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Global commitments to halt biodiversity decline mean that it is essential to

monitor species’ extinction risk. However, the work required to assess extinc-

tion risk is intensive. We demonstrate an alternative approach to monitoring

extinction risk, based on the response of species to external conditions.

Using retrospective International Union for Conservation of Nature Red List

assessments, we classify transitions in the extinction risk of 497 mammalian

carnivores and ungulates between 1975 and 2013. Species that moved to

lower Red List categories, or remained Least Concern, were classified as

‘lower risk’; species that stayed in a threatened category, or moved to a

higher category of risk, were classified as ‘higher risk’. Twenty-four predictor

variables were used to predict transitions, including intrinsic traits (species

biology) and external conditions (human pressure, distribution state and

conservation interventions). The model correctly classified up to 90% of all

transitions and revealed complex interactions between variables, such as pro-

tected areas (PAs) versus human impact. The most important predictors were:

past extinction risk, PA extent, geographical range size, body size, taxonomic

family and human impact. Our results suggest that monitoring a targeted set

of metrics would efficiently identify species facing a higher risk, and could

guide the allocation of resources between monitoring species’ extinction risk

and monitoring external conditions.
1. Introduction
Despite a growing international commitment to conservation, the current biodi-

versity crisis is characterized by increasing human pressures and continuing

decline in the status of many species and habitats [1]. Reversing this trend

has become the aim of one of the ambitious Aichi biodiversity targets proposed

for 2020 [2]: reducing the extinction risk of known threatened species. If this

target is achieved, it will in turn have a positive synergistic effect on other tar-

gets (such as the protection of forests and the maintenance of carbon stocks [3]).

Progress towards meeting this global biodiversity target relies on monitoring

the extinction risk of species. Over recent decades, the International Union

for Conservation of Nature (IUCN) has assessed the extinction risk of more

than 70 000 species of plants, vertebrates and invertebrates on the Red List

of threatened species [4]. The classification of threatened species is clearly an

effective conservation tool [5], with the IUCN Red List underpinning both inter-

national policy processes [2] and research aimed at improving conservation

responses [6].

However, classifying and monitoring species’ extinction risk requires inten-

sive expert effort and considerable financial resources, which is unsustainable

without change in either the strategy for assessment or funding [7]. Approaches

such as sampling of taxa can be used to provide short cuts, but it remains a

substantial task [8]. Overall statistics from the IUCN Red List are used for measur-

ing the status and trends of biodiversity [1,6] and for designing global-scale
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Figure 1. Transition of species’ extinction risk categories in the period 1975 – 2013. The plot reports the number of species (carnivores and ungulates) in each Red
List category for each time period. Circle size is proportional to the number of species, while arrows represent the proportion of species moving from an initial
category to a final category (arrows’ width scales with the proportion of species in the original category). Data were obtained from [4,16]. CR, Critically Endangered;
EN, Endangered; EW, Extinct in the Wild; LC, Least Concern; NT, Near Threatened; VU, Vulnerable. (Online version in colour.)
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strategies for conservation interventions [9]. In addition,

species-specific assessments inform direct actions to address

particular threats at specific times and sites, requiring a

comprehensive species-level approach [10].

The extinction risk of species, assessed using the IUCN

Red List criteria [11], is a consequence of their biological

traits, past and current environmental conditions, direct

human pressures and the interactions between these factors

[12,13]. Environmental changes and pressures on species

are increasing in intensity and are the main cause of current

increases in extinction rates. Extinction risk modelling has

been used to better represent and quantify these external dri-

vers, which can change and intensify over a short time frame

[14,15]. Biological traits, by contrast, change very slowly, and

determine the way in which species respond to external

pressures [13]. Historical information on species’ extinction

risk, and the way in which risk has changed in response to

known pressures, could therefore be a good way to predict

future biodiversity trends, particularly when the pressures

can be effectively monitored or forecast.

