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Abstract

The paper investigates the dynamic behavior of a spacecraft when a single magnetic torque-rod is used for
achieving a pure spin condition by means of the so-called Y-dot control law. Global asymptotic convergence
to a pure spin condition is proven on analytical grounds when the dipole moment is proportional to the rate
of variation of the component of the magnetic field along the desired spin axis. Convergence of the spin
axis towards the orbit normal is then explained by estimating the average magnetic control torque over one
orbit. The validity of the analytical results, based on some simplifying assumptions and approximations, is
finally investigated by means of numerical simulation for a fully nonlinear attitude dynamic model, featuring
a tilted dipole model for Earth’s magnetic field. The analysis aims to support, in the framework of a sound
mathematical basis, the development of effective control laws in realistic mission scenarios. Results are
presented and discussed for relevant test cases.
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1. Introduction

This paper deals with magnetic control of small spacecraft based on the so-called Y-dot control law.
The case of spacecraft with arbitrary inertia tensor using a single magnetic torque-rod for detumbling is
considered and the analysis is focused on the property of generalized exponential asymptotic stability in
variations (GEASV) of the pure-spin equilibrium points. Also, the mechanism of the alignment of the spin
axis to the orbit normal in a general geomagnetic field is explained in physical terms, and proved analytically.
As a further contribution, a comprehensive numerical study is performed in order to evaluate the relationship
between the value of the (uncontrolled) final pure-spin rate, on one side, and spacecraft initial rotational
energy and inertia tensor on the other one.

In the framework of small satellite, magnetic control has been increasingly gaining in popularity. Ease
of design, absence of moving parts, low mass, and need for renewable-only electrical power to operate make
magnetic actuator quite appealing for space applications (especially for low Earth orbit missions where the
magnitude of the magnetic field is stronger). As a drawback, magnetic-only controlled system are inherently
underactuated, as no torque can be produced along the direction of the instantaneous local magnetic field
vector. In this respect, practical control solutions exploit the variability of the geomagnetic field as sensed
by the spacecraft, which primarily depends on spacecraft attitude dynamics and orbital motion. Magnetic
control proved to be a viable solution for a variety of mission tasks, spanning from (coarse) full attitude
stabilization [1, 2], reaction or momentum bias wheels desaturation [3], to initial detumbling after spacecraft
separation [4]. The latter application is considered in the present study.
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The detumbling phase is crucial for small spacecraft, which are often launched as a secondary payload
(aside a more important/expensive payload) and released at an unknown, and often high, tumbling rate. A
reliable, rapid, and cost-effective reduction of the angular rate below a given threshold is commonly required
prior to the deployment of solar arrays, when present, as well as any other mission-related task (such as Sun
acquisition, initial attitude determination, Earth pointing, etc.).

Magnetic detumbling of a spacecraft may be attained by means of simple command laws such as the
B-dot controller [4]. The B-dot command law allows one to drive the initial angular velocity to (almost)
zero, without requiring attitude or rate information. Only measurements of the Earth magnetic field are
required. Theoretical [5] and practical [6] aspects of this controller has been extensively studied, proving
the viability of the approach and estimating its expected performance.

Several variants of the B-dot controller have been proposed over the last few years. Many of them aim
to drive the spacecraft towards a non-zero angular velocity, where a final spinning condition allows one to
reduce thermal loads, by avoiding prolonged exposition of the Sun-facing side to solar radiation. In other
cases, a residual spinning motion is required to preserve a certain amount of angular momentum necessary
to spin up the momentum wheel that provides gyroscopic stabilization [7].

In the present paper, a single-axis B-dot control law, also known as β-dot or Y-dot command law (due
to the fact that the pitch, y, axis is the most common choice as commanded axis) is considered. By using
a single magnetic torque-rod this controller (usually adopted in conjunction to a spin-rate controller, which
makes use of an additional orthogonally-placed magnetic torque-rod) can reduce the initial tumbling rate,
eventually steering the satellite either towards a pure spin condition around one of its principal axes of
inertia or to an almost zero residual angular rate. Its effectiveness was demonstrated through simulations
before being successfully applied in several missions, such as SNAP-1 [8], FalconSAT-3 [9], UoSAT-12 [10],
Alsat-1 [11], and SUMBANDILASAT [12].

Despite the conceptual simplicity of a Y-dot controller, a rigorous analysis of closed-loop system dy-
namics, characterizing the properties of the resulting motion (e.g. global asymptotic convergence towards
a terminal pure-spin condition, spin-axis direction with respect to the orbit frame, etc.), is far from trivial.
Nevertheless, such an analysis is necessary for supporting a mathematically sound approach to the synthesis
of a control system which guarantees adequate performance in an realistic mission scenario.

This subject was recently investigated in [13], where the actions of both B-dot and Y-dot controllers
were considered within a simplified, “circular”, geomagnetic field model. Under the assumptions that (i)
magnetic induction vector describes a circular cone in the orbit frame (rather than an elliptical one, as
it results from the widely used tilted dipole model [14]), and (ii) the spacecraft is an axi-symmetric rigid
body, an averaging technique allowed for an elegant analytical derivation of relevant controller properties.
A further numerical analysis, which retains the same simplifying assumptions on the geomagnetic field, was
presented in [15].

