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Abstract

The aim of this paper is to find a computationally e�cient and predictive model for the class
of systems that we call “pantographic structures”. The interest in these materials was increased
by the possibilities opened by the di↵usion of technology of 3D printing. They can be regarded,
once choosing a suitable length scale, as families of beams (also called fibres) interconnected each
other by pivots and undergoing large displacements and large deformations. There are, however,
relatively few “ready-to-use” results in the literature of non-linear beam theory. In this paper,
we consider a discrete spring model for extensible beams and propose a heuristic homogenisation
technique of the kind first used by Piola to formulate a continuum fully non-linear beam model.
The homogenised energy which we obtain has some peculiar and interesting features which we
start to describe by solving numerically some exemplary deformation problems. Furthermore, we
consider pantographic structures, find the corresponding homogenised second gradient deformation
energies and study some planar problems. Numerical solutions for these 2D problems are obtained
via minimisation of energy and are compared with some experimental measurements, in which
elongation phenomena cannot be neglected.
Keywords: Non-linear beam; Elastic surface theory; Second gradient models.

1 Introduction

In this paper we formulate a computationally e�cient and predictive model for the class of panto-
graphic structures presented in [1] where the experimental evidence is proven to be only in a partial
agreement with the predictions obtained with available theoretical models [2–7]. These pantographic
structures are constituted by two families of beams —which we sometimes call also fibres— intercon-
nected, when intersecting each other, by elastic pivots (see the self-explicative Fig. 1): i.e. pivots which
allow for relative rotations at the expense of some deformation energy. These fibres are forming an
angle of ⇡/2 in the reference configuration and the whole pantographic structure (and its constituting
beams) can undergo large displacements and large deformations. While it is possible to find already in
many technological artefacts (see e.g. [8, 9]) or biological tissues (see e.g. [10–15]) some fabrics whose
behaviour can be somehow assimilated to the one shown by pantographic micro-structures actually
the materials having a pantographic microstructure have been conceived (see [16, 17]) on the basis of
purely theoretical considerations aiming to prove the possibility of designing materials exhibiting some
specific exotic mechanical behaviour. More specifically, in the last mentioned papers the intent was
to prove that it is possible to imagine and design materials whose deformation energy depends exclu-
sively on the second gradient of displacement. Subsequently the practical interest in these materials
has been increased by the possibilities opened by the di↵usion of technology of 3D printing.

As a matter of facts, only when the beams constituting the considered pantographic structures can
be assumed to be inextensible, the theoretical models in [2–5] can be e↵ectively applied. On the other
hand, the experimental evidence undoubtedly indicates that the hypothesis of inextensibility cannot
be assumed to be valid when the specific pantographic structures considered in [1] are subjected to
an extensional bias test in the direction at ⇡/4 (in the reference configuration) with respect to both
fibres orientations. The models assuming the inextensibility of fibres are careful enough to describe
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Figure 1: Pantographic lattice topology.

qualitatively the shapes assumed by pantographic sheets undergoing the extensional bias test but
they fail in supplying accurate quantitative predictions: they only account for fibre bending energy
and for elastic energy stored in the interconnecting pivots while they are completely neglecting fibre
extensional energy. Therefore, the present paper is devoted to the formulation of a model in which such
last fibre deformation energy is carefully accounted for. At this point, for the sake of self-consistency of
the presentation, some considerations are needed concerning the di↵erent models which can and are, in
fact, introduced for pantographic structures. One could choose to model the considered pantographic
structures at a relatively small length scale. To be specific: a small length scale which is able to allow
for the precise description of the geometry of the elastic pivots, their mechanical properties and their
deformation. Such high resolution models could be obtained by means of a micro-model based on
Cauchy first gradient continuum theories: these last ones will imply the use of some related numerical
models involving finite elements schemes with several millions of degrees of freedom also for relatively
small specimens as those considered in the measurements presented in [1]. The heavy computational
burden of such models makes their use, at least in the mid term horizon and considered the state of the
art of contemporary computing technology, absolutely inappropriate. We, therefore, are motivated to
present a higher-gradient reduced-order model leading to a rather more e↵ective numerical modelling
whose predictive performances (as will be shown in a forthcoming paper in preparation: Giorgio I, et
al. Numerical identification procedure between a micro Cauchy model and a macro second gradient
model for planar pantographic structures) are however absolutely comparable to the aforementioned
more refined ones. This macro-model will be characterised by a length scale in which the elastic
pivots have negligible dimensions. However, a considerable amount of deformation energy is elastically
stored by each of them. This energy will actually be accounted for by means of the introduction of a
constitutive prescription of a suitable shear deformation elastic constant (see following Eq. (31)). The
other mechanical properties of pantographic lattices in planar motion will be accounted for by means
of two other constitutive parameters: one representing extensional sti↵ness of modelled fibres and the
other allowing for the consideration of their bending sti↵ness. We will show that such a simplified
constitutive modelling is possible also when considering large displacements and large deformations
of pantographic structures. The macro-model which we introduce in the present paper is used, by
means of standard FEM, to get e↵ective numerical simulations which are very predictive. Usually to
deal with two-dimensional second gradient continua in a numerical context, Argyris elements —which
have a high number of degrees of freedom per node— are employed because, having C1 continuity,
they can be used to properly approximate solutions in the Sobolev space H2 as required by this
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kind of problems. However, we did not use this kind of elements in order to perform simulation in a
more general FEA framework based on the micromorphic theory, as explained in Sect. 3.2, in view of
application to 3D continua of results obtained herein. One should, nevertheless, remark that higher
gradient continuum models do require novel integration schemes, more suitable to their intrinsic and
more complicated structure: there are indeed impressive results indicating that isogeometric methods
may further increase the numerical e↵ectiveness of the reduced models we present here, especially
when completely spatial models will be considered (see e.g. [18–25]). Indeed, the inherent higher
continuity of such a formulation can simplify the FE analysis, without loss of accuracy and without
resorting to the use of micromorphic schemes.

