SCIENTIFIC REPORTS

Received: 08 January 2016 Accepted: 14 March 2016 Published: 31 March 2016

OPEN The Terminal Oxidase Cytochrome **bd** Promotes Sulfide-resistant **Bacterial Respiration and Growth**

Elena Forte^{1,*}, Vitaliy B. Borisov^{2,*}, Micol Falabella¹, Henrique G. Colaço³, Mariana Tinajero-Trejo⁴, Robert K. Poole⁵, João B. Vicente⁶, Paolo Sarti¹ & Alessandro Giuffrè⁷

Hydrogen sulfide (H₂S) impairs mitochondrial respiration by potently inhibiting the heme-copper cytochrome c oxidase. Since many prokaryotes, including Escherichia (E.) coli, generate H₂S and encounter high H₂S levels particularly in the human gut, herein we tested whether bacteria can sustain sulfide-resistant O₂-dependent respiration. E. coli has three respiratory oxidases, the cyanide-sensitive heme-copper bo₃ enzyme and two bd oxidases much less sensitive to cyanide. Working on the isolated enzymes, we found that, whereas the bo₃ oxidase is inhibited by sulfide with half-maximal inhibitory concentration $IC_{50} = 1.1 \pm 0.1 \,\mu$ M, under identical experimental conditions both bd oxidases are insensitive to sulfide up to 58 µM. In E. coli respiratory mutants, both O₂-consumption and aerobic growth proved to be severely impaired by sulfide when respiration was sustained by the bo₃ oxidase alone, but unaffected by \leq 200 μ M sulfide when either *bd* enzyme acted as the only terminal oxidase. Accordingly, wild-type E. coli showed sulfide-insensitive respiration and growth under conditions favouring the expression of bd oxidases. In all tested conditions, cyanide mimicked the functional effect of sulfide on bacterial respiration. We conclude that bd oxidases promote sulfide-resistant O₂consumption and growth in *E. coli* and possibly other bacteria. The impact of this discovery is discussed.

Along with nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H₂S) has been recognized as an important gaseous signalling molecule, playing a major role in human (patho)physiology¹. Like NO and CO, H₂S is a key regulator of many physiological processes in the cardiovascular, nervous, respiratory and gastrointestinal systems, among others. While exerting beneficial physiological effects at lower levels, at higher concentrations H₂S can cause detrimental effects. In eukaryotes, depending on its concentration, H₂S can have opposite effects on respiration (reviewed in²): at nanomolar concentrations it can sustain energy metabolism both as a substrate for the mitochondrial respiratory chain and as a vasodilator favouring O₂ supply, whereas at higher levels it impairs cellular respiration via direct binding to and inhibition of mitochondrial cytochrome c oxidase (mtCcOX) (see³ and references therein). Sulfide inhibition of mtCcOX is very effective ($K_i = 0.2 - 0.45 \,\mu\text{M}$ at pH = 7.4^{3,4}), leading to dissipation of the mitochondrial membrane potential, consequent arrest of aerobic ATP production and eventually cell death².

In mammalian tissues, H_2S is enzymatically produced by cystathionine β -synthase (CBS), cystathionine γ -lyase (CSE) and via the combined action of 3-mercaptopyruvate sulfurtransferase (3-MST) and cysteine aminotransferase (reviewed in⁵). At variance from other compartments in the human body, in the intestinal lumen H₂S is also generated by the gut microbiota through bacterial amino acid metabolism and via dissimilatory sulfate reduction by 'sulfate-reducing bacteria' (SRB)⁶. H_2S levels in the gut are therefore high. Whereas the total sulfide pool content in the colon is around one millimolar⁷, the concentration of free H₂S in the intestinal lumen was

¹Department of Biochemical Sciences and Istituto Pasteur- Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy. ²Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russian Federation. ³Metabolism & Genetics Group, Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, University of Lisbon, Portugal. ⁴Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada. ⁵Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom. ⁶Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal. ⁷CNR Institute of Molecular Biology and Pathology, Rome, Italy. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to A.G. (email: alessandro. giuffre@uniroma1.it)

reported to be ca. $40-60 \,\mu$ M, as estimated by direct measurement of the gas in the rat cecum^{8,9} and analysis of human faecal samples¹⁰.

