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Abstract

Automatically detecting events in a crowded scene is a challenging task in
computer vision. A number of offline approaches have been proposed for solv-
ing the problem of crowd behavior detection, however the offline assumption
limits their application in real video surveillance systems. In this paper,
we propose an online and real-time method for detecting events in video
sequences. The proposed approach is based on the combination of visual
feature extraction and image segmentation and it works without the need of
a training stage. A quantitative experimental evaluation carried out on pub-
licly available video sequences, containing data from various crowd scenarios
and different types of events, demonstrates the effectiveness of the approach.

Keywords: event detection, crowd analysis, image segmentation, intelligent
surveillance

1. Introduction

Event detection in the field of automatic video surveillance has gained a
growing interest [1]. The huge amount of data generated by existing surveil-
lance systems requires the development of more intelligent systems with the
final goal of avoiding information overload for the users [2]. In particular,
in the context of a crowd image analysis problem, it is desirable to develop
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online algorithms that reliably detect abnormal events in real-time. For ex-
ample, the automatic analysis of crowded scenes can be used to avoid crowd
related disasters and ensure public safety [3].

An anomaly can be defined as: “something that deviates from what is
standard, normal, or expected”1. It means that abnormal events can be
identified as irregular events with respect to usual normal ones. Thus, the
abnormal detection becomes the identification of abnormal events given some
sample normal events. Zhan et al. in [4] point out that conventional com-
puter vision can be ineffective when dealing with the analysis of very crowded
video sequences. Indeed, in a high-density situation the presence of severe oc-
clusions consistently limits the performance of traditional methods for visual
tracking [3]. Additional factors that can limit the effectiveness of existing
approaches aiming at detecting abnormal events are:

� Off-line computation;

� Need of a training phase.

The off-line assumption can limit the application of the anomaly detection
method in practice [5]. For instance, it is desirable to detect panic situations
as soon as possible in order to avoid damage to people. Methods that relies
on a training phase are limited by the possible lack of well-suited training
data. Indeed, since it is not easy to find data about real emergency situations
in crowded scenes, the resulting classifier could be suitable only for dealing
with particular video sequences.

In this paper, we propose an online, real-time method for automatic
anomaly detection in crowded scenes, that does not need any training stage.
In particular, the main contributions of the proposed approach are:

1. The definition of two different metrics, namely instant entropy and
temporal occupancy variation, to detect abnormal situations in crowded
scenes;

2. A segmentation algorithm for images containing crowds.

Furthermore, we provide:

� A novel video sequence annotated with ground truth data, containing
images of hundreds of runners at the start of a marathon, as an example
of crowd video with locally steady optical flow.

1Definition from the Oxford Dictionary.

2



� Ground truth data for two well-know video sequences containing crowd
scenes, namely PETS 2009 [6] and AGORASET [7].

� The source code and all the data used for the experimental evaluation
at the following web page http://www.dis.uniroma1.it/~pennisi/

eventdetection.html, thus allowing for reproducing the results de-
scribed in this paper and to compare other similar approaches.

The reminder of the paper is organized as follows. Related work is an-
alyzed in the next Section 2, while our method is presented in Section 3.
Section 4 describes the qualitative and quantitative experimental results,
providing also a comparison with other approaches in the literature. Con-
clusions are provided in Section 5.

2. Related Work

Techniques for crowd behavior analysis are usually grouped into two main
categories [3, 8]: object-based and holistic approaches. In the object-based
methods the analysis is carried out at an individual level. For example, it
can be of interest to detect if a single person is trying to enter a restricted
area or if an individual is moving against the dominant flow. On the other
hand, holistic techniques treats the crowd as a single entity, trying to extract
global information, such as the main flow of the crowd, instead of analyzing
single trajectories.

In this section, we provide a different classification based on the nature of
the methods used for detecting abnormal situations. In particular, existing
approaches are grouped into:

� Statistical analysis;

� Background subtraction;

� Segmentation;

� Classification.

Statistical analysis. Methods in this category are based on the collection of
particular features representing the flow of the crowd. For example, Zhang
et al. in [9] describe a social attribute-aware force model for abnormal crowd
pattern detection in video sequences. An unsupervised method is used to es-
timate the scene scale and a social disorder attribute and congestion attribute
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are introduced to describe the realistic social behaviors by using statistical
context feature. Through the semantic attribute-aware enhancement, they
obtain an improved model on the basis of social force. Even if the method
has good results, it is an off-line method.

