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D. J. Steigmann, F. dell’Isola

used in Sect. 4 to obtain the equilibrium equations via a vari-
ational argument. Finally, in Sect. 5, we apply the model to
the solution of a simple illustrative problem.

Related work by Wang and Pipkin [2,3] accounts for
the effects of normal and geodesic bending in networks
consisting of two families of inextensible fibers, thereby
generalizing earlier efforts on the modeling of fabrics [4–
6]. The present work extends this further to accommodate
fiber stretch and twist. In particular, the twisting and bending
energies of fibers, regarded here as spatial Kirchhoff rods,
are comparable in magnitude in a general deformation; this
implies that twisting effects should be taken into account
whenever bending effects are non-negligible.Moreover, fiber
stretch is included to accommodate elastic resistance to the
crimping/decrimpingmechanism associatedwithwoven fab-
rics. Preliminary work on the related problem of twisting
resistance in inextensible fabrics is discussed in Refs. [7,8];
see also in Ref. [9].

We work in the setting of the direct theory of elastic sur-
faces. Thus we do not model the three-dimensional aspects
of fabric material explicitly. Our preference for this frame-
work is due in no small part to the difficulty in identifying a
three-dimensional structure that reflects the salient features
of the two-dimensional weave pattern of a typical fabric
sheet. Thus, in general, there is no three-dimensional par-
ent model that can be used to effect a dimension reduction
procedure leading to a two-dimensional model of the kind
desired.

2 Differential geometry of fabric deformation

2.1 Surface geometry

The theory of fabric deformation affords a particularly strong
demonstration of the inextricable link between Mechanics
andDifferential Geometry. In this section we build on a num-
ber of associated results derived in Ref. [10] that bear directly
on the present work.

We use convected coordinates θα to label material points
of the fabric, regarded as a two-dimensional manifold. The
function x(θα) is an embedding of this manifold into 3-
space, and serves to define position of a material point on
a fixed reference surface Ω . Position of the same mater-
ial point on a typical deformed surface ω is denoted by
r(θα). The latter parametrization induces the associated basis
elements aα = r , α ∈ Tω, the tangent plane to ω at the
point with coordinates θα; the metric aαβ = aα · aβ; the
dual metric (aαβ) = (aαβ)−1 and the dual tangent basis
aα = aαβaβ . These in turn yield the local orientation of
ω in terms of its unit normal n, defined by εαβn = aα × aβ ,
where εαβ = √

aeαβ is the covariant permutation tensor, with
a = det(aαβ) and eαβ the unit alternator (e12 = +1, etc.). The

contravariant permutation tensor is εαβ = eαβ/
√
a, where

eαβ = eαβ .
The Gauss and Weingarten equations play a central role

in the development of the theory. These are

r ,αβ = Γ λ
αβaα + bαβn and n,α = −bαβaβ, (1)

where Γ λ
αβ are the Levi-Civita connection coefficients

induced by the coordinates on ω and bαβ is the covariant
curvature tensor (the coefficients of the second fundamental
form).

The deformation gradient F = ∇r is given by

F = aα ⊗ eα, (2)

where eα are the duals on TΩ of the basis elements eα induced
by the coordinates onΩ via eα = x,α , and the Cauchy-Green
deformation tensor is

C = Ft F = aαβeα ⊗ eβ. (3)

The fabric is assumed to consist of two families of fibers
that are continuously distributed over the surface, thus every
material point lies at the intersection of a pair of fibers, each
modeled as a mathematical curve endowed with kinematical
and constitutive structures intended to capture the main fea-
tures of the local macroscopic behavior of fabrics. The unit
tangents to the fibers on ω are denoted by l and m, and their
counterparts onΩ by L andM . These are necessarily tangen-
tial toω andΩ , respectively, and so admit the representations

l = lαaα, m = mαaα and

L = Lαeα, M = Mαeα,
(4)

in terms of contravariant components, for example. Thefibers
are presumed to be convected as material curves with no
relative slipping; this is realistic in the presence of sufficient
friction between overlapping yarns of the actual weave or, in
the case of a coarse-mesh network [10], if the fibers are tied
together at their points of intersection. Thus, [10]

