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classical displacement field with additional higher-order tensors permitting the description of micromo-
tions. Micromorphic models are more general than second-gradient ones in the sense that the microscopic
motions are completely independent of the macroscopic ones due to the introduced extended kinematics.
It is also known that second-gradient models can be obtained, in a sense, as “limits” of micromorphic
models by imposing suitable kinematical constraints relating the micromorphic tensor to the gradient of
displacement (see, e.g., [9–14]).

After the flourishing activity stemming from the original ideas of Piola [1] and associated with the
works of Mindlin [3,4,7], Toupin [5,6], Cosserat brothers [15] and Germain [16,17], the research flow asso-
ciated with the development and exploitation of generalized continuum theories stopped for some decades.
In the last years, such theories came back onto the scene with renewed force and are presently one of
the most promising tools for engineering applications concerning the characterization of microstructured
materials (see, e.g., [11,18–29]). Indeed, some newly designed materials and structures try to exploit
the micro–macro coupling to get peculiar and exotic macroscopic behaviors: The obtained materials are
sometimes called metamaterials. The new concept of metamaterials is attracting more and more the inter-
est of physicists and mechanicians (see, e.g., [30,31]). Some of these materials are obtained by suitably
assembling multiple individual simple elements, but arranged in complex (quasi-)periodic substructures
in order to show specifically designed mechanical properties. Indeed, the particular shape, geometry, size,
orientation and arrangement of their constituting elements can affect, e.g., the propagation of waves of
light or sound in a not-already-observed manner, creating material properties which cannot be found in
conventional materials. Particularly promising in the design of metamaterials are those microstructures
which present high contrast in microscopic properties: These microstructures, once homogenized, may
produce generalized continuum models (see, e.g., [19–22,32,33]). The microstructures of such metama-
terials, although remaining quasi-periodical, are conceived so that some of the physical microproperties
characterizing their behavior diverge when the size of the REV tends to zero, while simultaneously some
other properties are vanishing in the same limit.

One of the most promising fields of application of generalized continuum theories is that of the study
of the mechanical behavior of fibrous composite reinforcements. Such materials are indeed constituted
by two orders of yarns which have very high elongation stiffness, but very low shear stiffness: Because of
their sometimes exotic behavior, they can be regarded as a kind of metamaterial. The strong contrast
which they show in their mechanical properties at the mesostructure level is such that the homogenized
continuum model must necessarily be included at least in the framework of second-gradient theories.
Indeed, it is now generally accepted (see [18]) that classical Cauchy theories are not sufficient for the
description of specific deformation patterns usually observed in fibrous composites. In particular, we refer
to those concentration of strains in thin transition layers which are observed in bias extension test and
which can be related to flexural strains of the yarns and so, indirectly, to the flexural strain of the thin
fibers constituting the yarns themselves. It must be specified that we are interested in this paper to
the mechanical characterization of fibrous composite reinforcements. This means that only the fibrous
material with no organic resin is considered here. Indeed, fibrous composites can be easily shaped to
conceive complex engineering pieces and such a shape is then maintained by injection and curing of a
thermoset resin. The behavior of the final material (fibrous reinforcement + matrix) is quite different
from that of the raw fibrous composite as discussed, e.g., in [34].

In [35], some experimental evidences about 3D fibrous composite reinforcements are described and it
is seen how a first-gradient Cauchy model is not able to account for all the observed phenomenological
features. In the same paper, it is also suggested that flexural deformation of the yarns may be involved in
the observed phenomenology which is not encompassed by Cauchy models. Moreover, in [36], it is proposed
a continuum model where flexural deformation of yarns is accounted for by means of deformation energies
depending on the second gradient of displacement. It is worth noticing that the model proposed in [36] is
coherent with what has been done in [37] for only one family of fibers. Therefore, the heuristic treatment
proposed in [35] (which included in the 3D model some beam elements in order to partially account for
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experimental evidence) seems well grounded as it suggests a 3D second-gradient continuum model which
coherently explains phenomenology.

In this paper, we:
• formulate a first 3D extension of the 2D model presented in [36] by introducing suitable quadratic

second-gradient deformation energy dependences,
• adopt the same deformation energy introduced by [35] for the description of the first-gradient,

hyperelastic, orthotropic constitutive behavior,
• introduce a 3D generalization of the numerical integration scheme proposed in [18] to describe the

three-point bending test with fixed cylindrical supports for which [35] supplies experimental evidence
and first-gradient numerical simulations,

• calibrate second-gradient constitutive parameters to describe at best the experimental mechanical
behavior of the three-point bending of 0 ◦/90 ◦ and ±45 ◦ fibrous composite interlocks.

The performed numerical simulations were obtained by interfacing the solid mechanics module (used to
model contact and first-gradient constitutive behavior) with the weak form PDE module (used to imple-
ment second-gradient constitutive laws) in COMSOL�. Second-gradient effects were obtained by using
suitable Lagrange multipliers linking the introduced micromorphic kinematical descriptors to suitable
orthotropic invariants of the right Cauchy–Green deformation tensor.

Constrained micromorphic models regularize numerical integration schemes which become more sta-
ble; therefore, they are a powerful method for formulating efficient simulation tools. Moreover, constrained
micromorphic models convey into the modeling procedure a physically important information about the
microstructure of considered mechanical systems. The macroscopic effects of the microstructure are par-
ticularly energetically relevantly close to the contact regions of the specimen with the rigid supports.
Indeed, in such zones, transition layers are visible in the second-gradient solutions which allow for a
smooth transition of the out-of-plane shear angle from one value to the other. Sharp variations of out-of-
plane shear strain are instead observed in the first-gradient solution as they are energetically inexpensive.
Therefore, a spatially concentrated coupling between microstructure and macro-displacement in the par-
ticular mechanical and geometrical configurations considered results in a macroscopical difference between
first- and second-gradient mechanical behavior.

