
ON THE COBLE QUARTIC
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Abstract. We review and extend the known constructions relat-
ing Kummer threefolds, Göpel systems, theta constants and their
derivatives, and the GIT quotient for 7 points in P2 to obtain an
explicit expression for the Coble quartic. The Coble quartic was
recently determined completely in [?], where (Theorem 7.1a) it
was computed completely explicitly, as a polynomial with 372060
monomials of bidegree (28, 4) in theta constants of the second order
and theta functions of the second order, respectively. Our expres-
sion in terms of products of theta constants with characteristics
corresponding to Göpel systems, is a polynomial with 134 terms.
Our approach uses the relationship of Göpel systems and Jaco-
bian determinants of theta functions, and highlights the geometry
and combinatorics of syzygetic octets of characteristics, and the
corresponding representations of Sp(6,F2).

In genus 2, we similarly obtain geometrically the equation of
the universal Kummer surface. Moreover we define an explicit
homomorphism from the graded ring of binary invariants of six
point on P1 to the ring of modular forms of genus 2 and level two,
dual to the classical Thomae map from the ring of modular forms
to the ring of binary invariants. Otherwise We get similar
results about the universal Kummer surface in genus two
case

1. Introduction

The existence of this paper is due to the appearance of the paper
[?], and to the interest of its authors Qingchun Ren, Steven Sam, Gus
Schrader, and Bernd Sturmfels in this circle of classical ideas in alge-
braic geometry. Their work inspired us to revisit and reconsider the
classical constructions originating with Coble. In fact they study the
defining ideal of the universal Kummer threefold in P7 × P7 (see [?,
Conj. 8.6] for a complete conjectural description of this ideal), and
give an explicit equation for the (universal) Coble quartic: the Jacobi
modular form of weight (16,4) or equivalently the bidegree (28, 4) poly-
nomial on P7×P7 in theta constants and theta functions of the second

Research of the first author is supported in part by National Science Foundation
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order. The Coble quartic is the unique polynomial invariant under the
action of the symplectic group, and its eight partial derivatives with re-
spect to the second set of variables give the 8 defining cubic equations
for Kummer threefolds. The investigation of this hypersurface goes
back to Coble himself. In his book [?, p. 106] Coble gives an implicit
equation for the quartic, writing it as

αQ1 + 2α1Q2 + . . . 2α7Q8 + 4α423Q9 + · · ·+ 4α456Q15,

where Qi are explicit quartics in theta functions of the second order,
listed explicitly in section 9 of this paper. About the coefficients α...
Coble states [?, p. 196]:

“The 15 coefficients α of the quartic spread L4 in S7 can be expressed
linearly with numerical coefficients in terms of the Göpel invariant of
P2

7 and conversely.. . . ”
The aim of this paper is to follow Coble’s idea and give an equation

for Coble’s quartic in this way, with explicit formulas for the coefficients
α. One new tool in our approach compared to [?] are the gradients at
z = 0 of theta functions with odd characteristics. It is a classical result
that these are related to bitangents of plane quartic curve, see [?] and
[?] (and [?] for much more of the beautiful classical geometry). This
classical relationship gives a geometric viewpoint of our paper, provid-
ing a connection (in fact constructing a homomorphism) between the
ring of GIT invariants of seven points in P2 and the ring of modular
forms of genus 3 and level 2. This allows us to express the “Göpel in-
variants” (or Fano Göpel coordinates in [?]) in terms of theta constants
with characteristics. We then use representation theory of Sp(6,F2) to
construct the Coble quartic. Indeed, the image of the 15-dimensional
vector space spanned by the coefficients α of the Coble quartic is a 15-
dimensional space of modular forms of genus 3 and level 2, of weight
14, known to be related to Gopël systems, and for which we thus obtain
expressions in terms of Göpel systems. Similarly the invariant quar-
tics in theta functions of the second order form another 15-dimensional
irreducible representation of the group Sp(6,F2). We then argue that
the tensor product of these two representations contains a unique copy
of a trivial representation. Since Coble quartic is the unique invariant,
symmetrizing under the action of Sp(6,F2) must produce it (up to a
constant factor) — this is argued in theorem 15, where an expression
for the Coble quartic as a symmetrization (actually, under a smaller
group, of order 135) is obtained. We then perform a straightforward
computation in Maple R©, giving α... above explicitly in terms of a basis
for the space of modular forms generated by Fano configurations —
the resulting expression is an explicit polynomial with 134 monomials,

2



presented in theorem 16. Of course the resulting expression agrees with
the result of [?], though is written in terms of different variables (theta
constants with characteristics).

We note also that the story for g = 2 in many aspects parallels the
situation for g = 3, but is of course easier. We develop this story in
parallel with the Coble quartic, and in theorem 10 determine explicitly
the relation between the ring of modular forms of genus 2 and level 2,
and the GIT quotient of 6 points on P1 (similar to the relationship of
modular forms of genus 3 and level 3, and the GIT quotient of 7 points
on P2 discussed above).
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2. Combinatorics of theta characteristics

In this section we recall some known facts about the action of the
symplectic group Sp(2g,F2) on the set of theta characteristics. The
main references are the classical books on theta functions, eg. Wirtinger
[?], Krazer [?], Coble [?], with a more modern treatment given by Igusa
[?], and many details that we need investigated in [?]. Almost all of
these facts are of course discussed in [?], but we collect here all that we
need, as a potential convenient reference for theta constants, and use
this to fix notation.

A theta characteristic m is an element of F2g
2 (where we think of the

elements of F2 as being 0 and 1), which we will often write as m =

[
m′

m′′

]
with m′ and m′′ considered as row vectors in Fg2. We define the parity
as

eg:signeg:sign (1) e(m) := (−1)
tm′·m”

and say that m is even or odd according to whether e(m) is equal to 1
or −1, respectively.
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For any triple m1,m2,m3 of characteristics we set

eg:syzygyeg:syzygy (2) e(m1,m2,m3) := e(m1) · e(m2) · e(m3) · e(m1 +m2 +m3),

and call a triple syzygetic or azygetic depending on whether this number
is 1 or −1, respectively.

The action of Sp(2g,F2) on the set of characteristics is given by

γ ·m :=

(
D −C
−B A

)[
m′

m′′

]
+

(
diag(CtD)
diag(AtB)

)
,

where as usual we write γ ∈ Sp(2g,F2) in the block form as γ =(
A B
C D

)
. This affine-linear action preserves the parity, azygy/syzygy,

and linear relations with an even number of terms. This is to say, the
orbits of this action on tuples of characteristics are described as follows:
there exists an element of Sp(2g,F2) mapping a sequence of character-
istics m1, . . . ,ml to a sequence of characteristics n1, . . . , nl if and only
if for any 1 ≤ i, j, k ≤ l we have e(mi) = e(ni), e(mi,mj,mk) =
e(ni, nj, nk), and linear relations among mi’s with an even number of
terms are in bijection with such relations for the ni’s, see [?].