Di Marco et al. undertook a retrospective assessment

of the extinction risk of the world’s carnivores and ungula-

tes between 1975 and 2008 [16] by applying the current

IUCN Red List criteria [11] to historical information.

Studying past trends in extinction risk can indicate the

circumstances under which conservation policies and strat-

egies are or are not successful. Retrospective assessments

can also guide the interpretation of future scenarios of emer-

ging threats, for example, inferring the likely consequences

of land use change or climate change [17]. Therefore,

one approach to reducing the logistical and financial con-

straints of constant extinction risk monitoring could be to

use well-validated models, based on past trends, to predict

the effect of changing external pressures on future extinction

risk [18,19].

In many cases, Red List categories remain stable over

long periods of time, especially for the large number of
species listed as Least Concern (LC) [11]. The most useful

information therefore concerns those species whose extinc-

tion risk is likely to escalate. We use historical records to

develop and refine models of change in extinction risk,

to identify those species for which high-risk combinations

of biological vulnerability and extrinsic threats occur. We

use current [4] and historical [16] information on Red List cat-

egories for 497 species of mammalian carnivores and

ungulates in the period 1975–2013, to represent ‘transitions’

in species’ extinction risk (figure 1). We classified species in

two groups: ‘lower risk’ transitions, for those species not

facing a significant increase in their extinction risk over

time, and ‘higher risk’ transitions, for those species facing a

significant increase in their extinction risk over time (see

Material and methods; electronic supplementary material,

table S1). This approach is not analogous to measuring ordinal

transitions between Red List categories (e.g. [20]), as we delib-

erately highlight species that will be of greatest concern to

conservation, namely those that remain at a relatively high

risk of extinction over time, and those that move from lower

to higher risk categories.

We acknowledge that our study species are not a repre-

sentative subset of all mammals, let alone life on the Earth.

For example, carnivores and ungulates are generally charac-

terized by longer generation times [21] and higher risk of

extinction [4] relative to other mammals. Nonetheless, the

high conservation attention devoted to these groups makes

a perfect case for testing our analytical approach.

We predicted higher and lower extinction risk transitions

for species, using a comprehensive set of variables, which

represent the conditions faced by the species during the

study period. Our analyses therefore mimic a hypothetical

situation in which relevant biological datasets and reliable

forecast environmental and conservation metrics were avail-

able in the 1970s. This would have enabled conservation

planners to predict which species would be in a higher or

lower risk condition over the next 40 years.
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2. Material and methods
(a) Obtaining extinction risk transitions
We included all species of carnivores (Carnivora), ungulates

(Perissodactyla and terrestrial Cetartiodactyla) and Proboscidea

(discussed below together with ungulates) currently assessed in

the IUCN Red List [4]. We excluded those species identified as

being historically (less than 1970) Extinct or Data Deficient. We

also excluded the Saudi gazelle (Gazella saudyia), declared extinct

in the 1980s, as we had no detailed information available for its

life-history traits (apart from body mass) or spatial distribution.

We considered 497 species in our analyses, representing 93% of

all extant species in the study groups.

We compared the most recent species’ extinction risk cat-

egories assessed in the IUCN Red List [11] with a retrospective

assessment for 1975 [16]. We calculated an extinction risk tran-

sition value for each species between the two time periods in

terms of the number of Red List categories changed (figure 1).

A negative transition (less than 0) characterized species that

moved towards a lower category of risk, a stable transition

(equal to 0) characterized species that maintained the same Red

List status, and a positive transition (more than 0) characterized

species that moved towards a higher category of risk.

We considered changes in species’ extinction risk over a roughly

40-year period (1975–2013). This is a reasonable reference period for

species in our study groups, as it corresponds to more than 10 gen-

erations for small carnivores and approximately two generations for

large-bodied species such as elephants and rhinos [21].
(b) Classifying extinction risk transitions
Because we were most interested in species that had fared unu-

sually badly compared with those following an average trend

over the study period, we identified species with a transition

value significantly higher than random, when compared with

other species within the same original extinction risk category.

