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Fig. 1. Geometry of the 3D printed fabric

interconnected by some cylinders whose bases are circular and integral with the bottom or upper face of
the fibers to which they are attached (see again Fig. 1).

These cylinders form an array of elastic pivots, whose elastic energy determines the shear deformation
energy of the pantographic sheet, while the bending energy of fibers will produce a second-gradient
effect in the continuum model deformation energy (see [19,34,35,83] or [16,17]). This system has a
microstructure which seems suitably described by the aforementioned continuum models when second-
gradient deformation energies are taken into account considered: In particular, the deformation energy
has to account for the so-called geodesic bending [81].

The equilibrium of pantographic sheets is considered in the case of bias extension test with imposed
elongation (hard device tests) along the direction of the shorter sides. The imposed relative displacement
of shorter sides (see tensile tests shown in Fig. 4) is assumed to be such that the deformation of the
specimen is doubly symmetric respect to its two principal referential inertia axes. The actual equilibrium
shapes, the total deformation energy and the resultant forces applied by the hard device are estimated
using Pipkin continuum models via a numerical code minimizing energy as functions of the imposed
displacement. Different shear deformation and bending energies are postulated, and they are fitted with
the first experimental evidence which were made available.

Remark that the pantographic lattices considered in the present paper may have a relevance also
in the context of phenomena involving wave propagation, as shown by the investigation presented in
[1,42,45,61]: It is indeed likely that macroscopic effects of the microstructure in pantographic fabrics
may include frequency filtering and/or energy trapping. This aspect of the mechanics of these fabrics
will be the subject of future investigations. Also very relevant may be the implications of the results
presented here on the understanding of the biomechanics of living tissues: Indeed (see e.g., [26,31–33]
and [36–38]), the role of fiber reinforcements on the mechanical behavior of growing and reconstructed
tissues is attracting some attention. Finally, the consideration of multiphysics effects (as for instance
piezo- or flexo-electricity) in systems having the geometry and the kinematics of a pantographic sheet
can also disclose new possibilities (see [20,27]).

2. Pipkin continuum model for considered fabric

In this sections, we sketch the formulation of the Pipkin continuum model which has been used for
formulating the models used in the elastic regime. For more details, the reader is referred to [16]. The
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reader is warned: no attempt is made here to model damage and failure phenomena. This challenge has to
be confronted, following the ideas presented in [68–70] suitably adapted to the context of second-gradient
materials as done in [43,60,64]. Another consideration is needed here: In the present work, we do not try
to derive the used continuum model by means of a homogenization procedure. Of course this micro–macro
procedure is needed, and following the ideas presented, for example, in [2,3,77], in [6–8,18,28,62,71,72]
in [10] or in [48–50] will be the object of further investigations (see also [63] for a general overview on
generalized continua).

Let us consider the set of material particles of the introduced 2D continuum B embedded in the
Lagrangian space EL. The continuum B is meant to model the considered (and printed) pantographic
sheet. We introduce an orthonormal system (O,X1,X2) in EL to label material particles. The sides of
the considered specimen are assumed to be parallel to the introduced coordinate lines (see Fig. 2).

In every actual configuration, each material particle is placed, by a map r, into positions belonging to
the Eulerian space E :

B
r−→ r (B) ⊆ E .

In order to model the printed specimens, we assume that B is a rectangle whose sides have length l and
L, specified as follows:

B =
{

(X1,X2) ∈ EL : X1 ∈ [0, L] , X2 ∈
[
− l

2
,
l

2

]}
.

We explicitly observe that the length ratio plays a relevant role: Here, we consider standard bias test,
i.e., the case in which L = 3l. To take into account the material properties related to inextensibility, it
is needed to introduce an adapted orthogonal reference system, (O, ξ1, ξ2) , (called the fiber reference)
which is oriented according to the directions of the inextensible fibers and which uses dimensionless space
coordinates as follows:

ξ1 :=
1
l

(X1 − X2) +
1
2
, ξ2 :=

1
l

(X1 + X2) +
1
2
. (1)

ξ1

ξ2

B

EL

O
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I23
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I13
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Fig. 2. Material (Lagrangian) coordinates adapted to inextensible fibers configuration
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On occurrence, one can use the coordinates (ξ1, ξ2) to label a generic material particle of B and
indicate with D1 (ξ1, ξ2) and D2 (ξ1, ξ2) the unit vectors tangent to the two families of fibers in the
reference configuration at point (ξ1, ξ2).