A fundamental system of characteristics is a set of 2g + 2 charac-
teristics such that any triple is azygetic; we will consider fundamental
systems as unordered sets of theta characteristics. By the above, two
fundamental systems belong to the same Sp(2g,F2) orbit if and only
if they contain the same number of odd characteristics. In fact, a fun-
damental system with k odd theta characteristics exists if and only if
k is congruent to g modulo 4, see [?]. A special fundamental system is
a fundamental system containing g odd characteristics and g + 2 even
characteristics — all special fundamental systems form one Sp(2g,F2)
orbit.

In this paper, we are mostly interested in the cases g = 2 and g = 3.
For genus 2, fundamental systems consist of 6 characteristics, of which
either 2 or 6 may be odd. The unique fundamental system with 6 odd
characteristics is simply the set of all 6 odd characteristics:

example2example2 (3)

[
01
01

]
,

[
01
11

]
,

[
10
10

]
,

[
10
11

]
,

[
11
01

]
,

[
11
10

]
.

In genus 2, we also have the following easy combinatorial

lm:genus2 Lemma 1. For any azygetic triple of odd characteristics m1,m2,m3

there exist a unique even characteristic n0 such that the quadruple
n0,m1,m2,m3 is azygetic, and it is given by n0 = m1 +m2 +m3.
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The rest of this section is devoted to the case g = 3. Then funda-
mental systems consist of 8 characteristics, of which either 7 or 3 may
be odd. In the first case, we have fundamental systems of the form

n0,m1,m2, . . . ,m7

with n0 even and all mi odd. Classically, in this case the set of odd
characteristics m1,m2, . . . ,m7 is called an Aronhold set. We refer to [?]
for a beautiful modern exposition of the theory and many classical and
new results. Thus the group Sp(6,F2) acts transitively and faithfully
on the collection of Aronhold sets, and the number of ordered different
Aronhold sets is equal to | Sp(6,F2)| = 36 · 8! = 1451520.

One Aronhold set is given for example by the following characteris-
tics:

exampleexample (4)

[
111
111

]
,

[
110
100

]
,

[
101
001

]
,

[
100
110

]
,

[
010
011

]
,

[
001
101

]
,

[
011
010

]
This Aronhold set is completed to a fundamental system by adding the

zero characteristic

[
000
000

]
.

We now collect some needed results about the combinatorics of Aron-
hold sets for g = 3:

lm1 Lemma 2. For any azygetic triple of odd characteristics m1,m2,m3

there exist 6 even characteristics n1, . . . , n6 such that the quadruple
m1,m2,m3, nj is azygetic. One of these characteristics (without loss of
generality let it be n6) is equal to the sum n6 = m1 + m2 + m3. Then
the set

m1,m2,m3, n1, . . . , n5

forms a special fundamental system. In particular, every azygetic triple
of odd characteristics is contained in (and defines) a unique, up to
permutations, special fundamental system.

lm2 Lemma 3. If m1,m2,m3 and m1,m4,m5 are two azygetic triples of
odd characteristics (sharing one characteristic) that are subsets of a
fundamental system n0,m1,m2, . . . ,m7, then the intersection of the
special fundamental systems defined by m1,m2,m3, and by m1,m4,m5,
respectively, consists of m1 and n0.

Since the group Sp(6,F2) acts transitively on azygetic triples of odd
characteristics, it is enough to verify these lemmas for just one such
odd triple m1,m2,m3. This can be checked by hand, but more easily
follows from the following combinatorial

5



lm3 Lemma 4. For any fundamental system n0,m1, . . . ,m7, the other 21
odd characteristics are obtained as all possible sums n0 +mi +mj with
1 ≤ i < j ≤ 7, while the 36 even characteristics are n0 together with
the 35 sums mi +mj +mk with 1 ≤ i < j < k ≤ 7.

Remark 5. Explicitly, if an azygetic odd triple m1,m2,m3 is part
of the fundamental system n0,m1,m2, . . . ,m7, then the corresponding
special fundamental system is given by

{m1,m2,m3, n0,m4+m5+m6,m4+m5+m7,m4+m6+m7,m5+m6+m7}.

We define the symplectic form on F6
2 by

e(m,n) := (−1)m
′tn”−m”tn′ .

Then the number of Lagrangian subspaces of F6
2, called Göpel systems,

is equal to 135, see [?]. We call a Göpel system a Fano configuration if
all 8 characteristics in it are even, and call it a Pascal configuration if
four characteristics in the Lagrangian space are even, and four are odd.
In genus 3 there are 30 Fano configurations and 105 Pascal configura-
tions. In both cases, there exists a unique affine subspace of F6

2 modeled
on the Göpel systems, which consists only of even characteristics — for
a Fano configuration, this is the Göpel system itself.

All Fano configurations can be obtained as follows: fix an Aronhold
set m1, . . . ,m7. Then for any set of 7 triples of indices among 1, . . . , 7,
such that any two triples have exactly one element in common, the
seven corresponding triple sums mi + mj + mk form the set of non-
zero elements of a Fano configuration, and all Fano configurations are
obtained this way. For example, we could choose the 7 triples as

FF (5) F := {(123), (145), (167), (247), (256), (346), (357)} ,

so that for the Aronhold set example given in (4) the corresponding
Fano configuration formed by zero and the above 7 elements is

ex1ex1 (6)

[
000
000

]
,

[
100
010

]
,

[
001
010

]
,

[
101
000

]
,

[
001
000

]
,

[
101
010

]
,

[
000
010

]
,

[
100
000

]
.

Similarly, starting with a fixed Aronhold set, the non-zero elements
of any Pascal configuration can be described by taking sums of elements
of the following form (so that there are three triple sums all sharing the
same one element, each giving an even characteristic lying in the Pascal
configuration, and the other 4 odd elements of a Pascal configuration
are obtained as double sums forgetting the common characteristic, and
the common characteristic itself)

PP (7) P := {(123), (145), (167), (1), (23), (45), (67)} ,
6



so that for the Aronhold set given in (4) we get the Pascal configuration

ex2ex2 (8)

[
000
000

]
,

[
100
010

]
,

[
001
010

]
,

[
101
000

]
,

[
111
111

]
,

[
011
101

]
,

[
110
101

]
,

[
010
111

]
.

3. Modular forms

In this section we review the notation on modular forms and theta
constants. We denote by Hg the Siegel upper half-space — the space of
complex symmetric g×g matrices with positive definite imaginary part.
An element τ ∈ Hg is called a period matrix, and defines the complex
abelian variety Xτ := Cg/Zg + τZg. The group Γg := Sp(2g,Z) acts on
Hg by automorphisms: for

γ =

(
A B
C D

)
∈ Sp(2g,Z)

the action is γ ◦ τ := (Aτ + B)(Cτ + D)−1. The quotient of Hg by
the action of the symplectic group is the moduli space of principally
polarized abelian varieties (ppav): Ag := Hg/Sp(2g,Z). We define the
level subgroups of the symplectic group to be

Γg(n) :=

{
γ ∈ Sp(2g,Z) | γ ≡

(
1 0
0 1

)
modn

}
The corresponding level n moduli space of ppav is denoted Ag(n) :=
Hg/Γg(n).