λl = FL and μm = FM, (5)

where λ(= |FL|) and μ(= |FM|) are the fiber stretches;
i.e., the stretches of the projections of the woven yarns onto
the tangent plane of Ω . These yield the useful connections

λlα = Lα and μmα = Mα (6)

relating contravariant components only. The covariant com-
ponents are related by [10, Eqs. 5.20]

lα = λLα+μ sin γ Mα and mα = μMα +λ sin γ Lα, (7)
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where γ is the fiber shear angle on ω, defined by

sin γ = l · m. (8)

We suppose, with minor loss of generality, that the fibers
are everywhere orthogonal on Ω , so that [10]

eα = LαL + MαM and eα = LαL + MαM, (9)

yielding the representation

δα
β = LαLβ + MαMβ (10)

of the Kronecker delta. The contravariant permutation tensor
on Ω is defined by μαβ = eαβ/

√
e, where e is the determi-

nant of themetric induced by the coordinates. For orthogonal
fibers this may be expressed in the form [10]

μαβ = LαMβ − MαLβ. (11)

Equations (2)–(5) combine to furnish

F = λl ⊗ L + μm ⊗ M; (12)

equivalently,

aα = λlLα + μmMα. (13)

The Cauchy-Green tensor follows from Eq. (3), with

aαβ = λ2LαLβ + μ2MαMβ + λμ sin γ (LαMβ + MαLβ).

(14)

Using this and the dual metric induced by Eq. (9)1, it may be
shown that the area stretch, J = √

a/e, is [10]

J = λμ |cos γ | , (15)

and that

l × m = |cos γ | n. (16)

Further, these results yield the curvature tensor in the form
[10]

bαβ = λ2κl LαLβ + μ2κmMαMβ + λμτ(LαMβ + MαLβ),

(17)

where

κl = bαβl
αlβ and κm = bαβm

αmβ (18)

are the normal curvatures of the deformed fibers, and

τ = bαβ l
αmβ (19)

is the torsion.
Of central importance in this work are the geodesic cur-

vatures ηl and ηm of the fibers, defined by [10]

lα l ,α = ηl p + κl n and mαm,α = ηmq + κmn, (20)

with

p = n × l and q = n × m. (21)

We shall also require [10]

mα l ,α = φl p + τn and lαm,α = φmq + τn, (22)

where φl and φm are the Tchebychev curvatures of the fibers.
It is well known that the geodesic curvatures are deter-

minedby the surfacemetric. In the present context the explicit
expressions are [10]

Jηl = (μ sin γ Lα − λMα)|α and

Jηm = (μLα − λ sin γ Mα)|α,
(23)

where (·)|α is the covariant derivative on Ω . Explicit expres-
sions for the Tchebychev curvatures are derived in Sect. 2.4.

2.2 Fiber kinematics

Consider the orthonormal basis {l i } = {l, p, n}with p given
by Eq. (21)1. This consists of the unit tangent l to the first
fiber trajectory, and two vectors— p and the surface nor-
mal n—spanning the cross-sectional plane of the fiber. Let
{Li } = {L, M, N}, where N is the unit normal to Ω and
M = N × L. Then there is a rotation tensor, R(l), such that
l i = R(l)Li . The rate of change of the basis {l i }with respect
to arclength along the L-trajectory, denoted by (·)′, is

l ′i = Lα l i,α = ω(l) × l i , (24)

where ω(l) is the axial vector of the skew tensor Ω(l) =
R′

(l)R
t
(l). This has the representation ω(l) = ω(l)i l i , where

ω(l)i = 1
2ei jkΩ(l)k j and Ω(l)k j = lk · Ω(l)l j , in which ei jk is

the usual permutation symbol (e123 = +1, etc.). Here, ω(l)1

is the fiber twist, whereas ω(l)2 and ω(l)3 are the curvatures
of the fiber due to flexure. In view of Eq. (12), we also have
the connection FL = λR(l)L between the rotation and the
surface deformation.

We suppose that the fiber behaves mechanically like a
spatial Kirchhoff rod. This model is known to apply to suffi-
ciently thinfilaments in the presence of small axial extensions
[11] on the order of those typically encountered in the defor-
mations of woven fabrics. In this model the rod responds
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constitutively to the Galilean-invariant curvature-twist vec-
tor Rt

(l)ω(l) = ω(l)i Li . Our objective in this subsection is
to show that this may be specified entirely in terms of sur-
face geometry and hence in terms of the deformation of the
surface.

