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1 Introduction

The series ofX,Y, Z resonances, initiated by Belle with theX(3872) [1] resonance later con-

firmed by BaBar [2], CDF [3], D0 [4], LHCb [5], CMS [6], has recently been enlarged by the

observation of two, hidden charm, pentaquarks P discovered by LHCb [7]. The X,Y, Z,P,

hadrons have received different interpretations, under the names of tetraquarks/penta-

quarks [8–14],1 molecules or resonances [15–19]2 or cusp effects of different kinds [20].

To be sure, to explain the exotic hadrons, nobody has challenged the validity of

Quantum Chromodynamics or has invoked the presence of new types of fundamental con-

stituents. Rather, the existence of different pictures seems to reflect our ignorance about

the exact solutions of non-perturbative QCD. Different interpretations call into play dif-

ferent approximations or different regimes of the basic QCD force, to arrive to seemingly

contradictory pictures.

The tetraquark and pentaquark description utilizes as a guiding framework the non-

relativistic quark constituent model, which has given an accurate picture of qq̄ and qqq

mesons and baryons, including charmed and beauty hadrons. The starting point is the

attraction within a color antisymmetric quark pair, which arises in perturbative QCD due

1Light diquarks were first considered as the building blocks of pentaquarks in [10]; see also [11–13].
2One of the first contribution on loosely bound molecules in this context can be found in [15], based

on [16]. Meson-meson molecules were also studied in [17], although there it is concluded that the meson-

antimeson sector has annihilation channels not allowing stable (narrow) bound states. The heavy quark

spin structure in molecules is discussed in [18], along with [19].
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to one-gluon exchange and in non-perturbative QCD due to instantons [21, 22]. This makes

diquarks and antidiquarks suitable basic units to build X,Y, Z and pentaquark hadrons,

with mass splittings due to spin-spin interactions and orbital momentum excitation [8–14].

Some molecular models assume X,Y, Z peaks to be produced by color singlet exchange

forces between qq̄ color singlet mesons, or to be produced by kinematic singularities due

to triangle diagrams and the like [15–19].

Thus far, no ‘smoking gun’ signature has been found to distinguish the different in-

terpretations, with the exception of the naive, loosely bound, molecular model, largely

unfavored by the production cross section of X(3872) at large pT in high energy hadron

colliders [23–26]; for a compelling comparison with some recent Alice data see [27]. Per-

haps, these models are, after all, different but complementary descriptions of the same

QCD underlying reality.

In this paper we use the 1/N expansion of N -colors QCD [29, 30] to investigate the

relations between the exotic meson description in terms of diquark-antidiquark bound states

and of resonances in meson-meson scattering.

Following [31, 32], we consider as basic units of tetraquarks the natural extension to N

colors of antisymmetric diquark operators. It was assumed in refs. [31, 32] that tetraquark

correlation functions could develop poles at the level of planar diagrams, of order 1/N with

respect to the leading, disconnected, amplitudes. We argue this to be an unlikely occurrence

and explore the possibility that genuine tetraquark poles arise to higher orders in the 1/N

expansion. In the present work, considering the correlation of charged tetraquarks, we find

a picture consistent with the factorization of the amplitudes at the poles, at the level of

correlation functions with one handle.

We consider further the correlators of neutral tetraquarks, that may mix with genuine

charmonia. We find consistency for the mixing constant derived from tetraquark correlators

and from two-point meson-meson correlators, where tetraquarks appear via internal quark

loops — see figure 9 — resolving an inconsistency which appeared in ref. [32].

Next we consider meson-meson scattering amplitudes which are generated, at order

1/N , by one quark loop with four external color singlet sources. Choosing appropriate

external quark flavours and assuming that the annihilation of heavy quarks is suppressed,

we construct amplitudes which can receive contributions from four quark intermediate

states only. In a simplified model, we find that meson-meson scattering eigenchannels

coincide with the color singlet states obtained by Fierz rearrangement of symmetyric or

antisymmetric diquark-antidiquark operators. If the antisymmetric tetraquark correlator

develops a pole, this would appear as an exotic resonance in meson-meson scattering. In

the language of meson molecules, an halving rule in the counting of states is obtained, and

the proximity of tetraquarks to meson-thresholds has an apparent role in this analysis.

With poles of order 1/N3 with respect to the meson meson correlation found in [33],

one may argue that tetraquarks exist but are largely decoupled from the meson sector. The

question is answered by Weinberg’s analysis [31]. Not only it is important that tetraquark

poles might appear in the diagrams of the 1/N expansion, but also that the related reso-

nances are narrow enough to be distinguishable from background. Obviously at N = ∞
the coupling is zero and tetraquarks are never produced. However, we know that this strict
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Figure 1. One-gluon exchange interaction.

limit has little to do with phenomenology: at N = ∞ mesons are free particles. In con-

clusion, if tetraquark poles are formed, and this is admittedly a big if, the most relevant

question is if the total widths are Γ ∼ Nα with α < 0, which is answered positively in

Weinberg’s analysis.