Zhu and Saligrama in [1] propose a probabilistic framework that takes
into consideration local spatio-temporal anomalies in order to characterize
the observed scene by using optimal decision rules. If anomalies are local
optimal decision, they are local as well, even if the behavior exhibits global
spatial and temporal statistical dependencies. This helps to collapse the large
ambient data dimension space in order to detect local anomalies. Consistent
data-driven local empirical rules with provable performance can be derived
with limited training data. The empirical rules are based on scores functions
derived from local nearest neighbor distances. These rules aggregate statistics
across spatio-temporal locations and scales, and produce a single composite
score for video segments.

Chang et al. [10] describe a statistical framework able to recognize group-
level activity in many scenarios, using a soft grouping metric and track-based
motion analysis. The approach recognizes group interactions without making
hard decisions about the underlying group structure. In particular, a path-
based grouping scheme is used to understand if an individual belongs to
a group. The method is bottom up and thus could be limited where the
tracking is not reliable.

Mehran et al. [8] propose a method for localizing abnormal behaviors by
using a Social Force model. A grid of particles is placed over the image for
analyzing the space-time average of optical flow. The moving particles are
treated as individuals and the social forces are estimated by using the social
force model. The interaction forces are then mapped into the image plane to
obtain Force Flow for every pixel in every frame. Spatio-temporal volumes
of Force Flow are randomly selected for modeling the normal behavior of the
crowd. Then, the normal and abnormal behaviors are classified by using an
approach based on a bag of words. The regions of anomalies in the abnormal
frames are localized using interaction forces.

Kratz and Nishino [11] describe a statistical framework for modeling the
motion pattern behavior of extremely crowded scenes in order to detect un-
usual events. The authors model the dense activity of the crowd using a
3D Gaussian distribution of spatio-temporal gradients, capturing the lo-
cal spatio-temporal motion patterns through a distribution-based Hidden
Markov Model. The results demonstrate that the used approach is a suit-
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able representation for analyzing crowded scenes, detecting unusual motion
patterns in pedestrian behavior including movement against the normal flow
of traffic.

Background Subtraction. Approaches that uses background subtraction are
commonly based on the creation of a Gaussian Mixture Model (GMM) to
extract foreground objects. For example, Fradi et al. in [12] propose a people
counting approach that harness the advantage of incorporating an uniform
motion model into GMM background subtraction to obtain high accurate
foreground segmentation. The counting is based on foreground measure-
ments, where a perspective normalization and a crowd measure-informed
corner density are introduced with foreground pixel counts into a single fea-
ture. The approach demonstrates the benefits of integrating GMM with
motion cue and normalizing the proposed feature as well. However, it is not
adaptive to illumination conditions.

Srivastava et al. in [13] describe a method for clowd flow estimation by
counting the number of persons passing through a designated region in a unit
time. The method accumulates the total number of foreground pixels over
a chosen time period that is directly proportional to the number of people
passing to the defined area through a scaling factor. This factor depends on
the local texture features that takes into account the level of occlusions.

Li et al. in [14] propose a foreground detection approach for crowd mo-
tion analysis called optical flow and background model (OFBM) that relies
on Lucas-Kanade optical flow and Gaussian background model methods to
eliminate the noise due to brightness changes and occlusions. This approach
overcomes the shortages of optical flow and background subtract, but it is
not computationally fast enough to be applied in real-time processing.

Segmentation. Methods in this category rely on the identification of the
crowd flow by using a grid particles placed in the scene in order to detect
the evolution of the people in the scene. Solmaz et al. in [15] propose a
framework to identify multiple crowd behaviors through stability analysis
for dynamical systems. A scene is overlaid by a grid of particles initializ-
ing a dynamical system defined by the optical flow. Time integration of the
dynamical system provides particle trajectories that represent the motion in
the scene; then, these trajectories are used to locate regions of interest in
the scene. Linear approximation of the dynamical system provides behavior
classification through the Jacobian matrix. The eigenvalues are only consid-
ered in the regions of interest, consistent with the linear approximation and
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the implicated behaviors. In such a way the method can identify five types of
behaviors. However, the method can be not useful when significant overlap
of motion patterns is present in the scene, or when there is lack of consistent
characteristic flow.