It must be remarked that the presence of microstructure may produce other relevant phenomena which
are not included in the generalized continuum model presented in the present paper. More particularly,
the presence of microstructure could induce loss of stability, buckling and post-buckling phenomena which
may occur in considered structures: While refraining here to attempt to model such phenomena, we want
to mention that by using methods similar to those presented in [38–40], also this modeling challenge
may be confronted. Moreover, we also remark that the proposed second-gradient model is intrinsically
macroscopic and that some micro–macro identifications should be envisaged following methods of the
type presented, e.g., in [19,22,32,41–49].

In conclusion, we can state that the numerical difficulties found when applying Cauchy models are
a symptom of their weakness in the modeling capabilities of complex physical phenomena. Introducing
second-gradient models, one simultaneously obtains a twofold effect (i) to enlarge the scope of applicability
of continuum theories and (ii) to improve the efficiency of introduced numerical integration schemes.

2. Kinematics

In this section, we are interested in the introduction of the correct kinematical framework which is needed
to describe the deformation of three-dimensional interlocks. To do so, we follow the reasonings proposed
in [36] for the case of two-dimensional networks in which suitable second-gradient energies are proposed
which account for the effect of yarns’ bending stiffness on the deformation of the considered 2D woven
fabrics.
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Fig. 1. Eulerian yarn vectors d1 and d2: The angle θ is the angle between yarns in the current configuration, γ = γ1 + γ2

is the total angle variation with respect to the reference configuration

Fibrous composite interlocks are constituted by different layers of thin woven fabrics which are held
together by a complex weaving pattern. To account for the fact that such materials show two privileged
material directions, we introduce two orthonormal vectors D1 and D2 which represent the warp and weft
directions of the yarns constituting the 2D woven fabrics in the reference configuration. These weaving
directions are assumed to be the same for all points in the considered woven specimen. A third direction
can be introduced as D3 = D1 × D2: It is worth noticing that while D1 and D2 actually identify the
pattern of the yarns in the undeformed configuration, the third unit vector D3 does not necessarily
represent a material direction. The quoted set of unit normal vectors is known to be worth to describe
the reference configuration of an orthotropic material (see, e.g., [50]). Once the Lagrangian unit vectors
are introduced, we can define the corresponding Eulerian vectors as:

d1 = F · D1, d2 = F · D2, d3 = F · D3, (1)

where F = ∇χ is the gradient of the usual placement map χ. The vectors d1,d2 and d3 are the push-
forward in the current configuration of the vectors D1,D2 and D3, respectively. It is worth to stress the
fact that while the vectors d1 and d2 represent the current directions of the warp and weft, the vector
d3 cannot be related to privileged directions inside the considered orthotropic material.

We can summarize by saying that the kinematics of the considered continuum is univocally determined
by the introduction of a suitably regular placement field χ : B0 → R

3 which maps the Lagrangian
configuration B0 ⊂ R

3 of the considered body into the 3D Euclidean space. The deformation of the body
is hence completely described by means of the deformation gradient F = ∇χ as in classical continuum
mechanics. In this framework, if one introduces an orthonormal basis {D1,D2,D3}, the corresponding
deformed vectors {d1,d2,d3} are immediately found by means of Eq. (1). The fact of identifying two of
the Lagrangian material vectors (namely D1 and D2) with the reference directions of yarns will be seen
to be useful to describe in an intuitive way the deformation of the considered orthotropic material.

In fact, with reference to Fig. 1 for the definition of the angles θ and γ, it is possible to remark that
the shear strain S can be related to the total angle variation γ according to the formula

S = d1 · d2 = |d1| |d2| cos (θ) = |d1| |d2| sin (γ) , (2)

where γ = γ1 + γ2 is the total angle variation field between the two orders of yarns from the reference
configuration to the current one and |·| represents the length of considered vectors. Analogously, λ1 = |d1|
and λ2 = |d2| are a measure of the yarns’ stretches: Indeed, the elongations of the two orders of yarns
with respect to the reference configuration can be easily obtained as λ1 − 1 and λ2 − 1, respectively.

3. Second-gradient energy density for 3D interlocks

The aim of this section is to introduce constitutive laws which are suitable to describe at best the
mechanical behavior of 3D fibrous composite reinforcements. It will be shown that a second-gradient
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constitutive law which is able to account for the in-plane and out-of-plane bending stiffnesses of the
yarns is indeed necessary to correctly model the mechanical behavior of such materials. Following what
was done in [36] for the 2D case, we suppose that the deformation energy density W depends on the
deformation tensor and on its gradient by means of the following additive decomposition:

W (F,∇F) = WI (F) +WII (F,∇F) ,

where WI and WII are the first- and second-gradient energies, respectively.
In order to determine a suitable constitutive expression for the first-gradient energy WI, we start

recalling the representation theorem for orthotropic materials (see [50]) which states that the first-gradient
energy for an orthotropic material can take the following functional form:

WI (F) = WI (i1, i4, i6, i8, i9, i10), (3)

where
i4 = D1 · C · D1 = λ2

1, i6 = D2 · C · D2 = λ2
2, i8 = D1 · C · D2 = S,

i9 = D1 · C · D3, i10 = D2 · C · D3, i1 = tr (C) ,
(4)

are the invariants of the right Cauchy–Green deformation tensor for an orthotropic material and where
C = FT · F is the classical right Cauchy–Green deformation tensor. It is worth noticing that the first
three invariants, respectively, coincide with the square of the stretches in the yarns’ direction and with the
shear strain. The invariants i9 and i10, on the other hand, are related to the out-of-plane angle variations
of the two orders of yarns, and their spacial gradient can be related to the out-of-plane bending of the
yarns. Specific constitutive laws for the first-gradient energy which fit available experimental data will be
given in the next subsection.

