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Encounters between walkers performing a random motion on an appropriate structure can describe a wide vari-
ety of natural phenomena ranging from pharmacokinetics to foraging. On homogeneous structures the asymptotic
encounter probability between two walkers is (qualitatively) independent of whether both walkers are moving or
one is kept fixed. On infinite comblike structures this is no longer the case and here we deepen the mechanisms
underlying the emergence of a finite probability that two random walkers will never meet, while one single random
walker is certain to visit any site. In particular, we introduce an analytical approach to address this problem and
even more general problems such as the case of two walkers with different diffusivity, particles walking on
a finite comb and on arbitrary bundled structures, possibly in the presence of loops. Our investigations are
both analytical and numerical and highlight that, in general, the outcome of a reaction involving two reactants
on a comblike architecture can strongly differ according to whether both reactants are moving (no matter their
relative diffusivities) or only one is moving and according to the density of shortcuts among the branches.
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I. INTRODUCTION

Random walks (RWs) constitute the basic model for
nondeterministic motion and their applications range from
biology to economics (e.g., see Refs. [1–6]). According to the
phenomenon that one aims to model, RWs can be embedded
on different structures (e.g., mimicking crystalline solids,
glasses, polymers, or social networks [7]), whose topology,
mathematically described by graphs [8], strongly affects the
diffusive behavior. In particular, natural structures, such as
macromolecules and disordered materials, often exhibit a
tree-like architecture (see e.g., Refs. [9–12]). A very versatile
and interesting model for such systems is given by combs (see
Fig. 1), which can be defined as discrete structures obtained
by joining to each point of a “base” graph a linear chain or,
more generally, an arbitrary “fiber” graph (the latter case is
often referred to as “branched structure”). The random walk
problem in simple combs, where both fibers and base are linear
chains, has been extensively investigated in the past few years
(see e.g., Refs. [5,13–20]).

In this work we focus on the encounter of two RWs
on comblike structures. Collisions between two random
walkers can be seen as the basic process underlying
diffusion-limited (or diffusion-controlled) reactions (see, e.g.,
Refs. [5,6,21,22]), where reactions occur on reactants en-
counter and the time scale for reaction is much shorter than the
characteristic time for the two walkers to meet. This problem
is by far nontrivial given the topological inhomogeneity
of comblike architectures. In fact, while on homogeneous
structures, such as Euclidean lattices, the asymptotic encounter
probability between two walkers is (qualitatively) independent
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of whether both walkers are moving or one is kept fixed, in
some inhomogeneous structures, such as combs [23,24], if
both agents move there is a finite probability that they will
never meet, while if one stays put and the other moves they
eventually meet with certainty [15]. This property is called
two-particle transience and it may yield to effects of practical
importance; for instance, chemical reactions are favored when
either of the reagents is immobilized.

In this paper we outline an effective framework for
the analytical investigation of the two-particle problem on
comblike structures. Within such a framework we aim to
deepen the mechanisms underlying the emergence of the
two-particle transience and to address more general problems
such as the case of two particles with different diffusivities
and particles moving on a finite comb and on arbitrary bundled
structures. The problem is further investigated via numerical
simulations to corroborate analytical findings and to highlight
the robustness of the two-particle transience as new links in
the underlying structure are progressively inserted.

In particular, we find that the two-particle transience is
preserved as long as both particles are moving (no matter
their relative diffusivities) and as long as the walkers spend
sufficiently long time on fibers (if the base is recurrent and a
fortiori if the base is transient). The two-particle transience is
preserved also when an extensive number (yet sublinear in the
volume) of bridges is inserted among the branches of a simple
comb.

The paper is organized as follows. In Sec. II we provide
an alternative proof of the two-particle transience on combs
and, within this framework, in Sec. III we address several
extensions and generalizations of the problem: In Sec. III A
we estimate the probability for the encounter to occur either
on the backbone or on a tooth, in Sec. III B we discuss the case
of walkers with different diffusivity, in Sec. III C we deal with
finite-size effects, and in Sec. III D we present related results in
bundled structures. Then, in Sec. IV, we numerically check the
robustness of the result by topologically perturbing the simple
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FIG. 1. Upper panel: Generic branched structure obtained by
attaching to each site of the arbitrary base B an arbitrary fiber F .
Middle panel: Generic comb obtained by attaching to each site of the
arbitrary base B a linear chain. Lower panel: Simple two-dimensional
comb obtained by taking as base a linear chain and attaching a linear
chain to each site of the base.

comb. The phenomenon is further analyzed in Sec. V from
a different perspective, while Sec. VI is left for conclusions
and discussions. Finally, Appendices A and B contain some
technical tools concerning the relations between the one- and
the two-particle problem.

II. TWO RANDOM WALKERS ON COMBS

In this section we consider the two-particle problem on two-
dimensional combs looking for intuitive arguments to show the
emergence of the two-particle transience. While this problem
has already been treated rigorously [15,23,24], our perspective
aims to focus on the key mechanisms underlying the two-
particle transience and to possibly extend the phenomenology
to more general structures and situations.

We recall that a two-dimensional comb can be obtained
by joining to each point of a linear chain (playing as the
“base”) two linear chains (playing as the “fiber”) as shown
in Fig. 1 (lower panel). Now, let us consider two walkers,
starting from an arbitrary initial position at time t = 0. Of
course, a necessary condition for meeting is being in the same
tooth. Therefore, a useful quantity to look at is the time when
both walkers first occur to be on the same tooth,1 namely when

1To fix ideas, in this calculation we are assuming that walkers
are starting from nodes belonging to different teeth. Recovering the

FIG. 2. Two particles (named A and B, respectively) on the comb
sharing the same tooth. In this picture, when walker A reaches the
tooth already occupied by walker B, the latter is at position Y along
the side chain, namely at that time �x = 0 and �y = Y .

a walker (say the one named A in Fig. 2) first enters the tooth
already occupied by the other walker (named B in Fig. 2).
In order to estimate this time, we can exploit the translation
invariance along the backbone and just focus on the distance
�x between the projections on the backbone of the positions of
the two walkers. In fact, we expect that the probability ψ(t) for
two walkers to be in the same tooth (that is, �x = 0) for the first
time at time t and the probability ψ0(t) that a single walker first
returns to the original tooth at time t display the same scaling.
One can see that the latter scales as ψ0(t) ∼ t−5/4 [8,25] in
such a way that

ψ(t) ∼ t−5/4. (1)

This result is explained further in Appendix B and successfully
checked via numerical simulations as shown in Fig. 3.

