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Abstract—In the present paper, the Leader-Following consen-
sus problem is investigated and sufficient conditions are given
for the solvability of the problem, assuming that the agents are
described by a nonlinear dynamics incrementally homogeneous
in the upper bound.

Index Terms—Nonlinear systems, Leader-following consen-
sus, stabilization, incremental homogeneity.

I. I NTRODUCTION

The collective behavior of multi-agent systems is nowa-
days a topic of great interest due to the wide fields of
applications, such as robotics, telecommunications and biol-
ogy. The literature on the topic considers essentially agents
modeled as a linear dynamics (see between the others [14],
[16], [17], [23] and the references therein). Different kind
of problems have been considered in this context, starting
from the general consensus problem where the agents have to
reach a common objective, to the leader consensus problem,
where the objective of the agents consists in tracking a given
dynamics called leader. The dynamics describing the agents
may or may not be considered identical. Several results are
available in the literature on the leader following problem;
we recall between the others [18], [13], [8] where delays
are considered, [12], [7], [14], [15] where the topology of
the network is switching. Agents described by nonlinear
dynamics have been considered for the first time in [6],
where the study is restricted to the case in which the leader
has a constant trajectory, in [5] where the nonlinearity in
the agents dynamics is assumed to be lower triangular and
globally Lipschitz and in [3] where the agents dynamics are
assumed to be in normal form.

In the present paper the Leader-Following consensus
problem is investigated, assuming that the dynamics which
describe the agents are incrementally homogeneous in the
upper bound as defined in [1]. Such an assumption is a quite
general condition for achieving stability by feedback with a
guaranteed region of attraction. For the sake of simplicity it
is also assumed that the agents are described by the same
dynamics. Such a class of systems allows to give sufficient
conditions for the solvability of the problem for a large class
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of nonlinear systems including lower triangular systems and
strict up triangular and many others.

II. PROBLEM STATEMENT

Consider a multi agent system consisting ofN identical
agents and a leader. The leader is governed by the dynamics

ẋ0(t) = Ax0(t) + f0(x0(t)) (1)

where for all t ≥ 0, x0(t) ∈ C ⊂ Rn, C a compact set
containing the origin, whereas each agent is described by
the dynamics

ẋi(t) = Axi(t) + Bui(t) + f0(xi(t)), i ∈ [1, N ] (2)

wherexi ∈ Rn, andui ∈ Rm are respectively the state and
the control input of thei–th agent. We also assume that (2)
is controllable in the first approximation around the origin
so that(A,B) is assumed without loss of generality to be in
Brunowski form.

The information exchange between theN agents and the
leader can be represented by means of the graph theory: let
V = {1, · · · , N} be the set of vertices representing theN
agents andE ⊂ V × V be the set of edges of the graph.
An edge ofG is denoted by(i, j), representing that agents
i and j can exchange information between them. The graph
is undirected, that is, the edges(i, j) and (j, i) ∈ E are
considered to be the same. Two nodesi andj are neighbors
to each other if(i, j) ∈ E . The set of neighbors of node
i is denoted byNi := {j ∈ V : (j, i) ∈ E , j 6= i}.
A path is a sequence of connected edges in a graph. A
graph is connected if there is a path between every pair of
vertices. The leader can be represented by a new vertex0
and information is exchanged between the leader and the
agents which are in the neighbors of the leader. Then, the
communication exchange is represented by a new graphḠ,
which consists of graphG, vertex0 and edges between the
leader0 and its neighbors.

The adjacency matrixQ = [qij] of a graphG is anN×N
matrix, whose(i, j)-th entry is1 if (i, j) is an edge ofG and
0 if it is not. The degree matrixD of G is a diagonal matrix
whosei-th diagonal element is equal to the cardinality ofNi.
The Laplacian ofG is defined to be aN×N matrixL = [lij]
such thatL = −Q + D. Moreover,L is symmetric if and
only if the graph in undirected andL has all its eigenvalues
in the closed right half plane and one eigenvalue at zero if
and only if the graph is connected.