E. coli is a ubiquitous member of the human gut microbiota, with more than one strain commonly colonizing the large intestine at the same time. Since E. coli, like the other microorganisms inhabiting the gut, lives in a particularly H₂S-enriched microaerobic niche, the question arises as to whether this microorganism can accomplish O₂-dependent respiration without being inhibited by H₂S. The *E. coli* respiratory chain possesses three terminal oxygen reductases, utilizing quinols as reducing substrates: the cyanide-sensitive cytochrome bo₃ enzyme and the bd-I and bd-II oxidases, much less sensitive to cyanide^{11,12}. Cytochrome bo₃ belongs to the superfamily of heme-copper oxygen reductases that includes mtCcOX. The enzyme contains three redox-active metal centres: the low-spin heme b involved in quinol oxidation and a binuclear site composed of heme o_3 and Cu_B , where O_2 reduction to water takes place. On the contrary, bd-I and bd-II are cytochrome bd-type O₂-reductases phylogenetically unrelated to heme-copper oxidases¹². They have no copper, but contain three hemes: the low-spin heme b_{558} (the primary electron acceptor from the quinol), and the two high-spin hemes b_{595} and d (possibly forming a di-heme site for O_2 reduction, see¹² and references therein). Cytochrome bo₃ predominates in E. coli under high aeration, whereas O_2 -limiting conditions such as those found in the human gut stimulate the expression of the cytochromes *bd*-I and *bd*-II¹³⁻¹⁵. The three *E. coli* terminal oxidases all generate a proton motive force, but cytochrome bo_3 is the only one able to pump protons, thus being twice as effective as bd-type cytochromes in terms of energy transduction¹⁶. Besides its role in bacterial energy metabolism, cytochrome bd-I was suggested to serve other physiological functions, being implicated in the bacterial response to oxidative and nitrosative stress¹⁷⁻²⁰.

In this work, we examined the effect of sulfide on the O_2 reductase activity of the three terminal oxidases of *E. coli* and tested the ability of these enzymes to sustain bacterial growth and O_2 consumption in the presence of sulfide.

Results

Effect of NaHS on isolated *E. coli* terminal oxidases. The effect of sulfide on the O₂ reductase activity of the E. coli respiratory oxidases, cytochromes bo3, bd-I and bd-II, was initially investigated testing the ability of each purified oxidase to consume O_2 before and after addition of the sulfide donor NaHS. In these assays, O₂ consumption was measured in the presence of dithiothreitol (DTT) and 2,3-dimethoxy-5-methyl-6-(3methyl-2-butenyl)-1,4-benzoquinone (Q_1) as the reducing system. As shown in Fig. 1A, NaHS (~7 μ M) rapidly and effectively inhibits the O_2 reductase activity of the isolated cytochrome bo_3 . The enzyme is inhibited with an apparent half-maximal inhibitory concentration $IC_{50} = 1.1 \pm 0.1 \,\mu\text{M}$ (Fig. 2). The inhibition of cytochrome bo₃ is fully reversible. A rapid and complete recovery of the O₂ reductase activity of the isolated enzyme was observed, when sulfide was quickly removed from solution by addition of an excess of O-acetyl-L-serine (OAS) and catalytic amounts of the sulfide-consuming O-acetylserine sulfhydrylase enzyme from Entamoeba histolytica (EhOASS, Fig. 1A). Sulfide consumption by EhOASS in the presence of OAS was assessed independently using a H₂S-selective electrode (Figure S1). Notably, while being an effective inhibitor of *E. coli* cytochrome *bo*₃, NaHS proved to be unable to inhibit the two E. coli bd-type oxidases. Addition of NaHS, even at high concentration $(58 \,\mu\text{M})$, did not alter the O₂ consumption catalyzed by the *bd*-I or *bd*-II enzyme in the presence of DTT and Q₁ (Fig. 1A). No O₂ consumption stimulation by the OAS/EhOASS sulfide-scavenging system was observed in control oxygraphic experiments carried out in the absence or presence of the isolated oxidases (not shown).

Effect of NaHS on *E. coli* respiration. The striking results obtained with the isolated enzymes prompted us to explore the effect of sulfide on *E. coli* cell respiration. To this end, we investigated aerobic cultures of *E. coli* (see Methods for details) and tested the effect of NaHS on cell respiration along cell growth, i.e., at increasing cell density. We initially assayed three mutant strains each expressing a single terminal oxidase (bo_3 , bd-I or bd-II). The results were remarkably similar to those obtained with the isolated enzymes. O₂ consumption by *E. coli* cells expressing solely cytochrome bo_3 was quickly and fully inhibited upon addition of 50 µM NaHS (Fig. 1B). As observed with the isolated bo_3 enzyme, the inhibition was promptly and fully restored upon sulfide depletion by the *Eh*OASS/OAS system (Fig. 1B). In contrast, no inhibition was observed following the addition of 50 µM NaHS to *E. coli* cells expressing either *bd*-I or *bd*-II as the only terminal oxidase (Fig. 1B). The results on the three mutant strains proved to be independent of the density at which cells were collected and assayed (Fig. 3, top panel). Similarly to NaHS, cyanide (50 µM) almost completely abolished O₂-consumption in *E. coli* cells expressing only the *bo*₃ oxidase, whereas it was essentially ineffective when respiration was sustained by either *bd* oxidase (Fig. 3, bottom panel).