Given that the two walkers share the same tooth, we are
interested in their mutual distance �y along the common tooth.
Referring to Fig. 2, we aim to get the distribution h(Y ) where
Y is the distance between A and B at the time when A enters
the tooth already occupied by B, namely Y is equivalent to
the distance of B from the backbone. The coordinate Y can
be treated as a normal random variable with variance scaling
linearly with time. In fact, at the arbitrary time t , the position
of B along a generic tooth2 will be distributed as h(Y,t) ≈
e−(Y−Y0)2/(2t)/

√
2πt , where Y0 accounts for the initial position

of B and it can be set equal to zero without loss of generality
if we are interested in asymptotic times. In order to obtain the
probability distribution h(Y ) of the position Y of the walker B,

case where walkers start from the same tooth just implies subleading
corrections, as the probability that the walkers eventually share the
same tooth is always unitary whatever the initial configuration.

2We recall that we are exploiting the translation invariance along
the backbone. Also, the presence of the backbone only introduces
a probability 1/2 that at Y = 0 the walker does not change its
coordinate, namely there is a unitary waiting time [5,26].
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FIG. 3. In order to check the scaling in Eq. (1) it is convenient
to look at the complementary of the cumulative distribution, namely
at the quantity 1 − ∫ z

1 ψ(t)dt , which represents the probability that
two random walkers have not yet shared the same tooth after a
time z. This quantity is obtained via numerical simulations (bullets)
and successfully compared with the power law ∼ z−1/4 (solid line)
resulting from the estimate in Eq. (1). Numerical simulations are
performed on an “infinite” comb, where the walkers are initially set
on the backbone with relative distance of two sites (�x = 2). At each
time step (t = 1,2,3, . . . ) the two walkers change synchronously
their position toward a nearest site selected with equal probability.
The underlying “infinite” comb is mimicked by not imposing any
boundary conditions and by using a data type for the instantaneous
positions whose maximum cannot be reached in the considered time
interval. The latter is fixed by a cutoff in time corresponding to 106.
Thus, a simulation stops upon the walkers find themselves on the
same tooth at a certain time t < 106 or whenever the time cutoff is
reached. The results shown here have been averaged over 107 replicas.

when A and B first share the same tooth, we need to integrate
over ψ(t), namely

h(Y ) =
∫

ψ(t)h(Y,t) dt

∼
∫

t−5/4 1

t1/2
exp

(
− Y 2

2t

)
dt ∼ 1

Y 3/2
. (2)

Therefore, every time the two walkers begin to share the same
tooth, their relative distance �y along the tooth is a random
variable following the probability distribution h(Y ) ∼ Y−3/2.
Otherwise stated, the relative distance along y follows a long-
tail distribution h(Y ) ∼ Y−μ−1 with μ = 1/2, in such a way
that, on average, they are at an infinite distance. The last remark
already provides an intuitive argument for understanding the
origin of the two-particle transience.

Now, referring again to Fig. 2, as the walkers A and B
occur to be on the same tooth, the former can either move on
a different tooth without having the chance to encounter the
latter, or they can encounter before the walker A escapes from
the common tooth.

This problem can be recast into a single walker moving in
a semi-infinite chain in the presence of a target at a distance
Y , and we are interested in the probability for the walker to
visit the target before returning to the origin of the chain. This
case was addressed in [27] where the authors found that this
probability is given by 2 − 4

π
arctan(Y ). Exploiting this result

we can pose that, in the limit Y → ∞, the probability a(Y ) for

the walker A to encounter B before returning to the backbone
scales as

a(Y ) ∼ 1

Y
. (3)

Therefore, the encounter probability for the two walkers on
the comb is ultimately controlled by two quantities:

(i) the distribution h(Y ) for the relative distance Y as the
walkers are on the same tooth;

(ii) the encounter probability a(Y ) when the walkers are in
the same tooth.

The whole process can be seen as a Lévy flight [28–31] on
a linear chain in the presence of absorbing traps distributed
according to a(Y ). Each jump of the Lévy flight corresponds
to the two walkers sharing the same tooth.3 At each jump
the Lévy flight can either be absorbed or move on. If the
Lévy flight is eventually absorbed with probability 1, then
the particles surely meet. This model was studied in detail in
Ref. [32], where it is shown that the Lévy flight characterized
by a jump distribution h(ξ ) ∼ ξ−μ−1 in the presence of traps
with distribution scaling as a(ξ ) ∼ ξ−α has a finite probability
of never being absorbed when the displacement exponent μ

(in our case μ = 1/2) is lower than the absorption exponent α

(in our case α = 1). Since here this condition is fulfilled, we
recover the two-particle transience on combs, that is, the two
particles have a finite probability of never meeting, regardless
of their starting position.

III. FURTHER CHARACTERIZATIONS AND EXTENSIONS

In this section we exploit the framework introduced in the
previous section in order to get information on the spatial
distribution of encounters and to extend the emergence of
the two-particle transience on more general structures and
situations.

A. Spatial distribution of the encounters

In this subsection we investigate the spatial distribution
for the location of the encounters, trying to estimate the
probabilities Pbackbone(t) and Ptooth(t) that an encounter (if any)
between the two walkers occurs in the backbone or in a tooth,
respectively.

