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Abstract
Age of onset (AO) of Huntington disease (HD) is mainly determined by the length of the CAG

repeat expansion (CAGexp) in exon 1 of theHTT gene. Additional genetic variation has been

suggested to contribute to AO, although the mechanism by which it could affect AO is pres-

ently unknown. The aim of this study is to explore the contribution of candidate genetic factors

to HD AO in order to gain insight into the pathogenic mechanisms underlying this disorder. For

that purpose, two AO definitions were used: the earliest age with unequivocal signs of HD (ear-

liest AO or eAO), and the first motor symptoms age (motor AO or mAO). Multiple linear regres-

sion analyses were performed between genetic variation within 20 candidate genes and eAO

or mAO, using DNA and clinical information of 253 HD patients from REGISTRY project. Gene

expression analyses were carried out by RT-qPCRwith an independent sample of 35 HD

patients from Basque Country Hospitals. We found suggestive association signals between

HD eAO and/or mAO and genetic variation within the E2F2, ATF7IP,GRIN2A,GRIN2B,
LINC01559,HIP1 andGRIK2 genes. Among them, the most significant was the association

between eAO and rs2742976, mapping to the promoter region of E2F2 transcription factor.

Furthermore, rs2742976 T allele patient carriers exhibited significantly lower lymphocyte

E2F2 gene expression, suggesting a possible implication of E2F2-dependent transcriptional

activity in HD pathogenesis. Thus, E2F2 emerges as a new potential HD AOmodifier factor.
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Introduction
Huntington’s disease (HD) (OMIM 143100) is a neurodegenerative disorder characterized by
movement abnormalities (chorea, hypokinesia), cognitive decline and psychiatric disturbances,
which most often become noticeable between the ages of 35 and 50 [1]. HD is caused by an
expanded CAG trinucleotide repeat (>39 CAGs, CAGexp) in exon 1 of the HTT gene.
Expanded alleles result in an elongated polyglutamine tract in the Huntingtin protein (HTT),
which leads to defects in intracellular trafficking and signalling pathways, as well as in nervous
system development during embryogenesis [2]. Assessment of Huntington disease age of onset
(AO), that is, the point in time when a carrier of the expanded allele develops unequivocal HD
signs [3], remains to be clearly defined at the phenotypic level, as different criteria are being
used to estimate AO. Involuntary movements, such as chorea, are the most distinctive HD
symptom that can be established with reliability, and their debut commonly defines HD age of
onset [4]. However, motor symptoms are often preceded by cognitive and/or psychiatric
decline [5]. Consequently, some authors have defined AO as the age at which the first possible
symptom is detected [6–8].

Multiple studies have shown an inverse correlation between HD age of onset and CAGexp.
However, this correlation only accounts for a fraction of the total AO variability, which ranges
between 42% and 73% [6–10]. This range may be attributed, among others, to the characteris-
tics of the studied population, the HD phenotypes considered (i.e. inclusion or not of juvenile
HD cases) and/or the criteria used to define the age of onset [11,12].

AO variability not explained by CAGexp shows strong heritability (40% to 56%) [12,13],
suggesting the contribution of additional genetic factors in determining AO in HD. Indeed,
genetic variation influencing AO has been reported previously. Association signals have been
replicated for some of those genes (e.g. GRIK2 [10,14,15], GRIN2A and GRIN2B [16–18],
TCERG1 [10,19],HAP1 [20,21], ADORA2A [8,21], PPARGC1A [22,23], ATG7 [24,25]), but
not for others (e.g. TP53, UCHL1, DFFB, APOE andMTHFR [26], GSTO1 [27], ASK1 or
MAP3K5 andMAP2K6 [28]).

Most polymorphisms exhibiting association signals with HD AO are located in non-coding
regions. They may affect mRNA splicing or transcriptional regulation [18], for example, or
they may represent markers in linkage disequilibrium (LD) with AO modifiers. However, none
of the associated SNPs has been functionally validated to date, and little is known about the
mechanisms by which these polymorphisms may affect AO in HD.