2.1. Inextensibility and consequent representation of admissible placements

Let γ ⊂ B be a rectifiable curve whose length is l: We say that γ is inextensible for an admissible
placement r of B if for every arc α of γ, we have that r(α) has the same length as α. In the present work,
we will simply assume that the placement field r is piecewise-twice continuously differentiable in B. If we
indicate with F the gradient of r in the points where it is defined, we get obviously that

d1 = F · D1, d2 = F · D2. (2)

where the two vectors d1 and d2 represent the directions of the fibers in the current configuration, while
the inextensibility constraint implies that a placement field of class C1 in the neighborhood of a material
particle P , verify the equalities:

‖F · D1‖2 = ‖d1‖2 = ‖F · D2‖2 = ‖d2‖2 = 1. (3)

Rivlin, in [67], proves that when r ∈ C2(Δ), where Δ is an open simply linearly connected subset of
B, the inextensibility of the fibers implies that it is possible to find a particular representation of the
placement field: There exist two vector fields r(Δ)

1 (ξ1) and r(Δ)
2 (ξ2), respectively, defined on the projection

of Δ on the fiber axes ξ1 and ξ2 such that

r(Δ) (ξ1, ξ2) = r(Δ)
1 (ξ1) + r(Δ)

2 (ξ2) . (4)

We can represent these two vector fields in the basis (D1,D2) as follows:⎧⎪⎨
⎪⎩

r(Δ)
1 (ξ1) = μ

(Δ)
1 (ξ1)D1 + ν

(Δ)
1 (ξ1)D2

r(Δ)
2 (ξ2) = ν

(Δ)
2 (ξ2)D1 + μ

(Δ)
2 (ξ2)D2,

(5)

being μ
(Δ)
1 , μ

(Δ)
2 , ν

(Δ)
1 , ν

(Δ)
2 suitably regular scalar functions on the projections of Δ on the fiber axes ξ1

and ξ2.
It is easy to check that:

∃ϑ1 (ξ1) : F · D1 = cos (ϑ1 (ξ1))D1 + sin (ϑ1 (ξ1))D2

∃ϑ2 (ξ2) : (∀ξ2 ∈) F · D2 = sin (ϑ2 (ξ2)) D1 + cos (ϑ2 (ξ2))D2

It is also easy to verify from the previous equations that, on any subdomain Δ whose points can be
connected with segments parallel to ξ axes, the whole displacement field is known in terms of only two
real functions of one real variable. Indeed once, for instance, the functions μ

(Δ)
1 and μ

(Δ)
2 are chosen, then

the functions ν
(Δ)
1 and ν

(Δ)
2 are simply obtained via integration in terms of the functions μ

(Δ)
1 and μ

(Δ)
2

plus some integration constants (to be determined via suitable boundary conditions).

2.2. Imposed boundary conditions

The two segments Σ1 and Σ2 characterized, respectively, by the conditions (the short sides of the speci-
men)

X1 = 0, X2 ∈
[
− l

2
,
l

2

]
; X1 = L, X2 ∈

[
− l

2
,
l

2

]
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are described, in the fiber reference, by the following other conditions:

Σ1 := {(ξ1, ξ2) ∈ B : ξ1 ∈ [0, 1] , ξ2 = 1 − ξ1} , (6)

Σ2 := {(ξ1, ξ2) ∈ B : ξ1 ∈ [3, 4] , ξ2 = 7 − ξ1} . (7)

In extension symmetric bias test, we impose the following boundary conditions on the two subsets Σ1

and Σ2 of the boundary of B:

1. vanishing displacement of the side Σ1,
2. imposed displacement u0 = u0

(D1+D2)
||(D1+D2)|| of the side Σ2.

As already remarked in [54,67], because of inextensibility, the boundary conditions determine the place-
ment field not only at the boundary but also in some regions inside the continuum at which they are
applied.

2.3. Placement field in Δ00 and Δ33 and integral conditions implied by boundary conditions

The chosen boundary conditions on Σ1 and Σ2, imply that r is piecewise-two times differentiable in the
regions delineated in Fig. 3 and equal to the identity on Δ00 and a translation in Δ33 (for the proof the
reader is referred to [16]).