Even in the new framework, we confirm that tetraquark widths decrease as N → ∞.

Tetraquarks in the 1/N expansion have been considered in a number of papers with

different approaches.

In [34] quarks are described by the antisymmetric representation for N ≥ 3, an extreme

version of the Corrigan-Ramond scheme [35]. What found in [34] is that in the large-N

limit one can produce tetraquarks in a completely natural way, because new color-entangled

operators exist.

In [36] it is shown that the Coleman-Witten lore that no tetraquarks occur at large

N is not related to the fact that they did not consider all possible ways of cutting the

diagrams. Therefore, tetraquarks can be made the way suggested in [31], but with the

concerns discussed in [37].

The fact that subleading topologies may be important, as discussed later in our paper,

seems to emerge also to explain the large N behavior of the lightest scalars [38].

2 Diquarks and tetraquarks in SU(N)

Consider two quarks interacting through the exchange of one virtual gluon in N = 3 QCD

as in figure 1 (the case of a quark-antiquark pair, in connection with singlet confinement,

was originally considered by Han and Nambu [39], the following considerations can be

repeated for antiquarks).

The T a
ijT

a
IJ tensor product can be mapped into a 9 × 9 matrix whose entries Aαβ

correspond to the 81 possible combinations of initial and final colors as in figure 1. The

v eigenvectors of A identify 3 antisymmetric color configurations and 6 symmetric ones.

For each v the vTAv product is a superposition of the color diagrams in figure 1 defin-

ing amplitudes which are (anti)-symmetric under the simultaneous exchange of the colors

i → I, j → J .

Each of these 9 color configurations is weighted by a coefficient h, the eigenvalue

related to v. The h are found to be negative in the antisymmetric cases and positive in the
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Representation R CR h

N (N2 − 1)/(2N) −
N(N + 1)/2 (N − 1)(N + 2)/N (N − 1)/2N > 0

N(N − 1)/2 (N + 1)(N − 2)/N −(N + 1)/2N < 0

Table 1. Quadratic Casimir operators for the fundamental, the two index symmetric and antisym-
metric representations, in color SU(N), N ≥ 2. In the third column, the coefficient of the potential
energy for color symmetric and antisymmetric diquarks in the one-gluon exchange approximation.
Attraction in the antisymmetric channel persists at large N .

symmetric ones: h = −2/3 and h = 1/3 respectively for SU(3). The value of h corresponds

to the product of charges in a abelian theory — thus one gets repulsion in the symmetric

eigenchannels3 and attraction in the antisymmetric ones.

The eigenvalues h are more conveniently computed through the quadratic Casimirs

of the irreducible representations Si obtained from the Kronecker decomposition of the

product R1 ⊗ R2 = S1 ⊕ S2 ⊕ . . .. In the case of quark-quark interaction in SU(3),

R1 = R2 = 3 and S1 = 3̄, S2 = 6. The formula for the eigenvalues hi in the various

eigenchannels is in general

hi =
1

2
(CSi

− CR1
− CR2

) (2.1)

where CSi
, CR1

, CR2
are the quadratic Casimirs in the Si,R1,R2 representations respec-

tively.

In the generic case of SU(N) we have that

N ⊗N =
N(N − 1)

2
⊕

N(N + 1)

2
(2.2)

where N(N − 1)/2 is antisymmetric and N(N + 1)/2 is symmetric.

The Casimirs associated to these representations are given in table 1.

In the singlet channel of N ⊗ N , the attraction is weighted by h = −(N2 − 1)/2N .

Therefore, the singlet channel is (N − 1) more attractive than the antisymmetric N(N −

1)/2 channel reported in table 1, in SU(3). In the one-gluon exchange approximation, the

singlet channel in qq̄ is (just) twice more attractive, for N = 3, than the color antitriplet

channel in qq.

For any value, N , diquark operators for two quarks with given flavors q, q′ can be

written in symmetric (S) or antisymmetric (A) color configurations

dS,AΓ = qαΓq′β ± qβΓq′α (2.3)

with Γ matrices to characterize the diquark spin and α,β color indices.

Color forces may bind a diquark-antidiquark pair in a tetraquark, the analog of usual

mesons with the substitutions

q → d̄A (2.4)

q̄ → dA (2.5)

3E.g. for i = I, j = J .
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In N = 3 QCD, there is a special relation between baryons and tetraquarks. If we start

from an antibaryon, the substitution in eq. (2.5) produces the tetraquark dAq̄q̄ = dAd̄A.

