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Abstract The general aim of cluster analysis is to build prototypes, or typologies of units
that present similar characteristics. In this paper we propose an alternative approach
based on consensus analysis of two different clustering methods to suitably obtain proto-
types. The clustering methods used are fuzzy c-means (centre approach) and archetypal
analysis (extreme approach). The consensus clustering is used to assess the correspon-
dence between the clustering solutions obtained.

Keywords: Archetypal analysis, Fuzzy c-means, Consensus analysis, Prototyping, Defini-
tion prototypes

1. INTRODUCTION

Aristotelian thinking first defined categories as the basic entities of human knowl-
edge. In this sense, Smith and Medin (1981) refer to the concept of category as
the highest order of genera that cannot be defined by a mere listing of properties
shared by all elements. According to Rosch (1975, 1999), prototypes are those
elements that better than others represent a category (on this point see also Rocha,
1999). The degree of representativeness can be measured using a distance func-
tion to a salient entity of the category, i.e. a prototype. Prototypes can be observed
or unobserved (abstract) entities: not necessarily as real elements of the category
(Medin and Schaffer, 1978). In this paper we present a novel statistical approach
to identify a set of prototypes given a training multivariate data set and an a priori
known number of categories.

Formally, let X be a generic N × J data matrix, where each row represents
a statistical unit described by J features, and let U be a set of descriptions U =
{u1,u2, . . . ,uK} in the feature space. Prototyping consists in defining a rule that
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associates each row of X to the elements of U (Friedman et al., 2001). In other
words, we introduce the matrix Y of order N×K where the general element yik = 1
if the generic row vector xi is associated to the description uk and 0 elsewhere,
with i = 1, . . . ,N and k = 1, . . . ,K. Under the fuzzy logic paradigm (Kaufman
and Rousseeuw, 1990; Zadeh, 1994), each row of X is associated to one or more
descriptions of U by the membership degrees yik, under the following constraints:
∑K

k=1 yik = 1 and yik ≥ 0, ∀k ∈ 1,2, . . . ,K. The membership degrees represent
the degree of prototypically of a concept regarding a particular category and a
category can also be defined by the degrees to which its elements belong to the
prototype. These descriptions represent relevant characteristics of the prototype
(Rocha, 1999). Given an association criterion, the solution consists in solving an
optimisation problem for Y and P, where P is the K×J matrix of the K prototypes
defined in the J-dimensional feature space. Numerical techniques that solve such
an optimisation problem have been proposed in many fields and are based on sev-
eral different criteria. Widely used techniques are based on non-hierarchical clus-
tering algorithms (Diday, 1974; Gnanadesikan, 2011; Jain et al., 1999; Scheibler
and Schneider, 1985); although many other approaches can be adopted (Johnson,
1967; Karypis et al., 1999; Loh and Shih, 1997).

In this paper, we propose a two-step procedure based on consensus analysis
(Hubert and Arabie, 1985) to define the set of prototypes U = {u1,u2, . . . ,uK}
starting from the above-defined general matrix X. The first step aims to define
two partitions of X in K groups, where K is assumed to be known; the second step
aims to find the correspondence between these two partitions and define the parti-
tion solution as the synthesis of the two partitions. When more than one partition
can be defined in the same data, consensus analysis is proposed with a twofold
aim: (i) to find a unique partition solution as a synthesis of all partitions; (ii) to
measure the agreement among the different partitions and between the synthesis
and all the partitions. In the specific literature such consensus analysis is also re-
ferred to as consensus clustering (Boulis and Ostendorf, 2004; Hubert and Arabie,
1985; Nguyen and Caruana, 2007; Strehl and Ghosh, 2003).

