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In this paper, following a fuzzy approach and adopting an autoregressive parameterization, we propose a robust
clustering model for classifying time series. In particular, by adopting a fuzzy partitioning around medoids
approach, the suggested clustering model is able to define the so-calledmedoid time series, which is a represen-
tative time series of each cluster, and the membership degrees of each time series to the different clusters. The
robustness of the proposed clustering model is guaranteed by the adoption of a suitable robust metric for time
series, i.e. the so-called exponential distance measure. In this way, the clustering model is able to tolerate the
presence of outlier time series in the clustering process. In particular, it is capable of neutralizing and smoothing
the disruptive effect of outlier time series, preserving the original clustering structure of the dataset, by assigning
to outlier time series approximately the same membership degrees across clusters. To illustrate the usefulness
and effectiveness of the suggested time series clustering model, a simulation study and an application to air
pollution time series are carried out. Comparison with some existing clustering procedures suggested in the
literature shows several advantages of the proposed model.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The literature on time series clustering methods has increased
considerably over the last two decades, with a large range of
applications in many different fields, including environmental sci-
ences, pharmaceutics, genetics, neurosciences, computational biology,
biomedical sciences, finance, econophysics, and neuromarketing. In
particular, in the experimental studies the usefulness and effectiveness
of the time series clustering proves to be of particular interest. For
instance, in genetics time series clustering has been used to group
genes considering profiles of time expression from cDNA microarrays
experiments; in biomedicine, to classify signals caused by particular
illnesses connected to those of healthy people (i.e., EEG and EMG time
series); in neuroscience, to classify fMRI (functional magnetic resonance
imaging) time series; in pharmaceutics, to cluster drug effects attending
to patients' time-response after drug intake; in chemometrics, to classi-
fy natural products according to chemical profiles recorded at different
times (e.g. chemical composition of wines in different years); in
environmetrics, for checking the performances of an environmental
monitoring network based on a set of air pollutant emissions recorded
in different times (air pollution time series) by a set of monitoring
stations, it is useful to classify the stations in homogeneous clusters.
'Urso), ldegiovanni@luiss.it
ssari).
For some references on the application of time series clustering/
classification on the above-mentioned and other experimental areas,
see [1].

As we can see below, we focus our empirical attention on the
clustering of environmental time series. For an overview of the litera-
ture on the theoretical aspects of time series clustering/classification
and their applications in environmental sciences and other experimen-
tal fields, see Section 2.

In this paper, we propose a robust clustering model for classifying
time series based on a suitable parametric representation of univariate
time series, i.e. an autoregressive representation. In particular, following
a fuzzy approach, the proposed robust clustering model is based on
the partitioning around medoids procedure. The robustness of the
clustering model is guaranteed by the adoption of a proper robust
metric, i.e. the so-called exponential distance measure. In this way,
our clustering model is able to tolerate the presence of outlier time
series in the clustering process; by neutralizing and smoothing the
disruptive effect of outlier time series, preserving as almost invariant
the clustering structure of the dataset, by assigning to outlier time series
almost the same membership degrees across clusters. The proposed
model is suitable for clustering time series exhibiting persistence over
time. Notice that the fuzzy approach also allow us to identify peculiar
patterns of time series, like switching time series, i.e. time series
showing a pattern typical of a given cluster during a certain time period,
and a completely different pattern (representative of another cluster) in
another time period [2,3].
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http://dx.doi.org/10.1016/j.chemolab.2014.11.003
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For detailed discussions on the benefits connected to autoregressive
model-based clustering approach, fuzzy methodology, partitioning
around medoids procedure see D'Urso et al. [2,3]. We observe that the
fuzzy approach has been employed for clustering/classification of
sequences in other research areas, for instance in computational biology
[4–15].

Following the guidelines proposed in [16–23], we will document
the proposed algorithm for clustering time series according to the
following procedures in order to make its development clearer and
more useful: (i) select the information to be extracted by time series;
(ii) select a proper distance measure for comparing time series;
(iii) introduce or develop a powerful algorithm to operate the clus-
tering; (iv) properly evaluate the accuracy of the clustering model;
(iv) establish resources for the development of the algorithm that
are publicly available.

The paper is organized as follows. In Section 2, we present a review of
the literature on time series clustering/classificationmethods,withpartic-
ular attention to their application to environmental sciences. In Section 3,
we introduce the fuzzy robust clustering model for time series. To illus-
trate the performances of the clusteringmodel, and to assess its classifica-
tion accuracy, we present and discuss the results of a simulation study in
Section 4. Aswe focus our attention in particular on the usefulness and ef-
fectiveness of the time series clustering in environmental sciences, in
Section 5 we utilize our clustering model for classifying air pollution
time series. Conclusions are provided in Section 6.

2. Literature on clustering/classification of time series

In the literature several time series clusteringmethods have been sug-
gested. For a survey on possible theoretical approaches, see, e.g., [1,24].

We remark that, following [1,24], time series clusteringmethods can
be classified into three classes: 1) observation-based clustering: the
time series clustering methods belonging to this approach are based
on the actual time observations, i.e. observed time series or their
transformations (see, e.g. [25,26]); 2) feature-based clustering: in this
case, the methods are based on features derived for the time series
(see, e.g., [27–31]); 3) model-based clustering: these methods are
based on parameters estimates of model fitted to the time series (e.g.
ARMA or ARIMA models) (see, e.g., [2,3]).

In this paper,we adopt themodel-based approach. Aswe focus our at-
tention in particular on the usefulness of time series clustering in
environmental sciences in Section 2.1 we show a detailed overview on
this field.

2.1. Literature of time series clustering/classification in
environmental sciences

Clustering and classificationmethods have a crucial role in monitor-
ing of the air quality [3]. In fact, “air quality monitoring is the main tool
of local governments for the management and evaluation of air quality
status. This practice follows technical regulation. An air monitoring
network is usually composed of sites which measure atmospheric
pollutants and weather variables. Classification of these monitoring
stations is amethod of network analysis and optimization. Classification
highlights similarities among sites with respect to pollutant concentra-
tion levels and/or temporal profiles. Displaying groups on a map allows
the identification of spatial patterns” [32]. Moreover, “in designing and
maintaining a cost-effective monitoring network, it is important to
recognize similarities and differences in the evolution of the variables
sampled at different sites, in order to avoid or, at least, reduce redun-
dancy. On the other hand, information collected by a redundant
network, for example in the initial exploratory phase of a surveillance
monitoring, could be extremely useful for partitioning a transition
water body into homogeneous regions, for which different quality
objectives may be established. With regard to the above issues, cluster
analysis methods (or unsupervised classification) can play a very
important role” [33].

