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Abstract

In this work feedback control laws are designed for achieving three-axis

attitude stabilization of inertial pointing spacecraft using only magnetic tor-

quers. The designs are based on an almost periodic model of geomagnetic

field along the spacecraft’s orbit. Both attitude plus attitude rate feedback,

and attitude only feedback are proposed. Both feedback laws achieve lo-

cal exponential stability robustly with respect to large uncertainties in the

spacecraft’s inertia matrix. The latter properties are proved using general

averaging and Lyapunov stability. Simulations are included to validate the

effectiveness of the proposed control algorithms.

Keywords: attitude control, magnetic actuators, averaging, Lyapunov

stability.

1. Introduction1

Spacecrafts attitude control can be obtained by adopting several mecha-2

nisms. Among them electromagnetic actuators are widely used for generation3

of attitude control torques on small satellites flying low Earth orbits. They4
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consist of planar current-driven coils rigidly placed on the spacecraft typically5

along three orthogonal axes, and they operate on the basis of the interaction6

between the magnetic moment generated by those coils and the Earth’s mag-7

netic field; in fact, the interaction with the Earth’s field generates a torque8

that attempts to align the total magnetic moment in the direction of the9

field. The interest in such devices, also known as magnetorquers, is due to10

the following reasons: (i) they are simple, reliable, and low cost (ii) they need11

only renewable electrical power to be operated; (iii) using magnetorquers it is12

possible to modulate smoothly the control torque so that unwanted couplings13

with flexible modes, which could harm pointing precision, are not induced;14

(iv) magnetorquers save system weight with respect to any other class of15

actuators. On the other hand, magnetorquers have the important limitation16

that control torque is constrained to belong to the plane orthogonal to the17

Earth’s magnetic field. As a result, different types of actuators often accom-18

pany magnetorquers to provide full three-axis control, and a considerable19

amount of work has been dedicated to the design of magnetic control laws in20

the latter setting (see e.g. [1, 2, 3, 4] and references therein).21

Recently, three-axis attitude control using only magnetorquers has been22

considered as a feasible option especially for low-cost micro-satellites. Dif-23

ferent control laws have been obtained; many of them are designed using a24

periodic approximation of the time-variation of the geomagnetic field along25

the orbit, and in such scenario stability and disturbance attenuation have26

been achieved using results from linear periodic systems (see e.g. [5, 6, 7]);27

however, in [8] and [9] stability has been achieved even when a non periodic,28

and thus more accurate, approximation of the geomagnetic field is adopted.29
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In both works feedback control laws that require measures of both attitude30

and attitude-rate (i.e. state feedback control laws) are proposed; moreover,31

in [8] feedback control algorithms which need measures of attitude only (i.e.32

output feedback control algorithms) are presented, too. All the control al-33

gorithms in [8] and [9] require exact knowledge of the spacecraft’s inertia34

matrix; however, because the moments and products of inertia of the space-35

craft may be uncertain or may change due to fuel usage and articulation,36

the inertia matrix of a spacecraft is often subject to large uncertainties; as a37

result, it is important to determine control algorithms which achieve attitude38

stabilization in spite of those uncertainties.39

In this work we present control laws obtained by modifying those in [8] and40

[9], which achieve local exponential stability in spite of large uncertainties41

on the inertia matrix. The latter results are derived adopting an almost42

periodic model of the geomagnetic field along the spacecraft’s orbit. As in43

[8] and [9] the main tools used in the stability proofs are general averaging44

and Lyapunov stability (see [10]).45

The rest of the paper is organized as follows. Section 2 introduces the46

models adopted for the spacecraft and for the Earth’s magnetic field. Control47

design of both state and output feedbacks are reported in Section 3 along48

with stability proofs. Simulations of the obtained control laws are presented49

in Section 4.50

1.1. Notations51

For x ∈ Rn, ‖x‖ denotes the Eucledian norm of x; for a square ma-52

trix A, λmin(A) and λmax(A) denote the minimum and maximum eigen-53

value of A respectively; ‖A‖ denotes the 2-norm of A which is equal to54
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‖A‖ = [λmax(A
TA)]1/2. Symbol I represents the identity matrix. For a ∈ R3,55

a× represents the skew symmetric matrix56

a× =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 (1)