In Δ00, we have that

r (ξ1, ξ2) = ξ1D1 + ξ2D2 (8)

while in Δ33, we get:

r (ξ1, ξ2) = (ξ1 + u01)D1 + (ξ2 + u02)D2 (9)

Moreover, the continuity conditions in Pi = (1, 1) and Pf = (3, 3) of the placement field can be written
as (see again [16]): ⎧⎪⎨

⎪⎩
μ1 (3) +

∫ 3

1
sin (ϑ2 (η)) dη = 3 + u01

μ2 (3) +
∫ 3

1
sin (ϑ1 (η)) dη = 3 + u02

(10)

This condition imposes the continuity of the translation imposed to Δ33 with the displacement of the
contiguous domains. By recalling that (i = 1, 2)

dμi (ξi)
dξi

− cos (ϑi (ξi)) = 0, μi(1) = 1, (11)

Δ10

Δ01

Δ11

Δ21

Δ22

Δ32

Δ23

Δ33

Δ12

Δ00

Fig. 3. Domains pattern imposed by boundary conditions
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it is easy to express the found integral conditions exclusively in terms of the fields ϑi(ξi) as follows⎧⎪⎨
⎪⎩

∫ 3

1
(cos (ϑ1 (η)) + sin (ϑ2 (η))) dη = 2 + u01

∫ 3

1
(cos (ϑ2 (η)) + sin (ϑ1 (η))) dη = 2 + u02.

(12)

This form will be useful when looking for the equilibrium shapes of considered body by minimizing the
deformation energy in hard devices tests.

2.4. Symmetric placements in considered bias extension tests

In this paper, we will consider, for considered specimen, only placements symmetric with respect to the
X1 axis. This means that given a point P of coordinates (ξ, η) and its symmetric Ps having coordinates
(η, ξ), the following conditions hold:⎧⎪⎨

⎪⎩
d1 (P ) · D1 = d2 (Ps) · D2

d1 (P ) · D2 = d2 (Ps) · D1

=⇒

⎧⎪⎨
⎪⎩

μ1,1 (ξ) = μ2,2 (ξ)

ν1,1 (ξ) = ν2,2 (ξ)
(13)

Considering the symmetry of boundary conditions and the first equality in (13), we derive directly
the following identities:

μ (ξ) := μ1 (ξ) = μ2 (ξ) ϑ (ξ) := ϑ1 (ξ) = ϑ2 (ξ) ∀ξ ∈ [0, 4] . (14)

Therefore, considering the relation between μ and ν, the kinematics of the problem is completely
described by means of a unique field.

2.5. The space of configurations for 2D continua with two families of inextensible fibers in symmetric
plane motion

If we assume the hypothesis of symmetry just described, the placement of B is completely determined by
one scalar field μ (ξ) only, defined in the real interval [0, 4]. Because of the considered boundary conditions,
recalling (8) and (9), μ has to be determined only in the interval I = [1, 3]. Thanks to (10) we have also
the conditions

μ (1) = 1, μ (3) +

3∫
1

sin (ϑ (η)) dη = 3 + u0, (15)

or equivalently the conditions

μ (1) = 1,

3∫
1

(cos(ϑ (η)) + sin (ϑ (η))) dη = 2 + u0. (16)

The space of (admissible) configurations for 2D continua with two families of inextensible fibers (whose
tangent vectors are orthogonal in the reference configuration) in plane motion is given by the set of pairs
of fields (μ, ϑ) both defined in the interval [1, 3]. The field μ (ξ) is piecewise C2, and the field ϑ (ξ) is
piecewise C1 with possible discontinuities in the point ξ = 2. The pairs of fields (μ, ϑ), together with the
conditions (16), verify the local condition

dμ(ξ)
dξ

− cos (ϑ (ξ)) = 0 ∀ξ ∈ [1, 3] . (17)
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2.6. Constrained minimization of deformation energy

Once the deformation energy in terms of the shear deformation is introduced, we are reduced to the
solution of a standard constrained optimization problem in which our energy functional, which depends
only on the field ϑ, represents the objective function with inequality constraints on the angles fields (a
condition of non-overlapping fibers) and the integral constraints on the angle filed imposed by boundary
conditions. In formulas:

min
(ϑ)

F(ϑ) :=
∫
B

W

(
ϑ(ξ1), ϑ(ξ2),

dϑ(ξ1)
dξ1

,
dϑ(ξ2)

dξ2

)
dB (Objective Function)

subjectto:

⎧⎨
⎩

0 < ϑ(ξi) < π
4 , i = 1, 2., (Ineq. Constr.)∫ 3

1
cos(ϑ(ξ1))dξ1 +

∫ 3

1
sin(ϑ(ξ2))dξ2 − 2 = u0, (Eq. Constr.)∫ 3

1
cos(ϑ(ξ2))dξ2 +

∫ 3

1
sin(ϑ(ξ1))dξ1 − 2 = u0, (Eq. Constr.)