In this network, we consider control inputs using local
information to make all theN agents follow the leader. In
particular, for each agenti the control input is a function of
the consensus term

ζi(t) = −
N∑

j=1

`ijx
j(t) + `i0(x0(t) − xi(t)) (3)

where thelij are the entries of the Laplacian ofG and `i0
is 1 if the leader is a neighbor of agenti and 0 else. The
form (3) is motivated by the fact that−

∑N
j=1 `ijx

j(t) =∑
j∈Ni

(xj(t) − xi(t)), which means that each agent ex-
change information only with its neighbors.

Definition 1: The leader-following consensus of system
(1)–(2) with consensus term (3) is achieved if the trajectories
errorsxi(t)−x0(t) of the given system (1)–(2) are bounded
for all t ≥ 0 and limt→∞(xi(t) − x0(t)) = 0 for all i ∈
[1, N ] and initial conditions(x1(0), . . . , xN(0)) ∈ C×· · ·×C.

Consensus Problem.Consider the multi agent network
(1,2) with a fixed communication topology and with full
state coupling. Find a state feedbackui = α(ζi) such that
the closed-loop system resulting from (1)-(2) achieves the
Leader–Following consensus.

III. R ECALLS AND NOTATION

The following notations are issued from [1].

• Rn (resp.Rn×n) is the set ofn-dimensional real column
vectors (resp.n × n matrices).R≥ (resp.Rn

≥, Rn×n
≥ )

denotes the set of real non-negative numbers (resp.
vectors inRn, matrices inRn×n, with real non-negative
entries).R> (resp.Rn

>) denotes the set of real positive
numbers (resp. vectors inRn with real positive entries).

• For any matrixV ∈ Rp×n we denote byVij the (i, j)–
th entry ofV and for any vectorv ∈ Rn we denote
by vi the i–th element ofv. vk

i will denote thei–
th component of thek–th block. We retain a similar
notation for functions. For anyv ∈ Rn we denote
by diag{v} the diagonaln × n matrix with diagonal
elementsv1, . . . , vn. Also, |a| denotes the absolute
value of a ∈ R, ‖a‖ denotes the Euclidean norm of
a ∈ Rn, ‖A‖ denotes the norm ofA ∈ Rn×n induced
from the Euclidean norm‖a‖ and 〈〈A〉〉 is the matrix
obtained fromA by substituting each elementaij with
its absolute value|aij|.

• We denote byC0(X,Y), X ⊂ Rn and Y ⊂ Rp, the
set of continuous functionsf : X → Y.

• For anyε ∈ R>, and for any vectorsx ∈ Rn, r ∈ Rn
>,

we defineεr := (εr1 , · · · , εrn)T and

εr � x := (εr1x1, · · · , εrnxn)T (4)

that isεr � x is the dilation of a vectorx with weights

r. Note that for anyx, y ∈ Rn, r, r̄ ∈ Rn
> and ε ∈ R>,

εr � εr̄ � x = εr̄ � εr � x = εr+r̄ � x, (5)

(εr � x)T (εr̄ � y) = (εr̄ � x)T (εr � y) (6)

= (εr+r̄ � x)T y = xT (εr+r̄ � y).

To cope with the consensus of nonlinear systems (2)
we will use both the Kronecker product notation and a
generalized notion of homogeneity recently introduced in [1].
These definitions are recalled below.

Definition 2: (Kronecker product⊗). Given a m × n
matrixA and ap×q matrix B the Kronecker productA⊗B
is aP matrix of dimension(mp) × (nq) given by

P = A⊗ B =



a11B · · · a1nB

...
. . .

...
am1B · · · amnB




Given a m square invertible matrixA and a p square
invertible matrixB, then(A ⊗ B)−1 = A−1 ⊗ B−1. Given
the matricesA, B, C andD, and assuming that the matrices
productsAC andBD are defined, then,(A⊗B)(C ⊗D) =
(AC) ⊗ (BD).
Denoting by1m the vector ofRm with all components equal
to 1, then for a fixedd ∈ Rn, 1m ⊗ d is the vector ofRmn

equal to(dT , . . . , dT )T . When no confusion is possible the
subindexm will be omitted.