so that for b ∈ R3, the multiplication a×b is equal to the cross product a× b.57

2. Modeling58

In order to describe the attitude dynamics of an Earth-orbiting rigid59

spacecraft, and in order to represent the geomagnetic field, it is useful to60

introduce the following reference frames.61

1. Earth-centered inertial frame Fi. A commonly used inertial frame for62

Earth orbits is the Geocentric Equatorial Frame, whose origin is in the63

Earth’s center, its xi axis is the vernal equinox direction, its zi axis64

coincides with the Earth’s axis of rotation and points northward, and65

its yi axis completes an orthogonal right-handed frame (see [11, Section66

2.6.1] ).67

2. Spacecraft body frame Fb. The origin of this right-handed orthogonal68

frame attached to the spacecraft, coincides with the satellite’s center69

of mass; its axes are chosen so that the inertial pointing objective is70

having Fb aligned with Fi.71

Since the inertial pointing objective consists in aligning Fb to Fi, the72

focus will be on the relative kinematics and dynamics of the satellite with73

respect to the inertial frame. Let q = [q1 q2 q3 q4]T = [qTv q4]T with ‖q‖ = 174
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be the unit quaternion representing rotation of Fb with respect to Fi; then,75

the corresponding attitude matrix is given by76

A(q) = (q2
4 − qTv qv)I + 2qvq

T
v − 2q4q

×
v (2)

(see [12, Section 5.4]).77

Let78

W (q) =
1

2

 q4I + q×v

−qTv

 (3)

Then the relative attitude kinematics is given by79

q̇ = W (q)ω (4)

where ω ∈ R3 is the angular rate of Fb with respect to Fi resolved in Fb (see80

[12, Section 5.5.3]).81

The attitude dynamics in body frame can be expressed by82

Jω̇ = −ω×Jω + T (5)

where J ∈ R3×3 is the spacecraft inertia matrix, and T ∈ R3 is the vector83

of external torque expressed in Fb (see [12, Section 6.4]). As stated in the84

introduction, here we consider J uncertain since the moments and products85

of inertia of the spacecraft may be uncertain or may change due to fuel86

usage and articulation; however, we require to know a lower bound and an87

upper bound for the spacecraft’s principal moments of inertia; those bounds88

usually can be determined in practice without difficulties. Thus, the following89

assumption on J is made.90
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Assumption 1. The inertia matrix J is unknown, but bounds 0 < Jmin ≤91

Jmax such that the following hold92

0 < Jmin ≤ λmin(J) ≤ λmax(J) = ‖J‖ ≤ Jmax (6)

are known.93

The spacecraft is equipped with three magnetic coils aligned with the Fb94

axes which generate the magnetic attitude control torque95

T = mcoils ×Bb = −Bb× mcoils (7)

where mcoils ∈ R3 is the vector of magnetic moments for the three coils, and96

Bb is the geomagnetic field at spacecraft expressed in body frame Fb. From97

the previous equation, we see that magnetic torque can only be perpendicular98

to geomagnetic field.99

Let Bi be the geomagnetic field at spacecraft expressed in inertial frame100

Fi. Note that Bi varies with time both because of the spacecraft’s motion101

along the orbit and because of time variability of the geomagnetic field. Then102

Bb(q, t) = A(q)Bi(t) which shows explicitly the dependence of Bb on both q103

and t.104

Grouping together equations (4) (5) (7) the following nonlinear time-105

varying system is obtained106

q̇ = W (q)ω

Jω̇ = −ω×Jω −Bb(q, t)× mcoils

(8)

in which mcoils is the control input.107

In order to design control algorithms, it is important to characterize the108

time-dependence of Bb(q, t) which is the same as characterizing the time-109

dependence of Bi(t). Adopting the so called dipole model of the geomagnetic110
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field (see [13, Appendix H]) we obtain111

Bi(t) =
µm

‖ri(t)‖3
[3(m̂i(t)T r̂i(t))r̂i − m̂i(t)] (9)

In equation (9), µm is the total dipole strength, ri(t) is the spacecraft’s112

position vector resolved in Fi, and r̂i(t) is the vector of the direction cosines113

of ri(t); finally m̂i(t) is the vector of the direction cosines of the Earth’s114

magnetic dipole expressed in Fi which is set equal to115

m̂i(t) =


sin(θm) cos(ωet+ α0)

sin(θm) sin(ωet+ α0)

cos(θm)