By definition, a prototype must be a description of the data irrespective of
method. Thus, we believe that there should be a consensus among different meth-
ods. Such a consensus indicates sharp profiles that can be reported as prototypes.
The novelty of the present proposal consists in finding a set of a given number
of prototypes by the consensus analysis to pair off the partitions obtained via two
different methods: fuzzy c-means (FCM) (Bezdek, 1981) and archetypal analy-
sis (AA) (Bauckhage and Thurau, 2009; Cutler and Breiman, 1994). The former
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method seeks K homogeneous groups with respect to their barycentres, whereas
the latter identifies a set of extreme points, called archetypes, and creates a group
around each archetype. The k-means technique (Jain, 2010; MacQueen, 1967;
Steinley, 2006) represents a key reference method in non-hierarchical clustering
in the class of hard clustering methods. The k-means algorithm minimises the
sum of squared distances between the observations and the cluster mean, or cen-
troid. Fuzzy c-means (Bezdek et al., 1984; Hathaway and Bezdek, 1994) and
archetypal analysis (Cutler and Breiman, 1994; Eugster and Leisch, 2009) can be
seen as a particular case (soft clustering) of the k-means technique, under differ-
ent constraints. Archetypal analysis minimises the sum of distances between each
point and a set of K archetypes, as defined by a convex combination of extreme
points.

The paper is structured as follows: in Section 2 we introduce and describe
fuzzy c-means and archetypal analysis, in Section 3 we present the consensus
analysis methodology, in Section 4 the methods are applied to eight synthetic data
sets with different characteristics, and in Section 5 we present an application to
real data.

2. BACKGROUND

In this section we show that FCM and AA can be defined as two different fac-
torisations of the data matrix X under different constraints that are discussed in
sub-sections 2.1 and 2.2. Let X = {x1,x2, . . . ,xN} be a generic N ×J data matrix,
where xi (i = 1,2, . . . ,N) is the generic row vector and P be the K × J unknown
prototypes matrix. Fuzzy c-means and archetypal analysis are grounded on the
solution of the following nonnegative factorisation problem (Berry et al., 2007):

(Y,P) = argmin
Y,P

∥X−YP∥ . (1)

Note that we define the centres matrix C for fuzzy c-means and the archetype
matrix A for archetypal analysis as the K × J matrix P. Moreover, we define the
membership matrix Γ and ∆ for FCM and AA, respectively, as the N ×K matrix
Y. The generic elements γik and δik vary in [0,1] and represent the membership
degree of the unit x′i to the archetype ak or to the centre ck, depending on which
factorisation we are referring to.

2.1. FUZZY C-MEANS
The Fuzzy c-means clustering algorithm (Bezdek, 1981; Dembele and Kastner,
2003) is an extension of the k-means algorithm for fuzzy clustering. Fuzzy c-
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means and k-means minimise the sum of the weighted squared distances between
the N units from the K centres. Yet the k-means assumes that weights can vary in
{0,1} and fuzzy c-means in [0,1]. Formally, given the generic N × J data matrix
X, the objective function is defined as follows:

W =
N

∑
i=1

K

∑
k=1

γm
ik d(i,k)2, (2)

where d(i,k) = ∥xi − ck∥, m is the fuzzifier parameter (commonly set to 2) and the
quantity γik represents the corresponding weight. The quantity W is minimised
under the following constraints: (i) ∑K

k=1 γik = 1; (ii) γik ≥ 0, where k ∈ 1,2, . . . ,K.
Let us indicate with the notation ∥·∥2 the quadratic norm, hence the elements ck
and γik are defined according to the following formulae:

ck =
∑N

i=1 γm
ik xi

∑N
i=1 γm

ik
, (3)

γik =

(
K

∑
k′=1

(
∥xi − ck∥2
∥xi − ck′∥2

) 2
m−1
)−1

. (4)

The FCM algorithm runs through the following steps (Sun et al., 2004):

1. Randomly initialise the cluster centres C(t) and set t = 0;
2. Calculate γik using the Equation (4);
3. Calculate C(t+1) using Equation (3);
4. If |

(
C(t)−C(t+1)) |≤ ε go to Step 5; else

C(t) = C(t+1), set t = t +1, and go to Step2;
5. Print centres matrix C and membership matrix Γ;
6. Stop.

