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Abstract— In the present paper, the Leader-Following consen-  of nonlinear systems including lower triangular systems and
sus problem is investigated and sufficient conditions are given gstrict up triangular and many others.
for the solvability of the problem, assuming that the agents are
described by a nonlinear dynamics incrementally homogeneous I

. . PROBLEM STATEMENT
in the upper bound.

Consider a multi agent system consistingMofidentical
agents and a leader. The leader is governed by the dynamics

() = Az%(t) + fO(2°(t)) 1)
[. INTRODUCTION where for allt > 0, 2°(t) € C C R", C a compact set

The collective behavior of multi-agent systems is noweontaining the origin, whereas each agent is described by
days a topic of great interest due to the wide fields dhe dynamics
applicatior!s, such as robotics: teleco_mmunications and biol- i'(t) = Az'(t) + Bui(t) + fO(z'(t)), i € [1,N] )
ogy. The literature on the topic considers essentially agents _ _ )
modeled as a linear dynamics (see between the others [14fierez’ € R”, andu’ € R™ are respectively the state and
[16], [17], [23] and the references therein). Different kindh€ control input of thé—th agent. We also assume that (2)
of problems have been considered in this context, startifgy controllable in the first approximation around the origin
from the general consensus problem where the agents havéqdhat(4, B) is assumed without loss of generality to be in
reach a common objective, to the leader consensus probldfinowski form.
where the objective of the agents consists in tracking a given ! € information exchange between tNeagents and the
dynamics called leader. The dynamics describing the agelf@der can be represented by means of the graph theory: let
may or may not be considered identical. Several results dfe= {1,---, N} be the set of vertices representing tkie
available in the literature on the leader following problenfg€nts and® C V x 'V be the set of edges of the graph.
we recall between the others [18], [13], [8] where delay&n €dge ofG is denoted by(i, j), representing that agents
are considered, [12], [7], [14], [15] where the topology of and j can exchang_e information between them. The graph
the network is switching. Agents described by nonlined? undirected, that is, the edgés;j) and (j,i) € € are
dynamics have been considered for the first time in [6 onsidered to *?e the same. Two nodm\d]_' are neighbors
where the study is restricted to the case in which the lead8 €ach other ifi, j) € £. The set of neighbors of node
has a constant trajectory, in [5] where the nonlinearity ih IS denoted byNi = {j € V : (j;i) € £, # i}.
the agents dynamics is assumed to be lower triangular aftdPath is @ sequence of connected edges in a graph. A
globally Lipschitz and in [3] where the agents dynamics argraph is connected if there is a path between every pair of
assumed to be in normal form. vertices. The leader can be represented by a new vertex
In the present paper the Leader-Following consensgdd information is_ exchang_ed between the leader and the
problem is investigated, assuming that the dynamics whi@J€nts which are in the neighbors of the leader. Then, the
describe the agents are incrementally homogeneous in fifgnmunication exchange is represented by a new graph
upper bound as defined in [1]. Such an assumption is a quidlich consists of grapl, vertex0 and edges between the
general condition for achieving stability by feedback with #ader0 and its neighbors. _
guaranteed region of attraction. For the sake of simplicity it 1ne adjacency matrig = [g;;] of a graphG is anN x N
is also assumed that the agents are described by the s&Rgdrix, whose(i, j)-th entry is1 if (7, j) is an edge of+ and
dynamics. Such a class of systems allows to give sufficiefit it iS not. The degree matri® of G is a diagonal matrix

conditions for the solvability of the problem for a large clas¥/N0sei-th diagonal element is equal to the cardinalit\Gf
The Laplacian of7 is defined to be & x N matrix L = [I;;]
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Index Terms— Nonlinear systems, Leader-following consen-
sus, stabilization, incremental homogeneity.



In this network, we consider control inputs using local  v. Note that for anys,y € R™,v,t € RZ ande € R,
information to make all theéV agents follow the leader. In . (5)
particular, for each agemtthe control input is a function of i B ’
the consensus term (Eox) (€ oy) = (o) (Foy) (6)

(€ ox)Ty =2l (e oy).

