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Abstract

Background: A large number of phospholipase C (PLC) enzymes, both mRNA transcripts and proteins, have been detected in os-
teoblasts, corroborating the importance of calcium regulation in bone tissue. MG-63 and SaOS-2 human osteosarcoma cell lines are
actually considered osteoblast-like cells, and are therefore widely used as experimental models for osteoblasts.
Objectives: Our aim was to verify whether MG-63 or SaOS-2 cells might also represent appropriate experimental osteoblast mod-
els for signal transduction studies, with special regard to the phosphoinositide (PI) pathway. We analyzed the expression and the
subcellular distribution of enzymes related to calcium signal transduction (the PI-specific PLC family), which are known to possess
high cell/tissue specificity.
Materials and Methods: The expression of PLC genes was analyzed by performing RT-PCR experiments. The presence of PLC en-
zymes and their subcellular distribution within the cells was analyzed with immunofluorescence experiments.
Results: Osteoblasts, MG-63 cells, and SaOS-2 cells have expression panels similar to those of PLC enzymes. However, slight differ-
ences were found in the expression of enzymes belonging to the PLCη subfamily.
Conclusions: MG-63 and SaOS-2 osteosarcoma cell lines might not represent appropriate experimental models for studies that aim
to analyze signal transduction in osteoblasts.

Keywords: Signal Transduction, Phospholipase C, Osteosarcoma, Calcium, Osteoblasts

1. Background

Osteoblasts play the pivotal role of secreting the ma-
trix components in osseous tissues. In addition to their
involvement in bone formation and mineralization, os-
teoblasts can further differentiate into osteocytes and can
provide crucial factors for osteoclast differentiation (1-3).
Bone remodeling is strictly related to calcium metabolism.
The complex network of signal transduction pathways
that regulate calcium concentration has recently attracted
great attention, including the phosphoinositide (PI) path-
way and the related PI-specific phospholipase C (PLC) en-
zyme family.

PLC enzymes are involved in calcium-mediated regu-
lation of osteoblast activity in a complex manner. Func-
tional studies have demonstrated that increased calcium
levels activate PLC, finally resulting in the sustained eleva-
tion of calcium concentration (4). Activated PLC cleaves
phosphatidylinositol 4,5-bisphosphate (PIP2), a phospho-

rylated derivative of phosphatidylinositol that is mainly lo-
cated in the inner half of the plasma membrane lipid bi-
layer (5-9), into inositol trisphosphate (IP3) and diacylglyc-
erol (DAG). IP3 induces calcium release. DAG can be fur-
ther cleaved to release arachidonic acid (10) or can activate
serine/threonine calcium-dependent protein kinase C en-
zymes (PKC), also influenced by the IP3-induced calcium in-
crease.

The mammalian PLC family comprises a related group
of complex, modular, multi-domain enzymes that cover a
broad spectrum of regulatory interactions, including di-
rect binding to G protein subunits, small GTPases from Rho
and Ras families, receptor and non-receptor tyrosine ki-
nases, and lipid components of cellular membranes (11).
PLC enzymes are thirteen isoforms classified on the basis
of the amino acid sequence, domain structure, and mech-
anism of recruitment into six subfamilies: β (1-4), γ (1-2), δ
(1, 3, 4), (1), (1), and η (1-2) (12). PLC was exclusively described
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in testes and spermatic cell lines (12, 13).

Our previous studies suggested that selected PLC en-
zymes are involved in osteosarcoma progression (14-17),
probably networking ezrin, a molecule that acts during
metastatic spread (16, 17). PI-PLC enzymes are known to be
strictly tissue-specific, and each cell type expresses selected
isoforms (7, 9, 12). Knowledge of the expression panels of
PI-PLC enzymes is a necessary and preliminary tool to ad-
dress studies about their role in quiescent cells. Moreover,
the expression panels of PI-PLC enzymes have been demon-
strated to differ in quiescent cells with respect to the patho-
logical or activated counterpart (18-30).

MG-63 (31, 32)and SaOS-2 (33-35) human osteosarcoma
cell lines are considered to be osteoblast-like cells, and are
widely used as experimental models for osteoblasts. How-
ever, no studies have been conducted in order to validate
the use of MG-63 or SaOS-2 cell lines as osteoblast experi-
mental models for signal transduction.