The problem of micro-macro model identification is one of the most formidable challenges in
modern mathematical physics. �-convergence methods applied e.g. in [26–29] or the more classical
strong convergence methods employed e.g. in [30] present remarkable technical di�culties and are not
able to supply, in a constructive way, the limit-continuum-homogenised macro-model corresponding
to a given discrete micro-model. In fact, the macro model must be conjectured via a suitable heuristic
argument (as those used in [7, 29, 31–33]) and only when both macro and micro models have been
formulated and their properties are carefully studied then an e↵ort to prove the convergence of a
family of micro-models, as parametrised with a suitable length scale, to the independently conjectured
macro model can be e↵ectively tried. Moreover, recent theoretical [30] and numerical [34] evidence
shows that also discrete mechanical systems in which the interaction law involves first and second
order Lagrangian neighbours may display typical second gradient e↵ects.

Already in [35] a heuristic micro-macro identification procedure (to our knowledge for the first
time) is introduced. By means of this procedure Piola manages to formulate (again for the first time)
the theory of generalised continua and also the continuum models which have been recently renamed
as Peridynamics (see [36]). Piola’s heuristic homogenisation method is based on the following steps:
i) the postulation of a micro-macro kinematical map, ii) the identification of micro and macro virtual
work functionals and iii) the consequent determination of macro-constitutive equations in terms of
the micro properties of considered mechanical systems by means of a suitable formal asymptotic
expansion. Piola uses, following the rigour standards of his time, a mathematical deduction process
in which micro-placement fields of material particles situated in the nodes of a referential lattice
are calculated by means of the values in such nodes of a suitably regular macro-placement field and
their gradients, by assuming that suitable Taylor expansions produce acceptable approximations. The
heuristic identification procedure presented here follows exactly the spirit of Piola’s work (see the
following formulas (4), (5) and (21)). It has also to be remarked that in his works Gabrio Piola also
considers separately one dimensional, two dimensional and three dimensional continua as continua
whose reference configuration is —respectively— a curve, a surface or a regular connected subset
having non vanishing volume embedded in the Euclidean three dimensional space. This subdivision of
the presented matter was later followed by Cosserat brothers [37, 38]: how to detect the influence on
their works exerted by Piola’s pioneering ones is a historical problem which deserves further in-depth
studies [39].

In the present paper, di↵erently from what done in [35] where the micro-macro identification is
obtained by identifying micro with macro virtual work functionals, we identify macro-deformation
energy, i.e. a macroscopic Lagrangian (line or surface) density of deformation energy, in terms of
constitutive parameters appearing in the postulated expressions of micro-deformation energies. Our
heuristic homogenisation procedure is applied first for a class of non-linear one-dimensional continua
(beams), focusing on modelling phenomena in which both extensional and bending deformations are
of relevance, and subsequently for the class of two-dimensional continua studied in [6]): in both cases
we limit our attention to planar motions. In fact, there are relatively few results in the literature of
non-linear beam theory: we recall here the very first classical results by Euler and Bernoulli [40,41] and
the researches stemming from von Kármán [42, 43] for moderately large rotations but small strains.
Moreover, very often in the literature, the simultaneous extension and bending deformation for non-
linear beams are not considered: however when considering two dimensional continua embedding
families of fibres (see e.g. the models presented in [2–5]) as a model of some specific micro-structured
mechanical systems (as fabrics or pantographic sheets see e.g. [1,8,44]) the assumption that the fibres
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cannot extend while bending is not phenomenologically well-grounded [1]. Moreover bending phe-
nomena appear to be coupled with extensional ones. Therefore, we are led to focus our attention on
some two dimensional continua in which the second gradient of in-plane displacement (involving so
called geodesic bending see also [6, 45]) appears in the expression of deformation energy. To be more
precise, the heuristic micro-macro identification which we present here is based on the introduction
of a discrete meso-model for nonlinear beams or pantographic planar structures: we consider a set
of material particles arranged on a one-dimensional or two-dimensional lattice suitably connected by
extensional springs. Moreover, at each node of the lattice (see subsequent Figs. 2 and 3) suitable
rotational springs are introduced which are deformed when the angle formed by two contiguous exten-
sional springs is changed. For the sake of simplicity, we limit our attention to pantographic structures
having orthogonal fibres in the reference configuration. For di↵erent fibre configurations, the symme-
try analysis performed in [46–48] may be useful for postulating 2D or 3D strain energy densities. The
discrete model which we consider here is not completely unknown in the literature, but it seems to
us that its potentialities in the e↵ective modelling of complex structures has not been fully exploited:
it generalises for the case of extensible beams those described e.g. in [49–56]. Indeed we intend to
model structures where extension and large displacements and deformations of constituting beams
are of relevance. The homogenised energy which we obtain for Hencky-type beams has some peculiar
features which we start to describe by solving numerically some exemplary deformation problems. In
particular, to approximate the mechanical actions exerted on the most deformed beams in extensional
bias test of pantographic structures (i.e. those beams at the boundary between blue and green regions
in Fig. 14) we consider a deformation problem for a non-linear Hencky type beam interconnected with
a continuos distribution of springs having non-constant elasticity coe�cient (see Fig. 6). The mod-
elling assumptions we introduce are based on a physically-reasonable discrete microstructure of the
considered class of beams and pantographic structures and do apply to the case of large deformations.
Actually, we generalise the treatment found in the literature as up to now these microstructures were
assumed to be constituted by rotational springs and exclusively by rigid bars, and were used only to get
discrete Lagrangian models being an approximation of continuum models in linearised regimes. The
discretisation schemes considered were possibly applied to design analog computers (see e.g. [57, 58])
or for obtaining finite di↵erences integration schemes (see e.g. [49–56]). To our knowledge only in the
paper [59] the case of large displacements and large deformation has been already approached.