Ali and Shah in [16] propose a framework in which Lagrangian Particle
Dynamics is used for the segmentation of high density crowd flows and de-
tection of flow instabilities. The authors treat a flow field generated by a
moving crowd as an aperiodic dynamical system. Therefore, a grid of par-
ticles is overlaid on the flow field in order to monitor the evolution of the
particles. Then, a Finite Time Lyapunov Exponent (FTLE) field is used
to quantify the amount of particles and to reveal the Lagrangian Coherent
Structures (LCS) present in the underlying flow. The LCS divides flow into
regions respecting the dynamics of the scene. The changes in the number of
flow segments is considered as an instability.

Classification. This category includes approaches that exploit classifiers to
recognize the behavior of the observed scene. Greenewald and Hero in [17]
describe an approach able to learn the normative multi-frame pixel joint dis-
tribution and detect deviations from it using a likelihood based approach.
The authors use a mean and covariance approach and consider methods of
learning the spatio-temporal covariance in the low-sample regime. The ap-
proach estimates the covariance using parameter reduction and sparse mod-
els. The first method considered is the representation of the covariance as
a sum of Kronecker products, which is found to be an accurate approxima-
tion in this setting. Then, they consider the sparse a multi-resolution model
and apply the Kronecker product methods to it for further parameter reduc-
tion, as well as introducing modifications for enhanced efficiency and greater
applicability to spatio-temporal covariance matrices.

Idrees et al. in [18] describe an approach to count number of individuals
in extremely dense crowds, on a scale not tackled before. Multiple sources
of information are used in order to compute an estimation of the number of
individuals present in an extremely dense crowd visible in a single image. Due
to the common vision problems (e.g. perspective, occlusions, clutters and few
pixel per persons), the proposed approach relies on multiple sources such as
low confidence head detections, repetition of texture elements (using SIFT),
and frequency-domain analysis to estimate counts, along with confidence
associated with observing individuals, in an image region. Then, a global
consistency constraint on count using Markov Random Field is employed.
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Figure 1: Block diagram of FSCB method.

Moreover, the approach scales well to different densities producing constant
error rates across images with diverse count.

In this work, we propose a statistical analysis approach that combines
feature detection and image segmentation in order to detect abnormal be-
haviors in the scene. The proposed method is online and runs in real-time. In
particular, two metrics, namely entropy and temporal occupation variation,
are taken into account for detecting abnormal crowd behaviors, without the
need of a training phase.

3. Feature Tracking and Image Segmentation for Behavior Under-
standing

In this section, the description of our crowd behavior detection method,
called FSCB, is provided. FSCB is made of three steps: 1) Feature detection
and temporal filtering; 2) image Segmentation and blob extraction; 3)Crowd
Behavior detection. The block diagram of FSCB method is shown in Fig. 1
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Figure 2: Features in consecutive frames are analyzed to generate a temporal mask M
representing the regions of the scene containing motion.

Figure 3: Generation of the probability map: a) The value 1 is assigned for each tracked
feature point, while the value 0.5 is assigned to its 8-connected neighbors. b) Once all
the features have been considered, if there are adjacent points with value 1, then c) the
probabilities of all their neighbors are set to 1 too.

and the details of each step are given in the following.

3.1. Feature Detection and Temporal Filtering

The first step of FSCB aims at finding descriptive visual features of the
crowd flow in the observed scene. We assume that the following conditions
hold in the scene: 1) Brightness constancy, i.e., projection of the same point
looks the same in every frame; 2) Small motion, i.e., points do not move very
far; 3) Spatial coherence, i.e., points move like their neighbors. The above
conditions are usually satisfied in video sequences recorded at 25 frames per
second and containing crowded scenes. Given the above assumptions, we
decided to exploit the Kanade-Lucas-Tomasi (KLT) feature tracker [19] for
detecting and tracking local visual features, instead of using other feature de-
scriptors like Harris corners, SIFT or SURF. Indeed, KLT works very well in
situations where distance between images is small, it displays good immunity
to tuning parameters, and it has low computational needs [20].

The output of the KLT tracker is a set F of couples �f t−1
i , f t

i �, 0 ≤ i < n,
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of corresponding feature points in two consecutive frames captured at time
t−1 and t, respectively (see Fig. 2). Once F has been calculated, a temporal
filter is applied in order to create a binary temporal mask M , containing only
the moving points in the scene. To this end, two thresholds are adopted,
namely τ and γ, to filter out not moving points: τ is the length of an history
queue, while γ is the minimum velocity value (in pixel per second) to consider
a feature point as a moving one.