 (10)

where θm is the dipole’s coelevation, ωe = 360.99 deg/day is the Earth’s116

average rotation rate, and α0 is the right ascension of the dipole at time t = 0;117

clearly, in equation (10) Earth’s rotation has been taken into account. It has118

been obtained that for year 2010 µm = 7.746 1015 Wb m and θm = 170.0◦119

(see [14]); then, as it is well known, the Earth’s magnetic dipole is tilted with120

respect to Earth’s axis of rotation.121

Equation (9) shows that in order to characterize the time dependence122

of Bi(t) it is necessary to determine an expression for ri(t) which is the123

spacecraft’s position vector resolved in Fi. Assume that the orbit is circular,124

and define a coordinate system xp, yp in the orbital’s plane whose origin is at125

Earth’s center; then, the position of satellite’s center of mass is clearly given126

by127

xp(t) = R cos(nt+ φ0)

yp(t) = R sin(nt+ φ0)
(11)

where R is the radius of the circular orbit, n is the orbital rate, and φ0128

an initial phase. Then, coordinates of the satellite in inertial frame Fi can129
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be easily obtained from (11) using an appropriate rotation matrix which130

depends on the orbit’s inclination incl and on the right ascension of the131

ascending node Ω (see [11, Section 2.6.2]). Plugging into (9) the expression132

of those coordinates and equation (10), an explicit expression for Bi(t) can133

be obtained; it can be easily checked that Bi(t) turns out to be a linear134

combination of sinusoidal functions of t having different frequencies. As a135

result, Bi(t) is an almost periodic function of t (see [10, Section 10.6]), and136

consequently system (8) is an almost periodic nonlinear system.137

3. Control design138

As stated before, the control objective is driving the spacecraft so that Fb139

is aligned with Fi. From (2) it follows that A(q) = I for q = [qTv q4]T = ±q̄140

where q̄ = [0 0 0 1]T . Thus, the objective is designing control strategies for141

mcoils so that qv → 0 and ω → 0. Here we will present feedback laws that142

locally exponentially stabilize equilibrium (q, ω) = (q̄, 0).143

First, since Bb can be measured using magnetometers, apply the following144

preliminary control which enforces that mcoils is orthogonal to Bb
145

mcoils = Bb(q, t)× u = Bb(q, t)×u = −(Bb(q, t)×)Tu (12)

where u ∈ R3 is a new control vector. Then, it holds that146

q̇ = W (q)ω

Jω̇ = −ω×Jω + Γb(q, t)u
(13)

where147

Γb(q, t) = (Bb(q, t)×)(Bb(q, t)×)T = Bb(q, t)TBb(q, t)I −Bb(q, t)Bb(q, t)T

(14)
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Let148

Γi(t) = (Bi(t)×)(Bi(t)×)T = Bi(t)TBi(t)I −Bi(t)Bi(t)T (15)

then it is easy to verify that

Γb(q, t) = A(q)Γi(t)A(q)T

so that (13) can be written as149

q̇ = W (q)ω

Jω̇ = −ω×Jω + A(q)Γi(t)A(q)Tu
(16)

Since Bi(t) is a linear combination of sinusoidal functions of t having150

different frequencies, so is Γi(t). As a result, the following average151

Γiav = lim
T→∞

1

T

∫ T

0

Γi(τ)dτ (17)

is well defined. Consider the following assumption on Γiav .152

Assumption 2. The spacecraft’s orbit satisfies condition Γiav > 0.153

Remark 1. Since Γi(t) ≥ 0 (see (15)), Assumption 2 is equivalent to requir-154

ing that det(Γiav) 6= 0. The expression of det(Γiav) based on the model of the155

geomagnetic field presented in the previous section is quite complex, and it is156

not easy to get an insight from it; however, if coelevation of Earth’s magnetic157

dipole θm = 170.0◦ is approximated to θm = 180◦ deg, which corresponds to158

having Earth’s magnetic dipole aligned with Earth’s rotation axis, then the159

geomagnetic field in a fixed point of the orbit becomes constant with respect160

to time (see (9) and (10)); consequently Bi(t), which represents the geomag-161

netic field along the orbit, becomes periodic, and the expression of det(Γiav)162

simplifies as follows163

det(Γiav) =
9µ6

m

1024 R18
[345− 92 cos(2 incl) + 3 cos(4 incl)] sin(incl)2 (18)
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Thus, in such simplified scenario issues on fulfillment of Assumption 2 arise164

only for low inclination orbits.165

3.1. State feedback166

In this subsection, a stabilizing static state (i.e. attitude and attitude167

rate) feedback for system (16) is presented. It is obtained as a simple modi-168

fication of the one proposed in [9]. The important property that is achieved169

through such modification is robustness with respect to uncertainties on the170

inertia matrix; that is, the modified control algorithm achieves stabilization171

for all J ’s that fulfill Assumption 1.172

Theorem 2. Consider the magnetically actuated spacecraft described by (16)173

with uncertain inertia matrix J satisfying Assumption 1. Apply the following174

proportional derivative control law175

u = −(ε2k1qv + εk2ω) (19)

with k1 > 0 and k2 > 0. Then, under Assumption 2, there exists ε∗ > 0 such176

that for any 0 < ε < ε∗, equilibrium (q, ω) = (q̄, 0) is locally exponentially177

stable for (16) (19).178

Proof. In order to prove local exponential stability of equilibrium (q, ω) =179

(q̄, 0), it suffices considering the restriction of (16) (19) to the open set S3+×180