The effect of NaHS on respiration of the wild-type strain was assessed in the same way. Namely, we investigated aerobic cultures in which a change in oxidase expression from cytochrome bo_3 to the cytochromes of the bd-type is expected to take place along cell growth, following a progressive reduction in O₂ availability in the medium^{21,22}. Accordingly, when cells were assayed in an early phase of the culture (OD₆₀₀ < 0.7), most of respiration (65–70%) proved to be sensitive to NaHS or cyanide (both at 50 µM, Fig. 3). In contrast, with cell growth bacterial O₂-consumption became progressively less sensitive to sulfide inhibition and, in a late phase of the culture (OD₆₀₀ > 2.5), NaHS or cyanide caused only marginal effects on respiration (Fig. 3).

Altogether these results show that, unlike the heme-copper bo_3 oxidase, *E. coli bd* oxidases enable O₂-dependent respiration in the presence of sulfide.

Effect of NaHS on *E. coli* **cell growth.** The lack of sulfide inhibition of cytochromes bd-I and bd-II, as opposed to the high sensitivity displayed by the bo_3 oxidase, prompted us to test whether the bd-type oxidases, besides enabling respiration, promote *E. coli* cell growth in the presence of sulfide. We investigated the effect of sulfide on the growth of both the wild-type and the three respiratory mutant strains. Following the addition of

 $200 \,\mu$ M NaHS, the wild-type strain showed a delayed growth (Fig. 4A), while the growth of the bo_3 -expressing strain was severely impaired (Fig. 4B). Lacking *bd* oxidases, the latter strain proved to be highly sensitive to sulfide, with 6 μ M NaHS causing ~25% reduced cell growth, as evaluated at 2 hours after NaHS addition (inset Fig. 4B). In contrast, no or very little effect on cell growth was observed over the same time window after addition of $200 \,\mu$ M NaHS to the strains expressing either *bd*-I or *bd*-II as the only terminal oxidase (Fig. 4C,D). Altogether, these data show that, unlike the *bo*₃ oxidase, the cytochromes *bd*-I and *bd*-II sustain *E. coli* growth in the presence of sulfide.

Discussion

Together with NO and CO, H_2S is presently considered a highly relevant signalling molecule in human (patho)physiology. It has long been recognized that many prokaryotes, including the model organism *E. coli* and numerous other members of the human gut microbiota, generate H_2S (see⁶ and references therein). Bacteria can accomplish H_2S production by several pathways, including cysteine degradation by L-cysteine desulfhydrase, and dissimilatory sulfate reduction by SRB (see⁶ and references therein). In a recent study, it was reported that orthologs of the mammalian H_2S -synthesizyng enzymes CBS, CSE and 3-MST are widespread in the bacterial world and contribute to H_2S generation, as demonstrated for several bacteria by genetic manipulation²³. As an example, *E. coli* was shown to harbour an ortholog of 3-MST significantly contributing to bacterial H_2S synthesis. Notably, in the same study H_2S production was shown to enhance antibiotic resistance in all tested bacteria, thereby providing an adaptive advantage.

Figure 2. NaHS inhibition of isolated cytochrome bo_3 . Percentage inhibition of the O₂ reductase activity of isolated cytochrome bo_3 (6 nM) measured at increasing concentration of NaHS, in the presence of the 10 mM DTT and 0.25 mM Q₁.

The presence of numerous H_2S -producing bacteria in the human gut makes this compartment particularly enriched in H_2S compared to other tissues, with the free gas reaching in the intestinal lumen concentrations as high as $40-60 \,\mu M^{8-10}$. Relevant to human (patho)physiology, bacteria-derived H_2S is emerging as a key regulator of several physiological functions not only in the gastrointestinal system, but also throughout the human body¹. Moreover, it has been recently suggested that the differential susceptibility of mutualistic microbes to sulfide toxicity may contribute to shape the human gut microbiota⁶, a recognized factor contributing to human health and disease. In turn, the host H_2S systemic bioavailability and metabolism have been found to be profoundly affected by the microbiota in studies on germ-free mice²⁴. Altogether these observations provide evidence for interplay between H_2S and the human microbiota, with important consequences on human health.

