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Abstract. In this paper we study the concentration profile of various kind of symmetric solutions of some

semilinear elliptic problems arising in astrophysics and in diffusion phenomena. Using a reduction method

we prove that doubly symmetric positive solutions in a 2m-dimensional ball must concentrate and blow up

on (m − 1)-spheres as the concentration parameter tends to infinity. We also consider axially symmetric

positive solutions in a ball in RN , N ≥ 3, and show that concentration and blow up occur on two antipodal

points, as the concentration parameter tends to infinity.

1. Introduction

We consider semilinear elliptic problems of the type{
−∆u = h(x)|u|p−2u in BN (0, 1),

u = 0 on ∂BN (0, 1),
(1.1)

where BN (0, 1) is the unit open ball centered at the origin in RN , N ≥ 3, and p > 2.

If N = 2m, m > 1 and x = (y1, y2), yi ∈ Rm, i = 1, 2, we take

h(x) = |x|α = |(y1, y2)|α, α > 0 (1.2)

or

h(x) = |y2|α, α > 0. (1.3)

If N ≥ 3 and x = (x1, . . . , xN ) ∈ RN we take

h(x) = |xN |α, α > 0. (1.4)

The first choice corresponds to the case of the well-known Hénon equation [11], while the other two are

variants which have interest in applications as we will explain later.

From the mathematical point of view problem (1.1) has an interesting and rich structure and various

results have been proved so far, some of which will be described in the sequel. Let us recall that, in the

case of (1.2), it was first observed in [16] that the presence of the weight |x|α modifies the consequences of

the Pohožahev identity and produces a new critical exponent, namely 2(N + α)/(N − 2), for the existence

of classical solutions. In [7, 8, 23], symmetry breaking, asymptotics and single point concentration profile

at the boundary of the least energy solutions, as α → ∞, are described. Moreover, in [17, 24], it is proved
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that any least energy solution is foliated Schwarz symmetric. More recently, the existence of infinitely many

positive solutions have been proved in [26], in the case p = 2N/(N − 2).

The main purpose of this paper is to present a new feature of the Hénon equation and of its variant with

h(x) given by (1.3), namely the existence of positive solutions concentrating on spheres, as α→∞.

In the study of semilinear elliptic equations with power-like nonlinearities there are few results of this

type, unlike the case the concentration at a single point about which a large literature is available. For the

case of (1.4) we will show instead concentration at antipodal points for some axially symmetric solutions, as

α→∞.

Before stating precisely our results let us outline the connections between our problems and some

mathematical models arising in astrophysics and diffusion processes.

It was during the golden age of general relativity, from 1960 to 1975, that astrophysicists started to

devote intensive attention to understand and to detect the existence of black holes in globular clusters. In

1972, Peebles [20, 21] published seminal works describing a stationary distribution of stars near a massive

collapsed object, such as a black hole, located at the center of a globular cluster. In recent years, as in [15],

the existence of single black holes in globular clusters have been perceived. More recently, it was reported

in [25] the presence of two flat-spectrum radio sources in the Milky Way globular cluster M22.

It can be derived that the existence of stationary stellar dynamics models, cf. [3, 4, 13, 14, 5], is equivalent

to the solvability of the equation

−∆U(x) = f(|x|, U(x)) in R3,

which, in the case f(|x|, U) = |x|α|U |p−2U , α > 0, p > 2, becomes the Hénon equation:

−∆U(x) = |x|α|U |p−2U in R3,

where the weight |x|α represents a black hole located at the center of the cluster, whose absorption strength

increases as α increases. This corresponds to the case of problem (1.1) with h(x) given by (1.2), while when

we take h(x) as in (1.3) or (1.4) it corresponds to a supermassive absorbing object represented by a higher

dimensional body.

Besides its application to astrophysics, problem (1.1) also models steady-state distributions in other

diffusion processes. For example, suppose u(x) represents the density of some chemical solute, as a function

of the position x, confined in a ball B. In this case |u|p−2u corresponds to the reaction term and the weight

h(x) is an intrinsic property of the medium B, which inhibits diffusion at the region A where h = 0 and

hampers diffusion close to A. So, in case h is one of (1.2), (1.3) or (1.4), stronger obstructions correspond

to larger values of α. This line of reasoning leads that, as α→∞, concentration on parts of the domain far

away from A should occurs; cf. [7, 8] in the case of (1.2).

Our results show that models having objects which inhibit diffusion, represented by a point as in (1.2) or

by objects of higher dimension as in (1.3), can produce concentration on spheres, located as far as possible

from the absorbing object as the parameter α tends to infinity.

We point out that our results, in the cases of (1.2) and (1.3) holds in balls contained in R2m, m > 1 and

hence not in R3 which is the relevant case for the astrophysics models. We believe that the concentration

phenomenon we describe should give insights also for the 3-dimensional case. However, for other diffusion

processes it is meaningful to pose the problem in higher dimensional spaces.
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The result we get regarding problem (1.1) with h(x) given by (1.4) instead applies to any dimension

N ≥ 3, so, in particular, covers the case of the astrophysical model.

To state precisely our results we need to introduce some notations that we will keep throughout the paper.

For each r > 0, we set

Bk(0, r) := {y ∈ Rk; |y| < r}, Sk−1
r := {y ∈ Rk; |y| = r} and Sk−1 := {y ∈ Rk; |y| = 1}. (1.5)

In addition, for sake of clarity, since we will perform changes of variables that will affect the space dimension,

for any function u : Ω ⊂ Rk → R we denote the usual Laplacian of u in Rk by

∆ku(x) =

k∑
i=1

uxixi(x), ∀x ∈ Ω.

We will say that u : B2m(0, 1)→ R, m ≥ 1, is doubly symmetric if

u(y1, y2) = u(|y1|, |y2|), ∀ (y1, y2) ∈ B2m(0, 1).

Our first result concerns the case (1.2) and describes the concentration profile of doubly symmetric

solutions of the Hénon equation, that is:{
−∆2mu = |(y1, y2)|α|u|p−2u, (y1, y2) ∈ B2m(0, 1),

u = 0 on ∂B2m(0, 1).
(1.6)

Theorem 1.1. Assume m > 1, 2 < p < 2(m+1)
m−1 . Then there exists α0 = α0(p,m) > 4 such that for each

α > α0 the following holds. Let uα be any least energy solution among the doubly symmetric solutions of

(1.6). Then, up to replacing uα by −uα and up to commuting y1 and y2, one has uα > 0 in B2m(0, 1), uα

is not radially symmetric and there exists 0 < rα < 1 such that

Mα := max
(y1,y2)∈B2m(0,1)

uα(y1, y2) = uα(y1, 0), ∀ y1 ∈ Sm−1
rα .

Moreover, uα concentrates and blows up on Sm−1×{0} ⊂ R2m, i.e., rα → 1,Mα ≈ α2/(p−2) and α(1−rα)→
` for some positive number l, as α→∞.

Next we consider the case (1.3) and describe the concentration profile of doubly symmetric solutions of

the equation {
−∆2mu = |y2|α|u|p−2u, (y1, y2) ∈ B2m(0, 1),

u = 0 on ∂B2m(0, 1).
(1.7)

Theorem 1.2. Assume m > 1, 2 < p < 2(m+1)
m−1 . Then there exists α0 = α0(p,m) > 4 such that for each

α > α0 the following holds. Let uα be any least energy solution among the doubly symmetric solutions of

(1.7). Then, up to replacing uα by −uα, one has uα > 0 in B2m(0, 1), uα is not radially symmetric and

there exists 0 < rα < 1 such that

Mα := max
(y1,y2)∈B2m(0,1)

uα(y1, y2) = uα(0, y2), y2 ∈ Sm−1
rα .