For example, from Eq. (24) we have

l ′ = ω(l) × l = ω(l)2 p × l + ω(l)3n × l. (25)

Combining this with Eq. (6)1, and comparing the result to
Eq. (20)1, we conclude that

ω(l)2 = −λκl and ω(l)3 = ληl . (26)

The reduction of the twist ω(l)1 is substantially more
involved. First, we form p′ = ω(l) × p and use the fact
that p′ = Lα p,α , together with Eq. (6)1, to obtain

λlα p,α = ω(l)1n − ω(l)3l. (27)

Differentiating Eq. (21)1, using theWeingarten equation and
invoking Eq. (17), we derive

lα p,α = ηln × p + bαβ l
α pβn, (28)

where pβ = εαβlα and εαβ is the contravariant permutation
tensor. This combines with Eqs. (27) and (26)2 to deliver
ω(l)1 = λbαβlα pβ , and hence the conclusion that the fiber
twist is proportional to the torsion of the surface on the
orthonormal {l, p}−axes. However, for the purposes of the
constitutive theory to be discussed in Sect. 3, it is more con-
venient to have an expression for the twist in terms of the
components of the representation Eq. (17). To this end, we
use Eq. (6)1 to writeω(l)1 = bαβLα pβ , and then use Eq. (17)
to reduce this to

ω(l)1 = λ2κl(Lβ p
β) + λμτ(Mβ p

β). (29)

We recall that the permutation tensor is εαβ = eαβ/
√
a =

J−1eαβ/
√
e, and so εαβ = J−1μαβ .Using the representation

Eq. (11), together with Eq. (7)1, we thus derive

J pβ = λMβ − μ sin γ Lβ, (30)

which combines with Eq. (29) to give

ω(l)1 = λ2μJ−1(τ − κl sin γ ). (31)

Proceeding in the same way, we may show, with some
effort, that the componentsω(m)i of the curvature-twist vector
ω(m) of the second fiber family are given by

ω(m)1 = λμ2 J−1(κm sin γ − τ),

ω(m)2 = −μκm and ω(m)3 = μηm .
(32)

Because we regard the fabric as a surface consisting of
crossed rods of the Kirchhoff type, it is natural to assume that
it responds constitutively to the curvature-twist vectors of the
two fiber families. In view of the results obtained here, this is
equivalent to a constitutive sensitivity to the surface strain, the
surface curvature, and the geodesic curvatures. We show in
the next subsection that these variables are in turn determined
by the first and second gradients of the deformation.

Remark It is appropriate to regard Kirchhoff rod theory as
a special case ofCosserat elasticity theory, insofar as the kine-
matics of the former involve position and rotation fields that
are at least partly independent. This viewpoint is advanced
in Refs. [12,13] to construct a three-dimensional model for
nonlinearly elastic solids reinforced by a continuous distrib-
ution of fibers with bending and twisting resistance. In that
context the fiber twist cannot be determined from the defor-
mation of the underlying continuum; instead, it is computed
from the Cosserat rotation field.

Here, however, the rotations of the two fiber families are
effectively constrained to have a concurrent axis. That is,
the rotation tensor of each fiber family acts on the initial
surface normal N to yield the normal n to the deformed
surface: R(l)N = R(m)N = n. This reflects the nature of
the interactions of the yarns comprising the fabric weave;
thus at the points of the actual fabric where the two fiber
families cross, the fibers may pivot about a common axis
(the surface normal) while maintaining congruency with the
deformed surface. This implies that the normal to the surface
is effectively embedded in the plane of a fiber cross section.
This is the reason why fiber twist is ultimately determined
by surface deformation, yielding a dramatic simplification
in that the relevant kinematical fields are computable from
surface geometry alone. In effect, then, the present model
is subsumed under the second-gradient theory of elasticity
instead of the more complicated Cosserat theory.