Though currently considered a key signalling molecule, H_2S has long been known as a mere poison. Toxicity has been related to the ability of H_2S to bind heme proteins and inhibit cellular respiration targeting mtCcOX (see³ and references therein). Indeed, H_2S is a potent ($K_i = 0.2-0.45 \,\mu M^{3,4}$), non-competitive inhibitor of this respiratory enzyme, the inhibition being reversible, independent of oxygen concentration²⁵, but dependent on pH²⁶. Sulfide inhibition of isolated mtCcOX in turnover with ascorbate and cytochrome *c* is relatively fast, occurring at an initial rate constant of $2.2 \times 10^4 \,M^{-1} \,s^{-1}$, as measured at pH 7.4³. The inhibited enzyme exhibits sulfide bound to ferric heme $a_3^{27,28}$, with Cu_B in the cuprous state possibly bound to a second H₂S molecule, as revealed by electron paramagnetic resonance (EPR) spectroscopy²⁹. The mechanism of inhibition of mtCcOX is only partly understood, yet the reaction was suggested to involve the binding of H₂S to the enzyme in turnover at cupric or cuprous Cu_B, followed by intramolecular transfer of H₂S to ferric heme a_3 , eventually blocking the reaction with O₂³.

The well-known toxicity of H_2S on mitochondrial respiration prompted us to address whether bacterial O_2 -dependent respiration can be accomplished in a H_2S -enriched environment such as the human gut, thereby providing an adaptive advantage in terms of bacterial growth. This issue was addressed in the present study working on the model organism *E. coli*, a ubiquitous member of the human gut microbiota. Namely, we investigated the effect of sulfide on the O_2 reductase activity of each of the three terminal respiratory oxidases of this bacterial (cytochromes bo_3 , bd-I and bd-II), and tested the ability of these enzymes to sustain O_2 consumption and bacterial cell growth in the presence of sulfide. Using NaHS as a H_2S donor, we carried out experiments on the isolated enzymes, as well as on the wild-type and three respiratory mutant *E. coli* strains each expressing only a single terminal oxidase. NaHS is commonly used as a donor of the cell permeant H_2S , because in aqueous solution HS⁻ equilibrates with H_2S and S^{2-} , according to the $pK_{al} \sim 7.0$ (H_2S/HS^-) and $pK_{a2} \sim 19$ (HS⁻/S²⁻) measured at 25 °C. At pH = 7.0-7.4, $\sim 30-50\%$ of HS⁻ is thus expected to be protonated to H_2S , with S^{2-} being present in negligible amounts.

As a new finding we report that, whereas the heme-copper bo_3 oxidase is highly sensitive to sulfide inhibition ($IC_{50} = 1.1 \pm 0.1 \mu$ M, Figs 1 and 2), the two *bd* oxidases (*bd*-I and *bd*-II) are remarkably insensitive to sulfide (Fig. 1), as confirmed by measuring the effect of NaHS on O₂ consumption by the purified terminal oxidases (Fig. 1A) or by whole cells (Figs 1B and 3). In agreement with these finding, cell growth proved to be severely impaired by sulfide in an *E. coli* mutant strain expressing only the *bo*₃ oxidase (Fig. 4B), but unaffected in mutant strains expressing either *bd*-II or *bd*-II as the only terminal oxidase (Fig. 4, panel C,D). Consistently, in the wild-type strain, H₂S affected cell growth and respiration only in the early phase of the culture, when O₂ availability is expected to be still sufficiently high to favour the expression of the *bo*₃ oxidase, but it caused no effect in a late phase of the culture, when O₂ limitation is expected to stimulate the expression of *bd* oxidases (Fig. 4A).

Altogether, these observations led us to conclude that, at variance with the heme-copper bo_3 oxidase that is potently and reversibly inhibited by sulfide, both *E. coli bd* oxidases are sulfide-insensitive and thus able to sustain cell respiration and growth in the presence of considerably high levels of sulfide. Although the molecular basis

Figure 3. Effect of NaHS and cyanide on respiration of *E. coli* cells. (Top) Residual respiratory activity measured after the addition of 50 μ M NaHS to *E. coli* cells collected at the reported cell density. (Bottom) Comparison of the effect of cyanide and sulfide on cell respiration: respiratory activity measured after the addition of 50 μ M NaHS or 50 μ M NaCN to wild-type and mutant *E. coli* cells. Data (mean \pm standard deviation) refer to the control activity measured before the addition of inhibitors (taken as 100%).

for the remarkable sulfide insensitivity of the *E. coli bd* oxidases remains to be elucidated, it may originate from the lack of Cu_B , which was indeed suggested to be implicated in sulfide inhibition of mtCcOX³. In this regard, still possibly due to the lack of Cu_B , it is noteworthy that *bd* oxidases are not only more resistant to NO inhibition than heme-copper oxidases^{30–32}, but also poorly sensitive to other commonly used oxidase inhibitors, such as cyanide¹² and azide³³. On this basis, cyanide and sulfide are expected to exert similar inhibitory effects on *E. coli* respiration, as observed in the present study (Fig. 3).

