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ABSTRACT: In this paper we describe a novel strategy for exploring
the conformational space of proteins and show that this leads to better
models for proteins the structure of which is not amenable to template
based methods. Our strategy is based on the assumption that the energy
global minimum of homologous proteins must correspond to similar
conformations, while the precise profiles of their energy landscape, and
consequently the positions of the local minima, are likely to be different.
In line with this hypothesis, we apply a replica exchange Monte Carlo
simulation protocol that, rather than using different parameters for each
parallel simulation, uses the sequences of homologous proteins. We
show that our results are competitive with respect to alternative
methods, including those producing the best model for each of the
analyzed targets in the CASP10 (10th Critical Assessment of techniques
for protein Structure Prediction) experiment free modeling category.

1. INTRODUCTION

Challenges in protein structure prediction can be roughly
divided in two categories. When the target protein is
homologous to a protein of known structure, template-based
methods1,2 can be applied. In these cases, the major challenges
are the inference of the conformation of structurally divergent
regions and of the flexible ones. Neither problem is minor as
these regions are often related to the specificity, and thereby to
the function, of the target protein.3

When a homologous protein of known structure is not
available, the problem becomes more complex. Here the issues
to be faced are the identification of an effective energy function,
be it of physical, statistical, or heuristic nature, which can
accurately describe the conformational space of the protein and
of a method able to effectively explore the energy landscape to
detect the conformation corresponding to the minimum
representing the protein native structure.
Despite this, with the progress of structure resolution

methods and the consequent enrichment of our data set of
proteins of known structure, cases where template based
methods cannot be applied become less and less frequent, and
there are good reasons why these remain interesting. First is
because from an intellectual point of view the understanding of
the folding mechanism is an important goal; second is because
often these proteins are the most challenging for the
experimental approaches and therefore computational methods
are called upon to help. Furthermore, template-free methods
can be combined with template-based ones to address the
problem of structurally divergent regions.

Template-based methods base their efficacy on a simple and
almost universal rule: protein structure is more evolutionary
conserved than protein sequence.4,5 Homologous proteins,
even if sharing very little sequence similarity, have similar native
folds.6 The question is whether this information can be
exploited to improve the computational methods for non-
template based protein structure prediction. We show here that
this is indeed the case.
Our strategy consists in using a homology based Monte

Carlo Replica Exchange method.7 Monte Carlo Methods are
very commonly used for exploring the conformational space
described by an energy function8−10 in order to find its global
minimum. Many strategies have been developed to avoid local
minima during the search. Among them the Replica Exchange
Methods (REMs) seem to produce the most encouraging
results.11−14 In a REM, many folding simulations are run in
parallel. Each of these simulations is called a replica and can be
completely described at each step of the simulation by its
current conformation, temperature, and energy function. At
predetermined intervals during the simulations, the different
replicas are compared and some of their characteristics are
exchanged according to a given criterion (e.g., the Metropolis
Criterion15). In this way, they are usually able to explore a
larger number of conformations and possibly avoid being
trapped in local minima.
In our work, we use a Monte Carlo REM, but with a relevant

difference: we assign to the different replicas the sequences of
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proteins homologous to the target protein and let them
exchange their sequence during the simulation. This is based on
the rationale, schematically represented in Figure 1, that the

energy global minimum of homologous proteins should
correspond to similar conformations since they have similar
native structures, but the shape of the energy landscape, and
consequently the positions of the local minima, is likely to be
different for each replica.
We compare our results with those of the ab initio simulation

protocol implemented in the Rosetta low resolution protocol16

and of the Hamiltonian Replica Exchange method described by
Shmygelska and Levitt.11 We will refer to these protocols as
ROSETTA and HREM, respectively.
We focused here on the low-resolution mode of Rosetta,

since its ability to produce native like conformations has been
shown to be a major determinant of the overall accuracy of the
method.17

As reported in Results, our method, named homREM,
performs better than both ROSETTA and HREM, and its
performance is competitive with those obtained by groups
participating to the CASP1018 free modeling category.
We also compare the results of homREM with those obtained

by Bonneau et al.19 where the authors also run the Rosetta
folding simulations on homologous sequences but without
applying the replica exchange protocol and select the final
models using a clustering approach. We used the same target
structures as in Bonneau et al.19 trying also to reproduce the
databases available at the time of their experiment and we
obtained better models in the majority of the cases. This
suggests that the improvements we obtain are due to the use
both of homologue information and of the replica exchange
approach. This is confirmed by an additional test, in which a
modified version of our protocol (named homMC) is run
without using the replica-exchange approach. The results are
subpar with respect to the homREM ones. The detailed

description of these tests can be found in the Supporting
Information (Tables S1 and S3a,b and Figures S1 and S2).