Applying (2.5) once again, one obtains a pentaquark, dAdAq̄, and finally, with a third

substitution, a state with baryon number B = 2, a dibaryon with the configuration dAdAdA.

This chain of reasoning motivates the alternative generalization of N = 3 tetraquarks

to arbitrary N proposed by G.C. Rossi and G. Veneziano [40–42]. The diquark in eq. (2.3)

is generalized to the fully antisymmetric product of N − 1 quark fields

Mα = ϵαβ1β2···βN−1
qβ1qβ2 · · · qβN−1 (2.6)

and hadrons can be formed as color singlet combinations MM̄. For excited multiquark

hadrons, the color string connecting M to M̄ can break with production of a baryon-

antibaryon pair

(MM̄) → B B̄ (2.7)

MM̄ hadrons below the baryon antibaryon threshold would be narrow, whence the name

baryonium given to these mesons.

The treatment of baryons in the large N limit was initiated by Witten [43]4 and several

works followed [44–47] including discussions on the excited baryons as in [48].

We restrict in the following to the generalization embodied in eq. (2.3), using the

diquark fields dA to construct interpolating operators which create or annihilate tetraquarks

for any N .

3 Fierz rearrangement

We restrict to hidden charm tetraquarks and focus, at first, on charged, isospin I = 1

tetraquarks. Neutral tetraquarks will in general mix with charmonium resonances and

have to be considered separately.

Simple but sufficiently representative examples of hidden charm tetraquarks are given

by the S-wave states with JP = 1+ and isospin I = 1, which can be classified according to

G-parity

G = CeiπI2 (3.1)

that is charge-conjugation, C, accompanied by a 180◦ rotation in isospin space which brings

I3 → −I3.

Following [14] X+ denotes the predicted, but not (yet) observed, charged counterpart

of X(3872),5 and we identify Z+ = Z+(3900) [52, 53], Z ′ = Z+(4020) [54]. We report

first the explicit formulae for antisymmetric diquarks, with q and q̄ the two-dimensional

spinors representing the annihilation operators for quarks and for the charge conjugate

4For an alternative picture see [35].
5X+ could be very broad, as suggested in [49, 50], or be altogether suppressed by the mechanism

suggested in [51].
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–
(σ2)ik
(σ2σ)jl

(σ2σ)ik
(σ2)jl

i(σ2σ)ik∧
∧(σ2σ)jl

(σ2)ij(σ2σ)kl +1/2 −1/2 +1/2

(σ2σ)ij(σ2)kl −1/2 +1/2 +1/2

i(σ2σ)ij ∧ (σ2σ)kl +1 +1 0

Table 2. Coefficients for the Fierz rearrangment of JP = 1+ quadrilinears.

antiquarks ū, d̄, c̄

G = −1 : X+ = (cασ2uβ)
[

(c̄ασ
2σd̄β)− (c̄βσ

2σd̄α)
]

+ (σ2 ↔ σ2σ) (3.2)

G = +1 : Z+ = (cασ2uβ)
[

(c̄ασ
2σd̄β)− (c̄βσ

2σd̄α)
]

− (σ2 ↔ σ2σ) (3.3)

Z ′+ = (cασ2σuβ) ∧
[

(c̄ασ
2σd̄β)− (c̄βσ

2σd̄α)
]

(3.4)

where σ denote Pauli matrices. In the first and following lines we have used the antisim-

metrization of the diquark colors, eq. (2.3), σ2 and σ2σ, project quark-quark or antiquark-

antiquark bilinears with spin 0 and spin 1, respectively.

Products of two diquark operators can be expressed in terms of color singlet bilinears,

with coefficients determined by the Fierz-rearrangement coefficients reported in table 2.

For X+, eq. (3.2), using table 2 and σ2σ = (σ2σ)T , (σ2)T = −σ2, we find

X+ = −i(cσ2σc̄) ∧ (uσ2σd̄)−
[

(cσ2d̄)(uσ2σc̄)− (cσ2σd̄)(uσ2c̄)
]

(3.5)

With symmetric diquarks, we would get a plus sign inside the brackets of eq. (3.2)

or (3.5). We can also formally identify color singlet bilinears with the S-wave mesons, and,

up to an overall normalization, write

X+ ∼ i
ψ ∧ ρ+√

2
±

D̄0D⋆+ −D+D̄⋆0

√
2

(3.6)

normalized Pauli bilinears and the plus/minus sign is for symmetric/antisymmetric di-

quarks.