In the literature, different clustering-based techniques have been
proposed for analyzing air pollution. Sanchez Gomes and RamosMartin
[34] considered the C-means clustering method for identifying sources
in Valladoid (Spain). Bohm et al. [35] used cluster analysis for detecting
temporal patterns of ozone. Sanchez et al. [36], Dorling et al. [37] and
Ruijgrok and Romer [38] considered pollutant data and wind data in
the cluster analysis. Miranda et al. [39] analyzed the concentration in
Mexico City utilizing the correlation coefficient and theWard clustering
method. Romo-Groger et al. [40] considered a similar analysis in Chile
using the average linkage algorithm. Ludwig et al. [41] used cluster
analysis for studying the daily ozone maxima in California. Lavecchia
et al. [42] employed a complete linkage-based procedure on the
monitoring network in Lombardia (Northern Italy) to evaluate similar-
ities among ozonemonitoring sites in terms of concentration levels and
temporal trends. The authors compared the ozone patterns by using the
Euclidean distance and the correlation coefficient in the clustering
procedure. Wongphatarakul et al. [43] clustered sampled sites with
similar characteristics by considering PM2.5 chemical databases from
seven sites around the world. By considering the Euclidean distance
and theWard clusteringmethod, Ionescu et al. [44] classified estimated
pollutant concentration fields obtained by utilizing the so-called thin
plate spline functions, analyzing nitrogen dioxide data during peak
episodes in Paris. Hierarchical clustering has been used to identify
distinct sources of volatile organic compounds based on the grouping
of the measured concentrations [45]. Moreover, hierarchical clustering
could provide a description of regional chemical and transport process-
es associated with particular regimes and could provide information
about the most relevant sources in the development of pollution
episodes. Saksena et al. [46] clustered monitoring sites in Delhi on the
basis of nine years of monthly average concentration data for three
pollutants, i.e. nitrogen dioxide, sulfur dioxide and suspended particu-
late matter. They considered four agglomerative hierarchical clustering
methods -i.e. average linkage, single linkage, complete linkage and
centroid method- and Euclidean and Squared Euclidean distance. They
observed that the most consistent results are obtained using the
Euclidean distance and the average linkage method. A study of the
data from Santiago's monitoring network was done by Silva and Quiroz
[47] considering an index of multivariate effectiveness, based on
Shannon information index. They found that air pollution data (CO,
PM10, O3 and SO2) from one of the stations (Parque O'Higgins) could
be reproduced by using information from the other stations. In order
to identify the representative stations for subsequent analysis of ozone
concentration Gabusi andVolta [48] considered a hierarchical clustering
approach for classifying Northern Italy measurement stations. Beaver
and Palazoglu [49] used an aggregate solution of k-means clustering to
characterize classes of ozone episodes occurring in the San Francisco
bay. Cluster analysis based on the Pearson correlation coefficient
is used by Gramsh et al. [50] on particulate matter and ozone data
collected by Santiago de Chile's network to find city sectors with similar
pollution behavior. Cluster analysis has been used to cluster back trajec-
tories, in order to identify different classes of synoptic regimes over the
duration of the trajectories [51,52]. Morlini [53] classified monitoring
stations of ozone, sulfur dioxide, and carbon monoxide in Emilia
Romagna region (Northern Italy) using a dynamic time-warping cost
function as dissimilarity measure in average and complete linkage
algorithms. In this framework, cluster analysis is used to classify fields
obtained from observed data to identify “prototype” of spatial patterns.
By considering a functional representation, Bengtsson and Cavanaugh
[54] modeled the observed time series in a state space setup and
classified the sites via hierarchical clustering methods relying on
disparity measures based on Kullback information. Kim et al. [55]
employed k-means clustering for classifying sites based on the temporal
fluctuation of PM2.5. In order to identify city areas with similar air
pollution behavior and to locate emission sources, Pires et al. [56,57]
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applied Principal Components Analysis and Cluster Analysis i.e., the
Euclidean-based average linkage method, to the mass concentrations
of SO2 and PM10 [56] and CO, NO2 andO3 [57] collected in the air quality
monitoring network of Oporto Metropolitan Area. Lau et al. [58]
used the complete linkage algorithm and Euclidean distance to analyze
NO2 and PM10 measurements. Ibarra-Berastegi et al. [59] suggested a
procedure to identify redundant sensors and evaluate a network's
capability to correctly follow and represent SO2 fields in Bilbao, in
the frame of a continuous network optimization process. They used
Self-Organizing Maps (SOMs), hierarchical cluster analysis (i.e. the
Euclidean distance-based single linkagemethod), and Principal Compo-
nent Analysis. The procedure is developed and tested at this particular
location (Bilbao), but it is general enough to be useable at other places
as well, since it is not tied neither to the particular geographical
characteristics of the place, nor to the phenomenology of the air quality
over the area. Pakalapati et al. [60] used hierarchical clustering and
sequencing to group air flow patterns associated with elevated ozone
concentrations. Karaca and Camci [61] evaluated the effects of long-
range transport patterns of air masses to the particulate matter
(PM10) concentrations observed in Istanbul using the Self Organizing
Maps (SOM). Lu et al. [62] considered Principal Component Analysis
and Cluster Analysis (i.e. between-group linkage method) for optimiz-
ing and managing the air quality monitoring stations in Hong Kong.
Ignaccolo et al. [36] used a partition around medoid (PAM) algorithm
to site classification in the air quality network of Piemonte (Northern
Italy). They chose PAM for practical reasons, since “PAM provides
representative objects for each cluster which gives policy makers real
sites to look at in order to quickly monitor general trends in a region.
Moreover, it gives a suggestion about the appropriate choice of clusters'
number and provides exhaustive clustering features by a graphical dis-
play (called silhouette plot). Furthermore, the so-called silhouette
width represents a belonging measure of a site to a cluster such that if
a site misclassification happenswe have a warning. Thus, policymakers
can decide to move a site to the neighboring cluster suggested by PAM”

[32]. The procedure suggested by Ignaccolo et al. [32] has the advantage
of clustering different sites around prototype sites, i.e. medoid sites that
are not virtual sites but real sites belonging to the set of considered sites.
However, as noted by Pastres et al. [33], among other this approach is
not entirely satisfactory since the uncertainty in the partition is not
quantified. “This issue could be relevant when deciding to redesign a
monitoring network, since the location of ‘uncertain’ sites may be
considered when establishing the boundaries between homogeneous
areas” [33]. In order to overcome both limitations, Pastres et al. [33]
proposed to combine functional data analysis and probabilistic cluster
analysis methods, which allow one to estimate the probability that a
given object belongs to a given cluster. Clustering has been used to
describe diurnal variation in gaseous and particle pollutants by Adame
et al. [63] and Flemming et al. [64]. Austin et al. [65] used cluster analysis
to identify distinct daily multipollutant profiles at a given site, Boston.
Austin et al. [66] used cluster analysis to group sites across the United
States based on their PM2.5 composition profiles using data collected
between 2003 and 2008. The main interest is to identify long-term
differences in the composition of PM2.5 across the different sites. These
clusters of cities will then be characterized and validated based on a
profilation of physico-chemical characteristics, geographic locations,
emission profiles, population density and position with respect to major
emitter sources. The work of Chaparro et al. [67] focused on the
study of lichen species and their relationship with pollutants
released by urban and industrial activities, using Principal
Coordinate Analysis and k-means clustering. D'Urso et al. [3] sug-
gested a redundancy analysis for air pollution monitoring systems
by using a procedure based on the so-called Autoregressive model-
based Fuzzy C-Medoid Clustering (AR-FCMdC) algorithm. In particu-
lar, they analyzed the daily time series of CO and NO emissions in
Rome. Ignaccolo et al. [68] proposed to partition a land in zones char-
acterized by different criticality levels of atmospheric pollution con-
sidering pollutant time series as functional data (Functional Zoning).
Specifically, they considered air pollutant time series of Piemonte
(Northern Italy) provided by a deterministic air quality model on a
regular grid, and preprocessed by assimilating observations, as func-
tional data. Thus, they classified them by using functional clustering,
where the Partitioning Around Medoids (PAM) algorithm is embed-
ded [32] in place of the k-means one, as proposed by Abraham et al.
[69]. Elangasinghe et al. [70] analyzed PM10 and PM2.5 time series
for a coastal site using artificial neural network modeling and k-
means clustering. Malley et al. [71] applied hierarchical cluster anal-
ysis and non-negative matrix factorization to European atmospheric
monitoring site classification. Ensor et al. [72] introduced a strategy
to identify point source impact on air pollution time series observed
at each monitor by modeling observed hourly counts of exceedances
above a pollutant threshold. They focused their study on benzene
levels that exceed 0.4 parts per billion volume (ppbv) in the state
of Texas. First of all, an observation-driven negative binomial regres-
sion model is used to capture autocorrelation in daily counts over
time. Because there are many days in which more zero counts
(representing no exceedances) are observed thanwould be expected
for a negative binomial distribution, they included a zero-inflation
component to account for this effect. Furthermore, they adopted
the Gaussian plumemodel (GPM) for atmospheric dispersion to cre-
ate covariates designed tomeasure the impact of emissions based on
the locations of the leading point source contributors. These covari-
ates represent the effect of an emissions source registered at a mon-
itor. They also incorporated atmospheric conditions, such as wind
speed, wind direction, and solar radiation in covariate construction.
Finally, they developed a model-based approach to clustering the
zero inflated count series obtained from each monitor. In particular,
they used an empirical Kullback-Leibler divergence measure to
quantify the similarity or dissimilarity between the modeled time
series and a hierarchical clustering algorithm. In this way, the
authors believe that understanding the common patterns in counts
of observed threshold exceedances allows to identify similarities in
the influence of the point sources on sets of monitors, as well as en-
ables to identify monitoring sites, often spatially contiguous,
representing similar (and dissimilar) behavior in pollution patterns.
3. Fuzzy clustering of time series by a robust metric

3.1. A robust distance measure for time series

Let consider a set of zero mean invertible ARIMA(p,d,q)(P,D,Q)s processes Z, Z ≡ {Zti : t = 1, …, T; i = 1, … I}, where p is the order of the
autoregressive (AR) component, q is the order of the moving average (MA) component, d is the differencing order needed to eliminate a stochastic
trend, P, Q and D are the orders of the seasonal part of the model, and s is the period of the seasonal pattern.

Using the standard Box and Jenkins notation, the generic process is defined as follows:

φi Bð Þ∇d∇D
s Zti ¼ ϑi Bð Þεti; ð1Þ
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where εti is a univariate white noise (WN) process withmean 0 and constant variance σ2, B is the backshift operator such that BkZti = Z(t − k)i, ∀ k=
0, ± 1,…, ∇ is the differencing operator such that ∇dZti = Zti − Z(t − d)i = (1− B)dZti, the polynomials

φi Bð Þ ¼ ϕi Bð ÞΦi B
s� � ¼ 1−ϕ1iB−: : : −ϕpiB

p
� �

1−Φ1iB
s−: : :−ΦPiB

sP
� �

ϑi Bð Þ ¼ θi Bð ÞΘi B
s� � ¼ 1−θ1iB−: : :−θqiB

q
� �

1−Θ1iB
s−: : :−ΘQiB

sQ
� �

for any s≥ 0, have no commons factors, and all the roots of φi(B) ⋅ ϑi(B)= 0 lie outside the unit circle. Finally, let us assume that possible anomalous
observations or deterministic components (i.e. mean level, calendar effects, trading days) have been suitably removed from the time series [73].

Since the processes are assumed to be invertible, Zti can be represented in terms of its past values according to the infinite autoregressive,
AR(∞), formulation, i.e.:

πi Bð ÞZti ¼ εti; ð2Þ

where πi(B) = (1 − B)d(1 − Bs)Dφi(B)ϑi
−1(B) = 1 − ∑j = 1

∞ πjiB j and ∑j = 1
∞ |πji| b ∞. The coefficients πji are denoted as π-weights.

