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Abstract

We study buckling patterns in pantographic sheets, regarded as two-dimensional continua consisting of lattices of

continuously distributed fibers. The fibers are modelled as beams endowed with elastic resistance to stretching,

shearing, bending and twist. Included in the theory is a non-standard elasticity due to geodesic bending of the

fibers relative to the lattice surface. To cite this article: A. Name1, A. Name2, C. R. Mecanique 333 (2005).

Résumé

Modes de flambage dans des structures de type pantographique. Nous étudions le flambage de milieux

continus bidimensionnels. Ces milieux que nous appelons “feuilles pantographiques”, sont constitués par un réseau

formé de deux familles orthogonales de fibres parallèles. Ces fibres sont considérées comme des poutres élastiques

reliées entre elles à chaque intersection par une liaison pivot. Le modèle bidimensionnel continu utilisé généralise

celui des plaques puisqu’il prend en compte l’énergie élastique liée à la courbure des fibres dans le plan de la

structure.
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1. Introduction

We have recently developed a two-dimensional continuum theory of elastic surfaces [1] to describe the
deformations of pantographic lattices. The lattices are composed of intersecting fibers, or rods, that form
two orthogonal curvilinear families in a reference plane. Every material point of the continuum is a point
of intersection of two fibers — one from each family. In a general three-dimensional deformation of the
sheet, the convected fibers of the pantograph flex to conform to the evolving surface in three-space. This
is modelled by assigning strain energy to the normal curvatures and twists of the fibers. In contrast to
conventional plate theories, the present model also accounts for the geodesic bending of the fibers. This
mode of deformation occurs when, for example, the lattice is bent while deforming in a fixed plane. In the
continuum theory, geodesic bending manifests itself as a strain-gradient e↵ect. The lattice substructure
thus confers strain-gradient elasticity to the continuum [2–10]. Strain gradient models, and in general
higher gradient ones, are today a very topical research subject, and many relevant results are available in
both theoretical [11–13] and applicative [14–21] directions. These models naturally arise as homogenized
limits of microstructured plates (see e.g. [22–28]).
A simpler version of the theory was used in [32] to model deformations of a lattice of initially straight

rods in which the shear strain segregates into coexistent phases separated by narrow transition layers in
which geodesic bending predominates. The present study extends and generalizes the results of [32], by
using the framework outlined in [1]. Specifically, we consider herein fibers which are not straight lines
in the reference configuration (sinusoids, and logarithmic spirals). The interest in these geometries lies
in their peculiar mechanical e↵ects, induced by arch-like response to external stresses and other e↵ects
already mentioned in the literature (see below, Section 3). Moreover, we performed here a numerical
study that exhibits interesting and heretofore unknown two- and three-dimensional buckling patterns in
presence of both rectilinear and curvilinear fibers. In Section 2, we recall the basic kinematics of the
model, following [1]. In Section 4, we specify the basic constitutive structure in terms of a strain-energy
function, measured per unit area of the initial plane. This is applied to initially curved lattices conforming
to two types of coordinate systems: logarithmic spirals and sinusoidal coordinates. The relevant details
are outlined in Section 5.

2. Kinematics of pantographic lattices

We adopt the model developed in [1, 33], in which the pantographic sheet is regarded as an elastic
surface endowed with suitable kinematic descriptors and an associated constitutive response in the form
of an areal strain-energy density. The latter is assumed to depend on the stretches of the fibers and on
their curvatures and twists. Further, as tangential stretch gradients appear in the constitutive equations
for one-dimensional models of thin fibers that account for finite-thickness e↵ects [34,35], we also include
a constitutive sensitivity to the tangential derivatives of the stretches. In addition, we incorporate a non-
standard constitutive sensitivity to the cross derivatives of the fiber stretches; these record the variation
in the stretch of a fiber family as the (initially) orthogonal family is traversed. This e↵ect is discussed
more fully in [32]. To make the paper reasonably self contained, we devote the remainder of the present
section to a brief summary of the theory proposed in [1].
The deformation of the surface is described by a map r(x): ⌦ 7! E