A function F : Hg → C is called a modular form of weight k and
multiplier χ with respect to a subgroup Γ ⊂ Γg if

F (γ ◦ τ) = χ(γ) det(Cτ +D)kF (τ), ∀γ ∈ Γ, ∀τ ∈ Hg.

We shall write [Γ, k, χ] for this space. We omit the character if it is
trivial. We shall define the ring of modular forms as

modformsmodforms (9) A(Γ) =
∞⊕
k=0

[Γ, k].

This is a finitely generated graded ring. For any theta characteristic
m ∈ Fg2, we define the theta function with characteristic m to be the
map θm : Hg × Cg → C given by

θm(τ, z) :=
∑
p∈Zg

exp πi

[(
p+

m′

2

)t
·
(
τ(p+

m′

2
) + 2(z +

m′′

2
)

)]
.

Sometimes we will write θ

[
m′

m′′

]
(τ, z) for θm(τ, z).
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For ε ∈ Fg2 we also define the second order theta function with char-
acteristic ε to be

Θ[ε](τ, z) := θ

[
ε
0

]
(2τ, 2z).

The transformation law for theta functions under the action of the
symplectic group is given in [?]:

θ

[
γ

(
m′

m′′

)]
(γ ◦ τ, (Cτ +D)−t)z) =

φ(m, γ) det(Cτ +D)1/2eπi(z
t(Cτ+D)−1Cz)θ

[
m′

m′′

]
(τ, z),

where φ is some complicated explicit function (which we will discuss in
more detail before theorem 16), and the action of γ on characteristics
is taken modulo 2. It is further known (see [?], [?]) that φ|z=0 does
not depend on τ . Thus the values of theta functions at z = 0, called
theta constants, are modular forms of weight one half with multiplier,
with respect to Γg(2). Similarly it is known that the theta constants
of second order are modular forms of weight one half with respect to
a certain normal subgroup Γg(2, 4) ⊂ Sp(2g,Z) (containing Γg(4) and
contained in Γg(2)).

All odd theta constants with characteristics vanish identically, as
the corresponding theta functions are odd functions of z, and thus
there are 2g−1(2g + 1) non-trivial theta constants with characteristics,
corresponding to even theta characteristics m. All theta functions of
the second order are even with respect to z, and all 2g theta constants
of the second order are not identically zero.

Given a set of g odd characteristics m1, . . . ,mg, one constructs the
Jacobian determinant from the gradients with respect to z of the cor-
responding theta functions, evaluated at z = 0:

D(m1, . . . ,mg)(τ) := ~gradzθm1(τ, z) ∧ · · · ∧ ~gradzθmg(τ, z)
∣∣∣
z=0

,

which is a modular form of weight g+2
2

with respect to Γg(2), with a
suitable multiplier.

In genus 1, the famous Jacobi derivative formula

D

([
1
1

])
= −πθ

[
0
0

]
θ

[
0
1

]
θ

[
1
0

]
expresses the only Jacobian determinant as a product of theta con-
stants. This formula has been generalized to genus 2 and 3 by Igusa
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[?], and the results are as follows. In genus 2, for any special funda-
mental system m1,m2, n1, n2, n3, n4 we have

Jacder2Jacder2 (10) D(m1,m2) = −π2θn1θn2θn3θn4

In genus 3, for any azygetic triple of odd characteristics m1,m2,m3

forming a special fundamental system with n1, . . . , n5 (see lemma 2),
we have

JacderJacder (11) D(m1,m2,m3) = −π3θn1θn2θn3θn4θn5 .

In general, for higher genus it is known that the Jacobian determinant is
not a polynomial in theta constants, and various results were obtained
by Igusa [?] and Fay [?]. Moreover, Jacobian determinants associated
to non-azygetic systems of characteristics are not a polynomial il the
theta constants whenever g ≥ 3.

In the remaining sections of the text, we will use the generalized
Jacobi derivative formulas for genera 2 and 3 to relate modular forms,
configurations spaces of points, and the Coble quartic. We first deal
with the easier case of genus 2 in the following two sections.

4. Abelian surfaces with level 2 structure, and the GIT
quotient of (P1)6

The moduli space of abelian surfaces with a level two structure,
A2(2) = H2/Γ2(2) admits various compactifications. Indeed, the space
of modular forms [Γ2(2), 2] for Γ2(2) of weight 2 is 5-dimensional,
spanned by the fourth powers of theta constants with characteristics
θ4
n. Choosing an appropriate set of characteristics n1, . . . , n5 such that
X0 := θ4

n1
(τ), . . . , X4 := θ4

n5
are linearly independent defines an em-

bedding A2(2) ↪→ P4. The closure of the image — the Satake com-
pactification A2(2)Sat — is given by one equation, Igusa quartic, see
[?]:

eq:igusaeq:igusa (12)
I(X0, . . . , X4) : = (X0X1 +X0X2 +X1X2 −X3X4)2

− 4X0X1X2(X0 +X1 +X2 +X3 +X4).

This result can be restated by saying that the ring A(Γ2(2)) of modular
forms of genus 2, level 2, and even weight is generated by the fourth
powers of 5 theta constants with characteristics, with the only relation
being the Igusa quartic:

A(Γ2(2)) =
∞⊕
k=0

[Γ2[2], 2k] = C[X0, . . . , X4]/I(X0, . . . , X4).
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Alternatively, note that any indecomposable abelian surface is a hy-
perelliptic Jacobian, and thus is determined by the 6 branch points of
the hyperelliptic cover of P1 (up to automorphisms of P1); the level
two structure corresponds to an ordering of these 6 points, and thus an
alternative birational model of A2(2) is obtained as the GIT quotient of
(P1)6 under the action of PSL(2,C). We now recall this construction.

Denote X (6) ⊂ (P1)6 the subset where all the points are distinct; the
action of PSL(2,C) on P1 extends to its action (diagonally) on X (6).
The configuration space is then defined as

X(6)o = X (6)/PSL(2,C) .

In non-homogeneous coordinates x1, . . . , x6 on C6 ⊂ (P1)6, degree k
forms on X(6)o, which we call binary invariants of degree k, are given
by polynomials P ∈ C[x1, . . . , x6] such that

P (γ · x) =
6∏
i=1

(cxi + d)−k · P (x)

where we denote

(γ · x)i = (axi + b)(cxi + d)−1

for every

γ =

(
a b
c d

)
∈ PSL(2,C) .