Then, the AR distance between two processes, Zti and Zti0 , is defined as follows [6]:

dii0 ¼ d Zti; Zti0ð Þ ¼
X∞
j¼1

π ji−π ji
0

� �2

24 351
2

; ð3Þ

i.e., is the Euclidean distance between the vectors of the π-weights of the two AR(∞) formulations.
The AR(∞) formulation of the processes Zti can be approximated with a process AR(Ji), so that the contributions of the π-weights πji for

j = Ji + 1, Ji + 2,…, is negligible.
In the following we denote the observed time series with zti, (i = 1, …, I; t = 1, …, T), which represent the finite realizations of the zero mean

invertible ARIMA(p, d, q)(P, D, Q)s processes. Let Z ≡ {zti : t = 1, …, T; i = 1, …, I} be the set of the observed time series, which are represented by
means of the truncated AR representations AR(Ji), i = 1,…,I.

Following Piccolo [74], the AR distance between two time series zti and zti0 is defined as follows:

dii0 ¼ d zti; zti0
� �

¼
XJ

j¼1

π̂ ji−π̂ ji0
� �2

24 351
2

; ð4Þ

where J ¼ max Ji; Ji0
� �

, and the “hat” symbol denote the estimates of the π-weights.
Note that, given two generic processesZti and Zti

0 , generally Ji≠ Ji0 :When the orders of the truncatedAR representations of two time series differ,
say JiN Ji0 , by adopting the so-called “zero-padding” approach (see, e.g. [3]) we could add to the shortest vector of the estimated π-weights Ji− Ji0
zeros to equalize the lengths of the two vectors.

As observed above, theARdistance is the Euclidean distance between two vectors of π-weights representing two time series. The Euclideanmetric
is widely used in real-world applications for its properties. However, Euclidean metric may not be robust in a noisy environment, as a collection of
time series usually is. As a consequence, results from an objective function based on the Euclideanmetric could be biased if data are contaminated by
one or more outliers.

Wu and Yang [75] observed that the solution of an objective function based on the Euclideanmetric can be written as a weighted sum of the
observed data point with weights all equal to 1, irrespective of the fact that a data point lies close to the bulk of the data set or it is an outlier.
Based on this statement, the authors proposed to adopt a more robust distance, i.e., the so-called exponential distance. The proposed exponen-
tial distance gives different weights to each data point, according to whether a data point is noisy or not. In particular, the exponential distance
assigns small weights to outliers and larger weights to those data points that are more compact in the data set.

In order to neutralize the disruptive effects of possible outliers in the computation of pairwise distance measure between two processes, adopting
the idea suggested by Wu and Yang [75] for not time-varying data, we suggest to compare each pair of processes Zti and Zti0 , provided that both
processes are stationary and invertible, by means of:

dii0 ¼ d zti; zti0
� �

¼ 1− exp −β
X∞
j¼1

π ji−π ji
0

� �2

8<:
9=;

8<:
9=;

1
2

: ð6Þ

Thus, for comparing each pair of time series zti and zti0 , we have:

dii0 ¼ d zti; zti0
� �

¼ 1− exp −β
XJ

j¼1

π̂ ji−π̂ ji
0

� �2

8<:
9=;

8<:
9=;

1
2

; ð7Þ

where, as above, J ¼ max Ji; Ji0
� �

.
Note that, following Zhang and Chen [76], it is easy to prove that the AR-based robust distances (6) and (7) are metrics.
Wu and Yang [75] suggest that the value of β should be determined as the inverse of the variability in the data (themore the variability in the data

the less the value of β). In this way, the value of β appropriately affects the distances (6), and hence (7), in terms of robustness to outliers.
Fig. 1 shows that in the presence of low variability of the data (high value of β) increasing distances receive a lowerweight than in the case of high

variability. See Remark 4 for further insights on how β is selected.
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Remark 1. A prototypal case for the AR-based robust distance.

A prototypal case for the AR-based robust distance (6) is obtained when the time series represented by a process ARMA(1,1).
Let Zti and Zti

0 be two stationary and invertible processes ARMA(1,1) processes. The AR(∞) coefficients corresponding to the processes are:

π jk ¼ ϕk−θkð Þθ j−1
k ; k ¼ i; i0 ; j ¼ 1;2;… ð8Þ

Then, by substituting Eq. (8) in Eq. (6) we obtain the following expression:

dii0 ¼ 1−exp −β
X∞

j¼1
π ji−π ji0

� �2
� �� �1

2 ¼ 1−exp −β
X∞

j¼1
ϕi−θið Þθ j−1

i − ϕi0−θi0ð Þθ j−1
i

h i2� �� �1
2

¼
�
1−exp

�
−β

�
ϕi−θið Þ2

X∞
j¼1

θ2 j−1ð Þ
i þ ϕi0−θi0ð Þ2

X∞
j¼1

θ2 j−1ð Þ
i −2 ϕi−θið Þ ϕi0−θi0ð Þ

X∞
j¼1

θiθi0ð Þ j−1
	��1

2

:

ð9Þ

By exploiting the geometric series in Eq. (9) we have

X∞
j¼1

θ2 j−1ð Þ
k ¼ 1

1−θ2k
; k ¼ i; i

0

X∞
j¼1

θiθi0ð Þ j−1 ¼ 1
1−θiθi0

:

Then, by making use of the properties of the exponential function, from Eq. (9) we obtain:

dii0 ¼ 1−
exp −β ϕi−θi

1−θ2i

� �
exp −β ϕi0−θi0

1−θ2
i0

� �
exp −2β

ϕi−θið Þ ϕi0−θi0ð Þ
1−θiθi0

� �
8>><>>:

9>>=>>;
1
2

: ð10Þ

This result could be further generalized for computing pairwise distances between processes belonging to the sub-classes AR(1), MA(1),
ARIMA(1,1,0) and ARIMA(0,1,1) simply letting some parameters equals to 0 or 1 [74,77].

Remark 2. A weighted version of the robust AR-based distance
Let us now consider a more general version of the robust AR-based d
istance (7).
Let π̂i ¼ π̂1i;…; π̂ Ji i


 �
and π̂i0 ¼ π̂1i0 ;…; π̂ Ji0 i

0
n o

be the vectors of the estimates of the parameter of the truncated processes AR(Ji) and AR(Ji '), with
J = max(Ji, Ji '), respectively, which represent the observed time series zti and zti0 . We can define a weighted version of the distance dii ' as follows:

Ωdii0 ¼ 1−exp −β π̂i−π̂i0ð Þ
0
Ω π̂i−π̂i0ð Þ

n on o1
2 ð11Þ

where Ω is a matrix of weights. Possible choices of Ω have been shown in D'Urso et al. [3].

Remark 3. A correlation-based version of the robust AR-based distance
Notice that, the robust AR-based squared Euclidean distance d2ii0 can be formalized by the correlation coefficient; i.e. -since

∑ J
j¼1 π̂ ji−π̂ ji

0
� �2

¼2 J 1−rii0ð Þ, where rii0 denoted the correlation coefficient between zti and zti0 - we have dii0 ¼ d zti; zti0ð Þ ¼ 1− exp −2β J 1−rii0ð Þf g:

3.2. A robust fuzzy clustering model for time series

Let zt≡ {zt1,…, zti,…, ztI},∀ t=1,…, T be a set of I observed time series, andeZt ≡ eZt1;…; eZtc;…; eZtC

n o
;∀t ¼ 1;…; T be a subset of ztwith cardinalityC.

Also, let π̂ j ≡ π̂ j1;…; π̂ ji;…; π̂ jI

 �

;∀ j ¼ 1;…; J be the corresponding autoregressive coefficients of the truncated AR representation of the I time series,

and beπ j ≡ beπ j1;…; beπ jc;…; beπ jC

n o
;∀ j ¼ 1;…; J be a subset of π̂ j with cardinality C. Note that we are assuming that all the truncated AR representations

are of the same order J. This is a viable assumption, since the zero padding approach explained above.
By considering the (squared) distance (Eq. (7)), we obtain the following AR-based Fuzzy C-Medoid Clustering with Exponential Distance

(AR-FCMdC-Exp) model:

min :
XI

i¼1

XC
c¼1

um
ic 1−exp −β

XJ

j¼1

π̂ ji−beπ jc

� �2

8<:
9=;

24 35
XC
c¼1

uic ¼ 1; uic≥0:

8>>>>><>>>>>:
ð12Þ
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where m N 1 is a weighting exponent that controls the fuzziness of the obtained partition; beπ jc j ¼ 1;…; Jð Þ is the medoid for cluster c; uic

indicates the membership degree of the i -th unit in the c -th cluster.
Following Wu and Yang [75], the local optimal solution for the objective function in Eq. (12) is:

uic ¼
XC
c0 ¼1

1−exp −β
X J

j¼1
π̂ ji−beπ jc

� �2
� �

1−exp −β
X J

j¼1
π̂ ji−beπ jc0

� �2
� �

2664
3775

1
m−1

0BBB@
1CCCA

−1

ð13Þ

In a C-means framework, Wu and Yang [7] state that, from a theoretical standpoint, the C-means clustering model based on the exponential
distance is more robust than the model based on the Euclidean norm.

The value of β, determined as the inverse of the variability in the data (the more the variability in the data the less the value of β), appropriately
affects the membership degree (Eq. (13)) in terms of robustness to outliers.