As shown here for *E. coli*, it is likely that *bd* oxidases confer sulfide resistance also to other microorganisms. The *bd* oxidases are indeed widespread in the prokaryotic world and have been identified in numerous enterobacteria³⁴, where expression of these oxidases is likely stimulated in the microaerobic conditions found in the human colon. In view of the novel results presented here, it will be important to test whether *bd* oxidases, by conferring sulfide resistance, play a role in shaping the human gut microbiota, thereby impacting human (patho)physiology. Furthermore, based on these data, *bd* oxidases may represent very attractive targets for the development of next-generation antimicrobials against pathogenic enterobacteria^{18,20,35}. Finally, the finding that *bd* oxidases enhance bacterial resistance to sulfide, if representing a hallmark of this protein family, may pave the way to biotechnological applications aimed at increasing bacterial sulfide resistance.

Figure 4. Effect of NaHS on *E. coli* cell growth. Cell growth of *E. coli* wild-type (A) and mutant strains with bo_3 (B), bd-I (C) or bd-II (D) as the only terminal oxidase, assayed in the presence ('closed symbols') or absence ('open symbols') of 200 μ M NaHS. *Inset to panel B*: Effect of NaHS on the growth of the bo_3 -only expressing mutant, as evaluated at 2 hours after addition of NaHS used at the indicated concentrations. 'Relative OD' indicates the ratio between the optical density measured at 600 nm in the presence of NaHS and the one recorded after the same period of time (2 hours) in the absence of NaHS. Data expressed as mean \pm standard deviation.

Methods

Materials, bacterial strains and growth conditions. All chemicals were purchased from Sigma unless otherwise indicated. NaHS stock solutions were prepared by dissolving NaHS in degassed water or phosphate buffer saline, and the overall concentration of sulfide species ($H_2S/HS^{-}/S^{2-}$) in solution was determined spectro-photometrically according to³⁶. All *E. coli* strains used were K-12 derivatives; MG1655 (RKP5416) was the wild type³⁷ from which the respiratory mutants, TBE025 (MG1655 $\Delta cydB$ *nuoB appB::kan*), TBE026 (MG1655 $\Delta cydB$ *nuoB cyoB::kan*) and TBE037 (MG1655 $\Delta appB$ *nuoB cyoB::kan*) were derived, respectively expressing cytochrome bo_{3^*} bd-II and bd-I as the only terminal oxidase (mutants kindly given by Alex Ter Beek and Joost Teixeira de Mattos, University of Amsterdam). These strains carry the same mutant alleles as described by Bekker et al.³⁸. *E. coli* cells were grown in 50 mL-Falcon tubes, in 5 mL Luria Bertani (LB) medium supplemented with 30 µg/ mL kanamycin, at 37 °C and 200 rpm. For growth studies, cells were grown as described above in the absence or presence of NaHS (6–200 µM) added to cells at an OD₆₀₀ of about 0.05.

Purification of terminal oxidases from *E. coli*. The cytochromes *bd*-I, *bd*-II and *bo*₃ were isolated from the *E. coli* strains GO105/pTK1, MB37 and GO105/pJRhisA, respectively, as previously described^{39–41}. The concentration of the cytochromes *bd*-I and *bd*-II was determined from the difference absorption spectrum using $\Delta \varepsilon_{628-607} = 10.8 \text{ mM}^{-1} \text{ cm}^{-1}$ for the dithionite-reduced *minus* 'as prepared' proteins. Cytochrome *bo*₃ concentration was estimated from the Soret absorption band of the oxidized enzyme using $\varepsilon_{407} = 183 \text{ mM}^{-1} \text{ cm}^{-1}$. UV-visible absorption spectra were acquired in an Agilent Cary 60 spectrophotometer.