2. Objectives

The aim of this study was to investigate whether MG-
63 or SaOS-2 cells might represent appropriate experimen-
tal osteoblast models for signal transduction studies, with
special regard to the PI pathway. In the present paper, we
compared the expression and the subcellular distribution
of the PLC family enzymes in osteoblasts, MG-63 cells, and
SaOS-2 cells.

3. Materials andMethods

3.1. Cell Cultures

We analyzed cultured human osteoblasts and two os-
teosarcoma cell lines, MG-63 and SaOS-2, obtained from
the American Type Culture Collection (ATCC, Rockville,
MD, USA). Osteoblasts were characterized using antibod-
ies against osteonectin (ON) and osteocalcin (OC) (data not
shown). The initial seeding number of cells was 250,000
for each experiment, and the cells were grown up to a level
of 1 × 106 cells for the molecular biology experiments. The
cells were cultured as previously described by Lo Vasco et
al. in 2013. Briefly, the cells were grown under subcon-
fluent or confluent conditions in medium at 37°C with
5% CO2. The cells were cultured in Dulbecco’s minimum
essential medium (Sigma) supplemented with 10% fetal
bovine serum (GIBCO) with penicillin (100 µg/ml), strep-
tomycin (100 U/ml), and sodium pyruvate. The cells were
grown for 24 h, reaching a confluence of around 40% - 60%.

3.2. Molecular Biology

After the confluent monolayer was obtained, the cells
were detached and suspended in TRIzol reagent (Invitro-
gen Corporation, Carlsbad, CA, USA). Total RNA was isolated
following the manufacturer’s instructions. The purity of
the RNA was assessed using a UV/visible spectrophotome-
ter (SmartSpec 3000, Bio-Rad Laboratories, Hercules, CA,
USA). Next, 1 µg of total RNA was reverse-transcribed us-
ing a High-Capacity cDNA Reverse Transcription (RT) kit
(Applied Biosystems, Carlsbad, CA, USA) according to the
manufacturer’s instructions. Briefly, RT buffer, dNTP mix,
RT random primers, MultiScribe® reverse transcriptase,
RNase inhibitor, and DEPC-treated distilled water were
added to RNase-free tubes on ice, then the RNA sample was
added. The thermal cycler was programmed as follows:
25°C for 10 minutes, then 37°C for 120 minutes, and the re-
action was stopped at 85°C for 5 minutes. The final volume
was 20 µL. For PCR reactions, the primer pairs (Bio Basic
Inc., Amherst, NY, USA) are listed in Table 1.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was used as a positive control. The primers for GAPDH
were: forward 5’-CGAGATCCCTCCAAAATCAA-3’ and reverse
5’-GTCTTCTGGGTGGCAGTGAT-3’. The specificity of the
primers was verified by searching in the NCBI database for
possible homology to cDNAs of unrelated proteins. Each
PCR tube contained the following reagents: 0.2µM of both
sense and antisense primers, 1 - 3 µL (approximately 1 µg)
of template cDNA, 0.2 mM of dNTP mix, 2.5 U of REDTaq
Genomic DNA polymerase (Sigma-Aldrich), and 1X reaction
buffer. MgCl2 was added at variable final concentrations
(empirical determinations by setting the experiment). The
final volume was 50µL. The amplification was started with
an initial denaturation step at 94°C for 2 minutes, followed
by 35 cycles consisting of denaturation (30 seconds) at
94°C, annealing (30 seconds) at the appropriate temper-
ature for each primer pair, and extension (1 minute) at
72°C. The PCR products were analyzed with 1.5% TAE ethid-
ium bromide-stained agarose gel electrophoresis (Agarose
Gel Unit, Bio-Rad Laboratories S.r.l., Segrate, Italy). A PC-
assisted CCD camera with a UVB lamp (Vilber Lourmat,
Marne-la-Valle, France) was used for gel documentation.
Gel electrophoresis of the amplification products revealed
single DNA bands with nucleotide lengths as expected for
each primer pair. RNA samples were also amplified by PCR
without RT. No band was observed, excluding DNA contam-
ination during the procedure (data not shown). The re-
action products were further quantified with the Agilent
2100 bioanalyzer using the DNA 1000 LabChip kit (Agilent
Technologies, Germany).