(18)

3. Numerical simulation in the elastic regimes

In this section, we exploit the Rivlin–Pipkin decomposition of plane displacement of continua with two
families of inextensible fibers to find the equilibrium forms of a rectangular specimen having the inexten-
sible fibers oriented at 45 ◦ with respect to the elongation direction. Indeed, the Rivlin–Pipkin decom-
position allows for the formulation of a finite element integration scheme in terms of piecewise constant
functions approximating the field ϑ : The fact that the integration scheme includes the inextensibility
constraint without the need of introducing Lagrange multipliers makes the formulation of the algorithm
much simpler and its convergence properties much easier to control.

The numerical simulations are based on some postulated expressions for the shear deformation energy:
They are motivated a posteriori by comparison with the experimental data: The problem of deriving the
most suitable one via a homogenization procedure (see e.g., [6,18,84,85]) is left for future investigations.
The reader should, however, remark that in the present model, the different behaviors of the different
mechanical parts which are constituting the elastic pivots (the cylinders which can be seen in Fig. 1) are
described by the first-gradient (in displacement) dependence of the deformation energy density

W

(
ϑ(ξ1), ϑ(ξ2),

dϑ(ξ1)
dξ1

,
dϑ(ξ2)

dξ2

)
,

while the bending stiffness of involved fibers is taken into account via its second-gradient (in displacement!)
dependence. Recall that because of (17), the dependence of W on ϑ implies a dependence on the first
gradient of placement.

We manage to calculate exerted force as a function of imposed displacement by means of its expression
based on Castigliano’s first theorem: This information obtained from modeling procedure used is of
experimental relevance.

One consideration is needed here: In the considered bias test (see Fig. 4), some specific deformation
regions are delineated. In different regions, different (nearly constant in Lagrangian coordinates) shear
deformation states are originated and some boundary layers separate these regions. Boundary layer loca-
tion is determined clearly by imposed boundary conditions. On the other hand, their thickness and shape
are mesh dependent when only first-gradient energies are considered. On the other hand, when second-
gradient energies are assigned, then the consequent introduction of a characteristic length scale produces
a model where also boundary layer thickness can be accounted for. The physical meaning of the newly
considered length scale is easily associated with the ratio of bending and elongation stiffness of the fibers
constituting the considered fabric.
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Fig. 4. Boundary layers

3.1. Description of the used numerical code

The minimization problem which we must solve involves the determination of a single real function of
only one real variable.

This function is the angle field ϑ in terms of which, by means of the equation 17 (controllare che
è buona la referenza!), the placement of considered 2D continuum is found. The integration scheme is
conceptually very easy: We approximate the unknown field by a step function. The values of such a step
function will be determined in order to minimize deformation energy.

The only difficulty to be confronted is represented by the fact that even if the total deformation
energy is defined via a 2D integral, whose integrand function depends on two variables (i.e., the variables
ξ1 and ξ2), such integrand function is defined in terms of the real variable function ϑ only. The reference
configuration is therefore suitably partitioned into the union of rectangles inside of which the deformation
energy is estimated by means of the corresponding values of the considered step function, while the
total energy is simply estimated via Riemann sums. The considered constrained optimization problem is
numerically solved by means of two solver: the Nminimine solver in Mathemathica� and the open source
solver MIDACO1 in C++ ambient that offers a very efficient parallelization strategy.

For making the computations more expeditive, the presented numerical simulations were performed
for a mesh having 20 × 60 elements for the whole specimen.

3.2. Results of numerical simulations: equilibrium shapes and angle fields

A first result of the numerical simulations which we have performed concerns the determination of the
shape of considered specimen in the case of imposed relative displacement of the two short sides of the
considered rectangular body.

As discussed in Sect. 2, the first field which can be determined is the field of shear angles ϑ.
The numerical simulations performed in this paper used the four deformation energy densities listed

below. Remark that the stiffness has been assumed to be equal to 1 when we considered only one of
the listed energies in the simulations: Its value will play a role only in the determination of the value
of exerted external forces needed to determine a given displacement. When the sum of the first and
the forth energy is considered, then the stiffnesses α and β are introduced, respectively, for first- and
second-gradient energies.