Some numerical solutions have been obtained for a set of exemplary planar equilibrium problems
for pantographic structures by using standard FE packages of COMSOL Multiphysics R�. The results
of performed simulations are shown in Sect. 3 and some of them are compared with obtained exper-
imental measurements. The experimental setting is the same as the one described in [1], however,
the measurements presented here are based on the acquisition and elaboration of a larger set of data.
Actually (see the following Fig. 11) by using an ad hoc acquisition card and software it has been
possible to measure the actual position, for all extensional bias tests performed, of all physical nodes
(corresponding to elastic pivots) labelled by a black dot. The large set of numerical data gathered
has been perfectly described by the introduced second gradient 2D continuum model formulated in
this paper, which needs the specification of only four constitutive parameters. Indeed the best fit
of three elasticity coe�cients and a further parameter allows us, for instance, to describe in a uni-
tary and predictive way the six extension tests shown in Fig. 14. The model is numerically very
e�cient and it allows for careful predictions with simulations lasting (in all considered planar cases)
few minutes when using commercial (although suitably designed) workstations. In the conclusions, we
indicate a list of some mathematical problems which seem to be worth of consideration. The natural
development of the present work involves the study of spatial (three-dimensional) placements of one
dimensional or two dimensional continua or the introduction of three dimensional continua embedding
reinforcement fibres: of interest can be the study of pantographic 2D or 3D higher gradient continua
in which fibres are not orthogonal straight lines in the reference configuration. Also the introduc-
tion of functionally graded elastic coe�cients of introduced continua can lead to the description and
the prediction of interesting phenomena and potential applications. Among future developments, the
study of dynamic properties of pantographic structures may unveil very attractive and uncommon be-
haviours (see e.g. [60–62]). Moreover, the problem of formulating intermediate meso-models, involving
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Figure 2: Micro-model and Piola identification: the red curve is the plot of the placement �.

a class of Generalised Beam Theories, must necessarily be described with models which generalise the
description of deformation of beam sections involving e.g. warping, Poisson e↵ects, elastic necking or
large shear or twist deformation. These theories can definitively be studied via reduced order models
(see e.g. [63–70]) without resorting to the most detailed micro Cauchy first gradient models. Finally, a
larger set of experimental data including the deformation tests of the type considered in the numerical
simulations presented in Figs. 8, 9 and 10 is needed. We expect that they will be similarly described
without the addition of further constitutive parameters. On the other hand, a larger number of con-
stitutive parameters is expected when out-of-plane deformation tests are to be described. To identify
these parameters, the method outlined in [71–75] can be profitably employed.

2 Macro-energies for non-linear beams and pantographic structures

Micro-macro identification process à la Piola produces a constitutive equation for macro-energy as a
function of macro-placement field. The parameters involved in this constitutive equation become, thus,
specified in terms of micro-mechanical properties of considered micro-structure. The main assumption
on which Piola’s procedure is based consists in the choice of the kinematical map: such a map specifies
(in a rather arbitrary way) a unique micro-motion once a macro-motion is given. The influence
of the kinematical map on macro-constitutive equations is often more important than the micro-
constitutive equations and the geometric specifications of considered system at micro-level. Although
this circumstance is often overlooked, the range of applicability of obtained macro models may depend
dramatically on the properties of the kinematic map.

Therefore the heuristic deduction adopted here will need a rigorous justification on the basis of
precise convergence criteria; such a justification, we will postpone to further investigations, on the
basis of the promising results which we present here. We believe that their preliminary presentation
seem to justify some more mathematically rigorous studies.

2.1 Micro-macro identification procedures: non-quadratic second gradient con-

tinuum energies

We present here first the identification procedure for the considered class of extensible beams and
secondly the identification procedure for an extensible pantographic lattice.
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2.1.1 Identification for extensible beams

The presented heuristic micro-macro identification is performed under the following assumptions (see
Fig. 2):

• the reference configuration of the discrete micro-system is constituted by masses placed at the
points

P i := ai" where ai = 0, 1, . . . , N ;

• the current configuration of P i will be denoted by pi;

• the generic pair of adjacent masses, at locations (P i, P i+1), is connected by a spring whose
deformation energy depends on the distance between their present positions pi and pi+1;

• at the node i a rotational spring is placed whose deformation energy depends on the angle #i
formed by the vectors pi�1 � pi and pi+1 � pi;

• the micro-Lagrangian discrete system having its configuration specified by the set of Lagrangian
parameters {pi} has the deformation energy given by

U({pi}) =
X

i

ki
2

���pi+1 � pi

��� "
�2

+
X

i

bi (cos#i + 1) (1)

where ��pi+1 � pi

�� =
q
(pi+1 � pi) · (pi+1 � pi) (2)

and

cos#i =
(pi�1 � pi) · (pi+1 � pi)��pi�1 � pi

�� ��pi+1 � pi

�� (3)

• as a macro model of the mass-spring system described before, we consider a 1D continuum whose
reference configuration is given by the straight segment I = [0, L] ⇢ R, where L = N";

• the variable in the interval I is denoted by the abscissa S;

• the motion is planar thus the macro-placement is described by the planar field

� : [0, L] ! R2

Following the Piola’s Ansatz we put
� : P i 7! pi (4)

and

�(P i+1) = �(P i) + "�0(P i) +
"2

2
�00(P i) + o("2) (5)

where the ()0 denotes derivative with respect to S. Using Eq. (5), Eq. (2) and Eqs. (2) and (3) can be
rewritten as