Definition 3: (Incremental homogeneity). A functionφ ∈
C0(R> × Rn,Rl), (µ, x) → φ(µ, x), is said to be incre-
mentally homogeneous in the generalized sense (i.h.) with
quadruple(r, e, h,Φ) if there existe ∈ Rl, h ∈ Rn, r ∈ Rn

>

and Φ ∈ C0(R2n,Rl×n) such that for allε > 0 and
q′, q′′ ∈ Rn

φ(ε, εr � q′) − φ(ε, εr � q′′)=εe �
(

Φ(q′, q′′)(εh � (q′ − q′′))

)
(7)

Remark 1:It is worth noting that the functionφ may
depend on the dilating parameter itself. As an example,
the functionx → φ(x) := x1 + x3

2 is i.h. with quadru-
ple (r, 0, h,Φ), where r := (1, 2)T , h := (1, 6)T and
Φ(q′, q′′) := (1, q′2

2 + q′′2
2 + q′′2 q

′
2). The functionφ(µ, x)

which depends on the dilationµ: (µ, x) → φ(µ, x) :=
µ(x1 + x3

2), µ > 0, is i.h. with quadruple(r, 1, h,Φ).
Remark 2:Homogeneous systems in the generalized

sense (introduced in [1] as a generalization of homogeneous
systems in the standard sense ([21])) can be recovered as
a particular case of incrementally homogeneous systems
in the generalized sense by settingq′′ = 0 in Definition
3. Moreover, generalized incremental homogeneous systems
include large classes of nonlinear systems such as:

i.) locally Lipschitz lower triangular (or norm-bounded by
lower triangular maps)φ:

φ(x) := (φ1(x1), φ2(x1, x2), · · · , φn(x1, · · · , xn))T

where eachφj, j = 1, . . . , n, is (norm-bounded by) a sum
of terms of the formx

tj1
j1

· · ·xtjl

jl
for some realstji ≥ 1.



ii.) locally Lipschitz strict upper triangular (or norm-
bounded by strict upper triangular maps)φ:

φ(x) := (φ1(x3, . . . , xn), · · · , φn−2(xn), 0, 0)T

where eachφj, j = 1, . . . , n − 2, is (norm-bounded by) a
sum of terms of the formx

tj1
j1

· · ·xtjl

jl
for some realstji ≥ 1.

A further generalization can be obtained by noting that
there are functions, such asφ(x) = sinx, which are not i.h.
but whose absolute value is bounded by the absolute value of
a function which is i.h. This remark motivates the following
definition.

Definition 4: A function φ ∈ C0(R> ×Rn,Rl), (µ, x) →
φ(µ, x), is said to be incrementally homogeneous in the
upper bound in the generalized sense (i.h.u.b.) with quadru-
ple (r, e, h,Φ) if there exist e ∈ Rl, h ∈ Rn, r ∈ Rn

>,
Φ ∈ C0(R2n,Rl×n

≥ ) such that for allε ≥ 1 and q′, q′′ ∈ Rn

〈〈φ(ε, εr � q′) − φ(ε, εr � q′′)〉〉 � εe �
(

Φ(q′, q′′)〈〈εh � (q′ − q′′)〉〉
)

.

For example,(µ, x) → φ(µ, x) := µ (x2 x3
2g(x1) )T , with

g any bounded and globally Lipschitz continuous function,
is i.h.u.b. with quadruple(r, 1, h,Φ), where r := (1, 2)T ,
e := (3, 7)T , h := (1, 0)T and

Φ11(q′, q′′) := 0, Φ21(q′, q′′) := q′′2
3 |g(q′1) − g(q′′1 )|

|q′1 − q′′1 |
,

Φ12(q′, q′′) := 1, Φ22(q′, q′′) := |q′2
2 + q′′2

2 + q′2q
′′
2 | |g(q′1)|

(note that q′2
3
g(q′1) − q′′2

3
g(q′′1 ) = (q′2

3 − q′′2
3)g(q′1) +

q′′2
3(g(q′1) − g(q′′1 ))). The properties of incremental ho-

mogeneity (in the generalized sense) are discussed in the
Appendix.