Fig. 2 shows different membership curves, for different values of β, obtained with the AR-FCMdC-Exp model applied to a simulated dataset with
two clusters with centers in 0.5 and 0.6. The curve with circle points represents the AR-FCMdCmembership. If β is very small (high variability in the
data) the AR-FCMdC-Exp membership curve is very close to the AR-FCMdC membership curve which well represents fuzzy boundaries; if β is very
large (low variability in the data) the AR-FCMdC-Exp membership curve (shaped as a step function) is very different from to the AR-FCMdC
membership curve as it assigns membership 0.5 to data that are only slightly distant from the centers, well representing the characteristic of
separation between the clusters. See Remark 4 for further insights on how β is selected.

Remark 4. Computational characteristics of AR-FCMdC-Exp
The computational characteristics of the AR-FCMdC-Exp model are th
e following:
Selection of β: we select β in the following way:

β ¼
XI

i¼1

X J
j¼1

π̂ ji−beπ jk

� �2

I

0B@
1CA

−1

ð14Þ

where

êπ jk : k ¼ argmin
1≤ i

0 ≤ I

XI

i
00 ¼1

XJ

j¼1

π̂ ji00−π̂ ji0

� �2

i.e., π̂e jk; j ¼ 1;…; J are the AR coefficients of the time series which is the closest to all other time series.
Algorithm The steps of the algorithm are shown below:

Algorithm 1: AR-FCMdC-Exp.
Fix C, RS andmax. iter;
Compute β by using Eq. (14);
Set rs = 0;
Repeat
Set iter= 0
Repeat

Pick initial medoids:
^
Π
�
≡ π̂e j1;…; π̂e jc; π̂e jC ; j ¼ 1;…; J
n o

;

Store the current medoids: ^ΠeOLD ¼ ^Πe;
Compute uic by using Eq. (13);

Select the newmedoids ^Πe ≡ π̂e j1;…; π̂e jc; π̂e jC ; j ¼ 1;…; J
n o

:

q ¼ argmin 1≤ i0 ≤ I ∑
I

i0 0 ¼1
um
i0 0 c 1−exp −β∑ j¼1

J π̂ ji0 0−π̂ ji0
� �2g�nh

;

return π̂e jc ¼ π̂ jq

iter= iter + 1;
Until ^ΠeOLD ¼ ^Πe or iter ¼ max:iter;
rs= rs + 1

Until rs= RS.
Local optima: the algorithm 1 falls in the category of Alternating Cluster Estimation paradigm [78]; as for other recursive algorithm, it is not

guaranteed that the global minimum is reached. Thus, more than one random start (RS) is suggested to obtain a stable solution.

Detection of C: the number of clusters C can be pre-determined by considering fuzzy cluster-validity indices (see [28]).
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The validity criterion considered in this paper is the Fuzzy Silhouette (FS) [79]. The individual silhouette si (i=1,…, I) is a measure of the

closeness of i to the objects in the highest membership cluster, with respect to the distance to objects in other clusters, and is defined as
[80]:

si ¼
bi−ai

max bi; aif g

where ai is the average distance of time series i to all other objects belonging to its highestmembership cluster and bi is the average of the
minimum distances of time series i to all the time series belonging to another cluster.
FS is a weighted average of si, with weights that take into account the membership degrees of each unit:

FS ¼
XI

i¼1
uir−uiq

� �α
siXI

i¼1
uir−uiq

� �α ð15Þ

where uir and and uiq are the first and second largest elements of the i-th row of the fuzzy partitionmatrix U= {uic : i=1,…, I; c=1,…,
C};α is an optional user definedweighting coefficient. In our case, we set α=1. The harder the partitionmatrix, the smaller the impact of
changes in α. The Crisp Silhouette (CS), i.e. the average silhouette width, is obtained as a particular case of FS by setting α=0. The higher
the value of FS, the better the assignment of the objects to the clusters.

Detection of m: following Kamdar and Joshi [81], in the application we setm = 1.5. However, in the simulation study, different values of m are

selected, in order to check the influence of the fuzzinesss parameter on the results (see Section 3).

Computational complexity: theproposedAR-FCMdC-Expalgorithmcouldbe very computationally intensivewith large sample, since it is based on an

exhaustive search for the medoids. Following Krishnaputan et al. [82], a “linearized” version of the AR-FCMdC-Exp algorithm, Lin-AR-FCMdC-
Exp, canbe introduced to copewith this issue. For each cluster,medoidupdate is not based on the examinationof all Iunits, but only on a subset
of p (p≪ I) units with the highest membership degrees in the considered cluster. In Fig. 3 results of a simulation study is reported. The com-
putation time required by the AR-FCMdC-Exp algorithm is represented by a solid line. The computation time required by its linearized version
is represented by a dashed linewhen p= I/C, and by a dotted linewhen p=0.5 ⋅ I/C. For this simulationwe have set C=2,m=2and RS=1.
As it can be seen, the computation time of the AR-FCMdC-Exp rapidly increases as the sample size gets larger. On the contrary, Lin-AR-FCMdC-
Exp is less affected by the sample size, especially with p= 0.5 ⋅ I/C.
Remark 5. Based on the distance (Eq. (10)) illustrated in Remark 1, the AR-FCMdC-Exp model, for ARMA(1, 1) processes, can be written as:

min :
XI

i¼1

XC
c¼1

um
ic 1−

exp −β
ϕ̂i−θ̂i
1−θ̂2i

( )
exp −β

beϕc−
beθc

1−beθ2c
8<:

9=;
exp −2β

ϕ̂i−θ̂i
� � beϕc−

beθc� 

1−θ̂i

beϕc

8>><>>:
9>>=>>;

2666666666664

3777777777775
XC
c¼1

uic ¼ 1; uic ≥ 0

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð16Þ
Fig. 1. Effect of β on the distance (6).
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and thus:

uic ¼
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c0 ¼1
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Remark 6. Based on the weighted AR exponential distance (Eq. (11)) illustrated in remark 2, we can obtain a more general formalization of the
clustering model (12):

min :
XI

i¼1

XC
c¼1

um
ic 1−exp −β π̂i−π̂c

� �0
Ω π̂i−π̂c

� �n oh i
XC
c¼1

uic ¼ 1; uic ≥ 0:

8>>>><>>>>: ð18Þ
Fig. 3. Computation time for AR-FCMd-Exp algorithm and the linearized Lin-AR-FCMd-Exp algorithm.
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and the corresponding solutions:

uic ¼
1XC

c
0 ¼1

1−exp −β π̂i−π̂cð Þ0Ω π̂ i−π̂cð Þ

 �

1−exp −β π̂i−π̂c0ð Þ0Ω π̂ i−π̂cc0ð Þ

 �� 	 1

m−1

: ð19Þ

Note that with Ω = I, where I denotes the identity matrix, we obtain the clustering model (12) and the membership degrees (Eq. (13)). In the
following we set Ω = I.

4. Simulation study For each scenario, 10 sets of 100 simulations were carried out. For
To assess the clustering performance and accuracy of the proposed
robust clustering model AR-FCMdC-Exp, in this section we show the
results of a simulation study. The simulation study consisted of the
generation of several simulated datasets according to fifteen different
scenarios, which mimic real world situations.

For comparison purposes, we have considered the non-robust AR-
FCMdC model [3] and the robust AR-based Fuzzy C-Medoid Clustering
with Noise Cluster model (AR-FCMdC-NC) [2].

We have also drawn a comparison between the fuzzy approach and
the crisp approach, by considering the crisp versions of AR-FCMdC and
AR-FCMdC-NC, i.e. the AR Crisp C-Medoid (AR-CCMdC) model and the
AR Crisp C-Medoids with Noise Cluster (AR-CCMdC-NC) model.

Finally, we have considered some hierarchical clustering models,
viz. Single, Complete and Average linkage and Ward's model with
autoregressive coefficients.

For each scenario, we have generated time series of length T = 256
from ARMA processes, in particular AR(1) and MA(1) processes. Each
generation process has produced well separated clusters of four time
series. In addition, in some scenarios data were contaminated with
switching and/or outlier time series. Each simulated time series has
been fitted with an AR(k) model, where the order k was determined by
Akaike's Information Criterion (AIC).

Some suggestive scenarios are illustrated in Table 1, i.e. the sce-
nario 1 with two well separated clusters, and scenarios 2, 5 and 6,
contaminated with one outlier time series and/or one switching
time series.

For a complete overview of the fifteen scenarios, see Table I in the
supplementary material to this paper.

In brief, in scenarios 1 and 3 we have generated two and three well
separated clusters, respectively. In scenarios 2 and 4 we have consid-
ered the same simulated dataset as in Scenarios 1 and 3, respectively,
adding an outlier time series.

In scenarios 5 and 7 there are two well separated clusters and a
switching time series. In scenarios 6 and 8we have added to the former
scenarios an outlier time series.

Similarly, in scenarios 9 and 11 we have considered three well
separated clusters and a switching time series, adding an outlier time
series in scenarios 10 and 12.

In scenario 13 we have generated three well separated clusters with
two switching series, while in the scenarios 14 and 15 we have consid-
ered the same simulated dataset as in the scenario 13, adding one and
two outliers time series, respectively.

The clustering performance and accuracy of each clustering model
were evaluated according to whether time series generated from the
same process were grouped in the same cluster, with membership
degrees equal or close to one in that cluster.

