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ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a severe and fatal neurodegenerative disease characterized by progressive
loss of motoneurons, muscle atrophy and paralysis. Recent evidence suggests that ALS should be considered as a
multi-systemic disease, in which several cell types contribute to motoneuron degeneration. In this view, muta-
tions in ALS linked genes in other neural and non-neural cell types may exert non-cell autonomous effects on mo-
toneuron survival and function. Induced Pluripotent Stem Cells (iPSCs) have been recently derived from several
patients with ALS mutations and it has been shown that they can generate motoneurons in vitro, providing a
valuable tool to study ALS. However, the potential of iPSCs could be further valorized by generating other cell
types that may be relevant to the pathology. In this paper, by taking advantage of a novel inducible system for
MyoD expression, we show that both control iPSCs and iPSCs carrying mutations in ALS genes can generate skel-
etal muscle cells. We provide evidence that both control and mutant iPSC-derived myotubes are functionally ac-
tive. This in vitro system will be instrumental to dissect the molecular and cellular pathways impairing the

complex motoneuron microenvironment in ALS.
© 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is a fatal disease that leads to
death due to loss of muscle function. A subset of ALS cases has a clear ge-
netic component and in the last years the list of genes associated with
the disease has been greatly expanded (Renton et al., 2014). Among
them, the gene encoding for the Cu/Zn superoxide dismutase 1
(SOD1) was the first one being associated with familial ALS (fALS)
(Rosen et al., 1993). Other fALS mutations in the RNA binding proteins
Fused in Sarcoma/Translocated in Liposarcoma (FUS/TLS or FUS) and
Tar DNA Binding Protein 43 (TDP-43) suggest that RNA metabolism
may play a relevant role in ALS pathogenesis (Lagier-Tourenne et al.,
2010). Despite several pathogenic mechanisms have been proposed
for the role of mutated SOD1, FUS and TDP-43 in ALS, a clear under-
standing of the molecular and cellular pathways leading to motoneuron
degeneration and muscle atrophy is still missing. This may be partly due
to the multi-systemic nature of ALS. The non-cell-autonomous effects
on motoneurons of ALS mutations in other cell types have been quite
extensively studied for SOD1 (Musaro, 2012). SOD1 mutant

* Corresponding author.
E-mail address: alessandro.rosa@uniromal.it (A. Rosa).

http://dx.doi.org/10.1016/j.scr.2016.06.003

motoneurons mortality was reduced in chimaeric mice having WT
nonneuronal cells and, conversely, WT motoneurons surrounded by
mutant glia showed ALS hallmarks, such as ubiquitin aggregates
(Clement et al., 2003; Yamanaka et al., 2008). These in vivo studies are
also supported by analysis of co-culture in vitro systems, in which mu-
tant astrocytes increased neurodegeneration of WT motoneurons de-
rived from mouse or human pluripotent cells (Di Giorgio et al., 2007;
Nagai et al., 2007; Di Giorgio et al., 2008). Non-cell autonomous effects
of SOD1 mutations have been observed not only for astrocytes, but
also for other non-neuronal cells. For instance, expression of mutant
SOD1 in microglia affected disease progression in mice (Boillee et al.,
2006). Moreover, it has been shown that mutant SOD1 expression in
skeletal muscle led to muscle atrophy and functional impairment in a
mouse model (Dobrowolny et al., 2008).

A new twist in the study of ALS has come by the generation of
human induced Pluripotent Stem Cells (iPSCs). As iPSCs can be derived
from patients carrying ALS mutations and can differentiate into a wide
range of cell types, they represent a valuable opportunity for disease
modeling in vitro. Several groups have reported the derivation and
characterization of iPSCs derived from fALS individuals with mutations
in SOD1, TDP-43 and, more recently, FUS (Dimos et al., 2008; Boulting
et al.,, 2011; Bilican et al., 2012; Egawa et al., 2012; Lenzi et al., 2015).