For each couple �f t−1
i , f t

i � ∈ F a vector V = {v1, ..., vz}, z ≤ τ , is main-
tained in memory, where vj, 1 ≤ j ≤ z, represents the velocity, recorded at
time t−z+j, of the feature point fi. In particular, the velocity v of a feature
point f at time t is calculated as:

v =

�
(f t−1(x)− f t(x))2 + (f t−1(y)− f t(y))2

frame rate in seconds
(1)

At the arrival of every new frame, a set of filtered features F∗ is obtained
by discarding from F the features having vz ≤ γ.

Then, a probability grid is used for weighting the motion points F∗. The
grid has the same size of the input images and it is divided into cells, one for
each pixel, and the cells are initialized with the value zero. For each moving
point, the 1 value is assigned to the corresponding cell, while the value 0.5 is
assigned to all its 8-connected neighbor cells in the grid (see Fig. 3a). After
having analyzed all the feature points belonging to F∗, the grid is further
modified in order to cluster adjacent moving points: If a cell of the grid with
value 1 has neighbors with value 1 as well (as in Fig. 3b), then all the cells
in their neighborhood are set to 1 also (see Fig. 3c).

Finally, the binary temporal mask M is generated by considering the
cells in the grid with value 1 as white points, and the remaining ones as
black points (Fig. 2). M provides a map of the regions in the image where
there are moving pixels. In all our experiments, we set τ and γ to 10 frames
and 2 pixels per second, respectively.

3.2. Image Segmentation and Blob Extraction

The RGB image segmentation is performed by using an approach similar
to the one described by Taylor and Cowley in [21]. Firstly, the current
RGB frame I in input is filtered by using the binary mask M , obtaining a
new image I∗. Then, the image I∗ is segmented according two steps: Edge
Segmentation and Delaunay Triangulation. The former is used for splitting
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Figure 4: The segmentation step is made of 3 steps: edge detection, Delaunay Triangula-
tion and HSV merging.

the image into local coherent regions, the latter for aggregating homogeneous
regions in a global fashion.

I∗ is filtered by applying a Gaussian blur filter with a 3 × 3 kernel size.
Then, it is converted to grayscale, obtaining an image G, and the Edge
Segmentation procedure begins with a Canny edge extraction, that leads to
the creation of an edge image containing the intensity edges in G (see Fig.
4). The two parameters min and max in the Canny algorithm have been set
to the values 0.03 and 2.0 respectively, in order to focus on short edges in G.

The contents of the edge image are then vectorized into connected line
segments and used as input for a Delaunay Triangulation procedure, which
computes a triangular tessellation of the image.

The Delaunay Triangulation of a point set P is characterized by the
empty circumdisk property: no point in P lies in the interior of any triangle’s
circumscribing disk.

Definition [22]. In the context of the finite point set P, a triangle is Delau-
nay if its vertices are in P and its open circumdisk is empty (i.e., it contains
no point in P). It is worth noting that any number of points in P can lie on
a Delaunay triangle’s circumcircle. An edge is Delaunay if its vertices are
in P and it has at least one empty open circumdisk. A Delaunay Triangula-
tion of P, denoted Del P, is a triangulation of P in which every triangle is
Delaunay.

Given the connected line segments generated as in [23], the function De-
launay from the CGAL2 library is used to carry out the triangulation. The
nodes of the planar triangular graph obtained from the Delaunay Triangula-
tion represent the set of triangles and the edges indicate adjacency relations

2https://www.cgal.org
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between them, i.e., there is an edge between two nearby triangles.
The triangular graph is segmented using a merging procedure that itera-

tively finds and merges the two regions with the lowest normalized boundary
cost, by considering a predefined association thresholds ω (in our experi-
ments, we set ω to 0.9). In particular, each one of the triangles in the graph
is considered in turn, calculating the average HSV color of all the pixels that
lie within its circumcircle. The ω threshold is used for measuring the triangle
color similarity: If a pair of triangles have a similar normalized HSV value,
then they are merged in a single triangle.

An example of the results produced by the image segmentation task is
shown in Fig. 4, with the segmentation process carried out on the entire im-
age (instead of focusing only on the moving regions) for better demonstrating
the segmentation results. It is worth noting that, in practice, the segmenta-
tion process is carried out only on a part of the current frame, denoted by
the temporal mask (see Fig. 1).

