Spectral densities related to some fractional stochastic differential equations

Mirko D’Ovidio* Enzo Orsingher ${ }^{\dagger}$ Ludmila Sakhno ${ }^{\ddagger}$

Abstract

In this paper we consider fractional higher-order stochastic differential equations of the form $$
\left(\mu+c_{\alpha} \frac{d^{\alpha}}{d t^{\alpha}}\right)^{\beta} X(t)=\mathcal{E}(t), \quad \mu>0, \beta>0, \alpha \in(0,1) \cup \mathbb{N}
$$ where $\mathcal{E}(t)$ is a Gaussian white noise. We obtain explicitly the covariance functions and the spectral densities of the stochastic processes satisfying the above equations.

Keywords: higher-order heat equations; Weyl fractional derivatives; airy functions; spectral densities.
AMS MSC 2010: 60K99; 60G60.
Submitted to ECP on July 7, 2015, final version accepted on February 17, 2016.

1 Introduction

In this paper we consider fractional stochastic ordinary differential equations of different form where the stochastic component is represented by a Gaussian white noise. Some of the fractional equations considered here are related to the higher-order heat equations and thus are connected with pseudo-processes.

The first part of the paper considers the following stochastic differential equation

$$
\begin{equation*}
\left(\mu+\frac{d^{\alpha}}{d t^{\alpha}}\right)^{\beta} X(t)=\mathcal{E}(t), \quad \beta>0,0<\alpha<1, \mu>0, t>0 \tag{1.1}
\end{equation*}
$$

where $\frac{d^{\alpha}}{d t^{\alpha}}$ represents the Weyl fractional derivative. We obtain a representation of the solution to (1.1) in the form

$$
\begin{equation*}
X(t)=\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} \mathcal{E}(t-z) \int_{0}^{\infty} s^{\beta-1} e^{-s \mu} h_{\alpha}(z, s) d s d z \tag{1.2}
\end{equation*}
$$

where $h_{\alpha}(z, s), z, s \geq 0$, is the density function of a positively-skewed stable process $H_{\alpha}(s), s \geq 0$ of order $\alpha \in(0,1)$, that is with Laplace transform

$$
\int_{0}^{\infty} e^{-\xi z} h_{\alpha}(z, s) d z=e^{-s \xi^{\alpha}}, \quad \xi \geq 0
$$

[^0]Spectral densities related to some fractional stochastic differential equations

For (1.2), we obtain the spectral density

$$
\begin{equation*}
f(\tau)=\frac{\sigma^{2}}{\left(\mu^{2}+2|\tau|^{\alpha} \mu \cos \frac{\pi \alpha}{2}+|\tau|^{2 \alpha}\right)^{\beta}}, \quad \tau \in \mathbb{R} \tag{1.3}
\end{equation*}
$$

and the related covariance function.
The second type of stochastic differential equations we consider has the form

$$
\begin{equation*}
\left(\mu+(-1)^{n} \frac{d^{2 n}}{d t^{2 n}}\right)^{\beta} X(t)=\mathcal{E}(t), \quad \beta>0, \mu>0, n \geq 1, t \in \mathbb{R} \tag{1.4}
\end{equation*}
$$

where $\mathcal{E}(t)$ is a Gaussian white noise. The representation of the solution to (1.4) is

$$
\begin{equation*}
X(t)=\frac{1}{\Gamma(\beta)} \int_{-\infty}^{+\infty} \mathcal{E}(t+x) \int_{0}^{\infty} w^{\beta-1} e^{-\mu w} u_{2 n}(x, w) d w d x \tag{1.5}
\end{equation*}
$$

where $u_{2 n}(x, w), x \in \mathbb{R}, w \geq 0$ is the fundamental solution to $2 n$-th order heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial w}(x, w)=(-1)^{n+1} \frac{\partial^{2 n} u}{\partial x^{2 n}}(x, w) \tag{1.6}
\end{equation*}
$$

The covariance function of the process (1.5) can be written as

$$
\begin{equation*}
\mathbb{E} X(t) X(t+h)=\frac{\sigma^{2}}{\Gamma(2 \beta)} \int_{0}^{\infty} d w w^{2 \beta-1} e^{-\mu w} u_{2 n}(h, w)=\frac{\sigma^{2}}{\mu^{2 \beta}} \mathbb{E} u_{2 n}\left(h, W_{2 \beta}\right) \tag{1.7}
\end{equation*}
$$

where $W_{2 \beta}$ is a gamma r.v. with parameters μ and 2β. The spectral density $f(\tau)$ associated with (1.7) has the fine form

$$
\begin{equation*}
f(\tau)=\frac{\sigma^{2}}{\left(\mu+\tau^{2 n}\right)^{2 \beta}}, \quad \tau \in \mathbb{R} \tag{1.8}
\end{equation*}
$$

For $n=1$, (1.6) is the classical heat equation, $u_{2}(x, w)=\frac{e^{-\frac{x^{2}}{4 w}}}{\sqrt{4 \pi w}}$ and, from (1.7) we obtain an explicit form of the covariance function in terms of the modified Bessel functions. In connection with the equations of the form (1.6) the so-called pseudo-processes, first introduced at the beginning of the Sixties ([7]), have been constructed. The solutions to (1.6) are sign-varying and their structure has been explored by means of the steepest descent method ([11, 1]) and their representation has been recently given in [14].

For the fractional odd-order stochastic differential equation

$$
\begin{equation*}
\left(\mu+\kappa \frac{d^{2 n+1}}{d t^{2 n+1}}\right)^{\beta} X(t)=\mathcal{E}(t), \quad n=1,2, \ldots, \quad \kappa= \pm 1, t \in \mathbb{R} \tag{1.9}
\end{equation*}
$$

the solution has the structure

$$
\begin{equation*}
X(t)=\frac{1}{\Gamma(\beta)} \int_{-\infty}^{+\infty} \mathcal{E}(t+x) \int_{0}^{\infty} d w w^{\beta-1} e^{-\mu w} u_{2 n+1}(x, w) d w d x \tag{1.10}
\end{equation*}
$$

where $u_{2 n+1}(x, w), x \in \mathbb{R}, w \geq 0$ is the fundamental solution to

$$
\begin{equation*}
\frac{\partial u}{\partial w}(x, w)=\kappa \frac{\partial^{2 n+1} u}{\partial x^{2 n+1}}(x, w), \quad \kappa= \pm 1 . \tag{1.11}
\end{equation*}
$$

The solutions $u_{2 n+1}$ and $u_{2 n}$ are substantially different in their behaviour and structure as shown in [14] and [8].