The aim of this study is to improve our understanding of the contribution of AO modifiers
to HD pathogenesis. To this end, we have studied the effect of genetic variation within 20 can-
didate genes on HD age of onset. We replicate some of the previously reported association sig-
nals. Moreover, we identify genetic variation in the E2F2 promoter region that associates with
HD AO and E2F2 gene expression, suggesting a potential molecular explanation for this
association.

Material and Methods

Patients and phenotype data
The European Huntington’s Disease Network (EHDN) provided DNA samples and clinical
data from 284 individuals forming part of the REGISTRY project. The clinical data supplied
included age (from 18 to 82 years old), sex (146 men and 138 women), self-assigned ethnicity
(99.3% had European origin), mutated CAG repeat number (CAGexp), symptoms and AO
information (S1 Table). Additionally, the EHDN obtained a written informed consent, in com-
pliance with the Declaration of Helsinki, Internal Conference of Harmonisation-Good Clinical
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Practice (ICH-GCP), and local regulations, from each participant. AO was estimated by the
raters, following the Unified Huntington's Disease Rating Scale (UHDRS’99) and the Hamilton
Depression Rating Scale (HDRS). Two definitions of AO provided by EHDN were used: the
earliest AO (eAO), i.e., the age of the patient at which the first unequivocal signs of HD
(motor, cognitive or psychiatric) appeared, and the motor AO (mAO) i.e., the age at which the
first motor symptoms appeared. The eAO data was available for all individuals in the sample;
the mAO data was available for 196 individuals.

Only European origin individuals with adult-onset HD (> 20 years old) were considered in
the study, and single outliers with CAGexp repeat number outside the 40–53 range were
excluded [29,30]. Individuals with psychiatric symptoms as their first HD manifestation and
with family history of mental disease were excluded to avoid possible effects of hereditary psy-
chiatric disorders. The final number of selected patients in the eAO and mAO groups was 255
and 180, respectively. The analyzed individuals were from Germany (N = 62), Italy (N = 40),
United Kingdom (N = 36), Poland (N = 31), The Netherlands (N = 25), Spain (N = 17), Den-
mark (N = 11), Norway (N = 8), Austria (N = 7), Portugal (N = 6), Finland (N = 5), Belgium
(N = 4), Czech Republic (N = 2) and Sweden (N = 1).

For gene expression analyses, blood samples from 35 European origin individuals belonging
to 27 HD families from hospitals of the Basque Country were collected after clinical and molec-
ular HD diagnosis. Most of patient’s ancestors come from Spanish regions other than the Bas-
que Country, and two have Basque ancestry (their four grandparents were Basque). This
sample was composed of 20 men and 15 women with ages ranging between 28 and 83 years
old. Details of each sample are shown in S2 Table. Written informed consent was obtained
from all patients and the study was approved by the Ethics Committee for Clinical Research of
Euskadi and by the Ethics Committee for Research and Teaching of the University of the Bas-
que Country (UPV/EHU).

Genes, SNPs and Genotypes
Twenty candidate genes were targeted. Seventeen genes were selected based on the following
three criteria: (a) reported association with HD AO in previous studies (BDNF [31], DFFB [7],
GRIK2 [10,14,15], GRIN2A and GRIN2B [16–18],HAP1 [20,21], PPARGC1 [22,23] and
TCERG1 [10,19]); (b) participation of the gene product in a pathway or process altered in HD
(CASP6 [32,33], CASP8 [34], E2F1 [35] and E2F2 [36]); (c) direct interaction of the gene prod-
uct with HTT (CDK5 [37,38],HIP1 [39], SGK1 [40,41], SIRT1 [42] and SP1 [43]). Functionally,
these genes are involved in processes such as apoptosis (DFFB [44,45], CASP8 [34,46], CASP6
[32,33] and HIP1 [46,47]), neuronal survival (BDNF [48,49], SGK1 [40,41] and CDK5 [37,38]),
glutamatergic synapse/transmission (GRIK2, GRIN2A and GRIN2B [50,51]), transcriptional
control/cell proliferation (E2F1 [35], E2F2 [36], SP1 [52], PPARGC1 [53], TCERG1 [19] and
SIRT1 [54,55]) or intracellular trafficking (HAP1 [56]). The remaining three genes were
selected on the basis of their physical proximity to suggestive signals observed in our prelimi-
nary studies: CCL26 (mapping close toHIP1), LINC01559 and ATF7IP (both mapping close to
GRIN2B).