2.3 Second gradient of the deformation

The second gradient ∇F = ∇∇r of the deformation is the
third-order tensor ∇F = F,α ⊗ eα . Using Eq. (2), this is
found to be

∇∇r = Sλ
αβaλ ⊗ eα ⊗ eβ − n ⊗ κ, (33)

where

Sλ
αβ = Γ λ

αβ − Γ̄ λ
αβ, (34)

in which Γ λ
αβ and Γ̄ λ

αβ are the Levi-Civita connection coeffi-
cients induced by the coordinates on ω and Ω , respectively,
and

κ = −bαβeα ⊗ eβ (35)
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in which the bαβ is the covariant curvature on ω. Here, we
have used theGauss formula (1)1 onω together with its coun-
terpart

eα
,β = −Γ̄ α

λβe
λ (36)

on Ω , which we assume, with minor loss of generality, to be
a plane. The sign in Eq. (35) conforms to a widely adopted
convention in the literature on shell theory [14].

We observe that the difference of two sets of connec-
tion coefficients induced by a given (convected) coordinate
system is a (third-order) tensor, whereas the connection coef-
ficients themselves do not possess tensor character [15].
Further, as is well known, the Γ λ

αβ and Γ̄ λ
αβ are determined

entirely by the metrics induced by the coordinates on ω and
Ω , respectively [14]. Accordingly, the coefficients Sλ

αβ rep-
resent strain gradients. These, and the bαβ , are easily seen to
be Galilean invariant.

Our further work is facilitated by using the combination

r |αβ = r ,αβ − Γ̄ λ
αβ r ,λ. (37)

This is the second covariant derivative of the deformation
with respect to the metric of Ω . The Gauss equation (1)1
then furnishes

r |αβ = Sλ
αβ r ,λ + bαβn (38)

and Eq. (33) reduces to

∇∇r = r |αβ ⊗ eα ⊗ eβ. (39)

2.4 Fiber decompositions

The identity

Sλ
αβ = Sλ

μγ δμ
α δ

γ
β (40)

may be combined with Eq. (10) and the symmetry condition
Sλ
αβ = Sλ

βα to establish the useful representation

Sλ
αβaλ = gl LαLβ +gmMαMβ +Γ (LαMβ +MαLβ), (41)

where

gl = Sλ
αβL

αLβaλ, gm = Sλ
αβM

αMβaλ and

Γ = Sλ
αβL

αMβaλ.
(42)

In view of the symmetry already noted, the last of these is
equivalent to

Γ = Sλ
αβM

αLβaλ. (43)

To obtain explicit expressions for the coefficient vectors in
Eq. (41) we differentiate Eq. (13) directly and equate the
result to the right-hand side of Eq. (41), thus

Sλ
αβ r ,λ + bαβn = (λl),βLα + (μm),βMα + λlLα|β

+μmMα|β. (44)

From Eq. (9)1 we see that the gradient of a function f (θα)

may be written in the form

∇ f = f,αeα = Lα f,αL + Mα f,αM, (45)

yielding

f,β = Lα f,αLβ + Mα f,αMβ. (46)

In particular,

(λl),β = Lα(λl),αLβ + Mα(λl),αMβ, (47)

where, from Eqs. (6)1 and (20)1,

Lα(λl),α = (L · ∇λ)l + λ2(ηl p + κln). (48)

Using this and other similarly derived formulas, we find that

(λl),β = λ,β l+λ2(ηl p+κln)Lβ +λμ(φl p+τn)Mβ (49)

and

(μm),β = μ,β l + μ2(ηmq + κmn)Mβ + λμ(φmq + τn)Lβ.

(50)

Substituting into Eq. (44) and projecting the resulting equa-
tion onto the surface normal leads directly to Eq. (17); the
remaining part of this equation yields

Sλ
αβaλ = (λLα)|β l + (λ2ηl LαLβ + λμφl LαMβ) p

+ (μMα)|βm
+ (μ2ηmMαMβ + λμφmMαLβ)q, (51)

and hence Eq. (41), with

gl = λ2ηl p + LαLβ [(λLα)|β l + (μMα)|βm] and

gm = μ2ηmq + MαMβ [(λLα)|β l + (μMα)|βm]. (52)

The two equivalent expressions for Γ are

Γ = λμφl p + LαMβ [(λLα)|β l + (μMα)|βm]
= λμφmq + MαLβ [(λLα)|β l + (μMα)|βm]. (53)
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The Tchebychev curvatures may be eliminated bymaking
the compatibility conditions Sλ