Purification and H₂S consumption by recombinant *O***-acetylserine sulfhydrylase from** *Entamoeba histolytica.* The *O*-acetylserine sulfhydrylase-encoding gene (*Eh*OASS, Genbank XM_643199.1) was PCR-amplified from *Entamoeba histolytica* HM-1:IMSS genomic DNA using the forward primer 5'-<u>CATATG</u>ATGGAACAAATAAGTATTAGC and the reverse primer 5'-<u>AACGTT</u>TTA TTCATTCAATAATGAATCAAG, containing the NdeI and HindIII restriction sites respectively. The PCR product was cloned into the Topo TA pCR2.1 vector, digested with the NdeI and HindIII restriction sites of the pET28b expression vector, yielding the pET-*Eh*OASS construct encoding N-terminally 6xHis-tagged *Eh*OASS. pET-*Eh*OASS was used to transform *E. coli* BL21 (DE3). Cells were grown at 37 °C in LB broth supplemented with 25 mg/L kanamycin (Nzytech) until OD₆₀₀ reached 0.4-0.5. EhOASS expression was induced with 0.1 mM isopropyl-β-D-thiogalactoside addition and the cultures moved to 30 °C, 130 rpm for 4 h. Cells were harvested and the pellet resuspended in 10 mL/L culture of buffer A (50 mM potassium phosphate, 300 mM KCl, pH 7.5, 10% glycerol) containing 1 mg/mL lysozyme, 1 mM phenylmethylsulfonyl fluoride and deoxyribonuclease I. After 30-min incubation on ice, cells were disrupted by sonication, centrifuged at 8200 g (5 min, 4 °C) and imidazole was added to the supernatant to a final concentration of 10 mM. Protein purification steps were performed in an Åkta Prime (GE Healthcare) chromatography system. Affinity purification of the His-tagged protein was performed using a HisTrap FF crude 1-mL column previously equilibrated with buffer A containing 10 mM imidazole (buffer B). The cleared supernatant was loaded onto the column at 1 mL/min and the column was washed with 25 column volumes of buffer B followed by a linear gradient of 15 column volumes up to 500 mM imidazole. Pooled protein fractions were loaded onto a PD10 (GE Healthcare) desalting column for imidazole removal, equilibrated and washed with buffer A. EhOASS-containing fractions were concentrated with Amicon Ultra-15 centrifugal filter units (30 kDa cut-off) and loaded onto a size-exclusion 120-ml Superdex S-200 (GE Healthcare) column, equilibrated and eluted with buffer A at 0.7 mL/min. EhOASS fractions were pooled; protein purity was assessed by SDS-PAGE and protein concentration was determined by the Bradford assay. As previously reported⁴², pure *Eh*OASS eluted as a dimer of ~38 kDa monomers (Figure S1).

 $\rm H_2S$ consumption by *Eh*OASS was measured at 20 °C in 100 mM HEPES, 260 U/mL catalase, 100 μ M EDTA pH 7.0, using an ISO-H2S-2 hydrogen sulfide sensor coupled to an Apollo 4000 Free Radical Analyzer (World Precision Instruments). In these assays the concentration of $\rm H_2S$ in solution was obtained from the nominal concentration of the NaHS added, assuming 1:1 partition between HS⁻ and H₂S at pH 7.0, according to the pK_a of H₂S.

O₂ **consumption measurements.** Oxygraphic measurements were carried out at 25 °C in 100 mM Na/ phosphate pH 7.4, using a high-resolution respirometer (Oxygraph-2k, Oroboros Instruments) with a 1.5 mL chamber. The buffer was supplemented with 0.1 mM EDTA and either 0.05% *N*-lauroyl-sarcosine (cytochrome *bd*-I) or 0.02% dodecyl- β -D-maltoside (cytochrome *bd*-II and cytochrome *bo*₃) in the assays on isolated oxidases. The apparent *IC*₅₀ of NaHS for the O₂-reductase activity of the isolated *bo*₃ oxidase was obtained by plotting the percentage inhibition of the enzyme as a function of NaHS concentration and fitting the data to the Hill equation⁴³, assuming a Hill coefficient *n* = 1.