IV. CONSENSUS VIA STATE-FEEDBACK

Let us rewrite the system (1)-(2) in the consensus error
coordinatesei = xi − x0, i ∈ [1, n].
Setting e =

(
(e1)T , · · · , (eN )T

)T
, u =(

(u1)T , · · · , (uN)T
)T

, one thus has

ẋ0 = Ax0 + f0(x0) (8)

ė = (IN ⊗A)e + (IN ⊗B)u + F̂ (x0, e) (9)

where

F̂ (x0, e) =



f0(e1 + x0) − f0(x0)

...
f0(eN + x0) − f0(x0)


 . (10)

A. The action of a class of linear change of coordinates

In the following, we will investigate on the effect of a
class of linear change of coordinates on the dynamics (8)-
(9). More precisely given an invertibleN ×N matrix T , let
us consider the class of change of coordinates

(
x0

e

)
→
(
x0

ẽ

)
, ẽ = (T ⊗ In)e (11)

The peculiarity of this transformation is that it combines
N times thej-th coordinate of each agenti through the

coefficients of each row ofT , i.e. ẽs
i =

N∑
j=1

ts,je
j
i for

s = i ∈ [1, N ] and i ∈ [1, n]. The following result can
be stated.

Lemma 1:Let T be an invertibleN × N matrix, and
consider the transformation (11). In the new coordinates
system (8)-(9) reads

ẋ0 = Ax0 + f0(x0)
˙̃e = (IN ⊗ A)ẽ + (T ⊗ B)u + F̃ (x0, ẽ) (12)

whereF̃ (x0, ẽ) = (T ⊗ In)F̂ (x0, (T−1 ⊗ In)ẽ).
According to Lemma 3 in the Appendix, since the function

f0(x0) : Rn → Rn in (2) is incrementally homogeneous in
the upper bound with quadruple(r, r + d, h,Φ), clearly the
function F̂ defined by (10), is incrementally homogeneous
in the upper bound with quadruple

(1N+1 ⊗ r,1N ⊗ (r + d),1N+1 ⊗ h, Φ̂) (13)

where settingpi′ = ei′ + x0′
and pi′′ = ei′′ + x0′′

, for
i ∈ [1, N ], thenΦ̂((e

′
, x0′

), (e
′′
, x0′′

)) is given by

Φ̂ =




Φ(p1′, p1′′) + Φ(x0′, x0′′) Φ(p1′, p1′′) 0 0
... 0

. . . 0
Φ(pN ′

, pN ′′
) + Φ(x0′, x0′′) 0 0 Φ(pN ′

, pN ′′
)




As it will be shown in the next lemma, under the change
of coordinates (11) the function̂F (x0, e) defined by (10),
which is thus incrementally homogeneous with quadruple
(13), transforms in the new coordinates into a functionF̃
which is still incrementally homogeneous in the upper bound
and with the same weights and degrees ofF̂ .

Lemma 2:Assume that the functionf0(x0) : Rn → Rn

in (2) is incrementally homogeneous in the upper bound
in the generalized sense with quadruple(r, r + d, h,Φ).
Then under the change of coordinates (11) the function
F̃ (x0, ẽ) : R(N+1)n → RNn is incrementally homogeneous
in the generalized sense in the upper bound with quadruple
(r̃, r̃ + d̃, h̃, Φ̃), where r̃ = 1N+1 ⊗ r, d̃ = 1N ⊗ d, h̃ =
1N+1 ⊗ h and

Φ̃(ỹ′, ỹ′′) = (〈〈T 〉〉 ⊗ In) max
‖e′‖≤‖(〈〈T −1〉〉⊗In)ẽ′‖
‖e′′‖≤‖(〈〈T −1〉〉⊗In)ẽ′′‖

Φ̂(y′, y′′) (14)

with y′ = (x0′
, e′), y′′ = (x0′′

, e′′) and ỹ′ = (x0′
, ẽ′), ỹ′′ =

(x0′′
, ẽ′′) respectively.

