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Efficient Non-Recursive Design of
Second-Order Spectral-Null Codes
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Abstract— A new efficient design of second-order spectral-
null (2-OSN) codes is presented. The new codes are obtained by
applying the technique used to design parallel decoding balanced
(i.e., 1-OSN) codes to the random walk method introduced by
some of the authors for designing 2-OSN codes. This gives new
non-recursive efficient code designs, which are less redundant
than the code designs found in the literature. In particular,
if k ∈ IIN is the length of a 1-OSN code then the new 2-OSN coding
scheme has length n = k + r ∈ IIN with an extra redundancy of
r � 2 log2 k + (1/2) log2 log2 k − 0.174 check bits, with k and r
even and n multiple of 4. The whole coding process requires
O(k log k) bit operations and O(k) bit memory elements.

Index Terms— High order spectral null codes, balanced codes,
Knuth’s complementation method, parallel decoding scheme,
optical and magnetic recording.

I. INTRODUCTION

LET � = {−1,+1} be the bipolar alphabet. The set of
qth-order spectral-null words SN (n, q) ⊆ �n is defined

as [5], [6], [14],

SN ′(n, q)
def=

{
X ∈ �n

∣∣∣∣mi (X) = 0,
for all integer i ∈ [0, q − 1]

}
; (1)

where mi (X)
def= x11i + x22i + . . . + xnni = ∑n

j=1 x j j i is
the i th moment (or, the mi -weight) of the word X = x1x2 . . .
xn ∈ �n , and sums and products are over the real numbers.
Any word in SN (n, q) is called qth-order spectral-null word
(briefly, a q-OSN word). In the following, if mi (X) = 0 then
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we will say that the word X is mi -balanced. A binary code C
is a qth-order spectral-null code with k̃ information bits and
length n (briefly, a q-OSN(n, k̃) code) if, and only if

1) C is a subset of SN (n, q), and
2) C has 2k̃ codewords.

When q = 1, these codes coincide with the so-called bal-
anced or DC-free block codes [1]–[3], [5], [7], [10]–[14],
[17]–[19], [21], [23]–[25], [28]. For values of q greater than 1,
the q-OSN(n, k̃) codes are considered in digital recording to
achieve a better rejection of the low frequency components
of the transmitted signal and enhancing the error correction
capability of codes used in partial-response channels [6], [14].
The q-OSN codes can be also considered over the binary
alphabet ZZ2 = {0, 1} [20]. In fact, by replacing the symbol−1
with 0 and +1 with 1, the set SN (n, q) becomes equivalent
to the set SN ′(n, q) ⊆ ZZn

2

SN ′(n, q)
def=

⎧⎪⎨
⎪⎩X ∈ ZZn

2

∣∣∣∣∣∣∣
mi (X) =

n∑
j=1

x j j i = 1

2

n∑
j=1

j i ,

for all integer i ∈ [0, q − 1]

⎫⎪⎬
⎪⎭;

where the sums and products are done in the real field IR.
Since SN (n, q) and SN ′(n, q) are equivalent, in the rest of
the paper SN (n, q) is used for SN ′(n, q). For example,

SN (n, 2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X ∈ ZZn
2

∣∣∣∣∣∣∣∣∣∣

m0(X) =
n∑

j=1

x j = n

2
and

m1(X) =
n∑

j=1

x j j = n(n + 1)

4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and SN (n, 2) �= ∅ if, and only if, n is multiple of 4 [20].
The code design problem is to convert the information

words into qth-order spectral-null words using the minimum
possible redundancy. For q = 2, this minimum redundancy
is [20]

rmin (k) = 2 log2 n − 1.141.

Also, the conversion should be done so that the encoding and
decoding processes are as computationally simple as possible.
Efficient design of qth-order spectral-null codes for q = 2,
has been considered in [8], [9], [14], [20], [22], [26], [27] and,
for q = 3, in [15].

In this paper we are concerned with designing 2-OSN
codes whose encoding and decoding functions can be com-
puted combining the Knuth’s optimal refined parallel decoding
scheme for balanced codes given in [1], [11], [12], and [19]
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with the random walk method for 2-OSN codes given in [9],
[20], and [26]. Here we assume that the information words
are already m0-balanced words of even length k (i.e., the
information words belongs to SN (k, 1) �= ∅) by using a
1-OSN(k, k̃) code design. Given k, μ0, μ1 ∈ IIN, let

S(k, μ0)
def= {X ∈ ZZk

2 : m0(X) = μ0} ⊆ ZZk
2

and

S(k, μ0, μ1)
def= {X ∈ ZZk

2 : m0(X) = μ0 and m1(X) = μ1}
⊆ S(k, μ0).

Now, given an m0-balanced word X = x1x2 . . . xk ∈ S(k, k/2)
(i.e., such that m0(X) = k/2 ∈ IIN), the idea is to “walk
randomly” towards the reverse, X R def= xk xk−1 . . . x1, of X , by
exchanging adjacent bits, until a word X

(
dhbal

)
is reached, with

dh, h, hbal ∈ IIN, where this word satisfies a specific property
for its second moment. Note that permutations of adjacent bits
in the word X do not alter the value of its first moment, while
its second moment may change with a variation of +1, −1,
or 0.

Moreover, a family of sets of check words, CS, is built so
that each set of check words, �h ∈ CS, identifies a specific
step dh of the random walk, where h = 0, 1, . . . , |CS| − 1.
As such, each set �h of the family of check words defines
an encoding function 〈�h 〉. And, as the main theorem states
(Theorem 2), there always exists at least one step dhbal such
that X

(
dhbal

)
= 〈

�hbal

〉
(X) concatenated with one of the check

words identifying 〈�h 〉, becomes a 2-OSN word. As in [19]
for 1-OSN codes, such possibly many indices hbal , for a given
code design, are referred to as the 2-OSN balancing indices
of X . Here we let hbal(X) ⊆ IIN indicate the set of all possible
balancing indices of X . Now, a check word C = C(X) ∈ ZZr

2,
r ∈ IIN, is appended to obtain a n = k + r bit codeword

E2(X) = X
(
dhbal

)
C(X) ∈ ZZn

2

as encoding of X . In order to implement this strategy, such
check C must be chosen so that the properties 1), 2) and 3)
below hold.

1) The codeword E2(X) is m0-balanced; that is,

m0(E2(X)) = m0

(
X
(
dhbal

))
+ m0(C) = n

2
∈ IIN.

Note that, since n is a multiple of 4 (otherwise, we have
SN (n, 2) = ∅), if k is even and X ∈ S(k, k/2) then r is
even and C ∈ S(r, r/2).

2) The codeword E2(X) is m1-balanced; that is,

m1 (E2(X)) = m1

(
X
(
dhbal

)
C
)
= n(n + 1)

4
∈ IIN.

Thus, 1) and 2) make E2(X) a 2nd-order spectral-null
word.

3) The original information word X can be recovered from
X
(
dhbal

)
and C .

In Section II, to fulfill the above properties, we start with the
1-OSN words of even length, k ∈ 2IIN and then we encode
these words into 2-OSN words whose length is n ∈ 4IIN.
This last step is obtained by adapting the coding scheme

given in [1] and [19] for balanced codes to fit the random
walk coding scheme given in [20] for 2-OSN codes. The
combination of the two methods gives efficient non-recursive
code designs for any value of the parameters k ∈ 2IIN,
r = n − k ∈ 2IIN and n ∈ 4IIN, provided that

k(k − 1)

2
≤
(

r

r/2

)
⇐⇒ k ≤

1+
√

1+ 8
( r

r/2

)
2

. (2)

Note that, if

k � 1

2

(
1+

√
1+ 8

(
r

r/2

))

then

r � 2 log2 k + (1/2) log2 log2 k − 0.174 (3)

because of Stirling’s approximation. As shown in Table II,
we get 2-OSN codes which are considerably less redundant
than the codes found in the literature. To our knowledge, all
code designs found in the literature are recursive and use only
2-OSN words as check words. Here, on the other hand, the
code designs are non-recursive and make a potential good
use of all possible 1-OSN words as check words. Hence, the
information rate improvement has two reasons. First, the non-
recursiveness of the code designs makes sure that any unuseful
redundancy does not add up at every encoding recursion step.
Second, the presented code designs make available many more
check words to use in the design. In any case, the code rate
improvement is of the order of 2 log2 log2 k+O(log log log k)
if k is choosen to be the length of an optimal 1-OSN/balanced
code. This can be seen by comparing (3) with the formula
for the code length (6) in [20]. In Section III, we show that
the whole coding process can be implemented with O(k log k)
bits operations and using O(k) memory bits. In Section IV,
some concluding remarks are given.

II. THE PROPOSED REFINED CODING SCHEME

The main idea of the code design is to convert a balanced
data word into an “almost 2-OSN” word, using an appropriate
function from a set of “m1-balancing functions”, and append
a check word. This check word 1) “encodes” which encoding
function is used in the encoding process E2, and 2) corrects any
further m1-imbalance of the almost 2-OSN word. To decode
a codeword, the receiver simply applies, to the m0-balanced
information part, the inverse of the function encoded by the
check part.

The coding scheme is captured by the following concept of
the set of m1-balancing functions.

Definition 1 (Set of m1-Balancing Functions): Let k,

r ∈ 2IIN be given so that n
def= k + r ∈ 4IIN. Also, let

CS def= {�0, �1, . . . , �p−1},
be a family of p ∈ IIN non-empty subsets of the set of all the
r-bit m0-balanced check words S(r, r/2). Also, for all indices
h ∈ [0, p − 1], let

〈�h 〉 : S(k, k/2)→ S(k, k/2)
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indicate a function from the set of all k-bit m0-balanced data
words, S(k, k/2), into itself. We say that the set of functions

B def= {〈�h 〉 : h ∈ [0, p − 1]}
is a set of m1-balancing functions if, and only if, the following
conditions hold.

1) The sets �h are pair-wise disjoint; i.e.,

�i ∩ � j = ∅ ⇐⇒ i �= j.

Thus, from C ∈ �h it is possible to unambiguously
recover h ∈ [0, p − 1].

2) For every m0-balanced information word X ∈ S(k, k/2)
there exists one hbal ∈ [0, p − 1] and Chbal ∈ �hbal such
that

m1
(〈

�hbal

〉
(X) Chbal

) = n(n + 1)

4
.

In the sequel, we refer to an index hbal as an
“m1-balancing index” of X and we let hbal(X) ⊆
[0, p−1] indicate the set of all possible balancing indices
of X. Note that, for all X ∈ S(k, k/2),

m0
(〈

�hbal

〉
(X) Chbal

) = m0
(〈

�hbal

〉
(X)

) + m0
(
Chbal

)
= k

2
+ r

2
= n

2
.

3) For all indices h ∈ [0, p − 1], the function 〈�h 〉 is
one-to-one so that, from h and Y = 〈�h 〉(X) it is possible
to unambiguously recover X.

Given a set of m1-balancing functions, every m0-balanced data
word X ∈ S(k, k/2) is encoded as

E2(X) = 〈
�hbal

〉
(X) Chbal

where hbal ∈ hbal(X) is an “m1-balancing index” of X ; for
example, the smallest index in the set hbal(X). We readily note
that, to give a well defined set of m1-balancing functions B,
it is required to define

a) the partition CS, and
b) each injective function 〈�h 〉 : S(k, k/2) → S(k, k/2)

in B;

and these two requirements are dependent on one another by
the condition 2) of Definition 1. Now, a possible construction
for such balancing functions 〈� 〉 ∈ B, with � ∈ CS, is
explained below.

First, given

X = x1x2x3 . . . xi . . . x j . . . xk−1xk

let

X (i, j ) = x1x2x3 . . . x j . . . xi . . . xk−1xk

be the word obtained form X by exchanging the i th bit with
the j th bit, and

X R = xkxk−1 . . . x j . . . xi . . . x3x2x1

be the reverse of X . The code design is based on the following
observations [20].

Observation 1: The m0-weight, m0(X), does not change if
the bits of X are permuted.

