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Abstract 

Motivation: Determination of drug absorption is an important component of the drug discovery and development 

process in that it plays a key role in the decision to promote drug candidates to clinical trials. We have developed 

a method that, on the basis of an analysis of the dynamic distribution of water molecules around a compound ob-

tained by molecular dynamics simulations, can compute a parameter-free value that correlates very well with the 

compound permeability measured using the human colon adenocarcinoma (Caco-2) cell line assay.  

Results: The method has been tested on twenty-three neutral drugs for which a consistent set of experimental 

data is available. We show here that our method reproduces the experimental data better than other existing tools. 

Furthermore it provides a detailed view of the relationship between the hydration and the permeability properties 

of molecules. 

Contact: anna.tramontano@uniroma1.it  

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  

The study of drug absorption is of critical importance in the development 

of effective drugs. The path of a drug from the site of administration to 

its target cells or compartments implies the crossing of several semiper-

meable cell membranes, therefore it is relevant to be able to predict 

whether and to which extent a molecule can pass through the cell mem-

branes.  

Passive permeation of drugs through the biological cell membranes is 

obviously strongly dependent on the molecule physicochemical proper-

ties (Meanwell, 2011). It has been established that the acid–base charac-

ter of the molecule (which influences the charge of the molecule at the 

specific pH), its lipophilicity (which affects its partition between aqueous 

and lipid environments) and solubility are the most relevant parameters 

to take into account. These parameters are well described by the mole-

cule hydropathy profile (Siew, et al., 2012; Smith, et al., 2010). A more 

lipophilic drug is more likely to effectively cross the hydrophobic phos-

pholipid bilayer. On the other hand, extremely hydrophobic molecules, 

insoluble in aqueous body fluids, might be poorly absorbed (Frenkel, et 

al., 2005). In summary, there should be an appropriate balance between 

the hydrophobicity and hydrophilicity of a molecule (Ghuman, et al., 

2005; Seelig, et al., 1994; Waring, 2009). 

From an experimental point of view, data on permeability can be ob-

tained by in situ and/or in vivo animal studies, but these are time con-

suming and expensive experiments and therefore only performed to-

wards the end of the drug development process. Efforts have therefore 

focused on the development of in vitro permeability assays that can 

mimic the relevant characteristics of in vivo absorption. Among these, 

there are the parallel artificial membrane permeability assay (PAMPA) 

(Avdeef, et al., 2007), the human colon adenocarcinoma (Caco-2) cell 

line assay (Artursson, et al., 2001), the Madin-Darby canine kidney 

(MDCK) cell assay (Irvine, et al., 1999), the rat duodenal immortalized 

cell line assay (2/4A1 cell) (Tavelin, et al., 2003), and the rat everted gut 

sac assay (Bohets, et al., 2001). All of them are routinely used for the 

preliminary assessment of drug permeability. In particular, the Caco-2 

cell is probably the most extensively characterized cell-based model and 

the most popular both in the pharmaceutical industry and in academia 

(Balimane, et al., 2006). It has been shown that this model can effective-

ly predict the human initial drug absorption (Artursson and Karlsson, 
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1991) because it reflects the transport of the drug across a cell membrane 

rather than the interaction of the drug with the lipid bilayer (Hou, et al., 

2006). 

The membrane permeability for a given compound is usually estimated 

from its partition coefficient, logP, defined as the logarithm of the rela-

tive concentration of the molecule when it partitions between a two-

phase system, usually water and octanol, where the latter is assumed to 

have a lipophilicity comparable to that of a cell membrane (Artursson, et 

al., 2001; Seddon, et al., 2009). 

From the theoretical point of view, many computational approaches have 

been developed to infer drug properties, such as bioavailability, aqueous 

solubility, initial absorption, plasma-protein binding and toxicity (van de 

Waterbeemd and Gifford, 2003). These are often related to features such 

as molecular size, hydrophobicity, or number of hydrogen bonds estab-

lished by the compound with water molecules (since these bonds need to 

be broken to allow the molecule to pass the membrane) (Hou, et al., 

2004). 