The position of a walker can be univocally determined
by specifying its projection on the backbone and its height
along the tooth. Let us denote with (X1,Y1) and with (X2,Y2)
such coordinates for particle 1 and for particle 2, respectively.
The evolution of the coordinates along x can be seen as a
continuous-time random walk on a one-dimensional lattice,
while the evolution of the coordinates along y can be seen as
normal diffusion [5,26]. As a consequence, the coordinates Y1

and Y2 can be treated as normal random variables with variance

3More precisely, we should consider also the waiting time ψ(t)
between two consecutive jumps. Indeed, the jump sizes and the
waiting times are coupled and the process is better described in terms
of a coupled continuous-time random walk (CCTRW). However, as
shown in Ref. [32], the absorption probability depends only on a(Y )
and h(Y ) and not on the distribution ψ(t). Therefore, the description
of the process in terms of Lévy flights is perfectly workable.
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scaling linearly with time. The relative distance �y = Y1 − Y2

and the position of the center of mass (c.m.) Yc.m. = (Y1 +
Y2)/2 along y are as well normal random variables, being a
difference and a sum, respectively, of Gaussian variables. More
precisely, we can state that Yc.m. has a Gaussian evolution:

P (Yc.m.,t) = N (Yc.m.(0),Dt), (4)

where D ∈ R+ is the diffusivity constant.4

Now, the encounter in the backbone is characterized by
Yc.m. = 0 and �y = �x = 0. According to Eq. (4) and to
the arguments discussed in Appendix A,5 these conditions
correspond to

P (Yc.m. = 0,t) ∼ t−1/2, (5)

P (�x = �y = 0,t) ∼ t−3/4, (6)

and they have to be satisfied at the same time. Since the potions
along x and y are asymptotically uncorrelated [5] and the
walkers move independently, we can write

Pbackbone(t) = P (�x = �y = 0,t) P (Yc.m. = 0,t)

∼ t−3/4 t−1/2 ∼ t−5/4. (7)

Let us now consider the probability that the encounter
occurs on a tooth. This can be evaluated as the asymptotic
behavior of the encounter probability minus the asymptotic
behavior of the probability of encountering in the backbone:

Ptooth(t) = P (�x = �y = 0,t)[1 − P (Yc.m. = 0,t)]

∼ t−3/4 − t−5/4 ∼ t−3/4. (8)

The results in Eq. (7) and in Eq. (8) are successfully checked
numerically, as shown in Fig. 4.

Remarkably, we have evidenced that encounters in the back-
bone are asymptotically negligible with respect to encounters
in teeth. Moreover, by integrating Pbackbone(t) and Ptooth(t) over
time, we get an estimate for the average number of encounters
occurring on the backbone and on the teeth, respectively; using
the expressions in Eqs. (7) and (8), one can see that in the
former case the average number of encounters is finite, while
in the latter it is infinite.

B. Walkers with different diffusivities

In this subsection we analyze the case of walkers with
different diffusivities. Being time and space discrete, this is to
say that particles A and B take a step only at times multiple
of two natural numbers nA and nB . Of course, when one of
the two particles is static (say, nA = ∞ and nB < ∞), we
recover the one-particle problem and the encounter occurs
with probability 1 [33], while when nA = nB we recover the

4Notice that here we are implicitly assuming that the two walkers
start in a configuration with Yc.m. = 0. This does not affect the
asymptotic behavior of P (Yc.m. = 0,t) given in Eq. (5).

5In Appendix A we show that the probability P (�x = �y = 0,t)
for the encounter between two walkers and the probability of return
to the origin for a single walker display the same scaling with time.
For the latter is scaling is known to be ∼ t−3/4 [8].

FIG. 4. Probability Pbackbone(t) that the two walkers encounter in a
site belonging to the backbone (upper panel) and probability Ptooth(t)
that the two walkers encounter in a site belonging to teeth (lower
panel). Results from numerical simulations (bullets) are successfully
compared with analytical estimates (solid line) according to Eqs. (7)
and (8), respectively. In the numerical simulations the walkers are
initially set on the backbone with relative distance �x = 2 and at each
time step (t = 1,2,3, . . . ) they change synchronously their position
toward a nearest site selected with equal probability. A simulation
stops as a time threshold 4 × 103 is reached and the size of the comb
is taken large enough that, for this temporal cutoff, the walkers do not
realize its finiteness. We repeat the simulation 107 times and for each
realization we keep track of the time step τ when walkers possibly
occur to encounter on the backbone (upper panel) or on a tooth
(lower panel). The final distributions are then obtained as histograms
over τ . Note that in a single realization, there may be more than
one encounters and therefore a single realization may return several
values for τ .

standard two-particle problem with the emergence of the two-
particle transience. One may therefore wonder whether the
transition between the two-particle recurrence and the two-
particle transience occurs at any finite value of the ratio nA/nB .

Referring to Fig. 2, the first quantity to look at is the
distribution ψ(t̃), where t̃ is the time when both walkers first
occur to be on the same tooth. Since the number of steps for
unit time is now rescaled by a finite constant n(nA,nB) which
depends on nA and nB , the distribution ψ(t̃) is simply rescaled
by the same factor leaving the asymptotic behavior unaffected:

ψ(t̃) ∼ (n t̃)−5/4 ∼ t̃−5/4. (9)

In the time interval t̃ , the position Y of B along the tooth is
distributed as h(Y,t̃) ≈ e−(Y−Y0)2/(4DB t̃)/

√
4πDBt̃ , where DB

is the diffusivity of B along the teeth. In order to obtain the
probability distribution h(Y ), when A and B share the same

052111-4



TWO-PARTICLE PROBLEM IN COMBLIKE STRUCTURES PHYSICAL REVIEW E 93, 052111 (2016)

tooth, we need to integrate over ψ(t̃), namely

h(Y ) =
∫

ψ(t̃)h(Y,t̃) dt̃

∼
∫

t̃−5/4 1√
4t̃DB

exp

(
− Y 2

4t̃DB

)
dt̃ ∼ 1

Y 3/2
,

(10)

in analogy with Eq. (2).
Moreover, the encounter probability for the walker A to

encounter the target B before leaving the tooth scales as [27]:

a(Y ) ∼
√

DB

DA

1

arctan
(

DB

DA

) 1

Y
∼ 1

Y
, (11)

in analogy with Eq. (3), independently of the values of the two
diffusivities (provided that they are both finite and non-null).