To do this, we (i) randomly re-assigned the observed transitions

across all species within each original Red List category, (ii) com-

pared the observed transitions with the randomly assigned

transitions, and (iii) repeated the previous steps 10 000 times.

As an example, the transition of a species moving from LC (in

1975) to Near Threatened (in 2013) was higher than a transition

randomly selected from other originally LC species in approxi-

mately 85% of the comparisons. Species with a transition value

higher than random in less than or equal to 5% of the compari-

sons were included in the ‘lower risk’ group. Species with a

transition value higher than random in more than 5% of the com-

parisons were included in the ‘higher risk’ group. Importantly, a

species retaining the same category over the time period (net

change equal to 0) may have a transition value higher than

random if several other species in the same original category

had moved to lower categories of risk (net change less than 0).

The randomization resulted in two groups containing species

characterized by different extinction risk trajectories (electro-

nic supplementary material, table S1). The ‘lower risk’ group

included species that were LC throughout the study period,

together with species that underwent a change from any cat-

egory to a lower category of risk. The ‘higher risk’ group

included all species that underwent a change from any category

to a higher category of risk, together with species that were orig-

inally threatened or near threatened and retained their category.

This classification reflects the intrinsic properties of the Red List

criteria, in particular the fact that remaining within the same

Red List category has different implications depending upon

the category. For example, a species classified as LC throughout

the time period does not face any significant decline over time.

By contrast, a species classified as Vulnerable (VU) throughout

the time period faces a strong continuing decline in abundance
(more than or equal to 30%) and/or remains at a very low popu-

lation size. The species in the latter case therefore has a much

higher probability of extinction (more than or equal to 10% in

100 years) [11].
(c) Modelling the drivers of extinction risk transition
We modelled the probability that a species is included in the

higher risk or in the lower risk group, based on its original

extinction risk category and the conditions in place over the

study period. Extinction risk has been shown previously to be

attributable to a combination of intrinsic and extrinsic factors

[13]. Following recent work [22], our model included three

classes of external predictor variables and one class of intrinsic

(biological) predictors (see table 1 for a complete list and descrip-

tion). The external variables are intended to reflect conditions

faced by the species during the study period. We measured:

(i) distribution state variables, such as species’ range size

(measured in orders of magnitude); (ii) human pressure variables,

such as the human influence index [37]; and (iii) conservation

response variables, measured as the proportional coverage and

absolute extent of protected area (PA) within species ranges

(again the extent was measured as an order of magnitude). The

fourth group of predictor variables reflects species life-history

traits (i.e. species biology) including physical characteristics

(e.g. body size), reproductive timing (e.g. weaning age) and repro-

ductive output (e.g. weight at birth) [32]. We used an existing

dataset [33], in which multiple imputation techniques had been

used to fill gaps in life-history data [38].

Obtaining measures of external predictor variables corre-

sponding to exactly the same years as the assessment period

was not always possible. Nonetheless, most of these data refer

to the second half of the study period (i.e. more than or equal

to 1990s), where the highest decline in species status was

observed [16]. We assumed that changes that occurred within a

relevant part of the 40-year study period (especially the second

half of the period) would serve as a valid approximation for

the entire period. In addition, this reduces the risk of collinearity

between predictor variables (including levels of habitat loss and

other proxies of human pressure) and original threat status

(derived from retrospective assessments of extinction risk in the

1960s–1970s). We decided not to include variables that could

not reasonably be used as predictors of future extinction risk

change. For example, measures related to species distribution

such as biogeographic realm—while probably acting as a proxy

for regional pressure levels—could not reasonably be used by

conservation planners to predict future changes in extinction

risk of species.

