then we can write the dimensional factor coming from p

(h)
αα′(k′) as γh(δαl+δα′l).

For what regards the order in ε we have a factor ε−d/2 coming from the change of
variable in ddk. Putting all this factors together we get, for example,

∣∣∣(γhx0)2g
(h)
αα′(x)

∣∣∣ ≤ ε−( d2−1+δαl+δα′l)
∫

dd+1k′

(2π)d+1

∣∣∣∣∣γ2h ∂2
k′0

[
fh(|k′|) p

h
αα′(k′)
|k′|2

e−ik
′x

]∣∣∣∣∣
≤ C (ρ0R

2
0)−1 ε−( d2−1+δαl+δα′l)γ(d−1+δαl+δα′l)h (A.28)

The final bound for h ≤ h̄ results to be:∣∣∣g(h)
αα′(x)

∣∣∣ ≤ ε d2 (ε−1γh)(d−1+δαl+δα′l) CN (ρ0R
2
0)−1

1 + [(γhx0)2 + (γh
√
εx)2]N

(A.29)
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A.3 Order in ε, ρ0 and R0 for the Feynman diagrams
In this section we will evaluate the dependence on ε, ρ0 and R0 of a generic Feynman
diagram contributing to ||V (h)

ne
l
ne
t
|| in both region h̄ < h ≤ 0 and h ≤ h̄. The difference

between the two regions stays in the fact that in the lower region the presence
of Bogoliubov measure in the propagator gives a non trivial dependence on ε. In
particular the order in ε in the lower region turns to depend on the number of loops
in the Feynman diagrams, instead than on the number of vertices as usual.

A.3.1 Dimensional factor

First of all, let’s consider the contribution coming from the dimensional factors
associated to vertices, propagators and integrations. We have:

a) for each vertex a factor ρ0R
−2
0 ;

b) for each propagator in the momentum space (ρ0R
−2
0 )−1

c) for each loop a factor R−2−d
0

Denoting with L the number of loops one gets

ρ0R
−2
0 (ρ0R

d
0)−L (A.30)

being L = p−m+ 1, with p and m respectively the total number of propagator and
vertices. In (A.30) the factor ρ0R

−2
0 the exact physical dimension for a generic term

of the effective potential, while ρ0R
d
0 is an adimensional factor. By definition of the

adimensional running coupling constants, the beta function is also adimensional and
it is equal to the sum of the diagrams with at least two vertices contributing to
||V (h)

ne
l
ne
t
||, divided by the fixing dimension factor ρ0R

−2
0 .

A.3.2 Region h̄ < h ≤ 0
Let denote with C̄(Pv; ε, ρ0, R0) the factor in |

∫
dxv0Val(Γ)| containing the depen-

dence on ε, ρ0 and R0, with Γ a generic diagram contributing to the kernel ||V (h)
ne
l
ne
t
||

for h̄ < h ≤ 0. Using (A.30), introducing the number of loops L>

L> = 1
2(ninl + nint )− (mv − 1) = m4 + 1

2m3 −
1
2n

e
l −

1
2 n

e
t + 1 (A.31)

and taking into account the fact that ε = λρ0R
d
0, we have:

C̄(Pv; ε, ρ0, R0) = ρ0R
−2
0 (λε−1)1− 1

2 (ne
l+n

e
t)∏

v

(λε−1 λ̄hv)m4,v(
√
λε−1 µ̄hv)m3,v(ν̄hv)m2,v(āhv)ma,v(ēhv)me,v (A.32)

where in three dimensions the vertices of type λ can be present only at scale h = 0,
being irrelevant. Here m4,v, m3,v and ma,v are respectively the sum of vertices
of type {λ̄hv , λ̄′hv , λ̄

′′
hv
}, {µ̄hv , µ̄′hv} and {āhv , ā

′
hv
}, while m2,v and me,v denote the
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number of vertices of type ν̄ and ē at scale hv. If all the vertices in (A.32) are at
scale 0 we have

C̄0(Pv; ε, ρ0, R0) = ρ0R
−2
0 (λε−1)1− 1

2 (ne
l+n

e
t)
∏
v

(λ)m4,v+m2,v(
√
λε )m3,v (A.33)

being λ̄ = µ̄ = ε and ν0 = λ. Assuming that

η̄ = max
h̄<h≤0

{λε−1λ̄h,
√
λε−1 µ̄h, ν̄h , āh, ēh} (A.34)

is a small constant the factor (A.32) may be bounded for each h̄ < h ≤ 0 by

C̄(Pv; ε, ρ0, R0) ≤ ρ0R
−2
0 (λε−1)1− 1

2 (ne
l+n

e
t) η̄m (A.35)

with m the total number of vertices. It turns to be η̄ =
√
λ both in the three and

two dimensional case. We see as in the higher momentum region the dominant
diagrams – apart for the factor (λε−1) that we can consider one for the moment, are
the diagrams with minimum number of vertices.

A particular estimate can be obtained considering a diagram where all the vertices
are at scale h̄. In this case λ̄h̄ = ε, µ̄h̄ =

√
ε while the two legged vertices are O(λ);

we get

C̄(h̄)(Pv; ε, ρ0, R0) ≤ ρ0R
−2
0 ε

1
2 (ne

l+n
e
t)−1 λL+m2+ma+me (A.36)

that is the dominant diagrams at scale h̄ are the one–loop diagrams without two–
legged vertices. This will be the typical situation for h ≤ h̄, as we will see in the
next paragraph.

A.3.3 Region h ≤ h̄

Order in ε coming from integrations and propagators

In the region h ≤ h̄, due to the presence of ε in the definition of the cutoff function,
the order in ε turns to be not only dependent on the number of vertices. For this
reason it is useful to evaluate the power in ε, for a generic Feynman diagram Γ
contributing to a certain kernel ||V (h)

ne
l
ne
t
||, coming from the integrations over the

connected lines of the diagrams. We denote with D(Pv, ε) this factor. We have that:

a) each internal half–line of type l gives a contribution ε−2−d
4 , while each internal

half–line of type t gives a contribution ε
2−d

4 ; then each l half–line has got an
extra factor ε−1 with respect to a t line (see lemma 2.1);

b) each integration in the x-space gives a contribution proportional to ε d2 ;

c) for each derivative ∂x acting on a propagator g(h)(x) we get an extra contribution
ε−1 coming from the change of variables k2 → ε−1k′2. Then we may associate at
each contracted half–line bringing a label ∂x a factor ε 1

2
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Using the same notations introduced in section 2.2 and taking into account only the
marginal and relevant couplings without external fields we get:

D(Pv, ε) = d

2 (m− 1)− 2 + d

4 ninl + 2− d
4 nint −

1
2 n

in
∂x (A.37)

where m is the total number of vertices. Using the relations (2.55) and (2.56) we
get:

D(Pv, ε) = − d

2 +
(

2− d

2

)
m4 + 1

2

(
1− d

2

)
m3 +m2 +m6 χ(d = 2) (A.38)

+ d+ 2
4 nel + d− 2

4 net + 1
2 n

e
∂x

with χ(d = 2) different from zero only in the two dimensional case. Introducing the
number of loops L in the low momenta region, which is given by

L = m4 + 1
2m3 + 2m6 χ(d = 2)− 1

2n
e
l −

1
2 n

e
t + 1 (A.39)

we can conveniently rewrite (A.38) as follows

D3d(Pv, ε) = −2 + 1
2L−

1
2m3 +m2 + 3

2n
e
l + 1

2n
e
t + 1

2n
e
∂x (A.40)

D2d(Pv, ε) = −2 + L− 1
2m3 +m2 −m6 + 3

2n
e
l + 1

2n
e
t + 1

2n
e
∂x (A.41)

Using (A.30), (A.40) and (A.41) we obtain the dependence on ε, ρ0 and R0 for
|
∫
dxv0Val(Γ)|, with Γ a generic diagram contributing to the kernel ||V (h)

ne
l
ne
t
|| for

h ≤ h̄. Let denote with C̃(ε, ρ0, R0) the factor containing this dependence. In the
three dimensional case we have

C̃3d(Pv; ε, ρ0, R0) = ρ0R
−2
0
(
λε−

1
2
)L
ε−2+ 3

2n
e
l+

1
2n

e
t+

1
2n

e
∂x ε−

1
2m3+m2 (A.42)

where we have split the terms containing the dependence on the loop number, on
the vertices contained in the diagram and on the external legs (the latter term being
fixed for each kernel V (h)

ne
l
ne
t
). The analogous factor for d = 2 is

C̃2d(Pv; ε, ρ0, R0) = ρ0R
−2
0 λL ε−2+ 3

2n
e
l+

1
2n

e
t+

1
2n

e
∂x ε−

1
2m3+m2−m6

= ρ0R
−2
0 λ1− 1

2 (ne
l+n

e
t) ε−2+ 3

2n
e
l+

1
2n

e
t+

1
2n

e
∂x

λm4 (
√
λε−1 )m3 εm2(λ2ε−1)m6 (A.43)

In the following we will add to the estimates (A.42) and (A.43) the contribution
coming from the vertices in two particular situations: the one in which all the
vertices are at scale h̄ and the one in which they are all at scale h∗ � h̄.
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Diagrams with all vertices at scale h̄

The values of the running coupling constants at h̄ are:

λh̄ = ε
16 µh̄ =

√
2

4 ε νh̄ = O(λε−1/2) d = 3

λh̄ = 1
16 µh̄ = 1

4
√

2 ε νh̄ = O(λ) λ6,h̄ = O(λε) d = 2

Adding the contributions of the vertices to (A.42) and (A.43) we get:

C̃
(h̄)
3d (Pv; ε, ρ0, R0) = ρ0R

−2
0
(
λε

1
2
)L
ε−3+2ne

l+n
e
t+

1
2n

e
∂x ε

3
2m2 (A.44)

C̃
(h̄)
2d (Pv; ε, ρ0, R0) = ρ0R

−2
0 λL ε−2+ 3

2n
e
l+

1
2n

e
t+

1
2n

e
∂x (λε)m2(λ)m6

= ρ0R
−2
0 λ1− 1

2 (ne
l+n

e
t) ε−2+ 3

2n
e
l+

1
2n

e
t+

1
2n

e
∂xλL (λε)m2λm6 (A.45)

If all the vertices are at scale h̄ we see as the order in λ and ε depends on:

• the number of loops;

• the structure of the external legs, in particular if we substitute a t external leg
with a leg of type l we have an extra ε;

• the number of 2-legged vertices;

• in the two dimensional case the number of 6–legged vertices, which counts as
a loop.

Once the structure of the external legs is fixed, the dominant diagrams are the
one-loop graphs without 2-legged in three dimensions and without 2-legged and
6-legged vertices in two dimensions.

Diagrams with vertices at scale h� h̄

If h � h̄ we have also to take into account the expression for the renormalized
propagator, which is:

g(h)(k) =

(
Z−1
h

(
k2

0 + ε−1k2) k0
−k0 ε

)
k2

0 + εk2 (A.46)

With respect to the estimate for the unrenormalized propagator we have a factor
εZ−1

h for each propagator g(h)
ll (k). Then the order in ε for a generic diagram, taking

also into account the contribution of the vertices, is given by

C̃
{hv}
3d (Pv; ε, ρ0, R0) = ρ0R

−2
0
(
λε−

1
2
)L
ε−2+ 3

2n
e
l+

1
2n

e
t+

1
2n

e
∂x∏

v

(λhv)(ε−
1
2µhv)(ενhv)

∏
nll

(εZ−1
hv

) (A.47)

C̃
{hv}
2d (Pv; ε, ρ0, R0) = ρ0R

−2
0 λ1− 1

2 (ne
l+n

e
t) ε−2+ 3

2n
e
l+

1
2n

e
t+

1
2n

e
∂x∏

v

(λλhv) (
√
λε−1 µhv) (ενhv)(λ2ε−1λ6,hv)

∏
nll

(εZ−1
hv

) (A.48)
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where nll is the number of g(h)
ll (k) propagators and may be bounded by

nll ≤
⌊m3 − nel

2
⌋

(A.49)

In the particular case in which all the vertices and propagators have same scale h
we get the following factors.

Asymptotic three dimensional case.

Using the fact that - as proved in chapter 4 -

16λh = 2
√

2µh = Zh (A.50)

the dependence on ε, ρ0 and R0 for a generic diagram Γ contributing to the kernel
||W (h)

ne
l
ne
t
|| with all the vertices at scale h is given by

C̃
(h)
3d (Pv; ε, ρ0, R0) = ρ0R

−2
0
(
λε−

1
2
)L
ε−2+ 3

2n
e
l+

1
2n

e
t+

1
2n

e
∂x

(Zh)L−1+ 1
2 (ne

l+n
e
t) (ε−1Zh)( 1

2m3−nll) (ενh)m2 (A.51)

Asymptotically, being Zh∗ = ε
1
2 (λ |h∗ − h̄|)−1 the factor in (A.51) becomes

C̃
(h∗)
3d (Pv; ε, ρ0, R0) = ρ0R

−2
0 λ1− 1

2 (ne
l+n

e
t) ε−

5
2 + 7

4n
e
l+

3
4n

e
t+

1
2n

e
∂x∣∣∣h∗ − h̄∣∣∣−(L−1+ 1

2 (ne
l+n

e
t)) (

λ ε
1
2 |h∗ − h̄|

)−( 1
2m3−nll) (ενh)m2

(A.52)

where

• the first line on the r.h.s of (A.51) is fixed once {Pv0} is fixed;

• the second term on the second line of (A.51) can only improve the estimate,
being m3/2− nll ≥ 0;

• the addition of two–legged m2 vertices improves the order in ε, being νh
bounded by a constant.

Note that all the terms in the beta functions for λh, µh, Zh and Eh with more
than one loop are at least of order |h− h̄|−3. For what concerns the wave function
renormalization constants Ah and Bh the power in |h − h̄| improves with respect
to the estimate (A.51) due to some cancellations, encoded in the WIs and that can
also be checked with a one loop calculation (see C.3.2).

Asymptotic two dimensional case.