In general, permeability may be estimated in terms of the free energy 

barrier that the drug should overcome when crossing the membrane, 

which is usually predicted from computationally intensive molecular 

dynamics simulations of the translocation process (Carpenter, et al., 

2014; Meng and Xu, 2013). Some methods compute the polar surface 

area (PSA) of the drug to predict its permeability under the assumption 

that this parameter correlates with the hydrogen-bonding pattern in the 

aqueous solvent of the molecule and therefore with the energy cost of 

transferring the molecule from the solvent to the membrane (Kelder, et 

al., 1999; Stenberg, et al., 1999). 

Other popular methods are the QSAR (Quantitative Structure-Property 

Relationship) analysis (Yu and Adedoyin, 2003), Multiple Linear Re-

gression (MLR), Partial Least Square (PLS), Linear Discriminant Analy-

sis (LDA), Artificial Neutral Networks (ANNs), Genetic Algorithms 

(Gas), Support Vector Machines (SVMs) and the "Lipinski rule of five" 

(Lipinski, 2000). In particular, the Lipinski's rule takes into account dif-

ferent features to assess whether a compound is likely to be cell mem-

brane permeable and easily absorbed by the body on the basis of the fol-

lowing criteria: molecular weight of the compound lower than 500; logP 

lower than 5; number of hydrogen bond donors (usually the number of 

hydroxyl and amine groups in a drug molecule) lower than 5; number of 

groups that can accept hydrogen atoms to form hydrogen bonds (estimat-

ed by the number of oxygen and nitrogen atoms) lower than 10. 

In this work we describe a new method based on an estimate of the hy-

dropathy and charge distribution of a compound deduced from the distri-

bution and orientation of the water molecules around it. We have already 

successfully used a similar approach to estimate the hydrophobicity of 

the twenty natural amino acids (Bonella, et al., 2014). Here we show 

that, when applied to a set of 23 drugs, neutral at physiological pH, to 

compute their hydrophobicity and charge distribution, the method can 

effectively predict their ability to cross the plasma membrane.  

Our dataset only includes neutral compounds since these are well known 

to mainly use passive transport to cross the phospholipid bilayer of the 

cell membrane (Neuhoff, et al., 2003; Neuhoff, et al., 2005; Seelig, 

2007) and therefore their diffusion and permeability is essentially related 

to their chemico-physical properties that is what our method can infer.   

2 Methods 

We analysed the hydration of small solutes by investigating the changes 

in the structure of the dynamic hydrogen bond network formed by the 

water molecules surrounding them as well as their orientation as ob-

tained by molecular dynamics simulations. 

2.1 Molecular Dynamics 

All simulations were performed using NAMD 2.7b1 (Phillips, et al., 

2005) and the CHARMM force field was used for the investigated com-

pounds (MacKerell, et al., 1998). In each simulation a single solute mol-

ecule was located in a cubic simulation box (with imposed periodic 

boundary conditions) filled with TIP4P rigid water molecules (Abascal 

and Vega, 2005). Each simulation contained a single copy of the com-

pound and the size of the box varied in a range of 56 – 62 Å depending 

on the compound considered. The topologies and parameters for the 

small molecule compounds were obtained via the SwissParam server 

(Zoete, et al., 2011) [www.swissparam.ch] that generates molecules to-

pologies and parameters for small organic compounds in a functional 

form that is compatible with the CHARMM force field. 

The Particle Mesh Ewald (PME) method was used to calculate the elec-

trostatic interactions. Each simulation was run for 1.5 ns. A 1 fs time step 

was used and the coordinates were retrieved every 0.5 ps. All simula-

tions were performed at T = 310 K, and the system was thermostated 

using Langevin dynamics. The simulations were performed also at con-

stant pressure using a modified Nosé-Hoover method in which Langevin 

dynamics is used to control fluctuations in the barostat (Hoover, 1985). 