As far as the second-gradient energy is concerned, a general class of expressions which can be considered
is of the type

WII (F,∇F) = WII (∇i1,∇i4,∇i6,∇i8,∇i9,∇i10) .
In the next subsection, we will point out some reasonings which will allow us to consider simpler consti-
tutive expressions for the second-gradient energy which are suitable to describe the overall behavior of
the considered interlock subjected to three-point bending.

3.1. Constitutive choice for the first-gradient energy

Following what was done in [35], we introduce some specific functions of the introduced invariants which
are relatively simple to be determined by means of suitable experimental settings:

I1
elong = ln

(√
i4
)
, I2

elong = ln
(√
i6
)
, Ip

sh =
i8√
i4i6

,

It1
sh =

i9√
i4i11

, It2
sh =

i10√
i6i11

, Icomp = ln

(√
i3
i4i6

)

,

(5)

where the invariants which have not been previously introduced are defined as

i3 = det (C) , i11 = D3 · C · D3. (6)

Indeed, considering an energy which depends on the quantities appearing in (5) is equivalent to consider
a functional dependence of the type (3). In fact, as shown in [50], the additional two invariants defined
in (6) depend on the previously introduced ones by means of the following relationships

i11 = i1 − i4 − i6, i3 =
(
i4i6 − i28

)
(i1 − i4 − i6) + 2 i8 i9 i10 − i6 i

2
9 − i4 i

2
10.

The interest of introducing a particular functional dependence of the strain energy density on the invari-
ants (4) through the introduction of the quantities (5) can be found in the fact that these quantities
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can be easily measured by means of suitable experimental setups. The two quantities I1
elong and I2

elong

are directly related to yarns elongations λ1 =
√
i4 and λ2 =

√
i6. As for the second quantity, it can be

checked that Ip
sh = sin (γ) [see also Eq. (2)]: This means that it can be directly related to the shear angle

variation between yarns. Analogously, It1
sh and It2

sh represent the out-of-plane angle variations of the two
orders of yarns and are thus related to out-of-plane shear modes. Finally, Icomp represents a normalized
volume variation which can be directly related to a compression deformation mode. The possibility of
performing simple elementary measurements on the quantities (5) allows the conception of constitutive
laws which characterize the behavior of composite interlocks and which show considerable agreement with
the available experimental evidences. In [35], it is proposed a constitutive expression of the first-gradient
deformation energy of the type

WI = W 1
elong +W 2

elong +Wcomp +W p
sh +W t1

sh +W t2
sh , (7)

where

W 1
elong =

⎧
⎪⎨

⎪⎩

1
2K

0
elong

(
I1
elong

)2

if I1
elong ≤ I0

elong

1
2Kelong

(
I1
elong − I0

elong

)2

+ 1
2K

0
elongI

I
elongI

0
elong if I1

elong > I0
elong,

W 2
elong =

⎧
⎪⎨

⎪⎩

1
2Kelong

(
I2
elong

)2

if I2
elong ≤ I0

elong

1
2K

1
elong

(
I2
elong − I0

elong

)2

+ 1
2K

0
elongI

II
elongI

0
elong if I2

elong > I0
elong,

Wcomp = Kcomp

((
1 − Icomp

I0
comp

)−q

− q
Icomp

I0
comp

− 1

)

W p
sh =

{
K12

shp (Ip
sh)2 if |Ip

sh| ≤ Ip0
sh

K21
shp (1 − |Ip

sh|)−p +W 0
shp if |Ip

sh| > Ip0
sh

W t1
sh =

{
1
2K

12
sht1

(
It1
sh

)2 if
∣
∣It1

sh

∣
∣ ≤ I0

sht1

K22
sht1

(
It1
sh

)2 +K21
sht1

∣
∣It1

sh

∣
∣+W 0

sht1 if
∣
∣It1

sh

∣
∣ > I0

sht1

W t2
sh =

{
1
2K

12
sht2

(
It2
sh

)2 if
∣
∣It2

sh

∣
∣ ≤ I0

sht2

K22
sht2

(
It2
sh

)2 +K21
sht2

∣
∣It2

sh

∣
∣+W 0

sht1 if
∣
∣It2

sh

∣
∣ > I0

sht2.

(8)

In the previous formulas, all the quantities which have not been introduced before are constant. It is
worth noticing that the elongation energies W 1

elong and W 2
elong are defined in such a way that a threshold

value I0
elong exists for which the yarns’ rigidity is smaller for small elongations than for higher ones

(K0
elong < Kelong). This constitutive choice allows to take into account the fact that the yarns are not

initially straight due to weaving and they can hence initially be elongated more easily. The elongation
threshold I0

elong corresponds to the configuration in which the yarns are completely straightened and
start showing a higher resistance to deformation. The need of introducing such elongation strain energy
densities is related to the fact that they actually carefully describe the response of the woven yarns
to elongation. Nevertheless, the elongation of yarns is a mechanism which is definitely less important
than the deformation mechanism associated with the angle variations between the two orders of yarns.
We can actually say that, in most of the experimental tests, the considered yarns can be considered
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almost inextensible with respect to the observed predominant shear strains. As it will be better pointed
out in the next subsection, this feature, which is peculiar of fibrous composite reinforcements, will be
essential for choosing a simplified constitutive expression for the second-gradient energy. We remark that
the first-gradient energy given in Eq. 7 is non-rank one-convex: The fact of considering an additional
second-gradient energy hence provides a regularization of the considered problem (see, e.g., [51–53])
which becomes well posed.