1873-5061/© 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Relevant molecular and cellular disease phenotypes have been detected
in ALS-iPSCs differentiated to motoneurons, including delocalization of
mutant proteins (Bilican et al., 2012; Egawa et al., 2012; Lenzi et al.,
2015), neurite degeneration (Chen et al., 2014), electrophysiological de-
fects (Wainger et al., 2014), increased oxidative stress (Kiskinis et al.,
2014) and vulnerability (Bilican et al., 2012; Egawa et al, 2012;
Kiskinis et al., 2014). These reports provide the proof of principle that
iPSCs can be used to model ALS disease in vitro. iPSCs are pluripotent
and can generate multiple cell types, provided that appropriate differ-
entiation protocols are used. In this work, we designed and optimized
a protocol for muscle differentiation from iPSCs. As previously shown,
human pluripotent cells can be converted into muscle by the ectopic ex-
pression of myogenic factors (Darabi and Perlingeiro, 2014; Tedesco et
al.,, 2012; Tanaka et al., 2013; Abujarour et al., 2014). Our strategy is
based on the inducible expression of the master gene MyoD from an in-
tegrative vector, derived from the enhanced piggyBac transposon
(Lacoste et al., 2009). We show that control and ALS iPSC lines can
give rise to mature myotubes endowed with functional properties. A
convenient feature of our protocol is the possibility to produce stable
cell lines that can be induced to muscle differentiation by doxycycline
treatment.

2. Materials and methods
2.1. Generation and maintenance of human iPSCs

The iPSC lines were generated and validated as described in Lenzi et
al. (2015). All iPSC lines were maintained in Nutristem-XF (Biological
Industries) in plates coated with hESC-qualified Matrigel (Corning)
and passaged every 4-5 days with 1 mg/ml Dispase (Gibco). Clones
used in the experiments shown were: WT I clone#1; ALS I (FUSR>145/
WTY clone#1; ALS II (FUSR°21WT) clone#34 and ALS Il (TDP-4373821/
A382TY clone#2.

2.2. Plasmid construction and generation of stable iPSCs lines

The epB-Puro-TT-mMyoD plasmid was generated by inserting the
coding sequence of mouse MyoD (GenBank: M84918.1) in the en-
hanced piggyBac transposable vector epB-Puro-TT (Rosa et al., 2014).
The resulting construct contains the piggyBac terminal repeats flanking
a constitutive cassette driving the expression of the Puromycin resis-
tance gene fused to the rtTA gene and, in the opposite direction, a tetra-
cycline-responsive promoter element (TRE) driving the expression of
MyoD. iPSCs were co-transfected with 4 pg epB-Puro-TT-mMyoD and
1 pg of the piggyBac transposase using the Neon Transfection System
(Life Technologies) as previously described (Lenzi et al., 2015). Selec-
tion in 0.5 pg/ml puromycin gave rise to stable and inducible cell lines.

2.3. Differentiation of iPSCs into muscle cells

iPSCs were passaged (passage number around 10 to 20) in 35 mm
dishes. For differentiation as colonies (Fig. 1A, Colonies), the medium
was replaced with HUESM (DMEM-F12 + Glutamax, Life Technologies;
20% Knockout Serum Replacement, Life Technologies; 1X Non-Essential
Aminoacids, NEAA, Life Technologies; 100 U/ml Penicillin 4 100 pg/ml
Streptomycin, Sigma; 0,1 mM [3-mercaptoethanol, Gibco). This is con-
sidered day 0 (DO). At day 6 the medium was replaced with Growth Me-
dium (GM; DMEM High Glucose Medium, Sigma; 20% FBS, Sigma;
25 ng/ml bFGF, Corning; 10 ng/ml EGF, Corning; 50 pg/ml Insulin,
Roche; 2 mM L-Glutamine, Sigma; 100 U/ml Penicillin + 100 pg/ml
Streptomycin, Sigma) in presence of 200 ng/ml doxycycline (Sigma).
At day 8 the medium was replaced with Differentiation Medium (Skel-
etal Muscle Cell Differentiation Medium, Promocell; 100 U/ml Penicillin
+ 100 pg/ml Streptomycin, Sigma) in presence of 200 ng/ml doxycy-
cline. For differentiation as single cells (Fig. 1A, Single cells), iPSCs colo-
nies were dissociated as single cells with Trypsin-EDTA 1X (EuroClone)

and 150,000 cells seeded on 35 mm dishes in Nutristem-XF supple-
mented with 10 pM Rock inhibitor (Y-27632, Sigma) to enhance surviv-
al upon dissociation. The next day, the medium was replaced with
HUESM (DO). At day 5 the medium was replaced with GM supplement-
ed with 200 ng/ml doxycycline. At day 7 the medium was replaced with
DM supplemented with 200 ng/ml doxycycline. For the experiments
shown in Fig. 2, the outline is depicted in Fig. 2A. Differentiation started
from 60,000 cells seeded as single cells in each well of a 12-well plate for
condition A and 1-5 and from 40,000 cells in each well of a 12-well plate
for condition B. For the experiments shown in Fig. 4, 60,000 cells, disso-
ciated as single cells, were seeded in 35 mm dishes and maintained in
Nutristem-XF supplemented with 10 pM Rock inhibitor for 2 days, be-
fore the switch to HUESM (DO).