Using HapMap CEU population data, a total of 117 SNPs not in LD (D’< 0.7) were selected
in the 20 genes, all with intermediate allele frequencies and located within exonic, intronic or
regulatory regions to ensure allele detection and to aim a comprehensive coverage of the major-
ity of common variation in each gene. LD information used in the SNP selection process was
obtained from the Centre for Genomics and Global Health (http://www.gmap.net/marker/).
Some of the selected SNPs had been studied in previous association analyses between genetic
polymorphisms and AO in HD. Details about each genotyped SNP are shown in S3 Table.
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SNPs were genotyped using SNPlex genotyping system (Life Technologies) and these geno-
types are shown in S4 Table. Two individuals were excluded from the analyses due to call-
rates< 50%. Twenty-seven SNP genotypes failed or showed< 90% call-rate, and two SNPs
were not in Hardy-Weinberg equilibrium, and were therefore excluded (S3 Table). Altogether,
a total of 88 SNP genotype data were used for genetic association analyses on 253 individuals
with eAO data and on 178 individuals with mAO data.

Association analysis
T–test and Mann-Whitney U test (SPSS Ver.17.0, SPSS Inc) were used to compare the CAGexp
and AO mean and median, respectively, of Southern European (Portugal, Spain and Italy) and
the rest of the populations (called Northern Europeans).

Population stratification was examined with F-statistics according to the unbiased fixation
index (FST) proposed by Weir and Cockerham (1984) [57] using the FSTATv2.9.3 software
[58]. The standard deviations of F-statistics and the confidence intervals were calculated with
bootstrapping (100,000 permutations) over loci.

The correlation between CAGexp and the logarithm (log) of eAO or mAO, and the contri-
bution of CAGexp to the variability of each AO were estimated by correlation analysis and sim-
ple linear regression analysis (SPSS), respectively. The association between log AO and each
SNP was estimated by multiple linear regression analysis (SPSS) according to dominant, reces-
sive and additive model based on the minor allele, and corrected using Bonferroni procedure.
In all association analyses, log AO was used as dependent variable and CAGexp as independent
variable. LD information from the 253 patients was obtained using Haploview v4.0 [59].

Reverse transcription quantitative PCR (RT-qPCR) analysis
Total RNA was obtained from peripheral blood mononuclear cells of patients from 5 hospitals
of the Basque Country using TRIzol reagent (Life Technologies), following the manufacturer’s
instructions. The RNA was treated with DNase, purified using RNeasy kit (Qiagen), quantified
with NanoDrop ND-1000 and examined for RNA integrity (RIN>7) with 2100 Bioanalyzer
(Agilent Technologies).