��pi+1 � pi

�� =
���0(P i)

�� "+ �0(P i) · �00(P i)

k�0(P i)k
"2

2
+ o("2) (6)

cos#i =

⇥
��0 (Pi) + �00 (Pi)

"
2 + o("2)

⇤
·
⇥
�0 (Pi) + �00 (Pi)

"
2 + o("2)

⇤
����0 (Pi) + �00 (Pi)

"
2 + o("2)

�� ���0 (Pi) + �00 (Pi)
"
2 + o("2)

�� (7)

⇡ �1 +
h
ci · ci � (ei · ci)2

i "2

2
(8)

where

ei =
�0 (Pi)

k�0 (Pi)k
, ci =

�00 (Pi)

k�0 (Pi)k
(9)
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The coe�cient of the second-order term of series expansion (7) can be interpreted by means of the
following equalities

ci · ci � (ei · ci)2 = ci · ci � (ei · ci) (ei · ci) = [ci � (ei · ci) ei] · ci = ci? · ci = ci? · ci? (10)

where we denoted with the symbol ci? the orthogonal projection of ci onto the direction given by ei,
i.e.

ci? := ci � (ei · ci) ei. (11)

Finally, Eq. (7) becomes:

cos#i + 1 ⇡ (ci? · ci?)
"2

2
. (12)

When representing the product ci? · ci? in terms of placement �, we have

ci? · ci? =
�00 (Pi) · �00 (Pi)

k�0 (Pi)k2
�
✓
�0 (Pi) · �00 (Pi)

k�0 (Pi)k2

◆2

. (13)

In conclusion, the energy (1) up to the second order terms in " is represented as follows

U({pi}) =
X

i

ki"2

2

����0 (Pi)
��� 1

�2
+
X

i

bi"2

2

"
�00 (Pi) · �00 (Pi)

k�0 (Pi)k2
�
✓
�0 (Pi) · �00 (Pi)

k�0 (Pi)k2

◆2
#
. (14)

When homogenizing via Piola’s Ansatz and by rescaling the rigidities by means of the equations

ki = Ke"
�1 bi = Kb"

�1 (15)

we get the following homogenized expression for deformation energy

U (� (·)) =
Z L

0

(
Ke

2

����0��� 1
�2

+
Kb

2

"
�00 · �00

k�0k2
�
✓
�0 · �00

k�0k2

◆2
#)

dS. (16)

As a result, the action of considered system is

A (�(·)) =
Z L

0

1

2
%�̇2dS � U (�) (17)

% being the mass density per unit line.
It should be noted that c? · c? which appears in Eq. (16), when expressed in component form,

coincides with the exact expression of the squared curvature, 2, of a beam which is axially deformable
and shear undeformable reported in Appendix A. Besides, the squared Frenet curvature, k2, of the
beam axis in the present configuration, with some algebra from the definition [76], is related to the
beam curvature 2 = c? · c? by the expression:

[k(S)]2 =
c? · c?
k�0 (S)k2

. (18)

2.1.2 Identification for extensible pantographic lattices

A very similar identification process holds for planar pantographic lattices we want to consider here.
Let us consider a Lagrangian Cartesian orthogonal coordinate system whose associated base of

unit vectors is (D1,D2). We assume that:

• in the reference configuration the lattice mass points are located at the positions

P i,j := (ai", aj")

where ai = 0, 1, . . . , N and aj = 0, 1, . . . , M ;

• the lattice dimensions result to be L1 = N" and L2 = M";
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Pi,j pi,j

Figure 3: Micro-model of a pantographic sheet and Piola identification with a detail of the three
rotational springs employed. The green curves are the plots of the placement �.

• the current configuration of P i,j is denoted by pi,j ;

• the masses at the nodes P i,j are connected by extensional springs along each one of the coordinate
lines;

• the energy of the extensional springs depends on the distance between two adjacent points, i.e.
pi,j , pi+1,j and pi,j , pi,j+1;

• at each node there are two rotational springs, to provide bending rigidity along each coordinate
line;

• the energy of the rotational springs depends on the angles: 1) #1i,j formed by the vectors pi�1,j�
pi,j and pi,j � pi+1,j and 2) #2i,j formed by the vectors pi,j�1 � pi,j and pi,j+1 � pi,j ;

• in addition, at each node there is also a rotational spring between the two orthogonal lines;

• the deformation energy of these springs depends on the angle #3i,j formed by the vectors pi,j+1�
pi,j and pi+1,j � pi,j .

As a result, by paralleling the assumptions made for a single chain of springs, to a lattice struc-
ture of springs (see Fig. 4 which exhibits two chains of springs arranged in the directions of fibers
of a pantographic sheet), we will assume that for the micro-Lagrangian discrete system having its
configuration specified by the set of Lagrangian parameters

�
pi,j

 
the deformation energy is given by

U(
�
pi,j

 
) =

X

j

X

i

k1i,j
2

���pi+1,j � pi,j

��� " kD1k
�2

+
X

j

X

i

b1i,j
�
cos#1i,j + 1

�

+
X

i

X

j

k2i,j
2

���pi,j+1 � pi,j

��� " kD2k
�2

+
X

i

X

j

b2i,j
�
cos#2i,j + 1

�

+
X

i

X

j

b3i,j
2

���#3i,j �
⇡

2

���
�

(19)

� being a parameter which defines the shape of the function that characterises the pivot elastic
potential. As a macro model of the mass-spring system described before we assume a 2D continuum
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Figure 4: Micro-model of two fibers of a pantographic sheet.

whose reference configuration is given by a rectangle domain ⌦ = [0, L1]⇥ [0, L2] ⇢ R2. By assuming
planar motion the present configuration of ⌦ is described by the planar macro-placement