N
C(t) = =Y liga? () + Lio(«°(t) — 2 (1)) 3) To cope with the consensus of nonlinear systems (2)
j=1 we will use both the Kronecker product notation and a
where thel,; are the entries of the Laplacian 6fand /; generalize_d _n_otion of homogeneity recently introduced in [1].
is 1 if the leader is a neighbor of agen@and 0 else. The TNhese definitions are recalled below.
form (3) is motivated by the fact that ZJ_\L 2l (t) = Definition 2: (Kronecker product®). Given am x n
j=1%] . .
Sien: (z7(t) — z'(t)), which means that each agent eX_matnxA an_d ap x ¢ matrix B the Kronecl_<er product ® B
change information only with its neighbors. is a P matrix of dimension(mp) x (nq) given by

allB tee alnB

Eoefor=€c0eor==¢"

Definition 1: The leader-following consensus of system
(1)—(2) with consensus term (3) is achieved if the trajectories
errorsz’(t) — x°(¢) of the given system (1)—(2) are bounded amiB - amn B
for all t > 0 andlim;—(z%(t) — 2°(t)) = 0 for all i € Given a m square invertible matrixA and ap square
[1, N] and initial conditiongz!(0), ...,z (0)) € Cx---xC. invertible matrixB, then(A ® B)~! = A~! ® B~!. Given

the matrices4, B, C' and D, and assuming that the matrices

Consensus Problem.Consider the multi agent network productsAC and BD are defined, therfA® B)(C © D) =
(1,2) with a fixed communication topology and with fuII(AC) ® (BD). ’

state coupling. Find a state feedback= a(¢*) such that
the closed-loop system resulting from (1)-(2) achieves t
Leader—Following consensus.

P=A® B=

H_‘Lgenoting by1,, the vector ofR™ with all components equal
to 1, then for a fixedb € R", 1,,, ® 0 is the vector ofR™"

equal to(d%,...,07)T. When no confusion is possible the
subindexm will be omitted.
[1l. RECALLS AND NOTATION Definition 3: glncremental homogeneity). A functiahe
_ _ _ Co(Rs x R™,RY), (u,z) — ¢(u, ), is said to be incre-
The following notations are issued from [1]. mentally homogeneous in the generalized sense (i.h.) with

« R” (respR™*") is the set ofi-dimensional real column quadruple(x, e, b, ) if there existe € R',h € R", v € RZ
vectors (respn x n matrices).R> (resp.R%, R2*") ~and @ GHCO(RQ"aRlX") such that for alle > 0 and
denotes the set of real non-negative numbers (resp:? €R
vectors inR™, matrices inR™*", with real non-negative . N e N o
entries).R- (resp.RZ%) denotes the set of real positive(ﬁ(e’E °d) = dleod)=c"o (cp(q )l eld —g ))> 0
numbers (resp. vectors R with real positive entries).  Remark 1:It is worth noting that the functiory may

« For any matrixV/ € RP*" we denote by/;; the (i, j)- depend on the dilating parameter itself. As an example,
th entry of V and for any vectonn € R" we denote the functionz — ¢(x) := z1 + 23 is i.h. with quadru-
by v; the i~th element ofv. v* will denote thei— ple (v,0,h,®), wherer := (1,2)7, § := (1,6)” and
th component of theék—th block. We retain a similar ®(¢/,¢") := (1,¢5”> + ¢4 + ¢4¢}). The functiong(u, z)
notation for functions. For any € R™ we denote which depends on the dilatiop: (u,z) — ¢(p,z) =
by diag{v} the diagonaln x n matrix with diagonal p(z1 +z3), p > 0, is i.h. with quadruplgr, 1, b, ).
elementsv, ..., v,. Also, |a| denotes the absolute Remark 2:Homogeneous systems in the generalized
value ofa € R, [[a|| denotes the Euclidean norm ofsense (introduced in [1] as a generalization of homogeneous
a € R", ||A| denotes the norm oft € R"*" induced systems in the standard sense ([21])) can be recovered as
from the Euclidean nornfja| and (A)) is the matrix a particular case of incrementally homogeneous systems
obtained fromA by substituting each elemeat; with  in the generalized sense by settiflg = 0 in Definition
its absolute valugu;;|. 3. Moreover, generalized incremental homogeneous systems

« We denote byC*(X,Y), X C R" andY C R”, the include large classes of nonlinear systems such as:

set of continuous function: X — Y. i.) locally Lipschitz lower triangular (or norm-bounded by
» For anye € R, and for any vectors € R",r € RZ, lower triangular maps):

we definee® := (1, ---,¢)T and
p(x) = (d1(21), 221, 22), -, Pnl@1, -+, wn)) T

where eachy;, j = 1,...,n, is (norm-bounded by) a sum
that ise® o z is the dilation of a vector with weights of terms of the formr;]l'1 xjjl for some realg;, > 1.

