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Abstract
We model in closed form a proven bistable shell made from a magnetic rubber composite
material. In particular, we incorporate a non-axisymmetrical displacement field, and we capture
the nonlinear coupling between the actuated shape and the magnetic flux distribution around the
shell. We are able to verify the bistable nature of the shell and we explore its eversion during
magnetic actuation. We show that axisymmetrical eversion is natural for a perfect shell but that
non-axisymmetrical eversion rapidly emerges under very small initial imperfections, as observed
in experiments and in a computational analysis. We confirm the non-uniform shapes of shell and
we study the stability of eversion by considering how the landscape of total potential and
magnetic energies of the system changes during actuation.

Keywords: bistable, shell, magnetic, actuation, eversion

(Some figures may appear in colour only in the online journal)

1. Introduction

In an earlier paper [1], the first author, with others, considered
the actuation capabilities of a novel magnetic rubber com-
posite material for developing ‘active’ shape-changing
structures. The material was made into a stress-free, shallow
cap, approximately 36 mm across, which was then supported
centrally in a convex manner. When a strong magnet was
brought closer to the cap along its axis, the cap eventually
‘everted’ at a separation of 13 mm, and remained inside out
after the magnet was removed, see figure 1. The cap shape is
clearly uneven during eversion, only becoming axisymme-
trical again at the end. A finite element analysis was con-
ducted to confirm the proximity threshold for eversion, the
shape of cap during eversion, and the final resting shape. A
sequence of these shapes is repeated in figure 1 along with the
variation of elastic strain energy over time, with some unusual
features that are discussed later.

Finite element analysis reveals behaviour for a specific
set-up, which may, or may not, be general. For broader
insight, many analyses of different initial geometries are
needed but this can be time-consuming, and critical infor-
mation is not revealed in closed form—essential for further
design and development. For this, a theoretical model of
large-displacement eversion is required; however, relevant
frameworks of the time were inadequate. For example, the
assumption of uniform curvature used in studies on multi-
stable shells [2, 3] is clearly violated during eversion, whereas
the emerging linearly varying curvature (LVC) model [4]
considered non-uniform shapes of shell but actuation effects
remained decoupled from the deformation they induced. The
magnetic field applied to the shell is spatially nonlinear, and
the level and distribution of actuation strains inherently
depend on the shell displacements. Such strong coupling has
not been modelled compactly, to our knowledge, and cap-
turing this behaviour in finite element analysis was, in itself,
non-trivial.

In this paper, we build a sophisticated theoretical model
with non-uniform displacements and coupled magnetic
actuation by augmenting the LVC model from [4], in order to
compute the bistable shapes, to elucidate possible eversion
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‘paths’, and to explore how axisymmetry may be ‘lost’ during
eversion. The latter is not readily demonstrated by finite
element analysis because the cap and magnetic field are
nominally axisymmetrical; there has to be some kind of
imperfection present for the simulation to follow an alter-
native equilibrium path of non-axisymmetrical shapes, see for
example [5]. This was achieved w.r.t. figure 1 by imposing a
small initial tilt of the cap about its pole relative to the
magnetic field axis because of inevitable axial misalignments
in practice. However, it is well known in perfectly symme-
trical systems that symmetry-breaking behaviour can be the
norm, for example in beam arches and spherical caps under
axial point loads [6] and in vibrating shells [7]. In our model,
we build this capability into the displacement field, which
allows us to ascertain whether or not symmetry is lost during
actuation under perfect conditions and to understand the
influence that actuation has upon this assumption alongside
the usual competing effects of bending and stretching in
ordinary shells. The layout of study is as follows.