αβ = Sλ
βα explicit. These in

turn are equivalent to the vector equation

μαβ Sλ
αβaλ = 0, (54)

where μαβ is the referential permutation symbol; combining
this in the form Eq. (11), with Eq. (51), leads, with some
effort, to

ληL l+μηMm = (M ·∇λ)l−(L ·∇μ)m+λμ(φl p−φmq),

(55)

where

ηL = −Mβ
|β and ηM = Lβ

|β (56)

are the geodesic curvatures of the fibers on Ω (cf. 23). Pro-
ceeding as in Ref. [10], we then obtain

Jφl = Jηm + λM · ∇(sin γ ) and

Jφm = Jηl − μL · ∇(sin γ ),
(57)

which combines with Eq. (23) to yield expressions in terms
of the fiber stretches and shear angle. The same results follow
from the final equality in Eq. (53).

3 Constitutive framework

In view of the complexity of the equations obtained thus far
we confine our further development to the important special
case in which both fiber families are initially straight and
so take L and M to be fixed. This entails a minor loss of
generality, which is, however, offset by increased clarity and
tractability. Thus, we have the simplifications

gl = λ2ηl p + (L · ∇λ)l, gm = μ2ηmq + (M · ∇μ)m (58)

and

Γ = (L · ∇μ)m + λμφmq = (M · ∇λ)l + λμφl p. (59)

The final equality is, of course, simply the compatibility con-
dition of Eq. (55) with ηL = ηM = 0.

We take for granted the existence of a strain-energy func-
tion that depends on the stretches of the fibers as well as their
curvatures and twists. Further, as (tangential) stretch gradi-
ents appear in the constitutive equations for one-dimensional
models of thin fibers that account for finite-thickness effects
[16,17], we also allow a constitutive sensitivity to the tangen-
tial derivatives of the fiber stretches. Beyond this, we refer
to arguments given in Ref. [18] to the effect that in tightly
woven fabrics there is likely to be a constitutive sensitiv-
ity to the cross derivatives of the fiber stretches and to the

gradient of the shear angle between them, the former being
simply the derivatives in directions transverse to the fibers.
All such effects are contained in the vectors gl , gm and Γ ,
and so it is natural to include these among the arguments of
the strain-energy function.

To non-dimensionalize the variables appearing in this
function, it is necessary to introduce a local length scale.
Candidates for this are the sheet thickness, the characteristic
wavelength of the fabric weave, or the widths of the con-
stituent yarns. The latter two are roughly equal in tightly
woven fabrics and somewhat larger than the thickness. If any
of these are used as the length scale, then in typical appli-
cations the non-dimensionalized vectors gl , gm and Γ are
so small that the dependence of the strain energy on them
is quadratic at leading order, assuming the associated cou-
ple stresses and bending/twisting moments to vanish when
the fibers are straight and untwisted. A simple strain-energy
function of this type is

W = w(λ,μ, J ) + 1

2
Ag

(∣∣gl
∣∣2 + ∣∣gm

∣∣2) + 1

2
AΓ |Γ |2

+1

2
k(K 2

L + K 2
M ) + 1

2
k̄T 2, (60)

where

KL = bαβL
αLβ = λ2κl , KM = bαβM

αMβ = μ2κm,

T = bαβL
αMβ = λμτ ; (61)

and the coefficients Ag , AΓ , k and k̄ may be functions of
λ, μ, and J ; here, we take them to be constants for the
sake of definiteness and tractability. This is a simple gen-
eralization of the strain-energy function proposed in Ref.
[18] for purely plane deformations, to accommodate three-
dimensional flexure and twist. Other forms are, of course,
possible. In particular, we might separate out the effects of
geodesic curvature and tangential stretch gradient in gl or
gm , and assign different elastic moduli to each, as explained
inRef. [18]. Here, followingRef. [19], we forego such refine-
ments for the sake of simplicity.