The calculation of the order in ε and λ for the asymptotic two dimensional case
is much subtle, since – as discussed in sec. 2.18 – three new effective marginal
couplings arise when h� h̄, see fig. 2.18 pag. 70. The presence of these additional
vertices – in this thesis denoted with ωh, λ′h and µ′h, see (2.169) for a definition –
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changes the factor (A.43), which gives the order in ε and λ coming from integrations
and propagators, as follows:

C̃ ′2d(Pv; ε, ρ0, R0) = ρ0R
−2
0 λ1− 1

2 (ne
l+n

e
t) ε−2+ 3

2n
e
l+

1
2n

e
t+

1
2n

e
∂x

λm4 (λε−1)
1
2m3 εm2 (λ2ε−1)m6(λε−2)m′4 (λε−5)

1
2m
′
3 (λε−1)

3
2m5 (A.53)

with m5, m′4 and m′3 respectively the numbers of µh, λ′h and µ′h vertices and the
loop number given by

L′ = m4 +m′4 + 1
2(m3 +m′3) + 3

2m5 + 2m6 −
1
2(nel + net) + 1 (A.54)

Taking into account the contribution of the vertices and of the longitudinal propaga-
tors g(h)

ll and using the following global WIs

µh = 4
√

2 γ
h
2 λh Zh = γhλh

ωh = 6
√

2 γ
h
2 λ6,h λ′h = 24 γh λ6,h µ′h = 16

√
2 γ

3
2h λ6,h (A.55)

we obtain

C̃
{hv}
2d (Pv; ε, ρ0, R0) ≤ (const.)ρ0R

−2
0 λ1− 1

2 (ne
l+n

e
t) ε−2+ 3

2n
e
l+

1
2n

e
t+

1
2n

e
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ve.p.
(λλhv )m4,v+m′4,v+ 1

2 (m3,v+m′3,v)+ 3
2m5,v+2m6,v (ενhv)m2,v

(
λ6,hv
ελ2

hv

)m6,v+m5,v+m′4,v+m′3,v (
ε−1γhvλhv

) 1
2 (m3,v+m5,v+2m′4,v+3m′3,v)−nvll (A.56)

By imposing the renormalization condition one find that in the infrared limit
|νh| ≤ (const.), see sec. 3.28. Let us also assume λλh and λ6,h/(λλ2

h) to have fixed
points λλ∗ and c6,∗, hypothesis whose consistency will be proved at leading order,
see sec. 3.5.2. Then the order in ε and λ for a generic diagram Γ where all the
vertices are at scale h∗ � h̄ turns out to be

C̃
(h∗)
2d (Pv; ε, ρ0, R0) ≤ (const.) ρ0R

−2
0 λ1− 1

2 (ne
l+n

e
t) ε−2+ 3

2n
e
l+

1
2n

e
t+

1
2n

e
∂

(λλ∗ )L
′−1+ 1

2 (ne
l+n

e
t) (εν∗)m2 c

m6,v+m5,v+m′4,v+m′3,v
6,∗(

ε−1γhλ∗
) 1

2 (m3+m5+2m′4+3m′3)−nll (A.57)

where L′ is the number of loops for a generic diagram obtained by contracting
vertices of type λ6,h, ωh, λh, λ′h, µh, µ′h and νh. Provided that c6,∗ is a constant
and λλ∗ � 1, the leading order diagrams are the one loop diagrams where all the
internal dashed legs are contracted among them, in order to minimize the exponent
of γh, on the last line of (A.57). Moreover, the insertion of a two–legged vertex give
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an extra ε with respect the order of the diagram without m2 vertices.

A.3.4 Order in ε coming from external fields

In this section we will describe how the insertion of the running coupling constants
with the external fields Jν change the order in ε of a generic Feynman diagram in
the region h ≤ h̄.

First af all we note that the two legged vertices ZJ0
h , EJ0

h and EJ1
h do not

contribute to the local part of the Feynman graphs since they have only one leg free
to be contracted. The unique vertices with external field contributing to the flows of
the running coupling constants are µ̄J0

h and µ̄J1
h for h̄ < h ≤ 0 and µJ0

h for h ≤ 0.

For what concerns the high momentum region, including also µ̄J0
h and µ̄J1

h into
(A.38) we see that the order in ε due to the integrations and propagator is changed
by a factor

εmJ0−
1
2mJ1 (A.58)

with mJ0 and mJ1 the number of µJ0
h and µJ1

h vertices. In order to include the
contribution coming from the external fields one has only to multiply the r.h.s. of
(A.32) by the product ∏

v

(
εµ̄J0

h

)mJ0
(
ε−

1
2 µ̄J1

h

)mJ1 (A.59)

Note that the inclusion of µ̄J0
h and µ̄J1

h in the list of possible vertices does not change
the relation (A.31) for the loop number; that is why in the product (A.59) there is
not dependence on λ, see (A.32) for a comparison.

For what concerns low momentum region, the initial value of µJ0
0 is

µJ0
h̄

=
{

1 +O
(
λε

1
2
)

d = 3
ε−

1
2
(
1 +O

(
λ
))

d = 2
(A.60)

Since the order in ε due to the integrations and propagator is changed by εmJ0 , and
the inclusion on µJ0

h does not change the relation (A.39) for the loop numbers, the
factors (A.47) and (A.48) are changed only by the extra factor∏

v

(
εµJ0

h

)mJ0 (A.61)

Being µJ0
h = ε−1µh for each h ≤ h̄, the latter product stays small as far as µh is

small. We see that the substitution of a vertex of type µh with a vertex of type µJ0
h

gives a factor ε−1.
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A.4 Counting of trees and Feynman diagrams

This section recollects some very standard lemmas referring to the bounds on the
number of Gallavotti–Nicolò trees and Feynman diagrams. For most of them we
have skipped the proof, which can be found in [30, 60]. In the following we will use
the same definitions and conventions introduced in sec. 2.1

Lemma A.1. The number of rooted unlabeled trees with m vertices is bounded by
Cm1 for some constant C1.

The number of rooted unlabeled trees with n endpoints is bounded by Cn2 for some
constant C2.

Let Th,n the set of the labeled trees with n endpoints and root at frequency h.
Their number cannot be uniformly estimated in h for h → −∞. In fact, even if
the maximum number of non trivial vertices is fixed by n and is equal to n− 1, we
can add between them the non trivial vertices. Of course in the limit h→ −∞ the
number of possible insertions tends to infinite. However is it possible to proof the
following result.

Lemma A.2. Let Th,n the set of labeled trees with n endpoints and root at scale h.
If γ > 1 and a > 0 we have∑

Th,n

∏
v not e.p.

γ−a(hv−hv′ ) ≤ Cn (A.62)

for some constant C.

If now consider a tree without root, which corresponds to a “graph” (i.e. a set
of points and a set of lines whose extremes are these points) connected (i.e. for each
couple of points there exists a set of lines of the graph connecting them) acyclic
(i.e. for each couple of points there is a unique path connecting them). Then, if we
call the points as P1, . . . , Pn the following lemma holds, where the n! factor comes
from the number of ways of assigning the names to the points.

Lemma A.3. Given n points, the number of trees connecting them is bounded by
Cnn!

Let now consider n points v1, . . . , vn. From each point vj in this set we denote
with Pvj the set of lines outgoing from the point. By contracting some of these lines
among them, we get a graph. We well call Feynman graphs the subset of connected
graphs obtained by connecting some of the lines Pv1 , . . . , Pvn . We will call internal
lines the contracted lines of the graph and external lines the lines of the graph that
have been not contracted. Then we have the following lemmas.

Lemma A.4. Let consider the Feynman diagrams with n vertices v1, . . . , vn such
that Pv1 , . . . , Pvn are the external lines outgoing from these points and ne is the
number of external lines. Their number is bounded by Cn(2n)! uniformly in the
number ne.
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Lemma A.5. Let {Pv} the set of the labels which, for a given collection of cluster
v corresponding to a tree τ , describes how many and which lines are outgoing from
each cluster v. Let a to be a positive constant. Then∑

{Pv}

∑
v not e.p.

γ−a|Pv | ≤ Cna (A.63)

where n is the number of endpoint of τ and Cna is a constant depending on a.
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τ =

h∗ v0 h̄

τ< =

h∗ v0 h̄

Figure A.1. On the left a generic tree τ with endpoints above and below h̄ + 1; on the
right the tree τ< obtained from τ by substituting the subtrees with root at scale h̄+ 1
with generalized vertices, depicted as white circles. The “simple” points at scale h̄+ 1
represent the local term defined by the localization procedure in the high momenta
region h̄ < h ≤ 0, represented by the region filled in gray.

A.5 Dimensional bounds for diagrams with any vertex
at scale h̄

Let consider the set of renormalized trees T <h∗,n with root at scale h∗ < h̄ and n

endpoints at scales h∗ < h ≤ h̄. For sake of simplicity in chapter 2 we have only
considered the subset of these trees with vertices at scale h̄ equal to the ones at scale
0, plus the six–legged vertex in the two dimensional case. However the integration
over the first |h̄| scales gives rise to each possible vertex at scale h̄, with an arbitrary
number and type of external legs (except for some symmetry constraints). In this
appendix we will prove that the dimensional bounds for the kernel of the effective
potentials are not changed when we consider all the possible vertices at scale h̄
instead than only those considered in chapter 2.

Let consider a tree τ< ∈ T <h∗,n. The latter can be imagined as obtained by a
generic tree τ , with endpoints at each possible scale h∗ < h ≤ 0, substituting to
each subtrees τj in the region h̄ < h ≤ 0 a generalized vertex gj , see fig. A.1. In the
following we will denote with T >

h̄,nj
the set of the trees with root at scale h̄ and nj

endpoints at scales between h̄ and 0. Three different types of endpoints belong to
τ<:

(1) “usual” endpoints at scale k ∈ [h+ 1, h̄] which correspond to one of the terms of
L<V̄k−1,i.e. to one of the marginal and relevant vertices r<i,k;

(2) “generalized” gj at scale h̄+ 1, coming from the integration at scales lower than
h̄. These may be in turn divided in two categories:

(2a) generalized endpoints corresponding to L>V̄h̄, i.e. to the sum of all the
trees in T >

h̄,nj
with index L on the vertex at scale h̄ + 1; these will be

depicted as “usual” points at scale h̄+ 1.
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(2b) generalized endpoints corresponding to the trees τj ∈ T >
h̄,nj

with index R on
the vertex at scale h̄+ 1. We will denote graphically this second category
of endpoints with white circles, see fig. A.1. These are just the endpoints
we have neglected in the simplified discussion of chapter 2.1.

Referring to a generalized endpoint gj in the following we will denote

• nα(gj) the number of external legs of type α coming out gj ;

• nα,v(gj) the number of legs in the set nα(gj) which are external to the cluster
at scale hv; the latter legs can be contracted at scales hc < hv.

Our goal is to recompute the scaling dimension δ<v in the general case in which
τ< contains whatever endpoints at scale h̄. In order to make the strategy of
the proof clearer we choose to consider a specific case, instead than the generic
d dimensional case, i.e. the estimate for the free energy in the three dimensional case.

Let consider a tree τ< ∈ T <
h,n and a Feynman graph Γ(τ<) belonging to the set

of the Feynman diagrams compatible with τ<. As seen in section 2.1, if there are
not generalized vertices, the diagram Γ< (neglecting for the moment the effect of
regularization) has scaling dimension

δ<v = 4− 2nel,v − net,v − ne∂,v (A.64)

which comes from

δ<v = −4(mv − 1) + 2ninl,v + nint,v − nin∂,v (A.65)

We want to include in the calculation the generalized vertices gj . Let denote with
{gv} the set of the generalized vertices contained in a cluster with scale equal or
lower than hv, i.e. with at least one of its outgoing lines contracted on scale hv. We
have:

mv = m4,v +m3,v +
∑

g∈{gv}
1

ninl,v = m3,v +
∑

g∈{gv}
nel (g)− nel,v

nint,v = 4m4,v + 2m3,v +
∑

g∈{gv}
net(g)− net,v (A.66)

The complete dimension is then:

δ̄<v = 4− 2nel,v − net,v −
∑

g∈{gv}
[4− 2nel (g)− net(g)]

= δ<v −
∑

g∈{gv}
δ<(g) (A.67)

Putting (A.67) together with the estimate for each of the generalized vertices, which
is given by the dimensional bound for a tree with root at scale h̄, we obtain the
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following unrenormalized bound for the contribution to ||W (h);n
ne
l
,ne
t
|| coming from an

diagram Γ(t<):

∥∥Val(Γ(τ<))
∥∥ ≤CnC(Pv; ε, ρ0, R0) εn

(
γhδ

<
v0

∏
v not e.p.
v>v0, hv≤h̄

γ(hv−hv′ )δ<v
)

(
γ
−h
∑

g∈{gv0}
δ<(g) ∏

v not e.p.
v>v0, hv≤h̄

γ
−(hv−hv′ )

∑
g∈{gv}

δ<(g))

∏
gj∈{gv0}

(
γhrj δ

>
v

∏
v not e.p.
v>rj

γ(hv−hv′ )δ>v
)

(A.68)

where

i) the factor C(Pv; ε, r0, R0) contains the dependence on ε coming from the inte-
gration in the region h ≤ h̄ and the dependence on ρ0 and R0 coming from the
number of loops of diagram Γ(τ);

ii) the factor εn comes from the product over the n endpoints, which are all at
scale 0 in the unrenormalized case;

iii) the product on the fist line of (A.68) is restricted to the “usual endpoints”,
i.e. the endpoints with scale hv ≤ h̄;

iv) the product on the last line is the dimensional estimate for each of the subgraph
Γ(τj), having scaling dimension

δ>v = 1
4(10− 3nev)−

1
2n

e
∂x,v − n

e
∂0,v (A.69)

We note that the product in the second bracket of (A.68) can be rearranged as
follows:

∏
v not e.p.
v>v0, hv<h̄

∏
g∈{gv}

γ−hvδ
<(g) =

∏
gj∈{gv0}

γ
−hr′

j
δ<rj (A.70)

where rj is the root of the tree τj giving the vertex gj and the vertex r′j is the vertex
immediately preceding the vertex rj along the tree τ<, i.e. hr′j ≤ h̄ is equal to first
the scale hv where at least one of the outgoing lines of gj is contracted. Recollecting
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the different terms together we get:

(A.68) ≤ CnC(Pv; ε, ρ0, R0) εn
(
γhδ

<
v0

∏
v not e.p.
v>v0, hv≤h̄

γ(hv−hv′ )δ<v
)

(
γhδ

<
v0

∏
v not e.p.
v>v0, hv≤h̄

γ(hv−hv′ )δ<v
) ∏
gj∈{gv0}

(
γ
−hr′

j
δ<rj γ

hrj δ
>
rj
∏
v>rj

γ(hv−hv′ )δ>v
)

= CnC(Pv; ε, ρ0, R0) εn γhδ
<
v0

∏
v not e.p.
v>v0, hv≤h̄

γ(hv−hv′ ) δ<v
∏

gj∈{gv0}
γ

(hrj−hr′
j
) δ<rj

∏
gj∈{gv0}

(
γ(δ>j −δ<j )hrj ∏

v not e.p.
v>rj

γ(hv−hv′ )δ>v
)

(A.71)

Then, finally∥∥Val(Γ(τ<))
∥∥ ≤ CnC(Pv; ε, ρ0, R0)εn γhδ

<
v0

∏
v not e.p.
v>v0

γ(hv−hv′ ) δ<v

∏
gj∈{gv0}

(
γ(δ>j −δ<j ) h̄ ∏

v not e.p.
v>rj

γ(hv−hv′ )δ>v
)

(A.72)

The product on the first line of (A.72) is the usual dimensional estimates for a tree
with vertices at scales h ≤ h̄. Besides of that, for each generalized vertex gj we must
add the term on the second line, which is corresponds to the dimensional estimate
for the tree tj from which generalized vertex comes from, apart for the external
dimension, which is

γ(δ>j −δ<j )hrj (A.73)

instead of γδ
>
j hrj as in (2.61). The factor (A.73) is associated to the change of

dimensions in the transition from the first to the second region and we will discuss
it in a while. Before of that let’s see which is the effect of the renormalization on a
the estimate (A.72).