Since switching time series should belong simultaneously to more
than one cluster, the performance of each clustering model was also
assessed according to the capability of themodel to individuate switching
time series.

Finally, when the dataset is contaminated with one or more
outlier time series, the robustness of each model was evaluated by
considering the effect of the presence of anomalous data in the clus-
tering process.
each set of simulation, the percentage of times the objects (time series)
were correctly identified as belonging to one of the cluster, or as
switching time series, or as outlier time series, is computed. Then, we
have computed the average percentage of correct classification over
the 10 sets of the 100 simulations for each scenario. The average
percentage of correct classification is a measure of clustering accuracy
of the model. The higher this value, the better the classification perfor-
mance of the model considered. We have chosen this strategy to be
consistent with that used by D'Urso et al. [2,3].

To assign each time series to a specific cluster we have set cut-off
values. In the first four scenarios, with no switching series, we have
assigned the i-th time series to the c-th cluster if its fuzzy membership
degree was uic N 0.7 or uic N 0.5. In the remaining scenarios contaminat-
ed with switching time series, we have set the cut-off value as uic N 0.7
or uic N 0.6, depending on whether there were two or three separated
clusters, respectively.

To identify the switching time series, we have set the membership
degrees in the interval (0.3, 0.7) in the scenarios with two clusters,
and in the interval (0.3, 0.6) in those with three clusters, so as to obtain
fuzzy membership degrees across clusters.

Note that the selected cut-off values are compatible with those
suggested in literature: for simulation studies, see [28,29,83], while for
empirical applications see [84].

As for the identification of outlier time series, one should note that
the exponential distance approach does not explicitly label the outlier
time series but spreads the membership degrees of outlier series over
the k clusters, as mentioned above. Therefore, for AR-FCMdC-Exp we
have also computed the percentage of times in which, providing the
remaining time series were correctly identified, the membership
degrees of outlier time series were split across clusters.

Finally, in all scenarios we have set the fuzziness parameter m at
different values, namely 1.3, 1.5, 1.7 and 2, to check if results are
influenced by the degree of fuzziness.

Overall results for clustering performance and accuracy of themodel
compared are summarized in Table 2.

For each scenario, values in Table 2 are obtained by averaging the
percentages of correct classification for the different values of m, of
membership degrees and, if any, the different partitions obtained with
each model. Note that we do not report the results for the AR-CCMdC
model and for the hierarchical clustering for Scenarios 5–15, since they
provided partitions which were never close to the real data structure.

In addition in Table 3 are reported themembership degrees obtained
on random generated datasets from the scenarios illustrated in Table 1.

More detailed results of the simulation for each scenario carried out
are reported in the supplementarymaterial to this paper (Tables II-XXXI).

In particular, in the even numbered tables in the supplementary
material the clustering results for each scenario are reported. Results
for crisp models AR-CCMdC and AR-CCMdC-NC are reported in the
row corresponding to m = 0.

In the odd numbered tables in the supplementary material, the
membership degrees obtained with AR-FCMdC, AR-FCMdC-NC, and
with their crisp counterpart, and AR-FCMdC-Exp for each scenario are
reported.

Scenarios 1 and 3 are our baseline scenarios, with no outliers and/or
switching time series. As expected, in both cases for all considered
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clusteringmodels the average percentage of success in the classification
of the generated dataset is always near or equal to 100% (Table 2).

The crisp medoid based-models and the hierarchical procedures
perform slightly worse than the fuzzy models in the case of the
scenario 3.

Scenarios 2 and 4 are similar to the previous scenarios, with the only
difference given by the inclusion of a single outlier time series. As one
would expect, the robust fuzzy models on average are able to correctly
classify the time series and to neutralize the influence of the outlier. As
mentioned above, for AR-FCMdC-Exp we have reported in italics the
average percentage of times inwhich the outlier is split into the clusters.
For scenario 2, see also Table 3, where the membership degrees of the
outlier time series are highlighted in gray. As it can be seen from the
membership degrees reported in Table 3, in scenario 2 AR-FCMdC
considered outlier time series as a switching time series. This inconve-
nience occurs also for scenario 4 (see Table IX in the supplementary
material). This evidence could help to explain the very low average
percentage of success reported in Table 2 for this method in correspon-
dence with scenarios 2 and 4.

Scenarios 5 and 6 are similar to the first two scenarios, with the
addition of a switching time series. In scenario 5 all the fuzzy models
deal rather well with the presence of the switching time series. All the
fuzzy models are capable of classifying the switching time series in a
vaguemanner, as it can be seen from themembership degrees reported
in Table 3. Adding an outlier (scenario 6) the robust fuzzy models still
perform well, while AR-FCMdC is effective in classifying the generated
time series only when the outlier is considered as switching between
clusters (see Table 3).

Similar patterns are observed for scenarios 7 and 8, where the
switching time series is more erratic than in the previous two scenarios.
Table 1
Scenario 1 with two clusters and scenarios 2, 5, and 6 contaminated with one outlier and/or on

Scenario Description Figure

1 Two well-separated clusters; four time series were simulated
from each of AR(1) with ϕ = 0.5 and MA(1) with θ = −0.5

2 Two well-separated clusters and outlier time series; four time
series were simulated from each of AR(1) with ϕ = 0.5 and
MA(1) with θ = −0.5 The outlier time series was simulated from
a process ARMA (1,1) with ϕ = 0.9 and θ = −0.9

5 Two well-separated clusters and a switching time series; four time
series were simulated from each of AR(1) with ϕ = 0.5 and MA(1)
with θ = −0.5 and a switching time series 1/2 AR(1) and 1/2
MA(1).

6 Two well-separated clusters, a switching time series and a outlier
time series; four time series were simulated from each of AR(1) with
ϕ = 0.5 and MA(1) with θ = −0.5 and a switching time series 1/2
AR(1) and 1/2 MA(1). The outlier time series was simulated from a
process ARMA (1,1) with ϕ = 0.9 and θ = −0.9
As for the scenario 9, in which we have three separated clusters and
a switching time series, all the fuzzy models are able to identify the
switching series rather well (see also Table XIX in the supplementary
material).

When an outlier is added to the data (scenario 10), the disruptive
effect of the anomalous time series heavily influences the average
performance of success of the fuzzy model AR-FCMdC.

Scenarios 11 and 12 are similar to scenarios 9 and 10,with a switching
time series that shifts between clustersmore frequently than in the previ-
ous scenarios. As one would expect, findings are similar to that observed
for scenarios 9 and 10.

Scenarios 13 to 15 consist of three well separated clusters and two
switching time series, the first switching between the first and the
second cluster, the second between the second and third cluster. In sce-
narios 14 and 15 one and two outlier time series are added, respectively.
The proposed AR-FCMdC-Exp model outperforms the remaining
models both when the dataset is not contaminated by outliers (see
also Table XXVI in the supplementary material, for scenario 13) and in
presence of one or two outliers (see also Tables XXVIII and XXX, for sce-
narios 14 and 15, respectively).

Overall, as for the capability of a correct identifying of outlier time
series, the performances of AR-FCMdC-NC and AR-FCMdC-Exp are com-
parable in most of the situations taken in consideration in this simula-
tion study. Both models are preferable to AR-FCMdC in presence of
outliers.

As a final remark, it has to be noted AR-FCMdC-Exp outper-
forms AR-FCMdC-NC, especially when the presence of outlier
time series are combined with the presence of one or more
switching time series and in the scenarios with three well sepa-
rated clusters.
e switching time series.

Models

–Fuzzy models: AR-FCMdC,
AR-FCMdC-NC, AR-FCMdC-Exp
–Crisp models: AR-CCMdC,
AR-CCMdC-NC
–Hierarchical procedures: Single
Linkage, Complete and Average
Linkage, Ward's method

–Fuzzy models: AR-FCMdC,
AR-FCMdC-NC, AR-FCMdC-Exp
–Crisp models: AR-CCMdC,
AR-CCMdC-NC
–Hierarchical procedures: Single
Linkage, Complete and Average
Linkage, Ward's method

–Fuzzy models: AR-FCMdC,
AR-FCMdC-NC, AR-FCMdC-Exp
–Crisp model: AR-CCMdC-NC

–Fuzzy models: AR-FCMdC,
AR-FCMdC-NC, AR-FCMdC-Exp
–Crisp model: AR-CCMdC-NC
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Up until nowwe have reported the results of the simulation study in
a pure descriptive way. In order to test the improvement of the pro-
posed method over the other methods that have been considered, we
have conducted the one-sided Wilcoxon signed rank test. The test
verifies the significance of differences between pairs of data of two
dependent samples. Let δ be the median of these differences. The null
and alternative hypotheses of the test are the following: H0 : δ = 0;
H1 : δ N 0. The null hypothesis is that the average performances evalu-
ated for each pair of models are not significantly dissimilar. The alterna-
tive hypothesis is that the average performance evaluated for the first
model in the comparison is significantly better than the one observed
for the second model.

We have computed the one-sided Wilcoxon signed rank test for
each pair of models by considering the average percentages of suc-
cess of each model reported in Table 2. Note that we have drawn
comparisons of pairs only between Partitioning Around Medoids
based models, i.e. AR-FCMdC, AR-FCMdC-NC, AR-FCMdC-Exp and
AR-CCMdC-NC.

Table 4 shows, for each pair of models, the values of the test-statistic
W and the accompanying p-values.