The present paper aims at generalizing these results, by proving global asymptotic convergence to a
pure spin state for the Y-dot control law even in the case of a tri-inertial spacecraft and without further
assumptions on the geomagnetic field model. A variational system approach [16] to the stability analysis
of nonlinear systems is pursued. The equations of motion for system dynamics are recast in the form of a
nominal system perturbed by a vanishing perturbation term. Global exponential asymptotic stability (EAS)
of the origin for the nominal system is proven first. Robustness of the stability of the nominal system is
then invoked in order to derive generalized exponential asymptotic stability in variations (GEASV) of the
perturbed system [17]. The inertial position of the spin axis is also considered, proving that, under the
assumptions valid for a tilted-dipole geomagnetic field model, the Y-dot control law eventually aligns the
spin axis with the direction normal to the orbit plane, regardless of the initial condition. The convergence
of the spin axis towards the orbit normal is proven by estimating the average magnetic control torque over
one orbit.

The study is completed by a detailed numerical analysis of the spacecraft pure-spin final state as a func-
tion of the initial tumbling motion and spacecraft mass distribution, assuming that no control is performed
other than the Y-dot (i.e., using only one magnetic torque-rod). In particular, the relationship between final
pitch rate, initial spacecraft rotational energy, and spacecraft inertia matrix is analyzed, identifying those
conditions that may lead to a complete detumbling of the spacecraft, which is quite a relevant feature for the
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practical application of this command law. An insightful explanation is proposed in terms of polhode curves
and energy-dissipation. It is also proven that the adopted control law aligns spacecraft angular velocity
vector to the direction opposite to the orbit angular rate, so that the pitch axis becomes parallel to the orbit
normal, for a positive asymptotic value of the pitch rate, or points in the opposite direction, for a negative
pitch rate.

The article is organized as follows: a quick outline of system dynamics and of the Y-dot control law
is provided in Section 2. After a review of a few relevant nonlinear system stability theorems, a proof for
the stability of the pure spin condition around the pitch axis is given in Section 3. The validity of the
results, together with expected performance from the control approach are extensively tested and discussed
by means of numerical simulation, discussed in Section 4. A section of conclusions ends the paper.

2. Problem Statement

2.1. System dynamics

Spacecraft dynamics, expressed in terms of angular momentum in a set of principal axes of inertia,
FB = {P ; ê1, ê2, ê3}, centered in the spacecraft center of mass P , is described by the equation

I ω̇ = M − ω × I ω (1)

where ω = (ω1, ω2, ω3)T is the absolute angular velocity vector, and I = diag(J1, J2, J3) is the spacecraft
inertia matrix.

An orbital reference frame, FO = {P ; ô1, ô2, ô3}, is also introduced, centered in the spacecraft center of
mass P , such that the ô3 unit vector lies along the local vertical, towards the center of the Earth, the ô2

unit vector is normal to the orbit plane, in a direction opposite to the orbital angular speed ωorb, and the
transverse axis ô1 completes a right-handed triad, in the direction of the orbital velocity, when the orbit
is circular. A circular low Earth orbit of radius rc, period Torb, and orbit rate Ω = ‖ωorb‖ = 2π/Torb is
considered. Satellite attitude with respect to the orbit frame FO is represented by means of a unit quaternion
Q = (qT , q̄)T [18], which evolves as a function of the relative angular speed ωr = ω − TBO ωorbO , where
ωorbO = (0,−Ω, 0)T is the angular speed of FO with respect to an inertial frame and TBO is the coordinate
transformation matrix between FO and FB . The geometry of the problem is sketched in Fig. 1.

b!
o1!
e1!

o3!

e3!

o2!

e2!

o3!

e2!
!"

P!

#orb!

^!

^!
^!^!

^!

^!

Figure 1: Geometry of the problem.
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No external disturbance is considered in the analysis, so that the only external torque acting on the
spacecraft is the magnetic control torque, M = m × b, where m is the magnetic dipole moment vector
generated by the coils, b = TBO bO is the local geomagnetic field vector expressed in terms of body-frame
components, bO is the geomagnetic field vector expressed in the orbit frame. For a circular orbit, Earth
geomagnetic field can be approximated by a tilted magnetic dipole of moment M⊕ = 7.8379× 106 T km3,
with a tilt angle γm = 11.44 deg with respect to the polar axis [14]. Its components can be expressed in FO
as in [3]:

bO =
M⊕

r3c

 sin ξm cos(Ω t− ηm)
− cos ξm

2 sin ξm sin(Ω t− ηm)

 (2)

where
cos ξm = cos i cos γm + sin i sin γm cosβ′m

sin ηm sin ξm = − sin γm sinβ′m

cos ηm sin ξm = sin i cos γm − cos i sin γm cosβ′m

β′m = βm + ωe t− Ωan

In these equations, i is the orbit inclination, Ω is the orbit rate, ωe is the Earth spin rate around its polar
axis, Ωan is the ascending node of the spacecraft orbit, and βm is the initial value of the angle between the
vernal equinox and the line of intersection of the equatorial plane with the geomagnetic equator. The angle
ξm represents the inclination of spacecraft orbit relative to the geomagnetic equatorial plane, and ηm is the
angle between the ascending node relative to the Earth’s equator and the ascending node relative to the
geomagnetic equator.

2.2. The Y-dot control law

As anticipated in the previous section, the Y-dot control law is obtained as a reduced (single-axis)
version of the B-dot control law, that is, by activating only the magnetic coil aligned with the pitch axis and
commanding a dipole moment proportional to the time derivative of the pitch component of the magnetic
field sensed in the body reference frame. Therefore, the control dipole moment is given by

m = −ky ḃ2ê2 (3)

where ky is a control gain and ê2 is the unit vector aligned to the pitch axis.
A variant of the considered command law, named β-dot, is proposed in [10], where the dipole moment

is proportional to the rate of variation of the angle between the direction of the magnetic field and that of
the pitch axis, β = cos−1(b2/‖b‖). The magnetic dipole moment in this case is equal to

m = kβ β̇ê2 (4)

However, the use of an inverse cosine function poses an obstacle for the derivation of a formal proof of
stability, provided that the expression of β̇ becomes singular when β → 0, π. For this reason, in what
follows, only the formulation of the Y-dot control law expressed in Eq. (3) will be considered.