Observation 2: The relation

m1(X)+ m1(X R) = (k + 1)m0(X)

holds. So, if m0(X) = k/2 ∈ IIN then

m1(X) ≤ k(k + 1)

4
⇐⇒ m1(X R) ≥ k(k + 1)

4
.

Observation 3: The following relation holds

m1

(
X (i,i+1)

)
= m1(X)+ (xi − xi+1).

This implies that by exchanging two consecutive bits of X,
the value of m1 either decreases by 1 or remains the same or
increases by 1.

So, as in [20], let us consider the sequence of k(k−1)/2+1
words,

X (0) def= X = X,

X (1) def=
(

X (0)
)(1,2)

,

X (2) def=
(

X (1)
)(2,3)

,

...

X (k−1) def=
(

X (k−2)
)(k−1,k)

,

X (k) def=
(

X (k−1)
)(k−2,k−1)

,

X (k+1) def=
(

X (k)
)(k−3,k−2)

,

...

X (2k−3) def=
(

X (2k−4)
)(1,2) = X (1,k),

X (2k−2) def=
(

X (2k−3)
)(2,3)

,

X (2k−1) def=
(

X (2k−2)
)(3,4)

,

...

X (3k−6) def=
(

X (3k−7)
)(k−2,k−1)

,

X (3k−5) def=
(

X (3k−6)
)(k−3,k−2)

,

X (3k−4) def=
(

X (3k−5)
)(k−4,k−3)

,

...

X (4k−10) def=
(

X (4k−9)
)(2,3) =

(
X (1,k)

)(2,k−1)
,

...

X (k(k−1)/2) def=
(

X (k(k−1)/2)−1
)(k/2,k/2+1) = X R .

Example 1 (Word Sequence for k = 4): For example, if
k = 4 and X = x1x2x3x4 then the sequnece has cardinality
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k(k − 1)/2+ 1 = 7 and

X (0) = x1x2x3x4 = X,

X (1) = x2x1x3x4,

X (2) = x2x3x1x4,

X (3) = x2x3x4x1,

X (4) = x2x4x3x1,

X (5) = x4x2x3x1 = X (1,4),

X (6) = x4x3x2x1 =
(

X (1,4)
)(2,3) = X R .

The above sequence
{

X (i)
}

i=0,...,k(k−1)/2 is defined by a
particular sequence of exchanging of consecutive bits of X ,
with X (0) = X and X (k(k−1)/2) = X R . Since

m1

(
X (i+1)

)
− m1

(
X (i)

)
∈ {−1, 0,+1}

for all integer i ∈ [0, k(k− 1)/2], it follows that the sequence{(
i, m1

(
X (i)

))
: i = 0, 1, . . . ,

k(k − 1)

2

}

represents a “random walk” from the point (0, m1(X)) to the
point

(
k(k − 1)/2, m1

(
X R

))
and satisfies the following key

properties.

For all X ∈ S(k, k/2),

there exists an integer

isb ∈ [0, k(k − 1)/2+ [(k/2) mod 2])
such that

m1

(
X (isb )

)
=
⌊

k(k + 1)

4

⌋
(

or m1

(
X (isb )

)
=
⌈

k(k + 1)

4

⌉)
. (4)

In the following, we may refer to such an integer
isb as a “simple m0-balancing index” for the given
m0-balanced word X ;

and

For all X ∈ S(k, k/2) and

for all integers i1, i2 ∈ [0, k(k − 1)/2],

m1

(
X (i2)

)
∈
[

m1

(
X (i1)

)
− |i2 − i1|,

m1

(
X (i1)

)
+ |i2 − i1|

]
. (5)

In [20], a simple coding scheme for 2-OSN codes is given
by defining the balancing functions as X → X (i), where
i ∈ [0, k(k − 1)/2). In particular, given an m0-balanced data
word X ∈ S(k, k/2), with k ∈ 4IIN, the codeword associated
with X is recursively defined as

E(X) = X (isb ) E(binary representation of isb given in (4)).

Now we come to the definition of the set CS satisfying 1)
of Definition 1. Let p ∈ IIN and consider the partition
{�h}h=0,1,...,p−1 of a subset of S(r, r/2) into non-empty sets
defined as follows. The set �0 contains exactly one word of the

set S(r, r/2, μ1) for each possible value μ1 in the “m1-image"
of S(r, r/2) defined to be

m1 (S(r, r/2))
def= {m1(C) : C ∈ S(r, r/2)} .

Then let �1 contain exactly one word of the set
S(r, r/2, μ1) − �0 for each possible value μ1 ∈ m1
(S(r, r/2) − �0). In general, the check word partition CS is
defined by the following simple constructive rule

For h = 0, 1, 2, . . . , p − 1,
for all integer

μ1 ∈ m1

⎛
⎝S(r, r/2) −

h−1⋃
j=0

� j

⎞
⎠, (6)

the set �h contains exactly one check word in
S(r, r/2, μ1)−⋃h−1

j=0 � j .
Note that such definition is well defined and implies

p ≤ max
μ
|S(r, r/2, μ)|.

Example 2 (Case k = 6, r = 6 and p = 3): For example,
if r = 6 and p = maxμ |S(6, 3, μ)| = 3 then

S(r = 6, r/2 = 3, μ1 = 6) = {111000},
S(r = 6, r/2 = 3, μ1 = 7) = {110100},
S(r = 6, r/2 = 3, μ1 = 8) = {101100, 110010},
S(r = 6, r/2 = 3, μ1 = 9) = {011100, 101010, 110001},

S(r = 6, r/2 = 3, μ1 = 10) = {011010, 100110, 101001},
S(r = 6, r/2 = 3, μ1 = 11) = {010110, 011001, 100101},
S(r = 6, r/2 = 3, μ1 = 12) = {001110, 010101, 100011},
S(r = 6, r/2 = 3, μ1 = 13) = {001101, 010011},
S(r = 6, r/2 = 3, μ1 = 14) = {001011},
S(r = 6, r/2 = 3, μ1 = 15) = {000111};

so that, for example, CS = {�0, �1, �2} where

�0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

111000,
110100,
101100,
011100,
011010,
010110,
001110,
001101,
001011,
000111

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, �1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

110010,
101010,
100110,
011001,
010101,
010011

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

�2 =
⎧⎨
⎩

110001,
101001,
100101,
100011

⎫⎬
⎭. (7)

Here, the combinatorial problem is very similar to the coding
problem for balanced codes solved with the parallel decoding
techniques given in [1] and [19]. In fact, the cardinalities of
the constant m1-weight codes contained in S(r, μ0) show a
“bell shape behaviour” similar to the binomial distribution
as stated in Theorem 3 in the Appendix. In our case, if
CS = {�h}h∈[0,p−1] is defined by (6) then Theorem 3 for
μ0 = r/2 implies that for all integer h ∈ [0, p − 1], the
statements in the following observations hold.
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Observation 4: The m1-image of the words in �h, m1(�h),
is an integer interval, say

m1(�h)
def= [αh, βh ].

Observation 5: If h > 0 then

m1(�h) = [αh , βh] ⊆ [αh−1, βh−1] = m1(�h−1).

Observation 6: If α
def= minC∈S(r,r/2) m1(C) and β

def=
maxC∈S(r,r/2) m1(C) then the interval m1(�h) = [αh, βh ] is
symmetric with respect to

μmean = α + β

2
= αh + βh

2
= r(r + 1)

4
∈ IR,

has a width of (βh − αh) = |�h | − 1 where

|�h | −1 ≡ βh − αh ≡ |�0| −1 ≡β − α ≡
( r

2

)2≡
(r

2

)
mod 2.

Hence,

m1(�h) = [αh, βh ]
=

[
αh + βh

2
− βh − αh

2
,
αh + βh

2
+ βh − αh

2

]

=
[

r(r + 1)

4
− |�h | − 1

2
,

r(r + 1)

4
+ |�h | − 1

2

]

=
[⌊

r(r + 1)

4

⌋
−
⌊|�h | − 1

2

⌋
,

⌈
r(r + 1)

4

⌉
+
⌊|�h | − 1

2

⌋]
. (8)

Observation 7: Let r ∈ IIN and, for all integer μ0, μ1 ∈ IIN,

s(r, μ0, μ1)
def= |S(r, μ0, μ1)| . (9)

The number of m1-balancing functions is,

p ≤ max
μ∈[α,β] |S(r, r/2, μ)| = s

(
r, r/2,

⌊
r(r + 1)

4

⌋)

= s

(
r, r/2,

⌈
r(r + 1)

4

⌉)
.

Finally, given the above partition

CS = {�h : h ∈ [0, p − 1]} ,
we come to the definition of each function 〈�h 〉∈ B. This is
done as in [1], [12], and [19]. Namely, define the following p
natural numbers,

dh
def=

⎧⎨
⎩

0 if h = 0,

dh−1+
⌊ |�h−1|

2

⌋
+
⌈ |�h |

2

⌉
if h ∈ [1, p − 1],

=

⎧⎪⎪⎨
⎪⎪⎩

0 if h = 0,⌊ |�0|
2

⌋
+

h−1∑
j=1

|� j |+
⌈ |�h |

2

⌉
if h ∈ [1, p − 1];

(10)

their associated integer intervals,

Ih
def=

[
dh −

⌈ |�h |
2

⌉
+ 1, dh +

⌊ |�h |
2

⌋]
,

for all integer h ∈ [0, p − 1]; and, also let,

Ip
def=

⎡
⎣dp−1 +

⌊ |�p−1|
2

⌋
+ 1,

p−1∑
h=0

|�h |
⎞
⎠

=
⎡
⎣⌊ |�0|

2

⌋
+

p−1∑
h=1

|�h | + 1,

p−1∑
h=0

|�h |
⎞
⎠. (11)

Note that, from the construction (10),

1) each interval is centered in dh + [(|�h | − 1) mod 2]/
2 ∈ IR, for all h ∈ [0, p − 1]; and

2) the family {Ih : h ∈ [0, p]} partitions the necessary range
of the random walk index i , which, from (4), is given by
the integer interval [0, k(k−1)/2+[(k/2) mod 2]). This,
if k(k − 1)/2+ [(k/2) mod 2] ≤∑p−1

h=0 |�h |.
Now, given the dh , define the associated balancing functions

〈�h 〉 : S(k, k/2)→ S(k, k/2) as

〈�h 〉(X)
def= X (dh ), ∀h ∈ [0, p − 1]. (12)

Example 3 [Case k = 6, r = 6 and p = 3 (Continued)]:
In (7), where r = 6 and p = 3, from (7), (10) and (12), we
have

d0 = 0,

d1 = d0 + |�0|/2+ |�1|/2 = 0+ 5+ 3 = 8 and

d2 = d1 + |�1|/2+ |�2|/2 = 8+ 3+ 2 = 13.

So, if k = 6 then

I0
def= [−4, 5] = {−4,−3,−2,−1, 0, 1, 2, 3, 4, 5},

I1
def= [6, 11] = {6, 7, 8, 9, 10, 11},

I2
def= [12, 15] = {12, 13, 14, 15},

I3
def= [16, 20) = {16, 17, 18, 19},

the random walk index

i ∈ [0, 15] = [0, 5] ∪ [6, 11] ∪ [12, 15] ⊆ I0 ∪ I1 ∪ I2 ∪ I3,

and

〈�0〉(X)
def= x1x2x3x4x5x6 = X (0),

〈�1〉(X)
def= x2x6x3x4x5x1 = X (8),

〈�2〉(X)
def= x6x3x5x4x2x1 = X (13).

We need to show that the set B just defined is indeed a
well defined set of m1-balancing functions. This is done in
Theorem 2 below. First, note that to obtain the codewords a
check word must be concatenated to some Y = 〈

�hbal

〉
(X).

So, the following theorem concerning the moments of the
concatenation of words holds.