A special attention has been devoted to the case $n=1$ (and $\kappa=-1$) for which (1.10) takes the interesting form

$$
\begin{equation*}
X_{3}(t)=\frac{1}{\Gamma(\beta)} \int_{-\infty}^{+\infty} \mathcal{E}(t+x) \int_{0}^{\infty} w^{\beta-1} e^{-\mu w} \frac{1}{\sqrt[3]{3 w}} A i\left(\frac{x}{\sqrt[3]{3 w}}\right) d w d x \tag{1.12}
\end{equation*}
$$

where $A i(\cdot)$ is the first-type Airy function. The process X_{3} can also be represented as

$$
\begin{equation*}
X_{3}(t)=\frac{1}{\mu^{\beta}} \mathbf{E} \mathcal{E}\left(t+Y_{3}\left(W_{\beta}\right)\right) \tag{1.13}
\end{equation*}
$$

where the mean \mathbf{E} is defined in formula (1.19) below, Y_{3} is the pseudo-process related to equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\frac{\partial^{3} u}{\partial x^{3}} \tag{1.14}
\end{equation*}
$$

and W_{β} is a Gamma-distributed r.v. independent from Y_{3} and possessing parameters β, μ. Therefore, the covariance function of X_{3} has the following form

$$
\begin{equation*}
\mathbb{E} X_{3}(t) X_{3}(t+h)=\frac{\sigma^{2}}{\mu^{2 \beta}} \mathbb{E}\left[\frac{1}{\sqrt[3]{3 W_{2 \beta}}} A i\left(\frac{h}{\sqrt[3]{3 W_{2 \beta}}}\right)\right] \tag{1.15}
\end{equation*}
$$

where $W_{2 \beta}$ is the sum of two independent r.v.'s W_{β}.
For the solution to the general odd-order stochastic equation we obtain the covariance function

$$
\begin{equation*}
\mathbb{E} X(t) X(t+h)=\frac{\sigma^{2}}{\mu^{2 \beta}} \mathbb{E}\left[u_{2 n+1}\left(h, W_{2 \beta}\right)\right] \tag{1.16}
\end{equation*}
$$

Of course, the Fourier transform of (1.16) becomes, for $\kappa= \pm 1$,

$$
\begin{equation*}
f(\tau)=\frac{\sigma^{2}}{\mu^{2 \beta}} \int_{\mathbb{R}} e^{i \tau h} \mathbb{E}\left[u_{2 n+1}\left(h, W_{2 \beta}\right)\right] d h=\frac{\sigma^{2}}{\left(\mu+i \kappa \tau^{2 n+1}\right)^{2 \beta}} . \tag{1.17}
\end{equation*}
$$

Stochastic fractional differential equations similar to those treated here have been analysed in [2], [4] and [6]. In our paper we consider equations where different operators are involved. Such operators are defined as fractional powers $(\beta>0)$ of operators of order α, for $\alpha \in(0,1) \cup \mathbb{N}$. The equations we deal with and involving the white noise $\mathcal{E}(t)$ can be interpreted as integral equations. We define as usual (see [18, pag. 110])

$$
X(f)=\int \mathcal{E}(s) f(s) d s
$$

so that, for each $f, g \in L^{2}(d x)$, we have that

$$
\begin{equation*}
\mathbb{E} X(f) X(g)=\sigma^{2} \int f(x) g(x) d x \tag{1.18}
\end{equation*}
$$

Thus, by considering integral equations, we do not care about assumptions such as sample continuity and differentiability. Moreover, for the sake of clarity we introduce the following conditional expectation

$$
\begin{equation*}
\mathbf{E}[\mathcal{E}(t+Y(W))]=\int \mathcal{E}(t+y) \mathbb{P}(Y(W) \in d y) \tag{1.19}
\end{equation*}
$$

where the expectation is performed w.r.t. the probability measure of $Y(W)$. Throughout the paper we consider Y given by:

- the stable subordinator of order $\alpha \in(0,1]$, denoted by H_{α};

Spectral densities related to some fractional stochastic differential equations

- the pseudo-processes of order $2 n$ and $2 n+1$ with $n \in \mathbb{N}$, denoted by $Y_{2 n}$ and $Y_{2 n+1}$.

We also denote by W the Gamma r.v. W_{β} with parameters μ and β such that $W_{1}+W_{2} \stackrel{d}{=}$ $W_{2 \beta}$.

Pseudo-processes have been developed in a series of papers dating back to the Sixties ([3, 9], [7] for the even-order case, [12] for pseudo-processes related to equations with two space derivatives) and recently by Orsingher [13] for the third-order case, Lachal [8] for the general case and also Smorodina and Faddeev [17].

2 Fractional powers of fractional operators

In this section we consider the following generalization of the Gay and Heyde equation (see [4])

$$
\begin{equation*}
\left(\mu+\frac{d^{\alpha}}{d t^{\alpha}}\right)^{\beta} X(t)=\mathcal{E}(t), \quad \beta>0,0<\alpha<1, \mu>0, t>0 \tag{2.1}
\end{equation*}
$$

where $\mathcal{E}(t), t \in \mathbb{R}$, is a Gaussian white noise for which (1.18) holds true. Then, we have that $\mathbb{E} \mathcal{E}(t) \mathcal{E}(s)=\sigma^{2} \delta(t-s)$ where δ is the Dirac function. The fractional derivative appearing in (2.1) must be meant, for $0<\alpha<1$, as

$$
\frac{d^{\alpha}}{d t^{\alpha}} f(t)=\frac{1}{\Gamma(1-\alpha)} \frac{d}{d t} \int_{-\infty}^{t} \frac{f(s)}{(t-s)^{\alpha}} d s=\frac{\alpha}{\Gamma(1-\alpha)} \int_{0}^{\infty} \frac{f(t)-f(t-w)}{w^{\alpha+1}} d w
$$

For $\alpha=1$ we have that

$$
\frac{d^{\alpha}}{d t^{\alpha}} f(t)=\frac{d}{d t} f(t)
$$

as usual. Consult, for example, [16, pag. 111] for information on fractional derivatives of this form, called also Marchaud derivatives. For $\lambda \geq 0$, we introduce the Laplace transform

$$
\begin{equation*}
\mathcal{L}\left[\frac{d^{\alpha} f}{d t^{\alpha}}\right](\lambda)=\int_{0}^{\infty} e^{-\lambda t} \frac{d^{\alpha}}{d t^{\alpha}} f(t) d t=\lambda^{\alpha} \mathcal{L}[f](\lambda) \tag{2.2}
\end{equation*}
$$

which can be immediately obtained by considering that

$$
\begin{equation*}
\mathcal{L}\left[\frac{d^{\alpha} f}{d t^{\alpha}}\right](\lambda)=\frac{\alpha}{\Gamma(1-\alpha)} \int_{0}^{\infty}\left(\mathcal{L}[f](\lambda)-e^{-w \lambda} \mathcal{L}[f](\lambda)\right) \frac{d w}{w^{\alpha+1}} \tag{2.3}
\end{equation*}
$$

where we used the fact that

$$
x^{\alpha}=\frac{\alpha}{\Gamma(1-\alpha)} \int_{0}^{\infty}\left(1-e^{-w x}\right) \frac{d w}{w^{\alpha+1}}, \quad \alpha \in(0,1), x \geq 0 .
$$

Lemma 2.1. The following relationship holds in a generalized m.s. sense

$$
\begin{equation*}
e^{z \frac{d}{d t} \mathcal{E}}(t)=\mathcal{E}(t+z) \tag{2.4}
\end{equation*}
$$

Proof. In view of the Taylor expansion

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} f^{(k)}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{k}}{k!} \tag{2.5}
\end{equation*}
$$

with $x_{0}=t$ and $x=t+z$ we can write

$$
\begin{equation*}
e^{z \frac{d}{d t}} f(t)=\sum_{k=0}^{\infty} \frac{z^{k}}{k!} \frac{d^{k}}{d t^{k}} f(t)=f(t+z) \tag{2.6}
\end{equation*}
$$

which holds for a bounded and continuous function $f:[0, \infty) \mapsto[0, \infty)$. Since we can find an orthonormal set, say $\left\{\phi_{j}\right\}_{j \in \mathbb{N}}$, for which (2.6) holds true $\forall j$ and a sequence of r.v.'s $\left\{a_{j}\right\}_{j \in \mathbb{N}}$ such that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \mathbb{E}\left\|\mathcal{E}-\sum_{j=1}^{N} a_{j} \phi_{j}\right\|_{2}=0 \tag{2.7}
\end{equation*}
$$

we can write (2.4). Since \mathcal{E} is a generalized white noise with second moment as in (1.18) we get the claim.