We reformulate the LVC model using a displacement
field with axisymmetrical and antisymmetrical components.
Their respective amplitudes are taken as control parameters
and their expressions always ensure that the edge of the cap
is free from tractions. We follow the recognised procedure
developed originally in [2] and enhanced in [3] for finding
equilibrium shapes: we find the in-plane stresses for the
deformed cap by solving Gauss’ compatibility equation—
identical to one of the Föppl–von Kármán shallow plate
equations; using these stresses and knowing the deformed
curvatures, we can compute the total elastic strain energy
stored in the deformed cap as functions of the control
parameters. The effect of the applied magnetic field is
incorporated as a potential energy function, which is added
to the elastic components to yield the total energy of the

system. By exploring the total energy ‘landscape’ for a given
proximity of magnet, we can establish the nature of equili-
bria and how they change as the magnet moves. We do not
include dynamic or inertial behaviour because that is beyond
our scope; our focus is the symmetry character of eversion,
which is the same for all time and thus, is defined by the
quasi-static response of the shell. Correspondingly, we
verify that the shell in figure 1 is bistable and that its everted
shape is non-uniform. We show that the magnetic field, if
strong enough, is able to render the natural configuration
unstable i.e. to initiate eversion. We capture the everted
shape of shell when the magnet is close enough so that
contact takes place between the two. We confirm the general
strain energy profile from finite element analysis shown in
figure 1, and that the eversion threshold is nonlinearly
dependent on the initial title angle; moreover, we predict the
same threshold as per finite element analysis. We then make
some general conclusions.

2. Elastic energy: an approximation with two
degrees of freedom

2.1. Kinematical assumptions

Consider a thin shallow shell with a circular planform  of
radius R, planform area p=A R2, and constant thickness te.
Using cylindrical coordinates ( )r f z, , , the natural stress-free
configuration, 0, is identified by the shell mid-surface
coordinate, w0, in the transverse direction, ζ, with

{( ( )) }

( ) ≔
( )

   r f z r r f p

r
r

= = <w R

w
R

, , , 0 , 0 2 ,

2
.

1

0 0

0

2

c

Figure 1. Left top: high speed capture of the actuation of a bistable rubber magnetic cap from [1]. The cap is 1.5 mm thick, approximately
36 mm wide, and is held at its centre. The magnet is moved closer to the cap and, at an axial distance of around 13 mm from the cap centre,
the cap everts unevenly—without axisymmetry—before making contact with the magnet. When the magnet is retracted, the cap remains
everted. Left bottom and right: finite element analysis shows a non-axisymmetrical transition for the cap when it is initially tilted by 5°
relative to the magnetic axis: the time taken is around 0.1 s. The plot indicates the elastic strain energy of deformation during the transition
for two axial distances: d=13 mm, which results in eversion; d=14 mm, which does not. The feature highlighted in the red box is
confirmed later.
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This is a doubly curved, axisymmetrical shape with uniform
and positive Gaussian curvature, R1 c

2, as per the stress-free
cap in figure 1. If the shell is sufficiently curved and thin, it
has one other stable, everted configuration, at least. A simple
condition for bistability is derived in [4] for shallow isotropic
shells: that the dimensionless ratio, ≔l R t Ac e , is less than a
critical ratio, l  0.04c . We also assume material isotropy
and linear elastic behaviour.

Every shell configuration, 

{( ˆ ( )) }
( )

   r f z r f r f p= = <w R, , , , 0 , 0 2 ,
2

must satisfy the following boundary conditions on its edge at
r = R:

( ˆ ) ( )
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w w
a0, 3
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2
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2
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Equation (3a) imposes a vanishing bending moment while
equation (3b) enforces a vanishing shear force. The lowest-
order polynomial in ρ that can be selected to satisfy them is

ˆ ( ) ( )r
r r r r

= - + -w
R

s

R

s

R R

s

R R2
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4
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. 4s

2
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2
c

6

4
c

As the scalar parameter s varies, ˆ ( )rws describes a deformed
axisymmetrical shell with a free edge: clearly, the natural
configuration, equation (2), is recovered when s= 0. For
>s 0, eversion is deemed to be occurring when the curvature

at the cap centre (r = 0), given by

ˆ
r

¶
¶

=
-

r=

w s

R

2 5

2
,

2
s

2
0 c

changes sign, i.e. when >s 0.4.