3, where ⌦ ⇢ E

2 is a connected
plane region in the 2D Euclidean space E

2 and E

3 is Euclidean 3-space. Let L,M 2 E

2 be orthogonal
families of unit vectors defining the fiber trajectories prior to deformation. The fiber stretches {�, µ} and
fiber trajectories {l,m} induced by the deformation are

�l = (rr)L and µm = (rr)M, (1)
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where r(·) is the (two-dimensional) gradient with respect to x. Here l and m are unit vectors spanning
the deformed tangent plane at the material point x 2 ⌦. We use them to define the fiber shear angle �
by

sin � = l ·m. (2)

Because {L,M} is an orthonormal basis at any point of ⌦, we may use (1) to derive the representation

rr = �l⌦ L+ µm⌦M (3)

and thus obtain the Cauchy-Green deformation tensor, C = (rr)trr, in the form

C = �

2
L⌦ L+ µ

2
M⌦M+ �µ sin �(L⌦M+M⌦ L). (4)

Further, Eqs. (1) provide
Jn = (rr)L⇥ (rr)M, (5)

where n is the unit normal to the deformed surface, and

J = �µ |cos �| (6)

is the local areal dilation induced by the deformation. Accordingly,

l⇥m = |cos �|n. (7)

To describe the fiber curvatures and twist we require the second gradient rrr of the deformation. This
may be represented in the form [1]

rrr = r|↵� ⌦ e

↵ ⌦ e

�
, (8)

where
r|↵� = S

�
↵�r,� + b↵�n. (9)

Here (·)|↵� is the second covariant derivative with respect to an arbitrary convected curvilinear coordinate
system on the reference plane ⌦, the b↵� are the coe�cients of the second fundamental form (the covariant
curvature tensor) of the deformed surface, and the S�

↵� are terms involving the strain and strain gradient.
The rather complicated explicit expressions are [1]

S

�
↵�r,� = (�L↵)|�l+ (�2⌘lL↵L� + �µ�lL↵M�)p

+(µM↵)|�m+ (µ2
⌘mM↵M� + �µ�mM↵L�)q, (10)

and
b↵� = KLL↵L� +KMM↵M� + T (L↵M� +M↵L�), (11)

where ⌘l and ⌘m are the geodesic curvatures of the deformed fibers; �l and �m are the so-called Tchebychev
curvatures;

p = n⇥ l and q = n⇥m (12)

define the orthogonal trajectories of the fibers on the deformed surface; and,

KL = �

2
l, KM = µ

2
m and T = �µ⌧, (13)

where l and m are the normal curvatures of the deformed fibers and ⌧ measures the twist of the
deformed surface. These are non-zero if the deformation is such as to generate a curvature of the surface
in three-space. Accordingly, they describe those parts of the fiber curvatures that can be attributed
to surface flexure, whereas the geodesic curvatures represent the components of fiber curvatures in the
tangent planes of the deformed surface. The latter arise from the surface strain and the strain gradient;
the explicit expressions are [36]

J⌘l = div[(µ sin �)L� �M] and J⌘m = div[µL� (� sin �)M], (14)
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where div is the divergence on ⌦, whereas the Tchebychev curvatures are given by [36]

J�l = J⌘m + �M ·r(sin �) and J�m = J⌘l � µL ·r(sin �). (15)

Later, we will have occasion to exploit the fiber decomposition [1]

rrr = (L↵
L

�
r|↵�)⌦ L⌦ L+ (M↵

M

�
r|↵�)⌦M⌦M+ (L↵

M

�
r|↵�)⌦ (L⌦M+M⌦ L), (16)

which follows from (8), with
e

↵ = L

↵
L+M

↵
M, (17)

and from the symmetry of r|↵� with respect to interchange of the subscripts.
In the reference configuration, i.e., in the absence of deformation, we have rr = 1, the two-dimensional

identity on ⌦. It follows that rrr vanishes in this configuration and hence that S�
↵� and b↵� also vanish.