Similarly, for the other operators we have

Z+ = −
[

(cσ2c̄)(uσ2σd̄)− (cσ2σc̄)(uσ2d̄)
]

± i(cσ2σd̄) ∧ (uσ2σc̄)

∼
ηc ρ+ − ψ π+√

2
± i

D̄0⋆ ∧D⋆+

√
2

(3.7)

and

Z ′+ = −
[

(cσ2c̄)(uσ2d̄) + (cσ2σc̄)(uσ2d̄)
]

∓
[

(cσ2d̄)(uσ2σc̄) + (cσ2σd̄)(uσ2c̄)
]

∼
ηc ρ+ + ψ π+√

2
±

D̄0D⋆+ +D+D̄⋆0

√
2

(3.8)

We will come back to these formulae in sections 4 and 6.

We remark that the labels Z and Z ′ chosen for the two states Z(3900) and Z(4020), are

the same as those used in [14] where it is shown that the heavier state has both diquarks in

– 6 –
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Figure 2. Gluon self-energy diagram with fixed colors ā = b̄.

spin 1 whereas the lighter has one diquark in spin 0 and one in spin 1, see eqs. (3.3), (3.4).

The Fierz rearrangement of the quarks, if hadronization effects are not taken into ac-

count, would predict the kinematically forbidden Z → D̄∗D∗ decay, see eq. (3.7) instead

of D̄D∗, as indicated by the observed Z decay, and the opposite is exposed in eq. (3.8).

However formulae in eqs. (3.7) and (3.8) do not take into account the effects of hadroniza-

tion, which might affect the spin of the light quarks leaving the heavy quark pair spin

unchanged [28]. Hadronization might produce a D̄D∗ state in eq. (3.7), or add an hcπ+

to the ηcρ+component. As a consequence, we would expect that Z ′ has a D̄D∗ decay in

addition to the observed D̄∗D∗ mode, an interesting point to check experimentally.

4 Large N expansion: a reminder

The behavior of QCD for N → ∞ has been characterized by G. ’t Hooft [29, 30]. Consider

the gluon self-energy diagram in figure 2, with gluon colors fixed to ā, b̄. This diagram

involves the product
∑

c,d

f ācdf b̄cd = Tr(T āT b̄) = N δāb̄ (4.1)

in the adjoint of SU(N). The gluon loop therefore contains a multiplicity factor of N

in SU(N).

To make the large N limit of this diagram smooth, one requires that the couplings at

vertices, gQCD, scale with N as gQCD = gc/
√
N so that

g2c
N

×N = g2c independent of N (4.2)

Sometimes one refers to the ’t Hooft coupling

λ = g2QCDN (4.3)

(gc =
√
λ in this notation). The large-N limit is obtained keeping λ fixed.

The gluon field is characterized by the color indices

(Aµ)
i
j = (T a)ij A

a
µ (4.4)

The number of independent components of this matrix in SU(N) are N2 − 1. In the large

N limit however we can treat it as a N×N matrix and represent the gluon line by a double

– 7 –
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Figure 3. Gluon self-energy diagram in the large N . With this notation the multiplicity factor N
traced above in the f structure constants, has a clear origin in the color loop at the center.

Figure 4. One gluon exchange correction to the correlation function of a color singlet quark bilinear,
represented by the open circle. Representing the gluon line by two, oppositely running lines joining
the quark lines on the edge, one sees that the diagram reduces, for color number counting, to a two
loop diagram. Thus one recovers a result of order N , like the lowest order diagram, multiplied by
the color reduced coupling λ.

color line — carrying a pair of color indices i, j. With this notation the diagram in figure 2

can be represented as in figure 3.

The origin of the multiplicity factor discussed above becomes apparent in the double-

line notation. The quark-gluon coupling will therefore also scale as gc/
√
N and the 4-linear

gluon coupling as g2c/N .

’t Hooft shows that in the N → ∞ limit only planar diagrams with quarks along the

external edge survive.

The rule is easily visualized by computing the correlation function of a color singlet

quark bilinear with itself. With no gluon lines, the result is obviously proportional to N ,

the number of colors that run in the loop. A gluon line traversing the loop, see figure 4,

can be represented by two color lines running in opposite directions and joining the quark

and antiquark lines that flow in the vertex. Thus we get two loops, i.e. a factor of N2,

times the factor g2c/N , therefore a contribution of order λ×N .

The sum of all planar diagrams of this kind will again be of order N , times a non-

perturbative function of λ, which may well develop poles for certain values of the external

momentum, q2.

The sum of all planar diagrams like the one on the l.h.s. of figure 4 is represented by

⟨0|J(p)J∗(p)|0⟩ ∼ N (4.5)

– 8 –
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where the operator J∗ acts on the vacuum to create a meson state, and

⟨0|J(p)J∗(p)|0⟩ =
∑

n

⟨0|J(p)|n⟩⟨n|J∗(p)|0⟩
p2 −m2

n

=
∑

n

f2
n

p2 −m2
n

(4.6)

with the decay constant fn = ⟨0|J(p)|n⟩.
The behavior at large p2 momenta of ⟨0|J(p)J∗(p)|0⟩ is expected to be logarithmic

and the sum over meson states can behave as ∼ ln p2, at large p2, only if it has an infinite

number of terms, as can be seen by
∑

n →
∫

dm2
n. Thus we have an infinite number

of poles, corresponding to a tower of (stable) meson states in the correlation function

⟨0|J(p)J∗(p)|0⟩. These have a given flavor content, e.g. quarkonium mesons with varying

quantum numbers, like quark spin and orbital angular momenta, radial excitations, etc.

