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Letters

Ground Transient Resistance of Underground Cables

Rodolfo Araneo and Salvatore Celozzi

Abstract—During transients involving multiconductor lines, the
importance of the ground finite conductivity is well known and
various techniques and expressions have been presented in litera-
ture for the inclusion of its contribution into the per unit length
parameters. The direct time domain approach based on the intro-
duction of the transient parameters and on the numerical solution
of the telegrapher’s equations demonstrated to be accurate and
efficient for the analysis of typical transients. In this letter, the
expressions for the ground transient resistance for underground
cables, based on the closed-form inverse Laplace transform of the
classical Pollaczek expressions (valid for the low-frequency-range),
are presented and discussed.

Index Terms—Pollaczeck integral, time-domain methods, tran-
sient resistance, underground cables.

I. INTRODUCTION

S INCE its introduction, the method proposed in [1] for the
inclusion of losses into a direct time domain (TD) formu-

lation of telegrapher’s equations demonstrated to be versatile
and accurate for the transient analysis of transmission lines
(TL) in various configurations. Without entering into the well-
established issue concerning the validity of the TL approxima-
tion, in the following the telegrapher’s equations are considered
to be valid.

A number of extensions have been proposed, either concern-
ing the expressions of the transient resistances and the numerical
solution of the TD-TL equations [2]–[9], but always with refer-
ence to overhead lines.

II. DISCUSSION ON THE DIFFERENT EXPRESSIONS FOR THE

TRANSIENT RESISTANCE

For the underground cables buried in a homogeneous soil
and shown in Fig. 1, the self and mutual ground impedance
can be computed, in the low-frequency range, according to the
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Fig. 1. Geometrical configuration of an underground multiconductor TL.
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where j =
√
−1, ω is the radian frequency, K0(x) is the modi-

fied Bessel function of the second kind and order 0, and
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and ai is the radius of the ith conductor (cable), μg = μ0 and
σg are, respectively, the ground magnetic permeability and con-
ductivity, γg =

√
jωμgσg is the propagation constant where a

low-frequency approximation has been introduced. It should
be observed that a general expression for the resistance of
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underground cables can be derived by (1b) with the assump-
tion xii = ai in the case of the self-resistance. Hence, only this
expression will be considered in the following without loss of
generality. The last term of (1b) is the so-called Pollaczek’s
integral Jij
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whose numerical integration is difficult because of the highly
oscillating behavior. An accurate approximation in the high
frequency range was proposed by Sunde [12] who did not
neglect the displacement currents in the propagation constant
γgex =

√
jωμg (σg + jωεg). More complex ground impedance

expressions were derived independently by Wait [13], Bridges
[14], and Chen [15] based on a rigorous electromagnetic ap-
proach where the propagation wavenumbers of the modes sup-
ported by the buried cable are computed by solving a nonlinear
frequency-dependent eigenvalue problem. Holding the TL ap-
proximation, it has been showed [16] that the Wait’s ground
impedance is equivalent to the Sunde’s expression. Anyway,
some comments about the suitability of the Sunde’s model
in a TL approach were raised in [17]: it has been observed
that in the high-frequency region, especially for higher earth
resistivities, the Sunde’s model yields to propagation values
higher than those of the propagation constant of the earth, a
result that is not in full agreement with the TL approximation
where only the fundamental quasi-TEM mode is assumed to
propagate.

In the past, several closed-form approximations and an-
alytical/numerical schemes have been proposed to compute
the frequency-dependent ground impedance, from which the
transient ground resistance can be derived by performing the
inverse Fourier transform (IFT) numerically. A review of the lit-
erature reveals a large number of closed form approximations,
namely, in the best knowledge of the authors, Vance [18], Sem-
lyen [19], Saad [20], Wedepohl and Wilcox [21], Bridges [14],
Wait [13], Alvarado [22], Petrache [23], and Theethayi [16].
Furthermore, several numerical approaches have been proposed
to efficiently compute the Pollaczek’s intregral by Uribe [24],
[25] and Legrand [26]. It should be noted that the inclusion of the
ground contribution in the cable model [27], [28] may yield to
discontinuities in the p.u.l. impedances frequency trends [29],
[30]. Furthermore, the presence of a multilayer soil has been
considered in [31].