Theorem 1: For all Y ∈ ZZk
2 and C ∈ ZZr

2, the following
relations hold.

m0(Y C) = m0(Y )+ m0(C) (13)

and

m1(Y C) = m1(Y )+ m1(C)+ km0(C). (14)
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Proof: With regard to (14), if Y = y1y2 . . . yk ∈ ZZk
2 and

C = c1c2 . . . cr ∈ ZZr
2 then

m1(Y C) =
k∑

j=1

y j j +
k+r∑

j=k+1

c j−k j

= m1(Y )+
r∑

j=1

c j (k + j)

= m1(Y )+ k
r∑

j=1

c j +
r∑

j=1

c j j

= m1(Y )+ km0(C)+ m1(C).

Also, we need the following definition.
Definition 2 (m1-Crossing Index): Let k, r ∈ 2IIN and

n
def= k + r ∈ 4IIN. An index

icx ∈
[

0,
k(k − 1)

2
+
[(

k

2

)
mod 2

])

is an “m1-crossing index” for X ∈ S(k, k/2) if, and only if,
“icx defines a point where the random walk

RW (X)
def=

{(
i, m1

(
X (i)

))
: i = 0, 1, . . . ,

k(k − 1)

2

+
[(

k

2

)
mod 2

]
− 1

}
(15)

crosses the m1 middle value of k(k + 1)/4 ∈ IR” – more
precisely, if, and only if, one of the following two conditions
hold.

1) k, r ∈ 4IIN and icx is a simple m1-balancing index for X
according to (4); that is,

m1

(
X (icx )

)
= k(k + 1)

4
∈ IIN;

2) k, r ∈ 4IIN + 2 and icx is a simple decreasing
m1-balancing index for X; that is,

m1

(
X (icx−1)

)
=

⌈
k(k + 1)

4

⌉

>

⌊
k(k + 1)

4

⌋
= m1

(
X (icx )

)
. (16)

3) k, r ∈ 4IIN+2 and icx is a simple increasing m1-balancing
index for X; that is,

m1

(
X (icx−1)

)
=

⌊
k(k + 1)

4

⌋

<

⌈
k(k + 1)

4

⌉
= m1

(
X (icx )

)
. (17)

We note that, for all X ∈ S(k, k/2) there always exists at least
one m1-crossing index, icx , of X because of Observation 2
and Observation 3. If k, r ∈ 4IIN then icx coincides with the
index isb in (4). If k, r ∈ 4IIN + 2 and m1(X) < k(k + 1)/4
then there exist at least an index icx such that (17) holds.
If instead, k, r ∈ 4IIN + 2 and m1(X) > k(k + 1)/4 then
there exist an index icx such that (16) holds. Also, note that
if k, r ∈ 4IIN + 2 then the definition of m1-crossing index is

stronger than the definition of simple m1-balancing index as
the following example shows.

Example 4 [Case k = 6, r = 6 and p = 3 (Continued)]:
If k = 6 ∈ 4IIN + 2 then 10 = �k(k + 1)/4� <
�k(k + 1)/4� = 11. The random walk sequence of the
word X = 010011 ∈ S(6, 3) is

X (d0) = X (0) = 010011, m1

(
X (0)

)
= 13,

X (1) = 100011, m1

(
X (1)

)
= 12,

X (2) = 100011, m1

(
X (2)

)
= 12,

X (3) = 100011, m1

(
X (3)

)
= 12,

X (4) = 100101, m1

(
X (4)

)
= 11,

X (5) = 100110, m1

(
X (5)

)
= 10,←−

X (6) = 100110, m1

(
X (6)

)
= 10,

X (7) = 101010, m1

(
X (7)

)
= 9,

X (d1) = X (8) = 110010, m1

(
X (15)

)
= 8,

X (9) = 110010, m1

(
X (9)

)
= 8,

X (10) = 101010, m1

(
X (10)

)
= 9,

X (11) = 100110, m1

(
X (11)

)
= 10,

X (12) = 100110, m1

(
X (12)

)
= 10,

X (d2) = X (13) = 101010, m1

(
X (15)

)
= 9,

X (14) = 110010, m1

(
X (14)

)
= 8,

X (15) = 110010, m1

(
X (13)

)
= 8.

Hence, X has only one m1-crossing index icx = 5 (indicated
by the arrow to the right) because (16) holds. In particular,
icx = 5 is a decreasing m1-crossing index for the random walk
RW (X).

Now we come to the main general theorem.

Theorem 2: Let k, r ∈ 2IIN be given so that n
def= k + r ∈

4IIN. Let p ∈ IIN,

CS = {�0, �1, . . . , �p−1}
be a partition of a subset of S(r, r/2) such that (8) holds for
all h ∈ [0, p − 1] and let

B = {〈�h 〉 : h ∈ [0, p − 1]}
be the set of functions defined by (10) and (12). If

k(k − 1)

2
≤

p−1∑
h=0

|�h | − ε(k, r), with

ε(k, r)
def=

{
0 if k, r ∈ 4IIN,

1 otherwise,
(18)
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then B is a set of m1-balancing functions according to
Definition 1. In particular, if we let

p =
∣∣∣∣S
(

r, r/2,

⌊
r(r + 1)

4

⌋)∣∣∣∣ ,
p−1⋃
h=0

|�h | = S(r, r/2)

and
k(k − 1)

2
≤
(

r

r/2

)
(19)

then B is a set of m1-balancing functions. Note that the
inequality in (19) is the leftmost relation in (2).

Proof: First note that⌈
k(k + 1)

4

⌉
+
⌊

r(r + 1)

4

⌋
+ kr

2

=
⌊

k(k + 1)

4

⌋
+
⌈

r(r + 1)

4

⌉
+ kr

2

= n(n + 1)

4
(20)

because k, r ∈ 2IIN and n ∈ 4IIN.
Property 1) of Definition 1 follows because the family CS

is a partition. With regard to the first moment relation in
property 2) of Definition 1, given any X ∈ S(k, k/2), we need
to find/define an m1-balancing index, ĥ ∈ hbal(X), for the
proposed refined coding scheme in each of the cases which
follow.

Case k, r ∈ 4IIN. Let icx be an m1-crossing index of X .
For such index,

icx ∈
[

0,
k(k − 1)

2

)
and m1

(
X (icx )

)
= k(k + 1)

4
∈ IIN

(21)

hold because of Definition 2. In this case, the integer intervals
in (11) are given by

Ih
def=

[
dh − |�h | − 1

2
, dh + |�h | − 1

2

]
,

for all integer h ∈ [0, p − 1]; and,

Ip
def=

⎡
⎣⌊ |�0|

2

⌋
+

p−1∑
h=1

|�h | + 1,

p−1∑
h=0

|�h |
⎞
⎠. (22)

From (18), the family {Ih : h ∈ [0, p]} partitions the index
range interval [0, k(k − 1)/2). So, there exists an integer
h ∈ [0, p] such that icx ∈ Ih . Exactly one of the following
subcases must hold.

A1: h ∈ [0, p − 1]. Here, from (22),

δi
def= icx − dh ∈

[
−|�h | − 1

2
,
|�h | − 1

2

]
.

So, from (5),

m1

(
X (dh)

)
∈
[
m1

(
X (icx )

)
− |δi |, m1

(
X (icx )

)
+ |δi |

]

=
[

k(k + 1)

4
− |δi |, k(k + 1)

4
+ |δi |

]

⊆
[

k(k + 1)

4
− |�h | − 1

2
,

k(k + 1)

4
+ |�h | − 1

2

]
;

and so, there always exists a “small m1-imbalance”

μ ∈ [−|δi |, |δi |] ∩ IIN ⊆
[
−|�h | − 1

2
,
|�h | − 1

2

]

such that,

m1

(
X (dh )

)
= k(k + 1)

4
− μ ∈

[
k(k + 1)

4
− |�h | − 1

2
,

k(k + 1)

4
+ |�h | − 1

2

]
.

Hence, from (8), there exists C ∈ �h with

m1(C) = r(r + 1)

4

+μ∈
[

r(r + 1)

4
− |�h | − 1

2
,

r(r + 1)

4
+ |�h | − 1

2

]

= m1(�h)

such that

m1 (〈�h 〉(X) C) = m1

(
X (dh )

)
+ m1(C)+ km0(C)

=
(

k(k + 1)

4
− μ

)
+
(

r(r + 1)

4
+ μ

)
+ kr

2

= n(n + 1)

4
,

because of (14) in Theorem 1 with

m1(Y ) = m1(X (dh)) = k(k + 1)/4− μ,

m1(C) = r(r + 1)/4+ μ and

km0(C) = kr/2;
and also because of (20). This means that ĥ

def= h ∈ hbal(X)
is a balancing index for this refined coding scheme.

A2: h = p. In this case, from (22) and Definition 2,

icx ∈
⎡
⎣⌊ |�0|

2

⌋
+

p−1∑
h=1

|�h | + 1,
k(k − 1)

2

⎞
⎠.

So, from (18),

k(k − 1)

2
− icx ∈

⎡
⎣1,

k(k − 1)

2
−
⌊ |�0|

2

⌋
−

p−1∑
h=1

|�h |
⎞
⎠

⊆
[

1,

⌈ |�0|
2

⌉)
.

Hence, from (5), (21) and the above relation,

m1

(
X R

)
= m1

(
X (k(k−1)/2)

)

∈
[

m1

(
X (icx )

)
−
(

k(k − 1)

2
− icx

)
,

m1

(
X (icx )

)
+
(

k(k − 1)

2
− icx

)]

⊆
[

k(k + 1)

4
−
(⌈ |�0|

2

⌉
− 1

)
,

k(k + 1)

4
+
(⌈ |�0|

2

⌉
− 1

)]

=
[

k(k + 1)

4
− |�0| − 1

2
,

k(k + 1)

4
+ |�0| − 1

2

]
.
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This, from Observation 2, implies,

m1 (X) = k(k + 1)

2
− m1

(
X R

)
∈
[

k(k + 1)

4
− |�0| − 1

2
,

k(k + 1)

4
+ |�0| − 1

2

]
;

and so, there exists a “small m1-imbalance" μ ∈ IIN such that,

m1 (X) = k(k + 1)

4
− μ ∈

[
k(k + 1)

4
− |�0| − 1

2
,

k(k + 1)

4
+ |�0| − 1

2

]
.

Again, from (8), there exists C ∈ �0 with

m1(C) = r(r + 1)

4

+μ∈
[

r(r + 1)

4
− |�0| − 1

2
,

r(r + 1)

4
+ |�0| − 1

2

]

= m1(�0)

such that m1 (〈�0〉(X) C) = n(n+1)/4 because of Theorem 1

and (20). So, if icx ∈ Ip then ĥ
def= 0 ∈ hbal(X) is a balancing

index for the refined coding scheme.
Case k, r ∈ 4IIN + 2. Let

icx ∈
[

0,
k(k − 1)

2

]
=
[

0,
k(k − 1)

2
+ 1

)

be an m1-crossing index of X defined in Definition 2. Here,
the integer intervals in (11) are given by

Ih
def=

[
dh − |�h |

2
+ 1, dh + |�h |

2

]
,

for all integer h ∈ [0, p − 1]; and,

Ip
def=

⎡
⎣ |�0|

2
+

p−1∑
h=1

|�h | + 1,

p−1∑
h=0

|�h |
⎞
⎠. (23)

From (18) and ε(k, r) = 1, the family {Ih : h ∈ [0, p]}
partitions the index range interval [0, k(k − 1)/2]. So, there
exists an integer h ∈ [0, p] such that icx ∈ Ih . Based on (23),
exactly one of the following subcases must hold.

B1: h ∈ [0, p − 1], (16) holds and

icx = dh + |�h |
2
⇐⇒ δi

def= (icx − 1)− dh

= |�h |
2
− 1 = |�h | − 2

2
.

In this case, from (5) and (16), there always exists a “small
m1-imbalance” μ ∈ IIN such that,

m1

(
X (dh)

)
=

⌈
k(k + 1)

4

⌉

−μ∈
[
m1

(
X (icx−1)

)
− δi, m1

(
X (icx−1)

)
+ δi

]

=
[⌈

k(k + 1)

4

⌉
− |�h | − 2

2
,

⌈
k(k + 1)

4

⌉
+ |�h | − 2

2

]
.