3.2. Constitutive choice for the second-gradient energy

In this subsection, we specify the constitutive expression which we will use to model the mechanical
behavior of 3D composite interlocks. To do so, we start considering some results recently proposed in
[36] for 2D woven composites. In the quoted paper, it is shown that a suitable 2D second-gradient energy
which is able to account for in-plane bending stiffness of the yarns at the mesoscopic scale is of the type

WII (F,∇F) =
1
2
Aλ

(
|∇λ1|2 + |∇λ2|2

)
+

1
2
AS |∇S|2 ,

where Aλ and AS are positive constants. This energy has been shown to be a good choice for the
description of the mechanical behavior of 2D woven composites due to its convexity with respect to ∇F
which guarantees well posedness of the resulting differential problem. A second-gradient energy of this
type has also been used in [18] to model the bias extension test on 2D woven composites. It is clear that
when considering inextensible yarns, the gradient of elongations are vanishing and the second-gradient
strain energy density thus reduces to

WII (F,∇F) =
1
2
AS |∇S|2 =

1
2
AS |∇i8|2 . (9)

In [36], it is also shown that in the limit case of inextensible yarns, an alternative to the strain energy
density (9) is given by

WII (F,∇F) =
1
2
Ag

(
|g1|2 + |g2|2

)
, (10)

where

g1 = κ1ν1, g2 = κ2ν2

are two vectors which account for the bending of the yarns at the mesoscopic level, and Ag is a positive
constant. In the last formulas κ1 and κ2 are the in-plane bending strains of the two orders of yarns
and ν1 and ν2 are vectors orthogonal to the current yarn directions d1 and d2, respectively, (see [36]
for more details). Direct comparison of equations (9) and (10) allows to conclude that in the case of
almost inextensible yarns, the fact of considering an energy accounting for the gradient of the shear
angle variation is equivalent to consider an energy accounting for the bending of the two orders of yarns
at the mesoscopic level. This interpretation is intriguing since it provides a clear interpretation of the
deformation mechanisms which take place at the mesoscopic level when considering woven fabrics.

By extension of the previous reasoning, we consider the following expression for the second-gradient
energy to be used for accounting for out-of-plane bending stiffness of the yarns in 3D composite interlocks

WII (F,∇F) =
1
2
At1

S |∇i9|2 +
1
2
At2

S |∇i10|2 . (11)

By this constitutive choice, we are considering that the tows are almost inextensible (negligible elongations
compared to the shear strains) and that the predominant second-gradient deformation modes are the out-
of-plane bending of the yarns at the mesoscopic level. This is sensible if one considers that the traction
stiffness of carbon fibers is much higher than the shear resistance that yarns experience while varying the
angle between them.
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As a matter of fact, the constitutive choice (11) for the second-gradient strain energy density deserves
more accurate investigations in future works in order to be generalized to describe any observable material
behavior of thick composite interlocks. Actually, even if the predominant mesostructure-related deforma-
tion mechanisms which are activated in the three-point bending test are the out-of-plane bending of the
yarns, it is possible that other second-gradient mechanisms could be activated when considering other
loading and/or boundary conditions. In order to explore all these possibilities, other independent macro-
scopic tests need to be conceived which are able to unveil such supplementary material behaviors taking
place at the mesoscopic level. A fully realistic constitutive choice for the generalized elasticity parame-
ters remains a big challenge for mechanicians and it constitutes an open field of research. Despite the
simplicity of the constitutive choice made here, nonlinear material behaviors are likely to occur also for
second-gradient deformation mechanisms. If Eq. (11) is well adapted for describing the macroscopic effect
of the mesostructure when considering a macroscopic bending of the specimen, it is possible that more
general expressions (including a dependence of the elastic second-gradient parameters on the first-gradient
strain and/or more complicated functional expressions for the strain energy density) will be needed to
describe the behavior of interlocks when subjected to arbitrary loading and boundary conditions.

4. Least action principle and principle of virtual powers

Once the kinematics and the adopted constitutive laws for 3D orthotropic materials have been introduced,
we can introduce the action functional as

A =
∫

B0

W (F,∇F) dB0 =
∫

B0

(WI (F) +WII (F,∇F)) dB0,

where WI and WII are constitutively given by (7) and (11), respectively. Assuming the previous expression
for the action functional implies that all inertia effects are neglected and that we are hence considering
a static case. As it will be shown in the remainder of the paper, this assumption is sensible for the
applications which are targeted here.