Theorem 2.2. Let us consider the equation (2.1), then a generalized m.s. solution is

$$
\begin{align*}
X(t) & =\frac{1}{\mu^{\beta}} \mathbf{E}\left[\mathcal{E}\left(t-H_{\alpha}\left(W_{\beta}\right)\right)\right], \quad \beta>0,0<\alpha<1, \mu>0 \tag{2.8}\\
& =\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} d z \int_{0}^{\infty} d s s^{\beta-1} e^{-s \mu} h_{\alpha}(z, s) \mathcal{E}(t-z)
\end{align*}
$$

Proof. The solution to the equation (2.1) can be obtained as follows

$$
\begin{align*}
X(t) & =\left(\frac{d^{\alpha}}{d t^{\alpha}}+\mu\right)^{-\beta} \mathcal{E}(t) \\
& =\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} s^{\beta-1} e^{-s \mu-s \frac{d^{\alpha}}{d t^{\alpha}}} \mathcal{E}(t) d s \\
& =\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} s^{\beta-1} e^{-s \mu}\left\{e^{-s \frac{d^{\alpha}}{d t^{\alpha}}} \mathcal{E}(t)\right\} d s \tag{2.9}
\end{align*}
$$

The first step in (2.9) can be justified on the basis of the arguments in Renardy and Rogers [15, pag. 417)] where the representation of fractional power operators is dealt with.

Now, for the stable subordinator $H_{\alpha}(t), t>0$, we have that

$$
\begin{align*}
e^{-s \frac{d^{\alpha}}{d t^{\alpha}}} \mathcal{E}(t) & =\mathbf{E} e^{-H_{\alpha}(s) \frac{d}{d t}} \mathcal{E}(t) \\
& =\int_{0}^{\infty} d z h_{\alpha}(z, s) e^{-z \frac{d}{d t}} \mathcal{E}(t) \\
& =\int_{0}^{\infty} d z h_{\alpha}(z, s) \mathcal{E}(t-z) \tag{2.10}
\end{align*}
$$

where $h_{\alpha}(z, s)$ is the probability law of $H_{\alpha}(s), s>0$. In the last step of (2.10) we used the translation property (2.4). Therefore,

$$
\begin{equation*}
X(t)=\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} \mathcal{E}(t-z) \int_{0}^{\infty} s^{\beta-1} e^{-s \mu} h_{\alpha}(z, s) d s d z \tag{2.11}
\end{equation*}
$$

is the representation of the solution to the fractional equation (2.1).
Remark 2.3. With (2.7) and (1.18) in mind, notice that a representation of (2.8) is given by

$$
\begin{equation*}
X(t)=\frac{1}{\mu^{\beta}} \sum_{j \in \mathbb{N}} a_{j} \mathbb{E}\left[\phi_{j}\left(t-H_{\alpha}\left(W_{\beta}\right)\right)\right], \quad t>0 \tag{2.12}
\end{equation*}
$$

Remark 2.4. For the case $\alpha \uparrow 1, h_{\alpha}(z, s) \rightarrow \delta(z-s)$ where δ is the Dirac delta function and from (2.4) we infer that

$$
\begin{equation*}
X(t)=\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} e^{-\mu s} s^{\beta-1} \mathcal{E}(t-s) d s \tag{2.13}
\end{equation*}
$$

Spectral densities related to some fractional stochastic differential equations
is a generalized solution to

$$
\begin{equation*}
\left(\mu+\frac{d}{d t}\right)^{\beta} X(t)=\mathcal{E}(t) \tag{2.14}
\end{equation*}
$$

Consult on this point [6]. A direct proof is also possible because from (2.9) we have that

$$
\begin{align*}
X(t) & =\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} s^{\beta-1} e^{-\mu s} e^{-s \frac{d}{d t}} \mathcal{E}(t) d s \\
& =\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} s^{\beta-1} e^{-\mu s} \mathcal{E}(t-s) d s \tag{2.15}
\end{align*}
$$

In the last step we applied (2.4).
Remark 2.5. For $\alpha=1$ and $\beta=1$, we observe that (2.1) coincides with the Langevin equation and (2.15) can be reduced to the following form of the Ornstein-Uhlenbeck process

$$
X(t)=\int_{-\infty}^{t} e^{-\mu(t-s)} \mathcal{E}(s) d s
$$

with covariance function

$$
\mathbb{E}[X(t+h) X(t)]=\frac{\sigma^{2}}{2 \mu} e^{-\mu|h|}
$$

Our next step is the evaluation of the Fourier transform of the covariance function of the solution to the differential equation (2.1). Let

$$
f(\tau)=\int_{-\infty}^{+\infty} e^{i \tau h} \operatorname{Cov}_{X}(h) d h
$$

where

$$
\operatorname{Cov}_{X}(h)=\mathbb{E}[X(t+h) X(t)]
$$

with $\mathbb{E} X(t)=0$.
Theorem 2.6. The spectral density of (2.8) is

$$
\begin{equation*}
f(\tau)=\frac{\sigma^{2}}{\left(\mu^{2}+2|\tau|^{\alpha} \mu \cos \frac{\pi \alpha}{2}+|\tau|^{2 \alpha}\right)^{\beta}}, \quad \tau \in \mathbb{R}, 0<\alpha<1, \beta>0 \tag{2.16}
\end{equation*}
$$

Proof. The Fourier transform of the covariance function of (2.8) is given by

$$
\begin{aligned}
& \int_{0}^{\infty} e^{i \tau h} \mathbb{E} X(t) X(t+h) d h \\
& =\frac{1}{\Gamma^{2}(\beta)} \int_{0}^{\infty} e^{i \tau h} d h \int_{0}^{\infty} d z_{1} \int_{0}^{\infty} d s_{1} \int_{0}^{\infty} d s_{2} \int_{0}^{\infty} d z_{2} s_{1}^{\beta-1} s_{2}^{\beta-1} \\
& \quad \times e^{-\left(s_{1}+s_{2}\right) \mu} h_{\alpha}\left(z_{1}, s_{1}\right) h_{\alpha}\left(z_{2}, s_{2}\right) \mathbb{E} \mathcal{E}\left(t-z_{1}\right) \mathcal{E}\left(t+h-z_{2}\right)
\end{aligned}
$$

where

$$
\begin{equation*}
\mathbb{E} \mathcal{E}\left(t-z_{1}\right) \mathcal{E}\left(t+h-z_{2}\right)=\sigma^{2} \delta\left(\left(z_{1}-z_{2}\right)-h\right) . \tag{2.17}
\end{equation*}
$$

Thus,

$$
\begin{array}{r}
\int_{0}^{\infty} e^{i \tau h} \operatorname{E} X(t) X(t+h) d h=\frac{\sigma^{2}}{\Gamma^{2}(\beta)} \int_{0}^{\infty} d z_{1} \int_{0}^{\infty} d s_{1} \int_{0}^{\infty} d s_{2} \int_{0}^{\infty} d z_{2} s_{1}^{\beta-1} s_{2}^{\beta-1} \\
\times e^{-\left(s_{1}+s_{2}\right) \mu} h_{\alpha}\left(z_{1}, s_{1}\right) h_{\alpha}\left(z_{2}, s_{2}\right) e^{i \tau\left(z_{1}-z_{2}\right)} .
\end{array}
$$