Moreover, uα concentrates and blows up on {0}×Sm−1 ⊂ R2m, i.e., rα → 1, Mα ≈ α2/(p−2) and α(1−rα)→
` for some positive number l, as α→∞.
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Let us stress that from the physical point of view, the concentration phenomenon described in Theorem

1.2 is indeed expected. Since the set

Dm = {(y1, 0) ∈ Rm × Rm; |y1| < 1}

inhibits diffusion and its hindrance to diffusion increases with α, the maximum point of the density u is

expected to be as far apart from Dm as possible when α tends to infinity. However, the concentration profile

described in Theorem 1.1 is a bit less evident. Indeed in this case, the set D0 which inhibits diffusion is

reduced to the origin (0, 0). Then there are three possible doubly symmetric sets, as far away as possible

from D0, where in principle, concentration could occurs, namely Sm−1 × {0} ⊂ R2m (which up to rotation

is the same as {0} × Sm−1 ⊂ R2m), Sm−1 × Sm−1 ⊂ R2m or S2m−1 ⊂ R2m. Nevertheless, thinking about

reducing the energy, the second and third possible concentration profiles can be excluded since solutions

concentrating on Sm−1×{0} ⊂ R2m have lower energy than those that concentrate on Sm−1×Sm−1 ⊂ R2m

or on S2m−1 ⊂ R2m. This is in fact the meaning of Theorem 1.1.

Note that in Theorem 1.1 and Theorem 1.2 the exponent 2 < p < 2(m+1)/(m−1) can be larger than the

critical Sobolev exponent in dimension 2N , namely 4N/(2N − 2), and that 2(m+ 1)/(m− 1) is the critical

Sobolev exponent in dimension m+ 1.

Finally we turn to the case (1.4) where we are able to get results in any dimension N ≥ 3. Let us point out

that in the 3-dimensional case with x = (x1, x2, x3) ∈ B3(0, 1), the weight |x3|α represents a two dimensional

absorbing object described by

D2 = {(x1, x2, 0) ∈ R2 × R; |(x1, x2)| < 1},

whose absorption strength increases as α increases. In this case, reasoning as above, a concentration phe-

nomenon on the antipodal points (0, 0, 1) and (0, 0,−1) is expected as α→∞. Indeed, we prove this result

in any dimension.

Theorem 1.3. Let N ≥ 3 and 2 < p < 2N/(N − 2). Consider the problem{
−∆Nu = |xN |α|u|p−2u, x = (x1, . . . , xN ) ∈ BN (0, 1),

u = 0 on ∂BN (0, 1).
(1.8)

Let uα be any least energy solution of (1.8) among the solutions that are axially symmetric with respect to

ReN ⊂ RN and symmetric with respect to xN . Then, up to replacing uα by −uα, one has uα > 0 in BN (0, 1)

and there exists 0 ≤ rα < 1 such that

Mα := max
(x1,...,xN )∈BN (0,1)

uα(x1, . . . , xN ) = uα(0, . . . , 0, rα) = uα(0, . . . , 0,−rα).

Moreover, uα concentrates and blows up, simultaneously, on the antipodal points (0, . . . , 0, 1) and (0, . . . , 0,−1),

i.e., rα → 1, Mα ≈ α2/(p−2) and α(1− rα)→ ` for some positive number l, as α→∞.

Let us explain shortly the strategies of the proofs of the above theorems.

To prove Theorem 1.1 and Theorem 1.2 we perform a change of variables which allows us to reduce

problems (1.6) and (1.7) to other semilinear problems in Rm+1. The main feature of this transformation is

that it sends in a bijective way doubly symmetric solutions of (1.6) or (1.7) to axially symmetric solutions

of the reduced problems. This explain why the exponent p can be larger than the critical exponent in
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dimension 2N . We mention that this approach was introduced in [18] to study concentration on spheres of

some singularly perturbed problems in R2m and relied on an idea of [22].

So, in the case of (1.6) and (1.7), we are led to study the (m + 1)-dimensional problems (3.4) and (4.4)

respectively, for which analyzing the behavior, as α→∞, of the solutions we get point concentration results,

which, going back to the 2m-dimensional problems, imply concentration on (m− 1)-spheres.

We stress that while the reduced problem (3.4) corresponding to (1.6) is still a Hénon problem for whose

analysis we can use existing results, the reduced problem (4.4) corresponding to (1.7) needs a complete new

analysis, in particular for what concerns the study of a limit problem in Rm+1
+ .

A similar analysis is also used in the proof of Theorem 1.3 to study problem (1.8) directly, without using

any reduction argument.

The outline of this paper is the following. In Section 2 we explain the reduction method. In Section 3

we prove Theorem 1.1 while in Section 4, after several preliminary crucial estimates, we prove Theorem 1.2.

Finally in Section 5 we prove Theorem 1.3.

2. A preliminary reduction lemma

Given an integer m ≥ 1 we set Gm := O(m) × O(m) ⊂ O(2m). Then g ∈ Gm if, and only if, there exist

g1, g2 ∈ O(m) such that

g(y1, y2) = (g1y1, g2y2), ∀ y1, y2 ∈ Rm.

Definition 2.1. We say that a set Ω ⊂ R2m is invariant by the action of Gm if gΩ = Ω for all g ∈ Gm.

Given a function u : Ω→ R defined on an invariant set Ω, we say that u is doubly symmetric if

u(g(y1, y2)) = u(g1y1, g2y2) = u(y1, y2), ∀ (y1, y2) ∈ Ω, ∀ g = (g1, g2) ∈ Gm.

As above, a function u : Ω→ R, defined on a invariant set Ω ⊂ R2m, is said to be doubly symmetric if

u(y1, y2) = u(|y1|, |y2|), ∀ (y1, y2) ∈ Ω.

Now we perform a suitable change of variables as in [18]. Given any point (y1, y2) ∈ B2m(0, 1) we write:
|y1| := r cos θ; |y2| := r sin θ; r :=

√
|y1|2 + |y2|2; r ∈ [0, 1), θ ∈

[
0,
π

2

]
;

r =
√

2ρ; θ =
σ

2
; ρ ∈

[
0,

1

2

)
and σ ∈ [0, π].

(2.1)

Given any doubly symmetric C2-function u : B2m(0, 1)→ R, we write

u(y1, y2) = u(|y1|, |y2|) = u(r cos θ, r sin θ) = u(r, θ) (2.2)

and we get

∆2mu(y1, y2) = urr(r, θ) +
2m− 1

r
ur(r, θ) +

m− 1

r2

(
cos θ

sin θ
− sin θ

cos θ

)
uθ(r, θ) +

uθθ(r, θ)

r2
.

Then we write v(ρ, σ) := u
(√

2ρ,
σ

2

)
, with r =

√
2ρ and θ =

σ

2
and we get

∆2mu(y1, y2) = 2ρ

(
vρρ(ρ, σ) +

m

ρ
vρ(ρ, σ) +

m− 1

ρ2

cosσ

sinσ
vσ(ρ, σ) +

vσσ(ρ, σ)

ρ2

)
.
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Now we recall that, if v : Bm+1(0, 1/2)→ R is an axially symmetric C2-function with respect to the axis

Rem+1 ⊂ Rm+1 and if we set

z = (z1, . . . , zm, zm+1); ρ = |z|; zm+1 = ρ cosσ ρ ∈
[
0,

1

2

)
and σ ∈ [0, π], (2.3)

then

v(z1, . . . , zm, zm+1) = v(ρ, σ) (2.4)

and

∆m+1v(z1, . . . , zm, zm+1) = vρρ(ρ, σ) +
m

ρ
vρ(ρ, σ) +

m− 1

ρ2

cosσ

sinσ
vσ(ρ, σ) +

vσσ(ρ, σ)

ρ2
.

At this point we have proved the following lemma; see also [18, Section 3].

Lemma 2.2. There exists a one to one correspondence between doubly symmetric C2-function u : B2m(0, 1)\{0} →
R and the axially symmetric, with respect to the axis Rem+1 ⊂ Rm+1, C2-functions, v : Bm+1(0, 1/2)\{0} →
R. This correspondence is given by

u(y1, y2) = u(|y1|, |y2|) = u(r cos θ, r sin θ) = u(r, θ) = u
(√

2ρ,
σ

2

)
= v(ρ, σ) = v(z1, . . . , zm, zm+1), (2.5)

with the change of variables (2.1) and (2.3). Moreover,

∆2mu(y1, y2) = 2|z|∆m+1v(z1, . . . , zm, zm+1). (2.6)

We also stress that the changes of variables (2.1) and (2.3) lead to

|y1| = r cos θ =
√

2ρ cos
(σ

2

)
=
√

2|z|
√

1 + cosσ

2
=
√
|z|+ |z| cosσ =

√
|z|+ zm+1 ,

|y2| = r sin θ =
√

2ρ sin
(σ

2

)
=
√

2|z|
√

1− cosσ

2
=
√
|z| − |z| cosσ =

√
|z| − zm+1 ,

|(y1, y2)| =
√
|y1|2 + |y2|2 =

√
2|z| .