Antisymmetrical distortions are addressed by com-
plementing equation (4) with a second ansatz of circumfer-
ential variation. We find the simplest form to be:

ˆ ( ) ( )r f
r r r

f=
- -⎛

⎝⎜
⎞
⎠⎟w t

R R

R R
,

9 2 24

34
cos , 5t

4 2 6 4 2

4
c

whose amplitude is governed by the scalar parameter t. The
final cosine term ensures that the shape ŵt has one maximum
and one minimum, diametrically opposed and with ampli-
tudes ( )t R R22

c , as seen in figure 1. Note that the function
ˆ ( )r fw ,t has been carefully tuned in terms of ρ to satisfy
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Hence, the general shape function

ˆ ( ) ˆ ( ) ˆ ( ) ( )r f r f r f= +w w w, , , , 7t ts, s

satisfies the boundary conditions, equation (3), for every
choice of s and t. Note that most shapes parameterised by
equation (7) do not have a uniform curvature field.

2.2. Bending and stretching energies

For a deformed Föppl–von Kármán shell, the stored elastic
strain energy is the sum of two quadratic components in
bending, b, and in stretching (or membranal), s. For the
bending energy, see for instance [8], we have

[ ( ) · ( )] ( ) ò ò r r f= - -
p

K K K K
1

2
d d , 8

R

b
0

2

0
0 0

where ˆ= wK is the standard curvature field of deformed
shell, equation (2), = wK0 0 is the curvature field of the
natural stress-free shape, equation (1), and  is the bending
stiffness matrix for an isotropic material:
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n

n
n
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= =

- -
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⎠
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2
e

2

Y is the Young modulus and ν is the Poisson ratio. Using
equation (7), the standard components of K are

ˆ ˆ
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while K0 has components = =ffK K R1rr0 0 c and =fK 0r0 .
The bending energy equation in equation (8) can be integrated
in closed form to obtain

( )
( )

[( )

( ) ] ( )


n

n

n

=
-

+

+ -

s t
Y R t

R
s

t

,
1

0.573 0.409

0.084 0.019 . 13

b

2
e
3

2
c
2

2

2

Note that ( ) s t,b vanishes for the natural configuration
where = =s t 0.

Denoting the membranal stress field via N, the stretching
strain energy has the general expression:

( · ) ( ) ò ò r r f=
p

- N N
1

2
d d , 14

R

s
0

2

0

1

where  is the membranal stiffness defined in equation (9),
see [8]. The membranal stress field can be found by solving
Gauss’ original compatibility equation for shallow shell
displacements because we already know the Gaussian
curvature properties of the shell; specifically, the difference
in Gaussian curvature between the current and initial shapes
constitutes a ‘forcing’ function for Gauss’ equation. The mid-
surface strains are substituted by stresses reformulated in
terms of an Airy function j for isotropic materials, and
Gauss’ equation, in its form defined in [4], now reads as

( ) ( )jDD = -Yt K Kdet det , on , 15e 0

with no in-plane tractions on the free edges demanding that

( )j
j

=
¶
¶

= ¶
n

0, on . 16

Here, jDD indicates the standard biharmonic operator on j,
and ¶ ¶n indicates derivation with respect to the direction n,
the outward normal to ¶ . The usual membranal stress
components per unit length are recovered, see for instance [9],
from:

( )

r
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The forcing term in equation (15) can be computed in closed
form from the generic shape variation in equation (7). This
returns

( ) ( )
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,

where the coefficients Ca k, are functions of s and t, given in
the appendix. Hence, the Airy function required to solve
equation (15) is a linear combination of the solutions of 15
elliptic problems after substituting equation (18) into
equation (15). These may be written individually as

( )

( )





j r f

j
j

DD =

=
¶
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and each one can be solved in closed form to reveal:
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The generic Airy function is correspondingly written