More details about the molecular dynamics simulation parameters are 

available at: http://arianna.med.uniroma1.it/neutraldrugs/. 

 

 

 

 

 

 

 

Fig. 1.  Definition of the angles used in the analysis. We connect each solute atom (S 

in the figure) to the oxygen atom (red circle) of the closest water molecule and the same 

oxygen atom to each vertex of the water tetrahedron, thus defining the four angles, ���, 

���, ���	and ��� (for clarity only one, in green, is shown in the figure). Hydrogen atoms 

are represented as dark grey circles. We also define the dipole vector of the water mole-

cule (red arrow) and compute the angle �� between this vector and the line connecting the 

solute atom and the oxygen (in blue). 

2.2 Dataset 

We used a sample set of structurally diverse, small molecular weight 

drugs analysed by Yazdanian et al. (Yazdanian, et al., 1998) for which in 

vitro Caco-2 cell permeability data is available. We selected 23 neutral 

drugs at pH 7.4 from this dataset. 

The advantage of selecting this specific dataset is that the data have been 

obtained in the same experimental conditions. To verify how 

representative our dataset is, we collected data for 131 compounds 

available in the literature for a total of 277 Caco-2 cell permeability 

values (different values have been obtained for a number of these drugs 

in different experimental conditions) (Artursson, 1990; Artursson and 

 by A
nna T

ram
ontano on D

ecem
ber 11, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


 3

Karlsson, 1991; Artursson and Magnusson, 1990; Augustijns, et al., 

1996; Aungst, et al., 2000; Chong, et al., 1997; Collett, et al., 1996; Gres, 

et al., 1998; Haeberlin, et al., 1993; Hilgendorf, et al., 2000; Hou, et al., 

2004; Hovgaard, et al., 1995; Lentz, et al., 2000; Liang, et al., 2000; 

Rubas, et al., 1993; Ruiz-Garcia, et al., 2002; Saha and Kou, 2002; 

Schipper, et al., 2001; Wu, et al., 2000; Yee, 1997; Zhu, et al., 2002) and 

compared both their Caco2 experimental values (Figure S1) and their 

structural features.  

To estimate the latter, we computed the structural dissimilarity of our 

selected compounds and compared it with that of the 131 compounds. To 

this end, we used the ChemMine tool (Backman, et al., 2011) that takes 

into account parameters such as partition coefficient, rule-of-five, partial 

charges, fingerprint calculation and more (for a detailed description of 

the features see 

http://www.ra.cs.uniuebingen.de/software/joelib/tutorial/descriptors/desc

riptors.html"). We used these values to perform a clustering analysis, 

using the "hclust" function of R software package (Ihaka and Gentleman, 

1996) [http://www.R-project.org], the results of which are shown in 

Figure S2.  

As it can be seen, the 23 compounds from the Yazdanian et al. dataset 

(Yazdanian, et al., 1998), selected for the analysis, span quite uniformly 

about 85% of the available range both in terms of Caco2 values and of 

structural features. Some regions of the feature space are less well 

represented in our dataset (left most branch of the tree in Figure S2). 

These are all compounds with a rather large molecular weight (above 

500 Da). This might imply that our method might behave differently for 

very large compounds (that in any case are usually excluded a priori as 

leads because of their size). 

All compound three-dimensional coordinates were downloaded from the 

free public database ZINC (Irwin, et al., 2012) [zinc.docking.org]. For 

this study the following small molecule compounds were chosen: Grise-

ofulvin, Aminopyrine, Piroxicam, Diazepam, Nevirapine, Phenytoin, 

Testosterone, Progesterone, Clonidine, Corticosterone, Estradiol, Hydro-

cortisone, Dexamethasone, Scopolamine, Zidovudine, Urea, Uracil, Su-

crose, Hydrochlorothiazide, Mannitol, Ganciclovir, Acyclovir and Chlo-

rothiazide (Table 2). Of importance, they cover a wide range of permea-

bility values (Pcaco-2), from	36.6 ∗ 	10��	��/� to 0.19 ∗ 	10��	��/� 

and are as evenly distributed as possible (see Table 2). 