If we take into account the effect of the renormalization, the dimensions in the
products ∏v>v0 γ

(hv−hv′ )δ<v and ∏v>rj γ
(hv−hv′ )δ<v in A.72 become negative for each

cluster, provided to have the right improvement of the dimensional bound also if R
acts on a cluster at scale greater than h̄ whose first outgoing contracted line is at
scale hr′j ≤ h̄ = hrj . This is immediately verified to be true. In fact the derivative
coming from the renormalization procedure will fall on a propagator ghj at scale
hj > h̄, giving a factor γ−hj or γ−

hj
2 according as the derivative is with respect to

x0 or x variable. On the other side the external momenta will be associated to a
line contracted at scale hk ≤ hr′j ≤ h̄ and will give a factor γhk . Putting together
the two estimates we could verify that the action of the R operator gives the same
factor

γ
−z<j (hrj−hr′

j
)

(A.74)
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we obtain when R acts on a vertex at scale lower than h̄+ 1. Then, if the transition
factor (A.73) is bounded, we have that all the scaling dimensions in (A.72) are
negative, so allowing the sum over the scale indices.

Now it’s time to discuss the factor (A.73). Let rewrite the bound (A.72) in the
case of the renormalized expansion∥∥Val(Γ)

∥∥ ≤CnC(Pv; ε, ρ0, R0)( ∏
v e.p.
v 6=gj

r<v,hv−1

)
γhD

<
v0

∏
v not e.p.
v>v0

γ(hv−hv′ )D<v

∏
gj∈{gv0}

(
γ(δ>j −δ<j ) h̄ ( ∏

v e.p.
v∈τj

r>j,hv−1

) ∏
v not e.p.
v>rj

γ(hv−hv′ )D>v
)

(A.75)

where hrj = h̄ for each gj , Dv = δv + zv is the renormalized scaling dimension and
we have written explicitly the product over the endpoints, denoting with {r<i,h} and
{r>i,h} the running coupling constants for h ≤ h̄ and h > h̄ respectively. Now, if to
the generalized endpoint gj is associated the index L the factor γ(δ>j −δ<j ) h̄ takes
just into account the different scaling dimension of the running couplings in the two
regions, i.e. the fact that at the borderline h = h̄ we must have

γδ
>
j h̄ r>

h̄
= γδ

<
j h̄ r<

h̄
(A.76)

and then we may write γ(δ>j −δ<j ) h̄ r>
h̄

= r<
h̄
. For what concerns the generalized point

of type (b), with index R associated to h̄+ 1, the factor γ(δ>j −δ<j ) h̄ may be bounded
by one if

∆v = δ>v − δ<v = 1
4(−6 + 5nel,v + net,v) + 1

2n∂x,v (A.77)

is positive. However there are a few cases in which the dimension ∆v is not positive,
characterized by the condition 5nel,rj + net,rj ≤ 6; these are the renormalized vertices
with

(nel,rj , n
e
t,rj ) = (0, 2), (0, 3), (0, 4), (0, 6), (1, 1)

and eventually some k0 momenta on the external legs. In these cases we have a large
factor γ−|∆rj |h̄ = ε−|∆rj |, being γh̄ = ε. However this bad factor is over–compensated
by the ε factors coming from the vertices contained in gj , still leaving a small constant
per vertex. For example, in the worst case, that is (nel,rj , n

e
t,rj ) = (0, 2) and only

two vertices µ̄hv , with hv > h̄ contained in gj , we have a factor ε−1 coming from
the change of dimension at the transition between the two regions and a factor
εγ−hv/4 ≤ εγ−h̄/4 = ε3/4 coming from each of the vertex µ̄hv , see sec. 3. Then, we
get that the product over the vertex gj .

We can rewrite (A.75) as follows∥∥Val(Γ)
∥∥ = Cn η̃n γhD

<
v0

∏
v not e.p.
v>v0

γ(hv−hv′ )D<v
∏

gj∈{gv0}

∏
v not e.p.
v>rj

γ(hv−hv′ )D>v (A.78)
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where η̃ = max
{(

maxh≤h̄ ri,h
)
, εa
}
with a an appropriate constant taking into ac-

count of the worst factor between those coming from the generalized vertices with
index R at scale h̄ + 1. Since the scaling dimensions in (A.78) are all negative,
assuming η bounded, we can prove the n! bounds for the n–th order contribution to
the free energy.
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Appendix B

Transient region h̄ < h ≤ 0

B.1 Ward Identities in the transient region
For completeness we report here the expressions for the global and local WIs in the
region h̄ < h ≤ 0, which relate the coupling constants λ̄h, µ̄h, Z̄h, Āh, B̄h and Ēh.

Global WIs d = 3 d = 2

− µ̄h = 4
√

2 γ
h
2 λ̄h (B.1)

γh Z̄h = 2
√

2 γ
h
4 µ̄h + 2 γhν̄h γh Z̄h = 2

√
2 γ

h
2 µ̄h + 2 γhν̄h (B.2)

Formal local WIs d = 3 d = 2

µ̄J0
h − 1 = Ēh µ̄J0

h − 1 = Ēh (B.3)

γ
3
4h ĒJ1

h =
√

2 Āh γ
h
2 ĒJ1

h =
√

2 Āh (B.4)

The main difference between the previous identities and the expression of the
corresponding WIs in the lower momentum region h ≤ h̄ stays in the different
external dimension of the kernels V (h)

nlnt in the two regions. Then the expression of
the identities also depends on the initial values of the coupling constants at scale 0.
For example, by definition Ē0 = 0 while Eh̄ = 1, from which comes the difference
between (B.3) and (3.22).

B.2 Flow in the transient region h̄ < h ≤ 0
In this section we will study perturbatively the flow of the running coupling constants
in the transient region h̄ < h ≤ 0 in order to find the initial values of the marginal
and relevant couplings for h = h̄. In order to find bounds on the value of the running
coupling constants we will use the dimensional estimate (1) pag. 66 for the leading
order diagrams contributing to the beta function. In the transient region h̄ < h ≤ 0
the leading order diagrams are the diagrams with the minimum number of vertices,
see (A.32).



164 B. Transient region h̄ < h ≤ 0

We remind to the reader the scaling dimensions for the kernels of the effective
potential both in the transient region :

δ>v = 5
2 −

3
4n

e
v − neJ0,v −

1
2n

e
J1,v − n

e
∂0,v −

1
2n

e
∂x,v d = 3

δ>v = 2− 1
2n

e
v − neJ0,v −

1
2n

e
J1,v − n

e
∂0,v −

1
2n

e
∂x,v d = 2 (B.5)

B.2.1 Three dimensions

Vertices without external fields

The running coupling constants in the transient region and for d = 3 are µ̄h, Z̄h,
Āh and Ēh, whose flow may be bounded using the dimensional estimate A.32 for
the leading order diagrams contributing to the beta functions. However we are
also interested in calculating the value at h = h̄ of the four–legged diagram λ̄h̄ and
the two–legged diagram with two external ∂0 derivatives B̄h̄, since these diagrams
become marginal in the lower region.

Let us start with the study of the running coupling constants. There exists a
constant c such that: ∣∣∣µ̄h − γ 1

4 µ̄h+1
∣∣∣ ≤ c (ρ0R

3
0
)−1|µ̄h|3∣∣∣Z̄h − γ Z̄h+1

∣∣∣ ≤ c (ρ0R
3
0
)−1|µ̄h|2∣∣∣Āh − Āh+1

∣∣∣ ≤ c (ρ0R
3
0
)−1|µ̄h|2∣∣∣Ēh − Ēh+1

∣∣∣ ≤ c (ρ0R
3
0
)−1|µ̄h|2 (B.6)

Then, assuming |µ̄h| ≤ c γ−
h
4 ε for each h̄ < h ≤ 0 one obtain∣∣µ̄h − γ−h4 µ̄0

∣∣ ≤ c (ρ0R
3
0
)−1

ε
5
2 γ−

h
4 (B.7)

that is consistent with the assumption. Using the latter bound for |µ̄h| we find the
following values for the running coupling constants at h̄∣∣µ̄h̄ − √2

2 ε
3
4
∣∣ ≤ c (ρ0R

3
0
)−1

ε
9
4 = c λ ε

5
4∣∣∣Z̄h̄ − 1

∣∣∣ ≤ c (ρ0R
3
0
)−1

ε
3
2 = c λ ε

1
2∣∣∣Āh̄ − 1

∣∣∣ ≤ c (ρ0R
3
0
)−1

ε
3
2 = c λ ε

1
2∣∣∣Ēh̄ − 1

∣∣∣ ≤ c (ρ0R
3
0
)−1

ε
3
2 = c λ ε

1
2 (B.8)

Note that one could find the same estimates on Z̄h by using the global WI (B.2)

γ
3
4h Z̄h = 2

√
2 µ̄h (B.9)



B.2 Flow in the transient region h̄ < h ≤ 0 165

valid at each order in perturbation theory. Regarding λ̄h̄ and B̄h̄ one find the
following estimates:

λ̄h = γ
h
2 λ0 = γ

h
2
ε

16 (B.10)

which satisfies the global WI λ̄h = γ
3
2h Z̄h/8 and∣∣∣B̄h̄∣∣∣ ≤ c (ρ0R

3
0
)−1

ε
3
2 (B.11)

Denoting with ᾱh̄ a generic vertex of the effective theory at scale h = h̄, obtained by
the integration on momenta higher than h̄, and with αh̄ the corresponding running
coupling for the effective theory in the lower region h ≤ h̄, the following continuity
condition must be satisfied

γ δ̄ h̄ᾱh̄ = γδ h̄αh̄ (B.12)

with δ̄ and δ the scaling dimensions of the kernels upper and below h̄. Using (B.12)
we obtain the initial values of the couplings at the beginning of the lower region
h ≤ h̄ which are:

µh̄ = γ
h̄
4 µ̄h̄ = µ0

(
1 +O

(
λ ε

1
2
))

λh̄ = γ−
h
2 λ̄h̄ = λ0

(
1 +O

(
λ ε

1
2
))

Zh̄ = γh̄Z̄h̄ = Z0
(
1 +O

(
λ ε

1
2
))

Ah̄ = Āh̄ = O
(
λ ε

1
2
)

Eh̄ = Ēh̄ = O
(
λ ε

1
2
)

Bh̄ = γ−h̄B̄h̄ = O
(
λ ε−

1
2
)

(B.13)

with λ ε− 1
2 � 1 if ρ0R

3
0 � λ. This condition toghether with ε� 1 gives ρ0R

3
0 = λα

with α ∈ [−1, 1]. Referring to Z̄h, its flows start from Z̄0 = ε and grows to the value
Z̄h̄ = 1. Since the propagator for h̄ < h ≤ 0 is given by

g
(h)
αα′(k) = (ρ0R

−2
0 )−1

(
k2 k0
−k0 k2 + γhZ̄h

)
k2

0 + k2 (k2 + γhZ̄h)
(B.14)

the bound γ2(h−1) ≤ k2
0 + k4 ≤ γ2h works until γhZ̄h becomes comparable with

k2 ' γh̄. This happens when Z̄h̄ = γ−h̄ε is equal to one, i.e. for h̄ such that γh̄ = ε.

Vertices with external fields

The scaling dimensions for the external fields in the region h > h̄ are nJ0 = −1 and
nJ1 = 1

2 , i.e. we have chosen for J0 and J1 the same scaling dimension than the
derivative with respect to x0 or x respectively. With this choice µ̄J0

h and µ̄J1
h are
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marginal, ĒJ0
h is irrelevant with dimension −1/4, and Z̄J0

h and ĒJ1
h are relevant with

dimension 3/4. Using the dimensional estimates (A.32) and (A.59) one proof that:

µJ0
h̄

= µ̄J0
h̄

= 1 +O(λ ε
1
2 )

µJ1
h̄

= γ−2h̄ µ̄J1
h̄

= ε2
(
1 +O(λ ε

1
2 )
)

EJ0
h̄

= γ−
h
4 ĒJ0

h̄
= O(λε−

1
2 )

ZJ0
h̄

= γ
3
4h Z̄J0

h̄
= O(λ)

EJ1
h̄

= γ
3
4h ĒJ1

h̄
= O(λ ε

1
2 ) (B.15)

B.2.2 Two dimensions

Vertices without external fields

The running coupling constants in the transient region and for d = 2 are λ̄h, µ̄h,
Z̄h, Āh and Ēh. As in the three dimensional case we are also interest in calculating
the value at h = h̄ of some irrelevant diagrams which become relevant in the lower
region, namely the two–legged diagram with two external ∂0 derivatives, B̄h̄, and the
six–legged diagram λ̄6,h̄. The dimensional estimate for the diagrams contributing to
the running coupling constants are the following∣∣∣λ̄h − λ̄h+1

∣∣∣ ≤ c (ρ0R
2
0
)−1|λ̄h|2∣∣∣µ̄h − γ 1

2 µ̄h+1
∣∣∣ ≤ c (ρ0R

2
0
)−1|µ̄h| |λ̄h|∣∣∣Z̄h − γ Z̄h+1

∣∣∣ ≤ c (ρ0R
2
0
)−1|µ̄h|2∣∣∣Ēh − Ēh+1

∣∣∣ ≤ c (ρ0R
2
0
)−1|µ̄h|2∣∣∣Āh − Āh+1

∣∣∣ ≤ c (ρ0R
2
0
)−1|µ̄h|2 (B.16)

with c a suitable constants. Using the global WI µh = 4
√

2 γ−h2 λh we find the
following values for the running coupling constants at scale h > h̄∣∣∣λ̄h − λ̄0

∣∣∣ ≤ c (ρ0R
2
0
)−1

ε2|h| = c λε|h|

∣∣γ h2 µ̄h − µ̄0
∣∣ ≤ c (ρ0R

2
0
)−1

ε2|h| = c λε|h|∣∣∣γh Z̄h − Z0
∣∣∣ ≤ c (ρ0R

2
0
)−1

ε2|h| = c λε|h|∣∣∣Ēh∣∣∣ ≤ c (ρ0R
2
0
)−1

ε2γ−h = c λεγ−h∣∣∣Āh∣∣∣ ≤ c (ρ0R
2
0
)−1

ε2γ−h = c λεγ−h (B.17)
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with

16 λ̄0 = 2
√

2µ̄0 = Z̄0 = ε Ā0 = B̄0 = Ē0 = 0

Regarding B̄h̄ and λ̄6,h̄ one find the following estimates:∣∣∣B̄h̄∣∣∣ ≤ c (ρ0R
2
0
)−1

ε = c λ∣∣∣λ̄6,h̄

∣∣∣ ≤ c (ρ0R
2
0
)−1

ε3 = c λ ε2 (B.18)

Using (B.12) we obtain the initial values of the couplings at the beginning of the
lower region h ≤ h̄ in the 2d case which are:

λ6,h̄ = γ−h̄ λ̄6,h̄ = O
(
λε
)

λh̄ = γ−hλ̄h̄ = λ̄0
(
1 +O

(
λε log ε

))
µh̄ = γ−

h̄
2 µ̄h̄ = µ̄0

(
1 +O

(
λε log ε

))
Zh̄ = γ−h̄Z̄h̄ = Z̄0

(
1 +O

(
λε log ε

))
Ah̄ = 1 + Āh̄ = 1 +O

(
λ
)

Eh̄ = 1 + Ēh̄ = 1 +O
(
λ
)

Bh̄ = γ−h̄B̄h̄ = O
(
λε−1) (B.19)

Referring to the behaviour of the propagator at h̄ in the two dimensional case, we
get the same expression (B.14) of the three dimensional case, with the same wave
function renormalization Ah̄, Eh̄ and Zh̄ at leading order. For γh̄ = ε the term γhZ̄h
becomes comparable with k2 ' γh̄ and the bounds on the propagator change, as
showed in lemma 2.1.