( ) ( )åj j r f=
Yt

R
C s t, ,

a k
a k ak

e

c
2

,
,

and, using equations (14) and (17), the stretching strain
energy can be computed to be

2.3. Total elastic energy: evidence of bistability

The total elastic energy is the sum of the two components

( ) ( ) ( ) ( )  = +s t s t s t, , , 21e b s

and is a fourth order polynomial expression in s and t. We can
solve ( ) s t,e for stationary values of s and t, in order to find
the range of equilibria. We can also explore the variation of

( ) s t,e on the plane (s, t), where contours of strain energy
provide direct information about the stability of equilibria.
This has been performed in figure 2 according to the values in
table 1 for the shell in figure 1 from [1]:

Two energy minima corresponding to stable equilibria
are clearly evident: the natural, stress-free state is located at
( ) ( )=s t, 0, 0 , and the everted configuration at

( ) ( )
n

n n
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( ) ( )=s t, 0.995, 0 . The latter is axisymmetrical because
t=0 and has non-uniform curvature, as shown. Bistability is
also confirmed by calculating ( )l l= < 0.0255 0.04c .
Elsewhere on the landscape, the deformed shell is not stable
and must ‘move’ towards either stable equilibria along a path
of steepest descent—a longstanding principle embodied, for
example, in the behaviour of chemical reactions [10]. When

actuating forces are present, the landscape itself is not static
but is modified by the work contribution from actuation—as
described in, for example, [11, 12]. We must therefore con-
sider the total energy landscape including the magnetic
potential energy, expressed in terms of the shape of shell, i.e.
as a function of s and t.

Figure 2. Top: contour plot of the elastic strain energy, e on the plane (s, t), where s and t are control parameters measuring the degree of
axisymmetry and antisymmetry, respectively. The two minima are marked by heavy red points: the initial state at the origin and the everted stated at
( ) ( )=s t, 0.995, 0 . The orange points indicate a path of axisymmetrical shell shapes between the minima; the blue dots is a non-axisymmetrical
path, which follows a path of least gradient up to saddle at ( ) ( )s t, 0.65, 1.8 , before descending towards the everted minimum. Bottom:
corresponding non-axisymmetrical shapes and axisymmetrical shapes.

Figure 3. The elastic strain energy components along the
axisymmetrical path in figure 2: total strain energy, e (black solid);
bending, b (grey dashed) and membranal, s (orange dashed)
components.

Figure 4. Ratio U Us M between the energies needed for non-
axisymmetrical and axisymmetrical eversion, plotted against the
dimensionless ratio λ, for n = 0.2, 0.5, 0.8. The region l lc,
where shallow shells are bistable, is shaded by a light gray colour; a
dashed line marks the actual value of λ for the shell under
consideration.
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By gradually increasing the level of actuation—by
moving the magnet closer to the cap, we may observe how the
stability character of the original elastic strain energy land-
scape changes. Eversion begins when the natural configura-
tion loses its stability margin and becomes unstable in this
landscape, leaving only the stable everted configuration. This
is an important point, which is not usually noted in studies of
actuator effectiveness, but which has been discussed
thoughtfully in [13]. In becoming unstable, the landscape
around the natural state changes from a well to a saddle, and
eversion follows the path of steepest descent along a direction
in which the local gradient first becomes negative. As noted
before, we neglect inertial effects because this adds further
modelling complexity; importantly, the properties of eversion,
such as symmetry and threshold proximity, do not originate in
the dynamics of response.