4.1. Second-gradient theory as the limit case of a micromorphic theory

In this subsection, we will present the principle of virtual powers for the considered second-gradient
material passing through the theory of micromorphic media. The theory of micromorphic media (see
[7,8]) is known to be suitable to account for microstructure in elastic materials. This theory is more
general than a second-gradient one in the sense that the set of unknown kinematical fields is enriched with
respect to the classical kinematics based on the displacement field alone. More precisely, supplementary
kinematical fields accounting for the motion of the microstructure are provided thus generalizing the
classical kinematical framework of Cauchy and second-gradient continua. In this paper, we state the
principle of virtual powers for 3D composite interlocks by means of a simple micromorphic model and we
use suitable Lagrange multipliers to let the considered micromorphic model tend to the second-gradient
model presented in the previous sections. The interest of introducing the principle of virtual powers by
means of this approach is threefold: (i) The presentation via a micromorphic model allows to better catch
the physical meaning of the considered internal and external actions, (ii) the natural and kinematical
boundary conditions which can be used naturally take an intuitive meaning, and (iii) last but not least,
the numerical implementation of the considered generalized problem is easier and the obtained solution is
more stable. As far as considering the third quoted advantage of using constrained micromorphic theories
to numerically implement second-gradient problems, one has to notice that the gain in terms of numerical
calculations is evident. Indeed, when considering a differential problem stemming from a micromorphic
model, the associated differential equations are of lower order with respect to those which would directly
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derive from a second-gradient model (second order vs. fourth order). These lower-order equations are
obviously easier to be solved from a numerical point of view and the obtained numerical solution will be
more stable and precise.

To proceed according to this optic, we introduce the kinematical fields of the considered micromorphic
model by means of the two vector functions

χ : B0 → R
3, ψ : B0 → R

2,

the first one being the classical placement field introduced before also for the second-gradient kinematics
and the second one accounting for microscopic motions in the considered continuum. The micromorphic
model proposed here is simpler than the classical one proposed by Mindlin and Eringen [7,8] since we
only consider here two additional scalar functions instead of the nine which are introduced in the quoted
models. We hence introduce a micromorphic strain energy density which take the following particular
form and which is used to implement our numerical simulations:

W̃II (∇ψ) =
1
2
At1

S |∇ψ1|2 +
1
2
At2

S |∇ψ2|2 , (12)

where we denoted by ψα, α = 1, 2 the components of the vector ψ. By direct comparison of the energies
(12) and (11) it can be checked that the proposed micromorphic energy tends to the second-gradient one
introduced before if ψ1 → i9 and ψ2 → i10. In order to account for such constraints in the weak formulation
of the problem, we introduce suitable Lagrange multipliers Λ1 and Λ2 which have an associated energy
density of the type

WL (F,ψ,Λ) = Λ1 (ψ1 − i9) + Λ2 (ψ2 − i10) , (13)

where we clearly set Λ = (Λ1,Λ2).
We hence propose to write the action functional of the proposed micromorphic medium as

A =
∫

B0

(
WI (F) + W̃II (∇ψ) +WL (F,ψ,Λ)

)
dB0,

where WI is the same energy given in (7), while the energies W̃II and WL are introduced in terms of the
additional kinematical variables as in formula (12) and (13), respectively. The power of internal forces of
the considered constrained micromorphic medium can be written as the first variation of the considered
action functional as

P int = δA =
∫

B0

((
∂WI

∂Fij
+
∂WL

∂Fij

)
δFij +

∂WL

∂ψα
δψα +

∂W̃II

∂ψα,j
δψα,j +

∂WL

∂Λα
δΛα

)

. (14)

The power of external forces is easily introduced when considering a micromorphic framework (see, e.g.,
[9]) and in the present case, neglecting body external actions, can take the form

Pext =
∫

∂B0

(
f ext

i δχi + ταδψα

)
. (15)

Indeed, in the performed numerical simulations, we assume that the virtual fields δψα are arbitrary on
the boundary of the considered specimen (vanishing double force: τα = 0), while the virtual displacement
δχi is arbitrary almost everywhere, except on small subparts of the boundary where the displacement is
assigned or vanishing. Such small parts of the boundary on which the displacement is vanishing can even-
tually change during deformation as happens for the contact of simply supported interlocks undergoing
large bending deformations (for examples of modeling of contact laws see e.g., [54–56]). The boundary
conditions to be applied to model contact between two deformable continua is of difficult implementation,
but contact laws are usually already implemented in numerical codes as, e.g., COMSOL�. We used such
tool to model the contact in our numerical three-point bending simulations.
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The weak formulation of the differential problem for the considered constrained micromorphic medium
can be then stated as

P int = Pext, (16)
where the internal and external power are, respectively, given by (14) and (15).

It is worth to remark that starting from this formulation of the principle of virtual powers and
considering arbitrary variations δΛi of the Lagrange multipliers, one gets the bulk constraints which
actually let the considered micromorphic model tend to the particular second-gradient one previously
introduced, namely

ψ1 = i9, ψ2 = i10. (17)
It is clear that starting from the principle of virtual powers and integrating by parts, one could also
obtain the strong form of the bulk equations and naturally associated boundary conditions in duality
of the virtual variations δχi and δψα. Nevertheless, since the numerical simulations presented in the
following are directly implemented via the weak form (16), we do not explicitly write here such strong
equations.

5. Numerical simulations for three-point bending of composite interlocks

In this section, we present the numerical results stemming from the application of the proposed second-
gradient model to the case of three-point bending of a composite interlock. The first-gradient constitutive
parameters appearing in equation 8 are assumed to take the values presented in Tables 1, 2 and 3, in
agreement with the experimental identification proposed in [35]. We remark that the two out-of-plane
shear potentials are not symmetric in the sense that the corresponding constants appearing in Table 3
do not take the same values for the two orders of yarns. This fact is due to different weaving patterns in
the warp and weft directions and has been experimentally observed in [35].