We denote by S(6)k the space generated by such forms, and let S(6) :=⊕∞
k=0 S(6)k be the graded ring of binary invariants.

Recall that a tableau is a way of filling a matrix

(
i1 i2 i3
j1 j2 j3

)
by the

numbers from 1 to 6 in such a way that we have

i1 < i2 < i3, i1 < j1, i2 < j2, i3 < j3.

A tableau is called standard if moreover it satisfies j1 < j2 < j3.
There are 5 standard tableaux enumerated as follows:(

1 3 5
2 4 6

)
,

(
1 2 5
3 4 6

)
,

(
1 3 4
2 5 6

)
,

(
1 2 4
3 5 6

)
,

(
1 2 3
4 5 6

)
.

To any tableau N we associate the invariant

B(N) := (xi1 − xj1)(xi2 − xj2)(xi3 − xj3) ∈ S(6)1.

The space spanned by all these polynomials has dimension 5, and a ba-
sis is given by polynomials associated to the standard tableaux, which
we denote T0(x), . . . , T4(x) in the above ordering. A. Kempe, On
regular dierence terms, Proc. London Math. Soc. 25 (1894),
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343-350. proved that Ti(x) generate the ring of invariants S(6), see
[?]; the invariants Ti thus define a smooth embedding

T : X(6)o → P4,

and we denote byX(6) the closure of the image T (X(6)o). This is called
the GIT quotient X(6) = (P1)6//PSL(2,C), and gives an alternative
compactification of the moduli space of indecomposable abelian sur-
faces with a level two structure. It turns out that the ideal of relations
among binary invariants is generated by the Segre cubic polynomial

eq:segreeq:segre (13) S(T0, . . . , T4) := T1T2T4 − T3(T0T4 + T1T2 − T0T1 − T0T2 + T 2
0 )

(see [?]), and hence

X(6) = Proj (C[T0, . . . , T4]/S(T0, . . . , T4)) .

Remark 6. It is in fact known that the Igusa quartic and Segre cubic
are dual hypersurfaces, see [?]. Moreover, if one embeds a Kummer
surface as a quartic surface in P3 by using theta functions of the second
order, its equation is of the form

α0(x4
00 +x4

01 +x4
10 +x4

11)+ 2α1(x2
00x

2
10 +x2

01x
2
11)+ 2α2(x2

00x
2
01 +x2

10x
2
11)+

kumsurkumsur (14) 2α3(x2
00x

2
11 + x2

10x
2
01) + 4α4(x00x01x10x11),

where xε = Θ[ε](τ, z). It then turns out that the coefficients αi satisfy
the Segre cubic equation and certain inequalities, see [?].

The above equation for the universal Kummer surface can be ob-
tained as Fourier-Jacobi expansion of the degree 16 polynomial in theta
constants of the second order for genus 3 that vanishes identically,
whose image under the Siegel Φ operator gives exactly the Igusa quar-
tic. In the following section we compute the coefficients αi
explicitly using a different approach — which then general-
izes to the case of genus 3.

5. Modular forms of genus 2 and level 2, and binary
invariants of six points on P1

We now investigate the relation between the two birational models
of A2(2) constructed in the previous section. That is to say, we will
investigate the relation between modular forms of genus 2 and level 2,
and binary invariants of 6 points on P1, constructing a pair of dual
homomorphisms from one graded algebra to the other. One of these —
the homomorphism associating a binary invariant to a modular forms
was classically studied by Thomae [?] in the nineteenth century, with
further work done by Igusa [?] and the the second author [?]. Indeed,
working in arbitrary genus, Thomae defined a homomorphism from
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the ring A(Γg(2)) of modular forms of genus g and level 2 to the ring
S(2g + 2) of binary invariants of points on P1. This isomorphism is
obtained essentially by restricting the modular forms to the locus of
hyperelliptic Jacobians. The corresponding expression for theta con-
stants of hyperelliptic Jacobians is known as Thomae’s formulas, and
the results in genus 2 are as follows:

Theorem 7 (Thomae [?], see also Igusa [?]). For g = 2 for any even
theta characteristic n write

n = mi1 +mi2 +mi3 = mi4 +mi5 +mi6

where i1, . . . , i6 is a suitable ordering of the odd characteristics. Let
psithetapsitheta (15)

ψ∗(θ4
n) := ±(xi1−xi2)(xi2−xi3)(xi3−xi1)(xi4−xi5)(xi5−xi6)(xi6−xi4)

and extend ψ to a homomorphism of the the ring of modular forms
of genus 2 and level 2, generated by θ4

n. Then the map ψ defines an
injective degree preserving homomorphism

ψ∗ : A(Γ2(2))→ S6

For degree reasons the associated rational map

ψ : X(6) 99K A2(2)Sat

interpreted as a map from the Segre cubic to the Igusa quartic is a map
given via quadrics, so it is just the map given by the gradients of the
cubic equation (once we choose a suitable basis )

Is it ok?
We will now construct a homomorphism of graded algebras

φ∗ : S6 → A(Γ2(2))

such that the associated rational map

φ : A2(2)Sat 99K X(6)

will be the inverse of the rational map ψ.
To construct the homomorphism φ∗, we will use the Jacobian deter-

minants discussed above. Indeed, for any binary invariant written as a
polynomial P = P (xi − xj) in variables xi − xj for 1 ≤ i < j ≤ 6, we
set

φ∗(P ) := P (D(mi,mj)),

where the resulting expression is then written as a scalar modular form
by utilizing the generalized Jacobi derivative formula.

12



Proposition 8. With the above notation we have for any even theta
characteristic n

φ∗(ψ∗)(θ4
n) = χ2

5θ
4
n

with
χ5 =

∏
n even

θn.

Vice versa,

ψ∗(φ∗(xi1−xj1)(xi2−xj2)(xi3−xj3)) = ∆1/2·(xi1−xj1)(xi2−xj2)(xi3−xj3)
with

∆1/2 =
∏

1≤i<j≤6

(xi − xj).

Proof. Using equation (15) defining the map ψ, the computations with
Jacobian determinants done by Fiorentino [?], and lemma 1, we get

D(mi1 ,mi2)D(mi1 ,mi3)D(mi2 ,mi3)

= ±D(mi4 ,mi5)D(mi4 ,mi6)D(mi5 ,mi6)

= ∓π6χ5θ
2
m

Multiplying the first two lines of the formula thus gives π12χ2
5θ

4
m proving

the formula for φ∗ ◦ ψ∗.
Vice versa, we compute

φ∗(xi1 − xj1)(xi2 − xj2)(xi3 − xj3) =

θ2
mi1+mj1+mj3

θ2
mi1+mj1+mi3

θ2
mi1+mj1+mj2

·
θ2
mi1+mj1+mi2

θ2
mj1+mi2+mj2

θ2
mi1+mi2+mj2

Applying ψ and using the computations in [?], we finally get the for-
mula for ψ∗ ◦ φ∗. �

Remark 9. We observe that

ψ(χ5) = c∆1/2,

and the zero set of each form is the complement of the locus of inde-
composable abelian surfaces (Jacobians of smooth hyperelliptic curves)
with level 2 structure, in both varieties.