Spectral densities related to some fractional stochastic differential equations

By considering the characteristic function of a positively-skewed stable process with law h_{α}, we have that

$$
\begin{equation*}
\int_{0}^{\infty} e^{i \tau z_{1}} h_{\alpha}\left(z_{1}, s_{1}\right) d z_{1}=e^{-(-i \tau)^{\alpha} s_{1}}=e^{-s_{1}|\tau|^{\alpha} e^{-i \frac{\pi}{2} \operatorname{sgn} \tau}} \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} e^{-i \tau z_{2}} h_{\alpha}\left(z_{2}, s_{2}\right) d z_{2}=e^{-(i \tau)^{\alpha} s_{2}}=e^{-s_{2}|\tau|^{\alpha} e^{i \frac{\pi}{2} \operatorname{sgn} \tau}} \tag{2.19}
\end{equation*}
$$

Thus, we obtain that

$$
\begin{aligned}
& \int_{0}^{\infty} e^{i \tau h} \mathbb{E} X(t) X(t+h) d h \\
& =\frac{\sigma^{2}}{\Gamma^{2}(\beta)} \int_{0}^{\infty} d s_{1} \int_{0}^{\infty} d s_{2} s_{1}^{\beta-1} s_{2}^{\beta-1} e^{-\left(s_{1}+s_{2}\right) \mu} e^{-(i \tau)^{\alpha} s_{2}-(-i \tau)^{\alpha} s_{1}} \\
& =\frac{\sigma^{2}}{\left(\mu+|\tau|^{\alpha} e^{-\frac{i \pi \alpha}{2} \operatorname{sgn} \tau}\right)^{\beta}\left(\mu+|\tau|^{\alpha} e^{\frac{i \pi \alpha}{2} \operatorname{sgn} \tau}\right)^{\beta}} \\
& =\frac{\sigma^{2}}{\left(\mu^{2}+2|\tau|^{\alpha} \mu \cos \frac{\pi \alpha}{2}+|\tau|^{2 \alpha}\right)^{\beta}} .
\end{aligned}
$$

Remark 2.7. In the special case $\alpha=1$ the result above simplifies and yields

$$
\begin{equation*}
f(\tau)=\frac{\sigma^{2}}{\left(\mu^{2}+\tau^{2}\right)^{\beta}} \tag{2.20}
\end{equation*}
$$

We note that for $\beta=1$, (2.20) becomes the spectral density of the Ornstein-Uhlenbeck process. Processes with the spectral density f are dealt with, for example, in [2] where also space-time random fields governed by stochastic equations are considered. The covariance function is given by

$$
\begin{aligned}
\operatorname{Cov}_{X}(h) & =\frac{1}{2 \pi} \int_{\mathbb{R}} e^{-i \tau h} f(\tau) d \tau \\
& =\frac{\sigma^{2}}{2 \pi} \int_{\mathbb{R}} e^{-i \tau h}\left(\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} z^{\beta-1} e^{-z \mu^{2}-z \tau^{2}} d z\right) d \tau \\
& =\frac{\sigma^{2}}{\Gamma(\beta)} \int_{0}^{\infty} z^{\beta-1} e^{-z \mu^{2}}\left(\frac{1}{2 \pi} \int_{\mathbb{R}} e^{-i \tau h-z \tau^{2}} d \tau\right) d z \\
& =\frac{\sigma^{2}}{\Gamma(\beta)} \int_{0}^{\infty} z^{\beta-1} e^{-z \mu^{2}} \frac{e^{-\frac{h^{2}}{4 z}}}{\sqrt{4 \pi z}} d z \\
& =\frac{\sigma^{2}}{2 \Gamma(\beta) \Gamma\left(\frac{1}{2}\right)} \int_{0}^{\infty} z^{\beta-\frac{1}{2}-1} e^{-z \mu^{2}-\frac{h^{2}}{4 z}} d z \\
& =\frac{\sigma^{2}}{\Gamma(\beta) \Gamma\left(\frac{1}{2}\right)}\left(\frac{|h|}{2 \mu}\right)^{\beta-\frac{1}{2}} K_{\beta-\frac{1}{2}}(\mu|h|), \quad h \geq 0
\end{aligned}
$$

where K_{ν} is the modified Bessel function with integral representation given by

$$
\begin{equation*}
\int_{0}^{\infty} x^{\nu-1} \exp \left\{-\beta x^{p}-\alpha x^{-p}\right\} d x=\frac{2}{p}\left(\frac{\alpha}{\beta}\right)^{\frac{\nu}{2 p}} K_{\frac{\nu}{p}}(2 \sqrt{\alpha \beta}), \quad p, \alpha, \beta, \nu>0 \tag{2.21}
\end{equation*}
$$

(see for example [5], formula 3.478). We observe that $K_{\nu}=K_{-\nu}$ and $K_{\frac{1}{2}}(x)=\sqrt{\frac{\pi}{2 x}} e^{-x}$. Moreover,

$$
\begin{equation*}
K_{\nu}(x) \approx \frac{2^{\nu-1} \Gamma(\nu)}{x^{\nu}} \quad \text { for } \quad x \rightarrow 0^{+} \tag{2.22}
\end{equation*}
$$

Spectral densities related to some fractional stochastic differential equations
([10, pag. 136]) and

$$
\begin{equation*}
K_{\nu}(x) \approx \sqrt{\frac{\pi}{2 x}} e^{-x} \quad \text { for } \quad x \rightarrow \infty \tag{2.23}
\end{equation*}
$$

Thus, we get that

$$
\begin{equation*}
\operatorname{Cov}_{X}(h) \approx \mu^{1-2 \beta}, \quad \text { for } \quad h \rightarrow 0^{+} \tag{2.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Cov}_{X}(h) \approx\left(\frac{h}{\mu}\right)^{\beta} \frac{1}{h} e^{-\mu h}, \quad \text { for } \quad h \rightarrow \infty \tag{2.25}
\end{equation*}
$$

We now study the covariance of (1.2). Recall that, a symmetric stable process S of order α with density g has the following characteristic function

$$
\widehat{g}(\xi, t)=\mathbb{E} e^{i \xi S(t)}=e^{-\sigma^{2}|\xi|^{\alpha} t}, \quad \alpha \in(0,2] .
$$

Consider two independent stable processes $S_{1}(w), S_{2}(w), w \geq 0$, with $\sigma_{1}^{2}=1$ and $\sigma_{2}^{2}=2 \mu \cos \frac{\pi \alpha}{2}$. Let $g_{1}(x, w), x \in \mathbb{R}, w \geq 0$ and $g_{2}(x, w), x \in \mathbb{R}, w \geq 0$ be the corresponding density laws. Then, the following result holds true.
Theorem 2.8. The covariance function of (1.2) is

$$
\begin{equation*}
\operatorname{Cov}_{X}(h)=\frac{\sigma^{2}}{\Gamma(\beta)} \int_{0}^{\infty} w^{\beta-1} e^{-w \mu^{2}} \int_{-\infty}^{+\infty} g_{1}(h-z, w) g_{2}(z, w) d z d w \tag{2.26}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{Cov}_{X}(h)=\frac{\sigma^{2}}{\mu^{2 \beta}} \mathbb{E} g_{S_{1}+S_{2}}\left(h, W_{\beta}\right) \tag{2.27}
\end{equation*}
$$

and W_{β} is a gamma r.v. with parameters μ^{2}, β.
Proof. Notice that

$$
f(\tau)=\frac{\sigma^{2}}{\Gamma(\beta)} \int_{0}^{\infty} w^{\beta-1} e^{-w\left(\mu^{2}+2|\tau|^{\alpha} \mu \cos \frac{\pi \alpha}{2}+|\tau|^{2 \alpha}\right)} d w
$$

where

$$
e^{-2 \mu \cos \frac{\pi \alpha}{2}|\tau|^{\alpha} w}=\mathbb{E} e^{i \tau S_{2}(w)}=\widehat{g_{2}}(\tau, w) \quad \text { and } \quad e^{-|\tau|^{2 \alpha} w}=\mathbb{E} e^{i \tau S_{1}(w)}=\widehat{g_{1}}(\tau, w) .
$$