The extraction of the blobs is performed by applying again the KLT
feature tracker, this time on the image I∗, in order to find the moving blobs.
A set Fblob of couples of corresponding feature points is generated as before.
Then, the features are filtered by using Eq. 1, thus obtaining a new set of
filtered features F∗

blob. The set F∗
blob is re-projected onto the segmented image

in order to detect the set S of moving blobs. A blob is considered as a moving
one if its area contains at least a feature point f ∈ F∗

blob. In such a way, a
binary blob image is obtained (see Fig. 1).

3.3. Crowd Behavior Detection

The crowd behavior in the observed scene is detected by carrying out
a statistical analysis on the data collected over a temporal window w. As
shown in Fig. 5, given in input a set of binary blob images (Fig. 5a), a 3D-
Grid of size m×n×w (Fig. 5b) is used to generate a grayscale activity map
(Fig. 5c). The width m and the height n of the grid are the same of the input
image, while the depth w corresponds to the length of the temporal window.
Then, each voxel a in the 3D-Grid is set to value 1 if the corresponding pixel
p in the blob image is white. The depth of the voxel a is represented by a set
of values 1, equal to the number of the corresponding white pixels in the blob
images, over the time interval w. In such a way, the temporal persistence of
each point p in the scene is given by the depth of the corresponding voxel a
in the 3D-Grid.
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Figure 5: Activity Map Computation: a) A set of blob images is collected over a time
window w. b) A 3D-Grid of size m× n×w is used to record the time persistence of each
pixel. c) The activity map is obtained by clustering the data in the 3D-Grid.

Figure 6: An example of activity map computation. a) The current frame in input (video
sequence from [16]). b) Visual feature extraction with KLT. c) Temporal mask. d) Seg-
mented image. e) Moving blob image f) Activity map.

The gray values in the activity map (Fig. 5c) are strictly related to the
persistence of the pixel during the time window w, i.e., a value near 255 in
the activity map indicates a point with high activity. In our experiments,
the length w of the temporal window is set to the frame rate value of the
video sequence at hand.

Fig. 6 shows all the steps that are performed for obtaining the activity
map in a high density crowd scenario. It can be noted that only the part of
the image containing a real motion is taken into account.
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Figure 7: The two measures considered for crowd behavior detection: a) Image entropy.
b) Temporal occupancy variation.

Once the activity map is available, it is possible to analyze the trend of
two particular measures:

1. image entropy ;

2. temporal occupancy variation.

The image entropy serves for obtaining a measure of the uncertainty in
the image values by counting the average amount of information required to
encode the image values. The zero order entropy for an image I is defined
as:

Entropy (I) =
n�

i=1

pi log2 pi (2)

where n is the number of separate symbols, pi is the frequency of the i-th
pixel in the image, and the result is measured in bits per symbol (pixel value).

Then, by assuming that an infrequent event provides more information
than a frequent event [24], it is possible to monitor the instant variation
of an image I in order to detect sudden changes. A threshold ev is set
as a “sentinel”: If Entropy (I(t+ 1)) − Entropy (I(t)) > ev something of
anomalous is happening. An example of image entropy calculation on an
activity map A is shown in Fig. 7a.
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The temporal occupancy variation (TOV) takes into account the space
occupied by the detected moving blobs over time. Given a temporal threshold
ot, the TOV is given by: TOV = A(t + ot) − A(t). The value of TOV
represents the percentage of image space occupied during a time ot. If the
value of TOV increases, it means that the scene is changing. We assume
that in case of a great variation in the TOV value, an abnormal event is
happening. An example of TOV calculation is shown in Fig. 7b.

A discussion about the values for the thresholds ev and ot is provided in
the next section.

4. Experimental Evaluation

The experimental results reported in this section are related to the prob-
lem of detecting events of interest in crowded scenes. Multiple publicly avail-
able video sequences have been selected for quantitatively evaluating the pro-
posed approach and for comparing it with other recent state-of-the-art online
approaches.

4.1. Data Sets

Four different data sets have been selected for the experiments: UMN [25],
PETS 2009 [6], AGORASET [7], and Rome Marathon [26]. Each data set
contain one or multiple video sequences and the corresponding ground truth
data. Each frame in a video sequence is labeled with a value “normal” or
“abnormal”, with “abnormal” meaning that an event of interest is in progress.
Ground truth data was already available for the UMN data set, while for
the other three data sets we generated the corresponding annotation data,
that are available at the following web page http://www.dis.uniroma1.it/

~pennisi/eventdetection.html. A brief description of the selected data
sets is provided in the following.