2.2. ARCHETYPAL ANALYSIS
Archetypal Analysis aims to represent the units of a multivariate data set as a con-
vex combination of the most extremal K data points, here called archetypes which
are linear combinations of the data points (Bauckhage and Thurau, 2009; Cutler
and Breiman, 1994). In the literature, the term archetype is used to define the
original pattern or model of which all things of the same type are representations
or copies (http://www.merriam-webster.com/dictionary/archetype). However, in
a prototyping approach the concrete problem is to find a few, not necessarily ob-
served points (archetypes) in a set of multivariate observations such that all the



Prototype definition through consensus analysis between fuzzy c-means … 145

data can be well represented as convex combinations of the archetypes. Recently,
the AA has been used in many fields such as philosophy, psychology and also
statistics (D’Esposito et al., 2006; Eugster and Leisch, 2009).

Formally, given a N×J data matrix, AA finds a set of archetypes {a1, . . . ,aK}
that are linear combinations of the data points as shown in Formula 5:

ak =
N

∑
i=1

xiβik. (5)

Moreover, each data point must be approximated as a convex combination of
the K archetypes. The coefficients βik ≥ 0 such that the archetypes resemble the
data and ∑N

i=1 βik = 1 are convex mixtures of the data. Then, for a given choice
of archetypes, AA minimises the quantity

∥∥xi −∑K
k=1 akδki

∥∥
2, under constraints

δki ≥ 0 and ∑K
k=1 δki = 1, where δki represents the associated membership level. In

practice, the data points are represented as mixtures of archetypes. Furthermore,
a suitable choice of K archetypes minimises the residual sum square (RSS):

RSS =
N

∑
i=1

∥∥∥∥∥xi −
K

∑
k=1

akδki

∥∥∥∥∥
2

=
N

∑
i=1

∥∥∥∥∥xi −
K

∑
k=1

N

∑
s=1

xsβskδki

∥∥∥∥∥
2

. (6)

It may be convenient to write Formula 6 in linear algebra notation, as shown in
Formula 7:

RSS = ∥X−∆A∥2 = ∥X−∆BX∥2 , (7)

where X is the N × J data matrix, A is the K × J archetype matrix, ∆ is the N ×K
membership matrix and B is the K ×N matrix of β ’s coefficients.

In agreement with Cutler and Breiman (1994) and Bauckhage and Thurau
(2009), given the number of clusters K, the parameters of the AA algorithm are
estimated using the following steps:

1. Randomly initialise the matrix B(t) and set t = 0;
2. Find coefficient matrix ∆(t) solving the problem in formula (7) under con-

straints δki ≥ 0 and ∑K
k=1 δki = 1

3. Given the coefficients δ (t)
ki compute intermediate archetypes solving the

equation in formula (7) for A(t);
4. Determine the coefficient matrix B(t+1) that minimises the constrained prob-

lem
∥∥∥BX(t+1)−A(t)

∥∥∥
2
, under constraints βik ≥ 0 and ∑N

i=1 βik = 1.
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5. Set t = t +1, B(t) = B(t+1) and calculate A(t) = BX(t);

6. Compute the RSS and, unless it falls below a threshold, continue with step
2;

7. Stop.

2.3 EXAMPLE ON A TOY DATA SET

This section presents a simple application on a simulated toy data set of fuzzy
c-means and archetypal analysis. Data were generated from a three-variate Gaus-
sian distribution with n = 90 units classified a priori in three different groups. In
particular, we have homogeneous variances and mean values as follows: the first
group with µ1 = −5, µ2 = 5, µ3 = 0; the second group with µ1 = 5, µ2 = −5,
µ3 = 5; the third group with µ1 = 10, µ2 = 10, µ3 = −5. Figure 10 shows the
pairs plot of the simulated toy data.