3. Convergence/Stability analysis of the Y-dot control law

3.1. Relevant results from nonlinear control theory

This section recalls some useful results from nonlinear system theory, with particular attention on defi-
nitions and theorems from the method of variational system for the analysis of stability of nonlinear non-
autonomous system [19, 20].

Consider the nonlinear differential system ẋ = f(t,x), with x(0) = x0. Let Φ(t, t0,x0) = ∂ x(t, t0,x0)/∂ x0

be the fundamental matrix, solution of the variational system ż = fx(t, t0, x0)z, which is the identity matrix
for t = t0, such that x(t, t0,x0) = Φ(t, t0,x0)x0. The following stability definitions are introduced
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Definition 1 The solution x = 0 of the system ẋ = f(t,x) is said to be

1. exponentially asymptotically stable (EAS) if there exist constants K > 0, c > 0 such that

‖x (t, t0,x0)‖ ≤ K ‖x0‖ e−c(t−t0) (5)

2. uniformly stable in variation if there exists a constant M such that

‖Φ(t, t0,x0)‖ ≤M ∀ t > t0, and ‖x0‖ <∞ (6)

3. exponentially stable in variation if there exist two constants K > 0, α > 0 such that

‖Φ(t, t0,x0)‖ ≤ Ke−αt ∀ t ≥ t0 ≥ 0, and ‖x0‖ <∞ (7)

4. generalized exponentially asymptotically stable in variation (GEASV) if

‖Φ(t, t0,x0)‖ ≤ K(t) e p(t0)−p(t) ∀ t ≥ t0 ≥ 0, and ‖x0‖ <∞ (8)

where K > 0 is continuous on R+, and p ∈ C(R+), p(0) = 0, is strictly increasing in t ∈ R+.

If the constants do not depend on the initial condition, x0, the stability property is said to be global.

As the reader may notice, the stability in variation is defined over the norm of the fundamental matrix
Φ(t, t0, x0), with the corresponding (Lyapunov) stability being defined over the norm of the solution, or more
precisely on the ratio ‖x(t, t0, x0)‖ / ‖x0‖. The stability in variation of an equilibrium point always implies
the corresponding (Lyapunov) stability, e.g., asymptotic stability in variation (ASV) implies asymptotic
stability (AS), and so on. The converse implication is, in general, false. As a result, the condition of
stability in variation appears somehow stronger than the corresponding (Lyapunov) stability. Implications
across different types of stability are well documented in [19]. Indeed, for linear systems, the two definitions
of stability and stability in variations coincide. A relevant, non-trivial, case is represented by the equivalence
between EASV and EAS for linear time-varying systems, which is proven in Theorem 4.11 of [21].

Two theorems invoked in the derivation of the stability proof of the Y-dot control law are recalled below.

Theorem 1 Given the linear time-varying perturbed system ẋ = A(t)x + g(t,x), let the origin x = 0
be an exponentially stable solution of the nominal system ẋ = A(t)x, and the perturbed term satisfies the
inequality ‖g(t,x)‖ ≤ ϕ̄ ‖x‖, ϕ̄ > 0, t ≥ t0 ≥ 0, ‖x‖ < ∞. Then every solution of the perturbed system is
GEASV.

Theorem 2 Consider a nonlinear non-autonomous dynamic system ẋ = f(t,x), where f : Rn×R→ Rn is
piecewise continuous in t and Lipschitz in x. Let x = 0 be an equilibrium point for the system at t = 0. Also
assume that a strictly positive definite Lyapunov-like function V (x) > 0 exists, where (i) V : Rn → R is a
smooth scalar function of the state x only and (ii) its gradient vanishes at the origin only, that is, ∇xV = 0
at x = 0 and ∇xV 6= 0 elsewhere. If the Lyapunov-like function V (x) and its time derivative V̇ (t,x) satisfy
the conditions:

1. k1 ||x||c ≤ V (x) ≤ k2 ||x||c k1 > 0, k2 > 0, c > 0;

2. V̇ is negative semi-definite, that is, V̇ (t,x) ≤ 0;

3. V̇ is uniformly continuous;

4. the iso-surfaces S of V (x) in the state space Rn do not contain any integral curves x(t) of the vector
field f other than the constant ones (x(t) = xe, ∀t);

then the state converges to one of the (at least locally) stable equilibria. If the origin is the only equilibrium,
it is globally exponentially stable.
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These theorems, proven in [7], stem from the nonlinear system dynamics theory and are of general
validity. They are here recalled as their application to the problem under investigation is straightforward.
More specifically, Theorem 1 provides conditions such that GEASV of a linear time-varying perturbed
system is guaranteed if the origin of the nominal system is globally exponentially asymptotically stable. In
its proof use is made of the linearity of the nominal system to demonstrate that it is GEASV. Theorem
3.8 from [17] concerning the robustness of the generalized exponential stability in variation of the nominal
system under vanishing perturbation is then applied. At the same time, Theorem 2 poses conditions for
global exponential stability of the origin for a specific class of nonlinear, non-autonomous systems. Its proof
was derived by applying Theorem 8.5 from [21].

3.2. Acquisition of a pure spin condition around the pitch axis

The purpose of this section is to prove that the Y-dot control law, Eq. (3), drives the spacecraft towards
a terminal condition of pure-spin about the pitch axis, that is, the final angular velocity matches the form
ω = (0, ω2, 0), for some constant ω2 ∈ R, which depends on initial conditions.