We conclude that the transition between two-particle tran-
sience and two-particle recurrence (that is, when the walkers
surely meet) is “trivial” as it occurs at n = 0 (or n = ∞). This
result is deepened in the Appendix B.

C. Two random walkers on a finite comb

In this section we translate the framework discussed
in Sec. II to the case of finite-sized combs. In fact, the
(possible) encounter process can again be split in two phases:
“approaching” (which ends upon the two walkers share the
same tooth) and “tackling” (which ends upon the two walkers
either meet on the common tooth or cease to share the same
tooth). However, dealing with finite sizes, it will be more
convenient to focus on the average of the observables rather
than on their distribution.

Before proceeding, it is worth stressing that, by definition,
the two-particle transience is a property emerging in the
thermodynamic limit, yet real structures are necessarily finite
and it is therefore important to see whether finite-dimensional
structures also keep any track of such a property. In particular,
the case of finite combs was studied in Ref. [14], and it
was shown that, in finite combs, the encounter between two
particles is “slow,” namely the characteristic time for two
random walkers to first meet is qualitatively larger than the
characteristic time for one single particle to first reach a fixed
target. More precisely, if one walker stays fixed in a given
site of the backbone of a two-dimensional comb and the
other one moves throughout the comb starting from the same
site, the mean encounter time scales with L2. On the other
hand, when both walkers are moving, starting from the same
position in the backbone, the average encounter time increases
more than quadratically, that is, f (L)

L2 → ∞ [but f (L)
L3 → 0].

The latter result was found numerically [14], while here we
want to recover this time dilation analytically, exploiting the
framework introduced in Sec. II.

First, we consider the average time for the walkers to be in
the same tooth when they start from the same position on the
backbone. The motion along the backbone is a continuous-time
random walk on a finite chain with mean waiting time ∼ L [5],
which is the mean time spent wondering along a tooth. The
mean time for the walkers to occupy the same position on a
finite chain is ∼ L [21], then, considering the effect of the
waiting times, the average time for sharing the same tooth is
τ1 ∼ L2. Now, even if walkers occur to be on the same tooth,

there is no certainty for the meeting, because a walker can
leave the tooth before encountering the other walker. If they
do not encounter and one of the two walkers leaves the tooth,
then it will need another mean time τ1 to share the same tooth,
and so on.

During the approaching regime the diffusion along the
teeth is, in first approximation, normal [5], in such a way
that the standard deviation of the position Y along the teeth
scales as

√
〈Y 2〉 ∼ √

t , and then, after time τ1 ∼ L2, we expect√
〈Y 2〉 ∼ L. Being the standard deviation of the same order

of the tooth size, we can consider that, when the walker A
enters the tooth already occupied by B (referring again to
Fig. 2), the probability distribution of Y is uniform along
the tooth. The encounter probability a(Y ) before A leaves
the tooth, neglecting finite-size effects,6 is a(Y ) ∼ 1/Y (see
Sec. II). Therefore, the probability P that two walkers, sharing
the same tooth, meet before one of the two leaves the tooth
can be estimated as the average of a(Y ) over all positions Y :

P(L) ∼
∫ L

1

1

L

1

Y
dY ∼ log(L)

L
. (12)

This quantity is decreasing with L and, consistently, if the
teeth are very long, one of the two walkers can be so far along
the tooth that they are unlikely to meet each other (as we
have seen for the infinite case). The inverse of the quantity in
Eq. (12) can be taken as an estimate for the average number of
times that the walkers are found in the same tooth “trying” to
meet before they actually succeed in meeting. Summarising,
the mean encounter time τ is due to the mean time (∼ L2) for
sharing the same tooth multiplied by the mean number of times
P−1 [∼ L/ log(L)] needed for the encounter to effectively
occur, namely, τ scales as:

τ ∼ L3

log(L)
. (13)

This analytical result is in a very good agreement with
numerical simulations as shown in Fig. 5.

In Ref. [14] it was also shown that the mean encounter
time for two walkers starting with a distance L/2 in a
two-dimensional square comb is L3. Such a scaling can be
understood within our picture as well. In fact, the number of
steps required to cover a distance ∼ L/2 on a chain of length L

with the waiting time ∼ L scales as ∼ L3 [21]. Once they share
the same tooth, they wait a time ∼ L3/ log(L) to encounter, as
just explained before; but L3/ log(L) is negligible respect to
L3, which turns out to be the leading term.

Finally, for higher-dimensional combs, analogous argu-
ments suggest that the mean encounter time scales as

τ ∼ Ld+1

log(L)
, (14)

and this is successfully checked in Fig. 5.

6The encounter probability scales as a(Y ) ∼ 1/Y only for infinite
teeth. The finite size of the teeth yield to a larger encounter probability
since the position of B along the common tooth will be biased toward
the backbone due to the reflecting boundary conditions at the end
nodes.
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FIG. 5. Main plot: Mean encounter time τ for two random
walkers moving on a finite two-dimensional comb and started at the
same point on the backbone to first meet. The comb has a backbone
of size L and side chains of length L each, in such a way that, overall,
the comb counts L(L + 1) nodes. Data points (bullets) are obtained
via numerical simulations (averaged over 105 realizations) and are
fitted (solid line) according to the theoretical predictions (13). Upper
inset: In order to check the goodness of the theoretical prediction,
we plotted the ratio between the experimental value from simulations
and the expected value from the analytical estimate. This is done
for the analytical prediction given by (13) and given by a purely
power law (in this case, the best-fit exponent α is α = 2.754). In both
cases the ratio is approximately 1, with fluctuations which are less
broadened for the former. Lower inset: We plotted the ratio between
the experimental value from simulations and the expected value from
the analytical estimate (14) for d-dimensional combs (d = 2, d = 3,
d = 4, as shown by the legend). As expected, the ratio fluctuates
around 1.