Eox = (g, e may)T (4)



ii.) locally Lipschitz strict upper triangular (or norm-The peculiarity of this transformation is that it combines

bounded by strict upper triangular maps) N times thej-th coordinate of each agemtthrough the
N .
H(x) == (1(x3,. .. Tn), -+ Gp_o(xn),0,0)” coefficients of each row of, i.e. & = ) t, el for
j=1
where eachp;, j = 1,...,n — 2, is (norm-bounded by) a s = ¢ € [1,N] andi € [1,n]. The following result can

t; t;
sum of terms of the forme ;" - -z for some reals;, > 1. be stated.

o . . Lemma 1l:Let 7' be an invertibleN x N matrix, and
A further generalization can be obtained by noting that . : .
. . . ; consider the transformation (11). In the new coordinates
there are functions, such @gr) = sinx, which are not i.h. system (8)-(9) reads
but whose absolute value is bounded by the absolute value 5P
a function which is i.h. This remark motivates the following ¥ = A2+ f0(20)
definition. _ ¢ = (In®Ae+(ToBu+F(%e)  (12)
Definition 4: A function ¢ € C°(R> x R™, R), (u,z) — 5 .
#(u, ), is said to be incrementally homogeneous in thehere F(z°,¢é) = (T ® L,)F(2°, (T @ I,,)é).
upper bound in the generalized sense (i.h.u.b.) with quadru- : ; e -
ple (t,¢ b, @) if there existe € RLb € R", ¢ € R, 0Acocordlr:lg to Limma 3_|n _the Appendix, since the funcU_on
® € CO(R?", RU™) such that for alk > 1 and¢/, ¢ € R" @) :R*— R in (2) is incrementally homogeneous in
2 = ’ the upper bound with quadruple, ¢ + 0, b, @), clearly the
e e . ' b function F' defined by (10), is incrementally homogeneous
- < b - . .
(olerct 0a') = dle.c o d M) < e o (B ) o (d —a ) ) o e e

For example,(u, z) — ¢(p, ) = pu(z2 23g(z1))”, with

g any bounded and globally Lipschitz continuous function, (AN @61 @ (1 +0), vy @6, ) (13)
is i.h.u.b. with quadruplgr, 1,b, ®), wherer := (1,2)7, \where settingp’ = ¢ + 20 andp?’ = ¢ + 20", for
e:= (3,77, h:=(1,0)" and i €[1,N], thend((e', %), (¢, 2°")) is given by
‘1311(q/, q//) =0, (1)21((]/, q//) — /2/3 |g(q/1/) - g/(/q/l/” ’ ) @(pl:pl//) + (I)(xO’/xON) CI’(pl,/pl//) 0 0
lg1 — &4 o = 0 - 0
@(pN,/pNN) + @(mo,/xo//) 0 0 @(pN,/pNN)

2 2
D1o(q',q") =1, ®2a(q', ") = |ay” + ¢4~ + 43451 19(q1)]

(note that qégg(q’l) _ /2/39((]/1/) _ (q/23 _ qé’g)g(q’l) + As it will be shown in the next lemma, under the change

a2 (g(d)) — g(g!))). The properties of incremental ho-Of coordinates (11) the functioR'(z°, ¢) defined by (10),

mogeneity (in the generalized sense) are discussed in HRICh is thus incrementally homogeneous with quadruple

Appendix. (13), transforms in the new coordinates into a function
which is still incrementally homogeneous in the upper bound
1V. CONSENSUS VIA STATEFEEDBACK and with the same Weights and degreesﬁof
Let us rewrite the system (1)-(2) in the consensus error Lemma 2: Assume that the functioffi®(z") : R — R
coordinates’ = 2 — 29, i € [1,n)]. in (2) is incrementally homogeneous in the upper bound
Setting e - ((el)T,...,(eN)T)T, U = in the generalized sense with quadrugter + 0,5, ®).
((ul)T,...,(uN)T)T, one thus has Then under the change Qf _coordinates (11) the function
" o 000 F(z0,¢) : RWN+n . RN™ is incrementally homogeneous
z° = Az + f7(27) X ) in the generalized sense in the upper bound with quadruple
¢ =(In®Ae+ (I @ Bu+ F(z', ¢) (9) (t,t+0,h,®), wheret = 1y ®t, 0 = 1y ®0, h =
where 1ny41 ®b and
et +a°) — fO(a°) eF.7") = (((T) @ L) max  d(y.y") (14)
~ 0 : e/ I<I((T — 1) @In)e |
F(z"e) = : . (10) e’ ISICUT =1y @1 )e |
FoeN +2%) — f0(29) with o/ = (2%, ¢), v/ = (2%, ¢") and§ = (2, &), §" =