 (2.7)

Remark 2.3. Due to the singularity of |z| at z = 0, Lemma 2.2 does not hold between doubly symmetric C2-

function u : B2m(0, 1)→ R and the axially symmetric with respect to the axis Rem+1 ⊂ Rm+1 C2-functions,

v : Bm+1(0, 1/2)→ R. Indeed, for each m ≥ 2 consider

u(y1, y2) = |(y1, y2)|2, (y1, y2) ∈ B2m(0, 1).

Then u ∈ C∞(B2m(0, 1)) and ∆2mu(y1, y2) = 4m. The function v : Bm+1(0, 1/2) → R associated to u is

given by

v(z1, . . . , zm, zm+1) = 2|z|, z ∈ Bm+1(0, 1/2),

which is singular at z = 0.

3. Radially invariant problems and proof of Theorem 1.1

In the search of doubly symmetric solutions of{
−∆2mu = f(|(y1, y2)|, u), (y1, y2) ∈ B2m(0, 1),

u = 0 on ∂B2m(0, 1),
(3.1)
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we perform the change of variables from Section 2 and we are led to investigate the existence of axially

symmetric, with respect to Rem+1 ⊂ Rm+1, solutions of −∆m+1v =
f(
√

2|z|, v)

2|z|
, z ∈ Bm+1(0, 1/2),

v = 0 on ∂Bm+1(0, 1/2).

(3.2)

Due to the singularity of |z| at z = 0 as well as the possible singularity of
f(
√

2|z|, v)

2|z|
at z = 0, the

claim about the equivalence between problems (3.1) and (3.2) must be careful checked; see Remark 2.3 and

also [9, Theorem 2.3] for a related regularity problem. Note that in [18] the domains considered are annuli,

so the singularity at the origin does not appear. Nevertheless, for the Hénon equation, that is in the case

f(|(y1, y2)|, u) = |(y1, y2)|α|u|p−2u, we get it. Our arguments are based on some regularity results, namely

equivalence between weak and classical solutions. In this direction we mention that the classical regularity

results as in [1, 6] does not apply to our problems posed in R2m since we are working with problems that

may be supercritical in the sense that 2 < p < 2(m+ 1)/(m− 1) allows p > 4m/(2m− 2).

In order to proceed with (3.1) and (3.2) with f(|(y1, y2)|, u) = |(y1, y2)|α|u|p−2u, that is,{
−∆2mu = |(y1, y2)|α|u|p−2u, (y1, y2) ∈ B2m(0, 1),

u = 0 on ∂B2m(0, 1),
(3.3)

and {
−∆m+1v = |2z|α−2

2 |v|p−2v, z ∈ Bm+1(0, 1/2),

v = 0 on ∂Bm+1(0, 1/2).
(3.4)

we need to introduce some notation. Also observe that if we write

w(z) =

(
1

4

)1/(p−2)

v
(z

2

)
, (3.5)

then v is a solution of (3.4) if, and only if, w is a solution of{
−∆m+1w = |z|α−2

2 |w|p−2w, z ∈ Bm+1(0, 1),

w = 0 on ∂Bm+1(0, 1).
(3.6)

Definition 3.1. Assume m ≥ 2, 2 < p < 2(m+1)
m−1 and set

Hm := {u ∈ H1
0 (B2m(0, 1)); u(g1y1, g2y2) = u(y1, y2), ∀ (y1, y2) ∈ B2m(0, 1), ∀ g = (g1, g2) ∈ Gm},

with Gm as defined in Section 2. Then, cf. [2, Theorem 2.1 and Corollary 2.3], there exists α0 = α0(p,m) > 4

such that Hm is compactly imbedded in Lp(B2m(0, 1), |(y1, y2)|α) for every α > α0. Assume α > α0.

1. We say that U is a weak doubly symmetric solutions of (3.3) if U is a critical point of the C1(Hm,R)-

functional

Im(u) =
1

2

∫
B2m(0,1)

|∇u|2d(y1, y2)− 1

p

∫
B2m(0,1)

|(y1, y2)|α|u|pd(y1, y2), u ∈ Hm.

2. We say that uα ∈ Hm is a least energy solution among the doubly symmetric solutions of (3.3) if uα is

a nontrivial doubly symmetric solution of (3.3) and

Im(uα) = min{Im(u); u is a nontrivial doubly symmetric solution of (3.3)}.
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3. We say that W is a weak solution of (3.6) if W is a critical point of the C1(H1
0 (Bm+1(0, 1),R)-functional

J(w) =
1

2

∫
Bm+1(0,1)

|∇w|2dz − 1

p

∫
Bm+1(0,1)

|z|
α−2
2 |w|pdz, w ∈ H1

0 (Bm+1(0, 1)).

4. We say that wα ∈ H1
0 (Bm+1(0, 1)) is a least energy solution of (3.6) if wα is a nontrivial solution of

(3.6) and

J(wα) = min{J(w); w is nontrivial solution of (3.6)}.

Lemma 3.2 ([9, Propositions 5.4 and 5.5]). Assume m ≥ 2 and 2 < p < 2(m+1)
m−1 . There exists α0 =

α0(p,m) > 4 such that for every α > α0, u is a weak doubly symmetric solution of (3.3) if, and only if, u

is a classical doubly symmetric solutions of (3.3). In this case, u ∈ C2,γ(B2m(0, 1)) for all 0 < γ < 1.

Proposition 3.3. Assume m ≥ 2, 2 < p < 2(m+1)
m−1 . Then there exists α0 = α0(p,m) > 4 such that for every

α > α0, (2.5) provides a bijective correspondence between

X = {u ∈ C2(B2m(0, 1)); u is a doubly symmetric classical solution of (3.3)}

and

Y = {v ∈ C2(Bm+1(0, 1/2)); v is an axially symmetric, w.r.t. Rem+1 ⊂ Rm+1, classical solution of (3.4)}.

In addition, any u ∈ X and any v ∈ Y are such that u ∈ C2,γ(B2m(0, 1)), v ∈ C2,γ(Bm+1(0, 1/2)) for all

0 < γ < 1.

Proof. Let u ∈ X. Then u is a weak doubly symmetric solution of (3.3). So, after changing variables, we get

that the function v, associated to u by (2.5), is a weak solution of (3.4) in the sense of H1
0 (Bm+1(0, 1/2));

we have also used the classical result of Palais [19]. Hence, since we have subcritical growth for the problem

posed in Bm+1(0, 1/2) ⊂ Rm+1, we apply [1] to get that v is a classical solution of (3.4).

On the other hand, let v ∈ Y . Then, after changing variables, we get that the function u, associated to v

by (2.5), is a weak doubly symmetric solution of (3.3), hence classical by Lemma 3.2. �

We mention that is proved in [2] that the Hénon equation has doubly symmetric solutions, that are non

radially symmetric, in case 2 < p < 2(m+ 1)/(m− 1) and α is sufficiently large.

Now, from [17, 23, 24, 7, 8], we collect some results about the least energy solutions of (3.6).

Proposition 3.4. Assume m ≥ 2, 2 < p < 2(m+1)
m−1 . Then there exists α0 = α0(p,m) > 4 such that for each

α > α0, any least energy solution wα of (3.6) (up to rotation and up to replacing wα by −wα) is such that:

(i) wα > 0 in Bm+1(0, 1); wα is not radially symmetric; wα is Schwarz foliated w.r.t. the vector em+1 ∈
Rm+1, in particular wα is axially symmetric w.r.t. Rem+1 ⊂ Rm+1.

(ii) wα concentrates at the point (0, . . . , 0, 1) as α→∞. In addition, let 0 < τα < 1 be such that

M′α = max
z∈Bm+1(0,1)

wα(z) = wα((0, . . . , 0, τα)).

Then α(1− τα)→ ` for some positive number l and M′α ≈ α2/(p−2) as α→∞.

Proposition 3.5. Assume m ≥ 2, 2 < p < 2(m+1)
m−1 . Then there exists α0 = α0(p,m) > 4 such that for each

α > α0, uα is a least energy solution among the doubly symmetric solutions of (3.3) if, and only if, wα is a

least energy solution of (3.6) and uα and wα are related by (2.5) and (3.5).
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Proof. It follows from the change of variables involving uα and wα by means of (2.5) and (3.5). �

Corollary 3.6. Assume m ≥ 2, 2 < p < 2(m+1)
m−1 . Then there exists α0 = α0(p,m) > 4 such that for each

α > α0 the following holds. Let uα be a least energy solution among the doubly symmetric solutions of (3.3).