D. Two random walkers on bundled structures

As explained in Sec. II, the two fundamental terms to
be compared for the two-particle transience are the meeting
probability when the particles are both in the same tooth (i.e.,
the exponent α) and the distances traveled by the two particles
along the teeth before meeting again in the same tooth (i.e.,
the exponent μ). It is natural to ask how these parameters vary
as the base and the fiber of the underlying comb are modified.

Let us consider a generic branched structure (see Fig. 1)
with base B and fiber F characterized by spectral dimension
d̃B and d̃F , respectively. Analogously to the case of the simple
comb, while exploring the structure, one of the two walkers
will eventually enter the fiber already occupied by the other
walker. This phenomenon can be described in terms of the
probability ψ(t) for the walkers to first share the same fiber
at time t and of the probability h(Y ) that the walkers display
a distance Y along the fiber. In general, we expect that, by
increasing the spectral dimension of the base, the time taken
by the two walkers to be in the same fiber gets more broadly
distributed. If we take as fibers linear chains, then we can
see immediately that a broader ψ(t) also implies a broader
distribution for the relative distance h(Y ) [see Eq. (10)].
Moreover, the probability of encounter along a tooth remains
a(Y ) ∼ 1/Y ; consequently, also in these cases the two-particle
transience is ensured (see Sec. II and the condition of the
paper [32]), as proven in Refs. [15,23].

However, natural structures often exhibit inhomogeneous
teeth. Therefore, more realistic models should include a
probability distribution χ (L) for the teeth length L. When
the average length of the teeth is finite, the comb can be
effectively thought of as a line; in fact, diffusion along the
backbone is normal [5] and the spectral dimension is d̃ = 1.
Conversely, when the average length diverges, diffusion along
the backbone becomes anomalous [5]. Therefore, we expect
that, depending on the distribution χ (L), the walkers meet with
certainty or not.

In particular, in wedge combs, namely structures where
the length of the teeth is given by a deterministic function
f (x) = xδ of the position x along the backbone, the two-
particle transience appears if and only if δ > 1 [34]. This is
consistent with our framework since when δ > 1, the average
length of the teeth is infinite.

IV. CHECKING THE ROBUSTNESS VIA TOPOLOGICAL
PERTURBATIONS

Comb graphs are two-particle transient, while two-
dimensional Euclidean lattices are two-particle recurrent.
Hence, by inserting bridges between the teeth of the comb, the
latter becomes more and more similar to a two-dimensional
lattice and will eventually lose the two-particle transience.
Here we want to investigate numerically such a transition: We
start from a simple comb of linear size L (i.e., the length of the
backbone and of the teeth is L) and we insert 2 Lα (α ∈ [0,2])
edges between couples of nodes belonging to adjacent teeth
and lying at the same height with respect to the backbone.
Otherwise stated, if we imagine the comb embedded in a
two-dimensional lattice, we are inserting 2Lα horizontal links
of unitary length. The bridges inserted are scattered randomly
among the 2L2 available slots.

Once the structure is generated, we perform Monte Carlo
simulations where the two walkers start from the same position
on the backbone and are made run until they meet or until the
number of time steps is larger than L; the latter condition
ensures that the walkers have not reached the borders of the
comb, and therefore that our results are not biased by finite-size
effects.

For a given realization of the underlying structure this
process is repeated 103 times in order to get a good statistics
over the possible paths of the two walkers; the encounter
probability, referred to as Penc(α,t), is then estimated as the
ratio between the number of encounters occurred by the
time t divided by the total number of simulated paths. A
further average over 102 different realizations of the underlying
structure is then accomplished and we get the mean encounter
probability P̄enc(α,t).

The mean encounter probability P̄enc(α,t) is then fitted with
a function y(t) = P ∞

enc(α) − g(t), with g(t) → 0 as t → ∞,
in such a way that the fit coefficient P ∞

enc(α), corresponding
to the asymptotic value of P̄enc(α,t), provides our estimate
for the probability of eventually meeting: P ∞

enc(α) equals 1 if
the underlying structure is two-particle recurrent, while it is
strictly smaller than 1 if the underlying structure is two-particle
transient.

More precisely, in our numerical experiments we addressed
five different cases, labeled by k: α = 0 (k = 1), α = 1
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(k = 2), α = 1.5 (k = 3), α = 1.8 (k = 4), and α = 2 (k =
5); notice that the case k = 1 roughly corresponds to a
simple comb, while the case k = 5 corresponds to the square
lattice.

For all the cases analyzed, but the case k = 5 (i.e., the
square lattice), a power law y(t) = P ∞

enc(α) − at−b provides a
successful description for the temporal evolution of P̄enc(α,t);
in fact, this function is the typical time saturation law for
this kind of processes [5]. For the two-dimensional Euclidean
lattice the situation differs and the asymptotic behavior of
the encounter probability is known to depend logarithmically
on time. Indeed, thanks to the homogeneity of the lattice,
the encounter probability between two random walkers is
asymptotically equivalent to the probability of return to the
origin for the single walker [15] which is ∼ 1 − c/ log(t) [35].
Therefore, in order to fit P̄enc(2,t), we need to add a logarithmic
term to the fitting curve: y1(t) = P ∞

enc(α) − at−b − c/ log(t) ≈
P ∞

enc(α) − c/ log(t) (note that the power-law term is asymptot-
ically negligible for t → ∞). The ratio P̄enc/y for all the cases
analyzed is reported in Figs. 6(a)–6(e).

Now, a few remarks are in order. In general, fits are
very good with a discrepancy smaller than 1%, at least for
relatively long times. This is checked for three different sizes,
namely L = 211, 213, 215. When α < 2 (i.e., k < 5), both
fitting functions y(t) and y1(t) provide very good fits with
1 − R2 < 10−3, and the related estimates for P ∞

enc(α) (namely
the constant term of the fitting function) are, within the error
∼ 5%, comparable, and hence the former is preferred since a
smaller number of parameters is involved. The reliability of
the power-law fit for α < 2 is further inspected by plotting
P ∞

enc(α) − P̄enc(α,t) in a log-log scale and checking that the

outline is linear with slope corresponding to the related fit
coefficient b [see Fig. 6(g)].