Statistical analyses were applied in order to evaluate
cell growth. For in vitro studies, differences were deter-
mined either with two-way repeated-measures analysis of
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Table 1. PLC Gene Primers Used to Perform PCR Experiments

Genes Primers Sequences

PLCβ1 (PLCB1; OMIM *607120)

Forward 5’-AGCTCTCAGAACAAGCCTCCAACA-3’

Reverse 5’-ATCATCGTCGTCGTCACTTTCCGT-3’

PLCβ2 (PLCB2; OMIM *604114)

Forward 5’-AAGGTGAAGGCCTATCTGAGCCAA-3’

Reverse 5’-CTTGGCAAACTTCCCAAAGCGAGT-3’

PLCβ3 (PLCB3; OMIM *600230)

Forward 5’-TATCTTCTTGGACCTGCTGACCGT-3’

Reverse 5’-TGTGCCCTCATCTGTAGTTGGCTT-3’

PLCβ4 (PLCB4; OMIM *600810)

Forward 5’-GCACAGCACACAAAGGAATGGTCA-3’

Reverse 5’-CGCATTTCCTTGCTTTCCCTGTCA-3’

PLCγ1 (PLCG1; OMIM *172420)

Forward 5’-TCTACCTGGAGGACCCTGTGAA-3’

Reverse 5’-CCAGAAAGAGAG CGTGTAGTCG-3’

PLCγ2 (PLCG2; OMIM *600220)

Forward 5’-AGTACATGCAGATGAATCACGC-3’

Reverse 5’-ACCTGAATCCTGATTTGACTGC-3’

PLC δ1 ( PLCD1; OMIM *602142)

Forward 5’-CTGAGCGTGTGGTTCCAGC-3’

Reverse 5’-CAGGCCCTCGGACTGGT-3’

PLC δ3 (PLCD3; OMIM *608795)

Forward 5’-CCAGAACCACTCTCAGCATCCA-3’

Reverse 5’-GCCA TTGTTGAGCACGTAGTCAG-3’

PLC δ4 (PLCD4; OMIM *605939)

Forward 5’-AGACACGTCCCAGTCTGGAACC- 3’

Reverse 5’-CTGCTTCCTCTTCCTCATATTC- 3’

PLC (PLCE; OMIM *608414)

Forward 5’-GGGGCCACGGTCATCCAC-3’

Reverse 5’-GGGCCTTCATACCGTCCATCCTC-3’

PLCη1 (PLCH1; OMIM *612835)

Forward 5’-CTTTGGTTCGGTTCCTTGTGTGG-3’

Reverse 5’-GGATGCTTCTGTCAGTCCTTCC-3’

PLCη2 (PLCH2; OMIM *612836)

Forward 5’-GAAACTGGCCTCCAAACACTGCCCGCCG-3’

Reverse 5’-GTCTTGTTGGAGATGCACGTGCCCCTTGC-3’

variance (ANOVA) with Bonferroni’s multiple-comparisons
test or Student’s t test, using Prism 5.0a software (Graph-
Pad Software, San Diego, CA, USA). A p value of < 0.05 was

considered significant.
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3.3. Immunofluorescence Analysis

Immunofluorescence localization of all PLC isoforms
was performed on coverslipped cultured cells. The
cells were washed three times with PBS and fixed with
4% paraformaldehyde (PFA) in phosphate-buffered saline
(PBS) for 10 minutes at 4°C, followed by three washes with
PBS. Cells were incubated with primary antibodies diluted
in PBS for 1 hour at room temperature. The coverslips were
then incubated with the specific secondary antibody Texas
Red or fluorescein-conjugated for 1 hour at room tempera-
ture. The cells were washed twice with 1X PBS 5 minutes,
then counterstained with 4’,6-diamidino-2-phenylindole
(DAPI) fluorescent staining. The slides were visualized
and captured with an Olympus IX50 inverted fluorescence
microscope (Olympus, Tokyo, Japan) and processed using
Adobe Photoshop 7.0 software.

4. Results

No statistically significant differences were recorded in
the cell growth rate in the analyzed cell lines that might
invalidate the molecular biology results.

4.1. Molecular Biology

Osteoblasts: PLCB1, PLCB3, PLCB4, PLCG1, PLCG2, PLCD1,
PLCD3, PLCD4, and PLCE were expressed. PLCB2 was not
expressed. PLCH1 and PLCH2 were inconstantly expressed
(Figure 1 and Table 2).