We used random forest (RF) modelling to estimate the prob-

ability that a species was included in the higher risk or in the

lower risk group. RF modelling is a powerful tool for ecological

analysis [39], and it has been successfully used to model extinc-

tion risk in mammals [23,35] and amphibians [40]. RF is a

machine learning technique with a number of characteristics

that make it suitable for extinction risk prediction [15], including:

limited assumptions about data distributions, high classification

stability and performance, and ability to cope with collinear pre-

dictors. In a recent test, RF showed the highest performance in

predicting global mammal extinction risk among several

machine learning methods [23]. Our model included several vari-

ables which are external to species biology (human pressures,

habitat state and conservation responses); hence, in common

with other studies [15], we did not include phylogenetic con-

straints in our analyses. However, we tested whether this could

influence our results by independently examining the effect of

including taxonomy for predicting extinction risk [23].

We ran a full RF model, including all predictor variables, and

ranked the variables according to their relative importance (i.e.

http://rspb.royalsocietypublishing.org/


Table 1. Description of the variables used in the model. Variables are organized in different classes: human pressure (P), species biology (B), distribution state
(D) and conservation response (R). Examples of previous use of the variables for predicting extinction risk in terrestrial mammals, and the original data sources
for each variables are also provided.

class variable description and justification examples source

— dependent variable extinction risk transition as described in electronic supplementary material, table S1 [4,16]

— RL75 Red List category in 1975, representing original species status (i.e. extinction risk at

the beginning of the study period)

[16]

P Acc_50 travel distance from major cities (accessibility), measured as the median value of

the variable within species ranges ( percentiles tested: 5, 10, 20, 50); a proxy of

human encroachment

[22,23] [24]

P AOOloss proportional loss of suitable habitat within species ranges (1970 – 2010); a proxy of

the main driver of mammal species decline calculated from back casts of global

land cover changes, from the IMAGE integrated assessment model [25]

[22] [26,27]

P HII_5 human influence index, measured as the proportion of species ranges where the

variable had values larger than 5 (values tested: 5, 10, 20); a proxy of the

human impact on the environment

[22,23] [28]

P HPD90_50 human population density in 1990, measured as the median value the variable

within species ranges ( percentiles tested: 5, 10, 20, 50); a proxy of human

encroachment

[13,22,23] [29]

P PopChange proportional change in human population count in 1990 – 2010, measured as the

mean value observed within species range

[30]

P ForestCG proportional change in forested habitat within species ranges between 2000 and

2012. A proxy of natural habitat loss

[31]

B AFB_d age at first birth [32,33] [34]

B BirthW birth weight [22] [34]

B BodySize body mass [13,23,35] [34]

B DietBrdth number of dietary categories eaten by the species [22] [34]

B InterbInt interbirth interval [32] [34]

B LitPY litters per year [34]

B LitSiz litter size [22,23,32] [34]

B WeanAge weaning age [13,32] [34]

B Fam taxonomic family [4]

B Ord taxonomic order [13,22] [4]

B Genlen generation length [32] [21]

B HabBrdth number of habitat layers used by each species [34]

D TreeCov_50 median tree cover within species range in 2000 ( percentiles measured: 5, 10, 20,

50). A proxy of forests state

[31]

D Hab species habitat preferences, classified as: forest, grassland, shrubland, bareland,

coastal or generalist (when more than 1 of the previous applied)

[27]

D RangeSize species range size, measured as an order of magnitude (e.g. 1 for ranges of

10 – 100 km2, 2 for ranges of 100 – 1000 km2, etc.)

[13,22,35] [4]

R RangeProt_prop proportion of species range covered by PAs with an IUCN category I to IV [22] [36]

R RangeProtkm extent of PAs within species ranges, measured as an order of magnitude

(as described for ‘RangeSize’)

[36]
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their contribution to model’s classification accuracy). Variable

importance, as well as the classification accuracy of the model,

was calculated using an automated bootstrapped cross-validation

procedure (implemented within the RF routine). During each

iteration of the RF model, one-third of the data were left out and
used to cross-validate the classification ability of the model (see

[41] for additional details).