The energyW is easily shown to exhibit orthotropic sym-
metry. In particular, J is determined by λ,μ and |sin γ |,
which are orthotropic invariants [10]. Similarly, every term
in the function W remains invariant if r |αβ is replaced by
r̄ |αβ = r |λμHλ

α H
μ
β , where H ∈ {±L ⊗ L ± M ⊗ M}, with

any combination of signs. The response of the fabric, there-
fore, conforms to orthotropic symmetry relative to the fiber
axes on the reference plane. This is an example of homoge-
nous symmetry in the general theory ofmaterial symmetry for
second-grade material surfaces [20] (see also in Ref. [21]).

We take the constants Ag , AΓ , k and k̄ to be strictly positive
and observe that the part of the energy depending on the
second gradient r |αβ is then non-negative, vanishing if and
only if gl , gm , Γ , KL , KM and T all vanish. It is, thus, a
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positive definite function of the r |αβ . This conclusion follows
easily from

r |αβ = LαLβ(gl + KLn) + MαMβ(gm + KMn)

+ (LαMβ + MαLβ)(Γ + T n),
(62)

which is obtained by combining Eqs. (17) and (41). As such,
the energy is a strictly convex function of r |αβ , which is
enough to secure the existence of solutions to conservative
boundary value problems characterized by a potential energy
functional [22]; we discuss an example in Sect. 4 below.
Trivially, it then satisfies the Legendre–Hadamard necessary
condition for energy minimizers; this requires that the strain
energy deliver a positive value when r ,α and r |αβ in its argu-
ments are replaced by 0 and cbαbβ , respectively, in which
bα is an arbitrary non-zero 2-vector and c is any non-zero
3-vector [23].

Let r(θα; ε) be a one-parameter family of deformations,
and let u = ṙ be the derivative with respect to the parameter
at a certain fixed value; ε = 0, say. The relevant response
functions of the theory are simply the coefficient vectors Nα

and Mαβ in the associated expression

Ẇ = Nα · u,α + Mαβ · u|αβ, (63)

for the derivative of the energy, in which we have used the
fact thatW depends on the deformation through r ,α and r |αβ;
that is, Nα = ∂W/∂ r ,α andMαβ = ∂W/∂ r |αβ . In particular,
we may impose Mαβ = Mβα without loss of generality. To
derive the required expressions we use Eq. (60) and obtain

Ẇ = ẇ + Ag(gl · ġl + gm · ġm) + AΓ Γ · Γ̇

+ k(KL K̇L + KM K̇M ) + k̄T Ṫ ,
(64)

where

ẇ = wλλ̇ + wμμ̇ + wJ J̇ . (65)

The objective is thus to express this as a bilinear form in u,α

and u|αβ .
For example, using λ = |FL|we derive λλ̇ = FL · ḞL =

λLα l · u,α; then,

λ̇ = Lα l · u,α, (66)

and in the same way we obtain

μ̇ = Mαm · u,α. (67)

Further, it is easily shown [24] that

J̇ = J aα · u,α (68)

and so we have

ẇ = (wλL
α l + wμM

αm + JwJ aα) · u,α. (69)

Proceeding, we also have K̇L = ḃαβLαLβ , for example,
where [14,24]

ḃαβ = n · u;αβ, with u;αβ = u,αβ − Γ λ
αβu,λ. (70)

Using

u|αβ = u,αβ − Γ̄
λ

αβu,λ (71)

we conclude that

u;αβ = u|αβ − Sλ
αβu,λ (72)

and hence that

K̇L = LαLβn · u|αβ − (aα · gl)n · u,α. (73)

In the same way, we derive

K̇M = MαMβn · u|αβ − (aα · gm)n · u,α (74)

and

Ṫ = LαMβn · u|αβ − (aα · Γ )n · u,α. (75)

To obtain the remaining terms in Eq. (64) we require (cf.
38)

(Sλ
αβaλ)

· = u|αβ − ḃαβn − bαβ ṅ. (76)

Thus, for example,

gl · ġl = LαLβ(Sλ
αβaλ)

· = LαLβ gl · u|αβ − KLgl · ṅ. (77)

Using ṅ = −(n · u,α)aα —obtained by differentiating
n · aα = 0—we derive

gl · ġl = LαLβ gl · u|αβ + KL(gl · aα)n · u,α. (78)

Similarly,

gm · ġm = MαMβ gm · u|αβ + KM (gm · aα)n · u,α (79)

and

Γ · Γ̇ = LαMβΓ · u|αβ + T (Γ · aα)n · u,α. (80)
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These results furnish

Nα =wλL
α l + wμM

αm + JwJ aα

+ {[(Ag − k)(KL gl + KM gm)

+(A� − k̄)TΓ ] · aα
}
n

(81)

and

Mαβ =LαLβ(Ag gl + kKLn)

+ MαMβ(Ag gm + kKMn)

+ 1

2
(LαMβ + MαLβ)(AΓ Γ + k̄T n),

(82)

in which we have imposed the requisite symmetry with
respect to interchange of the superscripts.