 

2.3 Data analysis 

The results of the molecular dynamics simulations of each molecule are 

used to evaluate the orientation of the water molecules in the first and 

second hydration shell, being the first related to the hydrophilic and the 

second to the hydrophobic characteristics of the compound, respectively 

(see ref (Bonella, et al., 2014) for details). 

We represent each water molecule as a tetrahedron, where an sp3-

hybridized oxygen atom lies at the center and two hydrogen atoms and 

two lone pair electrons point to the vertices. Each water molecule can 

then form up to four hydrogen bonds with other water molecules. Ac-

cording to this model of the water molecule, we can define four hydro-

gen bond vectors (HBV) and one dipole vector (Figure 1). The HBVs are 

defined as the lines connecting the oxygen atom and the vertices of the 

tetrahedron (in blue in the Figure 1). The dipole vector (in red in the Fig-

ure 1) lies along the bisectrix of the angle formed by the oxygen and the 

two hydrogen atoms. 

We can define the angles related to hydrogen bond orientations (���, 

���, ���	and ���) as those formed by the straight line linking the solute 

atom with the oxygen atom of the nearest water molecule and the hydro 

Fig. 2.  Histograms of P(��� |R)  and P(�� |R) for Diazepam. In both histograms the 

cells highlighted in grey are used to calculate the sum of the conditional probability densi-

ties at each given angle and distance. In the P(��� |R) histogram, the yellow arrows indi-

cate the first and second component of the hydrophilic index related to the two peaks in 

the first hydration shell. The green arrows show the first and the second component of the 

hydrophobic peaks that are localized in the second hydration shell. In the P(�� |R) histo-

gram, the blue arrow indicates the contribution of positive charge distribution. The pink 

arrow indicates the contribution of the negative charge distribution. 

 

gen bond vector (for clarity, only one of the four angles is represented in 

blue in Figure 1). Similarly, we can define the angle �� related to the 

orientation of the dipole vector as the angle formed by the straight line 

connecting a solute atom (S in Figure 1) to the oxygen atom of the clos-

est water molecule (in black) and the dipole vector of the molecule itself 

(in red). The different orientations of the water molecules around a solute 

can be used to analyse the compound hydrophilicity and hydrophobicity. 

In fact a water molecule in the vicinity of a hydrophobic solute positions 

one of the faces of the tetrahedron toward the solute. On the other hand, 

for a hydrophilic solute, a water molecule reorients to point toward the 

compound with one of its vertices. We need to take the dipole vector into 

account because the four vertices of the tetrahedron representing the wa-

ters are equivalent in our model and therefore it would be impossible to 

distinguish between positive and negative partial charges without con-

sidering ��. 

At each step of the molecular dynamics simulation, we can measure the 

values of the five angles (���, ���, ���, ��� and ��) and the distance R 

(Å) between each water molecule and the nearest solute atom and com-

pute the probability of finding a water molecule with a given orientation 

and around at a given distance from the solute atoms.  

The hydropathy and charge distribution properties are computed from 

the conditional probability density of the waters in the appropriate inter-

vals of the angles and distances described before. We can build two 

three-dimensional histograms for each simulation; the first reports the 

conditional probability density P(���|R) (for i = 1, 2, 3, 4), the second is 
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the conditional probability density P(��|R). R is defined as the distance 

between each solute atom and the oxygen atom of the nearest water mol-

ecule. The histogram distance and angle bins were set to 0.05 Å and 1°, 

respectively (Bonella, et al., 2014). 

 

2.4 Molecular descriptors 

The analysis of the conditional probability density distributions allows us 

to compute four indices, named ��, ��, �� and ��, obtained by summing 

the intensity of the peaks in the appropriate angle and distance range. 