� : ⌦ ! R2 (20)

via the following Piola’s Ansatz
� : P i,j 7! pi,j (21)

��pi+1,j � pi,j

�� = k� (Pi+1,j)� � (Pi,j)k ' "
��F (Pi,j)D1 +

"
2rF i,j |D1 ⌦D1

�� (22)

and ��pi,j+1 � pi,j

�� = k� (Pi,j+1)� � (Pi,j)k ' "
��F (Pi,j)D2 +

"
2rF i,j |D2 ⌦D2

�� (23)

where F = r� and (rF |D↵ ⌦D↵ )
� = F �

↵,↵ = ��
,↵↵; no sum over repeated ↵ is intended. Besides,

by introducing the notation F (Pi,j) =: F i,j , we obtain for the angles related to the two families of
fibers:

cos#↵i,j ⇡
�
�F i,jD↵ + "

2rF i,j |D↵ ⌦D↵
�
·
�
F i,jD↵ + "

2rF i,j |D↵ ⌦D↵
�

���F i,jD↵ + "
2rF i,j |D↵ ⌦D↵

�� ��F i,jD↵ + "
2rF i,j |D↵ ⌦D↵

�� (24)

in which ↵ denotes the fiber direction and, thus, takes value over the set {1, 2}.
Moreover, the third angle #3i,j can be evaluated by the expression:

cos#3i,j =
[�(P i+1,j)� �(P i,j)]

k�(P i+1,j)� �(P i,j)k
· [�(P i,j+1)� �(P i,j)]

k�(P i,j+1)� �(P i,j)k

⇡ F i,jD1

kF i,jD1k
· F i,jD2

kF i,jD2k
. (25)

Finally, by defining the following vectors

eij|↵ =
F i,jD↵

kF i,jD↵k
, cij|↵ =

rF i,j |D↵ ⌦D↵

kF i,jD↵k
with ↵ = 1, 2 (26)

and following the same steps taken for a single spring chain, we obtain:

cos#↵i,j + 1 ⇡
�
cij|↵? · cij|↵?

� "2

2
(27)
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being, as the case treated before:

cij|↵? = cij|↵ �
�
eij|↵ · cij|↵

�
eij|↵ =

=
rF i,j |D↵ ⌦D↵

kF i,jD↵k
� F i,jD↵

kF i,jD↵k

✓
F i,jD↵

kF i,jD↵k
· rF i,j |D↵ ⌦D↵

kF i,jD↵k

◆
(28)

and therefore
cij|↵? · cij|↵? = cij|↵ · cij|↵ �

�
eij|↵ · cij|↵

�2
(29)

By rescaling the coe�cients appearing in the energy (19) as follows

k↵i,j = K↵
e ; b↵i,j = K↵

b ; b3i,j = Kp"
2; (30)

we get, for the homogenised, the final expression:

U (� (·)) =
Z

⌦

X

↵

K↵
e

2
(kFD↵k � 1)2 d⌦

+

Z

⌦

X

↵

K↵
b

2

"
rF |D↵ ⌦D↵ ·rF |D↵ ⌦D↵

kFD↵k2
�
✓

FD↵

kFD↵k
· rF |D↵ ⌦D↵

kFD↵k

◆2
#
d⌦

+

Z

⌦

Kp

2

����arccos
✓

F D1

kF D1k
· F D2

kF D2k

◆
� ⇡

2

����
�

d⌦ (31)

which accounts for stretching and bending deformations of fibres as well as for the resistance to shear
distortion related to the variation of the angle between the fibres. Since the motion is assumed to be
planar, the strain energy does not include any twisting contribution. Of course, the model proposed
can be generalised by releasing the assumption of planar motion.

3 Numerical simulations

Some numerical solutions for a set of exemplary planar equilibrium problems for beams and panto-
graphic structures have been obtained using standard FEM packages in COMSOL Multiphysics. The
approach is based on standard energy minimisation techniques. As the 1D and 2D continuum models
obtained in Sect. 2 is of second gradient, we had to deal with the second derivatives of the displacement
field. This problem has been handled by introducing an auxiliary kinematical field which takes the
place of the displacement gradient (see e.g. [77–79]). In order to enforce the condition that the new
field must be equal to the gradient of the displacement, the Lagrange multipliers technique has been
used.

3.1 Some exemplary beam large deformation problems

In order to show some features of the proposed model, we consider the case of a cantilever beam
when the free end is forced to move on a circular arch of radius L/2 and the centre placed in the
middle of the reference configuration. The results are reported in Fig. 5. There for five values of the
displacement imposed to the free end the resulting configurations of the beam are exhibited. The
beam has a length L = 1 m, and is characterised by the following constitutive parameters:

• Ke = 4.05⇥ 108 N;

• Kb = 7.59⇥ 105 N m2.

In a second example, a cantilever beam of length L = 1 m lying on an elastic foundation, exerting
reactions in both the directions horizontal and vertical, has been considered. The following cases have
been examined.

case a The Winkler soil model is divided in two parts with the elastic constants: Kw1 = 2.46 ⇥ 108

N/m2, for S 2 [0, L/2) and Kw2 = 8.2 ⇥ 106 N/m2 for S 2 (L/2, L]. Fixing the value of the
bending sti↵ness Kb = 1.5⇥ 104 N m2, the following sub-cases has been considered:
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Figure 5: Large deflections of a cantilever beam.

Figure 6: Beam on a Winkler spring model: case a (left), case b (right).