As a consequence of the above discussion we have

thm:genus2 Theorem 10. The maps φ and ψ restricted to the locus of indecom-
posable ppav within A2(2), i.e. to the locus of Jacobians of smooth
hyperelliptic genus two curves, are the inverses of each other. Hence
choosing suitable bases in the space of binary invariants of degree one
and in the space of modular forms of weight induces the dual maps
between the Igusa quartic and the Segre cubic.
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As an application, we compute the coefficients αi of the universal
Kummer surface (14), proving along the way that they are modular
forms of weight six for Γ2(2). To this end, we apply the homomor-
phism φ∗ to these coefficients of the universal Kummer surface. A very
similar strategy applies in the more difficult case of genus 3, yielding
the equation of the Coble quartic. Here we only sketch the argument
for genus 2, referring to the genus 3 case studied below for a more
detailed discussion.

It turns out that the five coefficients α0, . . . , α4 of the universal Kum-
mer surfaces, and the five invariant quartic polynomials in xij in (14)
each span a five-dimensional representation of Sp(4,F2). Let us denote
these representations by W and W ′, respectively; it turns out that these
representations are isomorphic, and that the tensor product W ⊗W ′

contains a unique copy of the trivial representation of Sp(4,F2). We
define a suitable subgroup Γ2,0(2) of Sp(4,Z) of index 15 containing
Γ2(2) (see (20) below for the analogous definition in genus 3) such that
each W and W ′ contain a unique Γ2,0(2) vector, which we denote v and
v′, and then the symmetrization of v ⊗ v′ under Sp(4,Z)/Γ2,0(2) must
give the element of W ⊗W ′ that corresponds to the trivial representa-
tion of Sp(4,F2), which is then equal to the universal Kummer surface.
This situation is completely analogous to the case of Coble quartic,
discussed in much more detail below, and the resulting expression for
the universal Kummer surface is

Theorem 11.

This completes our results for the case of genus 2. The rest of the
paper will be devoted to a detailed exposition of the case of genus 3,
culminating in formulas for the Coble quartic.

6. The configuration space of seven points on P2

Similar to the above relation of modular forms of genus 2, and in-
variants of points on P1, the Göpel systems discussed above are related
to configurations of points on P2, and we now recall this construction,
from [?], [?], [?].

Let P7
2 be the GIT quotient of (P2(C))×7 under the diagonal action

of PGL(3,C), and let R7
2 be its ring of invariants, see [?] for the con-

struction and details. Recall that R7
2 is finitely generated: to any Göpel

system one can associate (see [?] and [?]) a 15-dimensional subspace
V ⊂ R7

2 of invariants of degree 3 as follows.
Let pi, pj, pk ∈ P2, and vi, vj, vk ∈ C3 \ {0} be such that vi 7→ pi

under the projection. Denote then (ijk) := vi ∧ vj ∧ vk, and associate
14



to the Fano configuration given by (5) the function

GLGL (16) GF := (123)(145)(167)(247)(256)(346)(357),

and associate to Pascal configuration given by (7) the function
GMGM (17)

GP := (123)(145)(167)
(

(246)(356)(257)(347)− (256)(357)(247)(346)
)
.

It turns out that the 135 functions GF and GP span a 15-dimensional
space of degree 3 invariants V , a basis of which is given by GF1 , . . . GF15

corresponding to suitable 15 Fano configurations. The linear relations
among the GF and the GP are related to two-dimensional isotropic
subspaces of F6

2, see [?], [?], or [?].
This 15-dimensional space V is an irreducible representation of Sp(6,F2).

Moreover, choosing a basis in it given by suitable 15 GF ’s defines a
Sp(6,F2)-equivariant rational map P7

2 99K P14, birational onto the im-
age (the same map is defined also from a six-dimensional ball quotient,
see [?] for details). The image of this map, the so-called Göpel variety,
is described completely in [?]. Moreover, according to [?, p. 196], this
space appears in the definition of the coefficients of the Coble quartic.
In [?] the authors determine a 15-dimensional space of modular forms
of weight 14 (i.e. polynomials of degree 28 in theta constants with char-
acteristics) corresponding to this space. We will do the same, by using
and interpreting the constructions and results originating with Coble,
in a more geometric way.

7. Del Pezzo surfaces of degree 2 and plane quartics

We recall from [?] or [?] that the double cover of P2 branched along a
smooth plane quartic is a degree 2 del Pezzo surface — denote this del
Pezzo surface S. Conversely, for any degree 2 del Pezzo surface S, its
anticanonical model is a double cover of P2 branched along a smooth
quartic.

A del Pezzo surface of degree 2 is obtained by blowing up seven points
p1, . . . , p7 ∈ P2 in general position. The Picard lattice of S is isomor-
phic to (1) ⊕ (−1)⊕7, and it is generated by h0 (the total transform
of the hyperplane section) and the exceptional curves h1, . . . , h7. The
orthogonal complement of the anti-canonical class 3h0−h1− . . .−h7 in
PicZ(S) then turns out to be isomorphic to the lattice E7. The surface
S contains 56 exceptional −1 curves, which split into 28 pairs, such
that the curves in each pair are interchanged by the deck transforma-
tion of the cover S → P2. For any set of seven disjoint −1 curves,
contracting them defines a morphism π : S → P2, called a geometric
marking of the degree 2 del Pezzo surface. The number of contractions
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is equal to the order of the Weyl group W (E7). Moreover, there is an
exact sequence

1→ (±1)→ W (E7)→ Sp(6,F2)→ 1,

where the kernel of the map to Sp(6,F2) is the deck transformation of
the cover. Hence, a geometric marking of a degree 2 del Pezzo surface
corresponds to a level 2 structure on the Jacobian of the plane quartic
C. Under the anticanonical map the chosen seven pairs of disjoint
−1 curves map to seven bitangents of C that form an Aronhold set of
bitangents, that is to a 7-tuple {`1, . . . , `7} of bitangents such that for
each triple `i, `j, `k the corresponding six points of tangency with C do
not lie on a conic.

Recall that bitangents of a plane quartic are in bijection with odd
theta characteristics in genus 3 (the two points of tangency give an
effective square root of the canonical bundle), and Aronhold sets of
characteristics thus correspond to Aronhold sets of bitangents. We
thus obtain a birational map between P7

2 and A3(2) (the moduli space
of genus 3 curves with a level 2 structure), defined away from the
hyperelliptic locus in M3, see [?],[?].