E2F2 gene expression was analyzed with both SYBR Green-based and Taqman-based assays
(Life Technologies). The cDNA was synthesized using 2 μg (for SYBR Green-based assays) or
500ng (for Taqman-based assays) of total RNA using High-capacity cDNA Reverse transcrip-
tion kit (Life Technologies). For SYBR Green-based assays, forward (5´ACG TGC TGG AAG
GCA TCC 3´) and reverse (5´GCT CCG TGT TCA TCA GCT CC 3´) primers, located in
exons 3 and 4 of E2F2, respectively, were used. For Taqman-based assays, Hs00918089_m1
probe, which hybridizes with the 3–4 exon boundary of the E2F2 gene, was used. The reference
genes for normalization were selected according to their reported stability in leukocytes [60].
For SYBR Green assays, GAPDH, HPRT1, UBC and YWHAZ genes were tested (with
Hs00266705_g1, Hs99999909_m1, Hs00824723_m1 and Hs01122447_g1 Taqman probes,
respectively); for Taqman assays B2M, RPLP0, UBC and YWHAZ genes were tested (with
Hs00984230_m1, Hs0299885_s1, Hs 01871556_s1 and Hs03044281_g1 Taqman probes,
respectively). PCR reactions were run in triplicate, using 25ng/μl of cDNA and 900 nM of
primers (in SYBR Green-based analyses) and 9 ng/μl of cDNA and 250nM of Taqman probes
(in Taqman-based analyses), in 20 μl of final volume. Reactions were carried out on an ABI
Prism 7900HT Fast Real-Time PCR System Unit (Life Technologies) with standard cycling
conditions. Serial cDNA dilutions were performed to calculate standard curves in order to
determine the PCR efficiency for each gene. Results were analyzed with the Sequence Detection
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System (SDS) Software v2.4 (Life Technologies) to obtain the Cq (quantification cycle) values
for each sample. Samples with>0.5 standard deviation were excluded.

The geNorm algorithm included in DataAssist v2.0 software (http://www.lifetechnologies.
com/us/en/home/technical-resources/software-downloads/dataassist-software.html) was used
to estimate the stability of genes for normalization. cDNA quantity was normalized relative to
UBC and YWHAZ reference genes in SYBR Green assays and to B2M and YWHAZ reference
genes in Taqman assays. The comparisons in gene expression levels between groups were car-
ried out with Relative Expression Software (REST) [61] for SYBR Green data analyses and with
DataAssist software for Taqman data analyses.

DNA samples from the Basque Country were genotyped for rs2742976 E2F2 with the same
methodology as for the samples collected from REGISTRY. E2F2mRNA levels were compared
among the different rs2742976 E2F2 genotypes.

Results

Absence of geographical stratification in the analyzed patient sample
The eAO of the EHDN sample analyzed in this work ranged from 21 to 73 years. Similarly, the
mAO ranged from 21 to 70 years. Mean and median CAGexp values were very similar in both
eAO and mAO (mean values of 44.11±2.91 and 44.30±3.11, respectively, and a median value
of 44 CAGs in both AOs).

Given the diverse origin of the HD patients tested in this study, several statistical analyses
were applied to examine possible genetic divergences between Southern European and North-
ern European individuals, which could lead to false positive associations [30]. No significant
differences were detected when the mean and the median of CAGexp, eAO or mAO were com-
pared (Tables 1 and 2). Similarly, the eAO and mAO distributions across CAGexp alleles did
not show different AO patterns between Southern and Northern European populations
(P = 0.958 (eAO) and P = 0.945 (mAO) in Kolmogorov-Smirnov test) (S1 and S2 Figs, respec-
tively). Finally, stratification analysis using the SNP genotype information for all analyzed loci
reflected low and no significant level of genetic differentiation between the two groups (FST
index = 0.001±0.001; P = 0.5). Therefore, subsequent analyses were carried out without correct-
ing for the geographical origin of the patients.

Table 1. CAGexp and eAO comparisons between samples from Southern and Northern European populations.

Origin of samples N Mean CAGexp Median CAGexp Mean eAO Median eAO

Southern European 63 44.36±2.82 43 43.16±11.19 42

Northern European 190 44.03±2.95 44 43.07±11.24 42.5

Total 253 44.11±2.91 44 43.09±11.21 42

P value in Southern/Northern comparison - 0.371 0.290 0.997 0.991

doi:10.1371/journal.pone.0131573.t001

Table 2. CAGexp andmAO comparisons between samples from Southern and Northern European populations.