Indeed, it must be said that the constitutive expressions for the in-plane and out-of-plane shear
potentials (last three equations in (8)) are slightly different from the ones used in [35]. Nevertheless,
the associated stresses (derivatives of the energy with respect to Ip

sh, I
t1
sh and It1

sh) are seen to be almost
equivalent. The reason to introduce here a simplified expression for the shear potentials is that a quadratic
energy (linear stress) is more easily treated in numerical calculation than an energy in which non-integer

Table 1. Constitutive parameters appearing in the elongation and compression energy potentials

K0
elong Kelong I0

elong Kcomp I0
comp q

37.85 MPa 816.33 MPa 0.0145 7.57 × 10−3 MPa −1.12 2.85

Table 2. In-plane shear constitutive parameters

K12
shp K21

shp p I0
shp W 0

shp

0.07575 MPa 1.69 × 10−4 MPa 3.69 4.2 × 10−3 −1.69 × 10−4 MPa

Table 3. Out-of-plane shear constitutive parameters

K12
sht1 K22

sht1 K21
sht1 I0

sht1

0.064945 MPa 0.00401131 MPa 0.00079691 MPa 1.4 × 10−2

K12
sht2 K22

sht2 K21
sht2 I0

sht2

0.0330351 MPa 0.0042497 MPa 0.000736072 MPa 3 × 10−2
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Fig. 2. Example of 3D woven composite interlock with an approximative weaving pattern

powers of the considered invariants appear. All other constitutive laws used in this paper (see Eq. (8))
coincide with the one proposed in [35].

The physical test we want to reproduce here is a simple three-point bending of a composite reinforce-
ment beam with rectangular cross sections. The considered interlocks are 3D materials (see Fig. 2) in
which a specific mesostructure with particular ordered patterns can be identified.

The basic architecture of an interlock fabric is shown in Fig. 2 (see also [57]). Two layers of weft
yarns are joined by the weaving of the warp yarns. Consequently, all the yarns through the thickness are
joined by the weaving. The resulting material is 3D with no third yarn set in the transverse direction but
the properties through the thickness are much improved. In particular, problems related to the possible
delaminations of the 2D laminated composites are overcome due to the described weaving procedure.

In this paper, we will focus on two different types of samples which basically differ one from the
other for the direction of warp and weft with respect to the boundaries of the considered specimen.
More particularly, we consider a three-point 0 ◦/90 ◦ bending test (warp and weft directions aligned with
the edges of the specimen) and a three-point ±45 ◦ bending test (the yarn directions form an angle of
45 ◦ degrees with respect to the longer sample edge). Numerical simulations showing the effect of the
introduced second-gradient parameters will be proposed for both cases, and a discussion on the need of
considering such a generalized continuum theory will be performed.

In all the performed numerical simulations, we consider specimens with the dimensions of 200 × 30 ×
15 mm, and we impose in the middle of the specimen a displacement of 60 mm. As already discussed,
since large deformations are imposed to the specimen, the contact law between the specimen and the
two cylindrical supports is a crucial point for the correct modeling of the considered problem. More
particularly, as far as boundary conditions are concerned, we suppose that external double forces are
vanishing, while the force at the supports are assumed to follow a frictionless contact law which is built-
in in the COMSOL� code. In the middle of the top surface, a displacement is applied which goes from 0
to 60 mm.

As for the values of the second-gradient parameters appearing in Eq. (11), they are obtained by
inverse approach, i.e., by fitting the performed second-gradient numerical simulations with the available
experimental data concerning three-point bending of 0◦/90◦ and ±45◦ composite interlocks. Inverse
approaches are commonly used in the calibration process of newly introduced constitutive parameters
(see, e.g., [58–60]). As it will be seen in the following subsections, the values of the second-gradient
parameters which are needed to fit at best the experimental evidences are not constant but depend on
the entity of the macroscopic deformation. This indicates that the constitutive law (11) may not be
general enough to catch all the possible material behaviors at high strains. Indeed, as far as sufficiently
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Fig. 3. 0 ◦/90 ◦ three-point bending for an imposed displacement of 30mm (left) and of 60 mm (right). Top: experimental
shapes, middle: first-gradient simulations, bottom: second-gradient simulations with At1

S = At2
S = 1.2×10−5 MPa×m2 (left)

and At1
S = At2

S = 5 × 10−6 MPa × m2 (right). The scale for the x and y axes is m

small imposed displacements are considered (up to 30–40 mm), a quadratic constitutive law of the type
(11) is sufficient to describe quite precisely the overall material behavior. On the other hand, when higher
imposed displacements are considered, different values of the second-gradient parameters must be chosen
to fit at best the experimental shape. Further studies on the formulation of the constitutive behavior of
composite interlocks are thus needed which are focused on the development of more complex nonlinear
second-gradient constitutive equations.

5.1. Three-point 0 ◦/90 ◦ bending test: the effect of out-of-plane yarns’ bending stiffness

In this subsection, we present the numerical simulations obtained via the proposed linear second-gradient
model and we compare the obtained solutions with those issued by the classical Cauchy theory. Figure 3
shows the comparison between the experimental tests [57], the first-gradient solution [61] and the second-
gradient one. It can be immediately noticed that the first-gradient solution does not allow to correctly
describe the deformation of the two ends of the beam whose deformation significantly deviates from
the experimental data. This discrepancy between the experiments and the first-gradient solution can
be better pointed out in Fig. 4. In this picture, the fact that the the two ends of the beam do not
correctly lift up results to be quite evident. On the other hand, the better fitting of the second-gradient
solution with the experimental evidence can be seen in Fig. 5. It can also be remarked in the quoted
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Fig. 4. Comparison between experimental data (dots) and first-gradient solution: current shape of the mean axis of the
specimen for imposed displacement of 30 mm (a) and for 60 mm (b). The scale for the x and y axes is m