These analysis corroborate the reliability for our estimates
of P ∞

enc(α), which are summarized in Fig. 6(f). Again, several
sizes are compared and overall the estimates seem to be
robust. In particular, as long as α = 2, we get that P ∞

enc(α) = 1,
meaning that encounter is certain, while, when α < 2, we get
that P ∞

enc(α) < 1, meaning that there is a finite probability that
the two walkers will never meet.

We note that in the thermodynamic limit, the number
of additional links is infinite for α > 0, and then the two-
particle transience is expected to be preserved even under the
introduction of an infinite number of loops. On the other hand,
the density ρ = 2Lα/L2 of additional links is zero for α < 2,
hence suggesting that a sublinear (in the volume) number
of additional links is not sufficient to break the two-particle
transience.

V. MAPPING THE TWO-PARTICLE PROBLEM INTO A
ONE-PARTICLE PROBLEM

In general, the encounter of two walkers on a given structure
can be mapped into a one-particle problem, where the (first)
encounter probability is rewritten as the probability to (first)
reach a given set of sites. In this mapping we reduce the number
of particles involved, but we pay a price in terms of topological
complexity since the one-particle problem turns out to be
embedded in a structure which is typically tougher than the
original one. In any case, the mapping can still be convenient
in order to solve or to deepen the problem considered.

FIG. 6. Panels (a)–(e): Ratio between the numerical estimate of the encounter probability P̄enc and the value provided by the fitting function;
each panel corresponds to a different choice of k (i.e., a different choice of α). For k = 1,2,3,4, the fitting function is y(t) = P ∞

enc(α) − at−b

while for k = 5 it is y1(t) = P ∞
enc(α) − at−b − c/ log(t). In each panel we compare results for three different system size: L = 211 (bright blue),

L = 213 (blue), and L = 215 (black). The best-fit coefficient P ∞
enc(α) is used in panel (f) to show how the probability of never meeting varies as

the number of links inserted is progressively increased. For the cases analyzed, the encounter is certain only for α = 2. The best-fit coefficient
P ∞

enc(α) is also used in panel (g), where we plot, in a log-log scale, the difference P ∞
enc(α) − P̄enc(α,t) pertaining to the cases k = 1, . . . ,4.

The dashed black lines have slope −b. The linear outline versus time corroborates the expected power-law behavior for the related encounter
probabilities.
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FIG. 7. Upper panel: The two-particle problem on a two-
dimensional comb can be mapped into a one-particle comb embedded
in a structure as the one shown here. Every point of this structure is
univocally associated to a triplet (�x,�y, Yc.m.) and the encounter
between the two walkers on the comb corresponds to the single
particle being in any point of the straight line �x = �y = 0 denoted
in red. Lower panel: The plane �x = 0 (called the “plane of
encounters”) is shown alone to highlight the encounter line along
Yc.m..

Let us focus on two walkers moving in a two-dimensional
comb and notice that the temporal evolution of their relative
distances (i.e., �x and �y) and of their (non-normalized7)
centers of mass (i.e., Ỹc.m. ≡ Y1 + Y2 and X̃c.m. ≡ X1 + X2)
completely characterizes the system. Actually, by exploiting
the translational invariance along the backbone, the evolution
of the variables (�x,�y, Ỹc.m.) is completely independent of
the value of X̃c.m., which is therefore unnecessary in describing
the encounter between the walkers and can be neglected in
building the mapping. Now, the set of variables (�x,�y, Ỹc.m.)
effectively describes a single walker in a proper structure,
referred to as M, which is schematically shown in Fig. 7 (see
Appendix B for more details on the construction of M).

The starting point of the walker in M is the origin of axes
(where �x = �y = Ỹc.m. = 0) which corresponds to let the
two particles start at the same point in the backbone of the
comb. We also outline a set of points (the line along Yc.m. in
Fig. 7) referred to as the encounter line. In fact, the random
walker reaching any of these points in M corresponds to the

7Notice that, for mathematical convenience, in this mapping we
adopt as variables X̃c.m. ≡ (X1 + X2) and Ỹc.m. ≡ (Y1 + Y2). These
correspond to the instantaneous position of the center of mass of the
system, namely (Xc.m.,Yc.m.) ≡ [(X1 + X2)/2,(Y1 + Y2)/2], apart for
a factor 2.

encounter (i.e., zero relative distances: �x = �y = 0) of the
two random walkers in the original comb.

Now, in this mapping we can recover all the properties
discussed in Secs. II and III. For example, every time the walker
in M returns to the plane �x = 0 (namely, when the two
particles in the comb return in the same tooth) its coordinate
�y is taken from a probability distribution h(�y) ∼ �

−3/2
y

as in Eq. (10), where we negelcted the absolute value to
increase the readability. The probability a(�y) to visit the
encounter line before leaving the plane �x = 0 scales as
∼ 1/�y [21]. Therefore, recalling again that for a walker with
jump distribution h(ξ ) ∼ ξ−μ−1 in the presence of traps with
distribution scaling as a(ξ ) ∼ ξ−α , the overall absorption is
not certain as long as μ < α [32], we get that the walker on
M has a finite probability not to meet the encounter line. This
basically equals to state the two particle transience of the comb.

The situation where the particles have different diffusivities
can as well be addressed: The change of the diffusivities
generates a rotation of the line of the encounter in M which
still does not change the asymptotic behavior of a(�y) and of
h(�y).

Finally, the mapping introduced allows us to get the same
results in the finite-size problem, where the planes of Fig. 7
are finite (see Sec. III C) and in other bundled structures, for
example, d-dimensional combs, brushes, bundled fractals (see
Sec. III D). In fact, when the fiber of the bundled structures
are lines, the mapping is characterized by an infinite number
of planes (�y, Ỹc.m.) like in Fig. 7, even if differently linked
each other.