Origin of samples N Mean CAGexp Median CAGexp Mean mAO Median mAO

Southern European 42 44.45±3.11 43.5 42.86±11.22 41

Northern European 136 44.25±3.12 44 44.09±11.65 43.5

Total 178 44.30±3.11 44 43.80±11.53 43

P value in Southern/Northern comparison - 0.714 0.655 0.545 0.535

doi:10.1371/journal.pone.0131573.t002
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Correlations between HD age of onset and genetic variation in candidate
genes
Consistent with previous studies, CAGexp was significantly and negatively correlated with
eAO (P<0.0001, R = -0.758) and mAO (P<0.0001, R = -0.824). In our sample, CAGexp
accounted for 57.3% of eAO variability and 67.6% of mAO variability (Tables 3 and 4).

The association analysis carried out using genotype data of 88 single nucleotide polymor-
phisms, CAGexp and HD age of onset, revealed eight association signals (uncorrected P-value
<0.05) with eAO (Table 3) and seven with mAO (Table 4). Four of the association signals over-
lapped in eAO and mAO: rs2742976 in the E2F2 gene, rs10845757 in the LINC01559 gene,
rs10744030 in the GRIN2B gene, and rs8049651 in the GRIN2A gene. In contrast, SNPs located
in the ATF71P gene (rs11055896 and rs3213764), in the region between ATF7IP and GRIN2B
gene promoter regions (rs7966469) and in LINC01559 (rs12423809), only exhibited suggestive
association with eAO, whereas SNPs mapping the GRIK2 (rs2782901), the HIP1 (rs2240133)
and the GRIN2B (rs4764011) genes showed significant association only with mAO. With the
exception of rs3213764 within ATF7IP, which is an exonic missense SNP, and rs8049651

Table 3. Multiple linear regression analysis between SNP genotypes and eAO.

Model Minor
allele

Genetic
model

Adjusted
R2

Uncorrected
P-value

Genotype N Mean CAGexp
±SD

Mean eAO
±SD

HTT CAGexp (1) ־ ־ 0.573 <0.0001 ־ 253 44.11±2.91 43.09±11.21

(1) + E2F2 rs2742976 T ADD 0.583 0.001 TT 36 44.17±3.00 44.44±12.03

GT 99 44.18±3.10 44.44±10.98

DOM 0.589 <0.001 GG 113 43.97±2.75 41.70±11.10

GT+TT 135 44.18±3.06 44.44±11.22

(1) + LINC01559 rs12423809 C REC 0.575 0.048 CC 40 44.07±3.32 45.35±11.10

AC+AA 208 44.07±2.85 42.78±11.26

(1) + LINC01559 rs10845757 T DOM 0.577 0.025 CC 91 43.76±3.08 45.52±11.47

CT+TT 155 44.26±2.82 41.75±10.86

(1) + GRIN2B rs10744030 A REC 0.580 0.033 AA 30 45.17±3.17 42.40±10.44

AG+GG 220 43.96±2.87 43.22±11.40

(1) + GRIN2B-ATF7IP
rs7966469

T REC 0.580 0.022 TT 17 43.65±3.26 40.59±11.75

CT+CC 232 44.13±2.90 43.34±11.25

(1) + ATF7IP rs11055896 C ADD 0.576 0.034 GG 102 44.52±3.10 42.37±10.73

CG 116 43.70±2.67 44.57±11.49

REC 0.580 0.009 CC 29 44.03±3.10 40.07±11.10

CG+GG 218 44.08±2.90 43.54±11.17

(1) + ATF7IP rs3213764 G REC 0.582 0.005 GG 61 43.80±3.16 46.49±11.96

AG+AA 187 44.16±2.84 42.18±10.82

(1) + GRIN2A rs8049651 T REC 0.581 0.020 CT+CC 234 44.17±2.94 43.23±11.26

ADD 0.587 0.003 TT 16 43.25±2.67 41.50±11.72

CT 99 44.54±2.91 41.05±11.06

DOM 0.583 0.010 CC 135 43.89±2.95 44.84±11.17

CT+TT 115 44.36±2.90 41.11±11.10

Only models with uncorrected P-value <0.05 are shown. The minor allele based dominant (DOM), recessive (REC) and additive (ADD) genetic models

were tested for their association with eAO by linear regression analysis. The dominant model of E2F2 rs2742976 achieved a Bonferroni corrected P-

value = 0.016.