Coupling constants with external fields

The dimensions of the external field J0 and J1 are the same than in the three
dimensional case, i.e. 1 and 1/2 respectively. With this choice µ̄J0

h and µ̄J1
h are

marginal, ĒJ0
h is irrelevant with dimension −1/2, and Z̄J0

h and ĒJ1
h are relevant with

dimension 1/2. The diagrams with two J0 or J1 fields and without other external
legs are also marginal. All the other diagrams are irrelevant.

We first note that the running couplings µ̄J0
h and Z̄J0

h have the same beta function
than the couplings µh and Zh, apart for the substitution of the vertices µJ0

h and
µ′J0
h with µh and µ′h. However the combinatorial factors in this case are different

and in particular one find that the sum of the contributions to the beta function for
µ̄J0
h and Z̄J0

h which comes from the diagrams with two vertices is equal to zero, see
fig. B.1 and the explicit computations in the next section.
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Then, differently from the cases of µh and Zh one find that the leading order
contributions to the beta function are summable over h:

|β̄µ,J0
h | ≤ c λεγ−h

|β̄Z,J0
h | ≤ c λ2εγ−

3
2h (B.20)

which implies

µ̄J0
h = 1 +O

(
λεγ−h

)
γ
h
2 Z̄J0

h = O
(
λ2εγ−h

)
(B.21)

and then

µJ0
h̄

= µ̄J0
h̄

= 1 +O
(
λ
)

ZJ0
h̄

= γ
h̄
2 Z̄J0

h̄
= O

(
λ2) (B.22)

The difference between the two bounds in (B.20) stays in the fact that the first non
trivial diagrams contributing to µ̄J0

h̄
are one–loop diagrams of order three, while the

first non trivial diagrams contributing to Z̄J0
h̄

are two–loops diagrams of order four.

For what concerns the running couplings µ̄J1
h and ĒJ1

h , they have the same beta
function, once the λ̄k vertex in µ̄J1

h is substituted by a µ̄k vertex. From a dimensional
point of view λh = γ

h
2 µh and this explain the different scaling dimension for µ̄J1

h

and ĒJ1
h . The naïve dimensional estimate of the beta function for µ̄J1

h and ĒJ1
h is

not summable over h. However an explicit second order calculation (see B.3) again
shows that the contributions coming from the second order diagrams cancel and
that the beta function may be estimates as follows:

|β̄µ,J1
h | ≤ c λεγ−h

|β̄E,J1
h | ≤ c λ2εγ−

3
2h (B.23)

which implies

µ̄J1
h = 1 +O

(
λεγ−h

)
γ
h
2 ĒJ1

h = O
(
λ2εγ−h

)
(B.24)

and then

µJ1
h̄

= γ
3
2h µ̄J1

h̄
= ε

3
2 (1 +O(λ))

EJ1
h̄

= γ
h̄
2 ĒJ1

h̄
= O(λ) (B.25)

Finally, regarding EJ0
h̄

and JJ0
h̄

one can proof that

EJ0
h̄

= O
(
λ2ε−1)

JJ0
h̄

= O
(
λ2ε−1) (B.26)
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RCC for h̄ < h ≤ 0

r̄0 δ̄3d r̄3d
h δ̄2d r̄2d

h

λ̄h
ε
16 – – 0 λ0

(
1 +O

(
λ ε |h|

))
µ̄h

√
2

4 ε 1/4 εγ−
h
4 1/2 µ0 γ

−h2
(
1 +O

(
λ ε |h|

))
Quadratic RCC

Āh 0 0 O(λ ε γ−h2 ) 0 O
(
λεγ−h

)
Ēh 0 0 O(λ ε γ−h2 ) 0 O

(
λεγ−h

)
Z̄h ε 1 ε γ−h 1 γ−hZ0 (1 +O(λε |h|))

RCC with external fields

µ̄J0
h 1 0 1 +O(λ ε γ−h2 ) 0 1 +O(λ ε γ−h)

µ̄J1
h 1 0 1 +O(λ ε γ−h2 ) 0 1 +O(λ ε γ−h)

Z̄J0
h 0 3/4 O(λ γ− 3

4h) 1/2 γ−
h
2 O

(
λ2 εγ−h

)
ĒJ1
h 0 3/4 γ−

3
4hO(λ γ h2 ) 1/2 γ−

h
2 O

(
λ2 εγ−h

)
Table B.1. Flow of the running coupling constants in the transient region h̄ < h ≤ 0 in

three and two dimensions. With r̄0 we have denoted the initial values of the couplings,
while δ̄ is the scaling dimension of each coupling for h̄ < h ≤ 0.
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B.3 Leading order computations
In this section some of the leading order flow equations for the running coupling
constants in the transient region are collected. They show as in two dimensions the
behavior of the coupling constants with external fields is better than expected on
the basis of their dimensional estimate.

In order to calculate the beta function at scale h, βh, one has to evaluate some
Feynman graphs at zero momentum of the external line. Therefore:

1. only terms with at least one loop can contribute, since the single scale propa-
gator vanishes at zero momentum.

2. In the graphs with only one loop, all the internal lines must carry the same
momentum. Hence, due to our choice of the cutoff function f0(k), the internal
lines of the loop may only have propagators of scale h or h+ 1; in fact at least
one propagator must be of scale h (by definition of βh) and the supports of the
Fourier transform of the propagators at scale h and and h′ ≥ h are diskoint if
h′ > h+ 1.

3. The leading order diagrams in the small parameters λ and ε in the region
h̄ < h ≤ 0 are the diagrams with minimum number of vertices.

4. Since we are interested only in the leading orders, we can neglect in the rescaled
propagators (B.14) the factor γhZh. For the same reason we can neglect the
difference between {αh+1} and {αh} in the endpoints of the trees involving a
tree vertex on scale h+ 1.

The previous remarks imply that the leading terms in the beta function can be
obtained by the following steps:

a) Evaluate the graphs with one loop and minimum number of endpoints and
propagator given by the sum of the single scale propagators at scale h and h+ 1,
approximated as explained in the remark.

b) Evaluate the same graphs with propagator of scale h+ 1, again approximated as
in the remark 3.

c) Subtract the values found in b) with the values found in a) and add the trivial
graphs without any internal line.

d) Approximate in the result the cutoff function f0(k) by the characteristic function
of the set {k2

0 + k4 ≤ 1}. Note that this approximation is everywhere equivalent
to calculating the graphs with all propagators on the single scale h, except in
the case of the beta function for the coupling constants which involve derivatives
with respect to the loop momentum. Hence, except in this case, we will calculate
the graphs by using only propagators on scale h.

The last remark regards the combinatorial factors one has to take into account:

i. the coefficient of the truncated expectations, which is (−1)n+1/n! if we are
contracting n vertices;
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β̄µ,J0
h =

−1
2 2
(4
2
)

2

+

−1
2 2 · 2

+

−1
2 2
(4
2
)

2

+

−1
2 2 · 2

β̄Z,J0
h =

−1
2 2 · 2

+

−1
2 2 · 2 · 3

+

−1
2 2 · 2

+

−1
2 2 · 2 · 3

Figure B.1. Leading order flow equation for µ̄J0
h and Z̄J0

h . The combinatorial factors are
such that in both cases we find the integral over k of the combination k2

0 − k4, which
gives zero.

ii. the different possibilities of choosing different vertices between those present in
the expectations, giving rise to the same graph;

iii. for each vertex, the different possibilities of choosing the external lines;

iv. the different possibility of contracting the internal lines.

Now we are ready to start.

B.3.1 Leading order beta function of µ̄J0
h and Z̄J0

h

The leading order contributions to the beta function of µ̄J0
h are shown in fig. B.1,

whose sum is equal to:

β̄µ,J0
h,1 = −λε−1µJ0

h

(
12λh + 2λ′h

) 1
(2π)3

∫
dk0d

2k fh(k4 + k2
0) k2(k2 + γhZ̄h)− k2

0(
k2(k2 + γhZ̄h) + k2

0

)2

(B.27)

where ε ≤ Z̄h ≤ 1. Now, it is sufficient to note that

I1 = 1
(2π)3

∫
dk0d

2k fh(k4 + k2
0) k4 − k2

0
(k4 + k2

0)2 = 0 (B.28)

which can be easily seen with the following change of coordinates

k2 = ρ sinϑ k0 = ρ cosϑ (B.29)



172 B. Transient region h̄ < h ≤ 0

β̄λh =

−1
2
(4
2
)2 2

+

−1
2 2
(4
2
)

2

+

−1
2 2

β̄µh =

−1
2
(4
2
)

2

+

−1
2 2 · 2

+

−1
2 2 · 3

(4
2
)

2

+

−1
2 2 · 3 · 2

β̄Zh =

−1
2 2

+

−1
2 2 · 2 · 3

+

−1
2 32 · 2

Figure B.2. Leading order flow equation for λ̄h, µ̄h and Z̄h. The one–loop diagrams are
the same appearing in the beta function for µ̄J0

h and Z̄J0
h but with different combinatorial

factors.

The integral becomes

I1 = − 1
8π2

∫
ρ dρfh(ρ)

∫ π

0
dϑ

ρ2(cos2 ϑ− sin2 ϑ)
ρ4 (B.30)

= − 1
8π2

∫
dρ

ρ
fh(ρ)

∫ π

0
dϑ cos 2ϑ = 0

since the angular part is zero. Then (B.27) = O(λεγh) which is summable over h.
This is not the leading order contribution to the beta function (and in fact in the
following calculations we will neglect the factor γhZh in the propagator, as also
stressed in the introduction). The leading order contribution to β̄µ,J0

h comes from
the diagrams with one vertex µ̄J0

h and two vertices µh. By summing over the latter
diagrams one finds

β̄µ,J0
h,2 = 2µJ0

h µ
2
h

1
(2π)3

∫
dk0d

2k fh(k4 + k2
0) 2k2 + γhZ̄h

(k4 + k2
0)2 (B.31)

By using that µh ≤ γ−
h
2 ε we find |β̄µ,J0

h,2 | ≤ λεγ−h, which substituted in

µ̄J0
h = µ̄J0

0 +
0∑

k=h+1
β̄µ,J0
k,1 (B.32)

gives

µ̄J0
h = µ̄J0

0

(
1 +O(λεγ−h)

)
(B.33)
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β̄µ,J1
h =

J1

∂x
∂p

−1
2 2 · 22

+
J1

∂x
∂p

−1
2 2 · 22

−
J1

∂x

∂p

−1
2 2 · 22

−
J1

∂x

∂p

−1
2 2 · 22

β̄E,J1
h =

J1

∂x ∂p

−1
2 2 · 2

+
J1

∂x ∂p

−1
2 2 · 2

−
J1

∂x

∂p

−1
2 2 · 2

−
J1

∂x

∂p

−1
2 2 · 2

Figure B.3. Leading order flow equation for µ̄J1
h and ĒJ1

h . The symbol ∂p on the external
leg means the derivative with respect the external momentum p = (p0,p), which at
the end of the computation must be taken equal to zero, since we are interested in
calculating the local part of the diagrams.

The same situation occurs when one calculates the leading order beta function
for Z̄J0

h . The two vertices diagrams in fig. B.1 cancel and we are left with the next
order contribution, which cames from the diagrams with one vertex µJ0

h and three
vertices µh. By using that µh ≤ γ−

h
2 ε we find

|β̄Z,J0
h | ≤ λ2εγ−

3
2h (B.34)

which finally gives

γ
h
2 Z̄J0

h = O
(
λ2εγ−h

)
(B.35)

On the contrary, if one calculates the beta functions for λ̄h, µ̄h and Z̄h finds that
the diagrams of second order (see fig. B.2) do not cancel, since the combinatorial
factors are different. In particular the point is that the vertex µ′h has an additional
combinatorial factor 3 with respect to µ′J0

h related to the fact that we can choice the
external dashed leg among its three legs.

B.3.2 Leading order beta function of µ̄J1
h and ĒJ1

h

The diagrams contributing to the beta function for µ̄J1
h and ĒJ1

h at leading order are
shown in fig. B.3. Both the beta function are proportional to the integral

I1 = lim
p→0

∂p

∫
dk0d

2k f0(k) (2k + p) (k + p)2 k2 + k2
0

D̄0(k + p) D̄0(k)
(B.36)

where p = (p0,p)

D̄0(k) = k2
0 + k4 (B.37)



174 B. Transient region h̄ < h ≤ 0

Using that ∂p(k + p) = 2, ∂p(k + p)2 = 2(k + p) and ∂pD̄0(k + p) = 4(k + p)3 we
obtain

I1 = 2
∫
dk0d

2k f0(k) k
2
0 − k4

¯D2
0(k)

(B.38)

which again is equal to zero. The first non trivial contribution to the beta function
of µJ1

h is given by the diagrams with one vertex µJ1
h and two vertices µ2

h, i.e.

|β̄µ,J1
h | ≤ λε γ−

h
2 (B.39)

which gives

µ̄J1
h = µ̄J1

0

(
1 +O(λεγ−h)

)
(B.40)

Regarding the first non trivial contribution to the beta function of ĒJ1
h , this is given

by the diagrams with one vertex µJ1
h and three vertices µ2

h, i.e.

|β̄E,J1
h | ≤ λ2ε γ−

3
2h (B.41)

which gives

γ
h
2 ĒJ1

h = O
(
λ2εγ−h

)
(B.42)
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Appendix C

Leading order computations

In order to calculate the beta function at scale h, one has to evaluate some Feynman
graphs at zero momentum of the external line, as already described in appendix B.3.
We repeat here the rules we will follow in the computations, since there are some
differences with respect to the transient region.