4 Equilibrium

The derivation of the Euler equations and boundary condi-
tions in second-gradient elasticity is well known [25–30].
We present it here in outline, and in so doing, establish the
constitutive connection between the applied loads and the
deformation. To this end, we adopt the virtual-work state-
ment

Ė = P, (83)

where the superposed dot refers to the variational derivative,

E =
∫

Ω

Wda (84)

is the strain energy and P is the virtual power of the edge
loads, the form of which is made explicit below. Conserva-
tive loads are characterized by the existence of a potential L
such that P = L̇ , and in this case the problem of determin-
ing equilibrium deformations is reduced to the problem of
minimizing the potential energy E − L .

We have

Ė =
∫

Ω

Ẇda, (85)

where Ẇ is given by Eq. (63). Let

ϕα = Tα · u + Mαβ · u,β , (86)

with

Tα = Nα − Mαβ
|β (87)

and

Mαβ
|β = Mβα

,β + MβαΓ̄ λ
λβ + MβλΓ̄ α

λβ. (88)

We may thus write

Ẇ = ϕα|α − u · Tα|α (89)

and use Stokes’ theorem to reduce Eq. (85) to

Ė =
∫

∂Ω

ϕαναds −
∫

Ω

u · Tα|αda, (90)

wherein ν = ναeα is the rightward unit normal to ∂Ω .
In the absence of distributed loads, it follows immediately

from Eq. (83) that the relevant Euler–Lagrange equation,
holding in Ω , is

Tα|α = 0. (91)

Turning to the boundary terms, a standard integration-
by-parts procedure [18] is used to recast the first integral in
Eq. (90) as

∫

∂Ω

ϕαναds =
∫

∂Ω

{[
Tανα − (

Mαβνατβ

)′] · u

+Mαβνανβ · u,ν

}
ds−

∑
(Mαβνατβ)i · ui ,

(92)

where τ = ταeα = N×ν is the unit tangent to ∂Ω (not to be
confused with the scalar surface torsion defined in Eq. (19)),
u,ν = ναu,α is the normal derivative of u, (·)′ = d(·)/ds and
the square bracket refers to the forward jump as a corner of
the boundary is traversed. That is, [·] = (·)+ − (·)−, where
the subscripts “±” identify the limits as a corner located at
arclength station s is approached through larger and smaller
values of arclength, respectively, and the sum refers to the
collection of all corners. Here, we assume the boundary to
be piecewise smooth in the sense that its tangent is piecewise
continuous.

It follows from Eq. (83) that admissible powers are of the
form

P =
∫

∂Ωt

t · uds +
∫

∂Ωm

μ · u,νds +
∑

∗
f i · ui , (93)

where

t = Tανα − (Mαβνατβ)′, μ = Mαβνανβ and

f i = −[Mαβνατβ ]i
(94)

are the edge traction, edge double force, and the corner force
at the i th corner, respectively. Here, ∂Ωt and ∂Ωm , respec-
tively, are parts of ∂Ω where r and r ,ν are not assigned, and
the starred sum ranges over corners where position is not
assigned.We suppose that r and r,ν are assigned on ∂Ω/∂Ωt
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and ∂Ω/∂Ωm , respectively, and that position is assigned at
the corners not included in the starred sum.

A simple example of conservative loading is furnished by
the potential

L =
∫

∂Ωt

t · rds +
∫

∂Ωm

μ · r ,νds +
∑

∗
f i · r i , (95)

in which t ,μ, and f i are all independent of the deformation.
To understand the role of the double force in mechanical

terms, we consider the special case in which no kinemati-
cal data are assigned anywhere on ∂Ω , so that rigid-body
deformations are kinematically admissible. The variational
derivative of such a deformation is expressible in the form
u = ω× r + c, where c andω are arbitrary spatially uniform
vectors. Because the strain-energy function is invariant under
such deformations, we have Ė = 0 and Eq. (83) reduces to
P = 0; i.e.,

c ·
(∫

∂Ω

tds +
∑

f i

)

+ ω·
[∫

∂Ω

(r × t + r ,ν × μ)ds +
∑

r i × f i

]
= 0.