During the initial phase of the detumbling maneuver it is possible to assume ‖ω‖ � Ω, and ḃ ≈ −ω× b.
This implies that the second component of ḃ in Eq. (3) can be expressed as ḃ2 ≈ b3 ω1 − b1 ω3.

Consequently the command torque M = m× b is given by

M = −ky

 b23 0 −b1b3
0 0 0

−b1b3 0 b21

 ω1

ω2

ω3

 (9)

Obviously, no torque is produced along the body pitch (y) axis ê2.
In order to prove that first and third components of the angular velocity tend to vanish under the Y-dot

control law, let us study the stability of the origin of the reduced dynamic system obtained by selecting the

first and third rows of the full spacecraft attitude dynamics. By applying a selection matrix S =
[
ê1 ê3

]T
to Eq. (1), one obtains

I13 ω̇
? = −ky P ?(t)ω? − S[ω × ( I ω)] (10)

where ω? = (ω1, ω3)T is the vector containing the roll (x) and yaw (z) angular rates, and the reduced torque
is defined as M? = SM = −kyP ?ω?, with

P ?(t) =

[
b23 −b1b3
−b1b3 b21

]
(11)

The system in the form of Eq. (10) matches the classical linear time-varying perturbed system structure
required by Theorem 1, namely

ω̇? = A(t)ω? + g(t,ω?) (12)

where the time-varying matrix

A(t) = −ky I−113 P ?(t) = −ky I−113

[
b23 −b1b3
−b1b3 b21

]
(13)

governs the nominal system, and

g(t,ω?) = −I−113 S[ω × (I ω)] = ω2

[
0 (J3 − J2)

(J1 − J2) 0

] (
ω1

ω3

)
(14)

is a vanishing perturbation term.
Global exponential stability of the origin ω? = 0 for the nominal system

ω̇? = A(t)ω? (15)
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can be proved by means of Theorem 2. In particular, the Lyapunov candidate function V

V (ω?) = 1/2ω? T I13 ω
? (16)

with time derivative V̇

V̇ (ω?) = −kyω? TP ?(t)ω? (17)

clearly satisfies Conditions 1, 2, and 3 of the Theorem.
Condition 4 requires that the iso-surfaces S of V (ω?) = (1/2)(J1ω

2
1 + J3ω

2
3) = C, with C > 0 a positive

constant, do not contain solutions ω?(t) of Eq. (15), other than constant ones. This can be proven by
noting that, taking the time derivative of V , one gets V̇ = J1ω1ω̇1 + J3ω3ω̇3 = 0. Upon substitution of the
expressions of the components of ω̇? from Eq. (15), the equation V̇ = 0 holds if

ky(b3ω1 − b1ω3)2 = 0 (18)

that is, if ω?(t) = Ω?(t)Sb(t) = Ω?(t) (b1(t), b3(t))T , with Ω?(t) = ‖ω?(t)‖. If this tentative solution is
substituted in Eq. (15), one gets ω̇1 = ω̇3 = 0, that is, only constant solutions for the state vector of the
nominal system are expected, and Condition 4 is satisfied.

For proving global exponential stability, it is also necessary to show that the origin is the only admissible
equilibrium for Eq. (15), when the variation of the elements of A(t) follows a physically admissible pattern.
Beside the origin ω? = (0, 0), which is a fixed point for any value of b1(t) and b3(t), the nominal LTV system
represented by Eq. (15) has two more equilibria:

(a) ω? = (ω̃1, 0) if b3(t) ≡ 0, for any value of b1(t) and ω̃1 ∈ R

(b) ω? = (0, ω̃3) if b1(t) ≡ 0, for any value of b3(t) and ω̃3 ∈ R

It is possible to show that neither of them is physically admissible. The equilibrium (a) is discussed,
but the same argument applies to (b). The equilibrium (a) refers to the cases of a satellite in a pure spin
motion about axis ê1, which is parallel to the magnetic field vector b. In this circumstance, the angular
velocity component ω3 and the component b3 of the geomagnetic vector in FB should simultaneously remain
identically zero over time. However, due to the orbital motion, the direction of the geomagnetic field acting
on the spacecraft changes with time, whereas the angular velocity vector (which in case of pure spin motion
is parallel to the angular momentum) is inertially fixed. Consequently, the condition for the existence of
equilibrium (a) or (b) cannot be maintained. This implies that the origin ω? = (0, 0) is the only physically
admissible equilibrium for Eq. (15), and by means of Theorem 2 global exponential stability is proven.

One can easily show that the perturbation term of Eq. (12), written in Eq. (14), satisfies the condition
‖g(t,ω?)‖ ≤ ϕ̄ ‖ω?‖, t ≥ t0 ≥ 0, ‖ω?‖ <∞ of Theorem 1. The last inequality holds if one chooses

ϕ̄ =
√

(2T 0/J2) | (J3 − J2) (J2 − J1) | (19)

where T0 is the initial rotational kinetic energy
First, note that the ω2 angular rate remains bounded during the maneuver: the rotational kinetic energy

T = (1/2)ωT Iω is a non-increasing quantity under the action of the Y-dot control law, with its time
derivative

Ṫ = ωTM = −kyωT
 b23 0 −b1b3

0 0 0
−b1b3 0 b21

 ω (20)

being a semi-definite negative quadratic form. Therefore, the maximum absolute value of ω2 is bounded by
the value corresponding to a pure spin rotation about the y axis, evaluated for the initial rotational energy,
that is, ‖ω2‖ ≤

√
2T0/J2. Moreover, the matrix between square brackets in Eq. (14) is a constant term,
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with spectral norm equal to (| (J3 − J2) (J2 − J1) |)1/2. Thus, as all hypoteses of Theorem 1 are verified, the
equilibrium point ω? = 0 is proven to be GEASV.