1 MIDACO − SOLV ER (or Mixed Integer Distributed Ant Colony Optimization) can be downloaded from http://
www.midaco-solver.com/; an overview on nonlinear optimization solvers can be founded in http://en.wikipedia.org/wiki/
List of optimization software.

http://www.midaco-solver.com/
http://www.midaco-solver.com/
http://en.wikipedia.org/wiki/List_of_optimization_software
http://en.wikipedia.org/wiki/List_of_optimization_software
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1. Trigonometric first-gradient shear energy given by the following formula:

W I
1 (ϑ) =

1
2

sin2 ϑ

2. Quadratic first-gradient shear energy:

W I
2 (ϑ) =

1
2
ϑ2

3. Quadratic first-gradient shear energy

W I
3 (ϑ) =

1
2
ϑ4

4. Quadratic second-gradient energy

W II
1 (ϑ) =

1
2

(∇ϑ)2 .

The results of numerical simulations allow us to remark that for a first-gradient shear energy model:
• the shear angle field in general is not constant with respect to Lagrange coordinates (see Fig. 5a, c

where W I
1 has been used);

• there is at least one energy density for which there exists a relative displacement for which the
equilibrium shear angle field is piecewise constant with respect to Lagrange coordinates (see Fig. 5b
where W I

1 has been also used);
• for all the other energy densities considered the equilibrium shear angle field is never constant (with

respect to Lagrange coordinates) for all imposed relative displacements (see Figs. 6, 7, where the
energies W I

2 and W I
3 are considered);

• the maximum shear angle is not always located at the center of the specimen (see Fig. 5a).
In subsequent numerical simulations the energy density αW I

1 plus the second-gradient quadratic energy
density βW II

1 (with ratio on the constitutive parameter 50:1) have been considered. The results which
were obtained can be resumed as follows:
• the shear angle field in general is not constant with respect to Lagrange coordinates (see Fig. 8),
• because of the addition of second-gradient energy, the equilibrium shear angle field is not anymore

constant for all imposed relative displacements,
• contrary to what happens when the energy W I

1 alone is considered, with suitably large coefficients
for second-gradient energy, the maximum shear angle is always located at the center of the specimen
(see Fig. 8),

• the introduction of second-gradient energy regularizes the field ϑ so that it does not suffer jumps at
the separating curves of the Δ domains shown in Fig. 3.

After having calculated the field ϑ, the placement field can be consequently calculated via a standard
integration process in one variable only. The shapes of the specimen, for the energy αW I

1 +βW II
1 , obtained

for the same imposed relative displacements and same parameter β, for several different values of the
parameter α are shown in the Figs. 9 and 10. From these figures for increasing values of the parameter α,
that weights the first-gradient shear energy W I

1 , one can show the transition from the shape characteristic
of the second-gradient-dominated fabric (see Fig. 10) to those characterizing the first-gradient-dominated
fabric. In these last shapes, one can verify the presence of the expected jumps in the ϑ fields (see Fig. 9).

A first examination of the calculated equilibrium shapes of considered specimen shows that many
relevant features of the field ϑ depend on the postulated deformation energy. As a consequence, the
phenomenological fitting of the deformation energy more suitable to describe a given specimen can be
based on the consideration of the values assumed by the field ϑ in some more relevant material particles
of the specimen. We have chosen the material points (ξ1 = 1, ξ2 = 1) and (ξ1 = 2, ξ2 = 2) (see Fig. 2) to
estimate some values of ϑ particularly meaningful. In other words, we will consider the plots of the angles
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Fig. 5. Total angle ϑ1 + ϑ2 for several values of imposed relative displacement when W I
1 is used: a ux = uy = 0.65 ∗ L, b

ux = uy = (
√

3 − 1) ∗ L, c ux = uy = 0.8 ∗ L
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Fig. 6. Total angle ϑ1 + ϑ2 for several values of imposed relative displacement when W I
2 is used: a ux = uy = 0.65 ∗ L, b

ux = uy = (
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3 − 1) ∗ L, c ux = uy = 0.8 ∗ L
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Fig. 7. Total angle ϑ1 + ϑ2 for several values of imposed relative displacement when W I
3 is used: ux = uy = 0.8 ∗ L

ϑp := ϑ(1, 1) and ϑc := ϑ(2, 2) (and their difference) as functions of the imposed relative displacement
when different deformation energies are postulated.