Meson masses are independent of N and the entire N dependency of the l.h.s. of (4.6) is

encoded in fn. In the case at hand this means6 that each fn ∼
√
N .

It may be convenient to extract a factor of
√
N from each fn to obtain a propaga-

tor which is N - independent in the large N limit. Equation (4.6) can then be written

graphically in the meson theory as

⟨0|J(p)J∗(p)|0⟩ =
∑

n

√
N

√
Nn

where open dots indicate the decay constants fn normalized so as to have a finite limit

for N → ∞.

5 Tetraquark correlators in the large N expansion

One may consider correlation functions of tetraquark operators, like those given in eqs. (3.2)

to (3.4) and see if they develop poles, as is the case for qq̄ operators.

The reputation of tetraquarks was somehow obscured by a theorem of S. Coleman [33]

stating that: tetraquarks correlators for N → ∞ reduce to disconnected meson-meson

propagators.

The theorem follows from the simple fact that a four quark operator can be reduced

to products of color singlet bilinears, see eqs. (3.5) to (3.8). Connecting each bilinear

with itself, one gets two disconnected one-loop diagrams, i.e. a result of order N2, while

connected tetraquark diagrams are one-loop, see figure 5, thus of order N .

The argument was reexamined by S. Weinberg [31] who argued that if connected

tetraquark correlators develop a pole, it will be irrelevant that its residue is of order 1/N

with respect to the disconnected parts. After all, meson-meson scattering amplitudes are of

order 1/N , in the N → ∞ limit, and we do not consider mesons to be really free particles.

The real issue, according to Weinberg, is the width of the tetraquark pole: if it increases

for large N , the state will be undetectable for N → ∞. Weinberg finds that decay rates go

like 1/N , making tetraquarks a respectable possibility. The discussion has been enlarged

by M. Knecht and S. Peris [32] and by R. Lebed [37], see also [55].

6Actually fn ∼
√
N(1 + a/N + b/N2 + . . .).
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Figure 5. Connected and disconnected diagrams for the tetraquark correlation functions:
(cd̄)(uc̄) → (cd̄)(uc̄) and (cd̄)(uc̄) → (cc̄)(ud̄).

For the charged tetraquark operators considered in eqs. (3.2) to (3.4), there are only two

connected tetraquark correlators shown in figure 5, see the discussion in [32]. Note, however,

that diagram (b) corresponds the annihilation of a cc̄ pair to produce a ud̄ intermediate

state, which is unfavoured for mc ≫ ΛQCD, so we remain with diagram (c), which switches

a pair of color singlet, open charm, operators into a pair made of one hidden charm and

one charmless operator and viceversa.

The situation is different for hidden charm, electrically neutral tetraquarks, of the

form, e.g., [cu][c̄ū], in that there is an additional diagram analogous to figure 5(b), with uū

annihilating to produce an intermediate charmonium cc̄ state. This diagram, which is not

suppressed, produces a [cu][c̄ū] ↔ (cc̄) mixing, as discussed in [32] and in section 6.2.

6 Need of non-planar diagrams

In previous discussions, it was considered, implicitly [31] or explicitly [32], that the diagrams

in figure 5(b) and (c) may develop a tetraquark pole of order N , namely at the level of

planar diagrams. At a closer inspection, this seems to be rather unlikely for the following

reason.

Consider the diagram in figure 5(c). All its cuts contain a two quark-two antiquark

state. However such states correspond to two non interacting meson states more than a

tetraquark closely bound by color forces. This is even more evident in figure 5(b) which,

cut vertically to produce a tetraquark state, gives, in the planar approximation, precisely

two non-interacting meson states, of the kind produced by cutting figure 5(a).

These considerations agree with Witten’s conclusion [43] that in the planar diagram

approximation and with reference to figure 5(c), the meson-meson scattering, M1 +M2 →
M3 + M4 amplitudes has only meson poles in the u and t (M1M4 and M1M3) channels

– 10 –
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Figure 6. (a) The simplest non-planar modification of the diagram in figure 5(c). If there were
the planar gluon, g1, only, the representation of a gluon line with two color lines would generate
two color loops and the corresponding amplitude, multiplied by the coupling factor λ/N , would be
again of order N . The non planar gluon, g2, makes a bridge between the two color loops, bringing
back to one loop only. The amplitude, multiplied by the coupling factor λ2/N2 is therefore of
order 1/N , as expected for a diagram with one quark loop and one handle eq. (6.1). (b), (c) Non
perturbative realizations of the one-handle diagram in (a) and of the two quark loop diagrams to
be considered later, figure 9(c), (d).

and no singularity in the s channel (M1M2), which is precisely where the tetraquark pole

should appear.