Moreover, ⌘l and ⌘m reduce to

⌘L = �divM and ⌘M = divL, (18)

respectively. These are the geodesic curvatures of the fibers on the reference plane. They account for the
initial curvatures of the fibers, which are assumed to be initially untwisted. The Tchebychev curvatures
�l and �m reduce, respectively, to ⌘M and ⌘L in the reference configuration. Because the S

�
↵� and b↵�

are Galilean invariant [1] and vanish in the reference configuration, they furnish natural strain measures
in the present theory. The vanishing of b↵� in the reference configuration follows trivially from the fact
that the latter is a region on a plane. We have proved that the S

�
↵� also vanish there, but nevertheless

pause to verify this directly —as a check on (10)— before proceeding.
In the reference configuration (10) reduces to

S

�
↵�e� = (L↵|� � ⌘MM↵M� � ⌘LM↵L�)L+ (M↵|� + ⌘LL↵L� + ⌘ML↵M�)M. (19)

Using 1 = L⌦ L+M⌦M we can write

rL = (rL)L⌦ L+ (rL)M⌦M, (20)

and then conclude that
divL = tr(rL) = L · (rL)L+M · (rL)M. (21)

The first term on the right is (rL)tL · L, in which (rL)tL = 0 because L(x) is a unit-vector field.
It then follows from (18)2 that ⌘M = M · (rL)M. In the same way, we use (18)2 to prove that ⌘L =
�L · (rM)L = M · (rL)L, where the second equality is a consequence of (rL)tM = �(rM)tL, which
in turn follows by computing the gradient of L ·M(= 0). These results yield

(rL)L = [L · (rL)L]L+ [M · (rL)L]M = ⌘LM (22)

and
(rL)M = [L · (rL)M]L+ [M · (rL)M]M = ⌘MM, (23)

yielding
rL = ⌘LM⌦ L+ ⌘MM⌦M, (24)

and implying that the first parenthesis in (19) vanishes identically. The second parenthetical term is
disposed of similarly, and our claim is proved. The present model di↵ers from that presented in [32] in
that {L,M} are allowed here to be functions on ⌦.

3. Lattice arrangement

To specify the distribution of curvilinear lattice fibers on the reference plane, we identify any particular
fiber, with unit-tangent field M, say, as the locus of points on which a scalar field '(x) assumes a constant
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value. The family of all such fibers is then obtain by varying the value of the constant. The unit-tangent
fields of the fibers are given by

L(x) = r'/ |r'| and M(x) = k⇥ L(x), (25)

where k is the unit normal to the reference plane (i.e., the value of the surface-normal field n in the
reference configuration).

3.1. Technological applications for di↵erent geometries of the fibers

In the opinion of the authors, it has been proven by countless examples that byproducts of what looked
like pure ‘amusement’ paid o↵ extremely well in applications. More often than not, pursuing the aim
of Jean Dieudonné, i.e. studying a subject only pour l’honneur de l’esprit humain, has been the best
policy in order to concretely improve our lives. This mere consideration could serve as a justification
for studying a certain scientific subject, as long as its theoretical foundation is clear and sound enough.
However, in our specific case, direct reference to existing or conceivable application can be mentioned
concerning particular geometries for the fibers.
In recent years, spiral woven fabrics are increasingly employed and examples of these artifacts can be

found in many fields concerning e.g. biomedical, aerospace and automotive applications, including spinning
components like flywheels or turbine bliscs [29]; the reason behind the interest for spiral geometry lies
in the possibility of combining circumferential fiber orientation for strength and radial fiber to manage
interlaminar stresses [29]. However, theoretical coverage of this type of geometry for the fibers is still not
very developed. This seems indeed one of the cases in which technological potential is being exploited
even before a fully comprehensive understanding is reached.
Sinusoidal fibers furnish continuous-curvature approximations to the curved lattices adopted in the

design of flexible electronics for health-monitoring purposes [30, 31]. Such devices are applied to skin
tissue and are conceived to stick perfectly on it, possibly exhibiting complex large-deformation behavior,
including out-of-plane buckling. The aim of the following sections is to provide some insight in the possible
behavior of the two relatively complex geometries before mentioned.