1. Only terms with at least one loop can contribute, since the single scale propa-
gator vanishes at zero momentum.

2. In the graphs with only one loop, all the internal lines must carry the same
momentum. Hence, due to our choice of the cutoff function f0(k), the internal
lines of the loop may only have propagators of scale h or h+ 1; in fact at least
one propagator must be of scale h (by definition of βh) and the supports of
the Fourier transform of the propagators at scale h and and h′ ≥ h are disjoint
if h′ > h+ 1.

3. Since we are interested only in the leading orders, we can neglect in the rescaled
propagators (3.4) the terms proportional to γ2h and the dependence on k of Zh,
Ah, Bh and Eh, see (2.139). For the same reason we can approximate Zh+1,
Ah+1, Bh+1 and Eh+1 by Zh, Ah, Bh and Eh in the expression of g(h+1)

αα′ (x).

Using these remarks and the results of appendix A.3 one finds that the leading
terms in the beta function for h ≤ h̄ are obtained by the following steps:

a) Evaluate the graphs with one loop and propagator given by the sum of the single
scale propagators at scale h and h+ 1, approximated as explained in the remark.

b) Evaluate the same graphs with propagator of scale h+ 1, again approximated as
in the remark 3.

c) Subtract the values found in b) with the values found in a) and add the trivial
graphs without any internal line.

d) Approximate in the result the cutoff function f0(k) by the characteristic function
of the set {k2

0 + k4 ≤ 1}. Note that this approximation is everywhere equivalent
to calculating the graphs with all propagators on the single scale h, except in
the case of the beta function for the coupling constants which involve derivatives
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βµh =

−1
2 2
(4
2
)

2

+

1
3! 3 23

+

1
3! 3 23

+

1
3! 3 24

1
2 β

Z
h =

− 1
2! 2

Figure C.1. One–loop beta functions for µh and Zh, d=3.

with respect to the loop momentum. Hence, except in this case, we will calculate
the graphs by using only propagators on scale h.

The last remark regards the combinatorial factors one has to take into account:

i. the coefficient of the truncated expectations, which is (−1)n+1/n! if we are
contracting n vertices;

ii. the different possibilities of choosing different vertices between those present in
the expectations, giving rise to the same graph;

iii. for each vertex, the different possibilities of choosing the external lines;

iv. the different possibilities of contracting the internal lines.

C.1 Global WIs and flow equations in 3d

As shown in appendix A.3 in order to keep in each flow equation only the leading
terms in the small parameter ε in three dimensions it is sufficient to consider the
one loop graphs without νh vertices. This property holds both at the beginning of
the region h ≤ h̄ and in the asymptotic region h→ −∞, but in the latter case the
dominant diagrams in |h|−1 are those with all the internal dashed lines contracted
among them, see (A.52). We shall study the flow equations, by keeping only these
contributions; the properties of the corresponding solutions will be used to justify
the approximation.

In this section we will report the leading order flow equations for the running
coupling constants λh and µh and the wave function renormalization constant Zh,
in the region h ≤ h̄. These computations are useful to understand the perturbative
interpretation of the global WIs 4.18 at the first non trivial order.
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→ + +

Figure C.2. The substitution of a λh vertex with two µh vertices.

Let us start from the computation of βZh and βµh , see fig. C.1. We want to prove
that assuming the global WIs

Zh = 2
√

2µh 4
√

2λh = µh (C.1)

to be valid, one can proove the same identities between the one–loop contributions
to the beta function. The computation of βZh is trivial, see fig. C.1, and gives:

βZh = −2λε−
1
2µ2

h β
3d
2 (C.2)

with

β3d
n = 1

(2π)4

∫
dk0d

3k f0(k2
0 + k2)

(k2
0 + k2)n (C.3)

Regarding the beta function of µh the “trick” is to note that the sum of the three
third order diagrams gives

βµ,3rdh = 4λε−1µ3
h

1
(2π)4

∫
d4k g

(h)
tt (k)

[
g

(h)
tt (k)g(h)

tt (k) + g
(h)
tl (k)g(h)

lt (k) + 2
(
g

(h)
tl (k)

)2]
= 4λε−1µ3

h

1
(2π)4

∫
d4k g

(h)
tt (k)

[
g

(h)
tt (k)g(h)

tt (k) +
(
g

(h)
tl (k)

)2]
= 4λε−1µ3

h

1
(2π)4

∫
d4k

g
(h)
tt (k)
Dh(k) (C.4)

Using that Dh(k) ' ε−1Zh(k2
0 + εk2) one obtains

βµ,3rdh =
√

2λε−
1
2µ2

h β
3d
2 (C.5)

The contribution to the beta function of µh coming from the diagram of the second
order is

βµ,2ndh = −12λε−
1
2 λhµh β

3d
2 (C.6)

Then

2
√

2βµh = −2λε−
1
2 β3d

2

(
12
√

2λhµh − 2µ2
h

)
βZh = −2λε−

1
2 β3d

2 µ2
h (C.7)
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which are equal if 4
√

2λh = µh. One can also check that the substitution of a vertex
of type λh with two vertices of type µh (see fig. C.2) corresponds to the following
substitutions

6λh
(
g

(h)
tt (k)

)2 → 4µ2
h

g
(h)
tt (k)
Dh(k) = 23λh

(
g

(h)
tt (k)

)2
6λhg(h)

lt (k)g(h)
tl (k) → 4µ2

h

g
(h)
ll (k)
Dh(k) = 23λh g

(h)
ll (k)g(h)

tt (k)

6λhg(h)
tt (k)g(h)

tl (k) → 4µ2
h

g
(h)
tl (k)
Dh(k) = 23λh g

(h)
tt (k)g(h)

tl (k) (C.8)

By applying the first of (C.8) we can calculate quickly the beta function of µh which
turns to be

βµh = 2λε−
1
2

[
−1

2 2 6 + 1
3! 3 23

]
λhµh β

3d
2

= −4λε−
1
2λhµh β

3d
2 (C.9)

The beta function for λh can be calculated with the same ideas. Denoting with
βλ,2ndh , βλ,3rdh and βλ,4thh the contribution to the beta function of λh coming from the
diagrams of second, third and fourth order respectively, see fig. C.3, one finds:

βλ,2ndh = −36λε−
1
2λ2

hβ
3d
2

βλ,3rdh = +48λε−
1
2λ2

hβ
3d
2

βλ,4thh = −16λε−
1
2λ2

hβ
3d
2 (C.10)

so that

βλh = −4λε−
1
2λ2

hβ
3d
2 (C.11)

Then βZh = 16βλh and also the global WI Zh = 16λh is proved at the one–loop level.



C.2 The leading order beta function in 2d 179

βλh =

−1
2
(4
2
)2 2

+

1
3! 3

(4
2
)

23

+

1
3! 3

(4
2
)

23

+

1
3! 3

(4
2
)

24

+

− 1
4!
(4
2
)

25

+ + + . . .

Figure C.3. One–loop beta functions for λh, d=3. There are six different diagrams of
fourth order, obtained by substituting in the third order diagrams the λh vertex with
two µh vertices.

C.2 The leading order beta function in 2d

C.2.1 Role of the global WIs

In the two dimensional case three extra global WIs are needed, in order to relate
the new “effectively marginal” couplings µ′h, λ′h and ωh to λ6,h. These are:

ωh = 6
√

2 γ
h
2 λ6,h (C.12)

2
√

2 γ−
h
2ωh − γ−hλ′h = −2γhλh (C.13)

3 γ−
3
2hµ′h − 2

√
2γ−hλ′h = 2γ

h
2 µh (C.14)

Assuming λh to have a fixes point λ∗, in the asymptotic region h→ −∞, since γhλh
and γ h2 µh are going to zero, the previous identities state that:

ωh = 6
√

2 γ
h
2 λ6,h

λ′h = 24 γhλ6,h

µ′h = 16
√

2 γ
3
2hλ6,h (C.15)

We are now ready to study the leading order flow equation for λh and λ6,h. Under
the previous assumption on λh the order in the small parameters λ and ε = λρ0R

2
0
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− 1
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= 8
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Figure C.4. Asymptotic global WI Zh = 16λh, d=2. The sum of the diagrams on the
l.h.s. of the figure represent the leading order beta function of Zh/2 in the asymptotic
region h → −∞; the sum of the diagrams on the r.h.s. side is the leading order beta
function of λh in the same region. Using inductively the identities (3.17), (3.18) and
(C.15) one can check that the relation Zh = 16λh is satisfied; in particular it is separately
verified among the diagrams with the same number of plain (i.e. transverse) propagators.

in the asymptotic region is given by:

C̃2d(Pv;λ, ε) = ρ0R
−2
0 λ1− 1

2 (ne
l+n

e
t) ε−2+ 3

2n
e
l+

1
2n

e
t+

1
2n

e
∂

(λλ∗)m4+ 1
2m3 (εν∗)m2 (λε−1 λλ6)m6

(
λε−1 λ6

λ∗

)m′4 (
λε−2 λ

2
6
λ3
∗

) 1
2m
′
3
(
ε
λ2

6
λ∗

) 1
2m5

(
ε−1γhλ∗

) 1
2 (m3+m5+2m′4+3m′3)−nll (C.16)

The leading order diagrams are the one loop diagram (remind that the loop number
is equal to L = m4 +m′4 + (m3 +m′3)/2 + 3m5/2 + 2m6 − ne/2 + 1) where all the
internal dashed legs are contracted among them, in order to minimize the exponent
of γh, on the last line of (C.16).
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Zh−1/2
=

Zh/2
− + +

Figure C.5. Beta function for Zh, d=2.

C.2.2 Beta function for λh
In spite of studying directly the leading order beta function βλh for λh it results
more convenient to look at the beta function βZh of Zh, which a smaller number of
diagram contribute to, and then use the global WI

Zh = 16γhλh (C.17)

(represented in fig. C.4) to obtain the flow equation for λh:

γh−1λh − 1 = γhλh + γhβλh (C.18)

with γhβλh = βZh /16. The leading order diagrams contributing to the flow of Zh
according to (C.16) are showed in fig. C.5. In the following we will denote as:

β2d
n = 1

(2π)3

∫
dk0d

2k f0(k2
0 + k2)

(k2
0 + k2)n (C.19)

The behavior of the asymptotic propagator is

g
(h)
αα′(x) = 1

(2π)3

∫
dk0d

2k fh(k2
0 + εk2) g(h)

αα′(k)

g
(h)
αα′(k) = (ρ0R

2
0)−1

 Zh − k0
k2

0+εk2

k0
k2

0+εk2
ε

k2
0+εk2

 (C.20)

where the first line and row correspond to a = l and the second line and row
correspond to α′ = t. The values of the diagrams of picture C.5 are calculated
below.

= λε−1 β2d
1 λ′h = 24λε−1 β2d

1 γh λ6,h

= − 1
2! 2λβ2d

2 µ2
h = −32λβ2d

2 γh λ2
h

= − 1
2! 2 · 32 λε−2 β2d

0

(
µ′h
Zh

)2
= −18λε−2 β2d

0 γh
(
λ6,h
λh

)2
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µ′h−1

=
µ′h

+ + +

Figure C.6. Beta function for µ′h, d=2.

Collecting all the terms together we obtain

γ−1λh−1 − λh = −λ (1− γ−1)
(

4 β̃2d
2 λ2

h − 3 β̃2d
1 ε−1λ6,h + 9

4 β̃
2d
0

(
λ6,h
ελh

)2)
(C.21)

with (1− γ−1)β̃2d
n = β2d

n . By substituting to f0(k) the characteristic function of the
set [√

2
1+γ2 γ

−1,
√

2
1+γ2 γ

]
we obtain

β̃2d
0 = 1

2π2

√
2

γ2+1
2
3

(γ2+γ+1)(γ3+1)
γ2(γ2+1)

β̃2d
1 = 1

2π2

√
2

γ2+1 (γ + 1)

β̃2d
2 = 1

2π2

√
2

γ2+1
γ2+1

2 (γ + 1) (C.22)

where limγ→1 β̃
2d
n = 1/π2 for each n = 0, 1, 2.
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C.2.3 Beta function for λ6,h

Similarly at what happens for λh, the beta function for λ6,h may be rewritten in
term of the beta function of µ′h, using the last of (C.15):

λ6,h−1 = λ6,h + βλ6
h (C.23)

with βλ6
h = γ−

3
2hβµ

′

h /(16
√

2). The leading order diagrams contributing to the flow
of µ′h are showed in fig. C.6. Their explicit computation is shown below:

= + 1
3! · 6λε β

2d
3 µ3

h = 27√2 γ
3
2h β2d

3 λε λ3
h

= + 1
3! 33 · 6λε−2 β2d

0

(
µ′h
Zh

)3
= 33 · 2

√
2 γ

3
2h β2d

0 λε

(
λ6,h
ελh

)3

= − 1
2! · 2 · 2λβ

2d
2 λ′h µh = −3 · 26√2 γ

3
2h β2d

2 λλh λ6,h

where again β2d
3 = (1− γ−1) β̃2d

3 and

β̃2d
3 = 1

2π2

√
2

γ2+1
(γ2+1)2

12
(γ2+γ+1)(γ3+1)

γ2 (C.24)

The flow equation for λ6,h at leading order turns to be:

λ6,h−1 − λ6,h = 8β2d
3 λε λ3

h − 12β2d
2 λλh λ6,h + 27

8 β2d
0 λε

(
λ6,h
ελh

)3

= λλh

[
8β2d

3 ελ2
h − λ6,h

(
12β2d

2 −
27
8 β2d

0

(λ6,h
ελ2

h

)2
)]

(C.25)
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βZh = βEh =
∂0

Figure C.7. The beta functions for Zh and Eh at leading order.

C.3 Local Ward Identities
In this section we will verify at leading order in perturbation theory the local WIs
that we have proved at all orders in chapter 4. The computation of WIs at leading
order is useful to understand on which symmetries the WIs are based on. Of course
the leading order computations we are describing in the following (which correspond
to the one–loop computations in the region h ≤ h̄ we are interested in) are not
sufficient. If we could not exclude that similar equalities or cancellations take place
at all orders in perturbation theory there would always be the possibility that higher
order produce a completely different behavior. That is why the derivation and study
of WIs – which are relations valid at all orders – turns to be crucial in our work.

C.3.1 Local WI for Eh/Zh
The beta functions for Zh and Eh at leading order are shown in fig. C.7. We see
that they differ only for the change of a g(h)

tt propagator with a g(h)
lt propagator:

βZh = µ2
h

1
(2π)d

∫
dd+1k

(
g

(h)
tt (k)

)2

βEh = µ2
h

1
(2π)d

∫
dd+1k g

(h)
tt (k) ∂p0

[
g

(h)
lt (k + p0)

]
p0=0

(C.26)

Since

g
(h)
lt (k) = g

(h)
tt (k) Eh k0

Zh
(C.27)

we have

βEh = µ2
h

1
(2π)d

∫
dd+1k g

(h)
tt (k)

[
Eh
Zh

g
(h)
tt (k)− 2k0

D2
h(k)

]
(C.28)

where the second term in the r.h.s. of the latter equation is zero for parity reasons.
We finally get

βEh = Eh
Zh

βZh (C.29)

from which
Eh−1 − Eh

Eh
= Zh−1 − Zh

Zh
(C.30)
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βBh = ∂0 ∂0 + ∂0 ∂0

Figure C.8. The beta functions for Bh at leading order.