On the other hand, adding non-planar gluons in figure 5(c), we may connect the tips

associated to the insertions of uc̄ and cd̄ and produce the interaction needed to make the

color singlet bilinear to merge in a tetraquark. An example is given in figure 6. Non-

planar gluons evade the separation of the diagrams into non interacting meson pairs by

unitarity cuts.

Following ’t Hooft [29, 30], general diagrams can be classified according to the number

of quark loops, L, and the number of handles, H, the general order in N of the diagram

being7 Nα with

α = 2− L− 2H (6.1)

The diagrams in figure 5(b), (c) have L = 1 thus are of order N for H = 0. The diagram

reported in figure 6 has L = 1, H = 1 and therefore is of order N−1, as can be directly

7The gauge theory of large-N QCD is SU(N), which differs from the U(N) assumed in ’t-Hooft analysis

by a spurious U(1) gluon. One may wonder if, removing the spurious U(1) gluon from the U(N) theory

in order to have SU(N), the expansion in loop and handles in (6.1) remains valid. We cannot answer this

question except that we do not see how a color neutral gluon can eventually modify the N counting.
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Figure 7. Tetraquark decay in two standard mesons in the meson theory. Its order in N has to
match the order of the non-planar diagram in figure 6.

verified with the rules given previously. To proceed further, we have to distinguish the two

cases of charged, isospin one, and neutral, isospin zero, tetraquarks.

6.1 Charged tetraquarks

For simplicity we assume that one handle as in figure 6, is sufficient to develop the charged,

isospin one, tetraquark pole. The previous symbolic equation is therefore replaced by

⟨0|Q(p)Q∗(p)|0⟩ =
∑

n

1√
N

1√
N

n

where Q are I = 1 tetraquark operators and full dots indicate the corresponding constants

fn, normalised to have a finite limit for large N .

Consider now the decay amplitude into two mesons. The correlation functions in

figure 5(c) or figure 6 involve the tetraquark operator and two quark bilinear insertions,

represented by the dots in the final state.

The decay of a tetraquark in the meson theory can be represented by the diagram of

figure 7. Since the correlation function is itself of order 1/N , we find the decay constant

g(1) =
1

N
√
N

(6.2)

Our result is reduced by a factor 1/N with respect to the estimate in refs. [31, 32], in

correspondence to the introduction of non-planar diagrams. The conclusion that the width

of tetraquarks vanishes for N → ∞ still applies.

An alternative but equivalent description comes from assigning a factor
√
N to each

tetraquark insertion and a factor 1/
√
N to each standard meson insertion on the color loop

diagrams — this is done in figure 8(a). There we have again

√
N ×

(

1√
N

)2

×
1

N
=

1

N
√
N

= g(1) (6.3)

One can also describe the process of tetraquark de-excitation, such as the decay of a

Y state into S-wave diquarks with the emission of a pion, Y (4260) → Z++π−, figure 8(b).

In this case, there are two normalization factors for the tetraquarks and one for the meson,

giving
(
√
N
)2 ×

1√
N

×
1

N
=

1√
N

= g(1) ×N (6.4)
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Figure 8. Normalized decay amplitudes: (a) Z+ → J/Ψ + π+, (b) Y (I = 1) → Z+ + π−. The
amplitude of of quark loops with one handle is of order 1/N .

Replacing the meson insertion with the electromagnetic current, one obtains the am-

plitude for radiative decays, such as Y (4260) → X(3872) + γ, reported in [56]. There is

no 1/
√
N normalization factor for the current and radiative decay rates are of order Nα,

with respect to de-excitation in a meson.

6.2 Neutral, I = 0, tetraquarks

Mixing of neutral, I = 0 tetraquarks with charmonia has been considered in [32] for the

case of planar diagrams. Here we consider the realistic case where the tetraquark pole arises

at the level of non-planar diagrams, assuming the smallest number of handles allowed by

factorization of the correlation functions.

The simplest case is given in figure 9(a), which relates the amplitude of the one-handle

diagram (a) to the product

f4q f (6.5)

Observe that as a consequence of the non-planar topology, a gluon, rather than the quark,

performs part of the periphery and the diagram cannot be deformed in a two-point meson

correlation function without changing its order in the N power counting.

Here f4q is the amplitude to create the four quark state, the analog of the previously

introduced constant, fn, and f the mixing coefficient (we suppress here possible indices n

and m identifying a definite pair of meson and tetraquark). The combination (6.5) appears

also in the diagram of figure 9(b) and consistency requires diagram (b) to have two handles.