24. RT-PCR and real-time qRT-PCR

Total RNA was extracted with the RNeasy kit (Qiagen). For real-time
gRT-PCR and RT-PCR RNA was retrotranscribed with the SuperScriptlll
kit (Invitrogen). As negative controls, minus-reverse transcriptase sam-
ples have been included in subsequent amplification reactions (not
shown). For RT-PCR, cDNA was used as template with the BioTaq DNA
polymerase (Bioline). Real-time qRT-PCR analysis was performed
with SYBR Green QPCR Master Mix (Qiagen) in a 7500 Fast Real Time
PCR System (Life Technologies) and calculations performed with the
delta delta Ct method. The internal control is the housekeeping gene
ATP50 (ATP synthase, H+ transporting, mitochondrial F1 complex, O
subunit) in real-time qRT-PCR analyses and GAPDH for RT-PCR. Primers
sequences are reported in Supplemental Table 1.

2.5. Immunostaining

Cells were fixed in 4% paraformaldehyde for 20 min at room temper-
ature and washed twice with PBS. Fixed cells were then permeabilized
with PBS containing 1% BSA and 0.2% Triton X-100 and incubated with
primary antibodies: monoclonal mouse anti-MyoD1, clone 5.8 A (1:50,
4 °C overnight, DAKO M351201), anti-Myosin Heavy Chain (myosin II)
monoclonal mouse IgG2B from hybridoma culture (Clone #MF20) undi-
luted supernatant (room temperature, 1 h), anti-MyoG monoclonal
mouse from hybridoma culture (Clone #F5D) undiluted supernatant
(room temperature, 1 h). The secondary antibodies used are: GOAT
anti-mouse Alexa Fluor 488 (1:300, room temperature 1 h, Invitrogen),
GOAT anti-mouse Cy3 (1:600, room temperature 1 h, Jackson
ImmunoResearch). DAPI (Sigma-Aldrich) was used to label nuclei.
Cells were imaged with an Axioscope (Zeiss) microscope. For quantita-
tive analysis, cells were imaged with an inverted Olympus iX73 micro-
scope equipped with an X-light Nipkow spinning-disk head (Crest
Optics) and Lumencor Spectra X LED illumination; images were collect-
ed using a CoolSNAP MYO CCD camera (Photometrics) and analyzed
with Image].

2.6. Patch-clamp recordings

Patch-clamp recordings were obtained using glass electrodes (3-
5 M Q) filled with the following intracellular solution (in mM): 140
KCl, 2 MgCl,, 10 HEPES, 2 MgATP, 5 BAPTA; pH 7.3, with KOH. During
experiments, cells were continuously superfused with a normal extra-
cellular solution (NES) containing (in mM): 140 NaCl, 2.5 KCl, 2 CaCl,,
2 MgCl,, 10 HEPES-NaOH and 10 glucose (pH 7.3), using a gravity-driv-
en perfusion system connected to a VC-6 valve controller (Warner In-
struments). All recordings were performed at 24-25 °C. ACh-evoked
currents, recorded with a patch-clamp amplifier (Axopatch 200B; Mo-
lecular Devices, Foster city, CA, USA), were filtered at 1 kHz, digitized
(10 kHz) and acquired with Clampex 10 software (Molecular Devices).
Cells were voltage-clamped at a holding potential of —70 mV. ACh
dose-response were studied applying to each cell three different
doses of the transmitter (3, 30, 300 uM) for 1 s. ACh-evoked currents
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Fig. 1. Inducible MyoD expression vector and muscle differentiation protocol. (A) Top: schematic representation of the epB-Puro-TT-mMyoD construct. pA: polyadenylation signal; PuroR:
puromycin resistance gene; T2A: self-cleavage peptide; rtTA: TET transactivator protein gene; Pubc: human Ubiquitin C constitutive promoter; TRE: TET responsive element; Dox:
doxycycline. Blue triangles represent terminal repeats of the transposon. Bottom: diagrams of the differentiation protocols, starting from iPSC colonies (Colonies) or dissociated as
single cells (Single cells). HUESM: iPSC differentiation medium; GM: myoblast growth medium; DM: myoblast differentiation medium. Red line: time in doxycycline (Dox). Time
points of medium change are indicated above. (B) Bright field imaging of differentiated WT I-MyoD cells. “Single cells (no Dox)" indicate a control differentiation in which doxycycline
had been omitted. (C) Immunostaining for the muscle markers (red): MYOD (left panels), Myogenin (middle panels) or Myosin Heavy Chain (MYH1; right panels), in WT I-MyoD
cells differentiated as shown in panel (A). Nuclei are counterstained with DAPIL. Scale bar for all panels: 50 pm. The percentages of positive cells were: 94.5% (Colonies; n = 1039
nuclei) versus 90.8% (Single Cells; n = 185 nuclei) for MYOD; 38.6% (Colonies; n = 690 nuclei) versus 16.1% (Single Cells; n = 31 nuclei) for Myogenin; 37.7% (Colonies; n = 2915