As a consequence
Eh
Zh

= Eh̄
Zh̄

= ε−1 (C.31)

C.3.2 Leading order computation for Bh

At the main order in λ the beta function for Bh is represented in fig. C.8. If we
denote with βB,1h and βB,2h the two contribution in fig. C.8 starting from the left, we
see that βB,1h is apparently not summable over h for d = 3:

|βB,1h | ≤ c |µ
2
h|

1
|Zh|

= O
(
(1 + λε

1
2 |h− h̄|)−1

)
|βB,2h | ≤ c |µ

2
h| = O

(
(1 + λε

1
2 |h− h̄|)−2

)
(C.32)

The key to solve the apparent problem is in the fact that to obtain the flow for Bh
we have first to derive the kernels with respect the external momentum p0 and then
we can take the limit p0 → 0. This procedure gives some “interferences” from the
boundary which one can not see, of course, if the external momentum is taken equal
to zero. When the calculation is performed one discover that the “bad” contribution
erase, so that the beta function is summable.

To make the calculation we remind that, by definition, the beta function on scale
h has to contain at least one propagator on scale h. Since p0is small the second
propagator - in the case of the graphs in the picture - can be or on scale h or on
scale h+ 1, otherwise the cutoff function do not have common supports:

fh(k + p0)fj(k) = 0 if j > h+ 1 (C.33)

So we have three possible cases: both the propagator on scale h, that is gh(k+p0)gh(k)
or one propagator on scale h and the second on scale h+ 1, that is gh+1(k+ p0)gh(k)
or gh(k + p0)gh+1(k). This can be written as:

[gh(k + p) + gh+1(k + p)] [gh(k) + gh+1(k)]− gh+1(k + p)gh+1(k) (C.34)

In the following we will indicate with T1 and T2 the cutoff functions respectively on
scale h+ (h+ 1) and h

T1(k) = fh+1(k) + fh(k) = χh+1(k)− χh−1(k)

T2(k) = fh(k) = χh(k)− χh−1(k) (C.35)
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where

χh(k) = χ(γ−2h(k2
0 + k2)) (C.36)

Since we are interested in the lowest order computation we can neglect the dependence
on k of the rescaled propagators. Then the expression of the beta function with
cutoff Ti is the following:

βBh,i = µ2
h

∫
d4k

(2π)4∂
2
0

[
E2
h(k0 + p0)k0 + Zh

(
(1 +Ah)k2 +Bhk

2
0
)

Dh(k)Dh(k + p0) Ti(k + p0)Ti(k)
]

= µ2
h

∫
d4k

(2π)4∂
2
0

[
E2
hp0k0 +Dh(k)
Dh(k)Dh(k + p0) Ti(k + p0)Ti(k)

]

= µ2
h

∫
d4k

(2π)4∂0

[
E2
hk0Ti(k + p0)Ti(k)
Dh(k)Dh(k + p0) +

(
E2
hp0k0 +Dh(k)

) Ti(k)
Dh(k)∂0

(
Ti(k + p0)
Dh(k + p0)

)]

= µ2
h

∫
d4k

(2π)4

[
2E2

hk0
Ti(k)
Dh(k)∂0

(
Ti(k + p0)
Dh(k + p0)

)
+ Ti(k)∂2

0

(
Ti(k + p0)
Dh(k + p0)

)]
(C.37)

Integrating by part we get

2E2
hk0

Ti
Dh

∂0

(
Ti
Dh

)
= E2

hk0∂0

[(
Ti
Dh

)2
]

= ∂0

[
Ehk0

(
Ti
Dh

)2
]
− E2

h

(
Ti
Dh

)2

Ti∂
2
0

[
Ti
Dh

]
= ∂0

(
Ti∂0

Ti
Dh

)
− (∂0Ti) ∂0

(
Ti
Dh

)
= − (∂0Ti) ∂0

(
Ti
Dh

)
(C.38)

so that

βBh,i = −µ2
h

∫
d4k

(2π)4

[
E2
h

(
Ti
Dh

)2
+ (∂0Ti) ∂0

(
Ti
Dh

)]
(C.39)

The first term in the beta function βBh,i is summable over h since

E2
h

D2
h

=
(

Eh
BhZhk

2
0 +AhZhk2

)2
≤
(
εEh
Zh

γ−2h
)2

= γ−4h (C.40)

and µ2
h with µh = ε

(
1 + ελ

1
2 |h− h̄|

)−1
is summable for d+ 1 = 4. The second term

is not summable since contains

µ2
h

Zh
= µh = λ

1 + λ
3
2 |h|

(C.41)

However the non summable contribution to the beta function βBh = βBh,1 − βBh,2, that
we call B = B1 −B2, is null because the terms containing the derivatives of Ti give
the same contribution to βBh,1 and βBh,2. First of all we can easily see that Bi receives
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contribution only from the region in the momentum space such that T ′i 6= 0, that is
from its boundaries:

Bi =
∫

d4k

(2π)4 ∂0

(
Ti
Dh

)
∂0Ti

=
∫

d4k

(2π)4

[
(∂0Ti)2

Dh
− (∂0Ti) (∂0Dh)

D2
h

]
(C.42)

where Dh(k) = bhk
2
0 + ahk2. Since B1and B2 have the same right boundaries, the

contributions coming from χh+1(k) cancel. For what concern the left sides Blx
1 and

Blx
2 we have

Alx
1 =

∫
d4k

(2π)4

[
(∂0χh−1)2

Dh
− (∂0χh−1) (∂0Dh)

D2
h

]

=
∫

d4k

(2π)4

[
4k2

0 (χ′)2 γ−4hγ4

Dh
− 4k2

0bhγ
−2hγ2χ

′

D2
h

]

Alx
2 =

∫
d4k

(2π)4

[
(∂0χh)2

Dh
− (∂0χh) (∂0Dh)

D2
h

]

=
∫

d4k

(2π)4

4k2
0

(
χ
′
)2
γ−4h

Dh
− 4k2

0bhγ
−2hχ

′

D2
h

 (C.43)

where we have used

∂0χh(k) = 2k0γ
−2hχ′

∂0Dh = 2k0bh (C.44)

If we now consider the scaling k → γ−4k in B1 we find:

Blx
1 =

∫
d4k′γ−4

(2π)4 4k2
0γ
−2
[(
χ
′)2
γ−4hγ4

Dhγ−2 − bhγ
−2hγ2χ

′

D2
hγ
−4

]
= Blx

2 (C.45)

so that also the contributions coming from the left boundaries of T1 and T2 cancel.
The motivation is that the integral giving B1 and B2 is logarithmic, so we can always
rescale the momenta with respect to a γα without change the result.
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Appendix D

Technical tools for the WIs
analysis

D.1 One–step potential vs multiscale potential
In this section we derive the relation between the kernels of the effective potential
Vh(ψ) defined in chap. 2.1 and the kernels of the “one–step” potentials Wh(ψ)
introduced in chap. 4 to derive the WIs. The effective potential at scale h is defined
by

e−Vh(ψ(≤h))−Ẽh =
∫
PQh+1,fh+1(dψ(h+1)) e−Vh(ψ(h+1)+ψ(≤h)) (D.1)

with PQh,fh(dψ(h)) the measure with covariance

g
(h)
αα′(x) =

∫
d4k

(2π)4 e
−ikxfh(k) g (h)

αα′(k)

(
g

(h)
αα′(k)

)−1
=
(
g

(0)
αα′(k)

)−1
+
−1∑
j=h

χ[h∗,j](k)Q(h)
αα′ (D.2)

with Q(h)
αα′ the meatrix of the local quadratic terms which renormalize the measure

at each step of the multiscale integration. The “one-step” effective potential at scale
h is defined by

e−Wh(ψ(≤h)) =
∫
P̂Q0,χ[h,0](dψ

(≤0))e−V0(ψ(≤0)) (D.3)

with P̂Q0,χ[h,0](dψ(0)) the measure with covariance

ĝ
(h)
αα′(x) =

∫
d4k

(2π)4 e
−ikxχ[h,0](k) ĝ (0)

αα′(k)(
ĝ

(h)
αα′(k)

)−1
=
(
g

(0)
αα′(k)

)−1
+ χ[h,0](k)Q(0)

αα′ (D.4)

To derive a relation between (D.1) and (D.3) we fix h and perform successively the
integrations on the momentum slices with indices j = 0, 1, . . . , h in the definition
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(D.3), by including each time the local quadratic part Qj into the measure. We have:

e−Wh(ψ(≤h)) =
∫
P̂Q0,χ[h,−1](ψ

(≤−1))P̂Q0,f0(ψ(≤0)) e−V0(ψ(≤−1)+ψ(0))

= e−Ẽ−1

∫
P̂Q0,χ[j,−1](ψ

(≤−1)) e−V̂−1(ψ(≤−1))

= e−Ẽ−1−t−1

∫
P̂Q−1,χ[h,−1](ψ

(≤−1)) e−V−1(ψ(≤−1))

= e−E−2

∫
P̂Q−2,χ[h,−2](ψ

(≤−2)) e−V−2(ψ(≤−2))

= . . .

= e−Eh
∫
P̂Qh,χ[h,h](dψ

(h)) e−Vh(ψ(≤h)) (D.5)

with χ[h,h](k) = fh(k) and P̂Qh,fh(dψ(h)) the measure with covariance

ĝ
(h)
αα′(x) =

∫
d4k

(2π)4 e
−ikxfh(k) ĝ (h)

αα′(k) (D.6)

(
ĝ

(h)
αα′(k)

)−1
=
(
g

(0)
αα′(k)

)−1
+
−1∑
j=h

χ[h,j](k)Qj (D.7)

The difference between the measures PQh,fh and P̂Qh,fh constists in the different
lower scale of the cutoff function in their propagators, see (D.2) and (D.6). If h∗ < h

fh(k)χ[h∗, j](k) = fh(k)χ[h, j](k) ∀j > h (D.8)

so that

fh(k)
(
ĝ

(h)
αα′(k)

)−1
= fh(k)

(g (0)
αα′(k)

)−1
+

−1∑
j=h+1

χ[h,j](k)q(j)
αα′ + fh(k) q(h)

αα′


= fh(k)

(g (0)
αα′(k)

)−1
+
−1∑
j=h

χ[h∗,j](k)q(j)
αα′ + (fh(k)− χ[h∗,h]) q

(h)
αα′


= fh(k)

[(
g

(h)
αα′(k)

)−1
− χ[h∗,h−1] q

(h)
αα′

]
(D.9)

Note that fh(k) ĝ (h)
αα′(k) and fh(k) g (h)

αα′(k) would be equal if the functions χ[h,j](k)
were the characteristic functions of their support, since in that case

fh(k)χ[h∗, h−1](k) = 0

However, as we shall prove below, q(h)
αα′ is a small quantity, so that the potentials

Vh(ψ) and Wh(ψ) are equal at leading order.
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q
(h)
ll =

fh(k)

fj(k)

d = 3

q
(h)
ll = + + d = 2

Figure D.1. Local quadratic terms, h ≤ h̄. By definition of fh(k), the diagrams in
the figure are different from zero only if the cutoff function fj(k) is at scale j = h or
j = h+ 1.

As an example let us calculate q(h)
ll ≡ zh, whose leading order contribution is

represented in fig. D.1. An explicit computation shows that

zh = c1 λε
− 1

2µ2
h = c′1 Zh

λε
1
2

(1 + cλε
1
2 |h− h̄|)

d = 3

zh = c2 λµ
2
h = γhλh λλh

(
c′2 + c′′2

λ6,h
ελ2

h

)
d = 2 (D.10)

with c1, c′1, c, c2, c′2 and c′′2 explicitly computable constants. By substituting these
expression in (D.9) we obtain

fh(k)
(
ĝ

(h)
ll (k)

)−1
= fh(k)Zh(k) (1 + Z(λ)) (D.11)

with

Z(λ) =

O
(
λε

1
2
(
1 + cλε

1
2 |h− h̄|

)−1)
d = 3

O(λλh) d = 2
(D.12)

In three dimensions Z(λ) is subdominant in ε at the beginning of the second region
and goes to zero as h→ −∞; in two dimensions the condition λλh smallest than one
is the condition making the perturbative theory meaningful. A similar discussion
can be done for the other local quadratic terms, obtaining similar conclusions.
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D.2 Properties of the correction term Cν(k, p)
This section is devoted to the prove of the properties of the functions Cν(k, p)

C0(k, p) = 1
2
[
(k0 + p0)(χ−1

[h∗,0](k, p)− 1)− k0(χ−1
[h∗,0](k)− 1)

]
(D.13)

C1(k, p) = (k + p)2(χ−1
[h∗,0](k + p)− 1)− k2(χ−1

[h∗,0](k)− 1) (D.14)

which are crucial in order to study the functional integral (4.76) by RG methods.

The first property is that, due to the presence of the cutoff function χ[h∗,0](k+ p)
in the definitions (D.13) and (D.14), the contraction of the outgoing lines of the
kernels

J̃0C0(k, p)ψlk+pψ
l
−k J̃0C0(k, p)ψtk+pψ

t
−k J̃1C1(k, p)ψlk+pψ

t
−k

is different from zero only if at least one of the bosonic ψ fields are contracted at
scale h = 0 or h = h∗. The proof of this property is trivial. Let us consider the
contraction of the function Cν(k, p) with the cutoff functions of two propagators
respectively at scale i and j; then

∆(j,l)
ν (k, p) = fj(k + p)Cν(k, p)fl(k) = 0 for 0 < j, l < h (D.15)

If 0 < j < h the cutoff function χ[h∗,0](k + p) is equal to the unit operator on the
support of fj(k + p); moreover, if 0 < l < h also χ[h∗,0](k) = 1 on the support of
fl(k) . Then (D.13) and (D.14) are identically equal to zero.

In the cases in which ∆(j,l)
ν (k, p) is not identically equal to zero, since ∆(j,l)

0 (k, p) =
∆(l,j)

0 (−(k + p), p) and ∆(j,l)
i (k, p) = −∆(l,j)

i (k + p, p), we can restrict the analysis
to the case j ≥ l. The different cases are studied in the following. We remark that
what we need in order to control the contraction of the corrections term coming
from the cutoff is that

(i, j) = (0, 0) : the function ∆(0,0)
ν (k, p) must be bounded by |pν | times a cutoff

function which has the same support of f0(k) (but can also have a slight
different behavior); we will prove this property in subsection I below.