Figure 1: Pairs plot of the simulated toy data

With K = 3, fuzzy c-means and archetypal analysis determined, respectively,
the centres and archetypes shown in Table 1, where we can appreciate that archety-
pal points are more extreme with respect to the corresponding fuzzy c-means cen-
tres. Figure 2 shows the membership degrees associated to each statistical unit.
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Table 1: Centre matrix C (FCM) and archetype matrix A (AA)

C A

Group c1 c2 c3 a1 a2 a3

1 -4.674 5.173 0.380 -6.271 5.405 0.211
2 9.985 9.886 -4.783 11.050 10.690 -5.476
3 5.228 -4.995 4.669 6.120 -6.825 5.866

Figure 2: Membership function computed by FCM and AA

3. CONSENSUS ANALYSIS

Let X be a N × J data matrix, and T = {t1, . . . , tR} and V = {v1, . . . ,vC} two par-
titions of X. Then nrc (r = 1, . . . ,R; c = 1, . . . ,C) represents the number of objects
assigned to the classes tr and vc, with respect to the two partitioning criteria. Con-
sensus between the partitions T and V is evaluated starting from the entries of the
cross-classifying contingency table, which is shown in Table 2 and crosses the two
partitions (Hubert and Arabie, 1985). Many consensus measures have been pro-
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Table 2: Contingency table in comparing partitions

Partition V
v1 v2 · · · vC

Partition T

t1 n11 n12 · · · n1C n1·
t2 n21 n22 · · · n2C n2·
...

...
...

. . .
...

...
tR nR1 nR2 · · · nRC nR·

n·1 n·2 · · · n·C n

posed in the literature (Boulis and Ostendorf, 2004; Fowlkes and Mallows, 1983;
Strehl and Ghosh, 2003). In the present work we consider three consensus indexes
that are based on Rand’s measure of agreement (1971). Such measures define the
agreement between T and V through a two-step procedure: first, the groups of T
and V are paired on the basis of their composition; secondly, all the possible pairs
{xi,xi′} (with i ! i′ and i, i′ ∈ 1, . . . ,N) are considered with respect to their assign-
ment in the R×C contingency matrix M, with general term nrc (c = 1,2, . . . ,C
and r = 1,2, . . . ,R) (Fowlkes and Mallows, 1983). Herein, we assume R =C = K,
where K indicates the number of groups after the cluster analysis. The square
R×C table allows us to define the four quantities that are illustrated below (for-
mulae 8 to 11). All these quantities but the first depend on K. The quantity in 8
expresses the number of ways that n units can pair

S(K) =

(
n
2

)
=

n(n−1)
2

. (8)

The quantity T (K) in 9 represents the total number of combinations starting from
the units that have been assigned to the paired groups of T and V

T (K) =
R

∑
r=1

C

∑
c=1

n2
rc. (9)

Analogously, the quantities P(K) in 10 and quantity Q(K) in 11 represent the sum,
respectively by r and by t, of the number of pairs of units in Table 2, with respect
to t1, . . . tr, . . . , tR and v1, . . .vc, . . . ,vC:

P(K) = ∑R
r=1 n2

r· (10)
Q(K) = ∑C

c=1 n2
·c. (11)



Prototype definition through consensus analysis between fuzzy c-means … 149

Formally, the quantity in (9) represents the agreements in the classification of the
objects, and the quantities in (10) and (11) represent the disagreements. Hence,
the quantity

T (K)− 1
2
(P(K)+Q(K)) ,

represents the total number of agreements (A), whereas the quantity

1
2
(P(K)+Q(K))−T (K),

indicates the total number of disagreements (D) and A+D = S(K). Formalisation
of A and D is shown in (12) and (13).

A =

(
n
2

)
+

R

∑
r=1

C

∑
c=1

n2
rc −

1
2

[
R

∑
r=1

n2
r·+

C

∑
c=1

n2
·c

]
(12)

D =
1
2

[
R

∑
r=1

n2
r·+

C

∑
c=1

n2
·c

]
−

R

∑
r=1

C

∑
c=1

n2
rc. (13)

It is worth noting that a rough comparison between A and D gives an idea of
the consensus degree. To measure the agreement (disagreement), three main ap-
proaches have been proposed in the literature: A/S(K) by Rand (1971), D/S(K)
by Johnson (1968) (see also Arabie and Boorman, 1973; Hubert and Arabie,
1989), and (A−D)/S(K) by Hubert and Baker (1977). In all three cases, the
measure varies in [0, 1] and can be interpreted as the empirical probability of
agreement or disagreement (the former two) and as the difference between the
probability of agreement and disagreement (the last one).