Thus,

$$
f(\tau)=\frac{\sigma^{2}}{\mu^{2 \beta}} \mathbb{E}\left[\widehat{g_{1}}\left(\tau, W_{\beta}\right) \widehat{g_{2}}\left(\tau, W_{\beta}\right)\right]
$$

from which, we immediately get that

$$
\begin{aligned}
\operatorname{Cov} X(h) & =\frac{\sigma^{2}}{\mu^{2 \beta}} \mathbb{E}\left[\int_{-\infty}^{+\infty} g_{1}\left(h-z, W_{\beta}\right) g_{2}\left(z, W_{\beta}\right) d z\right] \\
& =\frac{\sigma^{2}}{\Gamma(\beta)} \int_{0}^{\infty} w^{\beta-1} e^{-w \mu^{2}} \int_{-\infty}^{+\infty} g_{1}(h-z, w) g_{2}(z, w) d z d w
\end{aligned}
$$

3 Fractional powers of higher-order operators

We focus our attention on the following equation

$$
\begin{equation*}
\left(\mu-\frac{d^{2}}{d t^{2}}\right)^{\beta} X(t)=\mathcal{E}(t), \quad \mu>0, \beta>0, t \in \mathbb{R} \tag{3.1}
\end{equation*}
$$

that is, on the equation (1.4) for $n=1$.

Spectral densities related to some fractional stochastic differential equations

Theorem 3.1. A generalized m.s. solution to the equation (3.1) is

$$
\begin{align*}
X(t) & =\frac{1}{\mu^{\beta}} \mathbf{E}\left[\mathcal{E}\left(t+Y_{2}\left(W_{\beta}\right)\right)\right], \quad \beta>0, \mu>0 \tag{3.2}\\
& =\frac{1}{\Gamma(\beta)} \int_{-\infty}^{+\infty} \mathcal{E}(t+x) \int_{0}^{\infty} w^{\beta-1} e^{-\mu w} \frac{e^{-\frac{x^{2}}{4 w}}}{\sqrt{4 \pi w}} d w d x
\end{align*}
$$

Moreover, the spectral density of (3.2) reads

$$
\begin{equation*}
f(\tau)=\frac{\sigma^{2}}{\left(\mu+\tau^{2}\right)^{2 \beta}} \tag{3.3}
\end{equation*}
$$

and the corresponding covariance function has the form

$$
\begin{equation*}
\operatorname{Cov}_{X}(h)=\frac{\sigma^{2}}{\mu^{2 \beta}} \mathbb{E}\left[\frac{e^{-\frac{h^{2}}{4 W_{2 \beta}}}}{2 \sqrt{\pi W_{2 \beta}}}\right]=\frac{\sigma^{2}}{\sqrt{\pi} \Gamma(2 \beta)}\left(\frac{|h|}{2 \sqrt{\mu}}\right)^{2 \beta-\frac{1}{2}} K_{2 \beta-\frac{1}{2}}(|h| \sqrt{\mu}) \tag{3.4}
\end{equation*}
$$

Proof. We can formally write

$$
\begin{equation*}
e^{w \frac{d^{2}}{d t^{2}}}=\int_{-\infty}^{\infty} e^{x \frac{d}{d t}} \frac{e^{-\frac{x^{2}}{4 w}}}{2 \sqrt{\pi w}} d x \tag{3.5}
\end{equation*}
$$

so that from (3.1) we have that

$$
\begin{align*}
X(t) & =\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} e^{-\mu w} w^{\beta-1} d w \int_{-\infty}^{\infty} \frac{e^{-\frac{x^{2}}{4 w}}}{2 \sqrt{\pi w}} e^{x \frac{d}{d t}} \mathcal{E}(t) d x \\
& =\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} e^{-\mu w} w^{\beta-1} d w \int_{-\infty}^{\infty} \frac{e^{-\frac{x^{2}}{4 w}}}{2 \sqrt{\pi w}} \mathcal{E}(t+x) d x \tag{3.6}
\end{align*}
$$

By observing that, from (1.18),

$$
\mathbb{E} \mathcal{E}\left(t+x_{1}\right) \mathcal{E}\left(t+h+x_{2}\right)=\sigma^{2} \delta\left(h+x_{2}-x_{1}\right)
$$

we can write

$$
\begin{aligned}
\mathbb{E} X(t) X(t+h) & =\frac{\sigma^{2}}{\Gamma^{2}(\beta)} \int_{0}^{\infty} e^{-\mu w_{1}} w_{1}^{\beta-1} d w_{1} \int_{0}^{\infty} e^{-\mu w_{2}} w_{2}^{\beta-1} d w_{2} \int_{-\infty}^{\infty} \frac{e^{-\frac{x_{1}^{2}}{4 w_{1}}}}{2 \sqrt{\pi w_{1}}} \frac{e^{-\frac{\left(h-x_{1}\right)^{2}}{4 w_{2}}}}{2 \sqrt{\pi w_{2}}} d x_{1} \\
& =\frac{\sigma^{2}}{\Gamma^{2}(\beta)} \int_{0}^{\infty} e^{-\mu w_{1}} w_{1}^{\beta-1} d w_{1} \int_{0}^{\infty} e^{-\mu w_{2}} w_{2}^{\beta-1} d w_{2} \frac{e^{-\frac{h^{2}}{4\left(w_{1}+w_{2}\right)}}}{2 \sqrt{\pi\left(w_{1}+w_{2}\right)}} \\
& =\frac{\sigma^{2}}{\mu^{2 \beta}} \mathbb{E}\left[\frac{e^{-\frac{h^{2}}{4\left(W_{1}+W_{2}\right)}}}{2 \sqrt{\pi\left(W_{1}+W_{2}\right)}}\right] \\
& =\frac{\sigma^{2}}{\mu^{2 \beta}} \mathbb{E}\left[\frac{e^{-\frac{h^{2}}{4 W_{2 \beta}}}}{2 \sqrt{\pi W_{2 \beta}}}\right] \\
& =\frac{\sigma^{2}}{\Gamma(2 \beta)} \int_{0}^{\infty} \frac{e^{-\frac{h^{2}}{4 w}}}{2 \sqrt{\pi w}} w^{2 \beta-1} e^{-\mu w} d w \\
& =\frac{\sigma^{2}}{\sqrt{\pi} \Gamma(2 \beta)}\left(\frac{h}{2 \sqrt{\mu}}\right)^{2 \beta-\frac{1}{2}} K_{2 \beta-\frac{1}{2}}(h \sqrt{\mu}) .
\end{aligned}
$$

Spectral densities related to some fractional stochastic differential equations

We notice that

$$
\operatorname{Cov}_{X}(h)=\frac{\sigma^{2}}{\mu^{2 \beta}} P\left(B\left(W_{2 \beta}\right) \in d h\right) / d h
$$

where $B\left(W_{2 \beta}\right)$ is a Brownian motion with random time $W_{2 \beta}$. Thus, we obtain that

$$
f(\tau)=\int_{-\infty}^{\infty} e^{i \tau h} \operatorname{Cov}_{X}(h) d h=\frac{\sigma^{2}}{\Gamma(2 \beta)} \int_{0}^{\infty} e^{-w \tau^{2}} w^{2 \beta-1} e^{-\mu w} d w=\frac{\sigma^{2}}{\left(\mu+\tau^{2}\right)^{2 \beta}} .
$$

