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In this paper, the detection of delaminations in carbon-fiber-reinforced-plastic (CFRP) laminate plates
induced by low-velocity impacts (LVI) is investigated by means of Auto-Regressive (AR) models obtained
from the time histories of the acquired responses of the composite specimens. A couple of piezoelectric
patches for actuation and sensing purposes are employed. The proposed structural health monitoring
(SHM) routine begins with the selection of the suitable locations of the piezoelectric transducers via
the numerical analysis of the curvature mode shapes of the CFRP plates. The normalized data recorded
for the undamaged plate configuration are then analyzed to obtain the most suitable AR model using five
techniques based on the Akaike Information Criterion (AIC), the Akaike Final Prediction Error (FPE), the
Partial Autocorrelation Function (PAF), the Root Mean Squared (RMS) of the AR residuals for different
order p, and the Singular Value Decomposition (SVD). Linear Discriminant Analysis (LDA) is then applied
on the AR model parameters to enhance the performance of the proposed delamination identification
routine. Results show the effectiveness of the developed procedure when a reduced number of sensors
is available.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Carbon-fiber-reinforced plastic (CFRP) structures have been
developed and extensively implemented in the aeronautic and
space industries over the last years. The major benefits of compos-
ites over other conventional materials are manifold: higher
stiffness-to-weight or strength-to-weight ratio, higher resistance
in harsh environments, lighter in weights Nevertheless, CFRP com-
ponents can be affected by delaminations induced by low-velocity
impact (LVI) inducing a breakdown of structural performances
throughout their service life [1].

LVI are impacts characterized by an impact velocity smaller
than 10 m/s [2] that can produce a combination of matrix cracking,
delamination and fiber breakage, among which delaminations lead
to a severe stiffness and strength decrement [3]. The monitoring of
structural changes can be based on changes in dynamic response.
In fact, any change in the physical properties, such as reduction
in stiffness resulting from the onset of cracks, produces changes
in the measured dynamic response of the structure [4].

The time history response of a structure can be acquired by var-
ious sensors, e.g. accelerometers, fiber optic strain gauges etc., and
such measures can then be evaluated in the frequency domain
using Fourier transform. Further analysis of the frequency domain
data is subsequently performed to extract modal parameters of the
system [5]. Modal data, however, e.g. resonance frequency, reflects
the global properties of the system, whilst damage is typically a
local phenomenon.

A typical structural health monitoring process requires (i) the
observation of the system over time by means of sampled dynamic
response measurements from sensors, (ii) the extraction of proper
damage-sensitive features from such measures, and (iii) the statis-
tical analysis of the selected features to assess the state of the sys-
tem [6]. It is then apparent that the setup of an optimally-placed
transducer network and the data acquisition from the structure
play a crucial role. In this context, the use of piezoelectric transduc-
ers has showed to lead to prominent results. A detailed description
of the mathematical modeling of piezoelectric laminated compos-
ite plates can be found in [7,8].

In this article, the detection of delaminations in CFRP composite
laminates subjected to LVI is accomplished.
ressive
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Table 1
Composite laminate model.

Geometrical features

Length (b) [cm] 15
Width (a) [cm] 10
Thickness (t) [cm] 0.4
Number of plies 16
Stacking sequence ½45�=0�=� 45�=90��2s

Fig. 2. The composite plate with integrated piezo patches.
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The essential parts of the proposed technique are (i) the piezo
devices placement and data acquisition, (ii) the data fitting via
ARmodel, (iii) the pattern recognition procedure, based on the sep-
aration of the measured vibration data in the reference and the
comparison datasets, (iv) the classification operation and (v) the
discussion of the obtained results.

This SHM routine is based on previous damage pattern recogni-
tion studies performed on composite beam [9] and plates [10] via
wavelet-based approach. The novelty here reported is the use of AR
parameters as damage sensitive features. Such layout represents a
practical solution for an in situ monitoring procedure of the state of
integrity of the structure.

2. Piezo devices placement and data acquisition

Three laminated composite plates are used for the impact
tests. The prepreg used to manufacture the specimens is a
M10:1=38%=UD300=CHS, which consists of a thermosetting epox-
ide matrix with unidirectional carbon fibers. Cutting, laminating
and curing are the three main phases referred to such process.
Although the three composite plates are manufactured with stan-
dard geometrical dimensions and with the same materials, any
physical changes are ascribable to these phases.