(0", &") respectively.

i o ) The proof can be obtained by noting th&tz?, ¢) =
In the following, we will investigate on the effect of a 1(F(:co 02(€))) wherep: (€) := (T ® I,,)¢ and s (¢) :=
class of linear change of coordinates on the dynamics (%Ob'vfl ®I’ )é, and that for a giverV x ;{, matrix O, then

(9). Mor_e precisely given an invertibl&y x N matrix T', let ¢, €€ RVN" ¢ — () = (Q ® I,)¢ is incrementally
us consider the class of change of coordinates homogeneous in the upper bound in the generalized sense

z0 0\ with quadruple(ly @, 1y ® (t+0), -1y ®0, ((Q)) @ I,,)
( e ) - ( é ) e=(T®I)e (11) whered can be chosen in an arbitrary way.

A. The action of a class of linear change of coordinates



The result follows through standard computations whicWith this positions, we obtain from (16)
make use of the composition rule P2 in the Appendix.

x'O — Ax0+f0(x0)
. . 1 _ STT\ — = 0 =
B. The feedback control law ¢ = (A-Ble+F(e). (19)
Consider now the control feedbaekfor which with A = A®lIy, B = B®A A =
N diag{)\l,...,)\N}, II=1I®IyN.
W o= II¢ =11 ijiei + 0506 Clearly, if f°(z%) is incrementally homogeneous in the
= 7 generalized sense in the upper bound with quadrizpter

9, b, ®) thenF is incrementally homogeneous in the general-
ized sense in the upper bound with quadriptel y 1, (t+
) ®1n,h® 1x,1,P) whered is given in (18).

for some row vector II. Denoting by L, =
diag(li0, - -,Ino), and byL = L + Ly, in the coordinates
¢ = (T ® I,)e, the control reads

_ 7 -1 s _ _(7Pp-1 ~
u = —(INQI)(LL)(T'®I,)é (LT~ @ )e. C. Achieving consensus
For [hf‘ closed-loop system one gets that, setiing= In this section we will show that there exist a matfix=
TLT II ® In such that the closed-loop system (19) achieves the
0 = Az® + (2 Leader Ipllowinq[hconseqsus. _'tl'o trflis airrr:, we rtncleket a basi(;
. - . = . assumption on the nonlinearity of each agent in terms o
¢ = (UveA)-Le(Bl)é+Fa’e),  (15) jicremental homogeneity.
sinceA iandard c_omputations show  tha(T" ® Assumption 1. The nonlinear system (1) is characterized
B) ((LT ) ® K) = L ® (BII). by a functionf® € C°(R™, R™) incrementally homogeneous
SinceL is symmetric, it is diagonalizable. We Seequal in the generalized sense in the upper bound with quadruple
to the transformation which diagonalizési.e. (v,t+0,bh,P) with &(0,0) =0 and forj € [I,n—1], b1 :=

7 7 3 3 0,041 =141 —v; —0; and20; <ty —1v; <0404,
TLT71 =L = diag()\l’ - ’)\N) 1 bJ+1 J+1 J J J J+1 7 J j+1

_ In [14], rely_ing upon the fact that each agent is_Iinear Remark 3:In [1] it was proven that Assumption 1 is a
(ie. /% = 0) it is shown that the change of coordinatesfficient condition to achieve stabilization of= Az +

¢ = (T®I,)eis such that (15) consists &f 41 independent Bu+ f°(z) where(A, B) are in Brunovski form. The initial
dynamics,_ ipcluding the leader dynamicg. In a ”On"nea}{ssumption that®(¢) C C for all ¢ > 0, whereC is a compact
context this is not true any more as shown in the next lemMgat containing the origin, is stronger than the one used in [14]
However even if we do not have decoupled dynamics, We s critically stable) and it is introduced to have a bounded

still preserve the incremental homogeneity property, which {ghavior of the closed-loop agent trajectories. On the other
sufficient for achieving stabilization. In the coordinates (11h5nd. we allow for more general nonlinearitigz°)’s.

whereT' is the orthogonal transformation which diagonalizes ¢ key Theorem to show achievement of consensus is
L, the closed loop system reads the following.

