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1 Introduction

As it is well-known, for some non-Newtonian fluids the internal structure can prevent
Hlow unless the shear siress 7 exceeds a yield value 7. Among them, the name
Bingham plastic is generally reserved to those fluids which, when 7 > To, show a
Newtonian behaviour, viz.

(1) (r—m0)+ =57,

(-)+ being the positive part of (.), ng > 0 the (constant) plastic viscosity, and 4 the
shear rate,

Although real Bingham plastic behaviour is encountered somewhat rarely, small
enough departure from the ideal Bingham model is frequent in several materials of
industrial interest (some slurries, paper pulp, chocolate mixtures, toothpaste, mar-
garine, etc.}). This circumstance justifies the widespread and frequent utilization of
this model in technological design.

In arecent paper (1] an unusual mathematical model for the pipe flow of a Bingham
fluid was introduced; the distingunishing feature is that 7, is increasing with time and
shearing because of internal power dissipation. This behaviour has been observed in
some coal-water slurries (CW$’s) and has been the object of a number of papers (see
(2][3{[4] and references therein). The model proposed in {1] fits very well the observed
negative thixotropic behaviour (progressive increase of the apparent viscosity) of these
CWS’s. This very peculiar aspect of CWS’s theology has received a rather complex
explanation at microscopic level [2].

The mathematical model presented in [1] is worked out under some particular but
physically significant hypotheses (axisymmetry and guasi-steadyness). In particular
1t turns out that the boundary between the yielded region and the non-yielded one
changes with time. Several situations may occur depending on the behavior with time
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of the driving pressure gradient . In the worst case the flow can stop in a finite time
either because the boundary of the inmer rigid core hits the pipe wall or because &
second free boundary develops independently starting from the pipe wall and meets
the first one, )

From the commercial point of view, one of the major concerns is to maintain a
constant flow rate by adjusting conveniently the pressure gradient. This problem is
classical and already solved when 7o does not depend on t (see [8], PP T1-75): given
the desired flow rate, one needs to solve the {fourth order algebraic) Buckingham
equation in the unknown (stationary) radius of the inner rigid core, this parameter
being directly related to the driving pressure gradient. In this paper we solve the
same problem for the model developed in [1]: however the equation corresponding to
the Buckingham equation is now a nonlinear functional equation: we prove existence
and uniqueness using fixed point argaments. The result is local in time and cannot
be improved in the class of bounded pressure gradients (the one in which we prove
existence and uniqueness). Indeed, as it was proved in [1], when the pressure gradient
remains bounded the motion always comes to rest as time goes to infinity. At least
in the easier case of an initially Newtonian fluid we can give an upper bound for the
critical time for the existence of the solution: interestingly enough, in a typical case
this turns out to be of order 10 hours at a mainstreamm speed of 1m X s~ L, which, for
industrial design, is undoubtedly very significant,

9 Generalized Buckingham equation

Let us consider a laminar axisymmetric flow of a Bingham plastic in a infinitely long
pipe of radius R under the assumption that the yield stress 7, increases at a rate
proportional to the internal power dissipation, according to the law
d a 1
(2) priche arl-é;v[ = a-r;;(r - To)4s
where « is a non-negative dimensionless constant.
For a sufficiently large pressure gradient ~G(t), we have an inner rigid core 0 <
r < s(t) while for sty <r < Randt>0 the velocity »(r,t) satisfies the equation
d 14
3 —v=G - -7
( ) p Btv 2 81' T)?
p being the fluid density; we assume the no-slip condition at 7 = R, i.e. (R, 1) =0,
and the free-boundary conditions

r

() ol = sy =0
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which express the absence of the strain rate at the boundary and the momentum
balance of a unit length portion of the rigid core respectively (see [8],[7]).
The quasi-steady approximation used in [1] is justified by the very small order

of magnitude of the multiplying coefficient of the —v in the dimensionless form of

momentum equation (see [1] for the details). This in turn depends on choosing the
time scale to be that of the slow phenomenon (degradation). The quasi-steady free-
boundary problem in dimensionless form, after rescaling, is