The active structural sensing diagnostic of the composite struc-
ture is achieved by means of a piezoelectric sensors couple that are
employed for the generation of known and controlled inputs sig-
nals to excite the structure and then record its response.

The selected optimal placement of the piezo devices is the high
strain region obtained via twofold differentiation of the mode
shapes [11].

The geometrical parameters and stacking sequence of the lam-
inates are reported in Table 1. The curvature of the mode shapes is
obtained by implementing a finite element model of the unidirec-
tional Carbon/Epoxy plate. The material mechanical properties
adopted in the numerical model and its description can be found
in [10]. The proposed work is limited to the first three resonance
modes.

Due to its accurate experimental reproducibility, a free edge
configuration layout is chosen for the specimen boundary condi-
tions. Elastic bands are used to hang the laminates on a steel rigid
frame.
Fig. 1. Mode Shapes average curvature. From left
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It results that, for the first three considered modes, the z compo-
nent of the displacements is about ten orders of magnitude larger
than x and y components. Therefore only the out-of-plane behavior
is regarded to maximize the strain field.

A numerical interpolation through 2D polynomial functions of
properly selected rank is carried out to extract the modal curva-
tures. The average surface curvature [12] is computed from the
second derivatives of the approximated mode shapes with respect
to x and y axes:

vaverage ¼ vx þ vy ð1Þ
The average surface curvature of the considered three modes is

shown in Fig.1.
The position of the piezo patches is selected so as to avoid low

values of the computed average curvature ensuring, at the same
time, adequate sensing and actuation conditions.

A compromise solution becomes necessary in order to assure an
efficient analysis of the selected modes. In addition, the central
region of the laminated plate must be avoided because in this
region the impact will occur according to ASTM-D7136, together
with the plates edges where impact support fixture must be
placed.

The selected optimal placement of the piezo patches is shown in
Fig. 2. The piezo devices are square patches of 10 mm length and a
thickness of 0:2 mm.

Three plates C1, C2 and C3 have been realized according to the
same manufacturing process. The impact energy values considered
in this study are equal to 20 J for C1 plate, 8 J for C2 plate and 12 J
for C3 plate, which correspond to 2:7 m/s, 1:7 m/s and 2:1 m/s,
respectively. For each of the above mentioned plates two
configurations (before and after the impact) are considered for a
total number of 6 analyzed configurations.
to right: first, second and third mode shape.
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A random excitation in the range of 0–3200 Hz is used to excite
the plates, with a frequency resolution of 1.57 Hz. The excitation
level is set to 100 V.

Twenty time histories are acquired for each configuration in
order to guarantee a proper statistical consistency. The impact
tests are carried out making use of the CEAST 9340 floor standing
impact system whose impactor has an hemispherical shape of
165 mm of diameter with a mass of 5.5 kg and a hardness value
of 60 HRC.

3. Data fitting via Auto-Regressive model

A very useful model that can be adopted in the representation
of time series data is the Auto-Regressive (AR) model. In such
model, the current value of the process is expressed as a finite, lin-
ear ensemble of the previous values of the process and a random
error [13].

The AR model is developed from sampled response time series
x1; x2, . . ., xj:

xi ¼
Xp

j¼1

/jxi�j þ ei ð2Þ

where p denotes the order of parameters in the model, xi is the mea-
sured signal at the time instant ti;/j are the unknown AR parame-
ters and ei is an observable random error [16]. The unknown
variables /j can be computed by means of several algorithm, e.g.
the Least-squares approach and the Yule–Walker approach [17].

AR models can be exploited for SHM routine by means of two
approaches: using the residual errors ei or using the AR parameters
/j. The latter, which is employed in this work, consists of fitting an
AR model to time-history data from the undamaged and damaged
structural configurations and hence use them as classifier among
the considered damage scenarios. The proposed damage sensitive
feature is selected to overcome the limitations of other more com-
mon procedure based, for example, on the assessment of changes
in the frequency response functions of the specimens [10].

The choice of the appropriate AR model order is a primary issue.
A higher order model can better fit the data but can not be gener-
alized to other data sets. Conversely, a lower model order may not
properly represent the system physical dynamics [16].

Several mathematical formulation can be employed to select
the AR model order. Some of them require an a priori estimate of
the model parameters. Akaike’s Information Criterion (AIC),
Akaike’s Final Prediction Error (FPE), Partial Autocorrelation Func-
tion (PAF) and Root Mean Square (RMS) have attracted much
attention in the SHM literature. Other techniques do not require
an a priori estimate of the model parameters. Such approaches
are typically based on the Singular Value Decomposition (SVD) of
the data covariance matrix [16].