3.1.1. Logarithmic spirals
These woven fabrics are associated with the orthogonal curvilinear coordinates

' = log(r/r0)� k✓ and  = k log(r/r0) + ✓, (26)

where r0 and k are fixed parameters and {r, ✓} are plane polar coordinates. We compute

r' =
1

r

(er � ke✓), (27)

where {er, e✓} is the standard orthonormal basis associated with the polar coordinates. Thus,

L(x) =
1p

1 + k

2
(er � ke✓) and M(x) =

1p
1 + k

2
(e✓ + ker). (28)

This is expressed directly in terms of x(= x↵i↵) by substituting

r = |x| , er = r

�1
x and e✓ = k⇥ er. (29)

3.1.2. Oscillatory lattice
The fiber net which we consider here is described by

x2 = A sin(!x1) + ', (30)
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in which the amplitude and frequency parameters A and ! are taken to be fixed. This immediately
determines '(x), and hence L(x) and M(x) via Eq. (25). We omit the details of the trivial calculation.

4. Strain-energy function

All constitutive information is contained in an areal strain-energy density W that depends on the
first and second gradients of the deformation. To non-dimensionalize the variables appearing in this
function it is necessary to introduce a local length scale. This could be the thickness of the actual
sheet, the characteristic spacing of the internal points of intersection of rods of the actual pantographic
lattice, or the widths of the constituent fibers. If any of these is used as the length scale, and if the
couple stresses and bending/twisting moments vanish when the lattice is undeformed, then in practice
the non-dimensionalized second gradient of the deformation is su�ciently small as to justify a quadratic
dependence in the strain-energy function. A simple strain-energy function of this type, incorporating the
curvilinear orthotropic symmetry associated with the initial fiber geometry, is [32]

W = w(✏L, ✏M , J) +
1

2
AL

��
L

↵
L

�
r|↵�

��2 + 1

2
AM

��
M

↵
M

�
r|↵�

��2 + 1

2
A�

��
L

↵
M

�
r|↵�

��2
, (31)

where the coe�cients AL,M,� are constants; this form is assumed for the sake of definiteness and tractabil-
ity. Other forms are, of course, possible. We take AL,M,� and to be strictly positive and observe, from
the fiber decomposition (16), that the part of the energy depending on the second gradient rrr is then
non-negative, vanishing if and only if all r|↵� vanish simultaneously. It is thus a convex function of rrr,
ensuring the existence of energy-minimizing deformations in conservative boundary-value problems [37].
Further, the existence of a solution to the weak form of the equilibrium equations for similar problems in
second-gradient elasticity has been proved in [38], albeit under hypotheses slightly more stringent than
those satisfied here.
The constitutive sensitivities to geodesic and normal curvatures may be understood in terms of the

mechanics of the lattice substructure. Thus, fibers o↵er resistance to bending in three-space, which may
be resolved into geodesic bending and surface flexure. Fiber twist is determined by the twist of the surface
because of the presumed connectivity of the lattice; that is, both families of intersecting fibers are assumed
to pivot about the normal to the deformed surface at their points of intersection. This constraint implies
that fiber twist is controlled entirely by surface geometry and is therefore not an independent kinematic
variable [1].
For the strain-dependent function w, we adopt

w(✏L, ✏M , J) =
1

2
(EL✏

2
L + EM ✏

2
M )�G(ln J + 1� J), (32)

where

✏L =
1

2
(�2 � 1), ✏M =

1

2
(µ2 � 1) (33)

are the extensional fiber strains and EL,M and G are positive constants. This energy does not include a
term proportional to ✏L✏M and therefore does not exhibit a Poisson e↵ect with respect to the fiber axes.
Poisson e↵ects are typically negligible in pantographic lattices. Finally, the term involving J penalizes
fiber collapse (J ! 0) by imposing unbounded growth of the attendant energy, whereas the remaining
terms are appropriate for small-to-moderate fiber strains.
Our solution procedure, discussed in Section 5, is a finite-element scheme based on the weak form of

the equilibrium equations derived from the proposed strain-energy function. This is not presented here,
but reference may be made to [1], where the weak and strong formulations are given explicitly. Recent
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applications of the finite element method and related methods to second-gradient elasticity are discussed
in [39–47].
We observe that in Eq. (31) the contravariant components L↵ and M

↵, and the covariant derivatives
r|↵� , pertain to any convected coordinate system. Moreover, the symmetry r|↵� = r|�↵ implies that the
ordering in the final term of Eq. (31) is irrelevant; i.e., L↵

M

�
r|↵� = M

↵
L

�
r|↵� .