As described in more detail in our previous work, (Bonella, et al., 2014) 

the distribution P(���|R) permits to distinguish between the hydrophilici-

ty and hydrophobicity of a compound on the basis of the probability val-

ues observed in the first and second hydration shell, respectively. Intui-

tively, this is justified by the fact that a polar solute will establish Cou-

lomb interactions with the closest water molecules and this situation will 

contribute to the peaks observed in the first hydration shell of the hydro-

gen bond histogram, while a hydrophobic (or apolar) solute will cause 

the waters to orient themselves as to maximize the number of hydrogen 

bonds with neighboring waters, forming a cage around the solute, and 

will contribute to peaks in the second hydration shell in the hydrogen 

bond histogram. 

The dipole probability density P(��|R) in the first hydration shell takes 

into account which of the vertices of the tetrahedron representing the 

waters (all equivalent in our model) is oriented towards the solute and 

therefore provides information about the electric charge (positive or neg-

ative) of the interacting solute atoms.  

We define the compound hydrophilicity �� and hydrophobicity �� as the 

sum of the hydrogen bond probability densities, computed over the ap-

propriate distance and angle range (∆θ and ∆R) in the first and second 

shell of hydration, respectively. The charge indices �� and �� are defined 

as the sum, in the appropriate range, of the probability densities in the 

first shell of the distribution related to dipole moment (see Figure 2). For 

more details, see ref. (Babiaczyk, et al., 2010; Bonella, et al., 2014).  

As shown in Figure S3a-c, the length of the MD simulation (1.5 ns) is 

sufficient to ensure convergence of the indices.   

The scheme used to select the boundaries of the region (∆θ and ∆R) is 

based on Guassian fits. In particular, we performed a Gaussian fit of the 

probability distribution for both the first and second hydration shell 

along the θ axis (see Figure S4) and determined the average and standard 

deviation of the Guassian distributions for each of the compounds. The 

average of these values is used to compute the volume of each peak. A 

similar approach has been used to determine the range of integration 

along the R axis.  

The analytical details of the scheme used to select the boundaries of the 

region (∆θ and ∆R) are described in the Supporting information. The 

scripts for running the simulations and perform the analysis are available 

at: http://arianna.med.uniroma1.it/neutraldrugs/. 

 

2.5 Statistical analysis and comparison with other methods  

The program used to analyse the molecular dynamics trajectories and to 

build the histograms was written in Fortran90. The R package (Ihaka and 

Gentleman, 1996) [http://www.R-project.org] was used to analyse the 

histograms. The same package was used to calculate the indices, perform 

the Gaussian fitting and the Multiple Regression Analysis (MRA), com-

pute the Pearson’s correlation coefficient, r and perform the cross valida-

tion analysis. The clustering analysis was performed using the Euclidean 

distance and via the "hclust" function from the "Stats" package of R (in 

particular, the "average" method of the "hclust" function was used).  

We compared our results with those of several other methods. In particu-

lar we computed, for each of the 23 compounds, the predicted permeabil-

ity values according to the two methods described in ref. (Fujiwara, et 

al., 2002), based on a linear combination of molecular descriptors 

(Fuij_1), or including quadratic terms (Fuij_2). We also compared our 

results with those obtained by a linear regression (Hou) and a multiple 

linear regression (Guangli and Yiyu, 2006) (Gua_1) method. Finally we 

also used for comparison the Support Vector Machine based method 

(Gua_2) described in ref. (Guangli and Yiyu, 2006)  

Fig. 3.  Scatter plot correlating the predicted permeability values in the cross validation 

(P_pred_CV) and their experimental Caco-2 values. For each compound the average pre-

dicted value and the standard deviation are reported.  

3 Results 

In silico permeability prediction is consistent with available published 

data. We computed four indicators (��, ��, �� and ��) described in the 

Methods section for each of the drugs in our dataset. As explained in 

detail in the Methods section, these indices are derived from the condi-

tional probability of finding a water molecule with a given orientation 

around the solute atoms estimated from the results of molecular dynam-

ics simulations. In particular, the first two (�� and ��) provide infor-

mation about the hydrophilic and hydrophobic properties of the com-

pound and are computed from the probability values of finding water 

molecules in the first and second hydration shells, respectively. �� and �� 

are related to the dipole orientation of the water molecules surrounding 

the analysed compound and therefore to the effect of its positive and 

negative charges. 