References

- Wallace, J. L. & Wang, R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. *Nat. Rev. Drug. Discov.* 14, 329–345 (2015).
- Szabo, C. et al. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br. J. Pharmacol. 171, 2099–2122 (2014).
- 3. Nicholls, P., Marshall, D. C., Cooper, C. E. & Wilson, M. T. Sulfide inhibition of and metabolism by cytochrome c oxidase. *Biochem. Soc. Trans.* 41, 1312–1316 (2013).
- Cooper, C. E. & Brown, G. C. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J. Bioenerg. Biomembr. 40, 533–539 (2008).
- 5. Kabil, O. & Banerjee, R. Enzymology of H₂S biogenesis, decay and signaling. Antioxid. Redox Signal. 20, 770-782 (2014).
- Carbonero, F., Benefiel, A. C., Alizadeh-Ghamsari, A. H. & Gaskins, H. R. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front. Physiol. 3, 448 (2012).
- Macfarlane, G. T., Gibson, G. R. & Cummings, J. H. Comparison of fermentation reactions in different regions of the human colon. J. Appl. Bacteriol. 72, 57–64 (1992).
- Suarez, F., Furne, J., Springfield, J. & Levitt, M. Production and elimination of sulfur-containing gases in the rat colon. Am. J. Physiol. 274, G727–733 (1998).
- Levitt, M. D., Springfield, J., Furne, J., Koenig, T. & Suarez, F. L. Physiology of sulfide in the rat colon: use of bismuth to assess colonic sulfide production. J. Appl. Physiol. 92, 1655–1660 (2002).
- Jorgensen, J. & Mortensen, P. B. Hydrogen sulfide and colonic epithelial metabolism: implications for ulcerative colitis. *Dig. Dis. Sci.* 46, 1722–1732 (2001).
- 11. Poole, R. K. & Cook, G. M. Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. *Adv. Microb. Physiol.* **43**, 165–224 (2000).
- 12. Borisov, V. B., Gennis, R. B., Hemp, J. & Verkhovsky, M. I. The cytochrome *bd* respiratory oxygen reductases. *Biochim. Biophys. Acta* 1807, 1398–1413 (2011).
- Rolfe, M. D. et al. Transcript profiling and inference of Escherichia coli K-12 ArcA activity across the range of physiologically relevant oxygen concentrations. J. Biol. Chem. 286, 10147–10154 (2011).
- 14. Ederer, M. et al. A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen. Front. Microbiol. 5, 124 (2014).
- Bettenbrock, K. et al. Towards a systems level understanding of the oxygen response of Escherichia coli. Adv. Microb. Physiol. 64, 65–114 (2014).
- Puustinen, A., Finel, M., Haltia, T., Gennis, R. B. & Wikström, M. Properties of the two terminal oxidases of *Escherichia coli*. *Biochemistry* 30, 3936–3942 (1991).
- Lindqvist, A., Membrillo-Hernandez, J., Poole, R. K. & Cook, G. M. Roles of respiratory oxidases in protecting *Escherichia coli* K12 from oxidative stress. *Antonie Van Leeuwenhoek* 78, 23–31 (2000).
- Giuffrè, A., Borisov, V. B., Arese, M., Sarti, P. & Forte, E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim. Biophys. Acta 1837, 1178–1187 (2014).
- Borisov, V. B., Forte, E., Siletsky, S. A., Sarti, P. & Giuffrè, A. Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition. Biochim. Biophys. Acta 1847, 182–188 (2015).
- Borisov, V. B. et al. Cytochrome bd protects bacteria against oxidative and nitrosative stress: a potential target for next-generation antimicrobial agents. Biochemistry-Moscow 80, 565–575 (2015).
- Alexeeva, S., Hellingwerf, K. & Teixeira de Mattos, M. J. Quantitative assessment of oxygen availability: Perceived aerobiosis and its effect on flux distribution in the respiratory chain of *Escherichia coli*. J. Bacteriol. 184, 1402–1406 (2002).
- Cotter, P. A., Chepuri, V., Gennis, R. B. & Gunsalus, R. P. Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the *fnr* gene product. J. Bacteriol. **172**, 6333–6338 (1990).