VI. CONCLUSIONS

In this work we developed an effective framework for
the analytical investigation of the two-particle problem on
comblike structures. In fact, in such inhomogeneous archi-
tectures the two-particle problem (i.e., the problem of finding
the probability that two random walks will eventually meet)
can differ qualitatively from the one-particle problem (i.e., the
problem of finding the probability that a random walk will
eventually reach a given site) and having tools for deepening
this phenomenon is of crucial importance not only from a
theoretical perspective but also from an experimental one (e.g.,
to unveil whether the reaction is favoured by either a fixed or
a mobile target).

After having outlined our analytical framework meant
for general branched structures, we explicitly studied some
specific examples. In particular, we recovered that in simple
two-dimensional combs, in the limit of infinite size, there
is a finite probability that two walkers will never meet,
no matter their initial positions (see Refs. [15,23,24] for a
rigorous proof). This feature is also referred to as “two-particle
transience.” Moreover, we derived the probability that the
encounter (if any) will occur in the backbone or in a teeth;
remarkably, we evidenced that, asymptotically, the average
number of encounters in the backbone is finite, while the
average number in teeth is infinite.

We also showed that the two-particle transience is robust
with respect to changes in the diffusitivity of the walkers
(provided that both walkers are effectively moving) and with
respect to changes in the topology of the base.
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Our framework can also account for finite structures and we
obtained a description for the slowing down of the two-particle
reaction in finite, two-dimensional combs, already evidenced
numerically in Ref. [14].

Finally, in order to further investigate the robustness of the
two-particle transience, we studied numerically the asymptotic
first-encounter probability for two random walkers set in
two-dimensional combs where short-cut among teeth are
progressively inserted. Interestingly, we found that, as long
as the number of links inserted scales sublinearly with the
volume, the two-particle transience is preserved.

This work can also be a starting point to explore many-
particle phenomena on branched structures, which, as shown
in Ref. [36], may deviate qualitatively from mean-field predic-
tions. For instance, in reactions such as the autocatalytic, the
coalescence or the annihilation, we expect that the evolution
of the species concentration will mirror the two-particle
transience with nontrivial outcomes.

We also believe that many physical applications can take
advantage of the two-particle transience. If, for example, one
needs to slow down a reaction between different elements
taking place on a Euclidean lattice, it could be useful to
use geometry-based strategies and properly cut edges (hence
moving toward a comblike architecture) rather than add edges
(as one could naively imagine).
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APPENDIX A: ENCOUNTER PROBABILITY

The encounter between two random walkers can display
deeply different properties according to whether the underly-
ing structure is either homogeneous or inhomogeneous, yet
there exist general results valid for every graph with finite
degree. In these graphs we show a deep relation between
the two-particle encounter probability and the one-particle
probability of return to the origin, that is, we will show that
they have the same asymptotic behavior. We start analyzing the
motion of the single walker assuming the Markov property.8

When a random walker starts from a given site v and then,
eventually, it is back to the origin v, it visits an arbitrary site,
say, w, in such a way that we can decompose the cycle into
the path from v to w and the path from w to v (see Fig. 8).

The probability Pvw(t) of reaching w, being started at v, is
equal to the probability Pwv(t) of reaching v starting from
w, except for a factor zw/zv accounting for the (possibly
different) coordination number z of the starting and final sites.
To calculate the probability of return to v, we have to sum over
all possible visitable sites w:

Pvv(2t) =
∑
w∈V

Pvw(t)Pwv(t) =
∑
w∈V

[Pvw(t)]2 zw

zv

, (A1)

8This assumption is crucial for the following derivation, while, of
course, it may not hold in realistic applications.

FIG. 8. The return to the origin v for a walker, passing through w.

where the first equality stems from the Chapman Kolmogorov
equation and V is the set of sites making up the underlying
graph.

Now, let us consider the case of two walkers and let us
denote with P (vv)(t) the probability that, being both started
from v, they will meet in any site w ∈ V . One can see that
P (vv)(t) is related to the probability Pvw(t) of the single particle
(see Fig. 9) as

P (vv)(t) =
∑
w∈V

Pvw(t)Pvw(t) =
∑
w∈V

[Pvw(t)]2. (A2)

When the node degrees are everywhere finite and bounded
with maximum zmax and minimum zmin, we get the following
lower and upper bound [see Eq. (A1)]:

zmin

zmax

∑
w

[Pvw(t)]2 � Pvv(2t) � zmax

zmin

∑
w

[Pvw(t)]2, (A3)

then, using Eq. (A2), we get

zmin

zmax
P (vv)(t) � Pvv(2t) � zmax

zmin
P (vv)(t). (A4)

From Eq. (A4) we deduce that P (vv)(t) and Pvv(2t) have the
same asymptotic trend, that is, in general, the probability
of encounter for two walkers has the same trend as the
probability of return to the origin. This is a very strong
relation between the one- and two-particle problems. In any
case, this result is not in contrast with the splitting between
one-particle recurrence and two-particle transience occurring
in highly inhomogeneous graphs (e.g., combs), as this feature
concerns non-Markovian quantities, such as first-passage and
first-encounter probabilities. An important question arises:
What happens in infinite degree graphs or in networks with
infinite average degree [e.g., with degree distribution P (k) ∼
k−γ , γ � 2]?

FIG. 9. Two walkers start form v and collide in w.
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APPENDIX B: SOME DETAILS ABOUT THE
CONSTRUCTION OF THE MAPPING

In order to map the two-particle problem into a one-particle
problem, one could study the evolution of the coordinates of
the two walkers X1, X2, Y1, Y2 in a four-dimensional space.
However, this does not really simplify the problem because
the resulting new underlying topology is by far not trivial.

A better approach focuses on the (non-normalized) center
of mass, corresponding to the coordinates X̃c.m., Ỹc.m., and on
the relative distances along x and y, referred to as �x and �y ,
respectively. Now, we can take advantage of the symmetry
along x displayed by the comb: As the motion of the particles
and their encounters are independent of Xc.m., this variable
can be neglected. The meeting corresponds to reaching the
line with �x = �y = 0.