picture that the fitting between the second-gradient solution and the experimental data is performed by
using two different values of the second-gradient parameter when considering small and high macroscopic
deformations. These observations lead naturally to infer that the second-gradient out-of-plane parameters
cannot be considered to be constant, but seem to vary with deformation. This allows to conjecture that
the second-gradient constitutive law should indeed be generalized with respect to the simple quadratic
form considered in Eq. (11) in order to include material nonlinearities also in the second-gradient terms.
In this paper, we limit ourselves to the quadratic second-gradient constitutive law (11) which is able
to catch the most important features of the mechanical behavior of considered interlocks with very few
elastic constants. On the other hand, we also remark that in subsequent works, a generalized nonlinear
constitutive law needs to be formulated for the second-gradient energy in order to complete the mechanical
characterization of considered materials.

The results obtained by means of the performed numerical simulations are appealing as they strongly
suggest that the presence of second-gradient terms in the strain energy density of the considered
orthotropic material is unavoidable if one wants to correctly model the three-point bending of a 0 ◦/90 ◦

interlock while remaining in a continuum framework. Indeed, it is sensible that the out-of-plane bending
stiffness plays a very important role in the deformation of such materials. In fact, the predominant defor-
mation mode in such a test is related to the bending deformation of the family of yarns which are aligned
with the longer side of the specimen. The family of yarns aligned with the depth of the specimen has
very little influence on the global deformation of the considered sample. The fact that the longer yarns
bend and that they posses a non-negligible out-of-plane bending stiffness allows the two ends of the beam
to lift up. Such a deformation pattern is well recovered by the second-gradient numerical simulations,
but not by the first-gradient ones (see Fig. 3). Moreover, it can be seen in the quoted figure that as
far as the three-point bending of a 0 ◦/90 ◦ specimen is considered, the cross sections of the beam are
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Fig. 5. Comparison between experimental data (dots) and second-gradient solution: current shape of the mean axis of the
specimen for imposed displacement of 30 mm and At1

S = At2
S = 1.2 × 10−5 MPa × m2 (a) and of 60mm and At1

S = At2
S =

5 × 10−6 MPa × m2 (b). The scale for the x and y axes is m

Fig. 6. Schematic representation of 0 ◦/90 ◦ bending test: Euler–Bernoulli hypothesis of cross sections orthogonal to the
mean axis is violated

not orthogonal to its mean axis: This is directly related to the fact that the yarns can be considered
almost inextensible in the considered woven composite. Indeed, as it can be seen in Fig. 6, a specimen
which behave as an Euler–Bernoulli beam would need that the upper part of the specimen shrink and
the lower part elongate in order to let the cross sections stay orthogonal with respect to the mean axis.
This shrinking/elongation deformation of the specimen is not possible due to the quasi-inextensibility of
the yarns: The inextensibility constraint actually imposes a relative sliding of the yarns and, as a result,
a rotation of the cross sections with respect to the direction orthogonal to the mean axis.

5.2. Three-point ±45 ◦ bending test

The present subsection is devoted to the comparison between first- and second-gradient solutions for
the ±45 ◦ three-point bending. Figure 7 shows a schematic representation of the bending of a ±45 ◦

specimen. It can be seen from this figure that in such a deformation pattern, the upper part of the
specimen necessarily undergoes shrinking, while the bottom part is elongated instead. This change of
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(a)

(c)(b)

Fig. 7. Schematic representation of (a) ±45 ◦ bending test: Euler–Bernoulli hypothesis of cross sections orthogonal to the
mean axis is almost verified; (b) and (c) possible motions of panthographic structures allowing for elongation and shrinking
of the macroscopic specimen

Fig. 8. ±45 ◦ three-point bending for an imposed displacement of 60mm. Left: experimental shape, middle: first-gradient
numerical simulation, right: second-gradient numerical simulation with At1

S = At2
S = 7.5 × 10−6 MPa × m2. The scale for

the x and y axes is m

length of the specimen is not due to elongation of the yarns (which we know to be almost inextensible),
but to their pantographic motions. Indeed, it is known (see also Fig. 7b, c) that pantographic structures
can increase or decrease their global length without changing the length of the single elements constituting
the pantograph itself. Such “pantographic” variation of length of the specimen, coupled to out-of-plane
angle variation of the two orders of yarns give rise to the overall deformed shape of the ±45 ◦ specimen.
Figure 8 shows the comparison between the experiments and the first- and second-gradient solutions for
the ±45 ◦ specimen for an imposed displacement of 60 mm. It can be inferred from this figure that the
first-gradient solution is closer to the experimental shape than in the 0 ◦/90 ◦ case. This means that the
second-gradient effects due to in-plane and out-of-plane bending of the yarns are definitely less important
than in the 0 ◦/90 ◦ case. Indeed, this is sensible since the yarns are short compared to the length of the
specimen and they can hence deform (rotate) changing their out-of-plane shear angle with no significant
bending. Figure 9 shows the experimental deformation of the mean axis together with those obtained via
the first- and second-gradient theories. It is evident that that the two ends of the specimen are partially
lifted up even when considering the first-gradient solution (which means that some out-of-plane rotation
takes place even without bending), but the experimental shape becomes much closer to the experimental
one for a non-vanishing value of the out-of-plane shear second-gradient parameters. The fact that a partial
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Fig. 9. Comparison of experimental data with different second-gradient solutions for an imposed displacement of 60mm
and At1

S = At2
S = 7.5 × 10−6 MPa × m2. The scale for the x and y axes is m

lift-up of the two ends of the beam takes place even in the case of a first-gradient theory is due to the
fact that the fibers can rather easily rotate with respect to the vertical direction even without bending,
due to their reduced length. Such almost rigid rotation of the fibers produces a non-local transmission of
deformation which allows the two ends of the beam to partially lift-up. Nevertheless, a small amount of
bending of the yarns can be seen to be present also in the ±45 ◦ case. Such effect of the shear bending
stiffness can be recognized to be important both for the complete lift of the two ends of the beam and
for the curvature of the middle part of the specimen.