Then, up to replacing uα by −uα, one has uα > 0 in B2m(0, 1), uα is not radially symmetric, there exists

0 < rα < 1 and θ∗ ∈
{

0,
π

2

}
such that

max
(y1,y2)∈B2m(0,1)

uα(y1, y2) = uα(rα, θ∗).

We stress that the above corollary guarantees that, up to replacing uα(y1, y2) by uα(y1, y2) := uα(y2, y1),

we have

max
(y1,y2)∈B2m(0,1)

uα(y1, y2) = uα(y1, 0), |y1| = rα.

Proof of Theorem 1.1. It is a straightforward consequence of Propositions 3.4, 3.5 and Corollary 3.6. �

4. Partially symmetric problems and proof of Theorem 1.2

In the search of doubly symmetric solutions of{
−∆2mu = f(|y1|, |y2|, u), (y1, y2) ∈ B2m(0, 1),

u = 0 on ∂B2m(0, 1),
(4.1)

we perform the change of variables from Section 2, see (2.1), (2.3), (2.7), and we are led to investigate the

existence of axially symmetric, with respect to Rem+1 ⊂ Rm+1, solutions of
−∆m+1v =

f(
√
|z|+ zm+1,

√
|z| − zm+1, v)

2|z|
, z ∈ Bm+1(0, 1/2),

v = 0 on ∂Bm+1(0, 1/2).

(4.2)

In this part we consider the particular problem{
−∆2mu = |y2|α|u|p−2u, (y1, y2) ∈ B2m(0, 1),

u = 0 on ∂B2m(0, 1).
(4.3)

Applying the moving planes technique [10] we know that any positive classical solution of (4.3) is such

that u(y1, y2) = u(|y1|, y2) and, for each y2, u(y1, y2) is decreasing with respect to |y1|. Therefore, if we look

for positive doubly symmetric solutions of (4.3) we obtain that for any such solution, there exists 0 ≤ r < 1

such that

max
(y1,y2)∈B2m(0,1)

u(y1, y2) = u(0, y2), ∀ y2 ∈ Sm−1
r ,

with Sm−1
r as defined in (1.5).

From now on in this section we will proceed to prove Theorem 1.2.

First, by arguing similarly to the proof of Proposition 3.3, we can prove following equivalence.

Proposition 4.1. Assume m ≥ 2, 2 < p < 2(m+1)
m−1 . Consider (4.3) and −∆m+1v =

(|z| − zm+1)
α
2

2|z|
|v|p−2v, z ∈ Bm+1(0, 1/2),

v = 0 on ∂Bm+1(0, 1/2).

(4.4)
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Then there exists α0 = α0(p,m) > 4 such that for every α > α0 (2.5) provides a bijective correspondence

between

X = {u ∈ C2(B2m(0, 1)); u is a doubly symmetric classical solution of (4.3)}

and

Y = {v ∈ C2(Bm+1(0, 1/2)); v is an axially symmetric, w.r.t. Rem+1 ⊂ Rm+1, classical solution of (4.4)}.

In addition, any u ∈ X and any v ∈ Y are such that u ∈ C2,γ(B2m(0, 1)), v ∈ C2,γ(Bm+1(0, 1/2)) for all

0 < γ < 1.

We recall that in the proof of Proposition 3.3 we used [9, Propositions 5.4 and 5.5], which assert about

classical regularity of weak doubly symmetric solutions of the Hénon equation. The proof of Proposition 4.1

follows as the proof of Proposition 3.3, if we replace Lemma 3.2 by [12, Theorem 2.5], which in particular

guarantees classical regularity of weak doubly symmetric solutions of (4.3).

We mention that, as in Proposition 3.5, we can show the correspondence between least energy solutions

among the doubly symmetric solutions of (4.3) and least energy solutions among the axially symmetric, with

respect to Rem+1 ⊂ Rm+1, solutions of (4.4). We then turn our attention to (4.4). Observe that for every

α > 2

(|z| − zm+1)α/2

2|z|
≤ (|z| − zm+1)(α−2)/2 ≤ 1 ∀ z ∈ Bm+1(0, 1/2)\{0} and lim

z→0

(|z| − zm+1)α/2

2|z|
= 0.

Let v be a positive and axially symmetric, with respect to Rem+1 ⊂ Rm+1, solution of (4.4). By Propo-

sition 4.1, if u is associated to v by means of (2.5), then u is a positive doubly symmetric solution of (4.3).

Then as observed before, by the moving planes technique, there exists 0 ≤ r < 1 such that

max
(y1,y2)∈B2m(0,1)

u(y1, y2) = u(0, y2), ∀ y2 ∈ Sm−1
r .

Then, with ρ =
r2

2
, we have that

max
z∈Bm+1(0,1/2)

v(z) = v(0, . . . , 0,−ρ).

Now let vα be a least energy solution among the axially symmetric ones with respect to Rem+1 ⊂ Rm+1,

solutions of (4.4). Then, up to a multiplicative constant, by the principle of symmetric criticality [19], we

characterize such solution as a minimizer of a Rellich quotient among the functions in H1
0 (Bm+1(0, 1/2))

invariant by the action of the group

Gm = {σ ∈ O(m+ 1); ∃ g ∈ O(m) s.t. σ(z1, . . . zm, zm+1) = (g(z1, . . . , zm), zm+1)}.

We can assume that vα > 0 in Bm+1(0, 1/2). So arguing as in the previous paragraph, there exists 0 ≤ ρα <
1

2
such that

Mα := max
z∈Bm+1(0,1/2)

vα(z) = vα(0, . . . , 0,−ρα). (4.5)

Let

wα(z) =

(
1

4

)1/(p−2)

vα

(z
2

)
. (4.6)
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Then wα > 0 in Bm+1(0, 1) and wα is a least energy solution among the axially symmetric, with respect to

Rem+1 ⊂ Rm+1, solutions of {
−∆m+1w = hα(z)|w|p−2w, z ∈ Bm+1(0, 1),

w = 0 on ∂Bm+1(0, 1),
(4.7)

with

hα(z) :=

(
|z| − zm+1

2

)α
2

|z|
, z ∈ Bm+1(0, 1).

Also observe that for every α > 2

hα(z) =

(
|z| − zm+1

2

)α
2

|z|
< |z|

α−2
2 ∀ z ∈ Bm+1(0, 1)\{0}. (4.8)

Now we compare (4.7) and{
−∆m+1ψ = |z|α−2

2 |ψ|p−2ψ, z ∈ Bm+1(0, 1),

ψ = 0 on ∂Bm+1(0, 1).
(4.9)

We set

Hm := {w ∈ H1
0 (Bm+1(0, 1)); gu = u ∀ g ∈ Gm},

the space of functions in H1
0 (Bm+1(0, 1)) that are axially symmetric with respect to Rem+1 ⊂ Rm+1. We

also set

Sα,p := inf
ψ∈H1

0 (Bm+1(0,1))\{0}

∫
|∇ψ|2dz(∫

|z|α−2
2 |ψ|pdz

)2/p
and S′α,p := inf

w∈Hm\{0}

∫
|∇w|2dz(∫

hα(z)|w|pdz
)2/p .

Then, from [24, 17], we have that any minimizer ψ of Sα,p, up to rotation, is such that ψ ∈ Hm. Then,

from (4.8) we conclude that

S′α,p > Sα,p for every α > 2. (4.10)

We recall that
Sα,p

α[2(m+1)−p(m−1)]/p
=

m1,p

2[2(m+1)−p(m−1)]/p
+ o(1) as α→∞, (4.11)

where

mγ,p = inf

{∫
|∇w|2dz;w ∈ D1,2

0 (Rm+1
+ ),

∫
Rm+1

+

e−γzm+1 |w|pdz = 1

}
,

which is attained for every γ > 0 and 2 < p < 2(m+1)
m−1 ; see [8, Theorem 2.1 and Remark 4.8]. In particular,

from (4.11), there exist C1, C2 > 0 such that

C1α
[2(m+1)−p(m−1)]/p ≤ Sα,p ≤ C2α

[2(m+1)−p(m−1)]/p as α→∞. (4.12)

Moreover, the equation

−∆w = e−zm+1 |w|p−2w in Rm+1
+ (4.13)

is called the limit problem associated to (4.9), since after suitable rescaling, as showed in [8], least energy

solutions of (4.9) converge to least energy solutions of (4.13) as α→∞.