4. SIMULATION STUDY

This section presents a study on simulated data according to the scheme illustrated
in subsection 4.1. We used a critical membership value to assign the units to the
FCM groups and AA groups; units with the maximum membership degree can be
univocally assigned to the corresponding group. By contrast, for a description of
prototypes, we used the critical membership value of 0.5 for the assignment. In
practice, units with a membership degree greater 0.5 can be univocally assigned
to the corresponding group, while an extra group receives the units that do not
exceed a membership degree of 0.5 for any group; it is termed residual group.
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4.1  SIMULATED DATA
Data were sampled from a multivariate Gaussian distribution with eight dimen-
sions (four are white noise) and with different sample sizes. The variables de-
scribe eight different experimental conditions derived from combining three fac-
tors, each with two levels, i.e., 23 different levels. The three factors used, on the
four modified variables, are: (i) sample sizes (small N = 200 and large N = 1000);
(ii) correlation between variables (low level 0.2− 0.4 and high level 0.6− 0.8);
(iii) kurtosis (normal level G = 3 and platykurtic level G < 3). The kurtosis level
was reduced on 15% of simulated data, so that we increased the sampling proba-
bility in the tails of the distribution.

The four perturbed variables were generated with a structure of four groups
of units (scheme in Table 3). FCM and AA were applied, fixing a number of
groups K = 4. Final consensus analysis results are presented in subsection 4.2.

Table 3: Means of the simulated data groups

Units range Var.1 Var.2 Var.3 Var.4
1 - 50 -20 -10 30 15

51 - 100 0 20 15 -5
101 - 150 15 5 -7 20
151 - 200 30 -15 15 -5

Units range Var.1 Var.2 Var.3 Var.4
1 - 250 -20 -10 30 15

251 - 500 0 20 15 -5
501 - 750 15 5 -7 20

751 - 1000 30 -15 15 -5

4.2 CONSENSUS
The results obtained according to the eight different sampling schemes are sum-
marised in Table 4. The first four columns describe the experimental conditions,
and columns 6 to 8 the consensus measures as formally described in Section 3.
Our results show that the overall consensus of prototypes is mostly influenced by
the correlations between variables, where the measure of consensus by Hubert is
below 0.6, the measure of agreement by Rand (1971) is below 0.8 and the measure
of disagreement by Arabie and Boorman (1973) is over 0.2. However, the level
of consensus rises in the presence of highly correlated variables and platykurtic
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distributions, where the three indexes are about 0.5, 0.7 and 0.2, respectively.
To appreciate the geometric consensus structure, we propose the graphical

visualisation of the confusion matrix that is based on correspondence analysis
(CA). Correspondence analysis is an explorative computational factorial method
for the study of associations between nominal variables (Fellenberg et al., 2001).
The aim of the method is to embed the rows and columns of a matrix in the same
space, with the first two (or three) factors that summarise the proportion of the
information that it is present in the data. In its simplest form, the genetic element
nrc of the R×C matrix M, represents the co-occurences of r and c and nr. and n.c
respectively denote the row and column marginals. Finally, n is the grand total of
M. In other words, CA decomposes the inertia of a contingency table, which is
measured by the χ2 statistic. Higher association corresponds to higher χ2 values.
In CA, points are represented such that the sum of distances of the points to their
centroid is proportional to the value of the χ2 statistic of the data table and the
farther away a point is from centroid, the higher its row contribute to the statistic.
The link between rows and columns in the contingency table implies that if a col-
umn determines an outstanding entry of a row, the corresponding row and column
points tend to lie on a common line through the centroid. The two points lie on
the same side with respect to the common centroid, where a larger distance cor-
responds to a stronger association. In case of a negative association, the column-
point and row-point lie on opposite sides of the centroid (Beh and Lombardo,
2014; Benzécri et al., 1992; Fellenberg et al., 2001; Greenacre, 1991). Correspon-
dence analysis presents the results in a simple graphical display which permits a
more rapid interpretation and understanding of the data (Greenacre, 2010).