Once again, we remark that the value of the second-gradient parameter used in the numerical simula-
tions is not the same as the one used for the 0 ◦/90 ◦ test. This corroborates the thesis according to which
the introduced simple constitutive load must be further generalized in order to account for nonlinear
second-gradient material behaviors.

6. Conclusions

In this paper, we present an orthotropic 3D second-gradient model which is suitable to describe the
complex mechanical behavior of thick composite interlocks. The need of using such generalized continuum
theory is revealed by the study of the three-point bending of 3D fibrous composite reinforcements. The
considered specimens are parallelepipeds with the dimensions of 200×30×15 mm. Two types of specimens
are considered which differ for the relative directions between the yarns and the edges of the specimen
itself. More particularly, we consider the so-called 0 ◦/90 ◦ specimen in which one family of long yarns
follows the direction of the longer edge of the specimen, while the second family of shorter yarns is directed
along the depth of the specimen itself. The second type of specimen is called ±45 ◦ and is such that the
yarns are directed at ±45 ◦ degrees with respect to the direction of the longer edge of the sample. In both
cases, the specimens are subjected to a classical three-point bending test and the experimental results are
compared with numerical solutions obtained via first- and second-gradient continuum theories. It appears
clearly from the obtained results that the use of a second-gradient theory is a useful tool if one wants to
correctly model the behavior of composite interlocks subjected to three-point bending. Indeed, we show
that the fact of including the gradient of the out-of-plane shear angle variations in the strain energy
density is directly related to the fact of considering the out-of-plane bending stiffness of the yarns at the
mesoscopic level (and hence, indirectly, of the fibers at the microscopic level). Such bending rigidity of
the mesostructure (microstructure) is crucial to correctly describe the response of the material to the
applied external solicitations. In particular, we show that the out-of-plane bending of the yarns is one of
the leading mesoscopic deformation mechanisms affecting the macroscopic bending of 0 ◦/90 ◦ specimens.
In fact, when subjected to bending, such materials basically behave as a “package” of superimposed wires
which are held together by a second family of shorter yarns which indeed do not intervene directly in the
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deformation process. The longer wires so bend all together (as happens for the pages of a book when one
tries to bend it) and their bending rigidity allows to the two ends of the macroscopic specimen to lift up
and to the middle part of the specimen to take its characteristic curvature. A first-gradient theory is not
able to account for the bending of the mesostructure and hence is not suitable to correctly describe all the
mechanisms which intervene in the complex process of deformation of composite interlocks. Moreover,
we explicitly point out that the constraint of “quasi-inextensibility” of the yarns is directly related to
the fact that a 0 ◦/90 ◦ specimen does not behave as an Euler–Bernoulli beam in the sense that cross
sections, which are initially orthogonal to the mean axis of the beam, do not remain orthogonal during
deformation. Indeed, due to large bending deformations, the upper and lower surface of the specimen
inevitably have different curvature and cross sections could remain orthogonal to the mean axis if and
only if a significant change of length occurred in the direction of the longer edge of the specimen. This is
actually impossible, due to the fact that the yarns have a very high extensional rigidity.

Similar reasonings can be repeated also for the ±45 ◦ specimens, even if the deformation of such
materials is more complex to be understood from a phenomenological point of view. We prove that in
such a case, the bending rigidity of the yarns intervenes much less on the macroscopic deformation of the
specimen, even if it keeps playing some role. Indeed, the main part of the out-of-plane motion of the yarns
is accounted for by simple (quasi-rigid) rotations of the yarns with no (or very few) associated bending.
Such a deformation mode is possible due to the fact that the yarns are relatively short with respect to the
size of the specimen and they can rotate rather easily with respect to the vertical direction. Nevertheless,
the fact of considering the bending of the yarns still bring some complements to the complete description
of the experimental behavior of the considered materials, both for what concerns the complete lift of the
two ends of the specimen and its global curvature. We finally remark that the ±45 ◦ specimens almost
behave as Euler–Bernoulli beams. This is possible since changes of length of the specimen are allowed
due to pantographic motions of the yarns.

We can summarize by saying that 3D composite interlocks can be correctly modeled accounting for
the bending stiffness of the yarns by means of second-gradient theories. When considering three-point
bending tests, the influence of the out-of-plane bending stiffness is much higher for 0 ◦/90 ◦ specimens than
±45 ◦ ones. We can infer that for orthotropic media with different initial angles between the yarns and
the sample edges the effect of second-gradient terms would be of intermediate importance with respect
to the two limit cases presented here.

The results proposed in this paper are a fundamental step for the characterization of the mechanical
behavior of thick composite interlocks for the impact that such results can have on the modeling of
forming processes of complete engineering components. Nevertheless, the conception of more complex
nonlinear, second-gradient constitutive laws appears to be a crucial point for further investigations.
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