- Shatalin, K., Shatalina, E., Mironov, A. & Nudler, E. H₂S: a universal defense against antibiotics in bacteria. Science 334, 986–990 (2011).
- 24. Shen, X. *et al.* Microbial regulation of host hydrogen sulfide bioavailability and metabolism. *Free Radic. Biol. Med.* **60**, 195–200 (2013).
- 25. Petersen, L. C. The effect of inhibitors on the oxygen kinetics of cytochrome c oxidase. Biochim. Biophys. Acta 460, 299–307 (1977).
- Nicholls, P. & Kim, J. K. Sulphide as an inhibitor and electron donor for the cytochrome c oxidase system. Can. J. Biochem. 60, 613–623 (1982).
- Nicholls, P. The effect of sulphide on cytochrome *aa*₃. Isosteric and allosteric shifts of the reduced a-peak. *Biochim. Biophys. Acta* 396, 24–35 (1975).
- Nicholls, P., Petersen, L. C., Miller, M. & Hansen, F. B. Ligand-induced spectral changes in cytochrome c oxidase and their possible significance. *Biochim. Biophys. Acta* 449, 188–196 (1976).
- Hill, B. C. et al. Interactions of sulphide and other ligands with cytochrome c oxidase. An electron-paramagnetic-resonance study. Biochem. J. 224, 591–600 (1984).
- Borisov, V. B. et al. Redox control of fast ligand dissociation from Escherichia coli cytochrome bd. Biochem. Biophys. Res. Commun. 355, 97–102 (2007).
- 31. Mason, M. G. et al. Cytochrome bd confers nitric oxide resistance to Escherichia coli. Nat. Chem. Biol. 5, 94-96 (2009).
- Giuffrè, A., Borisov, V. B., Mastronicola, D., Sarti, P. & Forte, E. Cytochrome bd oxidase and nitric oxide: From reaction mechanisms to bacterial physiology. FEBS Lett. 586, 622–629 (2012).
- Poole, R. K., Williams, H. D., Downie, J. A. & Gibson, F. Mutations affecting the cytochrome d-containing oxidase complex of Escherichia coli K12: Identification and mapping of a fourth locus, cydD. J. Gen. Microbiol. 135, 1865–1874 (1989).
- 34. Degli Esposti, M. et al. Molecular evolution of cytochrome bd oxidases across proteobacterial genomes. Genome Biol. Evol. 7, 801-820 (2015).
- Cook, G. M., Greening, C., Hards, K. & Berney, M. Energetics of pathogenic bacteria and opportunities for drug development. Adv. Microb. Physiol. 65, 1–62 (2014).
- Nashef, A. S., Osuga, D. T. & Feeney, R. E. Determination of hydrogen sulfide with 5,5'-dithiobis-(2-nitrobenzoic acid), N-ethylmaleimide, and parachloromercuribenzoate. Anal. Biochem. 79, 394–405 (1977).
- 37. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453-1462 (1997).
- Bekker, M., de Vries, S., Ter Beek, A., Hellingwerf, K. J. & de Mattos, M. J. Respiration of *Escherichia coli* can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase. J. Bacteriol. 191, 5510–5517 (2009).
- Puustinen, A., Verkhovsky, M. I., Morgan, J. E., Belevich, N. P. & Wikström, M. Reaction of the *Escherichia coli* quinol oxidase cytochrome bo₃ with dioxygen: The role of a bound ubiquinone molecule. Proc. Natl. Acad. Sci. USA 93, 1545–1548 (1996).
- Borisov, V. B. Interaction of bd-type quinol oxidase from Escherichia coli and carbon monoxide: Heme d binds CO with high affinity. Biochemistry-Moscow 73, 14–22 (2008).
- Borisov, V. B. et al. Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode. Proc. Natl. Acad. Sci. USA 108, 17320–17324 (2011).
- 42. Krishna, C. et al. Crystallization and preliminary crystallographic analysis of cysteine synthase from Entamoeba histolytica. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63, 512–515 (2007).
- Goutelle, S. et al. The Hill equation: a review of its capabilities in pharmacological modelling. Fundam. Clin. Pharmacol. 22, 633–648 (2008).

Acknowledgements

This work was partly supported by: Ministero dell'Istruzione, dell'Università e della Ricerca of Italy (PNR-CNR Aging Program 2012–2014 to A.G. and PRIN 20107Z8XBW_005 to P.S.); Regione Lazio of Italy (FILAS-RU-2014 – 1020); Russian Foundation for Basic Research (research projects № 14-04-00153 and 15-04-06266 to V.B.B.); Fundação para a Ciência e Tecnologia (FCT) of Portugal (Grant PTDC/SAU-MIC/111447/2009 to J.B.V.); a bilateral grant award by Consiglio Nazionale delle Ricerche of Italy (CNR) of Italy and FCT of Portugal (to A.G. and J.B.V.). iNOVA4Health - UID/Multi/04462/2013, a program financially supported by FCT/Ministério da Educação e Ciência, through national funds and co-funded by FEDER under the PT2020 Partnership Agreement is acknowledged. V.B.B. was the recipient of a short-term fellowship by CNR of Italy. We thank Prof. R.B. Gennis (Urbana, USA) for the *E. coli* strain GO105/pTK1, Dr. M. Bekker (Amsterdam, Netherlands) for the *E. coli* strain MB37 and the *E. coli* oxidase mutants, Dr. M. Verkhovskaya (Helsinki, Finland) for the purified *E. coli* bo₃ oxidase, and Dr. Upinder Singh (Stanford University, CA, USA) for the *Entamoeba histolytica* HM-1:IMSS genomic DNA.

Author Contributions

E.F., V.B.B., P.S. and A.G. conceived the study and designed the experimental plan. E.F., V.B.B. and M.F. performed and analyzed the experiments with isolated oxidases and *E. coli* strains. V.B.B. produced the recombinant *bd* oxidases. H.G.C. and J.B.V. produced the recombinant *O*-acetylserine sulfhydrylase from *Entamoeba histolytica* and performed and analyzed the experiments with this enzyme. M.T.T. and R.K.P. contributed to the implementation of the experiments with the *E. coli* strains and their interpretation. A.G., V.B.B., E.F. and J.B.V. wrote the paper. All authors reviewed the results, contributed to data interpretation and critical revision of the manuscript, and approved the final version of the manuscript.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Forte, E. *et al.* The Terminal Oxidase Cytochrome *bd* Promotes Sulfide-resistant Bacterial Respiration and Growth. *Sci. Rep.* **6**, 23788; doi: 10.1038/srep23788 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/