i = Az°+ f2(z°) Theorem 1:Under Assumptions 1, consider (19) with

¢ = (A—XNBIE + Fi(2°,¢), i=1,---,N.(16) N=0®Iy, I1=B"GU, - ATG)™"
Moreover, as a consequence of Lemma 2,fiz") is whereG = T'diag{e®®*,---€**} andTl = diag{y1, - -Vn}.
incrementally homogeneous in the generalized sense in theThere exist > 1 andv,, - - -+, > 0 such that (19) achieves

upper bound with quadruple, t + 0, , ?) then the Leader following consensus.
j ((Fl)T, . (FN)T)T (17) Proof: Consider the change of coordinates
0 0 _
is incrementally homogeneous in the generalized sense in the (Ié ) — (“Té ) L e=27"'e (20)
upper bound with quadrupld x 11 ®t, Ix®(t+0), Iy 11 ®
b, ®) where® is defined in (14). where setting? = G ® Iy andT =T ® Iy:
However, we consider as final system the one obtained B I ’
from (16) by permuting its states as follows. Let Z = LIn-AG=([L-AG®Iy. (21)
ej = (e}, e, Fy = ( I .,FJN)T Due to the particular choice of the change of coordinates

e= ((él)Tv T (EH)T)Tv F

(i)j = ((&)I)Tv B ((i);V)T)T’_(i) =(

(FD)TE, -, (FE)T)T it is easily verified that

(@), (9,)1)18) ¢ = (A—BI)é+ Z7'F(a°, Zeé)



where A = Z7'1AZ, B = Z7'B = B, Il = TIZ = On account of the fact thab(0,0) = 0, by construction
A-1BT@G. R2(0,0) = 0. Therefore, for any given > 0, there exist

By noting that(ATG)A(ATG) = ATG?, then, through ¢* > 1 andI := diag{In(—1), A}(I' ® In) such that
standard computations one gets that .
r-R(-,)>0
Z7YAZ = Z7YA - AATG = —AATG + 771 (A - ATG?) . . _ o
forall ¢ € R™V : V(¢é) < c ande > ¢*, in other words// (¢é)

so that is negative definite over the sé¢ ¢ R™Y : V(¢) < c}.
L o o o We are left with proving that it is possible to choese ¢*
A—Bll = -AA"G+Z " (A- A"G?) - Bl in such a way that the sde € R™Y : V(Z'e) < ¢}

= -G+ 72 Y A-ATG?) includes any a priori given compact st R™V for some

R o given ¢ > 0. Indeed, sinc®; <02 < --- <0, (¢,€) —
whereG := diag{In,...,In,A}G. As a consequence,  Z-1¢ is incrementally homogeneous in the upper bound in

P _Ces p1(e,8) + fale, 0, A the generalized sense with quadrupl® 1y,t® 15,0, ®

1y, (I,y —ATT)™1), wherel' = I'®Iy. Therefore, for any
where given compactSs ¢ R™V containing the origin and for any
givenc > 0, there existg > ¢* such that
~ 5 AT =1/ 4 AT 2\ 5
P16 €) = (Iny = ATG) (A -4 G)e, max V(Z71¢) < max||e " o (Iyy — ATG)"'e)2
pale, 2%, 8) = (Iny — ATG) " F (2, Ze). ees e€s
<max ||(I,y — ATT) " H{(e*®v o &))||2 < c.
Let p := p1 + po. Standard computations omitted for space  ¢<S
reasons show that is incrementally homogeneous in theThis concludes the proof. ]
upper bound in the generalized sense with quadriple
1Ny, (t+ 0) 1IN, 0@ 1N, (OanN, Rl) + RQ), where V. CONCLUSIONS
Ry = (Inn — ATD)HA + ATT?), In the present paper sufficient conditions have been given
Ro(d,q") = (Rai(d,q"), Raa(d,q")) for the solvability of the leader following consensus problem
I I 0 on a compact state space, assuming that the dynamics
= I,y — ATD) ' &M (¢, ") ( 0 I N +ATF> (22)  describing the agents are nonlinear and fulfill the property
" of incremental homogeneity. The study has been performed

with ¢ := (2%, &), ¢" == (2", ¢") and M is any matrix by assuming a fixed communication topology and full state
such that all its elements satisfy the inequality information. Further research will consider the case in which
. ~ the topology vary with time, only partial state information is
oY (d.d") > omax o ®y(y YY) available and will focus also on global aspects. The case in
“"fn Hg”ﬁ,:ﬁﬂfin”“ which the dynamics describing the agents are affected by a
, " B stochastic noise will be also investigated.
with ¢/ = (2%, ¢), 3’ = (2°7,¢”) and ® is defined in
(18).
: . 0 - APPENDIX
Since p(e,z°,0) = 0, we have as a consequence that
settingy’ = (2°,¢é) andy” = (2°,0), A. Properties of incremental homogeneity