Let consider two generic models. We reject the null hypothesis that
there is no difference in the performance of the two model, concluding
that the average performance of the first model is significantly better
than that of the other model when the p-value of the test-statistic W
is less than the 0.05 significance level.

From Table 4 we can see how the proposed AR-FCMdC-Exp model
outperforms the remaining clustering models.
5. Application: the use of the AR-FCMdC-Expmodel for clustering air
pollution time series

In this section we illustrate an air quality study based on daily nitro-
genmonoxide (NO) emissions detected in fourteenmonitoring stations
in Rome: Arenula, Bufalotta, C.so Francia, Castel di Guido, Ciampino,
Cinecittà, Cipro, Fermi, L.go Magna Grecia, L.go Perestrello, Malagrotta,
Tenuta del Cavaliere, Tiburtina, Villa Ada. We have considered both
urban and non urban stations since, given that NO emissions aremainly
related to human activities, it is interesting to assess whether there are
differences between areas with different population density. Data were
collected in 2012, from January 1 December 31. NO concentration
derives from different sources, such as heating systems and vehicu-
lar traffic.

The data source is the database BRACE,1 which is maintained by
ISPRA (Istituto per la Protezione e la Ricerca Ambientale), the Italian
public institution which deals with the environment preservation.

Raw data are transformed by considering the log-differences of the
daily emissions of NO, in order to remove non-stationarity both in the
levels and in variance. Data are also affected by weekly seasonality,
since, as observed above, NO emissions are also related to traffic condi-
tions that are likely to vary during the week: usually, car traffic is more
congested duringweekdays and less on Sunday. To remove the seasonal
pattern, we have regressed data against six daily dummy variables. The
aim of this case study is to detect similarities amongNOmonitoring sta-
tions in terms of temporal trends of daily changes of concentration
levels.

We have assessed the stationarity of the transformed data bymeans
of the augmented Dickey Fuller (ADF) test. The null hypothesis of the
ADF test is that the time series has unit roots, i.e. it is not stationary.
To reinforce our findings, we have employed the Kwiatkowski–Phil-
lips–Schmidt–Shin (KPSS) test. KPSS test is a nonparametric test in
which the null hypothesis is the stationarity of time series. We have re-
ported the p-values of both tests in Table 5. Both tests led us to conclude
that data are stationary.
1 http://www.brace.sinanet.apat.it/web/struttura.html.
Raw data and transformed data are shown in Fig. 4, panel (a) and
(b), respectively.

Once the stationarity of data has been assessed, to choose the best
ARMA models for the time series of daily rates change of NO emissions
in Rome, we considered the Box and Jenkins modeling procedure.

Results for this procedure are reported in Table 6. In brackets are
reported the standard errors.

In the last column of Table 5 are reported the Ljung–Box statistics up
to ten lags and the corresponding p-values, in brackets. The null hypoth-
esis is that the residual series from thefittedmodels arewhite noise and
hence themodel fit is appropriate. If the p-value is greater than 0.05, we
can accept the null hypothesis at a 5% significance level. As it can be
seen, the null hypothesis is accepted for all the fitted time series.

Wefit each time serieswith the truncated AR(∞) representation cor-
responding to the ARMAmodel estimated. Then, we apply the proposed
AR-FCMdC-Exp model and, for comparison purposes, we also consider
the timid robust fuzzy clustering, i.e. AR-FCMdC (Autoregressive-
based Fuzzy C-Medoid Clustering) proposed by D'Urso et al. [3] and
the robust fuzzy clustering AR-FCMdC-NC (Autoregressive-based
Fuzzy C-Medoid Clustering with Noise Cluster) proposed by D'Urso
et al. [2].

Since the model proposed is based on the partitioning around
medoid approach, once the number of clusters is assessed, we are able
to identify medoid stations, i.e., stations representative of the whole
cluster. The fuzzy approach allows us also to identify stations whose
temporal trends match with more than one cluster. Finally, the robust-
ness of the model allows us to identify anomalous stations, whose pro-
files are not typical of any cluster. Then, for a quick monitoring of the
network, policymakers could look at themedoid station, the fuzzy allo-
cated stations and the outliers. All these stations carry out relevant in-
formation about the air quality in different sites.

By adopting the FS criterion, the optimal number of clusters is C=3
for all models. The membership degrees of each station obtained with
the three fuzzy AR-based models are reported in Table 7.

First of all, both the robust fuzzy clustering models, AR-FCMdC-NC
andAR-FCMdC-Exp, detect the presence of oneoutlier (C.so Francia, sta-
tion 3). Hence, results for AR-FCMdCmodel are likely to be undermined
by the presence of one anomalous time series.

With AR-FCMdC the medoid stations are Arenula, Cipro and
Tiburtina (respectively stations 1, 7 and 13). We can also observe that
most of the stations are assigned to one cluster with very highmember-
ship degrees (uic N 0.8), the only exception being Tenuta del Cavaliere
(station 12) which is fuzzy allocated between cluster 2 and 3.

Thepartition obtainedwith AR-FCMdC-NC is similar to that obtained
with AR-FCMdC, the main difference being the fact that C.so Francia is
allocated in the noise cluster and, hence, is considered an outlier. In
fact, by looking at the ARMAmodel reported in Table 6, C.so Francia dis-
plays a temporal evolution of daily rates of change of NO emission
which is at odds with the remaining station.

This evidence is confirmed also by AR-FCMdC-Exp, which splits the
membership degrees of C.so Francia uniformly across the cluster. Beside
this, the partition obtained is only marginally different from those ob-
served with the previous models.

Considering the values of the AR(∞) coefficients (π -weights) of the
time series (related to the values of the original ARMA coefficients in
Table 6), graphically represented via box plot in Fig. 5, we observe
that C.so Francia displays the lowest values of the coefficients; then
from the lowest values to the highest we find a first group of stations
with lower values of the coefficients (Arenula, Cinecittà, L.go Magna
Grecia, L.go Perestrello, Tiburtina, Villa Ada) and then a second group
of stations with higher values (Bufalotta, Castel di Guido, Ciampino,
Cipro, Fermi, Malagrotta, Tenuta del Cavaliere), Bufalotta and Fermi
showing the highest values.

All the partitions presented in Table 7 detect these differences, in
particular by the AR-FCMdC-Exp model, which smoothes the influence
of C.so Francia, allocates stations Bufalotta and Fermi that show the

http://www.brace.sinanet.apat.it/web/struttura.html


Table 2
Average clustering results for scenarios 1–15.

Scenarios Characteristics of the scenarios Non-hierarchical models Hierarchical procedures with AR coefficientsb

Number of: Fuzzy clustering models Crisp clustering models Ward's
method

Single
linkage

Average
linkage

Complete
linkage

Clusters Outlier Switching AR-FCMdC AR-FCMdC-NC AR-FCMdC-
Expa

AR-CCMdC AR-CCMdC-
NCTime series Time Series

1 2 0 0 99.84 99.18 100 100 96.20 100 100 100 100
2 2 1 1 33.75 99.18 100 94.28 48.70 96.20 100 100 100 100
3 3 0 0 95.20 94.91 99.90 89.30 90.20 98.60 88.40 92.50 93.30
4 3 1 0 30.35 96.08 95.41 93.20 27.70 88.50 96.30 88.50 91.50 90.10
5 2 0 1 99.53 98.98 99.88 – 50.00 – – – –

6 2 1 1 32.76 96.85 99.58 99.58 – 48.00 – – – –

7 2 0 1 99.55 99.15 99.88 – 50.00 – – – –

8 2 1 1 32.60 99.70 99.58 99.58 – 50.00 – – – –

9 3 0 1 88.10 90.30 95.28 – 49.90 – – – –

10 3 1 1 31.76 92.53 97.78 97.78 – 41.30 – – – –

11 3 0 1 88.80 89.68 93.85 – 49.00 – – – –

12 3 1 1 31.34 91.90 97.58 97.58 – 42.55 – – – –

13 3 0 2 81.00 85.95 98.03 – 23.95 – – – –

14 3 1 2 20.60 79.65 84.43 84.43 – 21.20 – – – –

15 3 2 2 23.68 81.10 84.95 65.48 – 23.50 – – – –

(a): in italics are reported the percentage of cases in which AR-FCMdC-Exp splits themembership degrees of the outlier time series into two or three clusters (according to the scenario).
(b): in presence of one outlier time series (scenarios 2 and 4), hierarchical methods classify the outlier time series as a singleton in a separated cluster.
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highest values of theAR(∞) coefficients to a separate cluster, and assigns
stations Cinecittà and Tiburtina to the cluster of the stations with the
lowest values.
Table 3
Membership degrees of random generated datasets from scenarios 1, 2, 5 and 6 (two clusters)

Scenarios Time series AR-FCMdC

Cluster1 Clus

ui1 ui2

1 1 1.00 (1) 0.00
2 1.00 (1) 0.00
3 1.00 (1) 0.00
4 1.00 (1) 0.00
5 0.02 (0) 0.98
6 0.00 (0) 1.00
7 0.00 (0) 1.00
8 0.01 (0) 0.99

2
(One outlier
time series)

1 1.00 (1) 0.00
2 1.00 (1) 0.00
3 1.00 (1) 0.00
4 0.99 (1) 0.01
5 0.00 (0) 1.00
6 0.02 (0) 0.98
7 0.00 (0) 1.00
8 0.00 (1) 0.99

Outlier 9 0.61 (1) 0.39
5
(one switching
time series)

1 1.00 0.00
2 1.00 0.00
3 1.00 0.00
4 1.00 0.00
5 0.00 1.00
6 0.00 1.00
7 0.00 1.00
8 0.00 1.00

Switching 9 0.50 0.50
6
(one outlier and one switching time series)

1 1.00 0.00
2 1.00 0.00
3 1.00 0.00
4 1.00 0.00
5 0.00 1.00
6 0.00 1.00
7 0.00 1.00
8 0.00 1.00

Switching outlier 9 0.57 0.43
10 0.66 0.34

Note: in brackets are reported the membership degrees for the crisp models AR-CCMdC and A
membership degrees for switching time series.
Adopting AR.FCMdC-Exp, it is interesting to note that cluster 1 is
characterized by urban stations, mainly located in residential areas
(Arenula, Cinecittà, L.go Magna Grecia, L.go Perestrello), while cluster
.