It would be natural to identify the coordinates with the fiber parameters ' and  of Section 3, but
here, for the sake of tractability, we exploit the underlying coordinate invariance and instead choose them
to be Cartesian on ⌦. In this case the distinction between co- and contra-variance disappears, covariant
derivatives reduce to partial derivatives, and Eq. (31) becomes

W = w(✏L, ✏M , J) +
1

2
AL |L↵L�r,↵� |2 +

1

2
AM |M↵M�r,↵� |2 +

1

2
A� |L↵M�r,↵� |2 , (34)

with
J = |L↵M�r,↵ ⇥ r,� | , ✏L = E↵�L↵L� and ✏M = E↵�M↵M� , (35)

where

E↵� =
1

2
(r,↵ · r,� � �↵�), (36)

with �↵� the Kronecker delta, is the strain. Here, r,↵ = ri,↵ii, with i3 = i1 ⇥ i2,; {ik} a fixed orthonormal
basis associated with the Cartesian coordinates, and r,↵� = ri,↵�ii. In the examples considered, the
Cartesian components L↵(x) and M↵(x) are easily read o↵ from the formulas provided in Section 3.

5. Examples

Numerical simulations here shown are based on Finite Element Analysis and performed with COMSOL
Multiphysics R� in the framework of a weak formulation. Because of the nature of the energy (31), we
employed triangular Argyris elements having C1 continuity [32]. The number of mesh elements is ⇡ 104,
which considering the 21 degrees of freedom of each element, provide a total of ⇡105 degrees of freedom.
In the performed simulations, we adopt the representation [1]:

L↵L�r,↵� = gl +KLn, M↵M�r,↵� = gm +KMn, L↵M�r,↵� = �+ Tn (37)

where gl,m and � account for geodesic bending in the tangent plane of the deformed surfaces and n is
the (varying) unit normal to the surface. The variables KL,M and T are the normal curvatures of the
embedded fibers and the twist induced by the bending of the surface in three-space. With this notation,
in Eq. (31), the part of the energy depending on the second gradient rrr can be decomposed into the
three following contributions which allow to emphasize the role of each term: i) the strain-gradient energy,

WSGE =
1

2
AL |gl|2 +

1

2
AM |gm|2 + 1

2
A� |�|2 ; (38)

ii) the normal bending energy,

WNBE =
1

2
ALK

2
L +

1

2
AMK

2
M ; (39)

and iii) the twisting energy,

WTE =
1

2
A�T

2
. (40)

Because the normal derivative of position is not assigned, implicitly we are assigning zero double force on
edges where position is assigned. Elsewhere we assign zero double force and zero traction unless otherwise
specified.
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Figure 1. Geodesic buckling for the case of plane shear: fiber pattern (left) and the strain-gradient energy (right).

In the considered examples, a non-dimensional form of the problem is achieved by normalizing the
strain energy with respect to a reference sti↵ness E0, i.e.:

W̃ =
W

E0
(41)

As a consequence of this normalization, the material parameters associated with Eq. (34) become:

ẼL =
EL

E0
, ẼM =

EM

E0
, G̃ =

G

E0
, ÃL =

AL

E0
, ÃM =

AM

E0
, Ã� =

A�

E0
(42)

The lengths are normalized with respect to a reference length L0, whose value will be specified case by
case. In what follows, quantities in non-dimensional form are denoted with a superimposed tilde.
Herein we study the buckling mode shapes of the considered pantographic fibered structures. These

two-dimensional continua are highly sensitive to geometrical and mechanical imperfections. Specifically,
defects that may be encountered are: some di↵erences in the directions of fiber pattern, delaminations
or initial transverse deformations, variations in thickness, inclusions, eccentricity of loading and so forth.
For numerical purposes, rather than perturbing the geometry, it is often easier to obtain the perturbation
using an additional load or a further constraint on the displacement. This latter approach is the one
followed in this paper. The heuristic method employed here for fibered pantographic sheets is su�cient
for the immediate goal of determining some equilibrium shapes, but of course a rigorous analysis is needed
in order to successfully predict buckling modes (see e.g. [48–52] for specific analytical tools concerning
buckling and postbuckling).