The proof can be obtained by noting thatF̃ (x0, ẽ) =
ϕ1(F̂ (x0, ϕ2(ẽ))) whereϕ1(ξ) := (T ⊗ In)ξ andϕ2(ẽ) :=
(T−1 ⊗ In)ẽ, and that for a givenN × N matrix Q, then
for ξ ∈ RNn, ξ → ϕ(ξ) := (Q ⊗ In)ξ is incrementally
homogeneous in the upper bound in the generalized sense
with quadruple(1N ⊗ r,1N ⊗ (r+d),−1N ⊗d, 〈〈Q〉〉⊗ In)
whered can be chosen in an arbitrary way.



The result follows through standard computations which
make use of the composition rule P2 in the Appendix.

B. The feedback control law

Consider now the control feedbacku for which

uj = Πζj = −Π

(
N∑

i=1

`j,ie
i + `j,0e

j

)
.

for some row vector Π. Denoting by L0 =
diag(l1,0, · · · , lN,0), and byL̂ = L+ L0, in the coordinates
ẽ = (T ⊗ In)e, the control reads

u = −(IN ⊗ Π)(L̂ ⊗ In)(T−1 ⊗ In)ẽ = −(L̂T−1 ⊗ Π)ẽ.

For the closed–loop system one gets that, settingL̄ =
T L̂T−1

ẋ0 = Ax0 + f0(x0)
˙̃e =

(
(IN ⊗ A) − L̄⊗ (BΠ)

)
ẽ+ F̃ (x0, ẽ), (15)

since standard computations show that(T ⊗
B)
(
(L̂T−1) ⊗K

)
= L̄⊗ (BΠ).

SinceL̂ is symmetric, it is diagonalizable. We setT equal
to the transformation which diagonalizesL̂, i.e.

T L̂T−1 = L̄ = diag(λ̄1, · · · , λ̄N ).

In [14], relying upon the fact that each agent is linear
(i.e. f0 = 0) it is shown that the change of coordinates
ẽ = (T⊗In)e is such that (15) consists ofN+1 independent
dynamics, including the leader dynamics. In a nonlinear
context this is not true any more as shown in the next lemma.
However even if we do not have decoupled dynamics, we
still preserve the incremental homogeneity property, which is
sufficient for achieving stabilization. In the coordinates (11),
whereT is the orthogonal transformation which diagonalizes
L̂, the closed loop system reads

ẋ0 = Ax0 + f0(x0)
˙̃e
i

= (A − λ̄iBΠ)ẽi + F̃ i(x0, ẽ), i = 1, · · · , N.(16)

Moreover, as a consequence of Lemma 2, iff0(x0) is
incrementally homogeneous in the generalized sense in the
upper bound with quadruple(r, r + d, h,Φ) then

F̃ = ((F̃ 1)T , · · · , (F̃N)T )T (17)

is incrementally homogeneous in the generalized sense in the
upper bound with quadruple(1N+1⊗r,1N ⊗(r+d),1N+1⊗
h, Φ̃) whereΦ̃ is defined in (14).

However, we consider as final system the one obtained
from (16) by permuting its states as follows. Let

ēj = (ẽ1j , · · · , ẽN
j )T , F̄j = (F̃ 1

j , · · · , F̃N
j )T

ē = ((ē1)T , · · · , (ēn)T )T , F̄ = ((F̄1)T , · · · , (F̄n)T )T

Φ̄j = ((Φ̃1
j )

T , · · · , (Φ̃N
j )T )T , Φ̄ = ((Φ̄1)T , · · · , (Φ̄n)T )T(18)

With this positions, we obtain from (16)

ẋ0 = Ax0 + f0(x0)
˙̄e = (Ā − B̄Π̄)ē + F̄ (x0, ē). (19)

with Ā = A ⊗ IN , B̄ = B ⊗ Λ̄, Λ̄ =
diag{λ̄1, . . . , λ̄N}, Π̄ = Π ⊗ IN .