2. RESULTS
In our Homologous Replica Exchange Method (homREM),
different sequences, derived from homologues of the target
protein (see Materials and Methods for details), are assigned to
different replicas. We simulate 100 replicas at the time, 30% of
which have the original target sequence and 70% the sequences
of homologous proteins selected as described in Materials and
Methods.
Similarly to the ROSETTA low-resolution protocol, each

amino acid side chain is described by its centroid, i.e., replaced
by a single pseudoatom located at the center of mass of the
side-chain atoms and with a radius proportional to the size of
the side chain.
The energy is defined as

∑ λ= +U U Utot const
i

i i
(1)

with i = 1, ..., 8 where Uconst includes terms, such as the van der
Waals hard sphere repulsion, the helix−helix pairing, contact
order, and the Ramachandran torsion angle energy contribu-
tions, which do not vary across the energy functions. The Ui
terms are the Rosetta energy terms with different weights: λenv
(environment), λpair pair potential, λcb (packing density), λhs
(helix-strand pairing), λss (strand−strand pairing), λrsigma
(strand pair distance/register), λsheet (strand arrangement into
sheets), and λrg (radius of gyration) described in Rohl et al.16

During the different stages of the protocol, these terms are
weighted differently following the same strategy used in
ROSETTA and outlined in Materials and Methods.
The simulations follow the standard Rosetta protocol: we

start with the target proteins in an extended conformation.
First, we perform 50 of the so-called “fragment insertion” stages
(each consisting of 2000 Monte Carlo steps) to produce a set
of final low-resolution models. During each fragment insertion
stage, the protein conformation is modified by iteratively
replacing small portions of its structure (3 and 9 amino acids
long) with fragments of similar length randomly extracted from
a library derived from solved structures (see Materials and
Methods). The new conformation is then retained or discarded
according to the Metropolis criterion based on the energies
calculated using a low-resolution Rosetta energy function that,
as in the Rosetta protocol, depends on the specific “fragment
insertion” stage:16

=
Δ ≤

Δ >−Δ

⎧⎨⎩P
U

U

1 if 0

e if 0
accept U K T/ B (2)

where Paccept is the probability of accepting the exchange, ΔU
the system energy difference between the conformation before
and after the move, T the temperature, and KB the Boltzmann
constant.
After each of the 50 fragment insertion stages, we perform a

replica exchange: we order the N replicas according to their
energy; since the rate of acceptance at this stage is expected to
be rather low given the way the homologous sequences are
selected (see Materials and Methods), we attempt exchanges
also between replicas whose energy is not necessarily very close
in order to achieve an acceptance rate similar to what was
suggested in the literature.20 Indeed, exchanges are attempted
between the ith replica and the jth one for j = i + 1, ..., N until

Figure 1. Schematic representation of the rationale of the homREM
method described here. The curves indicate an idealized 2-D energy
landscape for two homologous proteins before (a) and after (b) a
replica exchange move. While the local features and the location of the
local minima of the two proteins might be different, their global
minimum is expected to be located in a similar position in
configuration space and consequently the exchange can help in
escaping from local minima.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00371
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

B

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00371/suppl_file/ct5b00371_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00371/suppl_file/ct5b00371_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.5b00371


an exchange is accepted or j = N. For each attempt, keeping the
backbone fixed, we mutate each residue of the two proteins to
the corresponding residue (as derived from the multiple
sequence alignment described in Materials and Methods) of the
other protein while keeping the centroid position unaltered
using the Rosetta “low-resolution” side-chain Packing mover.21

Again, the exchange is accepted or rejected according to the
Metropolis criterion.
After the 50 fragment insertion stages, we rank the final

structures according to the so-called score4 Rosetta energy
term (see Materials and Methods for details).
We tested the ROSETTA, HREM, and homREM protocols

on the 40 domain data set used in a previous work by
Shmygelska and Levitt11 (SCOP data set) and described in
Materials and Methods. All simulations were ran using KT =
2.0. In all cases, we performed 100 000 Monte Carlo fragment
insertions. We also applied our method to a subset of the
CASP10 targets (see Materials and Methods) and compared
our predictions with the best models submitted to the
experiment for each target.
2.1. Comparison of homREM with ROSETTA and