nuclei) versus 67.5% (Single Cells; n = 3905 nuclei) for MYH1.

were blocked treating cells with a-bungarotoxin (5 pg/ml; o-
Bungarotoxin-ATTO-488, Alomone Labs) for 2 h. Data were analyzed
off line with Clampfit 10 sofware; Origin 7 software was used for statis-
tical analysis of electrophysiological data.

2.7. Intracellular calcium measurements

Fluorescence determinations were performed by using a conven-
tional fluorescence microscopy system composed of an upright micro-
scope (Axioscope 1, Zeiss), a digital 12-bit cooled camera (SensiCam),
and a monochromator (Till Photonics). The system was driven by
Metafluor (Molecular Devices). Images were acquired and stored on a
HP PC, then analyzed offline. Before the experiments, cells were incu-
bated with Fura-2 AM (3 uM) for 45 min and then extensively washed
with NES. To measure Fura2 fluorescence, cells were visualized with a
40 objective and illuminated with a Till 2 monocromator at 340 nm
and 380 nm excitation wavelengths. Fluorescent images were recorded
every 500 ms with a Photometrics (coolsnap ez) camera. Images were
binned 2 x 2 recorded and background-subtracted ratio images pro-
duced using Metafluor software (Molecular Dynamics). Changes in in-
tracellular calcium were determined from the changes of fluorescence
ratio (F340/F380).

3. Results

3.1. Inducible MyoD expression by enhanced piggyBac converted iPSCs into
muscle

The piggyBac vector is a transposable element that, in presence of
the piggyBac transposase, can mediate the integration of exogenous
DNA sequences into the genome of pluripotent cells. It has been previ-
ously shown that inducible expression of a MyoD transgene carried by
a piggyBac vector could induce iPSC muscle differentiation (Tanaka et
al., 2013; Shoji et al., 2016). The enhanced version of piggyBac (epB)
carries an engineered terminal repeat, which increases transposition ef-
ficiency in human pluripotent stem cells (Lacoste et al., 2009; Rosa and
Brivanlou, 2011; Rosa et al., 2014). We generated an epB construct con-
taining the mouse MyoD coding sequence under the control of a doxy-
cycline-inducible promoter (epB-Puro-TT-mMyoD; Fig. 1A). This vector
also contains the TET transactivator (rtTA) and a puromycin resistance
gene under a ubiquitous promoter. We co-transfected the epB-Puro-
TT-mMyoD vector with the piggyBac transposase, expressed in trans
from an independent plasmid, into iPSCs derived from a healthy donor
(WT; Lenzi et al,, 2015). Upon puromycin selection we obtained a sta-
ble cell line (WT I-MyoD). When we induced MyoD expression in iPSCs



J. Lenzi et al. / Stem Cell Research 17 (2016) 140-147 143

U
o X 6 © A Q
& & @ @ @ & 45 O Myogenin
A/B I FIUESY 1 N — )| — 40 | MYH1
35
1 L HUESM 1 DM IDOX % 30
>
3 25
61— S— =
2 — . Dox <
Z 20
3 HUESM a g Dox E 15
10
4 1 TIUESH T Dox o
[ woesm  Toewl __om 1
5 HUESM M DM DOX 0

Protocol A

E F 0O Brachyury
O MYOD
¥ O Myogenin
OIS 12
S50 o] EMYHI
. MYOD . : W DMD
T 08
- Myogenin 2
g o8
MEF2C
i % 04
- DMD
02
ess GAPDH P P w I