In Fig. 11, these energies are the quadratic one (dashed lines), i.e., W I
2 (ϑ), or the trigonometric one

(continuous lines), i.e., W I
1 (ϑ), regularized with the same second-gradient quadratic energy W II

1 . The
total energy is obtained via a linear combination of first- and second-gradient energies with different
values for weighting coefficients α and β: Their considered values are indicated in the same figure.

It can be easily remarked that the trend of the plots for ϑp := ϑ(1, 1), ϑc := ϑ(2, 2) and their difference
is qualitatively and quantitatively different in three specific ranges for the ratio α/β. The first range is
when the second-gradient effects are dominating (see left plot in Fig. 11). One can then distinguish the
transition range (see the central plot in Fig. 11) and finally the range where the first-gradient effects are
dominating (see the right plot in Fig. 11).

The trends of the plots are rather different in the three previously identified ranges. In fact it has to
be remarked that:

• in the range where second-gradient energy is dominating, the angle at the center of the specimen
ϑc (green line) is smaller than the angle ϑp (blue line) at the corner p;

• in the transition range, the two angles have comparable values;
• in the range where the first-gradient energy is dominating, the angle at the center of the specimen

ϑc (green line) is greater than the angle ϑp (blue line) at the corner p;
• the difference between the two angles (plotted by the red line) has a trend which can be adopted as

an indicator to determine in which one of the three identified ranges it a specific specimen can be
classified.

All above-listed considerations have directed the design of the performed experimental measurements,
whose first preliminary results will be shown.
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F. dell’Isola et al. ZAMP

0 1 2 3 4 5
0

1

2

3

4

5

Fig. 9. Deformed configuration for ux = uy = 0.6 ∗ L, α = 5 and β = 1
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Fig. 10. Deformed configuration for ux = uy = 0.6 ∗ L and β = 1: a α = 25 and b α = 50
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Fig. 11. Incremental angle behaviors for the first- and the second-gradient energy model

3.3. Exerted forces as functions of imposed displacements: dependence on the deformation energy density

In this section, we show how the total deformation energy in equilibrium configuration depends on
imposed relative displacement. This estimate is of great importance in the applications, as the capability
of considered fabric to resist to damage progress is obviously related to this physical quantity. Another
important physical quantity to be taken into account in this context is the total external resultant force
which must be applied to get a given relative displacement.

The numerical simulations show that the expression of the postulated deformation energy density
influences how the equilibrium total energy depends on the imposed displacement. Because of the first
Castigliano’s theorem, the derivative of this equilibrium total energy supplies the applied external resul-
tant force, which is shown in Fig. 12.

To be more specific in Fig. 12 are shown the curve relative displacement–external force for the first-
gradient quadratic, quadratic and trigonometric first-gradient deformation energy and for the quadratic
pure second-gradient deformation energy. We recall again that the considered model is exclusively elastic.

We also remark that in order to get a prediction of the stress concentrations in the fibers at the corners
of the specimen, one should relax the inextensibility condition and test the equilibrium solution in a
suitable virtual displacement. As a consequence, the present treatment does not allow for the introduction
of the yield criteria needed to describe failure initiation. Postponing such a study to further developments,
we remark that (see again Fig. 12) the resultant force increases (for pure geometric effects) when the
specimen approaches the limit of maximum elongation allowed by inextensibility constraint.

4. Experimental evidence: macroscopic toughness in extension

The aim of the designed measurements campaign is to prove that the considered specimen, when the
damage and rupture of microscopic structure due to pivot failure or fiber rupture start arising, still is able
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to stand externally applied loads in a wide range. The observed experimental evidence will motivate the
further development of mathematical and numerical models for considered fabric to include damage onset
and development. The reader will find interesting, and relevant, experimental investigation involving fiber
reinforcements for composites in the papers, [46,47,73–76] where also once set and progress of damaged
is considered. In future investigations, the methods there used will be adapted to the present contest.

Moreover, the performed measurements have shown that in the displacements range starting from the
first rupture up to the definitive failure and for some specific geometries of the microstructures, the energy
required for reaching total rupture is greater than the amount of elastic energy which can be stored by
the specimen. This suggests that the considered microfabric has the potentialities to supply an extremely
tough metamaterial.

Three samples were tested. All of them contained the same beam cross-sectional dimensions, i.e.,
1.2 × 1.2 mm. They differed only by the dimensions of the pivots that connected the beams. The pivots
dimensions are presented in the table

Sample number Pivot height [mm] Pivot diameter [mm]

1 1.0 0.9
2 0.5 0.9
3 0.5 0.6

4.1. Description of specimen obtained by 3D printing

The specimen considered for the described experimental measurements was prepared by means of a
3D printer. The type is the printer FORMIGA P100 (EOS GmbH), the material used was PA 2200
(polyamide powder), and the software used to generate the 3D models of the specimens was SolidWorks.
The geometry of the specimen was specified by means of the STL format files, which was used as an input
by the 3D printer. In Fig. 13, details of the periodicity cell of printed pantographic specimen are shown.