1. Ke1 = 2.5⇥ 107 N

2. Ke2 = 1.0⇥ 109 N

case b The Winkler constants are: Kw1 = 8.2 ⇥ 107 N/m2, for S 2 [0, L/2) and Kw2 = 8.2 ⇥ 104

N/m2 for S 2 (L/2, L]. Now the value of the elongation sti↵ness Ke = 4.05 ⇥ 108 N, is fixed
while two di↵erent values of Kb have been given, namely

1. Kb1 = 100 N m2

2. Kb2 = 1.5⇥ 104 N m2

Figure 6 shows the current configurations of the beam under study for each one of the cases
considered where the same displacement on the free end has been imposed.

On the left plot, it can be seen that increasing the value of the elongation sti↵ness, Ke, the length
of the deformed beams decreases. Besides, the right plot shows that decreasing the bending sti↵ness,
Kb, the curvature of the beam tends to localise near the point in which the Winkler constant changes.
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Figure 7: Case a: Numerical simulation of the bias extension test. Colors indicate the shear strain
relative to the initial fiber axes (left) and the strain energy density (rigth).

3.2 Generalized large planar deformations for pantographic lattices and associated

equilibrium energies

In this section, some exemplary planar equilibrium problems for pantographic structures are performed
employing the homogenised model given by Eq. (31). In detail, a rectangular sample whose sides are
0.068⇥ 0.204 m is considered and the parameters used in the computations are Ke = 1.34⇥ 105 N/m
and Kb = 1.92⇥ 10�2 Nm (assumed to be equal for the two families of fibers), Kp = 1.59⇥ 102 N/m
and � = 1.36. The results obtained are shown in Figs. 7, 8, 9 and 10 where the solid lines indicate
the deformed shapes of the material lines which are straight in the reference configuration.

Let us consider the pantographic structure that in the reference configuration has the shape of a
rectangle and let A,B,C,D be the position of its four vertices.

The following cases have been examined:

case a standard extensional bias test – the edge AB is fixed while CD is translated by the vector
�(C �B)/kC �Bk;

case b the edge AB is fixed while CD is translated by the vector �(D � C)/kD � Ck;

case c the edge AB is fixed, CD is translated by the vector �(C � B)/kC � Bk and is given an
anticlockwise rotation  about its centre;

case d the edge AB is clockwise rotated of  about A while CD is rotated anticlockwise with the
same amplitude about the point D; in addition CD is given a translation by the vector �(A �
D)/kA�Dk.

Fig. 7 shows the equilibrium configuration of the pantographic structure for case a) when � =
0.0567 m. Colours in the left picture exhibits the amplitude of shear strain relative to the initial fibre
axes; the strain energy density is reported in the right picture.

Figs. 8, 9 and 10 show the equilibrium configurations of the structure under study. They also give
information on strain energy density by means of colours. Specifically, Fig. 8 refers to case b) when
three di↵erent amplitudes of the translation are given, that is � = {1, 3/2, 2}kD�Ck; Fig. 9 displays
the results for case c) when � = kD � Ck/2 and  = {⇡/9,⇡/6,⇡/4}; Fig. 10 exhibits the results for
case d) when (� = 0, = ⇡/9), (� = �kD � Ck, = ⇡/9) and (� = �3/2kD � Ck, = ⇡/3).

12



Figure 8: Case b: Equilibrium shape and strain energy density when a shear displacement is imposed.

Figure 9: Case c: Equilibrium shape and strain energy density when a relative rotation and elongation
of short sides is imposed.

Figure 10: Case d: Equilibrium shape and strain energy density when a relative rotation and com-
pression of short sides is imposed.
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4 Experimental evidence and comparison with numerical predic-

tions

Experimental results and comparison with numerical simulation are presented in this section for a
pantographic structure to illustrate the e↵ectiveness of proposed models. The specimen under test
has a rectangular shape whose sides are in ratio 1:3 and the long side has a length L1 = 0.2041 m. The
structure characterising the sample is made of two orthogonal families of ‘beams’ which are spaced
0.0048 m apart and connected by cylindrical pivots (see Fig. 11); it is built by means of a 3D printer
and it is made of polyamide PA 2200 whose Young’s modulus is about 1,600 MPa. The cross section of
the elemental beams is 1.6⇥0.9 mm and it is the same for the two families. The pivots connecting the
two families of beams are characterised by a diameter of 0.9 mm and a height of 1.0 mm. A standard
bias extension test was performed by means of the MTS Bionix test system at the rate 20 mm/min.
Deformation was measured by means of a video extensometer on the same machine.
The material parameters characterising the behaviour of the structure under test, obtained by means
of an identification procedure based on the proposed model (31), are summarised in Tab. 1.

Table 1: Identified material parameters.

Ke (N m�1) Kb (N m) Kp (N m�1) �

1.34⇥ 105 1.92⇥ 10�2 1.59⇥ 102 1.36

Figure 12 exhibits the measured angles  1 and  2 with the errors and the comparison with the
numerical simulation performed with the identified parameters listed in Tab. 1. We choose these two
angles because representative of the sample deformation; indeed,  1 characterises the shear strain in
the central region, while  2 is distinctive of the most bent region (see Fig. 11). Fig. 12 shows clearly
that the performed identification is consistent with the data accuracy.

Figure 13(left) depicts the measured force vs. the imposed displacement of the bias test and the
corresponding data obtained by numerical simulations. Figure 13(right) shows the relative elongations
along the fibres relative to the two adjacent nodes at the corner of the specimen. In particular, we
consider: i) the beam which converges into the corner (b1), ii) the beam immediately neighbouring
the inner side (b2) and iii) the beam neighbouring the outer side (b3). Also in this case measured data
are compared with the relevant numerical simulations and are consistent with the data accuracy. In
addition, it worth noting that the main axially deformation is related to the corner beam, b1, (about
6 %) while the other two beams appear to be almost axially undeformed. Therefore, a rather unusual
localisation phenomenon of deformation is detected.