Protocol 5

O Differentiated myoblasts
W Differentiated iPSCs

mRNA levels
~N w S

Day 0 Day 3 Day 5

Day8 Day 11 MYOD Myogenin MYH1  DMD

Fig. 2. Optimization of the differentiation protocol. (A) Diagrams of the variants of the differentiation protocol of WT I-MyoD cells. HUESM: iPSC differentiation medium; GM: myoblast
growth medium; DM: myoblast differentiation medium. Red line: time in doxycycline (Dox). Time points of medium change are indicated above. See text for details. (B) Real-time
qRT-PCR analysis of Myogenin (white bars) or Myosin Heavy Chain (MYH1; black bars) in cells differentiated as depicted in panel (A). Relative levels of mRNA were calculated with
the delta delta Ct method and condition A is used as the calibrator sample. Error bars: standard error from a triplicate. (C-D) Immunostaining for the muscle marker MYH1 in WT I-
MyoD cells differentiated with protocol A (panel C) or 5 (panel D). Nuclei are counterstained with DAPI. Scale bar for both panels: 50 um. (E) RT-PCR analysis of muscle markers in WT
[-MyoD cells differentiated with protocol 5 in absence (—Dox) or presence (+ Dox) of doxycycline. GAPDH is used as a housekeeping control. (F-G) Real-time qRT-PCR analysis of the
indicated markers in a time-course experiment using protocol 5 (panel F) and in differentiated iPSCs (protocol 5, day 11) compared with differentiated human myoblasts (panel G).
Relative levels of mRNA were calculated with the delta delta Ct method. In panel F, for each marker the condition with higher expression has been used as the calibrator sample. In
panel G, differentiated myoblasts represent the calibrator sample. Error bars: standard error from a triplicate.

maintained in pluripotency medium, we observed massive cell death in
absence of myogenic differentiation (data not shown). This is in line
with a recent report, showing that the absence of the epigenetic factor
BAF60c in undifferentiated human pluripotent cells confers resistance
to MyoD-mediated activation of skeletal myogenesis (Albini et al.,
2013; Fig. S1). We bypassed this constrain by inducing multilineage dif-
ferentiation before doxycycline treatment. WT I-MyoD cells were cul-
tured in differentiation medium (HUESM) for six days, then switched
to myoblast growth medium (GM) in presence of doxycycline for two
days and finally cultured in myoblast differentiation medium (DM) for
additional five days (Fig. 1A, Colonies). The morphology of the iPSCs be-
come similar to myotube-like cells (Fig. 1B) and immunostaining anal-
ysis showed expression of MYOD, Myogenin (early muscle
differentiation marker) and Myosin Heavy Chain (MYH1, late muscle
differentiation marker) in some cells (Fig. 1C). At the end of differentia-
tion, however, many cells were still negative for MYH1. To improve the
efficiency and reproducibility of differentiation, we dissociated WT I-
MyoD to single cells before differentiation (Fig. 1A, Single Cells). This
step improved the morphology of differentiated cells and increased

the number of MYH1 positive myotubes (Fig. 1B, Cand S1; see Fig. 1 leg-
end for quantification of positive cells).

3.2. Optimization of the differentiation protocol

With the aim to further improve the efficiency of iPSCs muscle dif-
ferentiation, we repeated MyoD induction in WT I-MyoD cells under dif-
ferent conditions. A schematic representation of seven alternative
protocols is shown in Fig. 2A. Protocol A corresponds to the “Single
Cells” protocol of Fig. 1. In protocol B we started from fewer cells at
day O (see Materials and Methods). Protocols 1-5 differ for the time of
doxycycline induction and medium switch. We collected the cells at
day 12 and analyzed the expression of early (Myogenin) and late
(MYH1) muscle markers by real-time quantitative PCR (Fig. 2B). We ob-
served that anticipating the switch to GM and/or doxycycline exposure
resulted to an increase of MYH1 mRNA levels (protocols 3,4 and 5). We
confirmed this hypothesis by analyzing MYH1 protein levels by immu-
nostaining (Fig. 2C and D). Compared to protocol A, protocol 5 led to an
increase of the fraction of MYH1-positive cells (67.5% to 77.1%) and a
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slight increase in the average number of nuclei per myotube (1.19 to
1.23; n = 3905 nuclei, SD = 0.094, for condition A; n = 1995 nuclei,
SD = 0.073, for condition 5; p = 0.03, t-test).