Table 2. RT-PCR Resultsa

PLC Osteoblasts MG-63 SaOS-2

PLCB1 + + +

PLCB2 - - -

PLCB3 + + +

PLCB4 + + +

PLCG1 + + +

PLCG2 + + +

PLCD1 + + +

PLCD3 + + +

PLCD4 - - -

PLCE + + +

PLCH1 + - +

PLCH2 + - -

a(+) mRNA for PLC enzyme isoforms detected; (-) PLC gene not transcribed.

MG-63: PLCB1, PLCB3, PLCB4, PLCG1, PLCG2, PLCD1,
PLCD3, and PLCE were expressed. PLCB2 was inconstantly

expressed. PLCD4, PLCH1, and PLCH2 were not expressed
(Figure 1, Table 2).

SaOS-2: PLCB1, PLCB3, PLCB4, PLCG1, PLCG2, PLCD1,
PLCD3, PLCE, and PLCH1 were expressed. PLCB2, PLCD4, and
PLCH2 were not expressed (Figure 1, Table 2).

4.2. Immunofluorescence

In the osteoblasts, the following proteins were de-
tected in the cytoplasm: PLC β1, PLC β4, PLC γ1, PLC δ1, and
PLC η1. PLC β3 was detected at the perinuclear level, while
PLC η2 was detected at the membrane level (Figure 2).

In the MG-63 cells, the following proteins were de-
tected in the cytoplasm: PLCβ1, PLCβ3, PLCβ4, PLC γ1, PLC
δ1, PLC δ3, PLC , PLC η1, and PLC η2 (Figure 3).

In the SaOS cells, the following proteins were detected
in the cytoplasm: PLC β1, PLC δ1 and (weakly) PLC γ1. The
fluorescence signal for PLC β1 was strong. PLC β4 was de-
tected in the cytoplasm as a perinuclear halo. PLC β2 was
also detected as a weak perinuclear halo. PLC η1was de-
tected in the cytoplasm in vesicles with slight membrane
reinforcements. PLC η2 was detected in the perinuclear re-
gion, distributed in vesicles (Figure 4).

5. Discussion

Bone remodeling is a cyclic and continuous physiolog-
ical process, which ensures conservation and renewal of
the bone matrix. Research efforts were addressed to ana-
lyze the metabolism of bone cells and the dynamic nature
of the mineralized tissue. Osteosynthesis of the bone ma-
trix is achieved by osteoblasts, strictly related to and coor-
dinated with osteoclast activity, which resorbs the extracel-
lular bone matrix.

Osteoblasts are specialized bone-forming cells with
high metabolic activity. In fact, osteoblasts play several im-
portant roles in bone remodeling, such as activation of os-
teoclasts expressing specific factors, production of bone
matrix proteins, and bone mineralization (36). Osteoblasts
derive from mesenchymal cells and can further differen-
tiate in osteocytes (37). Under specific conditions and de-
pending on many factors, osteoblasts can also differenti-
ate into chondroid bone-forming cells (38). Great atten-
tion has been given to the wide number of signal trans-
duction pathways acting in osteoblasts, which coordinate
and regulate osteoblasts’ complex contribution to bone
remodeling. Various signal transduction pathways occur-
ring in osteoblasts have been actively studied (39-43), with
special regard to the systems related to complex calcium
metabolism (44).

The use of MG-63 or SaOS cell lines as experimental
models for human osteoblasts has been widely reported.
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Figure 1. RT- PCR Results

Line 1, osteoblasts; line 2, MG-63 cells; line 3, SaOS-2 cells.

The MG-63 osteosarcoma cell line is commonly used as an
experimental model for human osteoblasts (31-33). SaOS
is an established epithelial-like osteosarcoma cell line that
is also used as an experimental model of osteoblasts (34-
36). The aim of the present experiments was to verify
whether MG-63 or SaOS-2 cells might also represent appro-
priate experimental osteoblast models for signal transduc-
tion studies, with special regard to the calcium-related PI

pathway.