R3 where181

S3+ = {q ∈ R4 | ‖q‖ = 1, q4 > 0} (20)

On the latter set the following holds182

q4 = (1− qTv qv)1/2 (21)
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Consequently, the restriction of (16) (19) to S3+×R3 is given by the following183

reduced order system184

q̇v = Wv(qv)ω

Jω̇ = −ω×Jω − Av(qv)Γi(t)Av(qv)T (ε2k1qv + εk2ω)
(22)

where185

Wv(qv) =
1

2

[(
1− qTv qv

)1/2
I + q×v

]
(23)

and186

Av(qv) =
(
1− 2qTv qv

)
I + 2qvq

T
v − 2

(
1− qTv qv

)1/2
q×v (24)

Consider the linear approximation of (22) around (qv, ω) = (0, 0) which187

is given by188

q̇v =
1

2
ω

ω̇ = −J−1Γi(t)(ε2k1qv + εk2ω)
(25)

Introduce the following state-variables’ transformation

z1 = qv z2 = ω/ε

with ε > 0 so that system (22) is transformed into189

ż1 =
ε

2
z2

ż2 = −εJ−1Γi(t)(k1z1 + k2z2)
(26)

Rewrite system (26) in the following matrix form190

ż = εA(t)z (27)

where

A(t) =

 0 1
2
I

−k1J
−1Γi(t) −k2J

−1Γi(t)
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and consider the so called time-invariant “average system” of (27)191

ż = εAavz (28)

with

Aav =

 0 1
2
I

−k1J
−1Γiav −k2J

−1Γiav


where Γiav was defined in (17) (see [10, Section 10.6] for a general definition192

of average system).193

We will show that after having performed an appropriate coordinate

transformation, system (27) can be seen as a perturbation of (28) (see [10,

Section 10.4]). For that purpose note that since Γi(t) is a linear combina-

tion of sinusoidal functions of t having different frequencies, then there exists

k∆ > 0 such that the following holds∥∥∥∥ 1

T

∫ T

0

Γi(τ)dτ − Γiav

∥∥∥∥ ≤ k∆
1

T
∀ T > 0

Let

∆(t) =

∫ t

0

(Γi(τ)− Γiav)dτ

then for t > 0

‖∆(t)‖ = t

∥∥∥∥[1

t

∫ t

0

Γi(τ)dτ − Γiav

]∥∥∥∥ ≤ k∆

hence194

‖∆(t)‖ ≤ k∆ ∀t ≥ 0 (29)

Let195

U(t) =

∫ t

0

[A(τ)− Aav]dτ =

 0 0

−k1J
−1∆(t) −k2J

−1∆(t)

 (30)
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and observe that the following holds196

‖U(t)‖ ≤
√

3 (k1 + k2)‖J−1‖ ‖∆(t)‖ ∀t ≥ 0 (31)

Observe that from (6) it follows that197

‖J−1‖ =
1

λmin(J)
≤ 1

Jmin
(32)

thus198

‖U(t)‖ ≤
√

3 (k1 + k2)k∆

Jmin
∀t ≥ 0 (33)

Now consider the transformation matrix199

T (t, ε) = I + εU(t) =

 I 0

−εk1J
−1∆(t) I − εk2J

−1∆(t)

 (34)

Since (33) holds, if ε is small enough, then T (t, ε) is non singular for all t ≥ 0.