It should be noted that we deal with geometrical nonlinearities which arise from large displacements
and deformations but also with material nonlinearities modelled by the last addend in Eq. (31). Indeed,
the e↵ect of the parameter � when its value is between 1 and 2 entails a larger elastic stored energy
for small deformations compared with a quadratic case (� = 2). This behaviour can be detected
experimentally in Fig. 13(left) where the curve of the total reaction rises more rapidly starting from
the lower displacements.

In Fig. 14 the equilibrium shapes of the sample under bias extension test are shown for di↵erent
displacement imposed (u = {0.0143, 0.0232, 0.0321, 0.0411, 0.0500, 0.0567} m) and compared with the
corresponding shapes obtained by numerical simulations. The numerical results represent the current
configuration of the material lines which in the reference configuration are superimposed to the straight
beams of which the structure consists; the colours in plots indicate the decrease in the angle between
e1 and e2 from the reference one, i.e. ⇡/2. The model predicts an exotic arrangement of coexistent
phases observed in the actual lattice in which the beams undergo part-wise uniform shears separated
by internal transition layers due to the presence of the second gradient term in the proposed stored
energy.
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Figure 11: Specimen employed in tests and markers used for measurements.
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Figure 12: Angles used to identify the material parameters of Eq. (31) for the tested sample:  1 (left)
and  2 (right).

0 0.01 0.02 0.03 0.04 0.05 0.06
displacement, m

0

10

20

30

40

50

60

fo
rc

e,
 N

measure
simulation

0 0.01 0.02 0.03 0.04 0.05 0.06
displacement, m

-1

0

1

2

3

4

5

6

7

8

el
on

ga
tio

n 
al

on
g 

fib
er

s, 
%

measure b1
measure b2
measure b3
simulation b1
simulation b2
simulation b3

Figure 13: Force used to identify the material parameters of Eq. (31) for the tested sample (left).
Elongations of three adjacent beams near a corner of the sample; comparison between measured data
and simulations (right).

15



Figure 14: Overlap between simulation and measurement for six representative values of the displace-
ment imposed.
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5 Conclusions and open problems

The pioneering works by Piola [35] and Hencky [49] continue to deserve the attention of the researchers
in mathematical physics or in continuum and structural mechanics, especially in consideration of the
present e↵ort to design and study exotic microstructure aimed to produce high performing materials
or structures. The study and development of Smart or Optimised or Advanced or Multi-Physics and
Multi-Scale Materials indeed require sophisticated mathematical tools: among these the calculus of
variations plays a prominent role. The visionary results by Piola initiated the development of higher-
gradient and weakly or strongly non-local continua (see [36, 39, 80–85]) while the ideas of Hencky
introduced an e�cient Lagrangian discretisation of continuum Euler-Bernoulli Beam Theory whose
potential developments need still to be fully explored. The micro-structured materials which promise to
open the way to new and unexpected technological applications (see [86]) demand for the formulation
of computationally e↵ective and really predictive models.

The results presented in this paper indicate, via the careful examination of a particular fabric for
a recently designed metamaterial (see [1, 87–93]), i.e. pantographic structures that

1. standard Cauchy models are not easily applicable, at some length scales, to e↵ectively describe —
with a continuous model— those complex fabrics which show strong geometrical and mechanical
inhomogeneities at smaller length scales;

2. a simple second gradient continuum model, deduced via homogenisation methods based on
minimisation principles and techniques, is e↵ective —at relatively larger scales— in modelling a
large class of phenomena occurring during planar extensional bias test;

3. Hencky-type discrete models are e↵ective also in suggesting generalised continuum models for
complex materials.

It has to be remarked that some new mathematical problems need to be confronted when existence
and uniqueness theorems are required for static and dynamic problems involving the non-quadratic
second gradient energies introduced in Sect. 2. It indeed does not seem immediate to apply available
mathematical techniques to prove well-posedness of the equilibrium or dynamical problems involving
the deformation energies (16) or (31). Actually the set C constituted by the placement functions for
which the deformation energy (16) is meaningful is necessarily included in the Sobolev space H1 and
includes obviously the Sobolev space H2. However C does not coincide with any of them: its structure
needs to be determined in order to correctly formulate the equilibrium minimisation problem for the
considered Hencky-type non-linear beams. The situation becomes even more complex when the statics
and the dynamics problems for pantographic structures are to be considered.

The relevance of aforementioned well-posedness problems in the study of considered micro-structures
cannot be underestimated if only one thinks of the need of performing e↵ective and complex numerical
simulations in order to solve, for instance, optimisation problems.

In this paper, we show that the results obtained when comparing numerical simulations and exper-
imental data in a standard extensional bias test are indeed promising. However, to definitively validate
the proposed model many other di↵erent tests should be performed in order to check its predictive
capabilities also with other deformation states (as, for instance, those conceived in Sect. 3.2).

The heuristic method presented here seems also useful to generalise the study to the case of Hencky-
type beams and 2D pantographic which move in the three-dimensional Euclidean space: we remark
that it seems important the study of the problem of their wrinkling, buckling and post-buckling be-
haviour (see [94–100]). A first approach to this study has been already addressed, by introducing
quadratic second gradient deformation energies only, in the papers [6, 45]: however, the experimental
evidence seems to indicate that a complete theoretical picture of the significant phenomena occurring
in the post-buckling of pantographic structures can be obtained only by introducing non-linearities
also in the constitutive equations involving second gradient of displacements. Finally, the possibility
of introducing three-dimensional pantographic micro-structures to design three-dimensional metama-
terials has to be taken into account: the promising results presented here indicate that phenomena to
be unveiled and the technological possibilities consequently to be opened could be of some relevance
and interest.
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A Appendix

Let us consider a straight segment C0 of length ` and denote by S its arc length so that the segment
is described by the function

q0 : S 2 [0, `] ! q0 (32)

Let us consider a plane shape R and a point O on it.
Now attach a copy of R to each point of C0 through O so that R and C0 are orthogonal. We call

B0 the reference configuration of a beam.
The present configuration B of B0 will be described by:

(a) the function �(S) i.e., the present position of q0(S);

(b) a proper orthogonal tensor field R(S) i.e., the cross-sections rotation from B0 to B.