8. Relations among modular forms in genus 3

We denote by A3 and A3(2) the Satake compactifications of A3 and
A3(2), respectively. Let

χ18(τ) :=
∏
meven

θm(τ, 0)

be the product of all even theta constants with characteristics — it is a
modular form of weight 18 for the entire group Sp(6,Z), as each of the
36 theta constants is a modular form of weight 1/2. Recall also that
hyperelliptic genus 3 curves are characterized by having one vanishing
theta constant, and thus the equation χ18 = 0 defines in A3 the closure
of the hyperelliptic locus. Recall also that any non-hyperelliptic genus
3 curve is a plane quartic, and thus the complement in A3 of the zero
locus {χ18 = 0} is the moduli space of plane quartics. We denote this

space by A0

3, and similarly denote A3(2)0 the level 2 cover of the moduli
of non-hyperelliptic genus 3 curves.

From the discussion in the previous section, it follows that A3(2)0 is
isomorphic to each of the following: the moduli space of plane quar-
tics together with an Aronhold set of bitangents; the moduli space of
marked degree 2 del Pezzo surfaces; the open subset of the GIT quo-
tient P7

2 where the points are in general position, i.e. no three lie on a
line, and no six lie on a conic.
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Using these identifications we associate to the functions GF defined
by (16) suitable modular forms (with trivial character) for the group
Γ3(2). Indeed, for a fixed Aronhold set m1, . . . ,m7 and a Fano con-
figuration F given as triples of characteristics Mi = (i1, i2, i3) with
1 ≤ i1 ≤ i2 ≤ i3 ≤ 7, we set

H(F )(τ) :=
D(M1) . . . D(M7)

θ7
n0

(τ),

where we denote

D(Mi)(τ) := D(mi1 ,mi2 ,mi3)(τ).

By Jacobi’s derivative formula (11), we can express each D(Mi) as
a product of 5 theta constants (thus a modular form of weight 5/2),
and by the discussion in lemma 3 it follows that each of these products
contains θn0 , so that each DMi

is divisible by θn0 , and thus H(F )(τ) is
indeed a (holomorphic) modular form of weight 14 = 7 · (5/2 − 1/2).
Similarly we can define the modular form H(P )(τ) corresponding to
any Pascal configuration P as in (17). Summarizing, as a consequence
of the previous identifications we have

Theorem 12. For any τ ∈ A3(2)0 let Xτ := (p1, . . . , p7) ∈ P7
2 be the

corresponding 7-tuple of points. Fix an Aronhold set m1, . . . ,m7; then
for every Fano configuration F , we have

GF (Xτ ) = θ7
n0

(τ)H(F )(τ).

Moreover, we have

H(F )(τ) =
χ18(τ)∏
n∈F θn(τ)

,

and thus all H(F )(τ) are modular forms with respect to Γ3(2) (with
trivial character).

Proof. Indeed, on H3 by the discussion above we can express H(F )
as a monomial in theta constants by using Jacobi’s derivative formula,
yielding the expression above. The fact that the modular form H(F )(τ)
has trivial character is a consequence of a result of Igusa [?]. �

Remark 13. The construction above associating modular forms to
Fano configurations depends on the choice of the Aronhold set. For
a different Aronhold set, the correspondence between the GF and the
monomials H(F ) would be different, but the denominator would still
be of the form θ7

n, and thus on the set of plane quartics, which is the
complement of the locus {χ18(τ) = 0}, the projective map given by the
set of all H(F )(τ) would be the same, since no theta constant vanishes.
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We know that the 15-dimensional space V is spanned by the func-
tions GF . Let us then denote by W the 15-dimensional space spanned
by the functions H(F ). The linear relations among the GF and the GP

induce linear relations among the H(F ) and H(P ). The consistency
of these relations follows from Riemann’s quartic addition theorem for
theta constants. Indeed, recall (see for example [?] or [?]) that in
genus three Riemann’s quartic addition theorem for theta constants
with characteristics has the form

RiemannRiemann (18) r1 = r2 + r3,

where each ri is a product of four theta constants with characteristics
forming an even coset of a two-dimensional isotropic space. Hence the
characteristics appearing in the product rirj, i 6= j are even cosets of
Lagrangian spaces (i.e. affine subspaces consisting only of even char-
acteristics, modeled on Göpel configurations as vector subspaces), and
we thus get

RiemchiRiemchi (19) r1r2 + r1r3 − r2r3 =
χ18

r1r2r3

(r3 + r2 − r1) = 0.

The group

gamma30gamma30 (20) Γ3,0(2) := {γ ∈ Sp(6,Z) |C ≡ 0 mod 2}

has index 135 in Sp(6,Z), using Maple R© (or it can also be seen by using
Igusa’s going down process reference, we found that the subspace of
the 15-dimensional space W invariant under the action of Γ3,0(2) is one-
dimensional, and is thus spanned by the manifestly Γ3,0(2)-invariant
modular form

HF1HF1 (21) H(F1)(τ) :=
χ18∏

m′′ θ

[
0
m′′

]
(τ)

corresponding to the Fano configuration F1 :=

{[
0
m′′

]}
consisting of

all characteristics with top vector zero
We conclude this section by remarking that all the functions H(F )

and H(P ) induce the rational map

φ : A3(2) 99K P14 = P(W ).

Thus one can easily see [?, Thm. 7.1 (b)]:

Proposition 14. The base locus of φ consists of reducible points in
A3(2).

18



Proof. We can choose a basis of W consisting of monomials in the theta
constants. Since for a Jacobian of a smooth hyperelliptic genus 3 curve,
precisely one theta constant vanishes, the map φ is still well-defined on
the locus of hyperelliptic Jacobians. However, for a reducible point at
least 6 theta constants with azygetic characteristics vanish (this condi-
tion characterizes the reducible locus, see [?]). The complementary set
of characteristics in each monomial defining the map φ is a Göpel sys-
tem, i.e. a syzygetic octet of characteristics. A Göpel system cannot
contain an azygetic triple of characteristics, and thus all monomials
defining the map φ vanish identically on the reducible locus, so that
the map φ is undefined there. �

We observe that the map is defined exactly alongM3(2). In partic-
ular, the map φ is well-defined on the hyperelliptic locus.

9. The Coble quartic
sec:coble

We are combine the results and constructions summarized above to
obtain a formula for the Coble quartic as a suitable symmetrization.