UMN Data set. UMN data set has been collected by the University of Min-
nesota, USA, and it consists of eleven videos representing escape events. The
videos are captured in three different indoor and outdoor scenes, commonly
denoted as Lawn, Indoor, and Plaza. Each video starts with a crowd, of
about 20 people, that walks in different directions, then an abnormal event
causes people to run away. Fig. 8 shows a sample frame for each scene.
Ground truth data for UMN are provided by the authors of the data set.
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Figure 8: The University of Minnesota (UMN) data set. a) Lawn. b) Indoor. c) Plaza.

Figure 9: The Performance Evaluation of Tracking and Surveillance (PETS) 2009 data
set.

PETS 2009. The data set has been recorded for the workshop PETS 2009
at Whiteknights Campus, University of Reading, UK. PETS 2009 comprises
multi-sensor sequences containing crowd scene scenarios with increasing scene
complexity and it is composed by three data sets:

� S1: concerns person count and density estimation;

� S2: addresses people tracking;

� S3: involves flow analysis and event recognition.

In our experiments, we used the S3 data set (Fig. 9) and we manually
annotated the sequence creating ground truth data.

AGORASET. The AGORASET data set is composed of synthetic scenes
representing various crowd simulations. Each video is equipped by different
information: ground truth data, the position of the pedestrians, velocity
of the flow and a set of MATLAB tools. In AGORASET, seven typical
scenes are represented where some crowd behaviors appears. These scenes
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Figure 10: The AGORASET: a data set for crowd video analysis.

Figure 11: The Rome marathon data set.

correspond to an evolution of a human flow in different environments, e.g.,
an environment with obstacles, an evacuation through a door, etc. In our
experiments, we focus on the dispersion scenario (see Fig. 10), where a crowd
with about 100 people walks around in a close environment and then moves
suddenly to the limit of the environment. In our experiments, we manually
annotated the sequence creating ground truth data.

Rome Marathon. Since the scarcity of publicly available data set for crowd
behavior understanding is an actual problem for the computer vision com-
munity, we decided to provide two novel video sequences containing crowded
scenes. The data set has been recorded during the 2013 Rome Marathon and
it is available for download, together with ground truth data for each video,
at [26]. The Rome marathon data set is made of two video sequences repre-
senting two different situations: 1) the starting of the marathon and 2) the
cleaning of the street. As shown in Fig. 11, the scenes contains thousands of
people participating to the marathon.

4.2. Metrics

In order to obtain quantitative results for our FSCB algorithm, we mea-
sured the number of frames in the video sequence at hand that are detected
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as false positives (FP), true positives (TP), false negatives (FN), and true
negatives (TN) with respect to the ground truth data. True positive rate
(TPR) and False positive rate (FPR) can be computed with the following
formulas:

TPR = TP
TP+FN

, FPR = FP
FP+TN (3)

TPR and FPR can be used for generating a Receiver Operating Charac-
teristics (ROC) curve and for computing the relative Area Under Curvature
(AUC).

The area under the ROC is a convenient way of comparing different clas-
sification methods. A random classifier has an area of 0.5, while and ideal
one has an area of 1. The obtained quantitative results for FSCB on four
data sets are provided in the following.

4.3. Quantitative Results

In order to qualitatively evaluate the performance of our FSCB algorithm,
we tested the approach generating the ROC curve for each of the above
described data sets. All the used ground truth data are publicly available.

It is worth noting that there exist a large variety of offline crowd behavior
detection methods that are able to achieve an AUC value near 1 on the
considered sequences (e.g., a value of 0.99 is obtained in [27] on UMN).
However, such performance are obtained by analyzing the entire video, i.e.,
having the possibility of exploiting knowledge about events that will happen
in the future. This type of analysis is useful in order to obtain a model
for different crowd behaviors, but offline analysis can result ineffective for
practical use. In the following, we compare our FSCB method only with
online state-of-the-art methods.

For the UMN data set a double comparison has been carried out. In the
first set of experiment, in order to carry out a fair comparison with published
results, the entire data set is considered as a whole video sequence.