Thus, we can define the coordinate transformation

w = T (t, ε)−1z

In order to compute the state equation of system (27) in the new coordinates

it is convenient to consider the inverse transformation

z = T (t, ε)w

and differentiate with respect to time both sides obtaining

εA(t)T (t, ε)w =
∂T

∂t
(t, ε)w + T (t, ε)ẇ

Consequently200

ẇ = T (t, ε)−1

[
εA(t)T (t, ε)− ∂T

∂t
(t, ε)

]
w (35)
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Observe that

T (t, ε)−1 =

 I 0

(I − εk2J
−1∆(t))−1εk1J

−1∆(t) (I − εk2J
−1∆(t))−1


By using Lemma 8, it is immediate to obtain that for ε sufficiently small,

matrix (I − εk2J
−1∆(t))−1 can be expressed as follows

(I − εk2J
−1∆(t))−1 = I + εk2J

−1∆(t)(I − ε̃k2J
−1∆(t))−2

where 0 < ε̃ < ε. As a result T (t, ε)−1 can be written as201

T (t, ε)−1 = I + εS(t, ε) (36)

with

S(t, ε) =

 0 0

(I − εk2J
−1∆(t))−1k1J

−1∆(t) k2J
−1∆(t)(I − ε̃k2J

−1∆(t))−2


Observe that since (29) (32) (A.3) (A.4) hold, for ε sufficiently small S(t, ε)202

is bounded for all t ≥ 0. Moreover, from (30) and (34) obtain the following203

∂T

∂t
(t, ε) = ε

∂U

∂t
(t, ε) = ε(A(t)− Aav) (37)

Then, from (34) (35) (36) (37) we obtain204

ẇ = ε[Aav + εH(t, ε)]w (38)

where

H(t, ε) = A(t)U(t) + S(t, ε)Aav + εS(t, ε)A(t)U(t)

Thus we have shown that in coordinates w system (27) is a perturbation of205

system (28); moreover, clearly, for the perturbation factor H(t, ε) it occurs206

that for ε small enough there exists kH > 0 such that207

‖H(t, ε)‖ ≤ kH ∀t ≥ 0 (39)

14



Let us focus on system208

ẇ = Aavw (40)

which in expanded form reads as follows209

ẇ1 =
1

2
w2

Jẇ2 = −Γiav(k1w1 + k2w2)
(41)

Consider the candidate Lyapunov function for system (41) (see [15])210

V (w1, w2) = k1w
T
1 Γiavw1 + 2βwT1 Jw2 +

1

2
wT2 Jw2 (42)

with β > 0. Note that

V (w1, w2) ≥ k1λmin(Γiav)‖w1‖2 − 2β‖J‖‖w1‖‖w2‖+
1

2
λmin(J)‖w2‖2

≥
(
k1λmin(Γiav)− βJmax

)
‖w1‖2 +

(
1

2
Jmin − βJmax

)
‖w2‖2

Thus for β small enough, V is positive definite for all J ’s satisfying Assump-

tion 1. Moreover, the following holds

V̇ (w1, w2) = −2βk1w
T
1 Γiavw1 − 2βk2w

T
1 Γiavw2 − k2w

T
2 Γiavw2 + βwT2 Jw2

≤ −2βk1λmin(Γiav)‖w1‖2+2βk2‖Γiav‖‖w1‖‖w2‖−k2λmin(Γiav)‖w2‖2+β‖J‖‖w2‖2

Use the following Young’s inequality211

2‖w1‖‖w2‖ ≤
k1λmin(Γiav)

k2‖Γiav‖
‖w1‖2 +

k2‖Γiav‖
k1λmin(Γiav)

‖w2‖2 (43)

so to obtain212

V̇ (w1, w2) ≤ −βk1λmin(Γiav)‖w1‖2−
[
k2λmin(Γiav)− β

(
k2

2‖Γiav‖2

k1λmin(Γiav)
+ Jmax

)]
‖w2‖2

(44)
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Thus, for β small enough V̇ is negative definite and system (40) is exponen-

tially stable for all J ’s satisfying Assumption 1. Then, fix β so that for all J ’s

that satisfy Assumption 1, V is positive definite and V̇ is negative definite,

and rewrite the Lyapunov function V (see (42)) in the following compact

form

V (w1, w2) = wTPw

where clearly

P =

 k1Γiav βJ

βJ
1

2
J


Then, note that the following holds213

‖P‖ ≤ kP (45)

with214

kP =
√

3

[
k1‖Γiav‖+

(
2β +

1

2

)
Jmax

]
(46)

Moreover, from equation (44) it follows immediately that there exists kV > 0215

such that216

V̇ (w1, w2) = 2wTPAavw ≤ −kV ‖w‖2 (47)

Now for system (38) consider the same Lyapunov function V used for system

(40); the derivative of V along the trajectories of (38) is given by

V̇ (w1, w2) = ε[2wTPAavw + 2εwTPH(t, ε)w]