5.1. Geodesic and out-of plane buckling of a lattice with initially straight fibers

In this section, we consider a rectangle plane region ⌦ whose sides are in the ratio 1:3, with the longest
of them being parallel to the bisector of the first quadrant of the reference plane. The two orthogonal
families of fibers are arranged so as to form an angle of 45 degrees with the sides of this region; thus,
L,M are constant unit vectors and coincide with the basis elements e1, e2 associated with a Cartesian
system. The shorter edge is used as the length scale for non-dimensionalization.
A first simulation is performed by imposing a shear displacement (ũ0 = 0.1

p
2) on one of the long

sides and by fixing the opposite one, while the short sides are left free. The non-dimensional material
parameters employed in this case are: ẼL = ẼM = 100; G̃ = 0.03; Ã� = 0.1; ÃL = ÃM = 0.001. In this
case to take imperfections into account, we impose on the displaced long side the additional constraint

8



(a) Fiber pattern (b) Strain-gradient energy

(c) Normal bending energy (d) Twisting energy

Figure 2. Case of initially straight fibers with compression (ṽ0 = 0.007
p
2) and shear (ũ0 = 0.05

p
2) displacement imposed.

on the derivatives of the displacement lying on the plane of the pantographic sheet and, in particular we
impose:

ũ↵,�n� = " with ↵,� = {1, 2},
" being a positive quantity equal to 2.22⇥ 10�16.
In Fig. 1 is shown an example of buckling occurred in the plane of the two-dimensional continuum

considered, that we call “geodesic buckling” because it is related to the strain-gradient energy of Eq. (38)
and therefore to the geodesic curvatures which appear in this term of the energy. In particular, on the left
side of the figure the fiber pattern of the 2D continuous sheet is shown, while on the right side is plotted
the strain-gradient energy (38) which, in this case, represents the only term in the second gradient energy,
the contributions related to the normal bending and twisting being zero.
The curves which are visible in the deformed shape of the body are simply selected mono-dimensional

sets of material points which, in the reference configuration, are parallel to the field lines relative to the
fields L and M.
Figure 2 shows an example of out-of-plane buckling. In Fig. 2a the equilibrium shape is exhibited (colors

indicate the out-of-plane component of displacement). In this case, in addition to a shear displacement
(ũ0 = 0.05

p
2) we have also imposed a displacement of compression (ṽ0 = 0.007

p
2) on the same long side

and the constraint: ũ↵,�n� = 0, with ↵,� = {1, 2}; the other sides are subject to the same constraints
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of the case previously considered. The non-dimensional material parameters used in this case are: ẼL =
ẼM = 100; G̃ = 0.02; Ã� = 0.1; ÃL = ÃM = 0.01. To simulate imperfections, we set the condition for
the derivatives of the displacement out-of-plane as:

ũ3,�n� = 1⇥ 10�4 with � = {1, 2}.

In this simulation, we can see how the strain-gradient energy (Fig. 2b) is localized mainly near the
corners of the rectangular fibered sheet, while the normal bending energy (Fig. 2c) and the twisting
energy (Fig. 2d) have greater relevance.
In the next simulations, we consider two examples with di↵erent material parameters to investigate

how they a↵ect the solution. The simulations are performed by imposing a compressive displacement
(ũ0 = 0.07

p
2) on one of the long sides, by fixing the opposite one and leaving the short sides free.

In addition, on the moving long side we assign the constraint: ũ↵,�n� = 0, with ↵,� = {1, 2}. The
non-dimensional material parameters employed in these cases are:

Case I. ẼL = ẼM = 100; G̃ = 0.02; Ã� = 0.1; ÃL = ÃM = 0.1;

Case II. ẼL = ẼM = 100; G̃ = 0.02; Ã� = 0.1; ÃL = ÃM = 0.01.