In the present experiments, we analyzed the expres-
sion panel and subcellular distribution of PLC enzymes.
PLC enzymes are described as highly tissue-specific in nor-
mal tissues (18, 19, 21). However, the PLC expression pan-
els in tissues vary under abnormal conditions compared
to normal counterparts (20, 21, 23, 24, 26-28). Moreover,
the subcellular distribution of PLC enzymes seems to play
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Figure 2. Immunofluorescence Microscopy-Acquired Images of PLC Enzymes Within Osteoblasts

Blue: diamino-phenylindole (DAPI) counterstain for nuclei. Green or red: anti-human PLC conjugated antibody.

a role in influencing their activity (45-52).
The present results confirm our previous findings re-

garding the expression of PLC enzymes in MG-63 and SaOS-
2 cell lines (14). The present findings also confirm the pres-
ence of a wide number of PLC enzymes, both mRNA tran-
scripts and proteins, in osteoblasts, corroborating the im-
portance of calcium regulation in bone tissue. Our present
results indicate that osteoblasts, MG-63 cells, and SaOS-2
cells share expression panels similar to those of PLC en-
zymes. However, slight differences were found in the ex-
pression of selected isoenzymes, which deserve some com-
ment.

According to our previous report (14), both MG-63 and
SaOS-2 cells express a number of PLC enzymes. MG-63 ex-
pressed PLCB1, PLCB3, PLCB4, PLCG1, PLCG2, PLCD1, PLCD3,
PLCE, and, inconstantly, PLCB2. SaOS-2 expressed PLCB1,
PLCB3, PLCB4, PLCG1, PLCG2, PLCD1, PLCD3, PLCE, and PLCH1.
In osteoblasts, PLCB1, PLCB3, PLCB4, PLCG1, PLCG2, PLCD1,
PLCD3, and PLCE were expressed, while PLCB2 and PLCD4

were not, and PLCH1 and PLCH2 were only inconstantly ex-
pressed.

The most relevant difference among the analyzed cells
is represented by the behavior of enzymes belonging to the
PLC η subfamily, which comprises two isoforms and is the
most recently identified among the PLC families (53-60).
Structurally, PLCη enzymes contain long C-terminal exten-
sions with unknown activity (53-56).

PLC η1 acts as a signal amplifier in G protein-coupled
receptor (GPCR)-mediated calcium signaling. Knock-
ing down PLC η1, but not PLC-η2, significantly reduces
ionomycin-induced PLC activity. Intracellular calcium
stores can efficiently activate PLC η1, which suggests that
intracellular calcium mobilization from the endoplasmic
reticulum plays a pivotal role in PLCη1 activation (59). Sim-
ilarly, PLC η2 contributes to temporal and spatial calcium
dynamics within the cell (58, 61) probably transducing sig-
nals arising from mitochondrial calcium. Increased cal-
cium concentration can modulate PLC η2 activity, which
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Figure 3. Immunofluorescence Microscopy-Acquired Images of PLC Enzymes Within MG-63 Cells

Blue: diamino-phenylindole (DAPI) counterstain for nuclei. Green or red: anti-human PLC conjugated antibody.

probably indicates that PLC η2 may help regulate calcium-
signaling, coordinating both intracellular and extracellu-
lar stimuli. The sensitivity of PLC η2 to calcium might fa-
vor the amplification of intracellular calcium transients
and/or crosstalk between storage compartments. In the
present experiments, PLCH1 and PLCH2 were differently, al-
though inconstantly, expressed in osteoblasts compared to
MG-63 and SaOS-2 cells. PLCH1 and PLCH2 were transcribed
in osteoblasts, while they were not transcribed in MG-63. In
SaOS-2 cells, the PLCH1 transcript was detected. Our find-
ings might confirm the highest sensitivity of PLC η sub-
family enzymes to calcium concentration. The presence of
both PLCη enzymes in osteoblasts might be due to the crit-
ical role of calcium regulation in osteoblasts, due to their
role in bone remodeling. Our findings will require further
studies that address and analyze the specific role of PLC η
enzymes in osteoblasts, and their relationship and coordi-

nation with enzymes belonging to other PLC subfamilies.

The present results indicate that osteoblasts, MG-63
cells, and SaOS-2 cells share very similar expression panels
with PLC enzymes. However, significant differences were
identified in the expression of the most newly identified
and lesser-known among the PLC subfamilies, the PLC η
subfamily. Therefore, the MG-63 and SaOS-2 osteosarcoma
cell lines might not represent appropriate experimental
models for studies that analyze signal transduction in os-
teoblasts.
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Figure 4. Immunofluorescence Microscopy-Acquired Images of PLC Enzymes Within Saos-2 Cells

Blue: diamino-phenylindole (DAPI) counterstain for nuclei. Green or red: anti-human PLC conjugated antibody.
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