(i, j) = (0, h∗) : the function ∆(0,h∗)
ν (k, p) must be bounded by |pν | times a cutoff

function which has the same support of f0(k) fh(k); we will prove this property
in subsection II.

(i, j) = (h∗, h∗) : ∆(h∗,h∗)
ν (k, p) must bounded by |pν | times a cutoff function which

has the same support of fh∗(k). This requirement is sufficient provided that
we have chosen as localization point |pν | = γh and it is proven in subsection
III. We stress that if one had taken the external momentum is taken equal
to zero it would not have been sufficient to have a single support function
fh∗(k), but we need one support function for each propagator, to prove that
∆(h∗,h∗)
ν (k, p) is well defined.
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I. Contractions of both the ψ fields at scale h = 0

Vertices with C0(k, p)

Let us analyze what happens when both the external legs of the correction term
J̃0C0(k, p)(ψtk+pψ

t
−k+ψlk+pψ

l
−k) are contracted at scale h = 0. Here p is the external

momentum associated to the fields J̃0, which we will choose at scale γh∗ .
We denote ∆(0,0)

0 (k, p) = f0(k + p)C0(k, p)f0(k) the contraction of the squared
vertex C0(k, p) with the cutoff functions of the two propagators. At scale 0 we have

∆(0,0)
0 (k, p) = (k0 + p0)u0(k + p)f0(k)− k0u0(k)f0(k + p) (D.16)

with

u0(k) = f0(k)
(
χ−1

[h∗,0](k)− 1
)

=
{

1− f0(k) |k|2> = k2
0 + k4 ≥ 2

γ2+1
0 otherwise

(D.17)

In the following for simplicity of notation, we will forget about the factor 2/(γ2 + 1)
and consider u0(k) defined in (D.17) different from zero for |k|2> ≥ 1. By developing
f0(k, p) and u0(k, p) around small values of p and taking into account the fact that
f0(k) = 1− u0(k) on the support of ∂νu0 and ∂νf0 = −∂νu0 on the support of u0(k)
we obtain

∆(0,0)
0 (k, p) = p0u0(k)f0(k) + (k0 + p0) pν∂νu0(k∗) f0(k)− k0u0(k)pν∂νf0(k∗)

= p0
[
u0(k)f0(k) + pν ∂νu0(k∗) f0(k)

]
+ k0pν∂νu0(k∗) (D.18)

If we choose p = (p0,0)

∆(0,0)
0 (k, p0) = p0

[
u0(k)f0(k) + f0(k) p0∂0u0(k∗) + k0∂0u0(k∗)

]
(D.19)

with |k| < |k∗| < |k+ p|. The brackets in (D.19) contains the sum of cutoff functions
which are supported on the same support than f0(k). In fact ∂0u0(k∗) is different
from zero for each γ−1 ≤ |k∗| ≤ γ and |k∗| ' |k| being |p| = γh.

With respect to the contraction of two lines outgoing from a simple vertex
(i.e. without C0(k, p)), here we get p0 which multiplies a sum of cutoff functions
on a similar support. From a dimensional point of view the factors in the square
brackets in (D.19) are bounded by a constant; in fact p0∂0 and k0∂0 are equal
or lower than one. Then ∆(0,0)

0 (k, p0)ψtk+pψ
t
−k has the same scaling dimension of

p0 multiplied for a vertex µ̄J0
0 (k, p) whose external legs are contracted at scale 0.

Similarly ∆(0,0)
0 (k, p0)ψlk+pψ

l
−k has the same scaling dimension of p0 multiplied for

the irrelevant kernel J0ψ
l
k+pψ

l
−k.

The only difference with the kernels J0C0(k, p)ψtk+pψ
t
−k and J0ψ

l
k+pψ

l
−k is the

fact that in the contraction with the squared vertex one of the cutoff function asso-
ciated to the propagators is “lost”; however the presence of a single cutoff function
is sufficient to guarantee that the behavior of the kernels with external fields J0 and
J̃0 is the same if their legs are contracted at scale h = 0.
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If we choose pν = 0 for each ν 6= i and pi = γh (D.18) becomes

∆(0,0)
0 (k, pi) = pi k0∂iu0(k∗) (D.20)

where pi k0 = γh
∗− j2 ≤ γ

h∗
2 . Then J̃0C0(k, pi)ψt,(0)

k+pψ
t,(0)
−k has the same dimensional

scaling of pi µ̄J0
0 (k, pi), the only difference being the absence of one of the two

cutoff functions associated to the contractions of the external ψ fields. Similarly
J̃0C0(k, pi)ψl,(0)

k+pψ
l,(0)
−k has the same dimensional scaling of pi µ̄′J0

0 (k, pi).

Vertices with C1(k, p)

Let’s now analyze what happens when both the external legs of the correction
term J̃1ψ

l
k+pψ

t
−k are contracted at scale h = 0. We first remind that

C1(k, p) = (k + p)2(χ−1
[h∗,0](k + p)− 1

)
− k2(χ−1

[h∗,0](k)− 1
)

(D.21)

Then, defining ∆(0,0)
1 (k, p) = f0(k + p)C1(k, p)f0(k) the contraction of the squared

vertex C1(k, p) with the cutoff functions of the two propagators at scale 0 we have

∆(0,0)
1 (k, p) = (k + p)2u0(k + p)f0(k)− k2u0(k)f0(k + p) (D.22)

with u0(k) defined in (D.17). By developing f0(k, p) around small values of p we
obtain:

∆(0,0)
1 (k, p) = p · (2k + p)u0(k)f0(k)− pν

[
p · (2k + p)f0(k)− k2]∂νu0(k∗) (D.23)

Choosing as external momentum p = (p0,0) we get

∆(0,0)
1 (k, p0) = p0 k2∂0u0(k∗) (D.24)

Each of the k’s corresponds to a derivative ∂x over the contracted line carrying mo-
menta k+ p0, with p0 = γh

∗ and k order one, since k belongs to the support of f0(k).
Then J̃1C

(0,0)
1 (k, p0)ψlk+pψ

t
−k has the same scaling dimension of p0 J1ψ

l
k+p0

ψt−k, with
both the ψ fields contracted at scale 0.

If we choose pν = 0 for each ν 6= i and pi = γh

∆(0,0)
1 (k, pi) = pi

[
(2ki + pi)

(
u0(k)f0(k) + p · ∂xf0(k∗)

)
− ∂if0(k∗)k2

]
(D.25)

that is J̃1C1(k, pi)ψl,(h)
k+pψ

t,(h)
−k has the same dimensional estimate of pi µ̄J1

0,i.
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II. Contraction of one of the ψ fields on scale 0
If one of the ψ fields emerging from the correction term C0(k, p) is contracted at
scale 0 and the other one at scale h∗ ≤ j < 0 we get

∆(0,j)
0 (k, p) = f0(k + p)C0(k, p)fj(k) (D.26)

The key observation here is that(
χ−1

[h∗,0](k)− 1
)
fj(k) = ũh∗(k)δjh∗ (D.27)

with

ũh∗(k) = fh∗(k)
(
χ−1

[h∗,0](k)− 1
)

=
{

1− fh∗(k) |k|2 ≤ 2
γ2+1 γ

2h

0 otherwise
(D.28)

where |k|2 in (D.28) stays for |k|2< = k2
0 + k4 for h̄ < h∗ ≤ 0 or |k|2> = k2

0 + εk2 for
h∗ ≤ h̄. Since we are interested in using the WIs only in the lower region h ≤ h̄ in
the following we will consider only the case h∗ ≤ h̄. Then

∆(0,j)
0 (k, p) = (k0 + p0)u0(k + p)fj(k)− k0f0(k + p)ũh∗(k)δjh∗ (D.29)

Note that if j < −1 the first term in the r.h.s. of (D.29) vanishes for |p| ≤ 1− γ−1 1.
Analogously the second term in the r.h.s. of (D.29) vanishes for |p| ≤ 1−γ−1−γh∗ 2.
Since we are choosing |p| = γh for j < −1 the function ∆(0,j)

0 (k, p) is zero. If j = −1
we have

∆(0,−1)
0 (k, p) = (k0 + p0)u0(k + p)f−1(k) (D.30)

with u0(k)f−1(k) = 0. Then

∆(0,−1)
0 (k, p) = (k0 + p0) pν∂νu0(k∗) f−1(k) (D.31)

which is dimensionally equal to (const.) |pν |f−1(k). Finally, if j = h∗ we find

∆(0,h∗)
0 (k, p) = pν [(k0 + p0) ∂νu0(k∗) fh∗(k)− k0 ∂νf0(k∗)ũh∗(k)] (D.32)

which again can be bounded by (const.)|pν | times the multiplication of cutoff func-
tions. However in the second term in the r.h.s. of (D.32) ũh∗(k) is a function which
does not goes to zero for k → 0, differently from fh∗(k). This does not allow, as we
will see, to choose 0 < |pν | � γh

∗ .
A similar discussion holds for the function C1(k, p); we will not belabor the

details here.

1In fact u0(k+p) 6= 0 implies |k+p| ≥ 1. If |p| ≤ 1−γ−1 we have |k| ≥ γ−1 and as a consequence
fj(k) = 0, being j < −1.

2In fact f0(k + p) 6= 0 implies |k + p| > 1− γ−1; for |p| ≤ 1− γ−1 − γh
∗
it holds |k| > γh

∗
and

as a consequence ũh∗ (k) = 0.
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III. Contractions of both the ψ fields on scale h∗

Vertices with C0(k, p)

In the following we will analyze what happens when both the external legs of the
correction term J̃0(ψtk+pψ

t
−k + ψlk+pψ

l
−k) are contracted at the lowest scale h∗ of

the cutoff function χ[h∗,0](k). We define ∆(h∗,h∗)
0 (k, p) = fh∗(k + p)C0(k, p)fh∗(k)

the contraction of the squared vertex C0(k, p) with the cutoff functions of two
propagators contracted at scale h. It turns to be:

∆(h∗,h∗)
0 (k, p) = (k0 + p0)ũh∗(k + p)fh∗(k)− k0ũh∗(k)fh∗(k + p) (D.33)

with ũh∗ defined in (D.28). By developing f0(k, p) around small values of p we obtain

∆(h∗,h∗)
0 (k, p) = p0 fh∗(k)

[
ũh∗(k)− pν∂ν ũh∗(k∗)

]
+ k0pν∂ν ũh∗(k∗) (D.34)

where we have used the fact that on the support of ũh∗(k) we have ∂νfh∗(k) =
−∂νuh∗(k) and that on the support of ∂νuh∗(k) it turns fh∗(k) = 1− ũh∗(k).

If we choose as external momentum p = (p0,0) (D.34) becomes:

∆(h∗,h∗)
0 (k, p0) = p0

[
ũh∗(k)fh∗(k)− p0∂0ũh∗(k∗)fh∗(k) + k0∂0ũh∗(k∗)

]
(D.35)

which from a dimensional point of view is bounded by (const.) γh∗ . While the first
two terms in the r.h.s. side of (D.35) are still the product of two cutoff functions,
even if on a smaller support with respect f2

h∗(k), the last term in the r.h.s. side
of (D.35) has a single cutoff function, fact that won’t allow to choose for |p| values
smaller than γh∗ .

For a choice of the external momentum such that pν = 0 for each ν 6= i and
pi = γh

∗ (D.34) becomes:

∆(h∗,h∗)
0 (k, pi) = pi k0 ∂iũh∗(k∗) (D.36)

From a dimensional point of view, k0 is the loop variable associated to the propagator
at scale h∗. The derivative ∂i also falls on one of the internal propagator, on scale
equal or greater than h∗. Then the dimensional estimate for (D.36) is (const.) γh∗ .

Vertices with C1(k, p)

The discussion for the squared vertex representing C1(k, p) follows the same
ideas just presented:

∆(h∗,h∗)
1 (k, p) = fh∗(k + p)C1(k, p)fh∗(k)
= (k + p)2fh∗(k) ũh∗(k + p)− k2fh∗(k + p) ũh∗(k)
= p · (p + 2k) [fh∗(k)ũh∗(k)− pν∂ν ũh∗(k∗) ũh∗(k)] + (k + p)2 pν ∂ν ũh∗(k∗)

(D.37)

If p = (p0,0) we get

∆(h∗,h∗)
1 (k, p0) = p0 k2∂0 ũh∗(k∗) (D.38)
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If pν = 0 for each ν 6= i and pi = γh we get

∆(h∗,h∗)
1 (k, pi) = pi (pi + 2ki) [fh∗(k)ũh∗(k)− pi∂iũh∗(k∗) ũh∗(k)]

+ (k + p)2 pi ∂iũh∗(k∗) (D.39)

We can conclude that J̃1C1(k, pν)ψl,(h
∗)

k+p ψ
t,(h∗)
−k has the same dimensional estimate

then |pν |µJ1
h,i, with i = 1, 2, 3. The difference between the vertex µJ1

h and µJ̃1
h is the

fact that in the last case in the contraction of the squared vertex with the two cutoff
functions fh∗(k) coming from the propagators, one of the function is “lost”. This
fact does not allow to choose pi = 0 for each i.
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D.3 Localization in p = 0 vs p = γh

In this section we list which are the differences arising when we evaluate the local
WIs at external momentum |p| = γh

∗ rather than in |p| = 0 and how to prove that
they are all subdominant in h as h→ −∞.

i) Quadratic local terms. We compare the values of the quadratic local terms

Q
h
(p) = {Ah∗(p), Bh∗(p), Eh∗(p), Zh∗(p)}

localized in |p| = γh with the local quadratic terms of the one–step potential
appearing in the local WIs. We remind that the Q

h
(p) are obtained by inserting

at each step of the multiscale integration the local quadratic part in the measure,
as described in section 2.18. Due to this procedure each of the Q

h
(p) contains a

dependence on the cutoff functions χ[h∗,j](p) with h∗ ≤ j ≤ h̄. We will detail the
discussion only for Zh, the discussion for the other renormalization function being
similar. We have:

Zh∗(p) = Zh̄ +
h̄∑

j=h∗
zj χ[h∗,j](p) (D.40)

with zj = Zj−1 − Zj . For k = γh
∗ each cutoff function is equal to one and we get

Zh∗ := Zh∗(γh
∗) = Zh̄ +

h̄∑
j=h∗

zj (D.41)

We want to compare Zh∗ with the local quadratic terms Ẑh∗ of the one–step potential
for which the WIs have been derived. The iterative relation Ẑh−1 = Ẑh + ẑh−1
holds and one gets Ẑh∗ = Zh̄ + ∑h̄

j=h∗ ẑj . Since ẑj = zj for each j > h∗ and
ẑh∗ − zh∗ = o(Zh), as shown in appendix D.3, we get Ẑh∗ = Zh∗ at leading order.

ii) Ŵ (h)
12 (p) and kernels with one external field. In this section we describe

how to prove that the difference between the kernels one–step potential appearing in
the local WIs can be equivalently localized in p0 = γh or in zero, the difference being
subdominant in the small parameter of the perturbation theory. Let first consider
the kernel Ŵ (h)

12 (p0) appearing in the WI for Eh. In this case we are interested in
estimating the difference

Ŵ (h)
nl nt;ν(p0)− Ŵ (h)

nl ntν
(0) (D.42)

with p0 = γh
∗ and pi = 0 for all i’s. In order to do this it is sufficient to note that

we can express Ŵ (h)
nl nt(0) as a sum over GN trees with external momentum p0 6= 0:

Ŵ (h)
nl nt

(0) = Ŵ (h)
nl nt

(p0) + p0∂0Ŵ
(h)
nl nt

(p∗) (D.43)

First of all we note that the trees contributing to ∂0Ŵ
(h)
12 (p∗) have a short memory

factor γ(h−k) due to the fact that the derivative ∂p acts on one of the internal
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propagators on scale k ≥ h, while the external p lives on scale h. Then the dominant
contribution to the r.h.s in (D.43) comes from the diagrams where there is at least a
propagator at scale h. At this point it is sufficient to note that the trees contributing
to p0∂0Ŵ

(h)
12 (p∗) must have at least two vertices, due to the presence of the derivative.