In the following i.h.will denote incremental homogeneous
~ t®INg41 Nl A t®INg41 AN t®INg41 /1 '
|p(€(’ ia)®1 OyA” _DLgl(e’e ?y) , p/(f’e - oy’) and i.h.u.b. incremental homogeneous in the upper bound.
T 5 5 n B A
<e Yo [Ri((€°FN 0 ) + Roo(y', y") ("™ 0 €))]  The following properties are proved in [1].

Moreover, it is easy to see that ¢) — Gé is incremen- P1 (addition) For any pair of functiongp, y), ¥(u,y) €
tally homogeneous with quadrupte 1y, (t+2)®1y,0® CO(Rs x R™ R!), i.h.u.b. (resp. i.h.) with quadruple resp.
1n,T) with I' := diag{Inmn—1), AHT ® In) . (v,e, b, ®) and(x, e, b, ¥), the function(u,y) — ¢(u,y) +

With V(é) = $[le*®1v 0 ¢||2 ande® 1= e *®W o e it ¥(u,y) isi.h.u.b. (resp. i.h.) with quadruple ¢, b, @ + V).
follows that setting P2 (composition) For any i.h.u.b. functiopse C° (R~ x

) = B Rag(( 505 o), (s o), BLRY, (y) — 6(s, ), with quadrupldt, e, b, @) andy €
CO(Ro xR, R#), (j1,7) — (1, z), with quadruplée, —h+
v,p, U) if there existsd™ € C°(R?**,RL®) such that for all

OV (=G &+ ple,a )} ¢>1and, " € R"

V(e)=—
0é
< (@I o &) T[I — R(-, )| (€PN o ) (e To(eoq), e Tor(foq")) =@M (d,¢") (23)




then (u,z) — o(u,v(u,x)) is ih.u.b. with quadruple [7] Y.Hong, G. Chen, L. Bushnell, Distributed observers design for leader-
PMy following control of multi-agent networks, Automa#4, 846- 850,
(v.e,p, )- 2008
Remark 4:1n particular, for¢ with constant® (23) is [8] Y.Hong, J. Hu, L. Gao, Tracking control for multi-agent consensus with

L e . M an active leader and variable topology, Auton#, 1177-1182, 2006.
trivially satisfied with®*" = & and (u, ) — é(p, ¥(p, x)) [9] J. Hu, G. Feng. Distributed tracking control of leader-follower mul-

is i.h.u.b. with quadruplér, ¢, p, D). tiagent systems under noisy measurement, Autort.1382-1387,
2010.

Let (A, B) be in Brunowski canonical form. Note that'  [10] J. Hu, Y. Hong,Leader-following coordination of multi-agent systems

is the Moore-Penrose pseudoinverselpthat isA7 AAT = 11 with coupling time delays, Physica &74, 853'%63' 5007- ol
11] Z. Lin, B. Francis, M. Maggiore,Necessary and sufficient graphical con-

T TA — TANNT — AT T _
AT, AATA = A (A A) = A A and (A_A ) - ditions for formation control of unicycles, IEEE Trans. on Automatic
AAT. Thereforel — AAT is the orthogonal projection onto Control,50, 121-127, 2005.

(Im{A})l — Im{] _ AAT}, (Im{W} denotes the vector [12] B. Liu, T. Chu, L. Wang, et al.,Controllability of a leader-follower

dynamic network with switching topology, IEEE Trans. on Automatic
space generated by the columns of the matrix Then: c{m”o, 53 1009-1013. 2008. 9 fopology

[13] Z. Meng, W. Ren, Y. Cao, et al.,Leaderless and leader-following con-
sensus with communication and input delays under a directed network

P3.1 (shifting 1) for anyg € Im{I — AA™} and any function

¢ € CO(Rs x R, RY) : (p, ) — ¢(u,x), i.h.u.b. (resp.i.h.) topology, IEEE Trans. on Systems, Man, and Cybernetics Part B:
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