Designing a light and tough metamaterial: experimental evidence

Fig. 13. Details of the pantographic specimens periodicity cell

4.2. Hard device and load cell used

The specimens were tested on the MTS Bionix System strength machine. The displacement was imposed
with the velocity 20 mm/min. It is regulated by means of multipurpose TestSuite software which fully
controls the machine activity. The exerted force was measured by means of MTS load unit which is an
integral part of the machine. It is a strain gauge type, accurate in both dynamic and static tests. The unit
comprises both axial and axial torsional force transducers. The force transducer measures the amount of
tension or compression applied to it. It has four strain gauges that form a balanced Wheatstone bridge.
When forces are applied to the bridge, it becomes unbalanced and produces an electrical signal that is
proportional to the force applied to it.

4.3. Limits of inextensibility assumption: elongation measurements

The campaign of measurements has shown that there are some fibers which are remarkably elongated.
Indeed, as seen in Figs. 14, 15 and 16, the fibers connected at the fixed corners of the specimen undergo a
remarkable stress and strain solicitation. The initial measured fiber length was equal 20 mm. The curves
in Figs. 14, 15 and 16 are drawn until the moment when the fiber was destroyed.

The reader should remark that:
• the beams (fibers) with two marks at the lower right-hand side corner in Figs. 17, 18 and 19 are

subject to a large elongation between the pivots marked with black dots. Estimating the Young
modulus of the used material as having the value 1900 MPa, the measured elongation (while esti-
mating the area of the beam as having the value 1.44 mm2: Poisson effect can be suitable taken into
account) implies that the most solicited fibers are subjected to a traction stress states of approx.
200 MPa (sample 1 and 2) and 70 MPa (sample 3).

• the other beams are not undergoing large elongations, and the geometry of deformed specimen is
well captured by the model based on inextensibility assumption.

• there are regions in which bending energy of fibers is concentrated: These regions are close to the
fibers which are most elongating.

• It is therefore clear that an improvement in the presented and used model is required, even if it
gives a reasonably accurate description of the global behavior of the fabric.
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Fig. 14. Fiber length versus displacement curve registered during tensile test of sample 1

Fig. 15. Fiber length versus displacement curve registered during tensile test of sample 2

4.4. Shear angle measurements

This section refers to Figs. 17, 18 and 19 in which the angles between two close beams connected by an
elastic pivot are shown by means of three marks patterned in triangle. The angles are placed in the lower
parts of the samples where two characteristic beams meet and in the middle of the samples. It can be
seen that those angles are not constant. A good estimate of these two angles, in the framework of the
Pipkin’s type models, is given by the theoretical values obtained in the previous section for the angles
ϑp := ϑ(1, 1), ϑc := ϑ(2, 2). Figures 17, 18 and 19 show how different geometries of the pivots and beam
sections are affecting these angles. This dependence and its role in the comprehension of the mechanical
behavior of pantographic sheets will deserve a further investigation, both theoretical and experimental.
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Fig. 16. Fiber length versus displacement curve registered during tensile test of sample 3

Fig. 17. Tensile test of sample 1 (see also Fig. 20)a) sample under stretch before first beam breakage, b fiber connected to
the lower left-hand side corner deterioration, c, d damage of further fibers, e complete deterioration of the sample

4.5. Measured toughness in extension

Toughness of a material can be defined as the amount of energy needed to lead it to failure. The com-
plex geometry of considered specimen is such that, while undergoing to large deformations and damage
progression, the constituting beams reorganize themselves in order to show an increasing resistance to
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Fig. 18. Tensile test of sample 2 (see also Fig. 21): a sample under stretch before first beam breakage, b fiber connected to
the upper left-hand side corner deterioration, c–f damage of further fibers

Fig. 19. Tensile test of sample 3 (see also Fig. 22): a sample under stretch before first beam breakage, b fiber connected to
the lower right-hand side corner deterioration, c–f damage of further fibers, g complete deterioration of the sample

elongation, in the particular direction which we consider. This simple consideration explains the follow-
ing experimental evidences (see Figs. 20, 21, 22). In the figures, characteristic points are depicted. Those
points correspond to the pictures of the samples presented in Figs. 17, 18 and 19.