To take imperfections into account, we impose on the moved long side the additional constrain on the
derivatives of the displacement lying on the plane of the pantographic sheet and, in particular, we impose:

ũ↵,�n� = 1⇥ 10�4 with ↵,� = {1, 2}

Figures 3 and 4 show the out-of-plane buckling modes in the cases examined. Specifically, these figures
give details of the particular fiber pattern assumed in the current configuration (Figs. 3a and 4a), and of
the terms of the second gradient energy above mentioned (i.e., Eqs. (38), (39) and (40)). Also in these
simulations, we can see how the strain-gradient energy (Figs. 3b and 4b) is localized mostly near the
corners of the rectangular fibered sheet and is of the same level in both cases; in the second case, when
ÃL = ÃM = 0.01 are smaller than Ã� = 0.1 the twisting energy attains a maximum in the center very
high if compared with the first case (Figs. 3d and 4d); on the contrary, the normal bending energy achieves
its maximum level in the first case (Figs. 3c and 4c). As a result, the two buckling modes obtained are
enough di↵erent given that the relative rigidities of the terms of the second gradient energy promote a
type of deformation rather than the other one.
Figure 5 shows the plot of convergence of the total energy stored versus mesh refinement, i.e. the inverse

of the mesh size h in the two cases before examined. Of course, the convergence analysis here shown is
not to be intended in the sense of a convergence toward a known limit solution, as there is no chance of
getting a close form solution as a benchmark even with the simplest possible boundary conditions and
constitutive assumptions. However, the analysis just shown strongly supports the claim that the set of
numerical solutions one has decreasing the mesh size is a subset of a Cauchy sequence, i.e. the di↵erence
between any two solutions can be made arbitrarily small if the largest mesh size between the two is small
enough.

5.2. Buckling of logarithmic spirals

In this section, we consider an annular two-dimensional sheet with fibers forming logarithmic spirals
(Fig. 6). This fibered sheet is deformed by fixing it at the outer boundary and imposing a displacement
at the inner boundary corresponding to a counterclockwise rotation of 30 degrees and a radial opening
of amplitude ũ0 = 0.06. The radius of the inner circle is 0.05 and that of the outer boundary is 0.2.
The logarithmic spirals in the initial configuration (see Fig. 6-left) are characterized by the parameter
k = tan(⇡/4) and r̃0 = 0.1 (see Eq. (26)). The non-dimensional material parameters utilized in this case
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(a) Fiber pattern (b) Strain-gradient energy

(c) Normal bending energy (d) Twisting energy

Figure 3. Case I (ÃL = ÃM = 0.1): compressive displacement imposed (ũ0 = 0.07
p
2).

are: ẼL = ẼM = 500; G̃ = 0.1; Ã� = 0.1; ÃL = ÃM = 0.01. Further, to simulate imperfections, we
impose:

ũ3,� x̃� |x̃|�1 = 1⇥ 10�3 with � = {1, 2} on the outer boundary;

ũ3,� x̃� |x̃|�1 = �1⇥ 10�3 with � = {1, 2} on the inner boundary.

Figure 7 shows the deformation shape of the annular fibered sheet, and in particular the pattern of
fibers (Fig. 7a) —colors indicate the out-of-plane component of the displacement. Figure 7 shows also the
three terms of the second gradient energy which in this case are significant.

5.3. Oscillatory lattice

In this case, we consider a rectangle plane region ⌦ whose sides are in the ratio 0.75:1. The longer
edge is used as the length scale for non-dimensionalization. The parameters characterizing the oscillatory
fibers which appear in Eq.(30) are assumed to be Ã = A/L0 = 0.25, !̃ = !L0 = 4⇡.
In a first case, we examine the standard bias extension test in which one of the longer side is fixed and

on the other edge a displacement ũ0 = 0.2 is imposed in the direction orthogonal to the same side. On
the remaining edges, we assign zero double force and zero traction.
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(a) Fiber pattern (b) Strain-gradient energy

(c) Normal bending energy (d) Twisting energy

Figure 4. Case II (ÃL = ÃM = 0.01): compressive displacement imposed (ũ0 = 0.07
p
2).
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Figure 5. Convergence plots: Case I (left); Case II (right).
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Figure 6. Buckling example with logarithmic spirals arrangement of fibers in the case of radial displacement (ũ0 = 0.06)
and rotation (30 degrees) of the inner circle: Fiber pattern in the reference configuration (left); the shear strain relative to
the initial fiber directions (right).