8
(THTO)+=§§;U|, for0<r<1,andt> 0,

18
G(t) = ;5(”)’ for0<r<1,and ¢t >0,
J
6
(6) (579 = 55 = 0, for t > 0,

8(t) = 2G~Y(t)r,(s(t),t), fort> 0,

d 8
(EETO)—TIE%‘I, for0<r<1,and t> 0,

with the boundary condition
() (1,1} =0,
and the initial conditions

TD(T!O):]‘? GSTS]-;
(8) v(r,0)=w(r), 0<r<i,

5(0) = 3, = 2/,

where { = G{0) > 2 and

(9) { vo{r) = 1—r2-25(1-7), s,<r< 1,

Uo(r) = (1 — 3,)2, 0<r<s,.

If we set Y(r, 1) = 7(r,t) — 7,(r, ), the fluid velocity is given by

(10) w{r, 1) = g- [we,g),ar

Equivalent forms of the volumetric flow rate Q(¢) in dimensionless units are listed
below:

dr 2, 1,8
{11) Gt} = 27r/ r(r,t)dr="o | » Yi(r,tydr = —‘ﬂ"f r—wdr,
C ] s(t) a?‘

1
0
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n follows after an integration by parts).

In [1] it is proved, in particular, that if G(t) is not decreasing then the inner core
is not expanding, no other free boundary can develop and a unique solution exists
for all times. The unique free boundary is given by s(t) = 2/G(t). Moreover, if G(t)
is bounded, it is impossible to maintain the initial flow rate Q(t) for ever. Indeed in

this case v goes to zero uniformly in (0, 1) as t goes to infinity.

The following proposition can

(the second expressio

be immediately proved:

Theorem 1 Let G = 0; then G>0.
Consequently G has an inverse G; from (6)

Y (r,t) in the region Y > O

one deduces an equation satisfied by

(12) a-;:— + Z%G(t)Y = %c‘;(t)

which, integrated, gives (see eq.’s (3.6) and (3.6') in (1:

t
, f FO&(0)d8 + Yo(r)
Y(r,t)= 9 o , fors, Sr<Lt> 0,
(13)
t
r | FOG(O)D
tolr)
L Y(r,t)= "_?eTF(—t—TO(T))_-’ for s{(t) <r <8t > (7}
with
r - ¢
(1) Yo(#) = Voo = €5 = 1 1olr) = 8(ss ~ BRI, F(O) = C/O [ et

and §{z) is the Heaviside function.

A particular case, also et with some CW§’s, is that of an initially Newtonian fluid
(o(r,0) = 0). With a slightly different rescaling the problem remains formally the
same. In particular G is rescaled with half of its initial value, which implies now to fix
¢ = 2. For (& > 0 the fluid is everywhere sheared for all ¢t > 0 (see [1], Proposition

5.1), and (13) simplifies as

t .
(15) ¥ (rt)= el ] SFNOE(8)d0 + 23,
13

where now .
(16) Eu(0) = [ Gl
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Equation (15) holds everywhere in [0,1] % [0, 00), since no free boundary 3(¢) can
ever develop in this case. By using (6) it is not difficult to express § in terms of e e
and ¥ alone. We then put @ = ( and integrate with respect to timne; after inserting
(13) into the resulting equation we get a functional equation G = F (G, &) which is
the required generalization to our case of the Buckingham equation: to be precise we
have

a

—_— i ~
H( [4(6.6) + () ar
(17) 0
GoG = I (I is the identity map in R)
where M is the inverse function of

(18) M) = Llin(2) + e - ()

in [¢, 00) and

(NI[G,é](T) — %/:DJ T4e—rF(T—io(T)){G(T)erF{T)
- %erF[ta(T})_ Eff( TGjZ(s)erF(s) ds} dr,
to(r)
(19) r .
NlQry = G(T)%.so_)q [ e g,
50
- %/7/1T5G2(S)EHT[F(T)-»F(3)] dr ds.
9 Js,

The complexity of (17)-(19) ( which is natural to define as the generalized Buckingham
equation) in the unknown function & should be compared with the classical case.