By the work of Coble [?, p. 196], the Coble quartic is the linear combi-
nation of 15 terms that span an irreducible representation of Sp(6,F2),
which we now describe. We denote theta functions of the second order
by

xx (22) xε := Θ[ε](τ, z) = θ

[
ε
0

]
(2τ, 2z)

for ε ∈ Fg2; these are coordinates for the projective space that is the
target of the Kummer map. Let then W ′ be the 15-dimensional vector
space spanned by quartics Q1, . . . , Q15 in xε invariant under transla-
tions, enumerated explicitly in the next section, following Coble’s no-
tation in [?] (and also given in [?]). Here we only note that

Q1 := x4
000 + x4

001 + x4
010 + x4

100 + x4
110 + x4

101 + x4
011 + x4

111

spans the unique Γ3,0(2)/Γ3(2) invariant in W ′. This 15-dimensional
space W ′ forms an irreducible representation of the group Sp(6,F2),
where Sp(6,F2) acts on theta functions of the second order (explicit
formulas are given in the next section). It can be verified that the
representation W ′ is in fact isomorphic to W , but we keep the notation
distinct. Finally, we set R(τ, z) := H(F1)(τ)Q1(τ, z) to be the product
of the two such invariants, and obtain a formula for the Coble quartic.

cobleformula Theorem 15. Up to a constant factor, the Coble quartic is equal to∑
γ∈Γ3/Γ3,0(2)

γ(R(τ, z)) =
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∑
γ∈Γ3/Γ3,0(2)

det(Cτ +D)−16e8πizt(Cτ+D)−1zR(γτ, (Cτ +D)−tz).

Proof. Using Magma R©, Eberhard Freitag determined the decomposi-
tion of W ⊗ W ′ into irreducible representations under the action of
Sp(6,F2). It turns out that the dimensions of the irreducible sum-
mands are equal to 1, 35, 84, 105, each occurring with multiplicity one.
Since the Coble quartic is invariant under Sp(6,F2), it must generate
the 1-dimensional trivial subrepresentation of W ⊗W ′.

Recall that we have Γ3(2) ⊂ Γ3,0(2) ⊂ Sp(6,Z), so we have

Γ3,0(2)/Γ3(2) ⊂ Sp(6,F2) = Sp(6,Z)/Γ3(2).

Since the modular form H(F1) defined in (21) spans the Γ3,0(2)/Γ3(2)
invariant line in W , and similarly Q1 spans the Γ3,0(2)/Γ3(2) invariant
line in W ′, the expression

v0 =
∑

γ∈Sp(6,F2)/Γ3,0(2)

γ(v ⊗ v′) ∈ W ⊗W ′

is invariant under Sp(6,F2), and thus, unless it is zero, generates the
one-dimensional irreducible summand of W ⊗ W ′. Indeed, to prove
that v0 is not identically zero, we recall that in fact W and W ′ are
isomorphic representations, this isomorphism must send H(F1) to Q1,
and it is enough to check that the sum above is non-zero under such
an identification. To this end, we compute using the transformation
formula for theta constants given in [?]∑

γ∈Sp(6,F2)

γ(H(F1)2) = |Γ3,0(2)/Γ3(2)|
135∑
i=1

H(Gi)
2,

where G1, . . . , G135 is some enumeration of all the Göpel systems. This
form is not identically zero, in fact the first Fourier coefficient (for some
lexicographic ordering) of each H(Gi)

2 is positive, hence v0 ∈ W ⊗W
cannot be 0, and must be proportional to the Coble quartic. �

10. An explicit formula for the Coble quartic

The computations described above can be performed on a computer
to get a completely explicit formula for the Coble quartic, which we
will now give. We recall and describe in detail the algorithm, for easy
reference recall (and correct the signs in) the formulas used, and then
give the result of such a computation.

Indeed, first one enumerates the 30 Fano configurations and the 105
Pascal configurations. To each such configuration, one can associate
the corresponding modular form H(F ) or H(P ) as described above.
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For each Pascal configuration P there exists a unique pair of Fano
configurations F ′, F ′′ such that there exist three syzygetic quartets of
characteristics S1, S2, S3 satisfying

P = S2 t S3, F ′ = S1 t S2, F ′′ = S1 t S3.

As described above, Riemann’s quartic addition theorem then yields
an expression H(P ) = ±H(F ′) ± H(F ′′), where the signs are given
explicitly in the paper of Igusa [?]. Once this is done, in the same
manner one investigates Riemann’s quartic addition theorem given by
3 syzygetic quartets where each SitSj is a Pascal configuration — sub-
stituting the expressions for H(P ) then yields various relations among
the modular forms H(F ). Solving these allows one to find an explicit
basis for the space W . Explicitly, such a basis can be chosen to be
given by the following 15 Fano configurations:

F1 =

{[
000
000

]
,

[
000
001

]
,

[
000
010

]
,

[
000
011

]
,

[
000
100

]
,

[
000
101

]
,

[
000
110

]
,

[
000
111

]}
,

F2 =

{[
000
000

]
,

[
000
001

]
,

[
000
010

]
,

[
000
011

]
,

[
100
000

]
,

[
100
001

]
,

[
100
010

]
,

[
100
011

]}
,

F3 =

{[
000
000

]
,

[
000
001

]
,

[
000
100

]
,

[
000
101

]
,

[
010
000

]
,

[
010
001

]
,

[
010
100

]
,

[
010
101

]}
,

F4 =

{[
000
000

]
,

[
000
001

]
,

[
000
110

]
,

[
000
111

]
,

[
110
000

]
,

[
110
001

]
,

[
110
110

]
,

[
110
111

]}
,

F5 =

{[
000
000

]
,

[
000
001

]
,

[
010
000

]
,

[
010
001

]
,

[
100
000

]
,

[
100
001

]
,

[
110
000

]
,

[
110
001

]}
,

F6 =

{[
000
000

]
,

[
000
010

]
,

[
000
100

]
,

[
000
110

]
,

[
001
000

]
,

[
001
010

]
,

[
001
100

]
,

[
001
110

]}
,

F7 =

{[
000
000

]
,

[
000
010

]
,

[
000
101

]
,

[
000
111

]
,

[
101
000

]
,

[
101
010

]
,

[
101
101

]
,

[
101
111

]}
,

F8 =

{[
000
000

]
,

[
000
010

]
,

[
001
000

]
,

[
001
010

]
,

[
100
000

]
,

[
100
010

]
,

[
101
000

]
,

[
101
010

]}
,

F9 =

{[
000
000

]
,

[
000
011

]
,

[
000
100

]
,

[
000
111

]
,

[
011
000

]
,

[
011
011

]
,

[
011
100

]
,

[
011
111

]}
,

F10 =

{[
000
000

]
,

[
000
011

]
,

[
000
101

]
,

[
000
110

]
,

[
111
000

]
,

[
111
011

]
,

[
111
101

]
,

[
111
110

]}
,

F11 =

{[
000
000

]
,

[
000
011

]
,

[
011
000

]
,

[
011
011

]
,

[
100
000

]
,

[
100
011

]
,

[
111
000

]
,

[
111
011

]}
,

F12 =

{[
000
000

]
,

[
000
100

]
,

[
001
000

]
,

[
001
100

]
,

[
010
000

]
,

[
010
100

]
,

[
011
000

]
,

[
011
100

]}
,
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F13 =

{[
000
000

]
,

[
000
101

]
,

[
010
000

]
,

[
010
101

]
,

[
101
000

]
,

[
101
101

]
,

[
111
000

]
,

[
111
101

]}
,

F14 =

{[
000
000

]
,

[
000
110

]
,

[
001
000

]
,

[
001
110

]
,

[
110
000

]
,

[
110
110

]
,

[
111
000

]
,

[
111
110

]}
,

F15 =

{[
000
000

]
,

[
000
111

]
,

[
011
000

]
,

[
011
111

]
,

[
101
000

]
,

[
101
111

]
,

[
110
000

]
,

[
110
111

]}
.