Based on the final variable importance scores, we ran a series

of partial RF models, each time including one additional variable

following the variables’ ranked importance. First, we ran the

http://rspb.royalsocietypublishing.org/


Table 2. Performance of the RF models. The full model is compared with
partial models, where the original species status (RL75) and the range size
(RangeSize) were removed. PCC, proportion of correctly classified species;
TSS, true skill statistic.

metric
full
model

RL75
removed

RL75 and RangeSize
removeda

PCC 0.89 0.82 0.79

sensitivity 0.84 0.78 0.73

specificity 0.93 0.86 0.84

TSS 0.77 0.64 0.57
aWhen removing the variable RangeSize, the extent of PAs within the
range was also removed to avoid a potential surrogate effect.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20150928

5

 on August 5, 2015http://rspb.royalsocietypublishing.org/Downloaded from 
model including only the most important variable, then added

the second most important variable and re-ran the model,

and so on until the last variable was included. We measured

the performance of each partial RF model in terms of proportion

of correctly classified species, proportion of correctly classi-

fied higher risk species (sensitivity), proportion of correctly

classified lower risk species (specificity) and true skill statistic

(TSS ¼ sensitivity þ specificity 2 1) [42].

In order to account for the effect of including the original (1975)

species Red List status in the model, we re-ran the full model after

removing this variable. Because of its potential role in Red List

assessments and its representation of past threat conditions [43],

we also re-ran the model after removing species’ range size

(RangeSize). In this latter case, we also removed the variable repre-

senting extent of PA within the species range (RangeProtkm), as it

has a weak positive correlation with range size (R2 ¼ 0.56). We

used degraded values of both range size and PA extent (i.e.

order of magnitude rather than actual values; as for previous

work [43]), to better represent the availability of coarse and

approximate information during the study period. Finally, we

built a single conditional inference classification tree to visually

represent the interaction between predictor variables.

We adopted alternative classifications of extinction risk tran-

sitions and tested the performance of our model under different

formats of the response variable. First, we repeated our RF mod-

elling using ordinal changes in Red List categories as a numeric

response variable (e.g. þ2 for a species moving from LC to VU;

see also [20]). Second, we repeated our RF modelling after

removing all species that did not change their Red List category

between 1975 and 2013; in this case, we classified the remaining

species in two categories: ‘uplisted’ for species moving to higher

extinction risk categories and ‘downlisted’ for species moving to

categories of lower risk. Third, we divided species in three

groups: ‘LC to LC’, comprising species remaining LC throughout

the study period; ‘downlisted’, comprising ing species that

underwent a downlisting in their Red List category; ‘higher

risk’, following original classification already described.

The quantification of spatial variables was performed in

GRASS GIS [44]. Statistical analyses were performed in R [45]

using the packages ‘randomForests’ [41] and ‘party’ [46].
3. Results
Our classification of extinction risk resulted in 277 species

being included in the lower risk group (55% of all species)

and 220 species in the higher risk group (45% of species).

The full RF model for classification of higher risk versus

lower risk species performed well in cross-validation

(table 2): 89% of all species were correctly classified, with a sen-

sitivity of 0.84, and a specificity of 0.93 (TSS ¼ 0.77). After

removing the Red List category in 1975 from the model

(i.e. the most important predictor), 82% of the species were

still correctly classified, but the ability to correctly classify

higher risk transitions was reduced (sensitivity ¼ 0.78; TSS ¼

0.64). Subsequent removal of range size caused further deterio-

ration in the model performance; although 79% of species were

still correctly classified, there was a substantial reduction in

sensitivity and TSS (sensitivity ¼ 0.73; TSS ¼ 0.57).

The six most important variables in the full RF model

were: Red List category in 1975, PA extent (representing con-

servation response), range size (representing distribution

state), body size (representing biology), family (representing

taxonomy) and human impact index (representing human

pressure; see figure 2a). A sequence of partial RF models,

adding one variable at a time from the most important to
the least important, showed that some of the variables

had a contrasting effect on sensitivity and specificity. For

example, adding the taxonomic family to the model substan-

tially increased sensitivity, but reduced specificity. By

contrast, adding the human influence index slightly increased

both sensitivity and specificity.