Next we prove that S′α,p may also be controlled as in (4.12). Indeed we show that the limit problem

associated to (4.7) is a slight variation of (4.13).
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Proposition 4.2. There holds

S′α,p
α[2(m+1)−p(m−1)]/p

= m1/2,p + o(1) as α→∞. (4.14)

We prove some preliminary lemmas in order to go through the proof of Proposition 4.2.

Lemma 4.3. There exist C1, C2 positive constants such that

C1α
[2(m+1)−p(m−1)]/p ≤ S′α,p ≤ C2α

[2(m+1)−p(m−1)]/p as α→∞. (4.15)

Proof. Given ε > 0, choose wε ∈ C∞c (Rm+1
+ ) such that, wε 6= 0, wε is axially symmetric with respect to

Rem+1 ⊂ Rm+1 and ∫
Rm+1

+
|∇wε(s)|2ds(∫

Rm+1
+

e−(sm+1/2)|wε(s)|pds
)2/p

< m1/2,p + ε.

Set

wε(z) = wε(αz
′, α[(1− |z′|2)1/2 + zm+1]), z = (z′, zm+1) ∈ Bm+1(0, 1).

Then, it is easy to see that wε ∈ Hm for any large α.

We will perform the change of variables for x = (x′, xm+1), s = (s′, sm+1) ∈ Rm × R:

x = αem+1 + αz and s′ = x′, sm+1 = xm+1 + α(−1 + (1− α−2|x′|2)1/2). (4.16)

Then, since wε has compact support in Rm+1
+ we get:

∫
Bm+1(0,1)

|∇wε|2dz = α2

∫
Bm+1(0,1)

{
m∑
i=1

[∣∣∣∂iwε(αz′, α[(1− |z′|2)1/2 + zm+1])

− zi
(1− |z′|2)1/2

∂m+1wε(αz
′, α[(1− |z′|2)1/2 + zm+1])

∣∣∣∣2
]

+
∣∣∣∂m+1wε(αz

′, α[(1− |z′|2)1/2 + zm+1])
∣∣∣2} dz

= α1−m
∫
Bm+1(αem+1,α)

{
m∑
i=1

[∣∣∣∂iwε(x′, (α2 − |x′|2)1/2 + xm+1 − α)

− α−1xi
(1− α−2|x′|2)1/2

∂m+1wε(x
′, (α2 − |x′|2)1/2 + xm+1 − α)

∣∣∣∣2
]

+
∣∣∣∂m+1wε(x

′, (α2 − |x′|2)1/2 + xm+1 − α)
∣∣∣2} dx

= α1−m
∫
Rm+1

+

{
m∑
i=1

[∣∣∣∣∂iwε(s)− α−1si
(1− α−2|s′|2)1/2

∂m+1wε(s)

∣∣∣∣2
]

+ |∂m+1wε(s)|2
}
ds

= α1−m

[∫
Rm+1

+

|∇wε(s)|2ds+O(α−1)

]
.

On the other hand, by the change of variables (4.16), we have

hα(z) =

(
|x− αem+1| − (xm+1 − α)

2α

)α/2/∣∣∣x
α
− em+1

∣∣∣
=

(√
|s′|2 + (sm+1 − (α2 − |s′|2)1/2)2 − (sm+1 − (α2 − |s′|2)1/2)

2α

)α/2/√√√√√∣∣∣∣s′α
∣∣∣∣2 +

sm+1

α
−

(
1−

∣∣∣∣s′α
∣∣∣∣2
)1/2

2

.
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Now, if s ∈ suppwε, then√√√√√∣∣∣∣s′α
∣∣∣∣2 +

sm+1

α
−

(
1−

∣∣∣∣s′α
∣∣∣∣2
)1/2

2

= 1 +O(α−1)

and√
|s′|2 + (sm+1 − (α2 − |s′|2)1/2)2 − (sm+1 − (α2 − |s′|2)1/2)

2α

= −sm+1

α
+ 1 +

√
|s′|2 + (sm+1 − (α2 − |s′|2)1/2)2 + (sm+1 − (α2 − |s′|2)1/2)

2α
+

(α2 − |s′|2)1/2 − α
α

= 1− sm+1/2

α/2
+O(α−2).

Then, if s ∈ suppwε we have,

hα(z) = e−
sm+1

2 +O(α−1) +O(α−1) (4.17)

and so∫
Bm+1(0,1)

hα(z)wpε (z)dz = α−(m+1)

[∫
Rm+1

+

e−
sm+1

2 +O(α−1)wpε (s)ds+O(α−1)

]

= α−(m+1)

[∫
Rm+1

+

e−
sm+1

2 wpε (s)ds+O(α−1)

]
.

Hence, by the definition of S′α,p, we have

S′α,p ≤ α[2(m+1)−p(m−1)]/p

∫
Rm+1

+
|∇wε|2ds+O(α−1)(∫

Rm+1
+

e−
sm+1

2 wpε (s)ds+O(α−1)
)2/p

= α[2(m+1)−p(m−1)]/p

∫
Rm+1

+
|∇wε|2ds(∫

Rm+1
+

e−
sm+1

2 wpε (s)ds
)2/p

+O(α−1)

≤ m1/2,p + ε+O(α−1).

From (4.10), (4.12) and the last inequality we have that there exist C1 > 0 such that

C1 ≤
S′α,p

α[2(m+1)−p(m−1)]/p
≤ m1/2,p + o(1) as α→∞. (4.18)

�

Let wα > 0 be a least energy solution among the axially symmetric, with respect to Rem+1 ⊂ Rm+1,

solutions of (4.7). Then∫
Bm+1(0,1)

|∇wα|2dz =

∫
Bm+1(0,1)

hα(z)wpαdz =
(
S′α,p

)p/p−2

and from (4.15), there exist C1, C2 positive constants such that

C1α
[2(m+1)−p(m−1)]/(p−2) ≤

∫
Bm+1(0,1)

|∇wα|2dz =

∫
Bm+1(0,1)

hα(z)wpαdz ≤ C2α
[2(m+1)−p(m−1)]/(p−2)

(4.19)

as α→∞.
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Set

wα(z) = α−2/(p−2)wα

( z
α

)
, z ∈ Bm+1(0, α).

Then we have

−∆wα = hα

( z
α

)
(wα)p−1, z ∈ Bm+1(0, α) with wα = 0 on ∂Bm+1(0, α)

and ∫
Bm+1(0,α)

|∇wα|2dz = α−[2(m+1)−p(m−1)]/(p−2)

∫
Bm+1(0,1)

|∇wα|2dz

and hence

C1 ≤
∫
Bm+1(0,α)

|∇wα|2dz ≤ C2 as α→∞. (4.20)

On the other hand, as proved in [8, pp. 473 and 474], there exists C3 > 0 such that

inf
u∈H1

0 (Bm+1(0,1)), u 6=0

∫
|∇u|2dz∫

|z|(α−2)/2u2dz
≥ C3α

2 as α→∞.

As a consequence ∫
|∇wα|2dz∫
hα(z)w2

αdz
>

∫
|∇wα|2dz∫

|z|(α−2)/2w2
αdz
≥ C3α

2 as α→∞.

Then we combine (4.19) and the last inequality to get∫
Bm+1(0,α)

hα

( z
α

)
w2
α(z)dz = αm+1− 4

p−2

∫
Bm+1(0,1)

hα(z)w2
α(z)dz

≤ Cα[p(m−1)−2(m+1)]/(p−2)

∫
Bm+1(0,1)

|∇wα|2dz ≤ C as α→∞. (4.21)

Lemma 4.4. There exist C1, C2 positive constants such that

C1 ≤ max
z∈Bm+1(0,α)

wα(z) ≤ C2 as α→∞, (4.22)

that is,

C1α
2/(p−2) ≤ max

z∈Bm+1(0,1)
wα(z) ≤ C2α

2/(p−2) as α→∞. (4.23)

Proof. From (4.20) and (4.21), it follows that

0 < C1 ≤
∫
Bm+1(0,α)

|∇wα|2dx =

∫
Bm+1(0,α)

hα

( z
α

)
(wα)pdz

≤ max
z∈Bm+1(0,α)

(wα)p−2

∫
Bm+1(0,α)

hα

( z
α

)
(wα)2dz ≤ C max

z∈Bm+1(0,α)
(wα)p−2 as α→∞.