Hence, from (8), there exists C ∈ �h with

m1(C) =
⌊

r(r + 1)

4

⌋

+μ ∈
[⌊

r(r + 1)

4

⌋
− |�h | − 2

2
,

⌊
r(r + 1)

4

⌋
+ |�h | − 2

2

]
⊆ m1(�h)

such that

m1 (〈�h 〉(X) C)

= m1

(
X (dh)

)
+ m1(C)+ km0(C)

=
(⌈

k(k + 1)

4

⌉
− μ

)
+
(⌊

r(r + 1)

4

⌋
+ μ

)
+ kr

2

= n(n + 1)

4
,

because of Theorem 1 and (20). This means that ĥ
def= h ∈

hbal(X) is a balancing index for the refined coding scheme.
B2: h ∈ [0, p − 1], (16) holds and

icx ∈
[

dh −
( |�h |

2
− 1

)
, dh +

( |�h |
2
− 1

)]

⇐⇒ δi
def= icx − dh ∈

[
−|�h | − 2

2
,
|�h | − 2

2

]
.

In this case, from (5) and (16), there always exists a “small
m1-imbalance” μ ∈ IIN such that,

m1

(
X (dh)

)
=

⌊
k(k + 1)

4

⌋

−μ ∈
[
m1

(
X (icx )

)
− |δi |, m1

(
X (icx )

)
+ |δi |

]

=
[⌊

k(k + 1)

4

⌋
− |δi |,

⌊
k(k + 1)

4

⌋
+ |δi |

]

⊆
[⌊

k(k + 1)

4

⌋
− |�h | − 2

2
,

⌊
k(k + 1)

4

⌋
+ |�h | − 2

2

]
.

Hence, from (8), there exists C ∈ �h with

m1(C) =
⌈

r(r + 1)

4

⌉
+ μ ∈

[⌈
r(r + 1)

4

⌉
− |�h | − 2

2
,

⌈
r(r + 1)

4

⌉
+ |�h | − 2

2

]
⊆ m1(�h)

such that

m1 (〈�h 〉(X) C)

= m1

(
X (dh)

)
+ m1(C)+ km0(C)

=
(⌊

k(k + 1)

4

⌋
− μ

)
+
(⌈

r(r + 1)

4

⌉
+ μ

)
+ kr

2

= n(n + 1)

4
,

because of Theorem 1 and (20). This means that
ĥ

def= h ∈ hbal(X).
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B3: h = p, (16) holds and

icx ∈
⎡
⎣ |�0|

2
+

p−1∑
h=1

|�h | + 1,
k(k − 1)

2

⎤
⎦.

So, from (18) and ε(k, r) = 1,

k(k − 1)

2
− icx ∈

⎡
⎣0,

k(k − 1)

2
− |�0|

2
−

p−1∑
h=1

|�h |
⎤
⎦

⊆
[

0,
|�0|

2
− 1

]
.

Hence, from (5), (16) and the above relation,

m1

(
X R

)
= m1

(
X (k(k−1)/2)

)

∈
[

m1

(
X (icx )

)
−
(

k(k − 1)

2
− icx

)
,

m1

(
X (icx )

)
+
(

k(k − 1)

2
− icx

)]

⊆
[⌊

k(k + 1)

4

⌋
− |�0| − 2

2
,

⌊
k(k + 1)

4

⌋
+ |�0| − 2

2

]

This, from Observation 2, implies,

m1 (X) = k(k + 1)

2
− m1

(
X R

)
∈
[⌈

k(k + 1)

4

⌉
− |�0| − 2

2
,

⌈
k(k + 1)

4

⌉
+ |�0| − 2

2

]
;

and so, there exists a “small m1-imbalance” μ ∈ IIN such that,

m1 (X) =
⌈

k(k + 1)

4

⌉
− μ ∈

[⌈
k(k + 1)

4

⌉
− |�0| − 2

2
,

⌈
k(k + 1)

4

⌉
+ |�0| − 2

2

]
.

Hence, from (8), there exists C ∈ �0 with

m1(C) =
⌊

r(r + 1)

4

⌋
+ μ ∈

[⌊
r(r + 1)

4

⌋
− |�0| − 2

2
,

⌊
r(r + 1)

4

⌋
+ |�0| − 2

2

]
⊆ m1(�0)

such that m1 (〈�0〉(X) C) = n(n+1)/4 because of Theorem 1
and (20). So, if icx ∈ Ip then ĥ

def= 0 ∈ hbal(X).
C1: h ∈ [0, p − 1], (17) holds and

icx = dh + |�h |
2
⇐⇒ δi

def= (icx − 1)− dh]

= |�h |
2
− 1 = |�h | − 2

2
.

This case follows exactly as the case B1 where the
floor function is exchanged with the ceiling function. Here

ĥ
def= h ∈ hbal(X).
C2: h ∈ [0, p − 1], (17) holds and

icx ∈
[

dh −
( |�h |

2
− 1

)
, dh +

( |�h |
2
− 1

)]

⇐⇒ δi
def= icx − dh ∈

[
−|�h | − 2

2
,
|�h | − 2

2

]
.

This case follows exactly as the case B2 where the
floor function is exchanged with the ceiling function. Here

ĥ
def= h ∈ hbal(X).
C3: h = p, (17) holds and

icx ∈
⎡
⎣ |�0|

2
+

p−1∑
h=1

|�h | + 1,
k(k − 1)

2

⎤
⎦.

This case follows exactly as the case B3 where the
floor function is exchanged with the ceiling function. Here

ĥ
def= 0 ∈ hbal(X).
Since no other cases are left, property 2) holds. As we can

see, property 2) follows similarly to the proof of [19, Th. 4].
In fact, here we have even proven a slightly stronger
result; namely, we have shown that if an m1-crossing index
icx ∈ [0, k(k − 1)/2 + [(k/2) mod 2]) of the random walk
RW (X) in (15) lies in Ih then h ∈ hbal(X) ∈ [0, p − 1] is
a balancing index for the refined scheme. This, modulus the
necessary length of the random walk given by k(k − 1)/2 +
[(k/2) mod 2] (see case A2, B3 and C3 above). In Section III,
we will make a good use of this improved result.

Property 3) of Definition 1 holds because the functions 〈�h 〉
in (12) are permutations of the components of X . So, B is
a set of m1-balancing functions according to Definition 1.
In particular, this statement holds true if we let

⋃p−1
h=0 |�h | =

S(r, r/2). In this case, k must satisfy

k(k − 1)

2
≤ |S(r, r/2)| − ε(k, r);

which is equivalent to k(k − 1)/2 ≤ ( r
r/2

)
because k, r ∈ 2IIN,

n ∈ 4IIN and because whenever k, r ∈ 4IIN + 2 it follows
k(k − 1)/2 ∈ 2IIN + 1 and

( r
r/2

) ∈ 2IIN.
At this point, the encoding of an information word is done

as follows.

Algorithm 1 General Encoding Algorithm

Input: the information word Z ∈ ZZk̃
2.

Output: the codeword

Y C = E2(E1(Z)) = (E1 ◦ E2)(Z) ∈ SN (n, 2)

where n = k + r , Y ∈ ZZk
2 and C ∈ ZZr

2.

Perform steps S0, S1 and S2.

S0: m0-balance the information word Z . For example, any
m0-balancing method given in [1], [2], [4], [7], [12], [18], [19]
or [21] can be used. Let X be the m0-balanced information
word of length k associated with Z ; i. e., X = E1(Z). In this
way, m0(X) = k/2.

S1: find a balancing index of X and then compute the relative
information and check part of the codeword. For the time
being, assume this is done exhaustively by computing the set,
hbal(X), of all possible balancing indices associated with X
as follows. For all h ∈ [0, p − 1] do steps S1.1, S1.2, S1.3
and S1.4.

S1.1: compute 〈�h 〉(X) = X (dh ).

S1.2: compute m1(〈�h 〉(X)).
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S1.3: compute the m1-unbalance

μ1 = n(n + 1)

4
− m1 (〈�h 〉(X))− kr

2
. (24)

S1.4: if there exists C ∈ �h such that m1(C) = μ1 then a bal-
ancing index hbal

def= h is found and the relative m1-balancing

check is Chbal

def= C ∈ �hbal . Note that such m1-balancing
check exists in �h if, and only if, μ1 ∈ m1(�h) = [αh, βh ]
(because of Observation 4 above).
S2: for the m0-balanced information word X , select the m1-
balanced codeword as

E2(X) = Y C = 〈
�hbal

〉
(X) Chbal = X

(
dhbal

)
Chbal ;

where hbal ∈ hbal(X) ⊆ [0, p − 1] is one among all possible
balancing indices found in step S1. In this way, the information
word Z is encoded into the 2-OSN word Y C = E2(X) =
E2(E1(Z)).
S3: Output E2(X) and exit.

On the other hand, the decoding is performed as
follows.

Algorithm 2 General Decoding Algorithm

Input: the codeword associated with some Z ∈ ZZk̃
2,

Y C = E2(E1(Z)) = (E1 ◦ E2)(Z) ∈ SN (n, 2).

with n = k + r , Y ∈ ZZk
2 and C ∈ ZZr

2.
Output: the information word Z = (E1 ◦ E2)

−1(Y C).
Perform steps S0, S1 and S2.
S0: compute the index hbal ∈ [0, p − 1] such that C ∈ �hbal .
S1: compute the word X = E−1

2 (Y C) = 〈
�hbal

〉−1(Y ).
S2: undo the m0-balancing of the word X using the method
chosen in step S0 of Algorithm 1. Let Z = E−1

1 (X) ∈ ZZk̃
2

be the information word whose m0-balanced encoding is X .
In this way, the word Y C is decoded into the word

Z = E−1
1 (X) = E−1

1 (E−1
2 (Y C)) = (E1 ◦ E2)

−1(Y C).

S3: Output Z and exit.

The following example shows the m1-balancing part of
Algorithm 1 and the m1-unbalancing part of Algorithm 2.

Example 5 (Code Design for k = 12, r = 8 and p = 8):
Let the number of m0-balanced information bits be
k = 12 ∈ 2IIN. So, if r = 8 ∈ 2IIN then relation (19)
holds because

k(k − 1)

2
= 66 ≤ 70 =

(
8

4

)
=
(

r

r/2

)
.

This means that with r = 8, by letting

p−1⋃
h=0

|�h | = S(8, 4),

a code design of length n = k + r = 20 with

p = s

(
8, 4, 8 · 9

4
= 18

)
= 8

m1-balancing functions can be given to m1-balance the k = 12
m0-balanced bits. Columns 2 through 8 of Table I define a
particular partition CS = {�0, �1, . . . , �7}. We readily note
that �7 is redundant and a code design can be given with
p = 7 m1-balancing functions by using the first 7 �h . This is
because

k(k − 1)

2
= 66 ≤ 69 = 70− |�7| =

6∑
h=0

|�h |

and so (18) is satisfied. However, note that by using p = 8,
instead of 7, m1-balancing functions we increase the average
number of possible encodings of a given information word.
Thus, by applying the same method given in [12], [16],
and [29] for balanced codes to the 2-OSN codes given
here, a little more extra information can be conveyed by
the code. Now, the m0-weight of every codeword must be
equal to n/2 = 10 and the m1-weight must be equal to
n(n + 1)/4 = 105. Suppose

X = 100000101111

is the given m0-balanced word which needs to be encoded into
a word of SN (20, 2). The entire random walk sequence for X
is given below (where the left arrows to the right indicate a
word in SN (12, 2)).