3.1. AR model order estimation

The evaluation of the proper AR model order is performed using
the time histories of the undamaged configurations of the three
composite plates.

Firstly, the 20 acquired time histories of each configuration are
averaged and then normalized such that

x̂ ¼ x� lx

rx
ð3Þ

where x̂ is the normalized signal and lx and rx are the mean and
standard deviation of x, respectively.

The results of the AR model order selection using the mentioned
techniques for C1 plate in its undamaged configuration are shown
in Fig. 3. From these plots it can be observed that while for the FPE,
Please cite this article in press as: Nardi D et al. Detection of low-velocity imp
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RMSE and SVD functions a convergence value can be estimated
around p ¼ 45 (see Fig. 3b, d and e, respectively), AIC function does
not converge even for p ¼ 70 (see Fig. 3a). Also with the PAF tech-
nique the coefficients do not lie within the 95% confidence interval
(see Fig. 3c). However, due to the impossibility to state a unique
order for all of the estimation criterion, the results suggest that
an adequate model order to represent the undamaged configura-
tion of plate C1 is p ¼ 45.

Same results are obtained when the procedure is performed on
the time histories of the undamaged configurations C2 and C3.

3.2. AR parameters as damage sensitive feature

All the collected time histories of the undamaged and damaged
configurations of the three composite plates are normalized
according to Eq. (3).

In order to consider the influence of the AR model order on the
proposed damage detection procedure, four AR models, namely AR
(5), AR(15), AR(25), and AR(45), are considered.

Fig. 4a shows the values of the AR(45) model parameters for the
considered six configurations using the least square technique.

It is apparent from Fig. 4 that the value of the AR parameters
cannot be directly employed for classification purposes. In fact,
even if some differences between the patterns can be identified,
it remains difficult to discriminate the configurations easily and
also to assess which AR parameters are the most sensitive ones.

In addition to the previous remark, the absolute differences
between the ith AR(45) parameters estimated for the undamaged
and the damaged configuration of the C1 specimen are shown in
Fig. 5. It can be seen that no damage-trend can be properly
identified.

Similar results are obtained for C2 and C3 specimens.
To move to an effective damage pattern recognition procedure,

it is then necessary to carry out statistical modeling for efficient
feature classification. Such task is performed by means of the Lin-
ear Discriminant Analysis (LDA).
4. Pattern recognition procedure

Any pattern recognition procedure involves the classification of
objects or patterns. The recognition issues refer the identification
and the classification of the individual characters and to label the
features according to category, e.g. regular or irregular [14].

The first step of a pattern recognition network design is to study
the distributions of samples belonging to the different configura-
tions. This phase is generally defined as learning or training and
the used samples as training set. The learning phase include also
the analyses of effective features, i.e. the feature extraction, which
is generally defined as the process of mapping the original samples
in a more effective feature subspace [15].

The Linear Discriminant Analysis (LDA) approach consists in
finding a linear transformation to project the samples of each class
(or configuration), defined in terms of AR parameters, into a new
sub-space where the dispersion of data belonging to the same class
is the smallest possible, ensuring at the same time the maximum
dispersion among data of different classes. LDA originates from
the Karhurnen–Loeve Expansion (KLE), also known as Proper
Orthogonal Decomposition (POD).

We can define three different scatter matrices [9]: the class-
scatter matrix Sc, the within-class scatter matrix Sw, and the
between-class scatter matrix Sb.

The class-scatter matrix Sc expresses the scattering of the sam-
ples belonging to the same class (configuration). The within-class
scatter matrix Sw is the p-class probability weighted sum of previ-
ously defined class scatter matrix and the between-class scatter
act-induced delaminations in composite laminates using Auto-Regressive
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Fig. 3. AR model order estimation for C1 undamaged: AIC (a), FPE (b), PAF (c), RMSE (d) and SVD (e) criteria.

Fig. 4. AR parameters distribution over the considered configurations. Model order
value p ¼ 45.

Fig. 5. Absolute differences between the undamaged UU
j and damaged UD

j param-
eters of the AR(45) models of plate C1.
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matrix Sbexpresses the scattering of mean vectors of classes with
respect to the mean vector of the mean vectors [10]. From the pro-
duct between the inverse matrix of Sw and the matrix Sb it is pos-
sible to obtain a m �m matrix (where m is the number of the
adopted AR parameters) named V representing the ratio of the
scattering between different classes and the scattering within the
same class. An effective classification procedure is achieved if the
scattering of samples collected between different classes is large
and, simultaneously, such scattering is small within every class.