Now we prove the reverse inequality. By contradiction, suppose that (‖wα‖∞) is not bounded from above

as α → ∞. Then there exists a sequence (αn) such that ‖wαn‖∞ → ∞ and αn → ∞ as n → ∞. Let

zαn ∈ Bm+1(0, αn) such that ‖wαn‖∞ = wαn(zαn) and set

vαn(z) =
1

‖wαn‖∞
wαn

(
‖wαn‖−(p−2)/2

∞ z + zαn

)
, z ∈ Bm+1(−zαn‖wαn‖(p−2)/2

∞ , αn‖wαn‖(p−2)/2
∞ )

Then

−∆vαn = hαn

(
‖wαn‖

−(p−2)/2
∞ z

αn
+ zαn

)
(vαn)p−1 in Bm+1(−zαn‖wαn‖(p−2)/2

∞ , αn‖wαn‖(p−2)/2
∞ )
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with homogenous Dirichlet boundary condition. Observe that, from (4.20) and 2 < p < 2(m+1)
m−1 , it follows

that ∫
|∇vαn |2dz = ‖wαn‖[p(m−1)−2(m+1)]/2

∞

∫
|∇wαn |2dz → 0 as α→∞.

Then Bm+1(−zαn‖wαn‖
(p−2)/2
∞ , αn‖wαn‖

(p−2)/2
∞ ) → Ω as αn → ∞, where Ω = Rm+1 or Ω is a (possibly

affine) half-space in Rm+1 and we get the existence of v a solution of

−∆v = 0 in Ω with ‖v‖∞ = 1, v ∈ D1,2
0 (Ω),

which contradicts the classical Liouville’s theorem. �

Let 0 ≤ τα < 1, see (4.5) and (4.6), such that

max
z∈Bm+1(0,1)

wα(z) = wα(−τem+1).

Lemma 4.5. The product

α(1− τα) remains bounded as α→∞.

Proof. By contradiction assume that there exists a sequence (αn) such that

αn →∞, αn(1− ταn)→∞ as n→∞.

Set

w̃αn(z) = α−2/(p−2)wαn

(
z

αn
− ταnem+1

)
, z ∈ Ωn := Bm+1(αnταnem+1, αn).

Then 

−∆w̃αn = hαn

(
z
αn
− ταnem+1

)
(w̃αn)p−1, z ∈ Ωn with w̃αn = 0 on ∂Ωn,

0 < C1 ≤ w̃αn(0) = maxΩn w̃αn ≤ C2, as n→∞ by (4.22),

(w̃αn) is bounded in D1,2(Rm+1) by (4.20),

Ωn → Rm+1 as n→∞,

hαn

(
z
αn
− ταnem+1

)
→ 0 L∞loc(Rm+1) as n→∞.

As a consequence, we obtain w ∈ D1,2(Rm+1) a bounded positive solution of

−∆w = 0 in Rm+1,

which contradicts the classical Liouville’s theorem. �

Proposition 4.6. We have the convergence∫
Rm+1

+

|∇ŵα −∇w|2dz → 0 as α→∞, (4.24)

where

ŵα(z) = α−2/(p−2)wα

( z
α
− em+1

)
, z ∈ Ωα := Bm+1(αem+1, α)

and, up to normalizing, w minimizes m1/2,p.
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Proof. It follows from (4.20) that (ŵα) remains bounded in D1,2
0 (Rm+1

+ ) as α → ∞. Then there exist

w ∈ D1,2
0 (Rm+1

+ ) such that ŵα ⇀ w in D1,2
0 (Rm+1

0 ) as α→∞. Observe that

−∆ŵα(z) = hα

( z
α
− em+1

)
(ŵα)p−1(z) in Ωα and ŵα = 0 on ∂Ωα.

Also observe that

0 ≤ hα
( z
α
− em+1

)
≤ 1 ∀ z ∈ Ωα

and from (4.23), there exist C1, C2 > 0 such that

C1 ≤ ŵα(z) ≤ C2 ∀ z ∈ Ωα.

Then, from classical regularity results for second order elliptic equations as in [1] and classical Sobolev

imbeddings, we obtain that

ŵα → w in C1
loc(R

m+1
+ ). (4.25)

Now observe that

hα

( z
α
− em+1

)
=

(
|z − αem+1| − (zm+1 − α)

2α

)α/2/∣∣∣ z
α
− em+1

∣∣∣ ∀ z ∈ Ωα.

Then, as we did at (4.17), we conclude that w solves{
−∆w = e−zm+1/2wp−1 in Rm+1

+ ,

w > 0 in Rm+1
+ and w ∈ D1,2

0 (Rm+1
+ ).

(4.26)

Then, from (4.26) and from the definition of m1/2,p we conclude that∫
Rm+1

+

|∇w|2dz =

∫
Rm+1

+

e−zm+1/2wpdz ≥ mp/(p−2)
1/2,p . (4.27)

With R > 0 large with R < α we define

BR,α =
{
z;
z

α
− em+1 ∈ Bm+1(−em+1, R/α) ∩Bm+1(0, 1)

}
.

From (4.18) and with the change of variables x = z
α − em+1 we have(

m
p/p−2
1/2,p + o(1)

)
α[2(m+1)−p(m−1)]/(p−2) ≥ (S′α,p)

p/(p−2) =

∫
Bm+1(0,1)

|∇wα|2dx

=

∫
Bm+1(0,1)∩Bm+1(−em+1,R/α)

|∇wα|2dx+

∫
Bm+1(0,1)\Bm+1(−em+1,R/α)

|∇wα|2dx

= α[2(m+1)−p(m−1)]/(p−2)

[∫
BR,α

|∇ŵα|2dz +

∫
Bm+1(αem+1,α)\BR,α

|∇ŵα|2dz

]

≥ α[2(m+1)−p(m−1)]/(p−2)

∫
BR,α

|∇ŵα|2dz.

Then from (4.25) and (4.27) it follows that(
m
p/p−2
1/2,p + o(1)

)
≥
∫
BR,α

|∇ŵα|2dz =

∫
Rm+1

+ ∩Bm+1(0,R)

|∇ŵα|2dz + o(1)

=

∫
Rm+1

+ ∩Bm+1(0,R)

|∇w|2dz + o(1) ≥ mp/(p−2)
1/2,p + oR(1) + o(1).
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Hence we obtain∫
Bm+1(αem+1,α)\BR,α

|∇ŵα|2dz = o(1) + oR(1) when R < α, R→∞,

∫
BR,α

|∇ŵα|2dz =

∫
Rm+1

+ ∩Bm+1(0,R)

|∇w|2dz + o(1) = m
p/(p−2)
1/2,p + oR(1) + o(1) when R < α, R→∞.

Then, from (4.25) and since (ŵα) is bounded in D1,2
0 (Rm+1

+ ), it follows that∫
Rm+1

+

|∇ŵα −∇w|2dz =

∫
Rm+1

+ ∩Bm+1(0,R)

|∇ŵα −∇w|2dz +

∫
Rm+1

+ \Bm+1(0,R)

|∇ŵα −∇w|2dz

≤ o(1) +

∫
Bm+1(αem+1,α)\BR,α

|∇ŵα −∇w|2dz +

∫
Rm+1

+ \Bm+1(0,R)

|∇w|2dz

= o(1) + oR(1)− 2

∫
Bm+1(αem+1,α)\BR,α

∇ŵα∇wdz ≤ o(1) + oR(1) + 2C

(∫
Bm+1(αem+1,α)\BR,α

|∇w|2dz

)1/2

= o(1) + oR(1).

Hence we conclude that ∫
Rm+1

+

|∇ŵα −∇w|2dz → 0 as α→∞,

and that
∫
Rm+1

+
|∇w|2dz = m

p/(p−2)
1/2,p and so w minimizes m1/2,p. �

Proposition 4.7. There exists l > 0 such that

α(1− τα)→ l as α→∞. (4.28)

Proof. We have proved that ŵα → w in C1
loc(R

m+1
+ ) as α→∞ and from Lemma 4.5 we know that α(1− τα)

remains bounded as α→∞.