Then, with respect to the trees giving Ŵ (h)
12 (p) or Ŵ (h)

12 (0) we always have an extra
vertex µh or λh, which means a small factor. In fact for each extra λh or µh vertex we
have a factor (λ

√
ε|h|)−1 in the three dimensional case and a factor λλ∗ or γ

h
2 λλ∗

in the two dimensional case.
The same result also holds for the kernels with external fields appearing in the

WIs, e.g. µJ0
h and µJ̃0

h , since their flow is controlled by comparison with the flow of
µh.

iii) Kernels vanishing at |p| = 0. The WIs calculated at zero external momentum
differs with respect to the ones calculated at non zero momentum also because there
are some terms which are zero if |p| = 0. For example, the (formal) local WI for Eh
is obtained by deriving the identity

Ŵ
(h)
03 (k, p0) + Ŵ

(h)
11 (−k)− Ŵ (h)

11 (k + p0) = p0Ŵ
(h)
02;0(k,−k − p0) (D.44)

with respect to the external momentum p0 in J0. For k = (0,0) and p0 = 0 the
kernel W (h)

03 (0, 0) = 0 is zero by parity reasons. This can be seen immediately at
level of one–loop calculations. In fact, denoting with q the loop integral, we have

W
(h)
03 (0, p0) =

∫
dq0d

dq
(p0 + q0) q2

Dh(q)Dh(p0 + q) (D.45)

where the term proportional to q0 is zero for parity reasons; then the integral is equal
to zero as soon as p0 = 0. If p0 6= 0 the kernel W (h)

03 (0, p0) 6= 0 but since p0 = γh
∗ it

is dimensionally smaller than the dominant terms appearing in the WI.

iv) Discrete derivatives. If pν = γh
∗ all the derivative with respect to pν we have

performed to obtain the formal local WIs are discrete derivatives. However, since
we are only considering the dominant behavior in γh∗ as h∗ → −∞ the difference
between the discrete derivative and the derivative taken in pν = 0 is subdominant.
As an example consider the following one–loop computation:

1
p2

0

(
W

(h)
02 (0)−W (h)

02 (p0)
)

= bh

∫
dd+1q

q2
0

D2
h(q)Dh(p0 + q) (D.46)

We see that the difference between the discrete derivative and ∂0W
(h)
22 (p) stays in the

denominator, which is Dh(q+ p0) = Dh(q) + bh p0(p0 + 2) instead of D2
h(q). However

being |p0| = γh
∗ with h ≥ h∗ this difference is subdominant.
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p0
J̃0

=
J̃0

+
J̃0

λ̄′0 +
J̃0

λ̄′0 +
J̃0

λ̄0

Figure D.2. Leading order diagrams contributing to µJ̃0
−1.

D.4 Explicit computations

D.4.1 Initial values of the RCC with external field J̃

Lowest order computation of µJ̃0
−1

The running coupling constant µJ̃0
−1 is given by the contraction of the correction

term C0(k, p)
(
ψtk+pψ

t
−k + ψlk+pψ

l
−k
)
at scale h = 0. The leading order diagrams

contributing to µJ̃0
−1 are shown in fig. D.2, with the squared vertex representing the

kernel C0(k, p):

C0(k, p) = 1
2
[
(k0 + p0)

(
χ−1

[h∗,0](k + p)− 1
)
− k0

(
χ−1

[h∗,0](k)− 1
)]

(D.47)

Here χ[h∗,0](k) = χ0(k)− χh∗−1(k) with

χh(k) =

1 k2
0 + |k|4 ≤ 2

γ2+1 γ
2h

0 k2
0 + |k|4 ≥ 2

γ2+1 γ
2(h+1) (D.48)

with γ a fixed number grater then 1. With these definitions χ[h∗,0](k) is different
from zero in the interval [ 2

γ2+1γ
2(h∗−1), 2

γ2+1 ]. Summing the four diagrams in fig.
D.2, taking into account the combinatorial factors associated to them, we get:

µJ̃0
0 = − lim

p0→0

1
p0

16(λε−1)λ̄0

∫
d4k

(2π)4 f0(k + p)f0(k)C0(k, p) |k|
4 − k0(k0 + p0)

D0(k + p)D0(k)
(D.49)

with λ̄0 = ε/16, f0(k) = χ0(k) − χ−1(k) and D0(k) = k2
0 + |k|4. Let’s define the

function:

u0(k) = f0(k)(χ−1
[h∗,0](k)− 1) =

1− f0(k) if 2γ−2

γ2+1 ≤ k
2
0 + |k|4 ≤ 2γ2

γ2+1
0 otherwise

(D.50)

We can easily extraxt a p0 from the integral in (D.49) using (D.19):
f0(k + p)f0(k)C0(k, p) = p0

[
f0(k)u0(k + p) + k0∂0u0(k)

]
+ p2

0f0(k)∂0f0(k)

= p0
[
f0(k)u0(k + p) + 2k2

0u
′
0
]

+ p2
0f0(k)∂0f0(k) (D.51)

Here we have used that ∂0u0(k) = 2k0u
′
0, being u0(k) ≡ u0(k2

0 + k4). Taking the
limit p0 → 0 we get:

µJ̃0
0 = −λ

∫
dd+1k

(2π)d+1

(
f0(k)u0(k) + 2k2

0u
′
0(k)

) |k|4 − k2
0(

|k|4 + k2
0
)2 (D.52)

In the following we will denote with t0(k) = f0(k)u0(k).
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1.Three dimensions

Using spherical coordinates for the variable k we get:

µJ̃0
0 = −λ 4π

(2π)4

∫ +∞

−∞
dk0

∫ +∞

0
|k|2d|k|

(
t0(k) + 2k2

0u
′
0

) |k|4 − k2
0(

|k|4 + k2
0
)2 (D.53)

Since the cutoff functions t0(k) and u′0(k) are functions of {k4 + k2
0} it is convenient

to make the change of variables |k|2 = y

µJ̃0
0 = − λ

4π3

∫ +∞

0
dk0

∫ +∞

0
dy
√
y

y2 − k2
0(

y2 + k2
0
)2 (t0(y2 + k2

0) + 2k2
0u
′
0

)
(D.54)

and then pass to polar coordinates, that is

y = ρ sinα; k0 = ρ cosα α ∈ [0, π2 ] (D.55)

µJ̃0
0
λ

= − 1
4π3

∫ +∞

0
ρdρ

∫ π/2

0
dα
√
ρ sinα ρ

2(sin2 α− cos2 α)
ρ4

(
t0(ρ) + 2ρ2u′0 cos2 α

)
= 1

4π3

∫ +∞

0
dρ ρ−

1/2t0(ρ)
∫ π/2

0
dα
√

sinα (cos2 α− sin2 α)

+ 1
4π3

∫ +∞

0
dρ ρ

3
2u′0(ρ)

∫ π
2

0
dα
√

sinα (cos2 α− sin2 α)2 cos2 α

= − 1
8π3

Γ2(−1
4)

20
√

2π

∫ +∞

0
dρρ−

1/2t0(ρ) + 1
8π3

Γ2(−1
4)

15
√

2π

∫ +∞

0
dρρ

3
2u′0(ρ)

= 1
8π3

Γ2(−1
4)

60
√

2π

∫ +∞

0
dρ
(
−3ρ−

1
2 t0(ρ) + 4ρ

3
2u′0(ρ)

)
(D.56)

Approximating in the result the cutoff functions t0(ρ) and u′0(ρ) by the characteristic
function of the set

{
2

γ2+1 ≤ k4 + k2
0 ≤

2γ2

γ2+1

}
we get

µJ̃0
0
λ

= 1
8π3

Γ2(−1
4)

30
√

2π

(
−3ρ1/2 + 4

3ρ
5
2

) ∣∣∣( 2γ2

γ2+1

) 1
2(

2
γ2+1

) 1
2

= 1
8π3

Γ2(−1
4)

30
√

2π
2 1

4

(γ2 + 1) 5
4

(
γ

1
2 (5γ2 + 1) + 3γ2 − 5

)
(D.57)

which is positive for all γ > 1.

2.Two dimensions

Using spherical coordinates for the variable k we get:

µJ̃0
0 = −λ 2π

(2π)3

∫ +∞

−∞
dk0

∫ +∞

0
|k|d|k|

(
t0(k) + 2k2

0u
′
0

) |k|4 − k2
0(

|k|4 + k2
0
)2 (D.58)
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With the changes of variables |k|2 = y

µJ̃0
0 = − λ

4π2

∫ +∞

0
dk0

∫ +∞

0
dy

y2 − k2
0(

y2 + k2
0
)2 (t0(y2 + k2

0) + 2k2
0u
′
0

)
(D.59)

and then (D.55) we get

µJ̃0
0
λ

= 1
4π2

∫ +∞

0

dρ

ρ
t0(ρ)

∫ π/2

0
dα(cos2 α− sin2 α)

+ 1
4π2

∫ +∞

0
ρ dρ u′0(ρ)

∫ π/2

0
dα cos2 α (cos2 α− sin2 α)

= 1
32πρ

2
∣∣∣( 2γ2

γ2+1

) 1
2(

2
γ2+1

) 1
2

= 1
16π

γ2 − 1
γ2 + 1 (D.60)

which is positive for each γ > 1.

Lowest order computation of of µJ̃1
−1

The lowest order computation of the beta function of µ̄J̃0
−1 is similar to the one done

in sec. B.3.2 for µ̄J1
h . One finds that the second order diagrams contributing to µ̄J̃1

−1
cancel among them and that the first non trivial contribution is given by the third
order diagrams, which give

µ̄J̃1
−1 = O(λε) d = 2, 3 (D.61)

By studying the flow equation for µ̄J̃1
h one finds

µ̄J1
h̄

= µ̄J̃1
−1

(
1 +O(λε

1
2 )
)

d = 3

µ̄J1
h̄

= µ̄J̃1
−1 (1 +O(λ)) d = 2 (D.62)

with µJ1
h̄

= ε2µ̄J1
h̄

in 3d and µJ1
h̄

= ε
3
2 µ̄J1

h̄
in 2d.
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p

Ŵ02(p)

− 0

Ŵ02(0)

=
p

J0
Ŵ02;0(p)

+
p

J1
Ŵ02;1(p)

Figure D.3. Local WI for Ah

D.4.2 (Non formal) Local WI for Ah
The local WI useful to establish that Ah = 1 + o(1) is

√
2 [Ŵ (h)

02 (k)− Ŵ (h)
02 (0)] = Ŵ

(h)
01;0(k)− Ŵ (h)

01;1(k) (D.63)

where Ŵ (h)
01;0(k) and Ŵ (h)

01;1(k) defined at pag. 126. The identity (D.63) is pictorically
represented in fig. D.3, where the shaded squared vertices attached to the fields J0
and J1 represent T0(k, p) and T1(k, p) respectively:

T0(k, p) = 1
2
[
(k0 + p0)χ−1

h (k + p)− k0χ
−1
h (k)

]
T1(k, p) =

[
(k + p)2χ−1

h (k + p)− k2χ−1
h (k)

]
(D.64)

At the main order in ε the diagrams contributing to Ŵ (h)
02 , Ŵ (h)

02;0 and Ŵ
(h)
02;1 are

shown in fig. D.4. An explicit computation gives:

Ŵ
(h)
02 (p)−W (h),t

02 =

− 2λε−
3
2µh

∫
d4k

(2π)4 χh(k + p)χh(k)
[(

(k + p)2 + χh(k + p)
)

k2 + (k0 + p0)k0
Dh(k + p)Dh(k)

]

Ŵ
(h)
01;0(p) = −4λε−

3
2µh

1
2

∫
d4k

(2π)4 [(k0 + p0)χh(k)− k0χh(k + p)][(
(k + p)2 + χh(k + p)

)
k0 − (k + p)2k0

Dh(k + p)Dh(k)

]

Ŵ
(h)
01;1(p) = −2λε−

3
2µh

∫
d4k

(2π)4

[
(k + p)2χh(k)− k2χh(k + p)

]
[(

(k + p)2 + χh(k + p)
)

k2 + (k0 + p0)k0
Dh(k + p)Dh(k)

]
(D.65)

with W (h),t
02 the contribution to Ŵ (h)

02 (p) coming from the tadpole and

Dh(k) =
(
k2 + χh(k)

)
k2 + k2

0 (D.66)

Using the symmetry with respect to the change of variables:

k + p → −k
−k → k + p
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βh02 =

−1
2 2 2

+

−1
2 2 2

+
(4
2
)

βh02;0 =
J0

−1
2 2 2 2

+
J0

−1
2 2 2 2

βh02;1 =
J1

∂x

−1
2 2 2

+
J1

∂x

−1
2 2 2

Figure D.4. Beta function for Ŵ (h)
02 , Ŵ (h)

02;0 and Ŵ (h)
02;1 h ≤ h̄, at leading order in ε. The

shaded vertices represent T0(k, p) and T1(k, p), see (D.64) for a definition.

the validity of (D.63) at the one–loop level is immediately proven:

W
(h)
02 (p)−W (h)

02 (0) = −λε−
3
2µh

∫
d4k

(2π)4
1

Dh(k)Dh(k + p)

[ k2
0 (χh(k + p)− χh(k))2 +

(
χh(k + p)k2 − χh(k)(k + p)2

)2
]

W
(h)
01;1(p) = −λε−

3
2µh

∫
d4k

(2π)4
1

Dh(k)Dh(k + p)(χh(k + p)k2 − χh(k)(k + p)2)2

W
(h)
01;0(p) = −λε−

3
2µh

∫
d4k

(2π)4
1

Dh(k)Dh(k + p) k
2
0(χh(k + p)− χh(k))2

(D.67)
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