The values of the indices for the analysed molecules are reported in Ta-

ble S1. Three of these parameter-free indicators (��, �� and ��) correlate 

remarkably well with the permeability data while the �� index shows a 

lower level of correlation. 

We tested whether a combination of these indices can represent a good 

proxy for estimating the permeability of a molecule. To this end, we used 

a multiple linear regression algorithm as implemented in the R function 

"lm" (Ihaka and Gentleman, 1996) to find the weights providing the best 
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correlation with the Caco-2 experimental data. The tool also provides the 

probability p-value of a computed coefficient to be different from 0. We 

tested both linear and quadratic terms in the regression. The best correla-

tion is obtained by a linear fit of the �� and �� indices (p-value < 0.001), 

while  ��  and  �� were found to contribute very little to the overall corre-

lation (p-value > 0.05). This is consistent with the values of their correla-

tion coefficients (see Table 1).  

Table 1.  Correlation between the values of the indices in our dataset. Also the correla-

tion value between each index and Caco-2 experimental value is reported.  

 ��
 �� �� �� Caco-

2 

�� 1 -0.05 -0.39 0.89 0.28 
�� - 1 -0.76 0.33 0.85 
�� - - 1 -0.76 -0.81 
�� - - - 1 0.59 

 

 

The regression model corresponding to the best fit is: 

 

�� !� = ($ ∗ ��) + (' ∗ ��) + �             Eq. (1) 

 

where a = 3.06 (p-value = 4.7 ∗	10�*	) , b= 0.04 (p-value =2.6 ∗ 	10��) 

and c = -3092 (p-value = 4.0 ∗ 	10�*). 

 

In Table 1 we also report the correlation between each index and the 

Caco-2 permeability values. As aspect the highest linear correlation val-

ue is between �� index (hydrophobic index) and Caco-2 permeability 

value because a more lipophilic drug is more likely to effectively cross 

the hydrophobic phospholipid bilayer. More interesting is the correlation 

linked to positive charge distribution index ��. It can be observed that the 

index with the highest value of negative correlation is ��, indicating that 

most likely positive groups prevent uptake of compounds more than neg-

ative ones (see also Figure S5). 

Table 2 reports the predicted Ppred permeability values obtaining using 

equation 1 for all the drugs considered and shows that they reproduce 

very well the experimental Caco-2 permeability values (Pearson’s corre-

lation coefficient, r = 91%). We also performed a cross validation analy-

sis by repeatedly leaving out 20% of the compounds (testing sets) and re-

computing the coefficients of Eq. (1) on the remaining ones (training 

sets) as described in the Methods section. We iterated this procedure 

10,000 times, randomly choosing the training set at each step. The pre-

dicted average values (Ppred_CV) obtained for each drug in the test set are 

reported in Table 2. Once again, the correlation between prediction and 

experiment is very satisfactory (88 %) (Figure 3). 

The coefficients of equation (1) are also very stable. Their average value 

and standard deviation obtained in the 10,000 cross validation runs are: 

a=3.064 ±0.194, b=0.043±0.005 and c=-3091.866±195.453.  

The average difference between the predicted and experimental values is 

4.7 ∗ 	10��	��/�. It is relevant to mention here that the threshold used to 

discriminate between low absorbance and high absorbance compounds is 

usually set to 8.0 ∗	10��	��/� (Castillo-Garit, et al., 2008) and the data 

shown in Table 1 demonstrate that only in two cases (Acyclovir and Zi-

dovudine) our method would significantly misclassify the compound. 

In summary, Eq. (1) describes well the permeability properties of neutral 

compounds. It is worth noticing that the Ppred value is well balanced in 

the sense that it overestimates and underestimates the experimental val-

ues in a similar number of cases (11 and 12 respectively). 