Thus, using (39) (45) (47) we obtain that for ε small enough the following

holds

V̇ (w1, w2) ≤ ε[−kV + 2εkPkH ]‖w‖2

16



Thus for ε sufficiently small system (38) is exponentially stable. As a result,

for the same values of ε equilibrium (qv, ω) = (0, 0) is exponentially stable

for (25), and consequently (qv, ω) = (0, 0) is locally exponentially stable for

the nonlinear system (22). From equation (21) it follows that given d < 1,

there exists L > 0 such that

|q4 − 1| ≤ L‖qv‖ ∀ ‖qv‖ < d

Thus, exponential stability of (q, ω) = (q̄, 0) for (16) (19) can be easily ob-217

tained.218

219

Remark 3. Given an inertia matrix J it is relatively simple to show that220

there exists ε∗ > 0 such that setting 0 < ε < ε∗ the closed-loop system (16)221

(19) is locally exponentially stable at (q, ω) = (q̄, 0) 1. It turns out that the222

value of ε∗ > 0 depends on J ; consequently, if J is uncertain, ε∗ cannot be223

determined. However, the previous Theorem has shown that even in the case224

of unkown J , if bounds Jmin and Jmax on its principal moments of inertia are225

known, then it is possible to determine an ε∗ > 0 such that picking 0 < ε < ε∗226

local exponential stability is guaranteed for all J ’s satisfying those bounds.227

Remark 4. Assumption 2 represents an average controllability condition in228

the following sense. Note that, as a consequence of the fact that magnetic229

torques can only be perpendicular to the geomagnetic field, it occurs that230

matrix Γi(t) is singular for each t since Γi(t)Bi(t) = 0 (see (15)); thus,231

system (16) is not fully controllable at each time instant; as a result, having232

1The actual computation of ε∗ is not trivial most of the times (see for example [16]).
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det(Γiav) 6= 0 can be interpreted as the ability in the average system to apply233

magnetic torques in any direction.234

Remark 5. The obtained robust stability result hold even if saturation on235

magnetic moments is taken into account by replacing control (12) with236

mcoils = mcoils max sat

(
1

mcoils max

Bb(q, t)× u
)

(48)

where mcoils max is the saturation limit on each magnetic moment, and sat :237

R3 → R3 is the standard saturation function defined as follows; given x ∈ R3,238

the i-th component of sat(x) is equal to xi if |xi| ≤ 1, otherwise it is equal to239

either 1 or -1 depending on the sign of xi. The previous theorem still holds240

because saturation does not modify the linearized system (25).241

Remark 6. In practical applications values for gains k1, k2 can be chosen by242

trial and error following standard guidelines used in proportional-derivative243

control. For selecting ε in principle we could proceed as follows; determine ε∗244

by following the procedure presented in the previous proof and pick 0 < ε <245

ε∗. However, if it is too complicated to follow that approach, an appropriate246

value for ε could be found by trial and error as well.247

3.2. Output feedback248

Being able to achieve stability without using attitude rate measures is249

important from a practical point of view since rate gyros consume power and250

increase cost and weight more than the devices needed to implement extra251

control logic.252

In the following thorem we propose a dynamic output (i.e. attitude only)253

feedback that is obtained as a simple modification of the output feedback254
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presented in [8]. As in the case of state feedback, the important property255

that is achieved through such modification is robustness with respect to un-256

certainties on the inertia matrix.257

Theorem 7. Consider the magnetically actuated spacecraft described by (16)258

with uncertain inertia matrix J satisfying Assumption 1. Apply the following259

dynamic attitude feedback control law260

δ̇ = α(q − ελδ)

u = −ε2
(
k1qv + k2αλW (q)T (q − ελδ)

) (49)

with δ ∈ R4, k1 > 0, k2 > 0, α > 0, and λ > 0. Then, under Assumption261

2, there exists ε∗ > 0 such that for any 0 < ε < ε∗, equilibrium (q, ω, δ) =262

(q̄, 0, 1
ελ
q̄) is locally exponentially stable for (16) (49).263

Proof. In order to prove local exponential stability of equilibrium (q, ω, δ) =264

(q̄, 0, 1
ελ
q̄), it suffices considering the restriction of (16) (49) to the open set265

S3+ × R3 × R4 where S3+ was defined in (20); the latter restriction is given266

by the following reduced order system267

q̇v = Wv(qv)ω

Jω̇ = ω×Jω − ε2Av(qv)Γi(t)Av(qv)T
k1qv + k2αλWr(qv)