Remark 1: The previous demonstration proves the stability of the origin for the reduced angular rate in
the {ω1, ω3} space. In the ω2 subspace, the solution is only locally stable, as confirmed by an elementary
linear stability analysis.

Remark 2: The command law, as expressed in Eq. (3), will cause the spacecraft to converge towards
a pure spin condition around the pitch axis, where the asymptotic value of ω2 can be different from zero.
In this case the residual kinetic energy is entirely transferred to the pitch axis. The value of the spin
rate at convergence is not controlled and, in general, the result discussed above also allows for a complete
detumbling, in those cases when the entire initial kinetic energy is dissipated and, as a consequence, also ω2

converges to zero.

Remark 3: Provided that the presence of time-varying roll and yaw rates induces dissipation, which in
turn reduces the final pitch rate, when present, it is possible to deduce that, in those cases when the control
axis is not a principal axis of inertia the condition ω =

(
0, ω2, 0

)
is not an equilibrium point. The gyroscopic

coupling term remains non-zero, thus preventing the spacecraft from reaching a pure spin condition around
the y axis. In case of a minor misalignment between the control axis and a principal axis of inertia, the final
spin rate is expected to become significantly small in the long run, and possibly to completely vanish when
the misalignment becomes more significant, and the corresponding cross-coupling term more severe.

3.3. Spin axis alignment with orbit normal

Once a pure spin condition around the y-axis is obtained, the angular velocity vector, ω, and the angular
momentum vector, h, are parallel to the desired spin axis, ê2, which points along an inertially fixed direction,
in the absence of external torques. In general, this direction forms an angle γ with the direction normal to
the orbit plane, ô2. When the Y-dot control law is maintained active after the pure spin condition around
ê2 is achieved, the angle γ slowly decreases, until the spin axis becomes parallel to ô2. This long-term effect,
already observed in [8] and [9], can be explained as follows.

Assume that ê02 is the direction of the spin axis at a given time instant t0, after the pure spin condition
is acquired. It is possible to define an inertially fixed auxiliary frame F∗O = {P ; ô∗1, ô2, ô

∗
3}, where ô∗3 =

ê02 × ô2/‖ê02 × ô2‖ and ô1 = ô2 × ô3 completes a right-handed triad (Fig. 2). Note that ô∗1 is directed as
the projection of ê02 on the orbit plane.

Following the notation introduced in Fig. 2, the components of the spin axis and of the geomagnetic
vector in F∗O are given by

ê2 =(sin γ cos τ,− cos γ, sin γ sin τ)T (21)

b =‖b‖(sin δ cosσ,− cos δ, sin δ sinσ)T (22)

where γ, τ are spherical coordinates used to express ê2 components in the orbital frame FO and ‖b‖ is the

intensity of the geomagnetic field. The unit vector b̂ rotates around the orbit normal during one revolution.
The angle σ thus undergoes a variation of 4π over one orbit, in the inertially fixed frame F∗O, whereas
the variation of δ remains bounded, when b follows the surface of an elliptical cone, as described by the
geomagnetic model of Eq. (2). Provided that in this phase the magnetic torque delivered by the Y-dot
control law is small, it is possible to assume that the variation of the direction of the angular momentum
vector h, which is almost exactly parallel to ê2, is slow. Over one orbit after t0, the angle τ remains close
to zero, and

ê2 ≈ (sin γ,− cos γ, 0)T (23)

The magnetic dipole moment is proportional to the time derivative of b̂2, where b̂2 = b̂
T
ê2 = sin δ cosσ sin γ+

cos δ cos γ. If γ̇, δ̇ � σ̇ = O(2Ω), it is possible to approximate ḃ2 as

˙̂
b2 ≈ −σ̇ sin δ sinσ sin γ (24)
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Figure 2: Sketch of the geometry for the alignment problem.

Taking into account Eqs. (22), (23), and (24), the control torque M = −(ky
˙̂
b2)(ê2× b̂) can be expressed

in terms of component in F∗O as

M = ky σ̇

 − sin γ cos γ sin2 δ sin2 σ
− sin2 γ sin2 δ sin2 σ

− sin2 γ sin δ cos δ sinσ + sin γ cos γ sin2 δ sinσ cosσ

 (25)

Provided that the Y-dot control low asymptotically drives the spacecraft towards a pure spin condition
around ê2 on a relatively fast time-scale, maintaining this condition afterwords (see the proof of stability in
the previous subsection), any variation ∆h of the angular momentum h can be interpreted as a rotation of
ê2. The value of ∆h over one orbit can be obtained by integrating the command torque over one orbital
period, that is, it is proportional to the average value of the command torque over two rotations of b̂ around
the direction −ô2 in F∗O, which corresponds to a 4π variation of σ.

From Eq. (25), the first component of M , M1 ∝ − cos γ sin2 σ provides a negative increment for the
first component of ∆h in FO when 0 < γ < π/2, whereas M2 ∝ − sin2 γ sin2 σ always provides a negative
increment, independent of the value of γ. Conversely, the third component M3 of the magnetic control
torque has a zero average, at least within the validity of the approximations assumed in this derivation.
These considerations allow for inferring the following conclusions:

1. The angular momentum vector remains close to the plane identified by the orbit normal and ê2 at the
initial time t0, that is, the angle τ is expected to vary on a very slow timescale;

2. The variations of the first and second components of h indicate that the spin axis ê2 slowly rotates
towards the orbit normal, provided that its component along ô∗2 is constantly reduced, and it is thus
expected to achieve increasingly negative values, whereas that along ô1 increases if γ > π/2, or it
decreases when γ < π/2.