An alternative representation of the process (3.2) can be also given in terms of the Bessel function K_{ν}. In particular, we observe that

$$
X(t)=\frac{1}{\sqrt{\pi} \Gamma(\beta)} \int_{-\infty}^{+\infty} \mathcal{E}(t+x)\left(\frac{|x|}{2 \sqrt{\mu}}\right)^{\beta-\frac{1}{2}} K_{\beta-\frac{1}{2}}(|x| \sqrt{\mu}) d x
$$

The covariance function of (3.2) can be alternatively written as

$$
\begin{aligned}
\mathbb{E} X(t) X(t+h) & =\frac{\sigma^{2}}{\Gamma^{2}(\beta)} \int_{0}^{\infty} e^{-\mu w_{1}} w_{1}^{\beta-1} d w_{1} \int_{0}^{\infty} e^{-\mu w_{2}} w_{2}^{\beta-1} d w_{2} \int_{-\infty}^{\infty} \frac{e^{-\frac{x_{1}^{2}}{4 w_{1}}}}{2 \sqrt{\pi w_{1}}} \frac{e^{-\frac{\left(x_{1}-h\right)^{2}}{4 w_{2}}}}{2 \sqrt{\pi w_{2}}} d x_{1} \\
& =\frac{\sigma^{2}}{\pi \Gamma^{2}(\beta)} \int_{-\infty}^{+\infty}\left(\frac{\left|x_{1}\right|\left|x_{1}-h\right|}{4 \mu}\right)^{\beta-\frac{1}{2}} K_{\beta-\frac{1}{2}}\left(\sqrt{\mu}\left|x_{1}\right|\right) K_{\beta-\frac{1}{2}}\left(\sqrt{\mu}\left|x_{1}-h\right|\right) d x_{1}
\end{aligned}
$$

where, in the last step we applied formula (2.21).

We now pass to the general even-order fractional equation (1.4).
Theorem 3.2. A generalized m.s. solution to the equation (1.4) is

$$
\begin{align*}
X(t) & =\frac{1}{\mu^{\beta}} \mathbf{E}\left[\mathcal{E}\left(t+Y_{2 n}\left(W_{\beta}\right)\right)\right], \quad \beta>0, \mu>0 \tag{3.7}\\
& =\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} w^{\beta-1} e^{-\mu w} \int_{-\infty}^{+\infty} u_{2 n}(x, w) \mathcal{E}(t+x) d x d w .
\end{align*}
$$

Moreover, the spectral density of (3.7) reads

$$
\begin{equation*}
f(\tau)=\frac{\sigma^{2}}{\left(\mu+\tau^{2 n}\right)^{2 \beta}} \tag{3.8}
\end{equation*}
$$

and the related covariance function becomes

$$
\begin{equation*}
\operatorname{Cov}_{X}(h)=\frac{\sigma^{2}}{\mu^{2 \beta}} \mathbb{E}\left[u_{2 n}\left(h, W_{2 \beta}\right)\right] . \tag{3.9}
\end{equation*}
$$

Proof. The solution $u_{2 n}(x, t)$ to

$$
\begin{equation*}
\frac{\partial}{\partial t} u_{2 n}=(-1)^{n+1} \frac{\partial^{2 n}}{\partial x^{2 n}} u_{2 n} \tag{3.10}
\end{equation*}
$$

has Fourier transform

$$
\begin{equation*}
U(\beta, t)=e^{(-1)^{n+1}(-i \beta)^{2 n} t}=e^{-\beta^{2 n} t} . \tag{3.11}
\end{equation*}
$$

We write

$$
\begin{equation*}
e^{-w \frac{\partial^{2 n}}{\partial t^{2 n}}}=\int_{-\infty}^{\infty} e^{i x \frac{\partial}{\partial t}} u_{2 n}(x, w) d x \tag{3.12}
\end{equation*}
$$

Since

$$
\begin{equation*}
U(-i \beta, t)=e^{-(-1)^{n} \beta^{2 n} t} \tag{3.13}
\end{equation*}
$$

Spectral densities related to some fractional stochastic differential equations
we also write

$$
\begin{equation*}
e^{-w(-1)^{n} \frac{\partial^{2 n}}{\partial t^{2 n}}}=\int_{-\infty}^{\infty} e^{x \frac{\partial}{\partial t}} u_{2 n}(x, w) d x \tag{3.14}
\end{equation*}
$$

In conclusion, we have that

$$
\begin{align*}
X(t) & =\left(\mu+(-1)^{n} \frac{\partial^{2 n}}{\partial t^{2 n}}\right)^{-\beta} \mathcal{E}(t) \tag{3.15}\\
& =\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} d w e^{-\mu w} w^{\beta-1}\left(\int_{-\infty}^{+\infty} d x u_{2 n}(x, w) e^{x \frac{\partial}{\partial t}} \mathcal{E}(t)\right) \\
& =\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} d w e^{-\mu w} w^{\beta-1} \int_{-\infty}^{+\infty} d x u_{2 n}(x, w) \mathcal{E}(t+x) \tag{3.16}
\end{align*}
$$

and this confirms (3.7).
From (3.7), in view of (2.17), we obtain

$$
\begin{aligned}
\mathbb{E} X(t) X(t+h)= & \frac{\sigma^{2}}{\Gamma^{2}(\beta)} \int_{0}^{\infty} d w_{1} w_{1}^{\beta-1} e^{-\mu w_{1}} \int_{0}^{\infty} d w_{2} w_{2}^{\beta-1} e^{-\mu w_{2}} \\
& \cdot \int_{-\infty}^{+\infty} d x_{1} u_{2 n}\left(x_{1}, w_{1}\right) \int_{-\infty}^{+\infty} d x_{2} u_{2 n}\left(x_{2}, w_{2}\right) \delta\left(x_{2}-x_{1}+h\right) \\
= & \frac{\sigma^{2}}{\Gamma^{2}(\beta)} \int_{0}^{\infty} d w_{1} w_{1}^{\beta-1} e^{-\mu w_{1}} \int_{0}^{\infty} d w_{2} w_{2}^{\beta-1} e^{-\mu w_{2}} \\
& \cdot \int_{-\infty}^{+\infty} d x_{1} u_{2 n}\left(x_{1}, w_{1}\right) u_{2 n}\left(x_{1}-h, w_{2}\right) \\
= & \frac{\sigma^{2}}{\Gamma^{2}(\beta)} \int_{0}^{\infty} d w_{1} w_{1}^{\beta-1} e^{-\mu w_{1}} \int_{0}^{\infty} d w_{2} w_{2}^{\beta-1} e^{-\mu w_{2}} u_{2 n}\left(h, w_{1}+w_{2}\right) \\
= & \frac{\sigma^{2}}{\mu^{2 \beta}} \mathbb{E} u_{2 n}\left(h, W_{1}+W_{2}\right) .
\end{aligned}
$$

By following the same arguments as in the previous proof, we get that

$$
\mathbb{E} X(t) X(t+h)=\frac{\sigma^{2}}{\mu^{2 \beta}} \mathbb{E} u_{2 n}\left(h, W_{2 \beta}\right)=\frac{\sigma^{2}}{\Gamma(2 \beta)} \int_{0}^{\infty} d w w^{2 \beta-1} e^{-\mu w} u_{2 n}(h, w)
$$

The spectral density of $X(t)$ is therefore

$$
f(\tau)=\frac{\sigma^{2}}{\Gamma(2 \beta)} \int_{0}^{\infty} d w w^{2 \beta-1} e^{-\mu w-\tau^{2 n} w}=\frac{\sigma^{2}}{\left(\mu+\tau^{2 n}\right)^{2 \beta}} .
$$

Theorem 3.2 extends the results of Theorem 3.1 when even-order heat-type equations are involved.