The ROC curve generated on the entire UMN sequence (11 videos treated
as a single one) is shown in Fig. 12. In particular, the value of ev has
been varied in the range 0.1 ≤ ev ≤ 0.2, while the value of ot in the range
30 ≤ ot ≤ 35.

Table 1 shows that FSCB achieves better results than the methods relying
on pure optical flow (results from [8]) and on a neural network (results from
[28]). For FSCB, some false positives are detected due to the anticipated
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Figure 12: The ROC curve for FSCB on the whole UMN data set. The results are obtained
by varying the thresholds τ and ot.

Table 1: Anomaly detection results on the whole UMN data set. Our approach is compared
with other published online methods.

Method Type Area under ROC curve (AUC)
Optical Flow [8] online 0.84

Neural Network [28] online 0.93
FSCB online 0.95

detection of the crowd event performed by our approach, with respect to the
ground truth data.

The second set of experiments on the UMN data set has been carried
out by considering the sequences as divided according to the three different
scenarios: Lawn, Indoor and Plaza. Our method has been compared with
other two recent online crowd behavior detection methods [29, 30]. Results
are reported in Table 2. FSCB performs slightly better than the other two
methods on all the three considered sequences.

Along with the well-known UMN data set, three additional video se-
quences, namely AGORASET, PETS 2009 and Rome Marathon, have been
considered for quantitatively evaluating our FSCB method. The results are
shown in Table 3. For all the three considered data sets, FSCB is able to
achive good results with an AUC value over 0.90.

FSCB method obtains good detection results on different video sequences,
without the need of using a classifier for detecting the crowd behavior in the
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Table 2: Anomaly detection results on single sequences of UMN data set. FSCB method
is compared with other published methods.

Method Type
Area under ROC curve (AUC)
Lawn Indoor Plaza

STCOG [29] online 0.9362 0.7759 0.9661
COV [30] online 0.9605 0.8628 0.9746
FSCB online 0.9641 0.8764 0.9750

Table 3: Anomaly detection results of FSCB method on PETS 2009, AGORASET, and
Rome Marathon data sets.

Data set
Area under ROC curve (AUC)

for FSCB method
PETS 2009 [6] 0.93

AGORASET [31] 0.94
Rome Marathon [26] 0.96

observed scene. Indeed, FSCB approach is completely online and it does not
need any training phase. Qualitative results and the ROC curves for all the
considered data sets are shown in Fig. 13.

4.4. Computational Speed

We tested the computational speed of FSCB method in terms of frames
per second (FPS). To the best of our knowledge, the computational load for
similar approaches in the literature has not been published. The tests have
been made by using a commercial notebook with an Intel Core i7 CPU 2.4
GHz 8 GB RAM and a single-threaded C++ implementation of the FSCB
algorithm.

From the obtained results it can be noted that, for 320 × 240, FSCB
runs in real-time. When the frame size increases the computational speed
for FSCB decreases.

5. Conclusions

In this paper, a real-time and online crowd behavior detection algorithm
for video sequences is described. The algorithm, called FSCB, is based on a
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Table 4: Computational speed for our algorithm on different data sets.

Data set Image size Frames per second (FPS)
UMN [25] 320 × 240 20

AGORASET [7] 640 × 480 16
PETS 2009 [6] 768 × 576 11

Rome Marathon [26] 1920 × 1080 5

pipeline made of the following stages: 1) stable features are tracked between
frames of the sequence; 2) a temporal mask is extracted; 3) moving blobs
are found using segmentation; 4) anomalous events are detected using two
measures: instant entropy and temporal occupancy variation.

Quantitative experiments have been conducted on different publicly avail-
able data sets: UMN [25], PETS 2009 [6], AGORASET [7]. For PETS 2009
and AGORASET, ground truth data have been produced and made avail-
able at the following web page http://www.dis.uniroma1.it/~pennisi/

eventdetection.html. Furthermore, a novel annotated data set, Rome
Marathon [26], containing crowded scenes from the start of a marathon,
has been created.

FSCB has been quantitatively compared with other state-of-the-art meth-
ods for online crowd event detection. The results of the comparison demon-
strate the effectiveness of the proposed approach, that works without the
need of a training stage and obtain real-time performance on 320 × 240
frames.
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Figure 13: FSCB event detection results. First column: frames without abnormal sit-
uations from the considered data sets. Second column: the frames where the abnormal
events start. Third column: ROC curves generated by FSCB.
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