Note that in this discussion, the initial direction of the spin axis ê2 is assumed parallel to that of the
angular speed and angular momentum vector at the initial time, where ω = Ωê2, being Ω the spin rate.
When the final spin rate is negative, the spin axis ê2 will be driven by the Y-dot command law in the
opposite direction, asymptotically converging towards an angle γ = π. These conclusions will be validated
by the simulations discussed in the next section.
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Table 1: Spacecraft data

Parameter Symbol Value Units

Mass distribution
Maximum moment of inertia Jmax 1.60 kg m2

Intermediate moment of inertia Jint 1.15 kg m2

Minimum moment of inertia Jmin 1.05 kg m2

Control
Maximum dipole moment mmax 3.15 A m2

Reference control gain ky 8.3 · 106 A m2 s/T

4. Results and Discussion

4.1. Spacecraft response under Y -dot control law

In this section, the validity of the analytical results derived in Section 3, which rely on some simplifying
assumptions and approximations, is investigated by means of numerical simulation for a fully nonlinear
attitude dynamics model, featuring a tilted dipole model for Earth’s magnetic field. The Y-dot control law
is implemented as in Eq. (3).

The proof derived in Section 3.2 demonstrates that the Y-dot command law cancels out the initial angular
rate of the spacecraft around the x and z axes. If no other command torque is produced, ω2 asymptotically
approaches a value that depends on spacecraft mass distribution (that is, its principal moments of inertia)
and initial conditions. There are basically three possibilities, as ω2 can achieve either a positive, a negative,
or zero final value, that is, the spacecraft spins in either direction around its y axis, or it tends to a complete
detumbled state. Assuming that the desired spin axis is always the pitch axis y, three scenarios will be
considered, where ê2 is the principal axis of maximum, minimum, or intermediate inertia, respectively.
A nano-satellite is considered in the sequel as a test case. Relevant data are summarized in Table 1.
Nonetheless, the present analysis is applicable to any rigid spacecraft, provided that the structure of polhodes
and separatrices over the inertia ellipsoid depends only on the non-dimensional ratios of inertia moments,
K1 = (J2 − J3)/J1 and K3 = (J2 − J1)/J3 [22].

The following simulations are performed by assuming a constant value of the initial angular momentum
vector h0 = ‖h(0)‖ = 0.524 kg m2/s. Once h0 is prescribed, the initial kinetic energy T0 can vary between
a maximum and a minimum value, given by Tmax = h20/(2Jmin) and Tmin = h20/(2Jmax), respectively. The
value T0 = Tint = h20/(2Jint) = T ∗ corresponds to the energy level of the separatrices, that divide the surface
of the inertia ellipsoid into 4 separate regions of motion [22].

To the purpose of the current analysis, the initial value for the angular velocity components ω0 is chosen
by selecting one point from each one of the polhodes sampled on the surface of the inertia ellipsoid. As
the energy variation over the first spin-period is small, due the low available torque, negligible variations of
system trajectory in the phase-space would be attained by selecting any other point on the same polhode
(i.e., any point with the same initial kinetic energy). For this reason, without loss of generality, the initial
angular velocity can be chosen setting at zero the component along the intermediate inertia axis (which is
assumed to be ê3), at least in those cases when the pitch axis itself is not the principal axis of intermediate
inertia. The initial values for ω1 and ω2 are thus equal to

ω10 = ω1(0) = ±

√
h20 − 2J2T0
J1 (J1 − J2)

; ω20 = ω2(0) = ±

√
h20 − 2J1T0
J2 (J2 − J1)

(26)

The particular case in which the pitch axis coincides with the intermediate principal axis will be considered
at the end of this subsection.

Given these initial conditions, simulations confirm that the Y-dot command law drives the spacecraft
towards a pure spin condition around the pitch axis. Figure 3 provides the plot of the asymptotic value
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Figure 3: Asymptotic value of ω2 for J2 = Jmin.

of ω2, when J2 is the minimum moment of inertia. Solid and dashed lines indicate initial values of ω2 for
positive (counter-clockwise) and negative (clockwise) initial spin rates, respectively. Black squares and white
circle markers indicate final values for ω2 for the positive and negative initial spin rates, respectively. The
vertical line identifies the value of kinetic energy T ∗ of the separatrices. Again, without loss of generality,
the sign for ω10 is selected concordant with that of ω20 . In this way, all the energy levels are selected twice,
while scanning all of the polhodes on the inertia ellipsoid.

The simulation is stopped when ω2
1 + ω2

3 < 0.012(ω2
10 + ω2

30), that is, when the transverse component
of the angular velocity becomes less than 1% of its initial value. In all the considered test cases, the final
values of ω1 and ω3 are close to zero and they are not reported. Note that for T0 > T ∗, the asymptotic
value of ω2 maintains the same sign of its initial value. In this sense, the control law transforms the pure
spin condition around the axis of minimum inertia into an asymptotically stable equilibrium.

For T0 < T ∗, three intervals which feature a qualitative different behavior are visible. For values of the
initial kinetic energy T0 less than, but close to T ∗, a non zero final value of ω2 is achieved, where the sign
of ω2 is no longer maintained, and a strong dependency of the sign from the initial value is evident. This
is due to the fact that, during the maneuver, the separatrix is crossed somewhere, but the location of the
crossing along the evolution of ω(t) is very sensitive to even minor variations of the initial spin condition.
This can inject the spin rate into either one of the regions surrounding the positive and negative pitch spin
rates. In this range, no prediction is possible on the direction of the final spinning motion of the spacecraft
at the end of the maneuver. For values of T0 close to the minimum admissible one, Tmin, ω2 converges to
zero and the spacecraft is completely detumbled. In an intermediate range, ω2 does not follow a precise
pattern and it can converge to non-zero (yet small) positive or negative values or to zero almost exactly.