In Fig. 20, the force versus displacement curve for sample 1 is presented. The points in this curve
correlate with the pictures in Fig. 17. Similarly, the points in Fig. 21 are related to the deformation of
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Fig. 20. Force versus displacement curve registered during tensile test of sample 1 with characteristic points corresponding
to pictures in Fig. 17

Fig. 21. Force versus displacement curve registered during tensile test of sample 2 with characteristic points corresponding
to pictures in Fig. 18

sample 2 which is shown in Fig. 18. Finally, the characteristic points in Fig. 22 correspond to respective
pictures in Fig. 19 which show consecutively deformation of sample 3.

5. Conclusions and perspectives

The mathematical continuum model developed in [16,17,81], based on the ideas originated by Rivlin and
Pipkin, showed to be an useful tool for design of complex plane pantographic metamaterials. The order of
magnitude of resultant forces in bias extension test (based on an intuitive micro–macro identification of
deformation energy density) has been easily forecast, as well as, in a rather precise qualitative and quanti-
tative way, the deformed shape, in large deformation, of considered specimen. The so-obtained theoretical
knowledge allowed for the design of a first campaign of experimental measurements. The experimental
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Fig. 22. Force versus displacement curve registered during tensile test of sample 3 with characteristic points corresponding
to pictures in Fig. 19

evidence concerning the large elastic deformations of considered specimen and the subsequent failure,
rupture and failure phenomena seem to be very promising. Indeed:

• when suitably optimizing the elastic pivot geometry and beam sections, the considered specimen,
after the linear and nonlinear elastic regimes, shows a wide range of relative displacements and
resultant forces in which, even if failure does not occur, damage is progressing;

• during the damage progression, the resultant force exerted increases reaching values which are several
times greater than the force exerted at the end of the elastic regime;

• the total energy which the specimen can adsorb before reaching the final failure in the range of
displacements characterizing damage progression is greater than the maximum of elastic energy
which can be stored in the elastic regime;

• the specific weight of the fabric is relatively low, so that the mechanical performances of the specimen
relative to their weight are really surprising.

One can conclude that the concept which we have presented in this paper deserves a closer investigation
and may produce interesting and technologically relevant applications. The presented results show that
it is needed to improve the used model in many directions. For instance, one could:

• Try to get some information about the state of stress of each single inextensible fiber in the framework
of a slight generalization of presented Pipkin continuum model. This could be done by refining the
application of Castigliano’s first theorem by somehow relaxing the inextensibility condition to the
fibers whose state of stress is to be determined. This could allow for the introduction of a yield
criterion and a consequent description of the failure process, to be compared with the presented
experimental evidence.

• Try to introduce a semi-discrete model for considered fabric in which each fiber is modeled as
an Euler beam interconnected to the other fibers by elastic pivots, whose deformation energies
can be calculated by separate numerical simulations based on 3D Cauchy continuum theory. This
model should have the capability of better capturing the behavior of the considered fabric, as it is
discrete in nature, for what concerns its pantographic geometry. However, this model may have some
drawbacks, at the beam model applicability is not assured when the diameter of the beams sections
is comparable with the distance between two consecutive pivots. In this respect, we underline that
the so-called GBTs (Generalized Beam Theories) may be of use (see e.g., [39,51–53]) also for starting
the study of dynamical behavior of pantographic sheets. Furthermore, these meso-models can be
developed on the framework of the isogeometric analysis as in [11,12,29,30,82].
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• Try to introduce a fully 3D Cauchy continuum model, by using the same geometrical files used for
printing the fabric with the 3D printer. While such an approach is less challenging from a conceptual
point of view, it shows formidable numerical difficulties, which need to be considered carefully.
The perturbative analysis of 3D Cauchy continuum model to locate the regions of deformation
concentration (see e.g., [14,40,41,51] and [9]) or to obtain reduced models (see e.g., [4,5,24,44,78–
80]) seems an important conceptual tool to be exploited in this context. For other types of fiber
configurations, the symmetry analysis performed in [22,23,25] may be useful for construction of
the 2D or 3D strain energy densities within the framework of the generalized models of continua
with directors. The occurrence of localization and eventual damage in the specimen is an issue of
great relevance that deserves a specific attention and that might be modeled employing one of the
methods that have been proposed for discontinuous displacement fields like in [13,15,21,86].
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