The extinction risk transition of 87% of species could be cor-

rectly predicted from one variable alone (Red List category in

1975), highlighting the importance of knowing the initial con-

dition when modelling changes in extinction risk. However,

this was biased towards lower risk species (specificity ¼ 0.95

versus sensitivity ¼ 0.78). Adding five additional variables

did not substantially alter the overall classification ability, but

improved the balance between specificity and sensitivity

(figure 2a). Even after removing the Red List categories in

1975 from the model, the performance remained fairly good,

but then several variables had to be included in order to cor-

rectly classify approximately 78% of the higher risk and

approximately 86% of the lower risk species (figure 2b). Sub-

sequent removal of range size required the use of more than

50% of all variables to achieve a sensitivity of approxima-

tely 73% and specificity of approximately 83% (electronic

supplementary material, figure S1).

A single conditional inference tree (figure 3) represents

the interplay between correlates of extinction risk transitions.

For example, species that were LC in 1975 had a much higher

probability of being in the higher risk group if they had a

relatively low coverage of PAs during the study period (less

than 1000 km2) and faced a substantial increase in human

population density within their range (more than 30%).

When changes in Red List categories were used as an

ordinal numeric response variable, the following values

were observed: 23 (n ¼ 1 species), 22 (n ¼ 3), 21 (n ¼ 11),

0 (n ¼ 369), þ1 (n ¼ 79), þ2 (n ¼ 23), þ3 (n ¼ 9) and þ4

(n ¼ 2). In this case, the RF regression model performed

poorly in terms of total variance explained (13%). The relative

importance of variables in determining model performance

was also different with respect to the importance measured

in the transition classification model, with the six most

important variables now being forest cover change, family,

human population change, generation length, age at first

birth and proportion of PAs (electronic supplementary

material, figure S2).

When excluding species that did not undergo a change in

their Red List category, our sample reduced to 15 downlisted

and 113 uplisted species. The RF model then gave highly

http://rspb.royalsocietypublishing.org/
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Figure 2. Performance of extinction risk models with an increasing number of variables, considering (a) all variables or (b) all variables apart from original status.
Variables are added iteratively to the models, from left to right according to their ranked importance in the original full model. Each series of symbols ( y-axis)
represents the specificity (spec) or sensitivity (sens) of a model that included the variables on its left or below it (x-axis).
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biased results in this case, due to the high class imbalance, and

classified all species as being uplisted (i.e. a complete imbalance

towards sensitivity). The overall classification accuracy in this

case was misleadingly high (88%), as the model was unable to

predict improvement in species conservation status.

When dividing species into three groups, there were

15 downlisted species, 262 LC to LC species and 220 higher

risk species. Here again, the overall classification accuracy

of the model was high (89%), but the predictive ability for

the downlisted class was very low (only one correct

prediction; electronic supplementary material, table S2).
4. Discussion
By focusing on extinction risk transitions, we were able to

distinguish between two groups of species. The higher risk
group included species that remained at high extinction risk

and those whose extinction risk increased between 1970

and 2010. The lower risk group included species that

remained at, or improved their status to, low extinction risk

during the same period. This classification is different from

the Red List status, as it identifies species that are undergoing

an unusual increase in extinction risk compared with other

species that started the period in the same risk category.

We included candidate predictor variables from a range

of classes (see Material and methods) and found that a

small number of variables (from different classes) can effi-

ciently predict the extinction risk transition of ungulates

and carnivores. These variables have been highlighted

previously [13,35] and include initial conservation status, cer-

tain biological traits (represented by body mass), levels of

human encroachment and the degree of conservation action

(represented by PA coverage). The importance of considering

http://rspb.royalsocietypublishing.org/
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conservation interventions in extinction risk modelling has

already been demonstrated for Australian birds [20] and

for African mammals [22], and we confirm it here in a

global-scale analysis.

Our results show that the probability of a species being at

higher risk was reduced by some adequate level of PAs cover-

age (1000 km2 or more; figure 3), while it was increased by

limited PA coverage and high levels of human pressure. To

a first approximation, this indicates the conditions under

which PAs deliver positive conservation outcomes [47].