AR-FCMdC-NC AR-FCMdC-Exp

ter2 Cluster1 Cluster2 Noise cluster Cluster1 Cluster2

ui1 ui2 ui1 ui2

(0) 1.00 (1) 0.00 (0) 0.00 (0) 1.00 0.00
(0) 1.00 (1) 0.00 (0) 0.00 (0) 1.00 0.00
(0) 1.00 (1) 0.00 (0) 0.00 (0) 1.00 0.00
(0) 1.00 (1) 0.00 (0) 0.00 (0) 1.00 0.00
(1) 0.00 (0) 0.98 (1) 0.02 (0) 0.00 1.00
(1) 0.00 (0) 1.00 (1) 0.00 (0) 0.00 1.00
(1) 0.00 (0) 0.98 (1) 0.02 (0) 0.01 0.99
(1) 0.00 (0) 1.00 (1) 0.00 (0) 0.01 0.99
(0) 1.00 (1) 0.00 (0) 0.00 (0) 1.00 0.00
(0) 1.00 (1) 0.00 (0) 0.00 (0) 1.00 0.00
(0) 1.00 (1) 0.00 (0) 0.00 (0) 0.99 0.00
(0) 1.00 (1) 0.00 (0) 0.00 (0) 1.00 0.00
(1) 0.00 (0) 1.00 (1) 0.00 (0) 0.00 1.00
(1) 0.00 (0) 1.00 (1) 0.00 (0) 0.00 1.00
(1) 0.00 (0) 1.00 (1) 0.00 (0) 0.00 1.00
(1) 0.00 (0) 1.00 (1) 0.00 (0) 0.00 1.00
(0) 0.03 (0) 0.01 (0) 0.96 (1) 0.58 0.42

1.00 (1) 0.00 (0) 0.00 (0) 1.00 0.00
1.00 (1) 0.00 (0) 0.00 (0) 1.00 0.00
1.00 (1) 0.00 (0) 0.00 (0) 1.00 0.00
1.00 (1) 0.00 (0) 0.00 (0) 1.00 0.00
0.00 (0) 1.00 (1) 0.00 (0) 0.00 1.00
0.00 (0) 1.00 (1) 0.00 (0) 0.00 1.00
0.00 (0) 1.00 (1) 0.00 (0) 0.00 1.00
0.00 (0) 1.00 (1) 0.00 (0) 0.00 1.00
0.42 (0) 0.44 (1) 0.14 (0) 0.52 0.48
1.00 (1) 0.00 (0) 0.00 (0) 1.00 0.00
1.00 (1) 0.00 (0) 0.00 (0) 1.00 0.00
1.00 (1) 0.00 (0) 0.00 (0) 1.00 0.00
1.00 (1) 0.00 (0) 0.00 (0) 1.00 0.00
0.00 (0) 1.00 (1) 0.00 (0) 0.00 1.00
0.00 (0) 1.00 (1) 0.00 (0) 0.00 1.00
0.00 (0) 1.00 (1) 0.00 (0) 0.00 1.00
0.00 (0) 1.00 (1) 0.00 (0) 0.00 1.00
0.51 (1) 0.47 (0) 0.02 (0) 0.56 0.44
0.03 (0) 0.05 (0) 0.92 (1) 0.50 0.50

R-CCMdC-NC. Bold font indicates the higher membership degree of the time series or the



Table 4
Wilcoxon signed rank test directional hypothesis.

W p-value

AR-FCMdC-Exp vs.
AR-FCMdC-NC

117 0.0007

AR-FCMdC-Exp vs.
AR-FCMdC

120 0.0004

AR-FCMdC-Exp vs.
AR-CCMdC-NC

120 0.0004

AR-FCMdC-NC vs.
AR-FCMdC

110 0.0025

AR-FCMdC-NC vs.
AR-CCMdC-NC

120 0.0004

AR-FCMdC vs.
AR-CCMdC-NC

63 0.4435
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2 is characterized by non-urban stations (Castel di Guido, Ciampino,
Malagrotta and Tenuta del Cavaliere).

Overall, AR-FCMdC-Exp and AR-FCMdC-NC provide similar parti-
tions, but the partition obtained with AR-FCMdC-Exp seems to be
more interesting from a policy maker's point of view.

Finally, we compare AR-FCMdC-Exp model with some partitioning
procedures suggested in the literature on air pollution monitoring
which analyze the observed data set directly and not a proper model-
based parametric representation of the data: non hierarchical clustering
(k-means clustering) [34] and hierarchical agglomerative cluster analy-
sis, i.e. Ward [31], single linkage [46,59], average linkage [46,56,57] and
complete linkage [42,46,58].

For each method, the optimal partition is detected by means of the
silhouette criterion. Results are reported in the last fifth columns of
Table 7.

Hierarchical clustering method with single linkage, average linkage
and complete linkage fail to identify a substantive partition. Indeed, all
stations, but Castel di Guido are allocated into one cluster.

Moremeaningful results are obtained with hierarchical cluster anal-
ysis with Ward's method and with k-means. The partitions obtained
with these methods are similar, with the only exception of Villa Ada
which is allocated differently according to the method considered. No-
tice that the partitions obtained are of scarce interest from a policy
makers point of view. For instance, in cluster 1 grouped stations are lo-
cated in residential areas (Arenula, L.go Magna Grecia), stations in high
traffic areas (C.so Francia, Fermi, Tiburtina) and non urban stations
(Ciampino, Tenuta del Cavaliere). Moreover, applying these procedures
it is not possible to identify representative stations for each cluster, or
the presence of outliers.
Table 5
Results of the ADF test, the KPSS test and the Ljung–Box test for daily rates change in NO emis

Station ADF

1 ARENULA −13.809 (b2e−16)
2 BUFALOTTA −14.07 (b2e−16)
3 C.SO FRANCIA −12.505 (b2e−16)
4 CASTEL DI GUIDO −12.814 (b2e−16)
5 CIAMPINO −13.222 (b2e−16)
6 CINECITTA −12.418 (b2e−16)
7 CIPRO −13.559 (b2e−16)
8 FERMI −13.223 (b2e−16)
9L. GO MAGNA GRECIA −11.649 (b2e−16)
10L. GO PERESTRELLO −14.075 (b2e−16)
11 MALAGROTTA −14.345 (b2e−16)
12 TENUTA DEL.CAVALIERE −13.61 (b2e−16)
13 TIBURTINA −13.051 (b2e−16)
14 VILLA ADA −13.182 (b2e−16)

Note: in brackets are reported the p-values for the ADF and the Ljung–Box tests.
Critical values for the KPSS test without trend are:
0.347 (10%); 0.463 (5%); 0.574 (2.5%); 0.739 (1%).
Overall, the performances of robust fuzzy models are better than re-
sults obtained utilizing standard (non fuzzy) and non robust clustering
procedures based on hierarchical and partitioning around centroids
(e.g. k-means clustering) approaches.

In particular, our robust fuzzy clustering model is more appropriate
than standard procedures to analyze air quality data properly, inheriting
the features of the theoretical and methodological approaches adopted
in the clustering process.

6. Final remarks

In this paper, we have proposed a robust fuzzy clustering model for
time series. Furthermore, we have shown its performances by consider-
ing a simulation study and its empirical usefulness and effectiveness in
environmetrics by applying the AR-FCMdC-Exp model to air pollution
time series monitored by a set of stations.

From a theoretical point of view, the advantages of our AR-FCMdC-
Exp model are listed below.

1. It takes into account the dynamic information of the time series by
means of the most widely used parametric representation of the
time series, i.e. their autoregressive representation.

2. It inherits all the advantages of the partitioning around medoid
approach. In particular:

– It does not depend on the order in which the time series are present-
ed, except when equivalent solutions exist, which very rarely occurs
in practice (this is not the case for many other algorithms present in
literature [80].

– As opposed to C-means clustering and hierarchical clustering ap-
proaches, AR-FCMdC-Exp model assigns each observed time series
to the cluster represented by one of the selected representative
time series. Then each cluster is represented by an observed repre-
sentative time series and not by a fictitious representative time series
(e.g., mean time series). The possibility of obtaining non-fictitious
representative time series in the clusters is very appealing and useful
in a wide range of applications. This is very important for the inter-
pretation of the selected clusters. In fact, as affirmed by Kaufman
and Rousseeuw [80] “inmany clustering problems one is particularly
interested in a characterization of the clusters by means of typical or
representative objects [time series]. These are objects [time series]
that represent the various structural aspects of the set of objects
[time series] being investigated. There can be many reasons for
searching for representative objects [time series]. Not only can
these objects [time series] provide a characterization of the clusters,
but they can often be used for further work or research, especially
sions in Rome.