Clearly, if f0(x0) is incrementally homogeneous in the
generalized sense in the upper bound with quadruple(r, r +
d, h,Φ) thenF̄ is incrementally homogeneous in the general-
ized sense in the upper bound with quadruple(r⊗1N+1, (r+
d) ⊗ 1N , h⊗ 1N+1, Φ̄) whereΦ̄ is given in (18).

C. Achieving consensus

In this section we will show that there exist a matrixΠ̄ :=
Π ⊗ IN such that the closed-loop system (19) achieves the
Leader following consensus. To this aim, we make a basic
assumption on the nonlinearity of each agent in terms of
incremental homogeneity.

Assumption 1. The nonlinear system (1) is characterized
by a functionf0 ∈ C0(Rn, Rn) incrementally homogeneous
in the generalized sense in the upper bound with quadruple
(r, r+d, h,Φ) with Φ(0, 0) = 0 and forj ∈ [1, n−1], h1 :=
d1,hj+1 := rj+1 − rj −dj and2dj ≤ rj+1 − rj ≤ dj +dj+1.

Remark 3:In [1] it was proven that Assumption 1 is a
sufficient condition to achieve stabilization ofẋ = Ax +
Bu+f0(x) where(A,B) are in Brunovski form. The initial
assumption thatx0(t) ⊂ C for all t ≥ 0, whereC is a compact
set containing the origin, is stronger than the one used in [14]
(A is critically stable) and it is introduced to have a bounded
behavior of the closed-loop agent trajectories. On the other
hand, we allow for more general nonlinearitiesf0(x0)’s.

The key Theorem to show achievement of consensus is
the following.

Theorem 1:Under Assumptions 1, consider (19) with

Π̄ = Π ⊗ IN , Π = BTG(In − ATG)−1

whereG = Γdiag{ε2d1 , · · ·ε2dn} andΓ = diag{γ1, · · ·γn}.
There existε > 1 andγ1, · · ·γn > 0 such that (19) achieves

the Leader following consensus.
Proof: Consider the change of coordinates

(
x0

ē

)
→
(
x0

ê

)
, ê = Z̄−1ē (20)

where settingḠ = G⊗ IN and Γ̄ = Γ ⊗ IN :

Z̄ = InN − ĀT Ḡ = (In −ATG) ⊗ IN . (21)

Due to the particular choice of the change of coordinates
it is easily verified that

˙̂e = (Â− B̂Π̂)ê+ Z̄−1F̄ (x0, Z̄ê)



where Â = Z̄−1ĀZ̄, B̂ = Z̄−1B̄ = B̄, Π̂ = Π̄Z̄ =
Λ̄−1B̄T Ḡ.

By noting that(ĀT Ḡ)Ā(ĀT Ḡ) = ĀT Ḡ2, then, through
standard computations one gets that

Z̄−1ĀZ̄ = Z̄−1(Ā− ĀĀT Ḡ = −ĀĀT Ḡ+ Z̄−1(Ā− ĀT Ḡ2)

so that

Â− B̂Π̂ = −ĀĀT Ḡ+ Z̄−1(Ā − ĀT Ḡ2) − B̂Π̂
= −Ĝ + Z̄−1(Ā− ĀT Ḡ2)

whereĜ := diag{IN , . . . , IN , Λ̄}Ḡ. As a consequence,

˙̂e = −Ĝê + ρ̂1(ε, ê) + ρ̂2(ε, x0, ê)

where

ρ̂1(ε, ê) = (InN − ĀT Ḡ)−1(Ā − ĀT Ḡ2)ê,
ρ̂2(ε, x0, ê) = (InN − ĀT Ḡ)−1F̄ (x0, Z̄ê).