In this three-dimensional space (with coordinate axes
Yc.m., �x,�y), we construct the graph M (sketched in Fig. 7)
by considering the whole set of possible motions on the comb:

(1) Both particles on the teeth: the possible motions are 4,
each with probability ¼: ↓ ↑, ↑ ↓, ↓ ↓, ↑ ↑. This is the case
studied by Polya [37], who showed that the random motion of
two walkers on a line can be mapped into the random walk of a
particle in a plane, where the previous four possible movements
are mapped into the four directions ↓, ↑, →, and ← on the
plane. Since in this situation the two walkers cannot modify
their relative distance along x, in the mapping we will consider
infinite parallel planes, each corresponding to a different value
of �x . We call each of these infinite planes a “page” (shown
as a dark shadow in Fig. 10).

(2) At least one of the two particles on the backbone: In
this case, it is possible to vary the relative distance along x

between the two particles so the walker in the mapping is
allowed to move from one plane to another with different �x .
If at least one of the two particles is on the backbone, we have
�y = ±Ỹc.m., which represents two planes that intersect each
other as well as those introduced in the previous point. We
refer to each of these planes as “bookbinding” (shown as a
bright shadow in Fig. 10).

As mentioned in Sec. V, in this mapping it is convenient
to use Ỹc.m. = Y1 + Y2, instead of Yc.m. = (Y1 + Y2)/2 since,
in the latter case, the equations for the bookbindings would
be �y = ±2Yc.m. (in fact, a particle on a tooth at distance
Y from the backbone and another particle on the backbone
display a distance �y = Y , but the center of mass is located
in Yc.m. = Y/2), and this would make the notation and the

FIG. 10. In this schematic representation of M, we distinguish
the “pages” (in dark color) and the “bookbindings” (in bright color).

structure itself a bit more complicated. On the other hand, if
we use Ỹc.m., then the equation is just �y = ±Ỹc.m..

1. Simplifying assumptions

The motion on M is rather complex as it is subject to a
number of constraints. However, since we are interested in the
long-time behavior, we can take advantage of the robustness
of the asymptotic properties with respect to local details and
neglect several of them (see e.g., Ref. [8]), hence significantly
simplifying the problem. In particular,

(1) If �x is even, then �y and Ỹc.m. are even; if �x is odd,
then �y and Ỹc.m. are odd. These constraints can be neglected
because they do not modify the topological structure of the
pages.

(2) When the walker is in a bookbinding, it can jump
to two sites belonging to the nearest page on one side and
to other two sites belonging to the nearest page on the
other side. Here, exploiting the fact that the local topological
details are irrelevant to determine the graph type (i.e., either
recurrent or transient), we will allow the random walk to
jump only to one (instead of two) site on each nearest page.
Indeed, it is possible to show that recurrence and transience
are left invariant by adding and cutting links satisfying the
quasi-isometry conditions.

(3) When both particles are on the backbone (�y =
Ỹc.m. = 0), the walker on the mapping may also go to the
two next-nearest-neighbor pages. We will not consider this
possibility for the same reason of the previous point.

(4) Some sites in M are actually endowed with waiting
times, which arise because, if both particles are moving in
the same direction on the backbone, then �y, Ỹc.m., �x remain
unchanged. We can ignore these waiting times because any
local bounded rescaling of the transition probabilities and
waiting probabilities associated to links leave the random walk
type unchanged.

2. The plane of the encounters

The starting point of the random walk defined in M is the
origin of axes (which corresponds to take the two particles at
the same starting point in the backbone of the comb) and the
meeting between the two particles corresponds to returning
to the line of encounters Yc.m. (in Fig. 7), where the relative
distances are zero.

We therefore focus only on the plane embedding this line
(see the lower panel of Fig. 7), which represents the case when
the two walkers on the comb are in the same tooth (since
�x = 0).

When the walker moves in this plane, and happens to be
at any point on the lines Yc.m. = ±�y , it means that it has
the possibility of getting lost in the other pages of the graph
and can come back after a time t̃ in another site of the lines
Yc.m. = ±�y . Therefore, when the walker is in site of the lines
Yc.m. = ±�y , it could jump to another site of these lines with
a waiting time t̃ .

The length of the jumps has a Gaussian distribution with
variance proportional to the waiting time t̃ , because if we look
at the structure of M (see Fig. 7), the walker that leaves the
plane of the returns, whatever path it follows, always moves
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in planes. If a walker diffuses in a plane, then its probability
distribution evolves as a two-dimensional normal distribution
with variance proportional to the time of the evolution.

When the walker goes on the line of jumps, it comes back
into the plane of encounters after a delay due to the time for
the two particles to share again the same tooth.

Let us now derive the probability distribution ψ(t̃) for the
walker in M to first return to the plane of encounters �x = 0.
We notice that, given the symmetry of the two “bookbindings,”
we can collapse them9 and just focus on the motion of a walker
on M where only one of the two “bookbindings” is retained,
this just implies subleading corrections. This simpler structure
is the Cartesian product between a line and a comb, in such a
way that the probability distribution ψ(t̃) to first return to the

9This procedure is similar to the collapse of the branches in a Bethe
lattice, when interested in the return to the root.

plane �x = 0 is completely determined by the properties of
the comb, on which the probability of return to the origin for
the first time scales as t̃−5/4 [8,25]. The asymptotic distribution
therefore reads as

ψ(t̃) ∼ t̃−5/4. (B1)

The details that we mentioned before in Appendix B 1 have
no effect on the asymptotic probability distribution of t̃ [8], so
we can safely neglect them since we are only interested in the
asymptotic properties. Obviously, the variable t̃ corresponds
to the variable t in Eq. (9).

As a first check, we simulated a random walk in M and
verified that its diffusion properties are consistent with the
two-particle transience exhibited by the original structure. In
particular, we checked that the single random walk in M
happens to be in the line Yc.m. an infinite number of times,
yet the probability of eventually reaching that line is strictly
smaller than 1.
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