From (1b), the transient ground resistance ζg ,ij(t) can be
derived as the IFT of zij(ω)/jω. Two approximations have been
proposed in literature for the transient ground resistance ζg ,ij(t)
directly in the TD, for a single-conductor configuration in a
homogeneous soil.

The first approximation can be carried out neglecting γg in the
exponential factor at the numerator of the Pollaczek’s integral
in (3) so that the integral becomes similar to the Carson integral
for the ground resistance of an overhead line.

Following the analytical steps reported in [9] for an over-
head line, an approximated transient ground resistance may be

derived as
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where Erfc(x) is the complementary error function, and
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The second approximation was proposed by Petrache et al.
[23] and it is based on the analogy with overhead lines. Re-
placing the height h of the overhead conductor with the radius
ai of the underground cable, the transient ground resistance of
the overhead line under low-frequency approximation can be
adapted to the case of a single underground cable as
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where τg = μ0σga
2
i . The accuracy of the proposed approxima-

tion was investigated comparing its predictions with the IFT of
the frequency domain data obtained by means of the logarithmic
approximation proposed by Petrache et al. in [23] considering
one set of ground and cable parameters.

III. EXACT SOLUTION AND NUMERICAL RESULTS

Recently, Theodoulidis [32] proposed three different exact
solutions of the Pollaczek’s integral (3) in the form of converg-
ing series: The first two are given in terms of Bessel functions
of half and odd integer order while the third one is given in
terms of confluent hypergeometric functions. The third solu-
tion shows a better converging behavior for all the parameter
values than the first two that exhibit fast convergence only for
certain parameter ranges. After some algebraic manipulations,
Theodoulidis showed that his third solution is based on an ex-
pression equivalent to the expression previously proposed by
Wedepohl and Wilcox [21] which is here selected to provide the
most convenient form to compute the Pollaczek’s integral.

Using transformation of variables and Cauchy’s theorem, the
ground impedance of the underground cable can be rewritten
according to [21] in the frequency domain as
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Fig. 2. Percentage error of the Carson-like approximation equation. (a) and Petrache et al. equation. (b) with respect to the exact one for different values of the
ground conductivity (h1 = 1 m, a1 = 1.5 cm, εg = 10). The inset of figure (a) shows the trend of the transient ground resistance ζ11 versus time t for the three
ground conductivities.

Fig. 3. Percentage error of the Carson-like approximation equation with respect to the exact one, for different values of the ground conductivity and mutual
distance between conductors (h1 = h2 = 1 m, a1 = a2 = 1.5 cm, εg = 10). The inset of figure (b) shows the trend of the transient ground resistance ζ12 versus
time t for the three ground conductivities in the case of x12 = 1 m.

where χH = Hij/Dij and K1(x) is the modified Bessel function
of the second kind and order 1. Starting from this expression,
we apply the Laplace transform to pass from the frequency
domain to the TD. After some algebraic manipulations, the final
exact expression of the transient ground resistance under a low-
frequency approximation reads
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It should be observed that the imaginary error function
Erfci(x), despite its name, is a real function when the argument
is real. Expression (8) can be recast in a form more suitable for
numerical computation, as
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where D+(x) is the Dawson’s function, implemented in the most
popular mathematical packages and available in the IMSL Nu-
merical Libraries for C or Fortran programming. In addition, it
is convenient—from a numerical point of view—to compute the
exponentially scaled complementary error function ex2

Erfc(x).
Figs. 2 and 3 show the percentage relative error of the Carson-

like approximation (4) and Petrache et al. approximation (6)
with respect to the exact expression (10). It should be noted
that the curves of the errors of the two approximate expressions
considered in literature exhibit worse results in the early time and
completely miss the value ζ(0) that, however, is very important
when a recursive convolution algorithm is implemented. Thus,
the availability of the analytical expressions results in a dramatic
improvement of the overall accuracy on the transient waveforms.

IV. CONCLUSION

The ground transient resistance of underground cables has
been computed analytically by means of an inverse Laplace
transform of the Pollaczek low-frequency impedances, proper
and mutual terms. In this way, the TD-TL equations in [1] may
be considered without the various approximations proposed in
literature and, furthermore, multiconductor configurations may
be analyzed as well.
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