doi:10.1371/journal.pone.0131573.t003
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within GRIN2A, which is a synonymous SNP, all other AO-associated SNPs in our study lie
within non-coding regions of the genome.

Of note, six SNPs that correlated with eAO and three that correlated with mAO reside
within ATF7IP, GRIN2B and LINC01559 genes, all of which are located in the same genomic
region (12p13.1), but not in LD (with the exception of rs12423809 and rs10845757, both in
LINC01559 gene, with a D’ value of 0.93 in our sample).

Remarkably, the observed E2F2 association signal was significant after multiple test correc-
tion (Bonferroni corrected P-value< 0.05) and explained as much as 5.1% of the eAO variabil-
ity not explained by CAGexp. More specifically, the T allele of the rs2742976 SNP of the E2F2
gene significantly associated with a 3 year AO delay.

E2F2 gene expression analysis relative to the rs2742976 genotype in
HD patients
Interestingly, rs2742976 is located within a putative STATx transcription factor-binding site
[62] in the promoter region (-289 G>T) of the E2F2 gene, suggesting that this polymorphism
may affect E2F2 gene expression. Therefore, we tested if there was a correlation between the
rs2742976 genotype and E2F2 gene expression in an independent HD patient sample (N = 35)
collected in the Basque Country. From each individual, DNA and RNA samples were extracted

Table 4. Multiple linear regression analysis between SNP genotypes andmAO.

Model Minor
allele

Genetic
model

Adjusted
R2

Uncorrected
P-value

Genotype N Mean CAGexp
±SD

Mean eAO
±SD

HTT CAGexp (1) ־ ־ 0.676 <0.0001 ־ 178 44.30±3.11 43.80±11.53

(1) + E2F2 rs2742976 T ADD 0.680 0.014 TT 21 44.14±3.20 45.95±12.50

GT 71 44.45±3.33 44.62±11.70

DOM 0.682 0.008 GG 83 44.14±2.91 42.90±11.09

GT+TT 92 43.48±2.92 44.92±11.83

(1) + GRIK2 rs2782901 C REC 0.685 0.018 CC 25 44.28±2.90 41.52±12.92

CT+TT 151 44.30±3.17 44.22±11.36

(1) + HIP1 rs2240133 T ADD 0.680 0.022 TT 20 44.35±2.60 41.60±12.30

CT 73 44.12±2.76 43.85±11.44

DOM 0.678 0.043 CC 76 44.68±3.57 43.82±11.49

CT+TT 93 44.17±2.71 43.36±11.60

(1) + LINC01559
rs10845757

T ADD 0.679 0.048 TT 29 44.31±2.69 42.44±9.44

CT 75 44.55±3.21 42.17±12.10

DOM 0.682 0.019 CC 70 43.97±3.21 46.20±11.37

CT+TT 104 44.48±3.06 42.25±11.38

(1) + GRIN2B rs10744030 A REC 0.682 0.044 AA 23 44.87±3.48 44.56±11.45

AG+GG 153 44.22±3.07 43.72±11.65

(1) + GRIN2B rs4764011 G REC 0.681 0.036 GG 34 44.03±3.70 42.85±12.63

AG+AA 134 44.44±3.02 43.78±11.29

(1) + GRIN2A rs8049651 T ADD 0.686 0.015 TT 9 43.89±2.15 42.00±11.54

CT 73 44.71±3.10 41.58±11.42

DOM 0.685 0.020 CC 94 44.02±3.22 45.77±11.50

CT+TT 82 44.62±3.01 41.62±11.37

Only models with uncorrected P-value <0.05 are shown. The minor allele based dominant (DOM), recessive (REC) and additive (ADD) genetic models

were tested for their association with mAO by linear regression analysis. The SNPs do not achieved P <0.05 values with Bonferroni correction.