KPSS Q(10)

0.008 14.139 (0.078)
0.009 8.482 (0.205)
0.009 9.536 (0.146)
0.009 4.735 (0.578)
0.009 11.378 (0.181)
0.008 4.801 (0.441)
0.007 10.175 (0.253)
0.009 7.651 (0.468)
0.008 5.890 (0.436)
0.008 3.901 (0.866)
0.009 8.887 (0.352)
0.008 4.093 (0.769)
0.008 3.078 (0.688)
0.008 5.854 (0.664)



Fig. 4. Daily rates change of NO emissions in Rome: (a) raw data, (b) transformed data.
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Table 6
Estimated coefficients of ARMA(p,q) processes for daily rates change in NO emissions in Rome.

Station AR(1) AR(2) AR(3) MA(1) MA(2) MA(3) MA(4) MA(5)

1 ARENULA 0.446 (0.054) – – −0.966 (0.020) – – – –

2 BUFALOTTA −0.480 (0.186) – – 0.033 (0.180) −0.446 (0.101) −0.317 (0.065) – –

3 C.SO FRANCIA 0.546 (0.054) −0.067 (0.059) 0.138 (0.054) −0.991 (0.017) – – – –

4 CASTEL DI GUIDO −0.644 (0.059) 0.263 (0.058) – 0.058 (0.025) −0.915 (0.025) – – –

5 CIAMPINO – – – −0.535 (0.047) −0.369 (0.046) – – –

6 CINECITTA – – – −0.525 (0.052) −0.282 (0.058) −0.061 (0.061) 0.081 (0.064) −0.135 (0.054)
7 CIPRO – – – −0.546 (0.048) −0.333 (0.050) – – –

8 FERMI 0.386 (0.076) – – −0.893 (0.045) – – – –

9 L.GO MAGNA GRECIA −0.569 (0.058) 0.373 (0.058) – 0.030 (0.040) −0.965 (0.040) – – –

10 L.GO PERESTRELLO 0.415 (0.057) – – −0.961 (0.023) – – – –

11 MALAGROTTA – – – −0.62 (0.048) −0.277 (0.047) – – –

12 TENUTA DEL.CAVALIERE 0.183 (0.122) – – −0.583 (0.119) −0.336 (0.099) – – –

13 TIBURTINA – – – −0.432 (0.052) −0.314 (0.056) −0.144 (0.060) 0.101 (0.058) −0.135 (0.051)
14 VILLA ADA 0.426 (0.053) – – −0.965 (0.018) – – – –

Note: in brackets are reported the standard errors of the estimated coefficients of the ARMA(p,q).
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when it is more economical or convenient to use a small set of k
objects [C time series in our case] instead of the large set one started
off with”.

– It is more robust than C-means clustering method and Euclidean-
based hierarchical clustering in the presence of noise and outliers be-
cause a medoid is less influenced by outliers or other extreme values
than a centroid. Then, the objective chosen in our clustering ap-
proach is appealing because it is more robust then the error sum of
squares employed in most methods [80,85,86]. Notice that, as stated
by Garcia-Escudero and Gordaliza [87,88] the methods based on the
partitioning around medoids procedure provide only a timid
robustification of the C-means clusteringmethod; then they alleviate
the negative effects of the presence of outliers in the dataset but do
not solve the problem. However, as we point out below (point 4),
our model is robust (and not slightly robust) because in addition
we consider a robust metric in the clustering process.

3. It inherits the computational properties and the other advantages of
the fuzzy approach. For instance, it captures the switching or drifting
nature of some time series in the clustering process.

4. It is robust, i.e. it is able to tolerate the presence of outlier time series
in the clustering partition. In fact, by using a suitable robustmetric in
the clustering process, the AR-FCMdC-Expmodel is able to neutralize
and smooth the disruptive effect of outlier time series, preserving the
original clustering structure of the dataset by assigning to outliers
almost the same membership degree to clusters.
Table 7
Membership degrees for the fuzzy clustering models and indices of cluster membership for cri

Station
no.

AR-FMdC AR-FMdC-NC AR-FMdC-Ex

Cluster
1 with
medoid
1

Cluster
2 with
medoid
7

Cluster
3 with
medoid
13

Cluster
1 with
medoid
14

Cluster
2 with
medoid
7

Cluster
3 with
medoid
6

Noise
cluster

Cluster
1 with
medoid
10

Cl
m

1 1.000 0.000 0.000 1.000 0.000 0.000 0.000 0.989 0.
2 0.023 0.907 0.071 0.013 0.575 0.050 0.361 0.002 0.
3 0.535 0.131 0.334 0.016 0.004 0.009 0.970 0.334 0.
4 0.018 0.917 0.065 0.016 0.803 0.116 0.065 0.042 0.
5 0.028 0.852 0.120 0.023 0.669 0.254 0.054 0.000 1.
6 0.018 0.003 0.979 0.000 0.000 1.000 0.000 0.795 0.
7 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.042 0.
8 0.019 0.923 0.058 0.012 0.649 0.048 0.290 0.000 0.
9 0.881 0.010 0.109 0.768 0.008 0.074 0.150 0.750 0.
10 0.873 0.002 0.126 0.872 0.001 0.122 0.005 1.000 0.
11 0.006 0.975 0.019 0.006 0.928 0.042 0.025 0.005 0.
12 0.041 0.576 0.383 0.028 0.408 0.509 0.056 0.051 0.
13 0.000 0.000 1.000 0.020 0.002 0.974 0.004 0.864 0.
14 1.000 0.000 0.000 1.000 0.000 0.000 0.000 0.992 0.

Note: Bold font indicates maximal membership degrees of the time series. Italics font indicates
(a): in the column the cluster indices are reported.
From an empirical point of view, in particular in air pollution moni-
toring studies, the benefits connected to the utilization of AR-FCMdC-
Exp model are shown in the following.

1. Using the autoregressive representation of the air pollution time se-
ries, we are able to analyze awide class of environmental time series.
In fact, in the literature, this assumption is often made for air pollu-
tion time series (see, e.g., [2,3,89–91]).

2. In the literature on air qualitymonitoring, inmany papers the uncer-
tainty is not properly quantified in the clustering process. However,
various researchers note the importance of defying a suitable mea-
sure of uncertainty. As pointed out by Pastres et al. [33] this issue
could be relevant when deciding to redesign a monitoring network,
since the location of ‘uncertain’ sites may be considered when estab-
lishing the boundaries between homogeneous areas. By adopting a
fuzzy approach for clustering the air pollution time series monitored
by a set of stations, our model is able to quantify the uncertainty
-formalized in a fuzzy manner- in the assignment process of the
monitoring stations to the clusters by means of the membership
degrees.

3. By adopting the partitioning aroundmedoids approach, we have a set
of prototype (medoid) air pollutionmonitoring stations, representing
for each cluster the monitoring stations with high membership
degrees to the same cluster. In thisway,we can obtain useful informa-
tion on the possible redundancy/efficiency of the air pollution
sp methods.

p Crisp Hierarchical clusteringa

uster 2 with
edoid 5

Cluster 3 with
Medoid 8

Ward's
method

Single
linkage

Average
linkage

Complete
linkage

k-
meansa

007 0.003 1 1 1 1 1
003 0.996 1 1 1 1 1
333 0.333 1 1 1 1 1
915 0.042 2 2 2 2 2
000 0.000 1 1 1 1 1
185 0.020 3 3 1 1 1
779 0.179 1 1 1 1 1
000 1.000 1 1 1 1 1
147 0.104 1 1 1 1 1
000 0.000 3 3 1 1 1
990 0.005 2 2 1 1 1
921 0.029 1 1 1 1 1
111 0.025 1 1 1 1 1
006 0.003 3 2 1 1 1

the membership degree for switching time series.



Fig. 5. Box plots of the parameter of the AR(k) processes of daily changes of NO emissions.
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monitoring network. In fact, as stated by Ignaccolo et al. [32], the
partitioning around medoids approach “provides representative ob-
jects for each cluster which gives policy makers real sites to look at
in order to quickly monitor general trends in a region”. Furthermore,
“while k-means algorithm provides centroids that show concentra-
tion levels and temporal trends for obtained clusters, PAM [Partition
Around Medoids] is based on the search for k representative objects
(called medoids) in the dataset, and groups are defined around
them. Representative objects are useful for policy makers since they
are an efficient support for identifying summaries in their regional
reports.” [32].

4. Since our clusteringmodel is robust, it is able to tolerate the presence
of outlier air pollution time series in the clustering process. In this
way,we can neutralize the disruptive effects in the clusteringprocess
of monitoring stations characterized by anomalous dynamic behav-
iors of the air pollution time series. In this way, the optimal partition
of the monitoring stations is not affected by anomalous dynamic
behavior of some air pollution time series.

In future, we will investigate possible theoretical developments of
our clustering model and its usefulness and effectiveness in other
chemometrical areas.

As a final remark, since publicly accessible resources (like data
analysis packages or user friendly web-servers [92,93]) represent
the future direction for developing more useful classifiers, models,
or predictors, we are currently working on an R package that will
be freely downloadable.
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