Before formally calculating the magnetic potential energy,
it is worth pondering how eversion may proceed without axi-
symmetry. The magnetic field is axisymmetrical in nature and,
therefore, exerts symmetrical forces upon the cap initially,
provided the cap is itself perfectly axisymmetrical and isotropic.
Although the actuator effect is absent from the landscape in
figure 2, axisymmetrical deformation proceeds along t=0,
along a path of steepest ascent and descent towards the everted
shape, as highlighted. Either side of the ascending path, there
are shape configurations for which e is immediately lower
and, intuitively, this part of the path not be globally stable. If, on
the other hand, we move along a different path, it may be
possible that local perturbations from e are stable, giving a
more secure route for eversion; one such route is also high-
lighted, which fulfils this property by rising least steeply away
from the natural state, where the distance between successive
contours is largest. Since t is now non-zero, the intermediate
shapes of shell are non-axisymmetrical, as shown. If we now
compute the following two energetic quantities:

1. ≔ ( ) =U s tmax , 0M s e , the maximum elastic energy
encountered along the axisymmetric path;

2. ≔ ( )U s tmin max ,ts s e , the elastic energy associated
with the saddle point with ¹t 0,

then the ratio U U 1s M measures, informally, the energe-
tical advantage of the non-axisymmetrical transition with
respect to the axisymmetrical one; the smaller the value of
U Us M, the greater the tendency for non-axisymmetrical
eversion under suitable perturbations.

For the model under consideration, the ratio U Us M can
be computed in closed form and turns out to be a function
only of the Poisson ratio, ν, and the dimensionless parameter,

( )l p= R t Rc e
2 , which measures the ratio between bending

and stretching energies according to  l µ2
b s. Figure 4

plots U Us M with respect to λ for different values of the
Poisson ratio.

At larger values of the dimensionless parameter l lc,
where bistability emerges, U Us M. However as soon as λ

decreases, U Us M becomes increasingly smaller. Eventually,
for l  0, a plateau is reached where U U 0.36s M for any
value of the Poisson ratio. For our shell, we obtain

U U 0.9s M , signifying that axisymmetrical eversion is
highly likely; a quantitative answer is only conveyed when
we understand how actuation and imperfections distort the
overall energy landscape, which is now performed.

3. Magnetic actuation

The magnetic field in [1] is generated by connecting together
high-strength Neodymium N42 disk magnets along their axis
into a cylindrical stack for a more intense field of flux. Cal-
culating the resulting field is not trivial but we follow the
scheme outlined in [1], originally based on the derivation
in [14].

The magnetic field, B, is assumed to be axisymmetrical,
and to vary with radial distance, r, and axial distance, z, from
a reference point source. More formally

( ) ( ) ( )= -Fr z r zB , , , 22m

where

( )

( )
( )

( ) ( )
( ) ( )

( )

m
p

F

= - +
-
- +

- - + +
-

- + +

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

r z

M
a r z E

a r

a r z

a r H z E
a r

a r H z

,

4

4
,

23

m

0 2 2
2 2

2 2
2 2

is the magnetic potential originating from two parallel,
oppositely charged monopolar disks of radius r=a separated
by a perpendicular distance H, equivalent to the height of
stack [14]. Here (·)E denotes the complete elliptic integral;
the top of the stack lies within the plane z=0 and the bottom
in the plane = -z H; the vacuum permeability is m0 and the
magnetisation per unit volume of magnet material is M.

A material particle within the field, B, is subjected to a
conservative force

( ) · ( )=  = -U UF m B B, , 24m m

Figure 5. Spatial distribution of the potential energy ( )U r z,m of the
cylindrical magnetic field defined by the properties in table 2. r and z
are orthogonal cylindrical coordinates with origin in the centre of the
magnet. r and z are local shell coordinates with origin located a
distance, d, from the magnet; q is the initial angle of tilt of the cap,
whose initial cross-section is shown.
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where ( )m B is the magnetization induced by the magnetic
field and Um is the potential energy associated with the
magnetic field. It has been experimentally observed [15], that
the magnetisation of a material particle of volume dV is well
fitted by the following linear relation

( ) ( )dc
m

= Vm B B d , 25
0

where dc is a dimensionless number indicating the magnetic
susceptibility of the material composing the shell [16]. Using
this approximation, the potential energy of the magnetic
forces acting on every infinitesimal volume dV of shell is