As a further comment, the intermediate region becomes smaller as the control gain ky is decreased.
When the nominal value of ky is used, saturation occurs during most of the pure-spin acquisition portion
of the maneuver. In this condition, also a relatively small error signal causes the torque-rod to produce the
maximum dipole moment and the behavior of the control law resembles that of a switching logic based on
the sign of the error signal. Chattering phenomena can occur with rapid changes in the sign of the control
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Figure 4: Asymptotic value of ω2 for J2 = Jmax.

torque, which in turn cause the dispersion in the values of steady-state pitch rates observed in Fig. 3. When
ky is reduced by a factor 20 or higher, saturation of the torque-rods occurs only at the very beginning of the
maneuver. During the final phase convergence towards a pure spin condition is smoother and the resulting
plot of the final states for ω2 shows a more regular pattern.

When ê2 is the principal axis of maximum inertia a similar pattern is obtained (Fig. 4), with two major
differences: (i) the region of complete detumbling is reduced to one point, for T0 = Tmax, and (ii) the
behavior of the final spin rate in the region where crossing of the separatrix occurs appears more regular.
This means that, for T0 < T ∗, a pure spin condition around the y axis is achieved which preserves the sign
of the initial value of ω2, whereas for T0 > T ∗, the motion starts outside of the regions surrounding the pure
spin around y, and the sign of ω2 depends on where the crossing of the separatrix takes place.

Finally, when ê2 is the principal axis of intermediate inertia, the initial angular velocity is chosen such
that the component along the intermediate inertia axis is zero, that is ω20 = 0, whereas ω10 and ω30

are defined as ω20 and ω10 in Eq. (26), respectively. However, in this scenario, all the angular velocity
components converge to zero, no matter what the initial conditions are. This means that the Y-dot control
law provides a means for complete detumbling of the spacecraft, independently of the initial spin condition,
when J2 is the intermediate principal moment of inertia.

A total of eight different solutions is thus present, as summarized in Table 2, where each solution type
is labeled with a letter from A to H depending on the value of J2 and the asymptotic value achieved by ω2.

These results represent a relevant piece of information from the practical standpoint, inasmuch as com-
plete detumbling can be obtained by use of only one single magnetic torque-rod, provided that its dipole
moment is aligned with the intermediate axis of inertia. Conversely, when the spacecraft is expected to spin
around the y axis in one prescribed direction (regardless of the initial angular rate), the Y-dot control law
does not guarantee that the desired direction of spin will be acquired when the initial spin rate is unknown.
This is a common condition for nanosatellites, that are launched as secondary payloads and may be injected
into their orbit with a tumbling motion, with an angular rate that may vary over a wide range around all
three axis. In this case, at least one additional torque-rod is required to modulate the asymptotic value of
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Table 2: Classification of solutions

Type Initial kinetic energy Asymptotic value of ω2

J2 = Jmin

A T ∗ < T0 < Tmax ω2 → ω2F , ω20 · ω2F > 0
B Tmin < T0 < T ∗ ω2 → ω2F , ω20 · ω2F > 0
C Tmin < T0 < T ∗ ω2 → ω2F , ω20 · ω2F < 0
D Tmin < T0 < T ∗ ω2 → 0

J2 = Jmax

E Tmin < T0 < T ∗ ω2 → ω2F , ω20 · ω2F > 0
F T ∗ < T0 < Tmax ω2 → ω2F , ω20 · ω2F > 0
G T ∗ < T0 < Tmax ω2 → ω2F , ω20 · ω2F < 0

J2 = Jint
H Tmin < T0 < Tmax ω2 → 0

ω2, as discussed in [9].
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Figure 5: Time-histories of the components and norm of the angular momentum vector during a type B spin acquisition
maneuver.

As an example, the time-history of the components of the angular momentum vector for a spin acquisition
maneuver of type B is reported in Fig. 5, when the desired spin axis is the principal axis of minimum inertia
(that is, J2 = Jmin). The plot clearly shows how the component of the angular momentum vector along
the pitch axis asymptotically approaches a non-zero positive value, whereas h1 and h3 converge to 0, thus
proving that a pure spin condition around the y axis is achieved.

The same solution is shown in Fig. 6.a in terms of body frame components of the angular velocity
vector, plotted over the inertia ellipsoid. Figure 6.b provides the same representation for a type F solution,
with J2 = Jmax. Provided that the norm of the angular momentum vector ‖h‖ is not constant during the
maneuver (dash-dot line in Fig. 5), the ellipsoid is scaled with respect to the current value of the angular
momentum vector and a normalized angular velocity vector is introduced, ω? = J−1(h/‖h‖). The final spin
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a) b)

Figure 6: Body frame components of the angular velocity vector over the scaled inertia ellipsoid showing crossing of the
separatrix for a type B (a) and a type F (b) maneuver.

rate depends on the sign of ω2 when crossing of the separatrix occurs. A variation of the initial condition
(even a small one, in some cases) can cause the crossing to occur along a different separatrix, thus driving
the angular rate on the opposite side of the ellipsoid, and making the spin condition converge towards a
final pitch spin rate with a different sign.

Note that the representation of Fig. 6 does not suit those cases where complete detumbling is achieved
(i.e. types D and H solutions) as the norm of the angular momentum vector asymptotically approaches zero,
and the inertia ellipsoid degenerates to a point. Nevertheless, the evolution of ω? on the normalized inertia
ellipsoid provides useful information on the final spin condition when a non-zero spin rate is achieved.