HREM. Figure 2 summarizes the results of the three methods

(ROSETTA, HREM, and homREM) on the SCOP data set. We
evaluate the results using the same criteria adopted in the CASP
experiment,22 i.e., by analyzing, for each protein and each
method, the model with the lowest energy (MinEn), the model
with the best GDT_TS (see Materials and Methods) among
the 5 models with the lowest energy (Min5), and the average
GDT_TS of the 1%, 5%, and 10% of the models with the
lowest energy (Mean1%, Mean5%, and Mean10%).
As it can be seen from Figure 2, the homREM method

produces the best models in the majority of cases. Moreover,
ROSETTA provides more accurate structures, according to our
measures, than HREM; therefore, in the following we only
describe the comparison of the results of homREM with those
of ROSETTA.
Figure 3 shows the GDT_TS difference between the models

produced by ROSETTA and homREM across the whole SCOP
data set. The MinEn, Min5, and Mean10% values are used to
evaluate the performance. HomREM produces better results in

65% of cases (positive bars in the plot) with an average
difference in GDT_TS of 2.11, 1.13, and 0.35 for MinEn, Min5,
and Mean10%, respectively. Considering only the cases in
which homREM performs better, the average GDT_TS
differences for the MinEn, Min5, and Mean10% sets are 4.46,
3.85, and 1.07, respectively. The complete table with all the
results from this test can be found in the Supporting
Information (Table S3a,b).
The better performance of homREM seems to be mainly due

to its ability to more efficiently explore the conformational
space of the target protein. The plot in Figure 4 supports this
hypothesis. It shows a typical energy landscape sampled from
the extended conformation by ROSETTA, homREM, and
HREM. We plot the model energy as a function of its CαRMSD
(root mean square deviation) from the native structure for the
500 simulated structures of the first domain of UDP-N-
acetylmuramate ligase Murc from Thermotoga maritima (scop
Id: d1j6ua1, PDB code 1J6U residues 0 to 88). As it can be
seen from the figure, the homREM simulations explore more
efficiently the lower left part of the plot, which corresponds to
cases where a lower computed energy corresponds to a
structure closer to the native one.

2.2. Results of homREM on the CASP10 Target Set.We
also applied the homREM method to a data set including the
CASP10 Free Modeling targets and compared the results with
all the models submitted to the experiment available on the
CASP10 Web site.22 For this test we modified our homREM to
include a simulated annealing temperature schedule23 decaying
exponentially from KT = 300 to KT = 0.28. For comparison,
we also ran the simulations at constant temperature (KT = 2.0,
see Supporting Information) and performed 5000 simulations
per target.
For the models of this data set, we computed the GDT_TS

for the modeled structures (see Materials and Methods).
It is not trivial to fully reproduce the official ranking for the

CASP10 free modeling challenge, since the assessment included
some structure visual inspection steps24 particularly relevant for
difficult cases where only low quality models were submitted.
To compare our results with those submitted to CASP10 in an
unbiased way, we can only use numerical indicators such as the
GDT_TS values available on the CASP10 result web page. For

Figure 2. Comparison of the results of homREM, Rosetta, and HREM
on the SCOP data set. The histogram shows the number of times each
of the tested methods obtains a result better than any of the other two.
Data are shown for the model with the reported lowest energy
(MinEn), for the best model (in terms of GDT_TS) among the five
models with the lower energy (Min5), for the mean GDT_TS of the
1%, 5%, and 10% of the produced models with lower energy
(Mean1%, Mean5%, and Mean10%, respectively).

Figure 3. GDT_TS difference between the models produced by
homRem and Rosetta for the SCOP data set. Data are shown for the
model with the reported lowest energy (MinEn), for the best model
(in terms of GDT_TS) among the five models with the lowest energy
(Min5), and for the mean GDT_TS of the 50 lowest energy models,
corresponding to 10% of the produced models (Mean10%). The scop
identifier of each protein is shown in the upper part of the figure.
Positive values indicate cases where homREM produces a better model
than Rosetta.
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this reason, we focus here only on the nine targets for which
predicted structures with a GDT_TS higher than 30 were
submitted by at least one group.
It is worth mentioning that, in the CASP experiment, neither

the domain boundaries of the targets nor the best modeling
strategyeither template based or template freeare known
to the participants. These differences, which can certainly affect
the accuracy of the results, are not taken into account in this
paper. Nevertheless, by limiting our comparison only to targets
for which good models have been submitted and to the
performances of the best groups, we expect these two factors to
have little or no influence on the results presented here.
In Table 1 we show the GDT_TS values obtained for these