In this case, CA graphically displays the distances between the pairs of groups
that belong to the partitions generated by FCM and AA in each of the eight differ-
ent experimental conditions. Although it is not possible to pair a priori the groups
of the two different partitions, we re-labeled with the same number the groups of
the two partitions that are closer to get a more clear interpretation, e.g. group 1
of FCM is close to group 4 of AA, then the latter is re-labeled with the number
1. Figures 3 and 4 show the plot of correspondence analysis applied on the ex-
perimental conditions from 1 to 4 and on the experimental conditions from 5 to
8, respectively. In practical terms, lower distances between the pairs represents a
better association between the groups, and vice versa. The best results are thus
presented by the first two conditions (the first two in Figure 3), while the worst
results are presented by experimental conditions 5 and 6 (first two plots of Figure
4).



152 Fordellone M., Palumbo F.

Table 4: Simulated data: results of consensus analysis on the definition of the pro-
totypes

Experimental Conditions Consensus Measures
N Kurt. Corr. N. Groups Hubert Rand Arabie

1000 G = 3 0.2−0.4 4 0.996 0.998 0.002
200 G = 3 0.2−0.4 4 0.995 0.997 0.002

1000 G < 3 0.2−0.4 4 0.611 0.806 0.195
200 G < 3 0.2−0.4 4 0.627 0.814 0.187

1000 G = 3 0.6−0.8 4 0.374 0.687 0.313
200 G = 3 0.6−0.8 4 0.258 0.629 0.371

1000 G < 3 0.6−0.8 4 0.531 0.766 0.235
200 G < 3 0.6−0.8 4 0.527 0.763 0.236

Figure 3: Simulated data: correspon-
dence analysis for 1-4 experimental con-
ditions

Figure 4: Simulated data: correspon-
dence analysis for 5-8 experimental con-
ditions

The main aim of this simulation study was to establish the degree of the re-
liability of consensus-prototyping under several different hypotheses. In the eight
proposed cases, the lowest levels of the consensus were observed in the presence
of (i) platykurtic distributions and (ii) high levels of the correlations between the
variables. This happens because the AA is very sensitive to the extreme points.
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5. APPLICATION ON REAL DATA

This section presents a real data application of prototyping through consensus
analysis between FCM and AA on Wine recognition data. The data set is available
at the UCI repository website (http://archive.ics.uci.edu/ml/). It is the result of the
chemical analysis of wines grown in an Italian region, derived from three different
cultivars. The 13 constituents were measured on 178 types of wine from the three
cultivars: 59, 71 and 48 instances are in class one, two and three, respectively. The
13 chemical continuous attributes of wine data set are: 1. alcohol (Alc), 2. malic
acid (Mal), 3. ash (Ash), 4. alkalinity of ash (A_Ash), 5. magnesium (Mag),
6. total phenols (Phe), 7. flavonoids (Fla), 8. nonflavanoid phenols (N_Phe), 9.
proanthocyanins (Pro), 10. color intensity (Col), 11. hue (Hue), 12. OD280-
OD315 of diluted wines (R_OD), and 13. proline (Pro). Figure 5 and Table 5
show the boxplots of the standardised variables and their descriptive statistics,
respectively. It is worth pointing out that there are different levels of skewness
and outlier values are present for some variables.