Let ρ̂ := ρ̂1+ρ̂2. Standard computations omitted for space
reasons show that̂ρ is incrementally homogeneous in the
upper bound in the generalized sense with quadruple(r ⊗
1N+1, (r + d) ⊗ 1N , d⊗ 1N+1, (0nN×N , R̂1) + R̂2), where

R̂1 := (InN − ĀT Γ̄)−1[Ā+ ĀT Γ̄2],
R̂2(q′, q′′) = (R21(q′, q′′), R̂22(q′, q′′) )

= (InN − ĀT Γ̄)−1Φ̂M (q′, q′′)
(
In 0
0 InN + ĀT Γ̄

)
(22)

with q′ := (x0′, ê′), q′′ := (x0′′, ê′′) and Φ̂M is any matrix
such that all its elements satisfy the inequality

Φ̂M
ij (q′, q′′) ≥ max

‖e′‖≤‖(InN +ĀT Γ̄)ê′‖
‖e′′‖≤‖(InN +ĀT Γ̄)ê′′‖

Φ̄ij(y′, y′′)

with y′ := (x0′, e′), y′′ := (x0′′, e′′) and Φ̄ is defined in
(18).

Since ρ̂(ε, x0, 0) = 0, we have as a consequence that
settingy′ = (x0, ê) andy′′ = (x0, 0),

|ρ̂(ε, εr⊗1N+1 � y′)| = |ρ̂(ε, εr⊗1N+1 � y′) − ρ̂(ε, εr⊗1N+1 � y′′)|
≤ ε(r+d)⊗1N � [R̂1〈〈εd⊗1N � ê〉〉 + R̂22(y′, y′′)〈〈εd⊗1N � ê〉〉]

Moreover, it is easy to see that(ε, ê) → Ĝê is incremen-
tally homogeneous with quadruple(r⊗1N , (r+d)⊗1N , d⊗
1N , Γ̂) with Γ̂ := diag{IN(n−1), Λ̄}(Γ ⊗ IN ) .

With V (ê) = 1
2‖ε

−r⊗1N � ê‖2 and e◦ := ε−r⊗1N � ê it
follows that setting

R̂(·, ·) = R̂1 + R̂22((ε−r⊗1N+1 � y′), (ε−r⊗1N+1 � y′′),

V̇ (ê) =
∂V

∂ê
(ê){−Ĝ ê+ ρ̂(ε, x0, ê)}

≤ −〈〈ε(d−r)⊗1N � ê〉〉T [Γ̂ − R̂(·, ·)]〈〈ε(d−r)⊗1N � ê)〉〉

On account of the fact thatΦ(0, 0) = 0, by construction
R̂22(0, 0) = 0. Therefore, for any givenc > 0, there exist
ε∗ > 1 and Γ̂ := diag{IN(n−1), Λ̄}(Γ ⊗ IN ) such that

Γ̂ − R̂(·, ·) > 0

for all ê ∈ RnN : V (ê) ≤ c andε ≥ ε∗, in other wordsV̇ (ê)
is negative definite over the set{ê ∈ RnN : V (ê) ≤ c}.
We are left with proving that it is possible to chooseε ≥ ε∗

in such a way that the set{ē ∈ RnN : V (Z̄−1ē) ≤ c}
includes any a priori given compact setS ⊂ RnN for some
given c > 0. Indeed, sinced1 ≤ d2 ≤ · · · ≤ dn, (ε, ē) →
Z̄−1ē is incrementally homogeneous in the upper bound in
the generalized sense with quadruple(r⊗ 1N , r⊗ 1N ,0n ⊗
1N , (InN −ĀT Γ̄)−1), whereΓ̄ = Γ⊗IN . Therefore, for any
given compactS ⊂ RnN containing the origin and for any
given c > 0, there existsε ≥ ε∗ such that

max
ē∈S

V (Z̄−1ē) ≤ max
ē∈S

‖ε−r⊗1N � ((InN − ĀT Ḡ)−1ē)‖2

≤ max
ē∈S

‖(InN − ĀT Γ̄)−1〈〈ε−r⊗1N � ē〉〉‖2 ≤ c.

This concludes the proof.

V. CONCLUSIONS

In the present paper sufficient conditions have been given
for the solvability of the leader following consensus problem
on a compact state space, assuming that the dynamics
describing the agents are nonlinear and fulfill the property
of incremental homogeneity. The study has been performed
by assuming a fixed communication topology and full state
information. Further research will consider the case in which
the topology vary with time, only partial state information is
available and will focus also on global aspects. The case in
which the dynamics describing the agents are affected by a
stochastic noise will be also investigated.