4.2. Alignment of spin axis with normal to the orbit plane

In this subsection, the alignment of spin axis ê2 with the direction of the orbit normal ô2, which was
proven in Section 3.3 by evaluating an approximation of the average control torque for the Y-dot command
law over one orbit, is confirmed on the basis of a thorough set of numerical simulations. In this respect,
Fig. 7 provides the evolution of the angle between the spin axis and the orbit normal, γ = cos−1(ô2 · ê2) for
a type F spin acquisition maneuver.

First of all, one notes that alignment of the spin axis towards the orbit normal requires a relatively long
time. For the considered values of initial angular momentum h0, dipole saturation level mmax, and control
law gain ky, the pure spin condition is obtained in less than one orbit period, whereas several orbits are
necessary for completing the required alignment within 1◦ of accuracy (about 5 orbits, for the particular
test case represented in Fig. 7).

As in the case of convergence of h towards a pure spin condition in the body frame, also convergence
of h = J2ω2f ê2 towards the opposite to the orbit normal, as seen in the orbit frame, may follow different
paths, depending on the initial conditions. Figures 8.a and 8.b show the position of the projection of the
spin axis ê2 on the orbit plane for the two cases of type B and F considered above. It is clear that, for
case B, a rather disordered tumbling motion is maintained during the initial phase, until a slow but almost
monotonic convergence to the final spin state is achieved. Conversely, case F shows a more regular behavior
during the initial phase. After crossing of the separatrix, several precession revolutions around the orbit
normal are necessary for driving the spin axis onto the orbit normal.

4.3. Analysis of the control gain

The behavior discussed in the previous subsection depends on several factors, some of which cannot be
determined a priori, such as the initial condition of the tumbling motion. Others, such as maximum magnetic
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Figure 8: Projection of ê2 on the orbit plane during convergence to the orbit normal ô2.

dipole moment and control law gain, are specified during the design phase. It is clear that a stronger dipole
moment allows for a faster maneuver, inasmuch as the torque-rod delivers a higher control torque during
the initial phase of the maneuver, when the angular momentum is reduced by means of dissipation of kinetic
energy.

Conversely, the choice of the control gain may not be straightforward when magnetic actuators are
employed. As an example, in some application [7, 5], there exists an optimal value for the control law gain
between the two extreme cases, inasmuch as a weak control gain determines a slow convergence, but an
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Figure 9: Spin axis convergence to the orbit normal: time required as a function of spin rate and control gain factor.

excessively high value determines a rapid cancellation of two components of the angular velocity, followed
by a slow convergence towards the desired state, with the angular momentum vector almost aligned with
the magnetic field. For this reason, a parametric analysis was performed to better understand the effect of

the control gain ky = k
(
M⊕/r

3
c

)−1
on the time required for convergence to the final spin state around a

spin axis parallel to the orbit normal.
All the simulations start from the same initial attitude, such that the desired spin axis ê2 is initially

perpendicular to ô2 (i.e., the spin axis is tilted 90 deg away from its expected final condition). The initial
angular speed is set equal to ω = ω̃2ê2. This is consistent with results reported above, where convergence
towards a pure spin condition about the commanded axis is faster than convergence of the spin axis during
the orbit normal. During this initial phase, the effect of the control gain on the structure of solutions is
minimal. Plots like those reported in Figs. 3 and 4 do not change significantly as ky is varied by two orders
of magnitude. The only minor effect is that, as the control gain is reduced, convergence is smoother and the
curves representing the asymptotic values of ω2 become more regular.

In what follows, it will be assumed that the acquisition of the pure spin condition is completed during
a previous maneuver phase. Results in terms of number of orbits necessary for taking the spin axis within
1 deg from the normal to the orbit plane are provided for a reasonably wide range of initial spin rates, ω̃2,
and different values of the control gain factor k.

Figure 9 shows that the time required to reach convergence to the orbit normal (within 1 deg of accuracy)
depends almost linearly on both the initial angular rate, ω̃20 , for a given control gain, and the inverse of
the control gain ky. When the Y-dot control law is adopted, the behavior of the closed-loop system is
thus intuitive, where higher gains result into a faster convergence, with no exceptions. For high values of
ky, the behavior resembles that of a switching logic based on the sign of the error signal, rather than a
proportional command, for most of the maneuver time. Moreover, there is one practical issue that needs to
be carefully accounted for, that is, higher gains also result into higher energy consumption, inasmuch as the
magneto-torquer works at saturation for a longer time. In this respect, the tradeoff between convergence
time and electrical power expenditure needs to be carefully addressed.
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5. Conclusions

An analytical proof of global asymptotic stability towards a pure spin condition was derived for the Y-dot
control law, assuming that the control dipole moment is proportional to the time derivative of the component
of the geomagnetic field along the direction of the spin axis. After acquisition of the pure spin condition,
the spin axis is driven towards the orbit normal. This phenomenon was explained by evaluating the average
magnetic control torque over one orbit, proving that, regardless of the initial attitude, the magnetic torque
reduces the angle between the direction of the angular momentum vector of the spacecraft and the orbital
angular velocity.

Numerical simulations demonstrate the validity of the analytical results, while highlighting interesting
features in the behavior of the spacecraft under the action of the Y-dot command law. In particular, the final
spin condition depends on the initial tumbling motion, but it can be hardly predictable, when crossing of one
separatrix occurs during the despin. In some cases, the Y-dot command law drives the spacecraft towards a
de-spun condition. This is always the case when the pitch axis is the principal axis of intermediate inertia.
The effect of control gain on convergence time was also quantified, proving that an increase in control gain
reduces converge time for both maneuver phases (that is, acquisition of a pure spin state and alignment of
the spin axis to the orbit normal) at the cost of an increased dispersion of the final state, due to the effects
of saturation on the initial part of the maneuver.
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