Suitable strain measures (see e.g. [101]) are

E = R

>
R

0 (33)

e = R

>�0 � q00 (34)

where ()0 denotes di↵erentiation with respect to S. Now we assume a cartesian orthonormal coordinate
frame with origin in q0(0) and base (D1 = q00,D2,D3).

In addition, we assume that �(S) remains in the span{D1,D2}, which in turn is orthogonal to the
cross-sections, we can write

u = �� q0 = u1D1 + u2D2 (35)

R = cos'D1 ⌦D1 � sin'D1 ⌦D2 + sin'D2 ⌦D1 + cos'D2 ⌦D2 (36)

and

e = "D1 + �D2 (37)

E = (D2 ⌦D1 �D1 ⌦D2) (38)

where

" = (1 + u01) cos'+ u02 sin'� 1

� = u02 cos'� (1 + u01) sin'

 = '0
(39)

If the beam is assumed to be shear undeformable, we require

� ⌘ 0 ) u02 cos' = (1 + u01) sin'

�0 ⌘ 0 ) u002 cos'� u02'
0 sin' = u001 sin'+ (1 + u01)'

0 cos'
(40)

that give

cos' =
1 + u01p

u022 + (1 + u01)
2
, sin' =

u02p
u022 + (1 + u01)

2

 = '0 =
u002(1 + u01)� u02u

00
1

u022 + (1 + u01)
2

(41)
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[21] Cazzani A, Malagù M, Turco E, Stochino F. 2015 Constitutive models for strongly curved beams
in the frame of isogeometric analysis. Math. Mech. Solids (doi: 10.1177/1081286515577043)

[22] Cuomo M, Contrafatto L, Greco L. 2014 A variational model based on isogeometric interpolation
for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188. (doi:10.1016/j.ijengsci.2014.02.017)

[23] Greco L, Cuomo M. 2013 B-Spline interpolation of Kirchho↵–Love space rods. Comput. Methods

Appl. Mech. Eng. 256, 251–269. (doi:10.1016/j.cma.2012.11.017)

[24] Greco L, Cuomo M. 2014 An implicit G1 multi patch B-spline interpolation for Kirchho↵–Love
space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197. (doi:10.1016/j.cma.2013.09.018)

[25] Fischer P, Klassen M, Mergheim J, Steinmann P and Müller R. 2011 Isogeometric analysis of 2D
gradient elasticity. Comput. Mech. 47, 325–334. (doi:10.1007/s00466-010-0543-8)

[26] Alibert J-J, Della Corte A. 2015 Second-gradient continua as homogenized limit of pan-
tographic microstructured plates: a rigorous proof. Z. Angew. Math. Phys. 66, 2855–2870.
(doi:10.1007/s00033-015-0526-x)

[27] Camar-Eddine M, Seppecher P. 2003 Determination of the closure of the set of elasticity func-
tionals. Arch. Ration. Mech. Anal. 170 211–245. (doi:10.1007/s00205-003-0272-7)

[28] Pideri C, Seppecher P. 1997 A second gradient material resulting from the homogeniza-
tion of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9, 241–257.
(doi:10.1007/s001610050069)

[29] Boutin C. 1996 Microstructural e↵ects in elastic composites. Int. J. Solids Struct. 33, 1023–1051.
(doi:10.1016/0020-7683(95)00089-5)

[30] Carcaterra A, dell’Isola F, Esposito R, Pulvirenti M. 2015 Macroscopic description of microscop-
ically strongly inhomogenous systems: a mathematical basis for the synthesis of higher gradients
metamaterials. Arch. Ration. Mech. Anal. 218, 1239–1262. (doi:10.1007/s00205-015-0879-5)

[31] Dos Reis F, Gangho↵er JF. 2014 Homogenized elastoplastic response of repetitive 2D lattice truss
materials. Comput. Mat. Sci. 84, 145–155. (doi:10.1016/j.commatsci.2013.11.066)

[32] Goda I, Assidi M, Gangho↵er JF. 2013 Equivalent mechanical properties of textile mono-
layers from discrete asymptotic homogenization. J. Mech. Phys. Solids 61, 2537–2565.
(doi:10.1016/j.jmps.2013.07.014)

[33] Dos Reis F, Gangho↵er JF. 2012 Construction of micropolar continua from the
asymptotic homogenization of beam lattices. Comp. Struct. 112-113, 354–363.
(doi:10.1016/j.compstruc.2012.08.006)

[34] Della Corte A, Battista A, dell’Isola F. 2015 Referential description of the evolution of a 2D
swarm of robots interacting with the closer neighbors: Perspectives of continuum modeling via
higher gradient continua. Int. J. Non-Linear Mech. (doi:10.1016/j.ijnonlinmec.2015.06.016)

20



[35] dell’Isola F, Maier G, Perego U, Andreaus U, Esposito R, Forest S. 2014 The complete works
of Gabrio Piola: Volume I - Commented English Translation. Adv. Struct. Mater. 38, 1–813.
(doi:10.1007/978-3-319-00263-7)

[36] dell’Isola F, Andreaus U, Placidi L. 2015 At the origins and in the vanguard of peridynamics, non-
local and higher-gradient continuum mechanics: An underestimated and still topical contribution
of Gabrio Piola. Math. Mech. Solids 20, 887–928. (doi:10.1177/1081286513509811)
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