We now pass to the study of the equation (1.9) for $n=1$ and $\kappa=\mp 1$,

$$
\begin{equation*}
\left(\mu+\kappa \frac{d^{3}}{d t^{3}}\right)^{\beta} X(t)=\mathcal{E}(t), \quad \mu>0, \beta>0, t \in \mathbb{R} \tag{3.17}
\end{equation*}
$$

Theorem 3.3. A generalized solution to the equation (3.17) is

$$
\begin{align*}
X(t) & =\frac{1}{\mu^{\beta}} \mathbf{E}\left[\mathcal{E}\left(t+Y_{3}\left(W_{\beta}\right)\right)\right], \quad \beta>0, \mu>0 \tag{3.18}\\
& =\frac{1}{\Gamma(\beta)} \int_{-\infty}^{\infty} \mathcal{E}(t+x) \int_{0}^{\infty} w^{\beta-1} e^{-\mu w} \frac{1}{\sqrt[3]{3 w}} A i\left(\frac{\kappa x}{\sqrt[3]{3 w}}\right) d w d x
\end{align*}
$$

Spectral densities related to some fractional stochastic differential equations

Moreover, the covariance function

$$
\begin{equation*}
\operatorname{Cov}_{X}(h)=\frac{\sigma^{2}}{\mu^{2 \beta}} \mathbb{E}\left[\frac{\sigma^{2}}{\sqrt[3]{3 W_{2 \beta}}} A i\left(\frac{-\kappa h}{\sqrt[3]{3 W_{2 \beta}}}\right)\right] \tag{3.19}
\end{equation*}
$$

where $\operatorname{Ai}(x)$ is the Airy function has Fourier transform

$$
\begin{equation*}
f(\tau)=\frac{\sigma^{2}}{\left(\mu+i \kappa \tau^{3}\right)^{2 \beta}} \tag{3.20}
\end{equation*}
$$

Proof. By following the approach adopted above, after some calculation, we can write that

$$
\begin{equation*}
X^{-}(t)=\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} w^{\beta-1} e^{-\mu w+w \frac{d^{3}}{d t^{3}}} \mathcal{E}(t) d w \tag{3.21}
\end{equation*}
$$

is the solution to

$$
\begin{equation*}
\left(\mu-\frac{d^{3}}{d t^{3}}\right)^{\beta} X(t)=\mathcal{E}(t) \tag{3.22}
\end{equation*}
$$

whereas

$$
\begin{equation*}
X^{+}(t)=\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} w^{\beta-1} e^{-\mu w-w \frac{d^{3}}{d t^{3}}} \mathcal{E}(t) d w \tag{3.23}
\end{equation*}
$$

is the solution to

$$
\begin{equation*}
\left(\mu+\frac{d^{3}}{d t^{3}}\right)^{\beta} X(t)=\mathcal{E}(t) \tag{3.24}
\end{equation*}
$$

The third-order heat type equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u=\kappa \frac{\partial^{3}}{\partial x^{3}} u, \quad u(x, 0)=0 \tag{3.25}
\end{equation*}
$$

has solution, for $\kappa=-1$,

$$
\begin{equation*}
u(x, t)=\frac{1}{\sqrt[3]{3 t}} \operatorname{Ai}\left(\frac{x}{\sqrt[3]{3 t}}\right), \quad x \in \mathbb{R}, t>0 \tag{3.26}
\end{equation*}
$$

with Fourier transform

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{i \beta x} u(x, t) d x=e^{-i t \beta^{3}} \tag{3.27}
\end{equation*}
$$

Formula (3.27) leads to the integral

$$
\int_{-\infty}^{\infty} e^{\theta x} u(x, t) d x=e^{t \theta^{3}}, \quad \theta \in \mathbb{R}
$$

because of the asymptotic behaviour of the Airy function (see [1] and [11]). The solution to (1.9) with $n=1$ (that is $\kappa=-1$) is therefore (3.21).

The equation (3.25) has solution, for $\kappa=+1$, given by

$$
\begin{equation*}
u(x, t)=\frac{1}{\sqrt[3]{3 t}} \operatorname{Ai}\left(\frac{-x}{\sqrt[3]{3 t}}\right), \quad x \in \mathbb{R}, t>0 \tag{3.28}
\end{equation*}
$$

Thus, by following the same reasoning as before, we arrive at

$$
\int_{-\infty}^{\infty} e^{\theta x} u(x, t) d x=e^{-t \theta^{3}}, \quad \theta \in \mathbb{R}
$$

and we obtain that (3.23) solves (3.17) with $\kappa=+1$ is (3.23).

Spectral densities related to some fractional stochastic differential equations

In light of (2.17) we get

$$
\begin{aligned}
\mathbb{E}\left[X^{-}(t) X^{-}(t+h)\right]= & \frac{\sigma^{2}}{\Gamma^{2}(\beta)} \int_{0}^{\infty} e^{-\mu w_{1}} d w_{1} w_{1}^{\beta-1} \int_{0}^{\infty} e^{-\mu w_{2}} d w_{2} w_{2}^{\beta-1} \\
& \cdot \int_{-\infty}^{\infty} \frac{1}{\sqrt[3]{3 w_{1}}} \operatorname{Ai}\left(\frac{x_{1}}{\sqrt[3]{3 w_{1}}}\right) \frac{1}{\sqrt[3]{3 w_{2}}} \operatorname{Ai}\left(\frac{x_{1}-h}{\sqrt[3]{3 w_{2}}}\right) d x_{1} \\
= & \frac{\sigma^{2}}{\Gamma^{2}(\beta)} \int_{0}^{\infty} e^{-\mu w_{1}} d w_{1} w_{1}^{\beta-1} \int_{0}^{\infty} e^{-\mu w_{2}} d w_{2} w_{2}^{\beta-1} \\
& \cdot \frac{1}{\sqrt[3]{3\left(w_{1}+w_{2}\right)}} \operatorname{Ai}\left(\frac{h}{\sqrt[3]{3\left(w_{1}+w_{2}\right)}}\right) \\
= & \frac{\sigma^{2}}{\mu^{2 \beta}} \mathbb{E}\left[\frac{1}{\sqrt[3]{3 W_{2 \beta}}} \operatorname{Ai}\left(\frac{h}{\sqrt[3]{3 W_{2 \beta}}}\right)\right]
\end{aligned}
$$

From the Fourier transform (3.27), we get that

$$
\begin{aligned}
f^{-}(\tau) & =\frac{\sigma^{2}}{\mu^{2 \beta}} \int_{\mathbb{R}} e^{i \tau h} \mathbb{E}\left[\frac{1}{\sqrt[3]{3 W_{2 \beta}}} \operatorname{Ai}\left(\frac{h}{\sqrt[3]{3 W_{2 \beta}}}\right)\right] d h \\
& =\frac{\sigma^{2}}{\mu^{2 \beta}} \mathbb{E}\left[e^{-i \tau^{3} W_{2 \beta}}\right] \\
& =\frac{\sigma^{2}}{\left(\mu+i \tau^{3}\right)^{2 \beta}} \\
& =\frac{\sigma^{2} e^{-i 2 \beta \arctan \frac{\tau^{3}}{\mu}}}{\left(\mu^{2}+\tau^{6}\right)^{\beta}} .
\end{aligned}
$$