X (d0) = X (0) = 100000101111, m1

(
X (0)

)
= 50,

X (1) = 010000101111, m1

(
X (1)

)
= 51,

X (2) = 001000101111, m1

(
X (2)

)
= 52,

X (3) = 000100101111, m1

(
X (3)

)
= 53,

X (4) = 000010101111, m1

(
X (4)

)
= 54,

X (5) = 000001101111, m1

(
X (5)

)
= 55,

X (6) = 000001101111, m1

(
X (6)

)
= 55,

X (7) = 000001011111, m1

(
X (7)

)
= 56,

X (8) = 000001011111, m1

(
X (8)

)
= 56,

X (9) = 000001011111, m1

(
X (9)

)
= 56,

X (10) = 000001011111, m1

(
X (10)

)
= 56,

X (11) = 000001011111, m1

(
X (11)

)
= 56,

X (12) = 000001011111, m1

(
X (12)

)
= 56,

X (13) = 000001011111, m1

(
X (13)

)
= 56,

X (14) = 000001011111, m1

(
X (14)

)
= 56,

X (d1) = X (15) = 000001101111, m1

(
X (15)

)
= 55,

X (16) = 000001101111, m1

(
X (16)

)
= 55,

X (17) = 000010101111, m1

(
X (17)

)
= 54,

X (18) = 000100101111, m1

(
X (18)

)
= 53,
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X (19) = 001000101111, m1

(
X (19)

)
= 52,

X (20) = 010000101111, m1

(
X (20)

)
= 51,

X (21) = 100000101111, m1

(
X (21)

)
= 50,

X (22) = 100000101111, m1

(
X (22)

)
= 50,

X (23) = 100000101111, m1

(
X (23)

)
= 50,

X (24) = 100000101111, m1

(
X (24)

)
= 50,

X (25) = 100000101111, m1

(
X (25)

)
= 50,

X (26) = 100001001111, m1

(
X (26)

)
= 49,

X (d2) = X (27) = 100001001111, m1

(
X (27)

)
= 49,

X (28) = 100001010111, m1

(
X (28)

)
= 48,

X (29) = 100001011011, m1

(
X (29)

)
= 47,

X (30) = 100001011101, m1

(
X (30)

)
= 46,

X (31) = 100001011101, m1

(
X (31)

)
= 46,

X (32) = 100001011101, m1

(
X (32)

)
= 46,

X (33) = 100001101101, m1

(
X (33)

)
= 45,

X (34) = 100001101101, m1

(
X (34)

)
= 45,

X (35) = 100010101101, m1

(
X (35)

)
= 44,

X (36) = 100100101101, m1

(
X (36)

)
= 43,

X (38) = 110000101101, m1

(
X (38)

)
= 41,

X (d3) = X (37) = 101000101101, m1

(
X (37)

)
= 42,

X (39) = 110000101101, m1

(
X (39)

)
= 41,

X (40) = 110000101101, m1

(
X (40)

)
= 41,

X (41) = 110000101101, m1

(
X (41)

)
= 41,

X (42) = 110001001101, m1

(
X (42)

)
= 40,

X (43) = 110001001101, m1

(
X (43)

)
= 40,

X (44) = 110001010101, m1

(
X (44)

)
= 39,←−

X (45) = 110001011001, m1

(
X (45)

)
= 38,

X (d4) = X (46) = 110001011001, m1

(
X (46)

)
= 38,

X (47) = 110001101001, m1

(
X (47)

)
= 37,

X (48) = 110001101001, m1

(
X (48)

)
= 37,

X (49) = 110010101001, m1

(
X (49)

)
= 36,

X (50) = 110100101001, m1

(
X (50)

)
= 35,

X (51) = 111000101001, m1

(
X (51)

)
= 34,

X (52) = 111000101001, m1

(
X (52)

)
= 34,

X (d5) = X (53) = 111000101001, m1

(
X (53)

)
= 34,

X (54) = 111001001001, m1

(
X (54)

)
= 33,

X (55) = 111001001001, m1

(
X (55)

)
= 33,

X (56) = 111001010001, m1

(
X (56)

)
= 32,

X (57) = 111001100001, m1

(
X (57)

)
= 31,

X (d6) = X (58) = 111001100001, m1

(
X (58)

)
= 31,

X (59) = 111010100001, m1

(
X (59)

)
= 30,

X (60) = 111100100001, m1

(
X (60)

)
= 29,

X (d7) = X (61) = 111100100001, m1

(
X (61)

)
= 29,

X (62) = 111101000001, m1

(
X (62)

)
= 28,

X (63) = 111101000001, m1

(
X (63)

)
= 28,

X (64) = 111100100001, m1

(
X (64)

)
= 29,

X (65) = 111100100001, m1

(
X (65)

)
= 29,

X (66) = 111101000001, m1

(
X (66)

)
= 28.

Note that, unlike the simple encoding scheme in [20] where
all the k(k − 1)/2 = 66 possible functions X → X (i),
i ∈ [0, k(k − 1)/2), are used as the m1-balancing functions,
here only p = 8 of them are used. In fact, the family of the
m1-balancing functions B = {〈�h 〉 : h ∈ [0, 7]} is defined as
follows. From the definition of �h in Table I, along with (10)
and (12), we have 〈�h 〉(X) = X (dh ), h ∈ [0, 7], with d0 = 0,
d1 = 15, d2 = 27, d3 = 37, d4 = 46, d5 = 53, d6 = 58 and
d7 = 61. That is,

〈�0〉(X) = X (0) = x1x2x3x4x5x6x7x8x9x10x11x12
def= X,

〈�1〉(X) = X (15) = x2x3x4x5x6x7x12x8x9x10x11x1,

〈�2〉(X) = X (27) = x12x3x4x5x6x7x8x2x9x10x11x1,

〈�3〉(X) = X (37) = x12x3x11x4x5x6x7x8x9x10x2x1,

〈�4〉(X) = X (46) = x12x11x4x5x6x7x8x10x9x3x2x1,

〈�5〉(X) = X (53) = x12x11x10x5x6x4x7x8x9x3x2x1,

〈�6〉(X) = X (58) = x12x11x10x5x6x9x7x8x4x3x2x1,

〈�7〉(X) = X (61) = x12x11x10x9x6x5x7x8x4x3x2x1.

In this way, letting

M1
def= n(n + 1)

4
− kr

2
= 105− 48 = 57,

the encoding Algorithm 1 executes steps S1 and S2 as follows.
S1 (for h = 0 and d0 = 0): compute

〈�0〉(X) = X (0) = 100000101111(= X),

m1

(
X (0)

)
= 50,

μ1 = M1 − m1

(
X (0)

)
= 57− 50 = 7.

We have μ1 = 7 /∈ m1(�0) = [10, 26] ⇐⇒ there is no check
word C ∈ �0 such that m1(C) = μ1.
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TABLE I

EXAMPLE WITH n = 20, k = 12, r = 8 AND p = 8

S1 (for h = 1 and d1 = 15): compute

〈�1〉(X) = X (15) = 000001101111,

m1

(
X (15)

)
= 55,

μ1 = M1 − m1

(
X (15)

)
= 57− 55 = 2.

We have μ1 = 2 /∈ m1(�1) = [12, 24] ⇐⇒ there is no check
word C ∈ �1 such that m1(C) = μ1.

S1 (for h = 2 and d2 = 27): compute

〈�2〉(X) = X (27) = 100001001111,

m1

(
X (27)

)
= 49,

μ1 = M1 − m1

(
X (27)

)
= 57− 49 = 8.

We have μ1 = 8 /∈ m1(�2) = [13, 23] ⇐⇒ there is no check
word C ∈ �2 such that m1(C) = μ1.

S1 (for h = 3 and d3 = 37): compute

〈�3〉(X) = X (37) = 101000101101,

m1

(
X (37)

)
= 42,

μ1 = M1 − m1

(
X (37)

)
= 57− 42 = 15.

The check word C = 11001010 ∈ �3 is such that m1(C) =
μ1 = 15 ∈ m1(�3) = [14, 22]. So, hbal

def= 3 is an
m1-balancing index and the relative m1-balancing check is

C3
def= 11001010 ∈ �3.

S1 (for h = 4 and d4 = 46): compute

〈�4〉(X) = X (46) = 110001011001,

m1

(
X (46)

)
= 38,

μ1 = M1 − m1

(
X (46)

)
= 57− 38 = 19.

The check word C = 01100101 ∈ �4 is such that
m1(C) = μ1 = 19 ∈ m1(�4) = [14, 22]. So, hbal

def= 4 is
an m1-balancing index and the relative m1-balancing check

is C4
def= 01100101 ∈ �4.

S1 (for h = 5 and d5 = 53): compute

f un�5(X) = X (53) = 111000101001,

m1

(
X (53)

)
= 34,

μ1 = M1 − m1

(
X (53)

)
= 57− 34 = 23.

We have μ1 = 23 /∈ m1(�5) = [16, 20] ⇐⇒ there is no
check word C ∈ �5 such that m1(C) = μ1.
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TABLE II

COMPARISONS WITH THE OPTIMAL CODES AND THE CODES IN [20]
FOR SOME CODE LENGTH VALUES n ∈ 4IIN

S1 (for h = 6 and d5 = 58): compute

〈�6〉(X) = X (58) = 111001100001,

m1

(
X (58)

)
= 31,

μ1 = M1 − m1

(
X (58)

)
= 57− 31 = 26.

We have μ1 = 26 /∈ m1(�6) = [16, 20] ⇐⇒ there is no
check word C ∈ �6 such that m1(C) = μ1.

S1 (for h = 7 and d5 = 61): compute

〈�7〉(X) = X (61) = 111100100001,

m1

(
X (61)

)
= 29,

μ1 = M1 − m1

(
X (58)

)
= 57− 29 = 28.

We have μ1 = 28 /∈ m1(�7) = [18, 18] ⇐⇒ there is no
check word C ∈ �7 such that m1(C) = μ1.

At this point, execute step S2.
S2: For example, select as encoding of the m0-balanced

word X the m1-balanced word

E2(X) = X (37) C3 = 101000101101 11001010.

However, note from the above, that E2(X) = X (46) C4 can also
be chosen because

hbal(X) = {3, 4} ⊆ [0, 7].
With regard to decoding, on receiving the 2-OSN word

Y C = 10100010110111001010,

the sequence of the last r = 8 bits (i.e., C = 11001010)
is the check word that allows to identify the m1-balancing
function 〈�h 〉used in the encoding process. Since C ∈ �3, the
remaining word Y is decoded into the m0-balanced word

E−1
2 (Y C) = 〈�3〉−1(Y ) = 100000101111.

III. EFFICIENT IMPLEMENTATIONS OF THE REFINED

CODING SCHEME AND THE COMPLEXITY ANALYSIS

There may be many ways to implement the coding scheme
defined in Section II. However, before going into the details,
note that given any integer d ∈ [0, k(k − 1)/2] and word
X = x1x2 . . . xn ∈ ZZk

2 the word X (d) ∈ ZZk
2 can be computed

in O(k log k) bit operations with O(k) bit memory elements
with a sequence of at most k/2 “giant steps” followed by a
sequence of at most 2k − 3 “baby steps”; as done in [20].
In the sequence of “giant steps”, for j = 1, 2, . . ., the bit x j

is exchanged with the bit xk− j+1 to compute X (i j ) until
i j+1 > d , where

i j+1 = i j + 2k − 4 j − 3

and i0 = 0. As soon as i j+1 > d , the sequence of “baby steps”
follows to compute X (i j+1), X (i j+2), . . ., X (d) from X (i j ).
Analogously, given X (d) ∈ ZZk

2 and d ∈ [0, k(k − 1)/2] the
word X ∈ ZZk

2 can be recovered in O(k log k) bit operations
with O(k) bit memory elements. In this section, we rely on
these giant-baby step based algorithms.

Now, a simple way to implement the coding scheme
in Section II, relies on computing the entire random walk
sequence

RW S(X)
def=

{(
i, X (i), m1

(
X (i)

))
: i = 0, 1, . . . ,

k(k − 1)

2

}

during the encoding. In this process, whenever i = dh , for
h = 0, 1, . . . , p − 1, step S1 of Algorithm 1 is executed
to check whether μ1 ∈ m1(�h) = [αh, βh ]; that is, if there
exists an m1-balancing check C ∈ �h . If μ1 ∈ [αh , βh]
then hbal = h, dhbal = i and the information part Y =〈
�hbal

〉
(X) = X (i) is readily available to form a codeword.