Figure 5: Boxplots of standardised variables of wine data set

5.1. FUZZY C-MEANS AND ARCHETYPAL ANALYSIS
Before applying FCM, a principal component analysis (PCA) was performed to
obtain more stable results. This approach is called tandem analysis (Arabie et al.,
1996; Vichi and Kiers, 2001) and it is commonly used in the high dimensional data
clustering problems to cope with the so-called ‘curse of dimensionality’ issue. Ta-
ble 6 shows the first five eigenvalues: we notice that only the first three eigenvalues
are greater than one and their corresponding cumulative variance is equal to 66%.
Consequently, the first three principal components are kept to perform the FCM,
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Table 5: Descriptive statistics on the standardised variables of wine data set

Variable Min 1stQu. Median 3rdQu. Max
Alc -2.4274 -0.7860 0.0608 0.8338 2.2534
Mal -1.4290 -0.6569 -0.4219 0.6679 3.1004
Ash -3.6688 -0.5705 -0.0237 0.6961 3.1474
A_Ash -2.6635 -0.6872 0.0015 0.6004 3.1456
Mag -2.0824 -0.8221 -0.1219 0.5082 4.3591
Phe -2.1013 -0.883 0.0957 0.8067 2.5324
Fla 1.6912 -0.8252 0.1059 0.8467 3.0542
N_Phe -1.8630 -0.7381 -0.1756 0.6078 2.3956
Pro -2.0632 -0.5956 -0.0627 0.6274 3.4753
Col -1.6297 -0.7929 -0.1588 0.4926 3.4258
Hue -2.0888 -0.7654 0.0330 0.7112 3.2924
R_OD -1.8897 -0.9496 0.2371 0.7864 1.9554
Prol -1.4890 -0.7824 -0.2331 0.7561 2.9631

with the number of groups K = 3. Figure 6 shows the variable/factor correlations
(with respect to the first two of the three chosen factors) and Figure 7 allows us
to see the three true groups plotted on the first three components (different sym-
bols represent the groups). AA works on the original data set dimensionality (13
variables) and the number of archetypes in input is fixed at three, to ensure the
consistency with the FCM solution. The RSS is 0.09, which represents a good
result in terms of fitting. Let us have a look at Figures 8 and 9 to appreciate the
results of the two methods. Notice that points are plotted in a two dimensional
subspace. To corroborate the choice of K = 3, we report the graphic results of
the solutions achieved for K = 3, . . . ,6; for the sake of space, analytical results
have been omitted. In Figure 8 the ellipses approximately represent the group
edges, whereas in the AA results (Figure 9) the points are assigned to the clos-
est archetype and different symbols are associated to each archetype. Also the
scree plots of the two methods shown in Figure 10 and 11 suggest choosing the

Table 6: Eigenvalues associated to the first five factors

F1 F2 F3 F4 F5
Std. deviation 4.706 2.497 1.446 0.919 0.853
Prop. of Variance 0.362 0.192 0.111 0.071 0.066
Cum. Prop. 0.362 0.554 0.665 0.736 0.802
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number of groups equal to 3: the significance reduction of the squared residual is
manifested for K = 3.

5.2. CONSENSUS ANALYSIS

Table 7 presents the confusion matrix for the partitions of two methods: high fre-
quencies in the main diagonal cells of Table 7 denote a strong consensus between
AA and FCM. The detail of the consensus analysis measurement on prototype
definition are reported in Table 8. The three measures of consensus show that
between the two methods there exists an high consensus level. Finally, Figure 12
jointly illustrates the membership degree behaviours with respect to AA and FCM
(see Section 2.3 for the interpretation).

Table 7: Confusion matrix of the partitions FCM and AA

Archetypal Analysis
a1 a2 a3

Fuzzy c-Means
c1 51 0 0 51
c2 1 63 1 65
c3 0 3 59 62

52 66 60 178

Figure 6: Eigenvectors represented on
the first two principal components.

Figure 7: 3D Plot of the data repre-
sented on the first three principal com-
ponents.
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Figure 8: C-means map for K=3 to 6 Figure 9: Archetypes map for K=3 to 6

Figure 10: FCM scree plot from groups
1 to 5

Figure 11: AA scree plot from groups 1
to 5

Table 8: Results of consensus analysis on the definition of the prototypes

Consensus Measure
Hubert Rand Arabie
0.923 0.963 0.04
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Figure 12: Membership functions computed by FCM and AA

5.3. ANALYSIS AND DESCRIPTION OF PROTOTYPES

The first representation of the prototypes is the CA applied to the partitions with
K + 1 groups. We recall that the extra group receives the units that have not
reached a membership value greater than the critical value of 0.5 for any group.
Figure 13 shows the results plot of correspondence analysis (details of the results
in Table 9).