We further characterized cells differentiated with protocol 5 for the
expression of other myogenic markers, such as DYSTROPHIN (DMD),
MEF2C and endogenous MYOD detected with human-specific primers
(Fig. 2E). A time course analysis during differentiation suggested that
the expression of muscle genes might result from gradual physiological
myogenic maturation. As shown in Fig. 2F, a peak of the expression of
the mesoderm marker Brachyury (T) at day 5 is followed by a maximum
of endogenous MYOD expression at day 8. Late markers Myogenin,
MYH1 and DMD could be detected at day 8 and further increase at
day 11, while MYOD levels decrease. Finally, we comparatively analyzed
the expression of myogenic markers in differentiated iPSCs and in dif-
ferentiated human myoblasts. Human myoblasts displayed higher
levels of MYOD and MYH1, while Myogenin and DMD were more abun-
dant in iPSC-derived muscle cells (Fig. 2G).

Taken together, these results suggested that by modifying differenti-
ation conditions we improved the conversion of iPSCs into muscle cells,
which acquire the expression of relevant markers at levels comparable
to differentiated human myoblasts and in a fashion that resembles
physiological myogenic maturation.

3.3. Functional analysis of WT I-MyoD iPSC-derived skeletal muscle cells

To assess the functional differentiation of WT I-MyoD cells, we first
analyzed their passive electrical properties, specifically the membrane
capacitance, which provides a measure of the cell surface, and the rest-
ing membrane potential. After 12 days of differentiation, membrane ca-
pacitance of WT I-MyoD cells was 35.0 + 5.5 pF (n = 17) and their
resting membrane potential was —31.7 + 4.4 mV (n = 16), a value
similar to the one previously reported for fusion competent myoblasts
and mononucleate C2C12 cells (Grassi et al., 2004).

Patch-clamp recordings of differentiated WT I-MyoD cells showed the
functional expression of nicotinic acetylcholine (ACh) receptors. Indeed
the acute application of ACh (30 uMV, 1 s) always induced inward current
responses ranging between — 0.4 and — 3 nA (mean amplitude = — 1.3 +
0.2 nA; ACh 30 uM; n = 11; HP = — 70 mV). ACh induced currents clear-
ly showed dose dependence in a range of ACh concentrations (3, 30,
300 puM; p < 0.05, One Way ANOVA; Fig. 3A). ACh induced currents
were due to the activation of nicotinic receptors, as the treatment with
a-bungarotoxin completely abolished the currents (not shown).

To further assess the functional differentiation of iPSC-derived mus-
cle cells, we performed [Ca®"]; imaging experiments by loading cells
with Fura2 AM, a membrane-permeant and ratiometric Ca® "-sensitive
dye. In these cells, the application of ACh (3, 30, 300 pM; 1 s) induced

a sustained rapid and reversible increase of intracellular calcium (n =
22 cells; Fig. 3B), indicating that ACh receptors (AChRs) activation
allowed calcium influx into the cells. These results suggest that differen-
tiated WT I-MyoD cells expressed functional AChRs and that their acti-
vation led to intracellular calcium elevation, which is necessary for
muscle contraction.

3.4. ALS-iPSCs can be differentiated into functionally mature myotubes

Several patient-derived ALS iPSC lines are available in our lab (Lenzi
et al,, 2015). We cotransfected epB-Puro-TT-mMyoD and the piggyBac
transposase in these cells generating three additional MyoD inducible
lines: iPSC-FUS®>14S™WT_MyoD, iPSC-FUSR>2'“WT_MyoD and iPSC-TDP-
43A382T/A382T_\1yoD, We then induced muscle differentiation in these
cells in parallel with WT I-MyoD iPSCs using an optimized protocol
(depicted in Fig. 4A), based on previous results. First, we anticipated
the GM switch and the addition of doxycycline to day 4. Second, as we
noticed different doubling times of differentiating cells in GM in biolog-
ical replicates (data not shown), we decided to keep cells in GM for only
one day to increase the reproducibility. Finally, as differentiating cells
expressed endogenous MYOD (Fig. 2E-G), and endogenous MYOD is
expected to decrease at the end of differentiation, we removed doxycy-
cline in the last 3 days to allow a more physiological maturation of mus-
cle cells. Analysis of muscle markers by immunostaining showed that
under these conditions both normal and ALS mutant lines could be dif-
ferentiated with comparable efficiency (Fig. 4B and C).