We note that a different labeling of the Fano configurations is chosen in
[?], where they are explicitly labeled by permutations of the 7 elements
of an Aronhold set. The choice of the above 15 Fano configurations
giving a basis of W is of course not canonical, but just one possible
choice. Note also that our Fano configurations are unordered and we
don’t have signs associated to them — the signs in our computations
come from the theta transformation formulas discussed below.

We now list the 15 invariant quartics in theta functions of the second
order as given by Coble [?], and also in [?]: they are

Q000 = Q1 := x4
000 + x4

001 + x4
010 + x4

100 + x4
110 + x4

101 + x4
011 + x4

111,

Q001 = Q2 := x2
000x

2
001 + x2

010x
2
011 + x2

100x
2
101 + x2

110x
2
111,

Q010 = Q3 := x2
000x

2
010 + x2

001x
2
011 + x2

100x
2
110 + x2

101x
2
111,

Q011 = Q4 := x2
000x

2
011 + x2

010x
2
001 + x2

100x
2
111 + x2

110x
2
101,

Q100 = Q5 := x2
000x

2
100 + x2

010x
2
110 + x2

001x
2
101 + x2

011x
2
111,

Q101 = Q6 := x2
000x

2
101 + x2

010x
2
111 + x2

100x
2
001 + x2

110x
2
011,

Q110 = Q7 := x2
000x

2
110 + x2

010x
2
100 + x2

101x
2
011 + x2

001x
2
111,

Q111 = Q8 := x2
000x

2
111 + x2

010x
2
101 + x2

100x
2
011 + x2

110x
2
001,

Q001′ = Q9 := x000x010x100x110 + x001x011x101x111,

Q010′ = Q10 := x000x001x100x101 + x010x011x110x111,

Q011′ = Q11 := x000x011x100x111 + x001x010x101x110,

Q100′ = Q12 := x000x001x010x011 + x100x101x110x111,

Q101′ = Q13 := x000x010x101x111 + x001x011x100x110,

Q110′ = Q14 := x000x001x110x111 + x010x011x100x101,

Q111′ = Q15 := x000x011x101x110 + x001x010x100x111,

where we recall (22) that xε denotes Θ[ε](τ, z).
To make the following formula simpler, it would be natural to mul-

tiply Qijk by −2, and Q′ijk by 4, but we do not do this here.
We now compute explicitly the expression for the Coble quartic given

by Theorem 15, by determining the orbit of H(F1)Q1 under the group
Sp(6,F2), using the generators of the group. Since the conventions
in the literature vary, and there are various errors in typos in signs,
for easy reference here are the relevant formulas from [?],[?],[?] (note
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especially that in the first formula the theta function on the right-hand-
side is written with characteristic in F6

2, which accounts for the extra

sign (−1)b
β+Sα−diag S

2
c):

We recall that the symplectic group acts on the theta func-
tion according to the following rules

γ(θ

[
α
β

]
(τ, z)) = det(Cτ +D)−1/2eπiz

t(Cτ+D)−1zθ

[
α
β

]
(γτ, (Cτ +D)−tz).

γ(Θ[ε](τ, z)) = det(Cτ +D)−1/2e2πizt(Cτ+D)−1zΘ[ε](γτ, (Cτ +D)−tz).

similar rules hold for theta-constants, i.e. their evaluation
at 0.

Moreover in considering such action, a recurrent difficulty is
by the multiplier κ that appears in the transformation formula
for theta function. Notice, however, that in our formulas we
only deal with degree 32 polynomials in theta constants and
functions, and since the multiplier is an eighth root of unity
depending only on the element of Sp(2g,Z) (and independent
of the characteristic), it cancels in our formulas. We thus
omitting the multiplier in the formulas below, we get(

1 S
0 1

)
θ

[
α
β

]
=

(
1 + i√

2

)αt(−Sα−2 diag S+4bβ+Sα+diag S
2

c)

θ

[
α

β + Sα + diag S

]
,

(
0 1
−1 0

)
θ

[
α
β

]
=

(
1 + i√

2

)−2αtβ

θ

[
β
α

]
,

(
1 S
0 1

)
Θ[ε] = iε

tSεΘ[ε],

(
0 1
−1 0

)
Θ[ε] =

(
1√
2

)g∑
α

(−1)α
tεΘ[α].

four.
The result of performing the computations described above, express-

ing all H(F ) in terms of the basis given, and using the theta transfor-
mation formula is then the following
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explicitcoble Theorem 16. The Coble quartic can be written as the polynomial with
134 monomials as

C(τ, z) = s1Q000 − 2(s1 + 2s6)Q001 − 2(s1 + 2s3)Q010 − 2(s1 + 2s9)Q011

− 2(s1 + 2s2)Q100 − 2(s1 + 2s7)Q101 − 2(s1 + 2s4)Q110

− 2(s1 − 2s10)Q111 + 8(s1 + s2 + s3 + s4 + 2s5)Q′001

+ 8(s1 + s2 + s6 + s7 + 2s8)Q′010 + 8(s1 + s2 + s9 − s10 + 2s11)Q′011

+ 8(s1 + s3 + s6 + s9 + 2s12)Q′100 + 8(s1 + s3 + s7 − s10 + 2s13)Q′101

+ 8(s1 + s4 + s6 − s10 + 2s14)Q′110 + 8(s1 + s4 + s7 + s9 + 2s15)Q′111,

where we denote si := H(Fi) for the basis of W given above.

Remark 17. Note that our expression for the Coble quartic is in terms
of Fano configurations of characteristics, and as such it has few terms.
As explained in [?], each si is in fact a degree 28 polynomial in theta
constants of the second order, with a huge number of monomials. A
completely explicit formula for the Coble quartic, as a polynomial in
theta constants of the second order and Qi’s, with 372060 monomi-
als altogether, is obtained in [?, Sec. 7]. In their notation we have
r = H(F1), sσ = −2H(F1)± 4H(Fσ), and a similar expression can be
obtained for the tσ. Moreover, note that in the above formula if we
take −s10 instead of s10, then all the signs becomes pluses.

We hope that our formula may lead to a better further understanding
of the Coble quartic.

All of the computations described above were performed using Maple R©,
and take a few minutes for a straightforward unoptimized code on a
regular PC.
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