Table 9: Results of correspondence analysis between FCM and AA
Principal inertia

Dimension 1 2
Value 0.975 0.869
Prop. of Variance 0.529 0.471
Cum. Proportion 0.529 1.000

CA confirms the high consensus between the two partitions. These figures al-
low us to state that as many prototypes as the number of groups can be identified
in the data. Hence, the last step consists in giving a description for each proto-
type to define the set of descriptions. In general a prototype is not described by
single-valued data, but a fuzzy description is preferred. In this case we propose
to describe our prototypes by interval-valued data. Such an approach has been
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Figure 13: Visualisation of correspondence analysis between FCM and AA

proposed and widely used in the symbolic data analysis (SDA) framework, where
a prototype is described by interval-valued data (Billard and Diday, 2003; Hickey
et al., 2001; Kao et al., 2014; Palumbo and Irpino, 2005). In order to set the lower
and upper bounds of the intervals, we consider the hypersphere having as centre
the mean value as identified by the FCM and the radius equal to distance from
the centre and its paired archetype. All points belonging to the hypersphere are
associated to the prototypes and their minimum and maximum values represents
the prototype description. Formally, xi ∈ uk if xi = xi1, . . .xi j, . . .xiJ belongs to the
(hyper)sphere i.e.: ∑J

j=1(xi j−c jk)2 ≤ r2(k), where r2(k) =∑J
j=1 (a jk − c jk)2 is the

squared radius and c jk and a jk indicate the coordinates of the kth prototype centre
and archetype, respectively. Figure 14 shows the prototypes identified in the PCA
reduced space R2. The plot shows the three prototypes represented by the three
circles containing the units identified by the consensus.

The distributions of the three prototypes are represented in Figure 15. Box-
plots denote that the Prototype 1 includes the wines that have a low level of alco-
hol, ash, alkalinity of ash, flavonoids, magnesium, color intensity, OD280-OD315
of diluted wines and Proline whereas high levels are verified of malic acid and
nonflavanoid phenols; the Prototype 2 includes the wines that have a low level
of malic acid, magnesium, flavonoids, proanthocyanins and proline whereas high
levels are verified of Ash, Alkalinity of ash, Hue and OD280-OD315 of diluted
wines; the Prototype 3 includes the wines that have a low level of malic acid,
ash, alkalinity of ash, Magnesium, flavonoids and proline whereas high levels are
verified of alcohol, phenols, intensity and OD280-OD315 of diluted wines.
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Figure 14: Representation of the prototypes in R2

Figure 15: Boxplot of the prototypes distributions
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6. CONCLUSIONS

In this paper we proposed a novel approach to identify prototypes in the data on
the basis of the consensus between two different partitioning methods: archetypal
analysis and fuzzy c-means. Pairs of units that were classified in the same group
through the two different methods were taken into account for prototype defini-
tion. As the two methods satisfy two different criteria it was preferred to define
the prototypes on the basis of fuzzy logic (Kaufman and Rousseeuw, 1990; Zadeh,
1994). In other words, each prototype summarises the properties of all those units
that satisfy both criteria. It is worth pointing out that AA focuses on the extreme
points and that FCM focuses on the mean point of each group.

Our simulation results confirmed our hypothesis: when groups are well de-
fined, avoiding any overlapping, consensus analysis between the two different
partitioning methods underlined the presence of the groups. Moreover, the sim-
ulation was useful to study the causes that can affect the consensus between the
two approaches: first, correlation between variables, secondly presence of multi-
variate outliers (Figures 3 and 4).

In conclusion, the prototypes definitions through the consensus approach is
more reliable in comparison to the classical approaches, i.e., finding groups in
respect to the consensus-criterion, guarantees more homogeneous prototypes.
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