( ) ( ) · ( ) ( )dc
m

= -U r z r z r z VB B, , , d . 26m
0

Equation (26) must be integrated over the volume of
shell, in order to obtain the total magnetic energy associated
with the shell. We may use the original shell cylindrical
coordinates from section 2, resulting in r f r=V td d de .
However, since we want the shell to move inside the refer-
ence frame ( )r z, of the magnet, we introduce the following
change of coordinates

≔ ( )
≔ [ ( ) ] ( )
*
*

r q z q
z q r q
+

+ -
r s t

z h d s t

cos , sin ,

, cos sin , 27

where (·)h is the unit step function. Here, r* and z* indicate
the coordinates of a generic point of the shell; d is the
proximity distance between the centre of the shell and the
upper surface of the magnet; and q is the angular rotation of
the z axis (attached to the shell) with respect to the z (attached
to the magnet), i.e. q is the tilt angle of the shell, see figure 5.
Moreover, ( ) ˆ ( )z r f=s t w, ,ts, must be computed according
to the ansatz equation (7), which will lead to an explicit
dependance of the magnetic energy on the actual shell shape.
The unit step function h is used when we want to avoid
interpenetration of the magnet and shell by ensuring * z 0.

Finally, we obtain the total potential energy of the shell
as the following integral

( ) ( ) ( )* * ò òq r r f=
p

s t d t U r z, ; , , d d . 28
R

m e
0 0

2

m

The energy functional, m, depends on the shell configuration
through the parameters (s, t) and the relative position and
orientation through d and θ. The function has to be evaluated
numerically: using a standard CPU Core at 2.8 GHz and
WOLFRAM MATHEMATICA [17], 100 evaluations takes about
15 s. The magnetic properties and geometry of the magnet
used in [1] are given in the following table.

4. Total energy

The total energy  of the actuated shell is the sum of elastic
and magnetic energy components:

( ) ≔ ( ) ( ) ( )  q q+s t d s t s t d, ; , , , ; , . 29e m

Clearly, at large distances from the magnet (  ¥d ), the
magnetic energy is negligible and  reduces to the elastic
strain energy landscape in figure 2 with two stable equilibria:
this is the ‘far-field’ case. When d is reduced, the magnetic
contribution increases, and  begins to differ from e, which,
in turn, affects the stability of the original equilibria. By way
of example, we plot  in figure 6 as a function of s only,
stipulating t=0 and q = 0, for three values of d above the
experimental threshold of eversion: 1 m, 20 mm and 14 mm.
For the largest d, the equilibria are unaltered see figure 3,
whereas for =d 20 mm, the magnet is close enough to distort
the initial state, observed as a slight movement of the original
minimum along the s-axis. For the smallest d, the curve
passing through the original minimum is now noticeably
more rotated as this stationary point transforms into a point of
inflexion. All everted configurations are local minima and
always stable, and their locations along s increase beyond
0.995, indicating that they become more distorted than the
far-field shape. Negative values of  are justified since we
choose the initial configuration to have a vanishing energy in
the far-field case.

Figure 6. Energy performances for three distances of magnet from
the cap; d=1 m, 20 mm and 14 mm: total energy,  , (solid) and
magnetic energy, m, (dashed). Axisymmetry is imposed by setting
q = 0 and t=0.

Figure 7. Total energy,  , for d=7 mm and q = 0 . The orange
points show a possible eversion path. Each point is a solution of
equation (31) over a fixed interval of time, which imposes artificial
damping in proportion to the local gradient.
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If d is decreased further, the initial state becomes a point
of inflexion and unstable in the direction >s 0. The system
will naturally move along the path of steepest descent towards
the stable everted configuration. However, we also need to
ascertain the landscape elevation around this path when t is
non-zero in view of the propensity for non-axisymmetrical
eversion. This is now considered for caps with and without
initial tilt angles.

5. Simulations

5.1. Vanishing tilt angles: axisymmetrical eversion

For vanishing tilt angles, q = 0, it can be shown that the total
energy,  , is symmetrical with respect to t=0, i.e.