3 Existence and uniqueness for the generalized Buck-
ingham equation
Let C*([0, T]) denote the Banach space of functions continuous up to their k-th derjva-

tive over [0, T|, for a fixed finite T > 0, equipped with the usual norm ||.J{;. For given
My, M; > 0 and K > 0 such that K < G(0) !, let us define

¥={feci(o,Tj)
[17llo < 801,11 7llo < Mz, f > &, £(0) = G(0)(= ¢), f(0) = G(0)}

It is evident that X is a closed convex subset of Cl([o, 7).

'Using {12) it is easy to check that G0y = {(4/8)(2¢(1 = (2/0)°) - 51 —-{2/0)*) >0
for all ¢ > 2
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Theorem 2 For 2 sufficiently small T{M:, M3, K), there exisis one and only one

il I
solution G(t) of the generalized Buckingham equation in x.

|

T { The proof of the above result, based on fixed point arguments in &, is rather long

' . and delicate; for lack of space it will be presented elsewhere. However in the parficular
e functional equation is simpler and we can

case of an initially Newtonian fluid, th
show some details. Instead of (17)-(19) we have now the following

(20) Gt) = 2+ % /0 " G(s)ds

| ¢ 1 2
4 j G(s) j ¥ / @) Fr 0 -Fw e g} dr ds
1] ] a

We can write (20) formally as G = F{G) and search for a solution in

I
| | § = {f € C°U0, T/ Fllo S M, £(0) = G(O)(= 2}

We first show that if T < % than F maps S into itself: indeed

(141 | t
| (21) F@)is2ty [ U<t e e ,7)

being the last addendum in (20) less than zero; then 2 + :M?T < M i T <

s(M—2 —
SM-2) . B o 156

MAXM — 7
We prove now that F is a contrac

il
_E'l

| | E{r,u,8) = ex?{rlFN(u) — Fn(s)1}s
I(s) L A PG (u)E(r,u, 8) dudr,

H(x, s) - L Glz)dz.

tion mapping in &. Let us put

' Evidently E < 1 and

|By— Er) = exp{r[Ha(u, )+ Hi(w o)}

r|Ho — Hij € 1|G2— Gllo(s — u);

IA

(22)

morecver

IF(G2) - F(GI S (%ﬂ”—;T + 4T suppg 7 Tafs))1G2 — Gallo
+ 4]0 Gl(S)]IQ - I}I ds
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Because of (22) we get

T T s
[ ain-nids < @ [ ' 1630 - Gl v o)
+ Gi{u)|E; — By} dudrdt

A

(M2/12)T;”G12 - Gillo

+ (M3/2)f0 /0 TSfO |E; — Byl du dr ds
(M2/12)T2||G2—G]|[Qe )
(M3/2)1|G2—G1H0/0 fD ?SV/O(u%s)dudrds

< (M2/12)TH|G2 ~ Gullo + ((MT)?/84)|G; ~ G lo.
Therefore, since suppy 1) I3(s)) = M?T/6, we finally obtain
(23) |F(Gs) - F(G1)| < C(M, T}||G2 ~ Gallo

where C(M,T) := (BMT 4 M3T? + %) By solving the inequality C(M,T) < 1
with respect to 7' and maximizing the range of admissible 7s with respect to M one
easily gets = .24 . Thus the contraction mapping principle applies for T < 5/32 and
F has a nnique fixed point G* € S.

[FAN

4 Conclusions

The solution G*(¢) can be calculated by successive approximations. The figure below
shows the first elements of the sequence {G,(t)} generated by Gu(t) = 2.

G{)
3.5¢
3.25}
3t T
2.75¢ ,_,:f’ -------

2.5¢ P
2.25}
2

~— time
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i oy s il =

. For large values of t the elements of {G,(¢)} become very irregular and blow up
= in a finite time. It is interesting to evaluate the above upper bound in dimensional

i units: the time scale factor used is ¢y = R/Va (V is the centerline velocity, while R
' and o have been introduced at the very beginning of Section 2). Typical field values

in CGS units could be

I R~30cm, Va1l00emxs!, ax107°

(| which imply t; = 3 x 10%s. Then the value T = 5/32 means about 13 hours, which,
{ | at the commercial speed of 100 em x s~! corresponds to = 46 Kilometers: this is a
guite reasonable distance between two pumping stations of an industrial pipeline.
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