doi:10.1371/journal.pone.0131573.t004
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from peripheral blood mononuclear cells. DNA samples were used to establish the E2F2
rs2742976 genotype, and total RNA to quantify the relative E2F2mRNA expression. To ensure
the robustness of the results, two methods were used (Taqman-based and SYBR Green-based
assays) to measure the steady-state E2F2mRNA expression in HD individuals.

Interestingly, a significant correlation between E2F2 rs2742976 genotype and E2F2 gene
expression was observed (Fig 1). Specifically, individuals with TT genotype showed signifi-
cantly lower E2F2mRNA expression relative to individuals with GG genotype (P = 0.020 and
P = 0.046 in Taqman-based assay and SYBR Green-based assays, respectively). In addition, a
significantly lower E2F2 expression was detected in samples with GT genotype relative to sam-
ples with GG genotype in SYBR Green-based assays (P = 0.044). Altogether, these results sug-
gest that the presence of the T allele in the E2F2 rs2742976 promoter SNP may account for a
lower E2F2 gene expression.

Discussion
Age of onset in HD is inversely correlated with the CAG repeat length in the mutated HTT
allele. However, other genetic factors are thought to play a role in this complex character. In an
attempt to extract as much information as possible from our sample, we have carried out asso-
ciation analyses considering two AO definitions, mAO and eAO. Testing eAO has the advan-
tage of encompassing all the HD phenotypes (motor, cognitive and psychiatric), which
involves all the patients available in the sample; analyzing mAO, although it results in a smaller
sample size, is considered more reproducible due to its specific nature and reliability of this cri-
terion for determining AO [4,63].

Fig 1. RT-qPCR analysis of E2F2 gene expression in HD patients, according to E2F2 rs2742976
genotype. Two methods were used. In Taqman assay, the expression of E2F2 gene was analyzed in 31
samples (N TT = 4; N GT = 12, N GG = 15) with Hs00918089_m1 Taqman probe; the expression values were
normalized respect to expression of B2M and YWHAZ reference genes. In SYBR Green assay, the E2F2
gene expression was estimated in 31 samples (NTT = 5; NGT = 14, NGG = 12); the expression values were
normalized to expression ofUBC and YWHAZ reference genes. Results are expressed as fold over
respective GG individuals. Asterisk denotes statistically significant differences (P<0.05) between GG and any
other group, according to DataAssist software analysis (T-test) or REST software analysis (Pair Wise
Reallocation Randomization test).

doi:10.1371/journal.pone.0131573.g001
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In our study, the detected mAO variability explained by CAGexp (67.6%) lies within the
range of previously observed values for motor onset age in Europeans (31–73%) [9,16], and is
comparable to that reported by Ramos and collaborators (65.3%), who considered the same
CAG repeat range as in our study [30]. Regarding eAO, to our knowledge no other reports
have examined eAO variability within the CAG range considered in our work, and no direct
comparisons can be made. However, the eAO variability explained by CAGexp obtained by us
(57.3%) is well within the range of 49% to 73% detected in other general studies [6,64].