Passive electrical properties of mutant cells were similar to that
measured in WT [-MyoD cells, in terms of membrane capacitance
(iPSC-FUS®R14SWT_MyoD: 49.2 4+ 9.6 pF, n = 8; iPSC-TDP-43A382/
A382T_MyoD: 48.8 + 9.7 pF, n = 12; p = 0.2 vs WT I-MyoD, t-test) and
resting membrane potential (iPSC-FUS®'4SWT_MyoD: —34.8 +
44 mV, n = 7; iPSC-TDP-43/382T/A382T_\MyoD: —34.8 + 44 mV, n =
9; p = 0.8 vs WT [-MyoD, t-test). Patch clamp recordings of ACh-evoked
currents in ALS iPSC-derived skeletal muscle cells revealed that re-
sponses evoked by ACh in iPSC-FUSR°'4SWT_MyoD were similar to
those recorded in WT I-MyoD cells (0.74 + 0.27 nA, n = 7, ACh
30 uM, p = 0.1, t-test) (Fig. 5A). In the same analysis, however, the
iPSC-FUSR521¢WT_MyoD mutant did not show responses to ACh (data
not shown). In the case of the iPSC-TDP-43/382T/A382T_\yoD mutant,
differentiated cells displayed significantly smaller currents compared
to WT and FUSR4SWT cells (0.38 + 0.21 pA, n = 9, ACh 30 M,
p < 0.05 vs WT [-MyoD, t-test) (Fig. 5A).

Fluorescence determination in Fura2 AM-loaded cells showed that
ACh application induced transient intracellular calcium rise in FUSR>14%/
WT and TDP-43/382T/A382T A1 S mutant cells (Fig. 5B). Notably, ACh-in-
duced currents responses were dose-dependent in iPSC-FUSR>14S/WT_
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Fig. 3. Functional properties of WT iPSC-derived skeletal muscle cells. (A) Left panel: dose-response relation of ACh-evoked currents in skeletal muscle cells differentiated from WT [-MyoD
iPSCs with the protocol 5 described in Fig. 2 (¥, p < 0.05, OneWay ANOVA). Right panel: sample traces of the three concentrations of ACh applied to a WT iPSC-derived skeletal muscle cell.
(B) Average fluorescence response to ACh (300 uM), in Fura-2-loaded skeletal muscle cell differentiated from WT iPSC with the protocol 5 described in Fig. 2 (n = 22).
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differentiated ALS mutant cells. Nuclei are counterstained with DAPI. Scale bar for all panels: 50 pm. (C) Quantification of the fraction of MYH1-positive cells in control and ALS
differentiated cells. Histogram bars represent averages 4 S.E.M. (30 fields and at least 1000 nuclei counted per line) and n.s. indicates that the differences between mutant lines and

the WT I control are not statistically significant (p > 0.1; Student's t-test).

MyoD cells, while iPSC-TDP-43#382T/A382T_\yoD cells displayed signifi-
cantly smaller currents without dose-dependence (Fig. 5A).

Taken together these results demonstrate that the MyoD inducible
system and differentiation protocol described here allowed the conver-
sion of multiple iPSC lines, including cells carrying ALS mutations, into
functionally active myotubes.

4. Discussion

The French neurologist Jean-Martin Charcot in 1874 was the first to
describe anatomical lesions in the lateral spinal cord of ALS patients,

thus pointing to motoneurons as the cell type primarily affected in the
disease. Since then, other neural and non-neural cell types have been
shown to contribute to this complex disease.

Both animal models and in vitro cell systems can contribute to the
dissection of molecular pathways and cellular phenotypes underlying
ALS. The SOD1 mouse model has been extensively used to study the
non-cell autonomous effects of the mutations in different cell types.
Muscle-restricted expression of mutant SOD1 elicited in this district
toxic effects, due to increased oxidative stress, associated to signs of
ALS and motoneuron degeneration in old mice (Dobrowolny et al.,
2008; Wong and Martin, 2010). However, reduction of mutant SOD1
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Fig. 5. Functional properties of ALS iPSC-derived skeletal muscle cells. (A) Dose-response relation of ACh-evoked currents in skeletal muscle cells differentiated as described in Fig. 4 from
FUSR14SWT_MyoD (light gray bars, n = 7; §, p <0.05 vs 3 uM; §§, p < 0.05 vs 3 uM and 30 uM; OneWay ANOVA) and from TDP-43/3821/A382T_MyoD (dark gray bars, n = 9; *, p <0.05 vs WT
I-MyoD cells, TwoWay ANOVA) iPSCs, compared to those recorded in WT I cells (white bars, n = 11; #, p < 0.05 vs 3 uM; #, p < 0.05 vs 3 uM and 30 pM; OneWay ANOVA). (B) Average
fluorescence response to ACh (300 uM) in Fura-2-loaded iPSC-FUS®>'S™T_MyoD (light gray trace; n = 18 cells) and iPSC-TDP-43"382/A382T_MyoD (dark gray trace; n = 13 cells) cells.