The constant f is found from diagram (c), which describes the process: charmonium→
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Figure 9. Diagrams describing the mixing of I = 0 tetraquarks with charmonia. Diagrams (c)
and (d) are both non-planar with one handle, see figure 6(c). Consider for example (a). Here we
have T a

ijT
b
jrT

a
rk = −1/2N T b

ik (i.e. 1/N2 with respect to the diagram with no or planar gluons). The
diagram is indeed of order 1/N . To maintain the same power in the 1/N expansion, we cannot
shrink q to a point: this is also evident diagrammatically. That being the case, we will necessarily
find a tetraquark in the cut because a gluon, rather than a quark, performs part of the periphery.

tetraquark → charmonium, and which we assume to have one handle only, for simplicity.

In total we find the order in N of these constants to be

f4q ∼ N0, f ∼
1

N
√
N

(6.6)

The diagram of figure 9(d) describes meson-meson scattering occurring due to the

mixing. The three meson vertex is of order 1/
√
N , see e.g. [43], and we find

Amix ∼
1

N4
(6.7)

In all diagrams of figure 9 infinite sums over tetraquark and meson intermediate states

are implied. These give rise to contact terms which for brevity are not reported in the

diagrams.
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The decays into mesons of tetraquarks with I = 0 occur by two different amplitudes.

The amplitude corresponding to the irreducible diagrams analogous to those reported in

figure 8, with the same N dependence

g(0) ∼ g(1) =
1

N
√
N

(6.8)

and via the mixing, with amplitude gmix

gmix =
√

Amix = f
1√
N

=
1

N2
(6.9)

Thus, modes where tetraquarks decay like charmonium are subleading, which may be

not far from reality: after all, the exoticity of X(3872) has been inferred from the fact that

it does not decay like a charmonium.

An interesting case is the decay Y (4260) → µ+µ−, which is implied by the direct

production of Y (4260) in e+e− annihilation [56]. This decay cannot occur to lowest order

in α via the irreducible diagrams, as observed in [57], since the e.m. current can annihilate

only one quark-antiquark pair. A sizeable I = 0 component in the Y (4260) wave function

can give rise to this decay via mixing to the expected (but not yet identified) L = 2,

S = J = 1 charmonium.

7 Meson interactions in the 1/N expansion

For N strictly infinite, qq̄ mesons generated by quark bilinear correlators are free particles.

Interactions are generated by letting N to be large but finite. Irreducible vertices with k

external mesons are of orderN1− k

2 . Three-meson vertices are of order 1/
√
N , quartic meson

vertex of order 1/N . The amplitude of the simplest process, meson-meson scattering, is of

order 1/N , figure 10(b1).

Quark diagrams in the planar approximation generate qq̄ intermediate states, produc-

ing the pole terms in the meson diagrams. In the leading 1/N approximation, figure 10(a1),

there is only one quark diagram, which contains both s-channel and t-channel meson poles.

In correspondence, the meson-meson amplitude satisfies the DHS duality relation [58] i.e.

the sum over s-channel resonances reproduces also the t-channel resonances, as indicated

in figure 10(b1) where only the sum over the former resonances is reported.

We consider first S-wave scattering in the channel with JP = 1+ and G = −1, i.e. the

quantum numbers of the operator X+ in eq. (3.2). We have two meson pairs as initial or

final states, namely

ya = i
(ψ ∧ ρ+)a√

2
(7.1)

zb =
(D̄0D⋆+ −D+D̄⋆0)b√

2
(7.2)

(a and b are spin indices) and consider the four possible reactions: y, z → y, z.

With the chosen flavor composition, the quark loop diagram in figure 10(a1) contributes

only to z → z, where it entails annihilation and recreation of a cc̄ pair and may be neglected,
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in the limit of large c quark mass. We remain with the second quark loop diagram,

figure 10(a2), giving rise to the meson interaction term in diagram (b2).

Non planar quark diagrams, as in figure 6, would develop tetraquark poles in the

s-channel contributing an amplitude of order [g(1)]2 = 1/N3.

In the simplest approximation in which we neglect final state strong interactions of the

color single states, the amplitude for M1 +M2 → M3 +M4 is computed by inserting the

spin matrix of each meson (written as q̄ Γi q′) in the vertices of figure 10(a2). We obtain

the spin factor8

S(12; 34) = Tr
(

Γ1Γ
†
3Γ2Γ

†
4

)

(7.3)

The quark diagram is such that it transforms the hidden charm (7.1), into the open

charm channel, (7.2) and viceversa. If we take M1M2 = y and M3M4 = z, we obtain

T (ya → zb) =
iϵade

8

{

Tr
[

(σ2σd)(σ2)†(σ2σe)(σ2σb)†
]

− Tr
[

(σ2σd)(σ2σb)†(σ2σe)(σ2)†
]}

= −δab = T (zb → ya) (7.4)

and

T (ya → yb) = T (za → zb) = 0

With the S-matrix: S = 1 + iT , we see that, in correspondence to the diagram fig-

ure 10(a2), the eigenstate of the JP = 1+, G = −1 coincide with the combinations y ± z

that are the Fierz rearranged combinations of the symmetric and antisymmetric tetraquark

operators, eq. (3.2).