We compared our results with those of several other methods (as de-

scribed in the Methods section) and the results are reported in Table 3 

and Figure S6a-e. It can be appreciated that the correlation between pre-

dicted and experimental values is higher for our method. The average 

error is lower than all other tested methods, but for the Gua_2 method 

(Guangli and Yiyu, 2006) that shows a very similar value. 

Table 2.  Experimental and predicted permeability values. The first column reports the 

drug name, the second reports the experimental values, the third (Ppred) the values 

obtained using Equation (1). The last column reports the predicted values obtained 

in the cross validation test (Ppred_CV). 

Drug Pcaco-2 Ppred Ppred_CV 

Griseofulvin 36.6 31.07 29.96 ± 1.09 
Aminopyrine 36.5 37.41 37.62 ± 1.53 
Piroxicam 35.6 24.52 23.46 ± 0.65 
Diazepam 33.4 29.87 29.26 ± 1.03 
Nevirapine 30.1 31.52 31.81 ± 1.04 
Phenytoin 26.7 24.53 24.27 ± 0.75 
Testosterone 24.9 21.89 21.64 ± 0.63 
Progesterone 23.7 29.20 30.78 ± 1.12 
Clonidine 21.8 21.94 21.90 ± 2.33 
Corticosterone 21.2 15.67 15.01 ± 0.74  
Estradiol 16.6 15.57 14.39 ± 1.88 
Hydrocortisone 14 10.55 10.17 ± 0.81 
Dexamethasone 12.2 10.51 10.33 ± 0.81 
Scopalamine 11.8 21.93 22.79 ± 0.53 
Zidovudine 6.9 13.61 14.12 ± 0.66 
Urea 4.56 4.64 4.67 ± 0.98 
Uracil 4.24 8.61 9.01 ± 0.77 
Sucrose 1.7 -2.35 -3.31 ± 1.45 
Hydrochlorothiazide 0.51 5.20 5.85 ± 0.91 
Mannitol 0.38 -8.10 -11.42 ± 1.20 
Ganciclovir 0.38 2.38 2.64 ± 1.10 
Acyclovir 0.25 9.33 10.16 ± 0.65 
Chlorothiazide 0.19 5.03 5.64 ± 0.91 

 

Table 3.  Comparison of the results of the Ppred method with those obtained by a number 

of other predictors (described in Experimental section). Ppred_CV (using the test set data) 

also has been reported. The goodness of fit parameters (r and -�) are also shown. 

 Fuij_1 Fuij_2 Hou Gua_1 Gua_2 Ppred Ppred_CV 

r 0.66 0.62 0.80 0.85 0.79 0.91 0.88 

./ 0.43 0.39 0.64 0.72 0.63 0.83 0.78 

Average 

error 

8.2 9.9 4.8 6.2 4.8 4.3 - 

Ref. (59) (59) (18) (60) (60) - - 

4 Conclusion 

 

We have shown here that an approach based on the simultaneous analy-

sis of molecule hydrophobicity and charge distribution has the potential 

to accurately predict the passive plasma membrane permeability of neu-

tral drugs. This method may be useful for investigating the mechanism of 

passive permeation of small neutral compounds since it can easily pro-
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vide information on the role that every single atom plays on the hydra-

tion process. 

Our Ppred indicator correlates very well with the experimentally deter-

mined Caco-2 permeability values and performs better than other availa-

ble methods. Furthermore, it only requires the knowledge of the chemi-

cal structure of the compound. Given the cost and impact of late stage 

failures in drug development we believe that the relatively high computa-

tional cost of running the molecular dynamics simulations (an average of 

48 hours on a 20 CPU server for each molecule) is not necessarily a rele-

vant drawback of the approach. 

As is the case also for several in vitro methods, our method cannot esti-

mate the permeability of drugs that use an active uptake system. In these 

cases, additional techniques, such as docking the compounds to ef-

flux/influx protein models, should be explored. 
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