targets using homREM and compare them with those obtained
by the best performing group for each domain in the CASP
experiment and by the Rosetta Server, for the model with the
lowest energy (MinE) and, consistently with what is done in
CASP in the free modeling category, for the best among the
five models with the lowest energy (Min5). Considering that
our homREM uses the Rosetta energy functions and a similar
overall prediction algorithm, comparing our results with the
Rosetta Server ones is clearly of interest.
The complete table with the results on all the CASP10

targets is available in Supporting Information Table S4.
The performance of the CASP10 participants was very

heterogeneous; indeed only a few groups out of 147 were able
to submit good models for more than one or two targets. Our
homREM compares favorably with the best performing groups
for at least five targets. Figure 5 shows the computed energy as
a function of its GDT_TS from the native structure for the
5000 simulated structures of the targets for which we achieved
the best results: T0693d1, T0735d2, T0739d1, and T0739d2.
In particular, for T0739d1, we were able to predict and select a
structure with a GDT_TS of 54.11, which is significantly more
accurate than all other models submitted to CASP10 (the best
model for this target had a GDT_TS of 35.88 and was
produced by group 335). As an example, Figure 6 shows the
best prediction submitted to CASP10 for T0739d1 together
with its native structure and our best prediction. It can be seen
that our model has a topology of the secondary structure
elements that more closely resembles the native structure.

Figure 4. Scatter plot of the score4 energy term and the CαRMSD of
the models produced during the simulation for the d1j6ua1 (UDP-N-
acetylmuramate ligase Murc from Thermotoga maritima) protein by
ROSETTA, homREM, and HREM. In an ideal case the model with the
lowest energy (indicated by a square in the homREM plot) should
coincide with that with the lowest CαRMSD from the native structure
(circled in the same plot). As it can be seen, the homREM simulation
efficiently explores the low CαRMSD region and its lowest energy
model is close to the experimental structure.

Table 1. Results of homREM and Rosetta on the CASP Dataseta

homREM Rosetta CASP

target MinEn Min5 MinEn Min5 MinEn (group ID) Min5 (group ID)

T0693d1 36.00 36.00 23.00 26.25 35.50 (315) 36.75 (237)
T0735d2 42.04 42.04 35.80 39.49 39.49 (315) 41.76 (237)
T0739d1 31.76 54.11 23.82 31.18 32.06 (294) 35.88 (335)
T0739d2 32.06 38.62 24.14 30.17 34.48 (315) 38.36 (237)
T0666d1 23.33 24.88 21.94 24.03 33.75 (475) 33.75 (475)
T0756d2 40.46 42.32 39.53 42.15 40.70 (081) 43.90 (114)
T0726d3 26.44 32.88 23.73 29.66 35.17 (172) 36.02 (172)
T0737d1 27.69 27.69 23.50 32.48 35.26 (335) 40.60 (045)
T0740d1 20.90 23.22 20.64 22.74 30.16 (350) 38.87 (358)

aThe last two columns show the GDT_TS for the best models submitted across all the participating groups. Cases where homREM outperforms
Rosetta are displayed in bold and underlined if the difference is larger than 5 GDT_TS units, while a gray background is used to indicate cases where
the homREM method performs similarly or better than the best model submitted to CASP for the specific target. Notice that the best model
submitted to CASP10 is not necessarily produced by the same group(s).
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3. CONCLUSIONS
In this work we present a novel algorithm to improve the
quality of the models generated by ab initio structure prediction

protocols. The method exploits the fact that homologous
proteins have similar native folds in order to improve the
efficiency of Monte Carlo methods in exploring the protein
conformation landscape and avoiding local minima. Local
minima can be caused by a specific characteristic of the target
sequence, by inaccuracies of the energy function or by a
combination of these two factors. We believe that our method
is effective in overcoming both problems. Conformations that
are native-like are unlikely to be affected by our sequence
exchange procedure; this can intuitively explain the observed
ability of our method to improve the quality of the generated
models: not only are we able to explore a larger fraction of the
conformational space but most importantly we obtain models
more similar to the native structure.
According to our tests, our strategy produces improved

models with respect to the original Rosetta protocol and
performs comparably to the best methods participating in the
last CASP10 experiment.
We are not the first in using information derived from