T

 qv

(1− qTv qv)1/2

− ελδ


δ̇ = α

 qv

(1− qTv qv)1/2

− ελδ


(50)

where Wv(qv) and Av(qv) were defined in equations (23) and (24) respectively

and Wr(qv) is defined by to

Wr(qv) =
1

2

 (1− qTv qv)1/2I + q×v

−qTv
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Partition δ ∈ R4 as follows

δ = [δTv δ4]T

where clearly δv ∈ R3, and consider the linear approximation of (50) around268

(qv, ω, δv, δ4) = (0, 0, 0, 1
ελ

) which is given by269

q̇v =
1

2
ω

Jω̇ = −ε2Γi(t)

(
k1qv +

1

2
k2αλ(qv − ελδv)

)
δ̇v = α(qv − ελδv)
˙̃δ4 = −αελδ̃4

(51)

where δ̃4 = δ4 − 1
ελ

. Introduce the following state-variables’ transformation

z1 = qv z2 = ω/ε z3 = qv − ελδv z4 = δ̃4

with ε > 0 so that system (51) is transformed into270

ż1 =
ε

2
z2

Jż2 = −εΓi(t)
(
k1z1 +

1

2
k2αλz3)

)
ż3 = ε

(
1

2
z2 − αλz3

)
ż4 = −εαλz4

(52)

and consider the so called time-invariant “average system” of (52)271

ż1 =
ε

2
z2

Jż2 = −εΓiav
(
k1z1 +

1

2
k2αλz3)

)
ż3 = ε

(
1

2
z2 − αλz3

)
ż4 = −εαλz4

(53)
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where Γiav was defined in (17). Thus, proceeding in a fashion perfectly par-272

allel to the one followed in the proof of Theorem 2 it can be shown that273

through an appropriate coordinate transformation, system (52) can be seen274

as a perturbation of system (53). Note that the correspondent of system (41)275

is given by276

ẇ1 =
1

2
w2

Jẇ2 = −Γiav

(
k1w1 +

1

2
k2αλw3)

)
ẇ3 =

1

2
w2 − αλw3

ẇ4 = −αλw4

(54)

Then, use the following Lyapunov function

Vo(w) = k1w
T
1 Γiavw1+

1

2
wT2 Jw2+

1

2
k2αλw

T
3 Γiavw3+

1

2
w2

4+2βwT1 Jw2−4βwT2 Jw3

with β > 0. It is relatively simple to show that if β is small enough, then Vo

is positive definite for all J ’s that satisfy Assumption 1. Moreover, it is easy

to derive that for all such J ’s the following holds

V̇o(w) ≤ −2βλmin(Γiav)‖w1‖2−βJmin‖w2‖2−(k2α
2λ2−2βk2αλ)λmin(Γiav)‖w3‖2

− αλw2
4 + |2γk1 − βk2αλ|λmax(Γiav)‖w1‖‖w3‖+ 2γλαJmax‖w2‖‖w3‖

Using Young’s inequalities analogous to (43) for the last two mixed terms,,277

it is easy to obtain that for β > 0 small enough V̇o is negative definite for all278

J ’s that satisfy Assumption 1. Then, the proof can be completed by using279

arguments similar to those in the proof of Theorem 2.280

Considerations similar to Remarks 3 through 6 apply to the proposed281

output feedback; in particular, in practical applications gains α and λ are282

often chosen by trial and error.283
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4. Simulations284

For simulation consider a satellite whose inertia matrix is equal to285

J = diag[27 17 25] kg m2 (55)

(see [8]). The satellite follows a circular near polar orbit (incl = 87◦) with286

orbit altitude of 450 km; the corresponding orbital period is about 5600 s.287

Without loss of generality the right ascension of the ascending node Ω is set288

equal to 0, whereas the initial phases α0 (see (10)) and φ0 (see (11)) have289

been randomly selected and set equal to α0 = 4.54 rad and φ0 = 0.94 rad.290

First, check that for the considered orbit Assumption 2 is fulfilled. It was291

shown in Remark 1 that the assumption is satisfied if det(Γiav) 6= 0. The292

determinant of 1/T
∫ T

0
Γi(t)dt can be computed numerically, and it turns293

out that it converges to 9.23 10−28 for T → ∞. It is of interest to compare294

the latter value with the value 9.49 10−28 obtained by using the analytical295

expression (18) which is valid when θm is approximated to 180◦.296

Consider an initial state characterized by attitude equal to to the target297

attitude q(0) = q̄, and by the following high initial angular rate298

ω(0) = [0.02 0.02 − 0.03]T rad/s (56)