With regard to the check word, Chbal ∈ �hbal , to be appended
to Y , it can be computed with a table look-up, like the example
Table I, indexed by the readily available index h and the
readily available m1-unbalance μ1 in (24). It is readily seen
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that such strategy essentially takes time T = O(k2 log k)
bit operations to compute the entire random walk sequence
RW S(X). With regard to the space complexity, if we assume
that the partition CS in Definition 1 is chosen so that (18)
holds with equality then

S = O

⎛
⎝
∣∣∣∣∣∣

p−1⋃
h=0

�h

∣∣∣∣∣∣ · r
⎞
⎠ = O(k2r)

memory bits are essentially needed to store the check word
table. With regard to the decoding, for simplicity, assume that
the function

(
i, X (i)

)→ X is computed sequentially with T =
O(k log k) bit operations and S = O(k) memory bits as the
giant-baby step based decoding algorithm in [20]. In this case,
on receiving a codeword Y C = X (dhbal ) C , a table look-up
indexed by C can be maintained to compute i = dhbal from C .
Once dhbal is known, X can be computed from (dhbal , Y ) with
the giant-baby step based algorithm explained above. In this
way, T = O(k log k) bit operations are essentially needed
to compute X from (dhbal , Y ) and S = O(k2 log k) memory
bits are essentially needed to compute dhbal ∈ [0, k(k − 1)/2]
from C ∈ ⋃p−1

h=0 �h with the table look-up. Note that, if the
codes are close to optimal then r = O(log k) because of (3).
In this case, this implementation requires T = O(k2 log k) bit
operations with S = O(k2 log k) memory bits for encoding
and T = O(k log k) bit operations with S = O(k2 log k)
memory bits for decoding. Also, note that with the above
complexities all possible encodings of a given m0-balanced
data word can be computed and, as mentioned earlier, this
may be useful to convey some more extra information as done
in [12], [16], and [29] for balanced codes.

When k is relatively very big, the above implementation
may result prohibitively very complex in terms of time and
space. In the remaing part of this section, we show another
implementation of the coding scheme presented in Section II
which computes one codeword for any given m0-balanced
data word and requires O(k log k) bit operations with O(k)
bit memory elements, as claimed in the abstract. Two major
coding problems need to be addressed and efficiently solved
in the General Encoding Algorithm 1 for a given m0-balanced
data word X :

1) find one balancing index hbal ∈ hbal(X) and compute the
relative information part Y = 〈

�hbal

〉
(X) = X (dhbal ); and

2) compute the relative check word Chbal ∈ �hbal to be
appended to Y .

Here, instead of going into details in designing efficient algo-
rithms directly solving the first problem, we efficiently reduce
this problem to the coding problem of finding an m1-crossing
index icx of X defined in Definition 2. In this reduction, from
a given icx , the balancing index hbal is computed easily with
Algorithm 3 below as the balancing index, ĥ ∈ [0, p − 1],
defined in the proof of Theorem 2. Algorithm 3 also efficiently
computes d = dhbal . The information part Y is then computed
from d and X with the above giant-baby step method. With
regard to the second problem, by using the enumerative coding
technique in [4], the check word Chbal of the codeword is
computed as the (hbal + 1)th element in S(r, r/2, μ1), with
μ1 being the m1-unbalance in (24). All this can be done by

maintaining a table look-up of size O((log k)5) bit memory
elements. In Sub-section III-A we give the encoding algorithm
with the complexity analysis and in Sub-section III-B we
analyze the associated decoding algorithm. In the following,
for simplicity, assume S(r, r/2) =⋃p−1

h=0 |�h |.

A. Encoding

Refer to Table I for an example. Let

ĥ :
[

0,
k(k − 1)

2
+ ε(k, r)

)
∩ IIN→ [0, p − 1] (25)

be the integer value function defined as

ĥ(i)
def=

{
ĥ if i ∈ Iĥ and ĥ ∈ [1, p − 1]
0 if i ∈ I0 ∪ Ip;

where ε(k, r) is defined in (18) and the integer intervals I0,
I1, . . ., Ip are defined in (11). Note that, if (18) holds then
ĥ(i) is a well defined integer function such that

1) there exists an m1-crossing index,

icx ∈ [0, k(k − 1)/2+ ε(k, r)) according to

Definition 2;

and

2) if icx ∈ [0, k(k − 1)/2+ ε(k, r)) is an

m1-crossing index then ĥ(icx) ∈ [0, p − 1]
is a balancing index with respect to the

refined scheme. In fact, ĥ(icx ) is exactly

equal to the integer, ĥ, defined in the proof

of Theorem 2. (26)

For example, in Table I, ĥ(0–8) = 0, ĥ(9–21) = 1, . . .,
ĥ(61) = 7 and ĥ(62–65) = 0. Also, for the m0-balanced
information word X in Example 5, icx = 44 is an m1-
crossing index and so ĥ(44) = 4 is a refined scheme
balancing index. Now, given any i ∈ [0, k(k−1)/2+ ε(k, r)),
the indices ĥ(i) and dĥ(i) can be computed efficiently with
Algorithm 3 below, whose idea is to compute partial areas
of the “bell-shaped histogram” in Table I. In the algorithm,
refer to Theorem 3 in the Appendix, Table I and note that

α = min
C∈S(r,r/2)

m1(C) = r(r + 2)

8
∈ IIN,

β = max
C∈S(r,r/2)

m1(C) = α + r2

4
∈ IIN. (27)

Also, for simplicity, assume to have a table look-up of size
O(r3) bits which stores the integer sequence{

s(μ)
def= s(r, r/2, μ) : μ ∈

[
α − 1,

⌊
α + β

2

⌋]
∩ IIN

}
(28)

of the O(r2) integer numbers defined in (9), each of which
of size r bits. Furthermore, let

i0(α − 1) = −
⌈ |�0|

2

⌉
(29)
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and, for all integer μ ∈ [α, �(α + β)/2�], let

i0(μ)
def=

s(μ)−1∑
h=0

|�h | −
⌈ |�0|

2

⌉

=
⎛
⎝s(μ−1)−1∑

h=0

|�h | −
⌈ |�0|

2

⌉⎞⎠+
s(μ)−1∑

h=s(μ−1)

|�h |

= i0(μ− 1)+
s(μ)−1∑

h=s(μ−1)

|�h |. (30)

Note that, 1) the quantity “i0(μ) + �|�0|/2� = ∑s(μ)−1
h=0 |�h |

is equal to the area of the bell-shaped histogram in Table I
until the (μ − α + 1)th lower corner (in the order from left
to right)”; 2) the integer interval

Is(μ) =
[

ds(μ) −
⌈ |�s(μ)|

2

⌉
+ 1, ds(μ) +

⌊ |�s(μ)|
2

⌋]

= [i0(μ)+ 1, i0(μ)+ |�s(μ)|] (31)

because of (10) and (11); and, 3) if h ∈ [s(μ− 1), s(μ)) then
the quantity |�h | is constant and

|�h | = |�0| − 2(μ− α) = (β − α + 1)− 2(μ− α). (32)

So, (29), (30) and (32) give,

i0(μ)=

⎧⎪⎪⎨
⎪⎪⎩

−�|�0|/2� if μ = α − 1,

i0(μ− 1)+[s(μ)−s(μ− 1)][|�0|−2(μ− α)]
if μ ∈ [α, �(α + β)/2�].

(33)

Algorithm 3 to compute ĥ(i) and relative dĥ from i

Input: the integer i ∈ [0, k(k − 1)/2+ ε(k, r)).
Output: the integer ĥ(i) ∈ [0, p − 1] defined in (25) and
dĥ ∈ {dh : h = 0, 1, . . . , p − 1}, where the integers dh are
defined in (10).
Perform steps S0, S1, S2 and S3.
S0: if

i ∈
[

0,

⌊ |�0|
2

⌋]

∪
⎡
⎣
⌊ |�0|

2

⌋
+

p−1∑
h=1

|�h | + 1,
k(k − 1)

2
+ ε(k, r)

⎞
⎠

then let ĥ = 0 and dĥ = 0 according to the definition (25) of
ĥ. Hence, go to step S3.
S1: compute the largest integer μ̂ ∈ [α, �(α + β)/2�] such
that i0(μ̂) < i , where the function i0(μ) is given in (33).
Also, compute i0(μ̂). Note that for such μ̂ we have i0(μ̂) <
i ≤ i0(μ̂+ 1).
S2: according to (31) and (32), execute the steps S2.1, S2.2,
S2.3 and S2.4.
S2.1: compute γ = |�ĥ | as follows.

γ = |�0| − 2[(μ̂+ 1)− α].

S2.2: compute the quotient

φ =
⌊

i − i0(μ̂)− 1

γ

⌋
.

S2.3: compute

ĥ = s(μ̂)+ φ.

S2.4: compute

dĥ = i0(μ̂)+ φ · γ +
⌈γ

2

⌉

S3: output ĥ, dĥ and exit.

Example 6 [For k = 12, r = 8 and p = 8 (Continued)]:
In the example given in Table I, if i = 44 ∈ [0, 65] is given
as input to Algorithm 3 then it executes as follows.

S0: since i = 44 /∈ [0, 8] ∪ [62, 65] continue to step S1.
S1: compute the largest integer μ̂ ∈ [α, �(α + β)/2�] =
[10, 18] such that i0(μ̂) < i . From (33), the encoder computes

i0(α) = −9+ (1− 0)(17) = 8 < 44,

i0(α + 1) = 8+ (1− 1)(15) = 8 < 44,

i0(α + 2) = 8+ (2− 1)(13) = 21 < 44,

i0(α + 3) = 21+ (3− 2)(11) = 32 < 44,

i0(α + 4) = 32+ (5− 3)(9) = 50 ≥ 44.

So, μ̂ = α + 3 = 13.
S2: execute the steps S2.1, S2.2, S2.3 and S2.4.
S2.1: compute γ = 17− 2(14− 10) = 9.
S2.2: compute

φ =
⌊

44− 32− 1

9

⌋
=
⌊

11

9

⌋
= 1.

S2.3: compute ĥ = s(13)+ 1 = 4.
S2.4: compute dĥ = 32+ 1 · 9+ �9/2� = 46.
S3: output ĥ = 4, dĥ = 46 and exit.
With regard to the space complexity of Algorithm 3, the

predominant term is the size of the table look-up storing
the integer sequence (28). Hence, Algorithm 3 requires a
size of O(r3) bits. With regard to the time complexity,
note that step S0 can be accomplished in time O(r) bit
operations because the size of i = O(k2) is O(log i) =
O(log k) = O(r); S1 can be accomplished in time O(r3 log r)
bit operations because, with (33), S1 can be computed with
O(β − α) = O(r2) substeps (see (27)), each of which
performing O(log |�0|) = O(log(β−α)) = O(log r) additions
(see (32)) of numbers of size O(log i) = O(r) bits; S2 can
be accomplished in time O(r2) because step S2.1 takes time
O(log r) bit operations, S2.2 takes time O(log2 k) = O(r2)
bit operations, S2.3 takes time O(r) bit operations, S2.4 takes
time O(log2 k) = O(r2) bit operations; and, finally, step S3
takes time O(1) bit operations. Hence, Algorithm 3 requires
a time complexity of O(r3 log r) bit operations.

At this point, using Algorithm 3 and the enumerative coding
technique in [4] the efficient encoding Algorithm 4 can be
given below. So, as in Table I, let us assume that the check
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words in each S(r, r/2, μ) are arranged in some lexicographic
order. In Algorithm 4, once a balancing index hbal is chosen,
say, by using property (26), as hbal = ĥ(icx), the check
word is computed in step S1.5 as the (hbal + 1)th element
in S(r, r/2, μ1), with μ1 being the quantity which makes the
overall codeword m1-balanced. To this aim, for simplicity,
assume to have a table look-up of size O(r5) bits which stores
the set

{s(a, b, c) : a, b ∈ [0, r ] and c ∈ [0, r(r + 1)/2]} (34)

of O(r4) integer numbers in (9) each of which has size r bits.