( ) ( ) ( ) q q= = - =s t d s t d, , , 0 , , , 0 . 30

By definition, the corresponding landscape is symmetrical
about the t=0 axis, which heavily favours axisymmetrical
eversion. We can test this hypothesis by setting d=7 mm so
that the magnet is closer than required for eversion. The total
energy is plotted in figure 7, where the original minimum at
( ) ( )=s t, 0, 0 is now a saddle and has lost its stability. The
system will move away from this towards the stable everted
minimum around s=1.25. Because of symmetry about
t=0, the eversion path follows a decreasing ridge and the
transition is axisymmetrical.

The spacing between points on the path has been cal-
culated by solving the auxiliary equation

{˙ }̇ ( ) ( ) q= -s t s t d, , , , , 31

where ∇ is the gradient function with respect to s and t and an
overdot denotes differentiation with respect to time. This
equation is a statement of damping in the direction of steepest
descent and is analogous to the artificial ‘numerical’ damping

Figure 8. Top left: the eversion path in figure 7 superposed onto the landscape of elastic strain energy, e. Top right: values of e from (a)
plotted with respect to fixed time intervals see the finite element data from figure 1. Bottom: the resulting axisymmetrical shell configurations
during eversion.

Figure 9. Total energy,  , for d=13 mm and q = 5 . The blue
points show a possible eversion path; the grey points indicate how
the path is altered when contact is enforced between the deformed
shell and the magnet.
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Figure 10. Top left: the eversion paths of figure 9 superposed onto the elastic strain energy landscape, e. Top right: values of e along the
same paths plotted with respect to fixed intervals of time, see figure 1. Bottom: the shell configurations of the grey eversion path, where
contact takes place with the magnet.

Figure 11. Left: continuation of the natural stress-free equilibrium, ( ) ( )=s t, 0, 0 , as the distance d from the magnet is decreased for initial
angles of tilt; q =   0 , 1 , 5 , and 10°. Right: critical distance dc as a function of θ: dots are discrete solutions and the line is a best fit.

Table 1.Geometry and material properties of the shell cap in figure 1.

Rc R te Y ν

17.32 mm 18 mm 1.5 mm 750 kPa 0.5

Table 2. Properties of the magnet in figure 1.

m0 M dc a H

p ´ -4 10 7 N A−1 ´1.03 106 A m−1 0.20 25 mm 12 mm
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used in finite element analysis for achieving convergent
solutions: when there are rapid changes in values, damping is
higher and solution points are more finely resolved for the
sake of accuracy. The equation above therefore provides a
way of comparing to the time-oriented finite element data
even though our framework does not include other dynamic
effects; equation (31) is solved for fixed intervals of time so
that the spacing between points is directly proportional to the
magnitude of the local gradient. After calculating the (s, t)
coordinates of each point, we extract the corresponding
values of the elastic strain energy, e, from the total
landscape, which is rendered in figure 8(a). These values
are then plotted for each time interval in figure 8(b). This
profile, encouragingly, replicates the features present in the
finite element output of figure 1, in particular, the highlighted
second minimum. Strictly speaking, we need to consider non-
axisymmetrical eversion from our analysis, which is
performed in the next section; however, these preliminary
results give confidence to our solution methodology in view
of more sophisticated multi-physics analysis software. The
corresponding shapes of shell are also plotted in figure 8(c).

5.2. Non-vanishing tilt angles: non-axisymmetrical eversion

Symmetry conditions are not imposed upon the performance
of the total energy,  , and the initial conditions specify
d=13 mm and q = 5 , as in [1]. The landscape of  is
plotted in figure 9 and, again, we solve equation (31) over
fixed intervals of time. Again, the stability of the natural
minimum near ( ) ( )=s t, 0, 0 is lost, which becomes a saddle;
however, it is skewed in the direction of positive t, and the
eversion path being directed away from the s-axis is therefore
one of non-axisymmetrical shapes. When contact between the
deformed shell and magnet is enforced by the condition of
* >z 0 in equation (27), this path bifurcates as shown and
follows a different eversion route. This diversion happens
early on because the shell is more deformed on one side and
makes contact well before full eversion. We see this also in
the experiment in figure 1. Note that we are not modelling the
contact forces, so the evaluation of the elastic strain energy
after contact has been made may not be entirely correct. Both
sets of path points are superposed onto the elastic strain
energy landscape in figure 10(a), in order to construct the
time-evolution profiles in figure 10(b). Again, the features
compare well to the finite element output in figure 1. The
deformed shapes for the contacting case are displayed in
figure 10(c).