Let zα be the maximum point of ŵα. Then

− ταem+1 =
zα
α
− em+1 which implies zα = α(1− τα)em+1. (4.29)

and we obtain that the maximum point of ŵα converges to the maximum point of w, which is precisely lem+1

for some l > 0, which follows from (4.26) and the moving planes technique as in [10]. Indeed w is axially

symmetric with respect to Rem+1 ⊂ Rm+1 and decreasing with respect to |z′|. Therefore, from (4.29) we

conclude that

α(1− τα)→ l as α→∞.

�

Proof of Proposition 4.2. From (4.24) we obtain that

m
p/(p−2)
1/2,p =

∫
Rm+1

+

|∇w|2dz =

∫
Bm+1(αem+1,α)

|∇ŵα|2dz + o(1)

= α[p(m−1)−2(m+1)]/(p−2)

∫
Bm+1(0,1)

|∇wα|2dx+ o(1) = α[p(m−1)−2(m+1)]/(p−2)(S′α,p)
p/(p−2) + o(1).
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Therefore
S′α,p

α[2(m+1)−p(m−1)]/p
= m1/2,p + o(1) as α→∞. �

Proof of Theorem 1.2. It follows from Lemma 4.4, Propositions 4.6 and 4.7. �

5. Hyperplanes preventing diffusion and proof of Theorem 1.3

In this section we consider the problem{
−∆Nu = |zN |α|u|p−2u, z = (z1, . . . , zN ) ∈ BN (0, 1),

u = 0 on ∂BN (0, 1).
(5.1)

where p and N satisfy the conditions from Theorem 1.3. The procedure to study (5.1) is quite similar to

that from Section 4, but due to its technicality we also include some details here.

By the moving planes technique [10] we know that any classical positive solution of (5.1) is such that

u(z1, . . . , zN−1, zN ) = u(|(z1, . . . , zN−1)|, zN ) and that u(·, zN ) decreases with respect to |(z1, . . . , zN−1)|.
Therefore, if we look for positive solutions of (5.1) such that u(z1, . . . , zN−1, zN ) = u(|(z1, . . . , zN−1)|, |zN |)
we obtain that for any such solution, there exists 0 ≤ r < 1 such that

max
(z1,...,zN )∈BN (0,1)

= u(reN ) = u(−reN ).

Now let uα be a least energy solution among the solutions of (5.1) that depend only on |(z1, . . . , zN−1)|
and |zN |. Then, by the principle of symmetric criticality [19], we characterize such solution as a minimizer

of a Rellich quotient among the functions in H1
0 (BN (0, 1)) invariant by the action of the group

GN = O(N − 1)× Z2.

We can assume that uα > 0 in BN (0, 1). So arguing as in the previous paragraph, there exists 0 ≤ rα < 1

such that

Mα := max
(z1,...,zN )∈BN (0,1)

uα(z1, . . . , zN ) = uα(rαen) = uα(−rαen).

We set

HD,N := {u ∈ H1
0 (BN (0, 1)); gu = u ∀ g ∈GN},

the space of functions in H1
0 (BN (0, 1)) that are axially symmetric with respect to ReN ⊂ RN and symmetric

with respect to xN . We also set

Kα,p := inf
ψ∈H1

0 (BN (0,1))\{0}

∫
|∇ψ|2dz(∫

|z|α|ψ|pdz
)2/p and K ′α,p := inf

w∈HD,N\{0}

∫
|∇w|2dz(∫

|zN |α|w|pdz
)2/p .

Then, from [24, 17], we have that any minimizer ψ of Kα,p, up to rotation, is such that ψ is axially

symmetric with respect to ReN . Then, since |zN |α ≤ |z|α, we conclude that

K ′α,p > Kα,p for every α > 0. (5.2)

We recall that
Kα,p

α[2N−p(N−2)]/p
= m1,p + o(1) as α→∞, (5.3)

where

mγ,p = inf

{∫
|∇w|2dz;w ∈ D1,2

0 (RN+ ),

∫
RN+

e−γzN |w|pdz = 1

}
,
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which is attained for every γ > 0 and 2 < p < 2N
N−2 ; see [8, Remark 4.8 and Theorem 2.1]. In particular,

from (5.3), there exist C1, C2 > 0 such that

C1α
[2N−p(N−2)]/p ≤ Kα,p ≤ C2α

[2N−p(N−2)]/p as α→∞. (5.4)

Moreover, the equation

−∆w = e−zN |w|p−2w in RN+ (5.5)

is called the limit problem associated to

−∆u = |z|α|u|p−2u in BN (0, 1), u = 0 on ∂BN (0, 1), (5.6)

since after suitable rescaling, we can show that least energy solutions of (5.6) converges to least energy

solutions of (5.5) as α→∞.

Next we prove that K ′α,p may also be controlled as in (5.4). Indeed we show that the limit problem

associated to (5.1), for solutions that are axially symmetric with respect to ReN ⊂ RN and symmetric with

respect to xN , is also (5.5).

Proposition 5.1. There holds

K ′α,p
α[2N−p(N−2)]/p

= 21−2/pm1,p + o(1) as α→∞. (5.7)

We prove some preliminary lemmas in order to go through the proof of Proposition 5.1.

Lemma 5.2. There exist C1, C2 positive constants such that

C1α
[2N−p(N−2)]/p ≤ K ′α,p ≤ C2α

[2N−p(N−2)]/p as α→∞. (5.8)

Proof. Given ε > 0, choose uε ∈ C∞c (RN+ ) such that, uε 6= 0, uε is axially symmetric with respect to

ReN ⊂ RN and ∫
RN+
|∇uε(s)|2ds(∫

RN+
e−sN |uε(s)|pds

)2/p
< m1,p + ε.

Set

uε(z) = uε(αz
′, α[(1− |z′|2)1/2 − |zN |]), z = (z′, zN ) ∈ BN (0, 1).

Then, it is easy to see that uε ∈ HD,N for any α > 0.

We will perform the change of variables

x = αeN + αz and s′ = x′, sN = xN + α(−1 + (1− α−2|x′|2)1/2). (5.9)
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Then, since uε has compact support in RN+ , for any α large we get:

∫
BN (0,1)

|∇uε|2dz = 2α2

∫
BN (0,1), zN<0

{
N−1∑
i=1

[∣∣∣∂iuε(αz′, α[(1− |z′|2)1/2 + zN ])

− zi
(1− |z′|2)1/2

∂Nuε(αz
′, α[(1− |z′|2)1/2 + zN ])

∣∣∣∣2
]

+
∣∣∣∂Nuε(αz′, α[(1− |z′|2)1/2 + zN ])

∣∣∣2} dz
= 2α2−N

∫
BN (αeN ,α), xN<α

{
N−1∑
i=1

[∣∣∣∂iuε(x′, (α2 − |x′|2)1/2 + xN − α)

− α−1xi
(1− α−2|x′|2)1/2

∂Nuε(x
′, (α2 − |x′|2)1/2 + xN − α)

∣∣∣∣2
]

+
∣∣∣∂Nuε(x′, (α2 − |x′|2)1/2 + xN − α)

∣∣∣2} dx
= 2α2−N

∫
RN+

{
N−1∑
i=1

[∣∣∣∣∂iuε(s)− α−1si
(1− α−2|s′|2)1/2

∂Nuε(s)

∣∣∣∣2
]

+ |∂Nuε(s)|2
}
ds

= 2α2−N

[∫
RN+
|∇uε(s)|2ds+O(α−1)

]
.

On the other hand, by the change of variables (5.9), we have that for z ∈ BN (0, 1) with zN < 0 that

0 < xN < α and

|zN |α =
∣∣∣1− xN

α

∣∣∣α =
∣∣∣sN
α
− (1− α−2|s′|2)1/2

∣∣∣α .
Now, if s ∈ supp uε, then ∣∣∣sN

α
− (1− α−2|s′|2)1/2

∣∣∣ = 1− sN
α

+O(α−2)

and

|zN |α = e−sN+O(α−1) +O(α−1). (5.10)

Hence∫
BN (0,1)

|zN |αupε (z)dz = 2

∫
BN (0,1), zN<0

|zN |αupε (z)dz = 2α−N

[∫
RN+

e−sN+O(α−1)upε (s)ds+O(α−1)

]

= 2α−N

[∫
RN+

e−sNupε (s)ds+O(α−1)

]
.