Also, we obtain that

$$
\mathbb{E}\left[X^{+}(t) X^{+}(t+h)\right]=\frac{\sigma^{2}}{\mu^{2 \beta}} \mathbb{E}\left[\frac{1}{\sqrt[3]{3 W_{2 \beta}}} \operatorname{Ai}\left(\frac{-h}{\sqrt[3]{3 W_{2 \beta}}}\right)\right]
$$

with Fourier transform

$$
\begin{equation*}
f^{+}(\tau)=\frac{\sigma^{2}}{\left(\mu-i \tau^{3}\right)^{2 \beta}}=\frac{\sigma^{2} e^{+i 2 \beta \arctan \frac{\tau^{3}}{\mu}}}{\left(\mu^{2}+\tau^{6}\right)^{\beta}} \tag{3.29}
\end{equation*}
$$

Theorem 3.4. A generalized m.s. solution to the equation (1.9) is

$$
\begin{aligned}
X(t) & =\frac{1}{\mu^{\beta}} \mathbf{E}\left[\mathcal{E}\left(t+Y_{2 n+1}\left(W_{\beta}\right)\right)\right], \quad \beta>0, \mu>0 \\
& =\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} w^{\beta-1} e^{-\mu w} \int_{-\infty}^{+\infty} u_{2 n+1}(\kappa x, w) \mathcal{E}(t+x) d w d x .
\end{aligned}
$$

Moreover, the covariance function

$$
\operatorname{Cov}_{X}(h)=\frac{\sigma^{2}}{\mu^{2 \beta}} \mathbb{E} u_{2 n+1}\left(\kappa h, W_{2 \beta}\right)
$$

has Fourier transform

$$
f(\tau)=\frac{\sigma^{2}}{\left(\mu+i \kappa \tau^{2 n+1}\right)^{2 \beta}}=\frac{\sigma^{2} e^{-i 2 \beta \kappa \arctan \frac{\tau^{2 n+1}}{\mu}}}{\left(\mu^{2}+\tau^{2(2 n+1)}\right)^{\beta}}
$$

Proof. The proof follows the same lines as in the previous theorem.

Spectral densities related to some fractional stochastic differential equations

Figure 1: The spectral density (1.3) with different values for the parameters (α, β).

References

[1] G. Accetta, E. Orsingher, Asymptotic expansion of fundamental solutions of higher order heat equations. Random Oper. Stochastic Equations, 5 (1997) 217-226. MR-1483009
[2] J. Angulo, M. Kelbert, N. Leonenko, M.D. Ruiz-Medina, Spatiotemporal random fields associated with stochastic fractional Helmholtz and heat equations. Stochastic Environmental Research \& Risk Assessment 22 (2008) suppl. 1, 3-13. MR-2416949
[3] Ju. L. Daletsky, V. Ju. Krylov, R. A. Minlos and V. N. Sudakov. Functional integration and measures in function spaces. (Russian) 1964 Proc. Fourth All-Union Math. Congr. (Leningrad, 1961) (Russian), Vol. II pp. 282-292 Izdat. "Nauka", Leningrad. MR-0219693
[4] R. Gay, C. C. Heyde, On a class of random field models which allows long range dependence. Biometrika, 77 (1990) 401-403. MR-1064814
[5] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, Series and Products, Accademic Press, Boston, (1994). MR-1243179
[6] M.Y. Kelbert, N.N. Leonenko, M.D. Ruiz-Medina, Fractional random fields associated with stochastic fractional heat equations. Advances in Applied Probability 37(1), (2005) 108-133. MR-2135156

Spectral densities related to some fractional stochastic differential equations
[7] V. Ju. Krylov, Some properties of the distribution corresponding to the equation $\partial u / \partial t=$ $(-1)^{p+1} \partial^{2 q} u / \partial x^{2 q}$. Dokl. Akad. Nauk SSSR 132 1254-1257 (Russian); translated as Soviet Math. Dokl. 1 (1960) 760-763. MR-0118953
[8] A. Lachal, Distributions of sojourn time, maximum and minimum for pseudo-processes governed by higher-order heat-type equations. Electron. J. Probab. 8 (2003), no. 20, 1-53. MR-2041821
[9] V.I. Ladokhin, On the "measure" in functional space corresponding to a complex diffusion coefficient. Kazan. Gos. Univ. Učen. Zap. 123(6), 1963, 36-42 (in Russian). MR-0192546
[10] N. N. Lebedev, Special functions and their applications, Dover, New York (1972). MR-0350075
[11] X. Li, R. Wong, Asymptotic behaviour of the fundamental solution to $\partial u / \partial t=-(-\triangle)^{m} u$. Proceedings: Mathematical and Physical Sciences, 441 (1993) 423-432. MR-1219264
[12] Miyamoto, M., An extension of certain quasi-measure. Proc. Japan Acad. 42, (1966) 70-74. MR-0198545
[13] Orsingher, E., Processes governed by signed measures connected with third-order "heat-type" equations. Lith. Math. J. 31, (1991) 321-334. MR-1161372
[14] E. Orsingher, M. D'Ovidio, Probabilistic representation of fundamental solutions to $\frac{\partial u}{\partial t}=$ $\kappa_{m} \frac{\partial^{m} u}{\partial x^{m}}$. Electronic Communications in Probability, 17, (2012), 1-12. MR-2965747
[15] M. Renardy, R. C. Rogers, An Introduction to Partial Differential Equations (Texts in Applied Mathematics) 2nd Edition, Springer-Verlag New York, Inc (2004). MR-2028503
[16] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993). MR-1347689
[17] N. V. Smorodina, M. M. Faddeev, The probabilistic representation of the solutions of a class of evolution equations. Zap. Nauchn. Sem. POMI, 384, (2010) 238-266. MR-2749364
[18] E. Wong, B. Hajek, Stochastic Processes in Engineering Systems Springer Texts in Electrical Engineering, New York Inc (1985). MR-0787046

Acknowledgments. We are grateful to the referee for her/his remarks which certainly improved the quality of the paper.

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)
- Secure publication (LOCKSS ${ }^{1}$)
- Easy interface (EJMS²)

Economical model of EJP-ECP

- Non profit, sponsored by $\mathrm{IMS}^{3}, \mathrm{BS}^{4}$, ProjectEuclid ${ }^{5}$
- Purely electronic

Help keep the journal free and vigorous

- Donate to the IMS open access fund ${ }^{6}$ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

[^1]
[^0]: *Sapienza University of Rome, Italy. E-mail: mirko.dovidio@uniromal.it
 ${ }^{\dagger}$ Sapienza University of Rome, Italy. E-mail: enzo.orsingher@uniromal.it
 ${ }^{\ddagger}$ Taras Shevchenko National University of Kyiv, Ukraine. E-mail: lms@univ.kiev.ua

[^1]: ${ }^{1}$ LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
 ${ }^{2}$ EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
 ${ }^{3}$ IMS: Institute of Mathematical Statistics http://www.imstat.org/
 ${ }^{4}$ BS: Bernoulli Society http://www.bernoulli-society .org/
 ${ }^{5}$ Project Euclid: https://projecteuclid.org/
 ${ }^{6}$ IMS Open Access Fund: http://www.imstat.org/publications/open.htm