(a) Fiber pattern (b) Strain-gradient energy

(c) Normal bending energy (d) Twisting energy

Figure 7. Buckling example with Logarithmic spirals arrangement of fibers: simulation with opening displacement (ũ0 = 0.06)
and rotation (30 degrees) of the inner circle.
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(a) Refernce fiber pattern (b) Actual fiber pattern

(c) Strain-gradient energy (d) Shear strain relative to the initial fiber
axes

Figure 8. Bias extension test - displacement ũ0 = 0.2

Figure 8 displays the arrangement of the fibers in the reference configuration (Fig. 8a), the equilibrium
shape of the sample after the deformation and the new disposition of the net (Fig. 8b), the second gradient
energy (Fig. 8c) and the measure of the shear strain relative to the initial fiber axes (Fig. 8d). The more
easily detectable feature in the plot of the shear strain (Fig. 8d) is the presence of three distinct bands
in which the shear strain presents a distribution almost uniform.
In the next examples, we impose a shear displacement (ṽ0 = 0.2) and a displacement of compression

(ũ0 = 0.2) on one of the longer side being fixed the opposite one. We study two cases of buckling by
assuming the following material parameters:

Case a. ẼL = ẼM = 100; G̃ = 0.2; Ã� = 0.1; ÃL = ÃM = 0.01;

Case b. ẼL = ẼM = 100; G̃ = 0.2; Ã� = 0.1; ÃL = ÃM = 0.001.

To simulate imperfections, we impose on the moved long side the constraint:
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(a) Fiber pattern (b) Strain-gradient energy

(c) Normal bending energy (d) Twisting energy

Figure 9. Case a: Compressive (ũ0 = 0.2) and shear (ṽ0 = 0.2) displacement imposed (ÃM = 0.01).

ũ3,�n� = 1⇥ 10�4 with ↵,� = {1, 2}

With this kind of application at hand, it is very interesting to investigate how changes in the constitutive
parameters can a↵ect the out-of-plane displacement of sinusoidal lattices. Indeed, epidermal electronics
strongly requires a close to perfect adherence of the lattice to the skin surface, which means that a
set of constitutive assumptions that robustly resist to buckling is to be preferred over a generic one.
The simulations shown in Fig. 9 and 10 compare the case with ÃM = 0.01 and the one with ÃM =
0.001. As one can see, in the latter case the average out-of-plain displacement is one order of magnitude
smaller (0.0467 vs 0.00339), which means that a smaller second gradient sti↵ness ÃM of the fibers may
ensure a better adherence of the lattice to the skin surface. Specifically, these figures give details of the
particular fiber pattern assumed in the current configuration —colors indicate the out-of-plane component
of displacement— (Figs. 9a and 10a), and of the terms of the second gradient energy already considered,
i.e. Eqs. (38), (39) and (40). Analogous considerations apply in these last cases as for the straight fibers
regarding the second gradient terms of the energy considered.
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(a) Fiber pattern (b) Strain-gradient energy

(c) Normal bending energy (d) Twisting energy

Figure 10. Case b: compressive (ũ0 = 0.2) and shear (ṽ0 = 0.2) displacement imposed (ÃM = 0.001).

6. Conclusion

The numerical simulations performed on the basis of the theoretical model briefly described in Sections 2
and 4 provided some examples of mechanical instability. Specifically, out-of-plane buckling was observed
with straight and curved fibres geometries. Moreover a more exotic in-plane buckling was also obtained
in Fig. 1 concerning the simple case of straight orthogonal fibers. This buckling is linked to the fact
that our continuum model is able to store energy in connection with the geodesic bending of the fibers,
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which in turn is modeled by means of a strain gradient theory. The amount of energy stored in this way,
when compared to the standard out-of-plane flexural and torsional energies, can be non-negligible, as
demonstrated in simulations shown in Figs. 2,7, 9 and 10.
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