in muscles did not affect disease onset or survival of transgenic mice
(Miller et al., 2006). A better understanding of the role of muscle is cru-
cial to design effective therapeutic strategies for this multi-systemic dis-
ease. The genetic etiology of ALS also contributes to its complexity.
Despite the list of genes underlying inherited ALS has been greatly ex-
panded in the last decade, effects of non-SOD1 mutations in muscle
cells, and their possible contribution to ALS onset or progression, have
not been elucidated. In a recent report, Wachter et al. suggested that
overexpression of FUS and TDP-43 in muscle cells affects motoneuron
neurite length in an in vitro murine co-culture system (Wadchter et al.,
2015). This study relied on the ectopic expression of human mutant
proteins in a mouse system. So far, a proper human model system in
which these evidences could be confirmed and implemented is still
missing. In this paper we show that both normal and ALS patient-de-
rived human iPSCs can be converted to functionally mature myotubes
in vitro. One important point of strength of our system is the expression
of physiological levels of mutant proteins by human iPSC-derived cells
(Lenzi et al., 2015). Notably, ectopic expression of human WT FUS in
murine systems (in vivo or in vitro) produced the same detrimental ef-
fects observed when mutant proteins are used (McGoldrick et al., 2013;
Mitchell et al.,, 2013; Wadchter et al., 2015). Such dose-dependent toxic-
ity should be taken into consideration when analyzing the results of ex-
periments relying on transfection of exogenous ALS-related genes.
Human iPSCs and their differentiated derivatives, such as those de-
scribed here, are not flawed by this concern.

Our approach is based on the ectopic expression of the myogenic
factor MyoD in an inducible way, in cells that had stably integrated
the transgene. Transduced iPSCs represent a stable and expandable
population, in which doxycycline treatment and medium switch are
sufficient to induce myogenic differentiation in few days. Even if we
do not provide comparative analysis, a survey in the literature suggests
similar timing and efficiency of differentiation with our system com-
pared to analogous methods (Tanaka et al., 2013; Shoji et al., 2016).

In our previous work, we have reported comparable efficiency of
motoneuron differentiation between WT and FUS or TDP-43 mutant
iPSCs (Lenzi et al., 2015). Here we have extended this analysis to muscle
differentiation showing that ALS mutations did not impair myogenesis,
as assessed by muscle markers expression. Functionally, both control
and ALS mutant iPSC-derived muscles expressed AChRs and responded
to ACh application with transient intracellular calcium increase, sug-
gesting that these cells could have reached a mature phenotype. Inter-
estingly, we detected significantly smaller currents in the TDP-43
mutant compared to the control. Moreover, one of the FUS mutants
did not respond to ACh. Despite the fact that the fraction of cells

expressing the muscle marker MYH1 was not significantly different
among the lines, we cannot exclude that these differences were due to
suboptimal maturation. It should be also taken into consideration that
iPSC lines used in the present work were derived by somatic cell
reprogramming and therefore are not isogenic. In order to ascribe any
functional impairment to the genetic defect it would be necessary, in
the future, to extend this analysis to other mutants and/or compare
cell lines that differ only with respect to disease mutations, i.e. other-
wise isogenic, generated by gene editing.

The ALS-MyoD iPSC lines described here can be used to reproduce in
vitro the neuromuscular microenvironment affected by the pathology.
Despite no data on motoneuron-muscle interactions are presented
here, ALS-mutant iPSCs will allow, in the future, to establish this kind
of co-cultures. Such system would be instrumental to understand
whether FUS or TDP-43 mutant muscles can affect survival of WT moto-
neurons, or worsen the vulnerability of mutant motoneurons in human.
So far, ALS phenotypes in human motoneurons have been only studied
in cultures containing neural cells (i.e. motoneurons and glia, at the
best). On the contrary, iPSC-derived motoneuron-muscle-glia co-cul-
tures may provide, in the long term, a tool to screen for therapeutic
compounds that target muscle-motoneuron interactions in ALS.
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