5.3. Critical values of the distance

We finally address the dependence of the eversion threshold,
d, upon θ. We tackled this by performing a numerical con-
tinuation of the natural equilibrium branch for several tilt
angles, see for instance [18]. For any θ, this branch originates
from the point ( ) ( )=s t, 0, 0 as  ¥d . The results are
shown in figure 11 and can be summarised as follows.

• For a given angle of tilt, there exists a well defined critical
value of distance, denoted as ( )qdc , below which stability
of the equilibrium branch is lost;

• the function ( )qdc for small tilt angles ∣ ∣ q 15
monotonically increases from a minimum value of around
7 mm for q = 0;

• a non-vanishing tilt angle ‘encourages’ eversion by
enabling non-axisymmetrical shapes. This is evident
from figure 11(a), where the solution branches are plotted
in the three-dimensional space ( )s t d, , : these are
characterized by positive values of t well before their
stability is lost;

• a relevant sensitivity of the function ( )qdc is evident near
q = 0; one could expect the values d 11 mmc to be
rarely observed as any small imperfections in practice
would lead to a non-axisymmetrical eversion.

Thus, in a perfect world, the proximity distance for
eversion is around 50% of the value of 13 mm observed in
experiments and in finite element analysis. This value quickly
rises as the tilt increases, reaching 13 mm when θ is just three
degrees. Thereafter, the rate of increase diminishes, so does
the influence of the tilt angle, and eversion is non-
axisymmetrical.

6. Conclusions

We have developed a two degree-of-freedom theoretical
model for predicting the general shapes of a linear elastic
shell cap made of novel material, which ultimately everts
under a magnetic field. We have advanced the general for-
mulation for such problems by explicitly dividing the dis-
placement field into axisymmetrical and antisymmetrical
components, so that we may explore the behaviour directly
under both assumptions. We have included magnetic actua-
tion for the first time in such a formulation, and we have
focussed on the total energy profile of the system, in order to
understand its stability characteristics and how they change
during actuation. Importantly, we have argued that because
we have a closed system, actuation from the initial state will
follow the path of maximum descent from this position. We
have been able to interrogate this graphically via the land-
scapes we generate, for a more intuitive insight. We have
obtained good agreement with results from a leading study, in
particular, we have confirmed the proximity threshold for
eversion, we have shown that an initial title angle is con-
ducive for non-axisymmetrical eversion, and we have deter-
mined that the critical threshold for eversion is strongly
controlled by the tilt angle when the angle is small. The
goodness of these qualitative comparisons give us confidence
about our model’s overall robustness, which may then be used
to predict detailed information such as transverse displace-
ments, materials stresses etc throughout the cap, and fur-
thermore, to describe the performance of other shapes of
magnetic shell. We therefore hope our approach may inspire
others to pursue modelling in this way in concert with com-
putational studies.
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Appendix

The coefficients ( )C s t,a k, in equation (18) for the expansion
of the forcing term ( )-K Kdet det 0 can be easily computed
to be for k=0 (namely the terms independent of f):

( )

( )

( )

( )

( ) ( )

= - +

=- + -

= - +

=- -

= +

C s t
s

s
t
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R
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R

t

R
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s

R
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R
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s
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s
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for k=1 (namely the terms proportional to fcos ):

( ) ( )
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( ) ( )
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and for k=2 (namely the terms proportional to fcos 2 ):
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