(96)

We then have
∫

∂Ω

tds +
∑

f i = 0 and
∫

∂Ω

(r × t + r ,ν × μ)ds +
∑

r i × f i = 0,
(97)

and hence the interpretation of r ,ν × μ is a distribution of
edge couples. These couples are configuration dependent in
the example of conservative loading described by Eq. (95).
In general, as is well known, a non-trivial fixed boundary
couple can not be associated with a conservative boundary-
value problem.

5 Example: hyperbolic paraboloid

The foregoing theory is quite involved and in practice
recourse must be made to numerical methods to obtain solu-
tions. Fortunately the convexity of the strain-energy function
with respect to r |αβ ensures the convergence of minimizing
sequences and hence guarantees that solutions are available
via the direct method of the calculus of variations; in other
words, the theory is amenable to finite-element analysis. We
intend to report on its numerical treatment elsewhere.

Here, we merely illustrate the model in terms of an acad-
emic problem; in particular, we adopt a semi-inverse strategy
and seek conditions under which the generalized hyperbolic
paraboloids, defined by

r(θα) = aθ1θ2 + bθ1 + cθ2 + d, (98)

in which a, b, c, d are fixed vectors, furnish equilibrium
deformations. Here, θ1 and θ2 are Cartesian coordinates on
Ω aligned with the initial fiber directions; i.e., Lα = δ1α and
Mα = δ2α . Accordingly,

λl = Lα r ,α = aθ2 + b and μm = Mα r ,α = aθ1 + c.

(99)

The fiber stretches are easily determined and the shear angle
is given by

λμ sin γ = |a|2 θ1θ2 + a · bθ1 + a · cθ2 + b · c. (100)

Further,

LαLβ r |αβ = 0, MαMβ r |αβ = 0 and,

LαMβ r |αβ = a,
(101)

and thus (cf. 62) gl , gm , KL and KM all vanish, leaving

Γ + T n = a. (102)

In the somewhat artificial special case when the moduli
AΓ and k̄ coincide we then have

Mαβ = 1

2
AΓ (LαMβ + MαLβ)a. (103)

Accordingly, Mαβ
|β vanishes, yielding

Tα = Nα = wλL
α l + wμM

αm + JwJ aα, (104)

where wJ = ∂w/∂ J , etc.
Experiments on fabrics [31–33] indicate that their resis-

tance to shear is quite weak unless the fibers are nearly
aligned; that is, unless |sin γ | is close to unity. The loci of
points where |sin γ | = 1 are the curves determined by com-
bining Eqs. (99) with (100). Elsewhere, the shear resistance
may be safely ignored; this is tantamount to neglecting wJ

in Eq. (104), provided that the fiber stretches remain close
to unity. Further, if the mesh of the fabric network is suf-
ficiently coarse, then the mutual interactions of the fibers
are also negligible; that is, coarse-mesh nets typically do not
exhibit a Poisson effect. In such circumstances, the strain-
energy function may be approximated by the sum of two
functions, each depending on only one fiber stretch [9]. In
this case wJ is negligible and we have the simplification

Nα = wλL
α l + wμM

αm, (105)
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in which wλ depends only on λ(θ2) and wμ depends only on
μ(θ1). We then obtain

Tα|α = (wλl),1 + (wμm),2. (106)

This vanishes identically, and the equilibrium Eq. (91) is
satisfied.

Using Eq. (94), we find, on lines of constant θ1 and θ2,
that t = wλl and t = wμm, respectively, and that μ van-
ishes. At the points of intersection of these lines, the corner
force is f = AΓ a. If the sheet is a rectangle with edges
parallel to the fibers prior to deformation, and if no corner
force is applied, then a vanishes and Eq. (98) reduces to a
homogeneous deformation, which is trivially in equilibrium
for all strain energies of the form Eq. (60).
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