The variables which maximize the discriminant capability of
the classifier are the eigenvalues/eigenvectors of the matrix V [15].

The eigenvector matrix ensures a projection of the starting state
variables space (the AR parameters of each class) in a sub-space in
which separability among classes is the largest possible. Moreover,
since every eigenvalue (with the corresponding eigenvector) is an
Please cite this article in press as: Nardi D et al. Detection of low-velocity imp
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index of the energy content of the whole process which takes into
account all the six configurations, a number of eigenvectors q cor-
responding to a selected energy level can be selected. The space of
reduced variables is then obtained from the eigenvectors matrix
selecting the rows and the columns of the first q eigenvectors.
For example, it can be observed from Fig. 6 (which refers to the
case of AR model with p ¼ 45) that if the first 3 eigenvalues are
considered, the energy content of the process is equal to 98.98%
of the energy of the whole process.

5. Classification operation

Classification operations can be summarized in three main
steps: (i) implementation of a reference dataset in the sub-space,
taking the mean matrices of the AR parameters obtained from
the first block of ten acquired time histories of each configuration;
act-induced delaminations in composite laminates using Auto-Regressive
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Fig. 6. Plot of the normalized cumulative energy content of the eigenvalues in
increasing order.

Table 2
Results of the identification of the specimen in its (U) undamaged and (D) damaged
configuration.

Correct identification (%)

AR(P) 5 15 25 45

C1U 80 100 100 100
C1D 100 80 100 100
C2U 100 80 100 70
C2D 80 100 100 100
C3U 100 100 100 100
C3D 100 100 100 100

Fig. 7. Reduced dataset in the reduced state space:
C1UðasteriskÞ;C1DðcrossÞ;C2UðsquareÞ;C2DðcircleÞ;C3UðdiamondÞ;C3DðtriangleÞ. AR
model order p ¼ 25.
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(ii) definition of a comparison dataset formed by the AR parame-
ters obtained from the second block of ten time history of each
configuration and mapped to the eigenvector sub-space and which
is meant to be used as a case study; (iii) estimation of the normal-
ized Euclidean distance between the comparison database and the
reference database, namely:

Dk ¼ jjdkjj
maxðjjdkjjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP
i ðai;k � giÞ2

q

maxðjjdkjjÞ ð4Þ
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where a is the unknown reduced configuration vector, g is the vec-
tor of pattern, and d is the distance vector related to the kth vector
of the pattern.

According to the minimum Euclidean distance expressed in (4),
the algorithm is meant to match all the distances with the corre-
sponding configuration.

An initialization phase characterized by the identification of
known damaged scenario is necessary to train the proposed
algorithm.

6. Results and conclusions

In order to test the effectiveness of the proposed algorithm an
increasing order for the AR model was considered, in particular
P ¼ ½5;15;25;45� is investigated. The number of eigenvectors is
set equal to 3 which represents an energy content of the whole
process between 99% and 100% for each considered AR model
order.

The classification results are expressed in terms of percentage
of correct identification, as shown in Table 2.

It can be noticed that when p ¼ 5 and p ¼ 15 100% of the correct
identification is obtained for four configurations only. For p ¼ 25
the correct identification is equal to 100% for all configurations,
while for p ¼ 45 100% of the correct identification is obtained for
five out of six configurations (see Table 2). The last result can be
addressed to the phenomenon called overfitting. In fact, the perfor-
mance of the considered AR model order selection criteria are opti-
mal only if the model of the selected order is the most accurate
model in the considered set of estimated models, and this is not
necessarily the true model order. [18]. Therefore, for the consid-
ered damage detection procedure, the optimal AR model order is
25. However, in all of the considered cases, the worst identification
percentage is not lower than 70%.

Fig. 7 shows the distribution of the AR model parameters in the
reduced three-dimension space for p ¼ 25: the groups of samples
of the same configuration occupy a clear location in the 3D reduced
eigenvectors space.

The proposed SHM routine showed high percentages of success
in the identification of delamination-induced damage in composite
plates using a reduced number of sensors.