Algorithm 4 Efficient Encoding Algorithm

Input: the information word Z ∈ ZZk̃
2.

Output: the codeword

Y C = E2(E1(Z)) = (E1 ◦ E2)(Z) ∈ SN (n, 2)

where n = k + r , Y ∈ ZZk
2 and C ∈ ZZr

2.
Perform steps S0, S1, S2 and S3.
S0 apply any m0-balancing method to Z and let X be
the m0-balanced word of length k associated with Z ,
i.e. X = E1(Z). In this way, m0(X) = k/2.
S1 (find the balancing index of X and compute the check
word): execute the steps S1.1–S1.5.
S1.1: find an m1-crossing index of X according to
Definition 2.
S1.2: compute hbal = ĥ(icx) and the relative dhbal with
Algorithm 3.
S1.3: compute

〈
�hbal

〉
(X) = X (dhbal ) and m1(

〈
�hbal

〉
(X)).

S1.4: compute

μ1 = n(n + 1)

4
− m1

(〈
�hbal

〉
(X)

)− kr

2
.

S1.5: With the enumerative coding technique, compute the
(hbal + 1)th element in S(r, r/2, μ1). Let it be Chbal ,μ1 .
S2: Since hbal is a balancing index of X , select the m1-
balanced encoding word of X as

E2(X) = Y C = 〈
�hbal

〉
(X)Chbal ,μ1 = X

(
dhbal

)
Chbal ,μ1

In this way the data word Z is encoded as E2(X) = Y C =
E2(E1(Z)).
S3: output E2(X) = X

(
dhbal

)
Chbal ,μ1 and exit.

Example 7 [For k = 12, r = 8 and p = 8 (Continued)]:
As in Example 5, suppose X = 100000101111 is the given
m0-balanced word which needs to be encoded into a word of
SN (20, 2). In this case, Algorithm 4 executes as follows.

S0 by applying the choosen m0-balancing method to Z, the
output is X = 100000101111.

S1 (find the balancing index of X and compute the check
word): execute the steps S1.1–S1.5.

S1.1: find an m1-crossing index of X. From the random walk
in Example 5, icx = 44 ∈ [0, 65] is such that m1(X (icx )) =
k(k + 1)/4 = 39. Note that, for the chosen example word X
there is only one m1-crossing index. But, in general, there may
be many such indices.

S1.2: compute hbal = ĥ(icx) and the relative dhbal with
Algorithm 3. From Example 6,

hbal = ĥ(44) = 4

and

dhbal = d4 = 46.

S1.3: compute

〈�4〉(X) = X (46) = 110001011001

and

m1(〈�4〉(X)) = 38.

S1.4: compute

μ1 = n(n + 1)

4
− m1 (〈�4〉(X))− kr

2
= 105− 38− 48 = 19.

S1.5: With the enumerative coding technique, compute the
(hbal+1)th = 5th element in S(8, 4, 19). It is (see Table I)

C4,19 = 01100101.

S2: Compute

E2(X) = Y C = X (46) C4,19

= 110001011001 01100101 ∈ SN (20, 2).

S3: Output E2(X) = 110001011001 01100101 and exit.
With regard to the complexity of Algorithm 4, note that

step S0 can be accomplished in space O(k) memory bits and
time O(k log k) bit operations by using any of the methods
given in [1], [2], [7], [11], [12], [16], [18], [19], [21], and [29].
S1 can be accomplished in space O(r5 + k) memory bits
and time O(r3) bit operations because step S1.1 takes O(k)
memory bits and O(k log k) bit operations if done with the
giant-baby step method explained at the beginning of this
section, S1.2 takes O(r3) memory bits and O(r3 log r) bit
operations, S1.3 takes O(k) memory bits and O(k log k) bit
operations if done with the giant-baby step method, S1.4 takes
O(log k) memory bits and O(log k) bit operations, S1.5 takes
O(r) additions of r -bit numbers so, with the table look-up (34)
of size O(r5) memory bits, it takes time O(r2) bit operations;
and, finally, step S2 takes time O(1) bit operations. Hence,
Algorithm 4 has a space complexity of O(r5 + k) = O(k)
memory bits and a time complexity of O(r3 log r + k log k) =
O(k log k) bit operations because of (3).

B. Decoding

In Algorithm 4 the check word C encodes the
balancing index hbal through the index of C in the
lexicographically ordered set S(r, r/2, m1(C)). Hence, during
the decoding process, once this lexicogrphic index hbal is
computed, an efficient algorithm is needed which computes
dhbal from hbal . Once dhbal is known, X can be recovered
easily from dhbal and Y with the giant-baby step method
of [20]. The algorithm which computes dĥ from any ĥ is
given below. As in Algorithm 3, it is assumed to have a table
look-up storing the integer sequence in (28).
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Algorithm 5 to compute dĥ from ĥ

Input: the integer ĥ ∈ [0, p − 1].
Output: the integer dĥ ∈ {dh : h = 0, 1, . . . , p − 1}, where
the dh are defined in (10).
Perform steps S1, S2 and S3.
S1: compute the unique integer μ̂ ∈ [α, �(α + β)/2�] such
that s(μ̂ − 1) ≤ ĥ < s(μ̂). Also, compute i0(μ̂ − 1), where
the function i0(μ) is given in (33).
S2: execute the steps S2.1 and S2.2.
S2.1: compute γ = |�ĥ | = |�0| − 2(μ̂− α).
S2.2: compute

dĥ = i0(μ̂− 1)+ [ĥ − s(μ̂− 1)]γ +
⌈γ

2

⌉
.

S3: output dĥ and exit.

Example 8 [For k = 12, r = 8 and p = 8 (Continued)]:
In the example given in Table I, if ĥ = 4 ∈ [0, 7] is given as
input to Algorithm 5 then it executes as follows.

S1: compute the unique integer μ̂ ∈ [α, �(α + β)/2�] =
[10, 18] such that s(μ̂ − 1) ≤ ĥ < s(μ̂). Also, compute
i0(μ̂− 1). From Table I and (33), the decoder computes

ĥ = 4 �∈ [s(9), s(10)) = [0, 1) and

i0(α − 1) = −9,

ĥ = 4 �∈ [s(10), s(11)) = [1, 1) and

i0(α) = −9+ (1− 0)(17) = 8,

ĥ = 4 �∈ [s(11), s(12)) = [1, 2) and

i0(α + 1) = 8+ (1− 1)(15) = 8,

ĥ = 4 �∈ [s(12), s(13)) = [2, 3) and

i0(α + 2) = 8+ (2− 1)(13) = 21,

ĥ = 4 ∈ [s(13), s(14)) = [3, 5) and

i0(α + 3) = 21+ (3− 2)(11) = 32.

So, μ̂ = α + 4 = 14.
S2: execute the steps S2.1 and S2.2.
S2.1: compute

γ = |�ĥ | = |�0| − 2(μ̂− α) = 17− 2(14− 10) = 9.

S2.2: compute

dĥ = i0(μ̂− 1)+ [ĥ − s(μ̂− 1)]γ +
⌈γ

2

⌉

= 32+ (4− 3) · 9+ 5 = 46.

S3: output dĥ = 46 and exit.
As the above complexity analysis of Algorithm 3, we

conclude that Algorithm 5 can execute with O(r3) memory
bits and O(r3 log r) bit operations.

At this point, the decoding algorithm can be given below.
As Algorithm 4, assume to have a table look-up of size O(r5)
bits storing the set (34) of integers.

Algorithm 6 Efficient Decoding Algorithm

Input: the codeword associated with some data word Z ∈ ZZk̃
2,

Y C = E2(E1(Z)) = (E1 ◦ E2)(Z) ∈ SN (n, 2).

with n = k + r , Y ∈ ZZk
2 and C ∈ ZZr

2.
Output: the information word Z = (E1 ◦ E2)

−1(Y C).
Perform steps S0, S1, S2 and S3.
S0: compute the index hbal ∈ [0, p − 1] such that C ∈ �hbal .
Perform steps S0.1, S0.2 and S0.3.
S0.1: compute μ1 = m1(C).
S0.2: compute the lexicographic index, say

ξμ1(C) ∈ [0, s(r, r/2, μ1)),

of C in S(r, r/2, μ1).
S0.3: set

hbal = ξμ1(C) ∈ [0, s(r, r/2, μ1)) ⊆ [0, p − 1].
S1: compute the word

X = E−1
2 (Y C) = 〈

�hbal

〉−1(Y ).

Perform steps S1.1, S1.2.
S1.1: set ĥ = hbal ∈ [0, p−1] and run Algorithm 5 to compute

dĥ = dhbal ∈
[

0,
k(k − 1)

2
+ ε(k, r)

)

from ĥ.
S1.2: from dhbal , compute the word X = 〈

�hbal

〉−1(Y ) with
the giant-baby step method in [20].
S2: undo the m0-balancing encoding chosen in step S0 of

Algorithm 4 on the word X . Let Z = E−1
1 (X) ∈ ZZk̃

2 be the
information word whose m0-balanced encoding is X .
S3: output the word

Z = E−1
1 (X) = E−1

1 (E−1
2 (Y C)) = (E1 ◦ E2)

−1(Y C)

and exit.

Example 9 [For k = 12, r = 8 and p = 8 (Continued)]:
Suppose

E2(X) = Y C = X (46) C4,19
= 110001011001 01100101 ∈ SN (20, 2)

is given as input to decoding Algorithm 6. It executes as
follows.

S0: compute the index hbal ∈ [0, p − 1] such that
C = 01100101 ∈ �hbal .

Perform steps S0.1, S0.2 and S0.3.
S0.1: compute μ1 = m1(01100101)= 19.
S0.2: compute the lexicographic index (see Table I)

ξ19(01100101)= 4 ∈ [0, s(8, 4, 19)).

S0.3: set hbal = ξ19(C) = 4 ∈ [0, 7].
S1: compute the word X = E−1

2 (Y C) = 〈
�hbal

〉−1(Y ). Per-
form steps S1.1, S1.2.

S1.1: compute
dĥ = dhbal = 46 ∈ [0, 66)

from ĥ = hbal = 4 ∈ [0, 7] with Algorithm 5.
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S1.2: from dhbal = 46, compute the word

X = E−1
2 (Y C) = 〈�4〉−1(X (46)) = 100000101111

as in [20].
S2: undo the m0-balancing encoding chosen in step S0 of

Algorithm 4 on the word X.
S3: output the word Z = E−1

1 (X) and exit.
Again, this can be done with a size of O(r5 + k) = O(k)
memory bits and O(r3 log r + k log k) = O(k log k) bit
operations because of (3).

IV. CONCLUDING REMARKS

A new efficient method to design second-order spectral-null
codes is given. These new codes are obtained by applying
the refined parallel decoding scheme method for the balanced
code designs in [1], [12], and [19] to the random walk method
for second-order spectral-null code design in [20]. This gives
new non-recursive efficient code designs which make a good
use of non-second-order spectral-null check words. For this
reason the proposed codes are considerably less redundant
than the code designs found in the literature (which are
all recursive). In particular, if k ∈ 2IIN is the length of a
1-OSN code then the new 2-OSN coding scheme has length
n = k + r ∈ 4IIN with an extra redundancy, r ∈ 2IIN such that
r � 2 log2 k + (1/2) log2 log2 k − 0.174 check bits. Table II
compares the proposed non-recursive codes with the optimal
codes and also with the recursive codes given in [20]. It is also
shown how these codes can be implemented with O(k log k)
bit operations and O(k) bit memory elements. If k /∈ 2IIN
or r /∈ 2IIN then essentially the same design can be given
to encode information into the set of words S(n, μ0, μ1) for
some fixed μ0, μ1 ∈ IIN. In particular, if k, r ∈ 2IIN + 1 and
n ∈ 4IIN then efficient designs can be obtained to convert the
information words to words in the set S(n, n/2, n2/2) (or,
S(n, n/2, n(n + 2)/2)). Note that this non-recursive coding
scheme is very general and it can be implemented in many
different ways. These may depend on k, r , p, the choice of
the particular “m1-balancing random walk” and the choice of
the partition CS. Also, note that the decoding can be done
in parallel because the check word directly identifies the
m1-balancing function used to encode and each balancing
function with its inverse is very simple to compute because
they are the composition of a partial reversion of a k-bit
word and a cyclic shift. In general, parallel algorithms can
be applied for both encoding and decoding as done in [19].