It is not difficult to see that the eigenstates of the JP = 1+, G = +1 channels are

similarly given by the Fierz rearranged combinations in eqs. (3.3), (3.4).

Should the quark loop diagram in figure 10(a2) develop a pole in one of the eigen-

channels, the meson pairs coupled to the resonance would have precisely the right quantum

numbers to arise from the color Fierz rearranged (symmetric or antisymmetric) diquark-

antidiquark states (we stress again that this holds in our very simple approximation of

neglecting strong interaction renormalizations of color singlet states arising from the Fierz

rearrangement).

In view of the attractive force indicated in table 1, it is tempting to assume that

the three channels corresponding to the antisymmetric diquark develop a pole, in which

case resonances/molecules at meson-meson thresholds and tetraquarks would dynamically

coincide.

There are two positive aspects of this proposal.

The first is that the number of resonances thus found is one-half of what it would be

if there were one resonance for each meson-meson threshold. Stated more explicitly, we

seem to see only one and the same resonance in the J/ψ+π+ and in the D+ D̄⋆ channels,

consistently with (3.7), and not two different ones.

8S(12; 34) is the analog of the Chan-Paton factors of dual models [59]; gamma matrices associated to

the quark gluon interaction in figure 6(a) do not count since they reduce to γ0 = ±1, in the non-relativistic

limit.

– 16 –



J
H
E
P
0
6
(
2
0
1
6
)
1
6
0

Figure 10. (a1) leading order quark loop diagram; multiplying at each vertex by the meson
normalization factor 1/

√
N leads to an irreducible amplitude of order 1/N ; (a2) non leading or-

der diagrams with handles may contribute additional, tetraquark, poles, as dicussed in the text;
(b1) leading order meson-meson amplitude, both sides of the equation (a1) = (b1) are of order 1/N ;
(b2) additional meson-meson amplitude corresponding the the quark diagram (a2).

Secondly, for N → ∞ the meson-meson scattering amplitudes vanish and we go back

to a free meson theory. In other words meson molecules at threshold have to disappear in

the large N limit.

The situation is similar to what happens for electrons and protons in QED: they are

free particles for α = 0 but form bound states for α ̸= 0. Consistency of these two facts

requires that the mass of the (hydrogen) bound state is close to the sum of the masses of

the free particles:

mH = me +mp +O(α) (7.5)

One could expect a similar mass relation for tetraquarks, e.g. for the X(3872)

mX(3872) = mJ/ψ +mρ +O(1/Np)

= mD +mD⋆ +O(1/Np) (7.6)

(p ≥ 3) reminiscent of the molecular speculations.

We have to observe that in equation (3.6) the masses of the ψ ρ and DD⋆ thresholds

coincide almost exactly whereas this degeneracy, which may be accidental, is lifted in (3.7)

and (3.8).
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8 Conclusions

The correlation functions of antisymmetric and symmetric tetraquark operators are anal-

ysed in the large N expansion, with N the number of colors. Unlike what assumed in

previous works, we argue that tetraquark poles may emerge only in non-planar diagrams

of the 1/N expansion. Combinatoric rules for amplitudes with handles provide a different

expectation for the total widths of tetraquarks states, which are found to be Γ ∼ 1/N3

instead of ∼ 1/N . Some inconsistencies on the order of the 1/N expansion of tetraquark

decay constants, f4q, and of tetraquark-meson mixing amplitudes f are also resolved.

Starting from this, we have examined the charged eigenchannels of hidden-charm to

open-charm meson-meson scattering amplitudes finding a perfect matching with the cor-

responding Fierz rearranged diquark-antidiquark intermediate states.

The main outcomes of this analysis are: i) tetraquark correlations have the right

degrees of freedom to describe exotic resonances in meson-meson amplitudes ii) in the

language of hadron molecules, the number of expected states gets halved when making the

connection to diquark-antidiquark antisymmetric states (there is no X ′ ∼ J/ψ ρ0 loosely

bound molecule). The quasi-degeneracy with meson thresholds might have a function at

enhancing tetraquark poles [51].

From this standpoint, selection rules on the spectrum of states may be deduced.

Baryon-meson amplitudes, in the 1/N expansion, might eventually shed new light on pen-

taquark states.
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