By the definition of K ′α,p, we have

K ′α,p ≤ 21−2/pα[2N−p(N−2)]/p

∫
RN+
|∇uε|2ds+O(α−1)(∫

RN+
e−sNupε (s)ds+O(α−1)

)2/p

= 21−2/pα[2N−p(N−2)]/p

∫
RN+
|∇uε|2ds(∫

RN+
e−sNupε (s)ds

)2/p

+O(α−1)

≤ 21−2/pα[2N−p(N−2)]/p(m1,p + ε) +O(α−1).

From (5.2), (5.4) and the last inequality we have that there exist C1 > 0 such that

C1 ≤
K ′α,p

α[2N−p(N−2)]/p
≤ 21−2/pm1,p + o(1) as α→∞. (5.11)

�
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Let uα > 0 be a least energy solution among those which are axially symmetric with respect to ReN ⊂ RN

and symmetric with respect to xN solutions of (5.1). Then∫
BN (0,1)

|∇uα|2dz =

∫
BN (0,1)

|zN |αupαdz =
(
K ′α,p

)p/p−2

and from (5.8), there exist C1, C2 positive constants such that

C1α
[2N−p(N−2)]/(p−2) ≤

∫
BN (0,1)

|∇uα|2dz =

∫
BN (0,1)

|zN |αupαdz ≤ C2α
[2N−p(N−2)]/(p−2) (5.12)

as α→∞.

Set

uα(z) = α−2/(p−2)uα

( z
α

)
, z ∈ BN (0, α).

Then we have

−∆uα =
∣∣∣zN
α

∣∣∣α (uα)p−1, z ∈ BN (0, α) with wα = 0 on ∂BN (0, α)

and ∫
BN (0,α)

|∇uα|2dz = α−[2N−p(N−2)]/(p−2)

∫
BN (0,1)

|∇uα|2dz

and hence

C1 ≤
∫
BN (0,α)

|∇uα|2dz ≤ C2 as α→∞. (5.13)

Then we can proceed as in Section 4 to prove the estimate below.

Lemma 5.3. There exist C1, C2 positive constants such that

C1 ≤ max
z∈BN (0,α)

uα(z) ≤ C2 as α→∞, (5.14)

that is,

C1α
2/(p−2) ≤ max

z∈BN (0,1)
uα(z) ≤ C2α

2/(p−2) as α→∞. (5.15)

Proof. It follows exactly as in the proof of Lemma 4.4. �

Let 0 ≤ rα < 1 such that

max
z∈BN (0,1)

uα(z) = uα(−rαeN ) = uα(rαeN ).

We can follow the proof of Lemma 4.5 to get the estimate below.

Lemma 5.4. The product

α(1− rα) remains bounded as α→∞.

Proposition 5.5. We have the convergence∫
RN+
|∇ûα −∇u|2dz → 0 as α→∞, (5.16)

where

ûα(z) = α−2/(p−2)uα

( z
α
− eN

)
, z ∈ Ωα := {z ∈ BN (αeN , α); zN < α}

and, up to normalization, u minimizes m1,p.
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Proof. It follows from (5.13) that (∇ûα) remains bounded in L2(Rm+1
+ ) as α→∞. Observe that

−∆ûα(z) =
∣∣ zN
α − eN

∣∣α (ûα)p−1(z) in Ωα,

ŵα(z) = 0 on z ∈ ∂Ωα s.t. 0 ≤ zN < α,
∂ŵ
∂ν (z) = 0 on z ∈ ∂Ωα s.t. zN = α.

Also observe that

0 ≤
∣∣∣zN
α
− eN

∣∣∣α ≤ 1 ∀ z ∈ Ωα

and from (5.15), there exist C1, C2 > 0 such that

C1 ≤ ûα(z) ≤ C2 ∀ z ∈ Ωα.

Then, from classical regularity results for second order elliptic equations as in [1] and classical Sobolev

imbeddings, we obtain that there exists w ∈ D1,2
0 (RN+ )

ûα → u in C1
loc(RN+ ). (5.17)

Then we conclude that w solves {
−∆u = e−zNup−1 in RN+ ,
u > 0 in RN+ and u ∈ D1,2

0 (RN+ ).
(5.18)

Then, from (5.18) and from the definition of m1,p we conclude that∫
RN+
|∇u|2dz =

∫
RN+

e−zNupdz ≥ mp/(p−2)
1,p . (5.19)

With R > 0 large with R < α we define

BR,α =
{
z;
z

α
− eN ∈ BN (−eN , R/α) ∩BN (0, 1)

}
.

From (5.11) and with the change of variables x = z
α − eN we have

(
2m

p/p−2
1,p + o(1)

)
α[2(m+1)−p(m−1)]/(p−2) ≥ (K ′α,p)

p/(p−2) = 2

∫
BN (0,1), zN<0

|∇uα|2dx

= 2

∫
BN (0,1)∩BN (−eN ,R/α)

|∇uα|2dx+ 2

∫
(BN (0,1), zN<0)\Bm+1(−em+1,R/α)

|∇uα|2dx

= 2α[2N−p(N−2)]/(p−2)

[∫
BR,α

|∇ûα|2dz +

∫
Ωα\BR,α

|∇ûα|2dz

]

≥ 2α[2N−p(N−2)]/(p−2)

∫
BR,α

|∇ûα|2dz.

Then from (5.17) and (5.19) it follows that(
2m

p/p−2
1,p + o(1)

)
≥ 2

∫
BR,α

|∇ûα|2dz = 2

∫
RN+∩BN (0,R)

|∇ûα|2dz + o(1)

= 2

∫
RN+∩BN (0,R)

|∇u|2dz + o(1) ≥ 2m
p/(p−2)
1,p + oR(1) + o(1).
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Hence we obtain∫
Ωα\BR,α

|∇ûα|2dz = o(1) + oR(1) when R < α, R→∞,

∫
BR,α

|∇ûα|2dz =

∫
RN+∩BN (0,R)

|∇u|2dz + o(1) = m
p/(p−2)
1,p + oR(1) + o(1) when R < α, R→∞.

Then, from (5.17) and since (∇ûα) is bounded in L2(RN+ ), it follows that∫
RN+
|∇ûα −∇u|2dz =

∫
RN+∩BN (0,R)

|∇ûα −∇u|2dz +

∫
RN+ \BN (0,R)

|∇ûα −∇u|2dz

≤ o(1) +

∫
Ωα\BR,α

|∇ûα −∇u|2dz +

∫
RN+ \BN (0,R)

|∇u|2dz

= o(1) + oR(1)− 2

∫
Ωα\BR,α

∇ûα∇udz ≤ o(1) + oR(1) + 2C

(∫
Ωα\BR,α

|∇u|2dz

)1/2

= o(1) + oR(1).

Hence we conclude that ∫
RN+
|∇ûα −∇u|2dz → 0 as α→∞,

and that
∫
RN+
|∇u|2dz = m

p/(p−2)
1,p and so w minimizes m1,p. �

Proposition 5.6. There exists l > 0 such that

α(1− τα)→ l as α→∞.

Proof. Exactly as the proof of Proposition 4.7. �

Proof of Proposition 5.1. From (5.16) we obtain that

m
p/(p−2)
1,p =

∫
RN+
|∇u|2dz =

∫
Ωα

|∇ûα|2dz + o(1)

= α[p(N−2)−2N ]/(p−2)

∫
BN (0,1), zN<0

|∇uα|2dx+ o(1) =
1

2
α[p(N−2)−2N ]/(p−2)(K ′α,p)

p/(p−2) + o(1).

Therefore
K ′α,p

α[2N−p(N−2)]/p
= 21−2/pm1,p + o(1) as α→∞. �

Proof of Theorem 1.3. It follows from Lemma 5.3, Propositions 5.5 and 5.6. �
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4, 453–467. 7, 8

[3] J. Batt. Global symmetric solutions of the initial value problem of stellar dynamics. J. Differential Equations 25 (1977),

no. 3, 342–364. 2

[4] J. Batt, W. Faltenbacher, E. Horst. Stationary spherically symmetric models in stellar dynamics. Arch. Rational Mech.

Anal. 93 (1986), no. 2, 159–183. 2



24 EDERSON MOREIRA DOS SANTOS AND FILOMENA PACELLA

[5] J. Batt, Y. Li. The positive solutions of the Matukuma equation and the problem of finite radius and finite mass. Arch.

Ration. Mech. Anal. 198 (2010), no. 2, 613–675. 2
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