APPENDIX

Theorem 3: Given r ∈ IIN, let

s(r, μ0, μ1)
def= |S(r, μ0, μ1)| , for all integer μ0, μ1 ∈ IIN.

The following statements hold.

1) Given μ0 ∈ [0, r ], if C ∈ S(r, μ0) then the minimum
possible value for m1(C) is

α
def= min

C∈S(r,μ0)
m1(C) = μ0(μ0 + 1)

2
∈ IIN.

2) Given μ0 ∈ [0, r ], if C ∈ S(r, μ0) then the maximum
possible value for m1(C) is

β
def= max

C∈S(r,μ0)
m1(C) = α + μ0(r − μ0) ∈ IIN.

3) The integer sequence

{s(r, μ0, μ) : r, μ0, μ1 ∈ IIN}
satisfies the following recurrence relation.

s(r, μ0, μ1) = s(r − 1, μ0, μ1)

+ s(r − 1, μ0 − 1, μ1 − r),

with initial conditions

s(r, μ0, μ1) =
{

0 if μ1 < α or μ1 > β,
1 if μ1 = α or μ1 = β;

4) Given μ0 ∈ [0, r ], the integer sequence

{s(r, μ0, μ) : μ = α, α + 1, . . . , β}
is unimodal and symmetric with respect to

μmean
def= α + β

2
= μ0(r + 1)

2
∈ IR;

namely,

s(r, μ0, α)

≤ s(r, μ0, α + 1) ≤ . . . . . . ≤ s

(
r, μ0,

⌊
μ0(r + 1)

2

⌋)

= max
μ∈[α,β] |S(r, μ0, μ)|

= s

(
r, μ0,

⌈
μ0(r + 1)

2

⌉)
≥ . . . . . .

≥ s(r, μ0, β − 1) ≥ s(r, μ0, β)

and

s(r, μ0, α + μ) = s(r, μ0, β − μ),

for all integers μ ∈ [0, μ0(r − μ0)].
Proof: Property 1), 2) and 3) follow from [20].

Property 4) follows from [22, Th. 2].

ACKNOWLEDGMENT

The authors thank a lot the anonymous referees for their
helpful comments and suggestions.

REFERENCES

[1] S. Al-Bassam and B. Bose, “On balanced codes,” IEEE Trans. Inf.
Theory, vol. 36, no. 2, pp. 406–408, Mar. 1990.

[2] S. Al-Bassam and B. Bose, “Design of efficient balanced codes,” IEEE
Trans. Comput., vol. 43, no. 3, pp. 362–365, Mar. 1994.

[3] B. Bose, “On unordered codes,” IEEE Trans. Comput., vol. 40, no. 2,
pp. 125–131, Feb. 1991.

[4] T. M. Cover, “Enumerative source encoding,” IEEE Trans. Inf. Theory,
vol. 19, no. 1, pp. 73–77, Jan. 1973.

[5] K. A. S. Immink, “Spectrum shaping with DC2-constrained channel
codes,” Philips J. Res., vol. 40, no. 1, pp. 40–53, 1985.

[6] K. A. S. Immink, Codes for Mass Data Storage Systems, 2nd ed.
Eindhoven, The Netherlands: Shannon Foundation Publishers, 2004.

[7] D. E. Knuth, “Efficient balanced codes,” IEEE Trans. Inf. Theory,
vol. 32, no. 1, pp. 51–53, Jan. 1986.



3102 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 6, JUNE 2016

[8] R. Mascella, D. Pelusi, L. Pezza, S. Elmougy, L. G. Tallini, and
B. Bose, “On efficient second-order spectral-null codes using sets of
m1-balancing functions,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Istanbul, Turkey, Jul. 2013, pp. 141–145.

[9] R. Mascella and L. G. Tallini, “On efficient high-order spectral-null
codes over the m-ary alphabet,” J. Discrete Math. Sci. Cryptogr., vol. 8,
no. 3, pp. 459–481, 2005.

[10] R. Mascella and L. G. Tallini, “Efficient m-ary balanced codes which
are invariant under symbol permutation,” IEEE Trans. Comput., vol. 55,
no. 8, pp. 929–946, Aug. 2006.

[11] D. Pelusi, L. G. Tallini, and B. Bose, “On m-ary balanced codes with
parallel decoding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Austin,
TX, USA, Jun. 2010, pp. 1305–1309.

[12] D. Pelusi, S. Elmougy, L. G. Tallini, and B. Bose, “m-ary balanced
codes with parallel decoding,” IEEE Trans. Inf. Theory, vol. 61, no. 6,
pp. 3251–3264, Jun. 2015.

[13] L. Pezza, L. G. Tallini, and B. Bose, “Variable length unordered codes,”
IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 548–569, Feb. 2012.

[14] R. M. Roth, P. H. Siegel, and A. Vardy, “High-order spectral-null
codes—Constructions and bounds,” IEEE Trans. Inf. Theory, vol. 40,
no. 6, pp. 1826–1840, Nov. 1994.

[15] V. Skachek, T. Etzion, and R. M. Roth, “Efficient encoding algorithm
for third-order spectral-null codes,” IEEE Trans. Inf. Theory, vol. 44,
no. 2, pp. 846–851, Mar. 1998.

[16] T. G. Swart and J. H. Weber, “Efficient balancing of q-ary sequences
with parallel decoding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Seoul, South Korea, Jun./Jul. 2009, pp. 1564–1568.

[17] L. G. Tallini, S. Al-Bassam, and B. Bose, “Feedback codes achieving
the capacity of the Z -channel,” IEEE Trans. Inf. Theory, vol. 54, no. 3,
pp. 1357–1362, Mar. 2008.

[18] L. G. Tallini, R. M. Capocelli, and B. Bose, “Design of some new
efficient balanced codes,” IEEE Trans. Inf. Theory, vol. 42, no. 3,
pp. 790–802, May 1996.

[19] L. G. Tallini and B. Bose, “Balanced codes with parallel encoding and
decoding,” IEEE Trans. Comput., vol. 48, no. 8, pp. 794–814, Aug. 1999.

[20] L. G. Tallini and B. Bose, “On efficient high-order spectral-null codes,”
IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2594–2601, Nov. 1999.

[21] L. G. Tallini and U. Vaccaro, “Efficient m-ary balanced codes,” Discrete
Appl. Math., vol. 92, no. 1, pp. 17–56, Mar. 1999.

[22] L. G. Tallini, “Geometric properties of high-order spectral-null codes,”
Italian J. Pure Appl. Math., no. 14, pp. 149–176, 2003.

[23] L. G. Tallini, “Bounds on the capacity of the unidirectional channels,”
IEEE Trans. Comput., vol. 54, no. 2, pp. 232–235, Feb. 2005.

[24] L. G. Tallini, S. Elmougy, and B. Bose, “Analysis of plain and diversity
combining hybrid ARQ protocols over the m(≥2)-ary asymmetric chan-
nel,” IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5550–5558, Dec. 2006.

[25] L. G. Tallini and B. Bose, “On L1 metric asymmetric/unidirectional error
control codes, constrained weight codes and σ -codes,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Istanbul, Turkey, Jul. 2013, pp. 694–698.

[26] C. N. Yang, “Efficient encoding algorithm for second-order spectral-
null codes using cyclic bit shift,” IEEE Trans. Comput., vol. 57, no. 7,
pp. 876–888, Jul. 2008.

[27] C. N. Yang, Z. Y. Lin, and S. L. Peng, “Reducing code length of
second-order spectral-null code,” IEEE Trans. Comput., vol. 64, no. 2,
pp. 492–503, Feb. 2015.

[28] J.-H. Youn and B. Bose, “Efficient encoding and decoding schemes for
balanced codes,” IEEE Trans. Comput., vol. 52, no. 9, pp. 1229–1232,
Sep. 2003.

[29] J. H. Weber and K. A. S. Immink, “Knuth’s balanced codes revisited,”
IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1673–1679, Apr. 2010.

Luca G. Tallini was born in Frascati (Rome), Italy. He received the Laurea in
Mathematics magna cum laude from the University of Rome “La Sapienza”
in 1991, the M. S. and Ph. D. degrees in Computer Science from Oregon State
University, Corvallis OR, in 1994 and 1996 respectively. From June 1997 to
June 1998 he had been with the Dipartimento di Informatica ed Applicazioni,
University of Salerno, Italy. From June 1998 to December 2002, he had
been Assistant Professor at Politecnico di Milano, Italy. Since 2003 he
has been with the University of Teramo, Italy, where he is a Professor at
the Faculty of Communication Science and an Accademic Senator for the
scientific research. His research interests include coding theory, combinatorics,
combinatorial algorithms, combinatorial geometry, fault-tolerant computing,
parallel computing, neural networks, and VLSI.

Danilo Pelusi received the Ph. D. degree in Computational Astrophysics
from the University of Teramo, Teramo, Italy, in 2006. He is with the
Faculty of Communication Sciences, University of Teramo, Teramo, Italy.
His current research interests include information theory, fuzzy logic and
genetic algorithms.

Raffaele Mascella received the Laurea degree in mathematics from the
University of L’Aquila in 1995 and the PhD degree from University of Teramo
in 2004. From March 2005 to December 2012, he was an assistant professor;
since December 2012, he has been an associate professor and the vice-dean
of the Faculty of Communication Sciences at the University of Teramo, Italy.
His research interests include coding theory, combinatorics, fuzzy logic, neural
networks, philosophy of computing and philosophy of mathematics.

Laura Pezza was born in Frosinone, Italy. She received the Laurea degree in
Mathematics magna cum laude from the University of Rome “La Sapienza”
in 1991 and the Dottorato di Ricerca (Ph. D.) degree in Applied Mathematics
from the University of Florence in 1996. From September 1996 she has
been with the Dipartimento di Scienze di Base ed Applicate per l’Ingegneria,
University of Rome “La Sapienza”, where she is an Assistant Professor of
Numerical Analysis. His research interests include applied mathematics, fluid
dynamic, wavelets and refinable functions, signal analysis, and coding theory.

Samir Elmougy received the Ph. D degree in computer science (2005)
from the School of Electrical Engineering and Computer Science, Oregon
State University, USA; the M. Sc. degree in computer science (1996) and
the B. Sc. degree in statistics and scientific computing (1993) both from
Mansoura University, Egypt. He is currently an associative professor and
the chair of Computer Science Department, Faculty of Computers and
Information, Mansoura University, Egypt. From 2008 to 2014, he had been
with King Saudi University, Riyadh, Saudi Arabia as an assistant professor of
Computer Science at the College of Computers and Information Sciences. His
current research interests include algorithms, error correcting codes, computer
networks, software engineering and machine learning.

Bella Bose (S’78–M’80–SM’94–F’95) received the B. E. degree in electrical
engineering from Madras university, India in 1973; the M. E. degree in
electrical engineering from the Indian Institute of Science, Bangalore, in 1975;
and the M. S. and Ph. D. degrees in computer science and engineering from
Southern Methodist University, Dallas, Texas, in 1979 and 1980, respectively.
Since 1980, he has been with Oregon State University where he is a Professor
and the Senior Associate Head of the School of Electrical Engineering and
Computer Science. His current research interests include error control codes,
fault-tolerant computing, parallel processing, and computer networks. He is a
fellow of both the ACM and the IEEE.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