4.1. State feedback299

The controller’s parameters of the state feedback control (19) have been300

chosen by trial and error as follows k1 = 2 1011, k2 = 3 1011, ε = 10−3.301

In order to test robustness of the designed state feedback with respect to302

perturbations of the inertia matrix through a Monte Carlo study, it is use-303

ful to generate a random set of perturbed inertia matrices having principal304
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moments of inertia that are in between the smallest (Jmin = 17 kg m2 ) and305

the largest (Jmax = 27 kg m2 ) principal moment of inertia of (55). Then,306

each random perturbed inertia matrix has been generated as follows. First a307

3× 3 diagonal matrix Jpert diag has been determined selecting each diagonal308

element on the interval [Jmin Jmax] by means of the pseudo-random number309

generator rand() from MatlabTM. Note that matrix Jpert diag satisfies the so310

called triangular inequalities (see [12, Problem 6.2]) because 2Jmin > Jmax;311

thus, it actually represents an inertia matrix. Next, a 3 × 3 rotation ma-312

trix R has been randomly generated by using the function for MatlabTM
313

random rotation() [17]; finally the desired randomly generated perturbed in-314

ertia matrix has been computed as Jpert = RTJpert diagR. Note that Theorem315

2 guarantees that, if parameter ε = 10−3 has been chosen small enough, then316

the desired attitude should be acquired even when the inertia matrix is equal317

to Jpert.318

Simulations were run for the designed state feedback law using for J the319

nominal value reported in (55) and each of 200 perturbed values randomly320

generated; the resulting plots are shown in Fig. 1. Note that asymptotic321

convergence to the desired attitude is achieved even with perturbed inertia322

matrices; however, convergence time can become larger with respect to the323

nominal case.324

4.2. Output feedback325

The values of parameters for output feedback (49) have been determined326

by trial and error as follows k1 = 1011, k2 = 3 1011, ε = 10−3, α = 4 103,327

λ = 1. Similarly to the state feedback case, simulations were run using the328

nominal value for J and each of 200 perturbed values which were randomly329
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generated. The results are plotted in Fig. 2. Thus, also in the output330

feedback study, it occurs that asymptotic convergence to the desired attitude331

is achieved even with perturbed inertia matrices, but convergence time can332

become larger with respect to the nominal case.333

5. Conclusions334

Three-axis attitude controllers for inertial pointing spacecraft using only335

magnetorquers have been presented. An attitude plus attitude rate feedback336

and an attitude only feedback are proposed. With both feedbacks local ex-337

ponential stability and robustness with respect to large inertia uncertainties338

are achieved. Simulation results have shown the effectiveness of the proposed339

control designs.340

This work shows promising results for further research in the field; in341

particular, it would be interesting to extend the presented control algorithms342

to the case of Earth-pointing spacecraft.343

Appendix A.344

Recall that given square matrix X ∈ Rn×n with eigenvalues inside the345

unit circle, I −X is invertible and the following holds (see [18, Lecture 3])346

(I −X)−1 =
∞∑
i=0

X i (A.1)

(I −X)−2 =
∞∑
i=1

iX i−1 (A.2)

24



From the previous equations the following inequalities are immediatly ob-347

tained348

‖(I −X)−1‖ ≤ 1

1− ‖X‖
(A.3)

‖(I −X)−2‖ ≤ 1

(1− ‖X‖2)2
(A.4)

The previous results are useful for proving the following349

Lemma 8. Given Y ∈ Rn×n and ε > 0, if ε is sufficiently small then there

exists 0 < ε̃ < ε such that the following holds

(I − εY )−1 = I + εY (I − ε̃ Y )−2

Proof. Let F (ε) = (I − εY )−1. By the mean value theorem, there exists

0 < ε̃ < ε such that the following holds

F (ε) = I +
dF

dε
(ε̃)ε

By using (A.1) and (A.2) it follows that for ε small enough

dF

dε
(ε) =

d

dε

[
∞∑
i=0

(εY )i

]
= Y

∞∑
i=1

i(εY )i−1 = Y (I − ε Y )−2

350
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Figure 1: Evolutions with state feedback controller. Simulation with nominal inertia

matrix (red lines) and Monte Carlo simulations with 200 perturbed inertia matrices (blue

envelopes).
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Figure 2: Evolutions with output feedback controller. Simulation with nominal inertia

matrix (red lines) and Monte Carlo simulations with 200 perturbed inertia matrices (blue

envelopes).
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