Monitoring the progress of PA expansion and the extent of

human encroachment within species ranges can therefore

be strategic. Future projections of these variables may

be translated into global projection of species extinction

risk and allow for a proactive planning of conservation

interventions [48].

Our models included measures of environmental change

(e.g. the amount of suitable habitat for a species during

the study period) and static measures of human impact (e.g.

human influence index). These classes of variables were both

important predictors in our model. Among general proxies of

human pressures and habitat state, we also included infor-

mation on levels of tree cover and tree cover change (see also

[22]). While the role of these variables is probably more influ-

ential for forest-dependent than for non-forest species, it is

known that habitat clearance has a contagious effect [49], and

we use tree cover, a well-mapped habitat feature at a global

scale [31], to estimate the general condition of natural habitats

within species ranges.

The extinction risk transition model performed well in

cross-validations; the classification ability was high for both

lower risk and higher risk species. The availability of a data-

set with retrospective extinction risk assessments [16] made it

possible for us to validate our extinction risk model. This type

of validation is common in other environmental science areas

and has been used to validate models of climate change

effects on species distribution [50]. As our knowledge of
past extinction risk improves, this approach could become

standard practice in extinction risk modelling.

Unlike many previous studies, we did not convert IUCN

Red List categories into numerical measures of extinction risk

(e.g. LC to Extinct, from 0 to 5 [20,51]) or use extinction risk

probabilities described in Red List Criterion E [52]. These

involve assumptions about the relationship between categories

and probability of extinctions that are not supported in theory

or in practice [11]. We simply assumed that species in the

higher risk group have higher conservation requirements

than those in the lower risk group, and found that predicting

ordinal changes in Red List categories (as in [20]) was substan-

tially less efficient than predicting extinction risk transitions.

We also found that excluding those species with no change

in their Red List category, or assigning stable LC species to a

separate group, resulted in a biased allocation of model error,

with downlisted species being systematically misclassified. In

this case, the model is unable to predict the outcome of conser-

vation success (i.e. those situations in which the extinction risk

of a species is reduced over years).

Our results on the relative importance of different predic-

tor variables can be used to identify priorities for future data

gathering. We suggest that monitoring a set of such variables

over time would allow conservationists to effectively antici-

pate future extinction risk. The accuracy of these predictions

will rest on the assumption that these variables represent

the drivers of transitions in species extinction risk. Our results

demonstrates that this was the case for past extinction risk

transitions, but the emergence (or the exacerbation) of new

threats (such as climate change) would need to be accounted

for to have a robust forecasting of extinction risk [17,53].

However, this is not a weakness unique to our approach:

threats to biodiversity change over time [54] and any model

used to forecast extinction risk would require continuing

updates and recalibration to account for emerging threats.

Monitoring the emergence of new threats and the occurrence

of rapid changes in external conditions will be necessary, yet

http://rspb.royalsocietypublishing.org/
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even this would probably be easier than continuously

assessing the extinction risk category of all species.

McCarthy et al. [20] investigated optimal investment strat-

egies to prevent the extinction and minimize the number of

threatened Australian birds, using conservation investments

to model the probability of species moving between Red

List categories. A similar approach could be combined with

our modelling framework here, to measure the probability

of undergoing a high-risk transition. In this case, the prob-

ability can be modelled as a function of the intrinsic and

extrinsic conditions in place for the species, plus the conser-

vation budget available. However, adequate information on

global conservation expenditure for threatened species

needs to be available to reliably model the relationship

between investments and status change.

Our approach can provide guidance on how to allocate

resources among monitoring of species extinction risk and

monitoring of external conditions; it can inform the identifi-

cation of key variables to be monitored. There is great
potential for the application of our approach to other taxa,

especially considering the increasing availability of retro-

spective extinction risk assessments for groups such as

amphibians [55] and corals [56], and the potential to use his-

torical information to perform retrospective assessments for

other groups [16].
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