The procedure, based on signal analysis of the vibration data, is
characterized by a learning phase of the proposed damage detec-
tion algorithm with a reference dataset of the acquired normalized
time histories and by a matching with a comparison dataset of
another group of acquired normalized time histories of the consid-
ered configurations.

Such approach, based on signal analysis of the acquired vibra-
tion data, appears to be particularly suitable for the development
of an automated health monitoring system of high performance
materials.

References

[1] Lin M, Chang F. The manufacture of composite structures with a built-in
network of piezoceramics. Compos Sci Technol 2002;62:919–39.

[2] Sjoblom P, Hartness J, Cordell T. On low-velocity impact testing of composite
materials. J Compos Mater 1988;22:30–52.

[3] Perez M, Gil L, Oller S. Impact damage identification in composite laminates
using vibration testing. Compos Struct 2014;108:267–76.

[4] Sohn H, Farrar C, Hunter N, Worden K. Structural health monitoring using
statistical pattern recognition techniques. Trans ASME 2001;123:706–11.

[5] Carden E, Fanning P. Vibration based condition monitoring:a review. Struct
Health Monit 2004;3:355–77.

[6] Sohn H, Farrar C. Damage diagnosis using time series analysis of vibration
signals. Smart Mater Struct 2001;10:446–51.

[7] Gaudenzi P. Smart structures. Physical behaviour, mathematical modeling and
applications. Wiley; 2009.

[8] Reddy J. On laminated composite plates with integrated sensors and actuators.
Eng Struct 1999;21:568–93.
act-induced delaminations in composite laminates using Auto-Regressive
.005

http://refhub.elsevier.com/S0263-8223(16)30025-3/h0005
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0005
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0010
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0010
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0015
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0015
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0020
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0020
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0025
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0025
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0030
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0030
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0035
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0035
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0040
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0040
http://dx.doi.org/10.1016/j.compstruct.2016.02.005


6 D. Nardi et al. / Composite Structures xxx (2016) xxx–xxx
[9] Facchini G, Bernardini L, Atek S, Gaudenzi P. Use of the wavelet packet
transform for pattern recognition in a structural health monitoring application.
J Intell Mater Syst Struct 2015;26:1513–29.

[10] Gaudenzi P, Nardi D, Chiappetta I, Atek S, Lampani L, Pasquali M, Sarasini F,
Tirilló J, Valente T. Sparse sensing detection of impact-induced delaminations
in composite laminates. Compos Struct 2015;133:1209–19.

[11] Crawley E, De Luis J. Use of the piezoelectric actuators as elements of
intelligent structures. AIAA J 1987;25:1373–85.

[12] Timoshenko S, Woinowsky-Krieger S. Theory of plates and shells. McGraw-
Hill; 1987.

[13] Box GE, Jenkins GM, Reinsel GC. Time series analysis: forecasting and
control. Prentice-Hall; 1994.
Please cite this article in press as: Nardi D et al. Detection of low-velocity imp
models. Compos Struct (2016), http://dx.doi.org/10.1016/j.compstruct.2016.02
[14] Jain AK, Dubes RC. Algorithms for clustering data. Prentice-Hall; 1988.
[15] Fukunaga K. Introduction to statistical pattern recognition. Academic Press

Professional; 1990.
[16] Figueiredo E, Figueiras J, Park G, Farrar C. Influence of the autoregressive model

order on damage detection. Comput-Aided Civil Infrastruct Eng
2011;26:225–38.

[17] Marple S. Digital spectral analysis with applications. Prentice-Hall; 1987.
[18] De Waele S, Broersen PMT. Order selection for vector autoregressive models.

IEEE Trans Signal Process 2003;51(427):433.
act-induced delaminations in composite laminates using Auto-Regressive
.005

http://refhub.elsevier.com/S0263-8223(16)30025-3/h0045
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0045
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0045
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0050
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0050
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0050
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0055
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0055
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0060
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0060
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0065
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0065
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0070
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0075
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0075
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0080
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0080
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0080
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0085
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0090
http://refhub.elsevier.com/S0263-8223(16)30025-3/h0090
http://dx.doi.org/10.1016/j.compstruct.2016.02.005

	Detection of low-velocity impact-induced delaminations in composite laminates using Auto-Regressive models
	1 Introduction
	2 Piezo devices placement and data acquisition
	3 Data fitting via Auto-Regressive model
	3.1 AR model order estimation
	3.2 AR parameters as damage sensitive feature

	4 Pattern recognition procedure
	5 Classification operation
	6 Results and conclusions
	References