Among the detected AO-associated signals, the association between the E2F2 gene and the
age of onset is particularly compelling (Bonferroni corrected P-value<0.05). In our study,
individuals with the E2F2 rs2742976 T allele showed on average a 3-year delay in eAO. The
relationship between E2F2 gene and HD has not been previously assessed. E2F2 encodes a tran-
scription factor that regulates the cell cycle, and is known to play a critical role in lymphocyte
quiescence [65] and in neuronal terminal differentiation [36], through the regulation of target
gene expression. Interestingly, SNP rs2742976 is located within a putative STATx transcription
factor-binding site in the E2F2 promoter region [62], and allele differences in this SNP could
potentially modulate the expression of the E2F2 gene itself. Indeed, HD patients with E2F2
rs2742976 T allele showed significantly lower E2F2mRNA expression levels in lymphocytes
(P-value<0.05). This change in expression level seems to be dependent on T allele dose, given
that the heterozygote (GT) shows intermediate expression levels relative to the two homozy-
gous genotypes. Thus, the detected association between the T allele in E2F2 rs2742976 and
both a delay in eAO and lower E2F2 gene expression level in lymphocytes hints to a potential
involvement of E2F2 in the pathogenesis of HD, a possibility that warrants further study.
Moreover, although HD pathology is thought to involve mainly brain-associated defects, our
observations support the view that studies on gene expression profiling in blood cells and other
peripheral tissues could help identify biomarkers for HD disease progression [66–68] and pro-
vide clues to HD pathology.

None of the other suggestive eAO-association signals were significant after multiple test cor-
rection, although some of them may be worth examining further. Genetic variants within the
GRIN2A and GRIN2B genes encoding the NR2A and NR2B subunits of the N-methyl-
D-Aspartic acid (NMDA) receptors [51], have been associated previously with HD age of onset
[16–18], although the molecular mechanism involved in these associations remains to be eluci-
dated [18]. This is the case of the polymorphisms rs2650427 [18] and rs1969060 [16,18,69]
within the GRIN2A gene, and the polymorphisms rs1806201 [16,18] and rs890 [16] within the
GRIN2B gene. Two of those SNPs (GRIN2A rs1969060 and GRIN2B rs1806201) did not associ-
ate with AO in our study, but other genetic variants within the GRIN2A and the GRIN2B genes
showed uncorrected P-values< 0.05: rs8049651 in GRIN2A, and rs10744030, rs4764011 and
rs7966469 in GRIN2B. Of these, only rs4764011 had been previously analyzed, although no
association to mAO had been detected [17]. Intriguingly, four additional suggestive signals that
were not in LD were detected in the vicinity of the GRIN2B gene, encompassing the genes
ATF7IP and LINC01559. These three genes extend over 2 Mb in 12p13.1, a genomic region pre-
viously related with intellectual disability [70]. Most associated SNPs mapping GRIN2A and
the 12p13.1 region are located in non-coding regions, which raises the possibility that they may
affect chromatin organization [71].

The detected mAO-association signals were not significant after Bonferroni correction
(probably due to the smaller size of this sample). However, suggestive signals specific for the
mAO analysis may be worth following in a bigger sample. In this regard, a non-coding poly-
morphism mapping the HIP1 gene (rs2240133) was found associated specifically with mAO.
HIP1 encodes an HTT-interacting protein known to be involved in apoptosis [72,73], and
mutant HIP1 expression produces HTT aggregation and subsequent cell death [74]. The
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relationship between HIP1 polymorphisms and HD AO has not been reported before. Simi-
larly, genetic variation within the GRIK2 gene (rs2782901) suggestively associated with mAO
but no eAO. GRIK2 encodes the GluR6 subunit of the kainate glutamate receptors, which are
involved in synaptic plasticity [75]. Mutations in the GRIK2 gene have been repeatedly associ-
ated with HD AO [10,14,15].

In summary, our work, which should be considered a hypothesis-generating study, has
explored the contribution of genetic variation in several candidate genes as eAO and mAO
modifiers. The observed statistically significant and suggestive association signals should be fol-
lowed-up to improve our knowledge of HD pathogenesis. Importantly, the highly significant
E2F2 signal should be further studied given that the presence of the T allele at E2F2 rs2742976
associates with HD age of onset and with E2F2 gene expression levels. We speculate that lower
levels of E2F2 gene expression in HD symptomatic patients could be associated with a delay in
AO.
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