APPENDIX

A. Properties of incremental homogeneity

In the following i.h.will denote incremental homogeneous,
and i.h.u.b. incremental homogeneous in the upper bound.
The following properties are proved in [1].

P1 (addition) For any pair of functionsφ(µ, y), ψ(µ, y) ∈
C0(R> × Rn,Rl), i.h.u.b. (resp. i.h.) with quadruple resp.
(r, e, h,Φ) and(r, e, h,Ψ), the function(µ, y) → φ(µ, y) +
ψ(µ, y) is i.h.u.b. (resp. i.h.) with quadruple(r, e, h,Φ + Ψ).

P2 (composition) For any i.h.u.b. functionsφ ∈ C0(R> ×
Rs,Rl), (µ, y) → φ(µ, y), with quadruple(r, e, h,Φ)andψ ∈
C0(R>×Rn,Rs), (µ, x) → ψ(µ, x), with quadruple(r,−h+
r, p,Ψ) if there existsΦM ∈ C0(R2s,Rl×s

≥ ) such that for all
ε ≥ 1 andq′, q′′ ∈ Rn

Φ(ε−r � ψ(εr � q′), ε−r � ψ(εr � q′′)) � ΦM (q′, q′′) (23)



then (µ, x) → φ(µ, ψ(µ, x)) is i.h.u.b. with quadruple
(r, e, p,ΦMΨ).

Remark 4:In particular, forφ with constantΦ (23) is
trivially satisfied withΦM = Φ and (µ, x) → φ(µ, ψ(µ, x))
is i.h.u.b. with quadruple(r, e, p,ΦΨ).

Let (A,B) be in Brunowski canonical form. Note thatAT

is the Moore-Penrose pseudoinverse ofA, that isATAAT =
AT , AATA = A, (ATA)T = ATA and (AAT )T =
AAT . ThereforeI −AAT is the orthogonal projection onto
(Im{A})⊥ = Im{I − AAT }, (Im{W} denotes the vector
space generated by the columns of the matrixW ). Then:

P3.1 (shifting I) for anyz ∈ Im{I − AAT} and any function
φ ∈ C0(R> × Rn,Rl) : (µ, x) → φ(µ, x), i.h.u.b. (resp.i.h.)
with quadruple(r, e, h,Φ), the function(µ, x) → Aφ(µ, x) is
i.h.u.b. (resp.i.h.) with quadruple(r, Ae + z, h, AΦ)

P3.2 (shifting II) for anyz ∈ Im{I − ATA} and any
functionφ ∈ C0(R> × Rn,Rl) : (µ, x) → φ(µ, x), i.h.u.b.
(resp.i.h.) with quadruple(r, e, h,Φ) and constantΦ, the func-
tion (µ, x) → φ(µ,Ax) is i.h.u.b. (resp.i.h.) with quadruple
(r, e, AT (h − r) + r + z,ΦA).

B. Additional results

The proofs of the next results are omitted for space reasons.
Lemma 3:Let ϕ(q) : Rn → Rn be a function incre-

mentally homogeneous in the upper bound with quadruple
(r, r + d, h,Φ(q′, q′′)), then the function̂ϕ(q, ω) = ϕ(q +
ω) − ϕ(q) : R2n → Rn is incrementally homogeneous in the
upper bound with quadruple(r, r + d, h, Φ̂), with

Φ̂ = (Φ(q′ + ω′, q′′ + ω′′) + Φ(q′, q′′),Φ(q′ + ω′, q′′ + ω′′))
Lemma 4:Let ϕ(q) : Rn → Rn be a function i.h.u.b.

with quadruple(r, r + d, h,Φ(q′, q′′)), then the function̂ϕ :
(ε, q) → ϕ (σ(βεr, q)) is i.h.u.b. with quadruple(r, r +
d, h,Φ0), whereΦ0 is a constant matrix such that∀q′, q′′ :
||q′||, ||q′′|| ≤ nβ

Φ(q′, q′′) � Φ0.
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