homology in de novo structure prediction,19,25 but, to the best
of our knowledge, our method uses this information in a novel
way. We believe that by performing exchanges between of the
homologous replica sequences during the simulation, our
method can better explore the structure space by avoiding
spurious or local minima. This is also supported by the fact that
we observe a performance drop when we remove the replica
exchange steps from our protocol (see the Supporting
Information homMC Supplementary Method, Figures S1 and
S2, and Table S3a,b) and by the comparison of our results with
those reported by Bonneau et al.19 (Table S1).
In the past few years other methods have been published

that, by exploiting the evolutionary information present in
multiple sequence alignment, can predict nonlocal contact and
improve ab initio prediction protocols.26 One major advantage
of our method is that it does not require an extremely large and
diverse number of homologous sequences. In some of our test

Figure 5. Plot of the computed score4 as a function of the GDT_TS values for the models produced by homREM for some of the CASP targets. (a)
T0693d1; (b) T0735d2; (c) T0739d1; and (d) T0739d2.

Figure 6. Result of the predictions of the CASP10 target T0739d1.
Panel a represents the best model submitted to CASP10 (by the
“Zhang” group, group Id: 335) for the region comprised between
residues 12−96 of the protein (PDB code: 4oj6), the native structure
of which is shown in panel b. The homREM best model among the five
with lower energy is shown in part C. The GDT-TS values for the two
models are 35.9 (model a) and 54.1 (model c), respectively.
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cases only a few homologous sequences were sufficient to
successfully apply homREM. For example, in the case of the
third IgG-binding domain from streptococcal protein G (scop
id: d1igda, PDB code 1IDG, residues 1 to 61) as few as four
homologous sequences were available after applying our
sequence selection protocol. These were enough to achieve a
reasonable improvement with respect to other methods (Figure
3).

4. MATERIALS AND METHODS
4.1. Data Sets. We use two data sets to test our procedure.

The first (SCOP data set) consists of a set of 40 non-
homologous proteins (55−208 amino acid long) from the four
structural classes (α, β, α + β, α/β) of the SCOP database.27

The second (CASP data set) consists of protein domains
selected among the CASP10 Free Modeling targets.
The complete list with all the information on the data sets

can be found in Supporting Information Table S2.
The fragment library is generated by the Robetta Server28

using the option that excludes protein homologous to the target
protein from the set of searched fragment sources.
4.2. Parameters Used for Comparison. To compare the

results with those submitted to CASP, and to assess the
performance of our homREM method with ROSETTA and
HREM, we use the GDT_TS defined as

=
∑

∈dGDT 100
4

{1, 2, 4, 8}d N
TS

GDTd

(3)

where N is the number of residues and GDTd is the number of
corresponding Cα atoms within a distance of d Å between the
model and the experimental structure.
4.3. Selection of the Homologous Proteins. To select

the sequences of the homologous proteins to be assigned to the
replicas in the simulations we first perform three iterations of
psiBLAST29 using the target sequence as query and select all
the homologues with a sequence identity higher than 40% and
an E-value lower than 1 × 10−4. We then perform a global
multiple sequence alignment of all the retrieved sequences
using MAFFT.30 The alignment is modified so that deletions
and insertions with respect to the target protein are replaced by
the corresponding amino acids of the target protein or
removed, respectively.
CD-HIT31 is used to cluster the resulting sequences using a

70% maximum identity threshold and a single representative
from each cluster, excluding the target sequence cluster, is
selected.
The procedure used for insertions and deletions ensures that

all sequences have the same length, while the minimum and
maximum similarity thresholds of 40% and 70% guarantee a
sufficient diversity of the sequences while minimizing the risk of
including nonhomologous or erroneously aligned proteins in
the simulations.
4.4. Protocols Used for Comparison. As mentioned

above, we compared our results with those obtained by the
Rosetta low resolution protocol (ROSETTA) and by a more
classic Hamiltonian Replica Exchange Method (HREM).11

For ROSETTA, we ran 100 000 Monte Carlo steps following
the procedure described in Rohl et al.,16 i.e., 78 000 steps of 9-
residue fragment insertion with different combinations of the
energy score functions and 22 000 steps of triple 3-residue
fragment insertions. In the end we rescored the obtained
structures using a different score (named score4 in Shmygelska

and Levitt11 and described in Rohl et al.16) that also takes into
account short and long-range backbone−backbone hydrogen
bonding energy terms.
For HREM, we followed the protocol adopted in Shmygelska

and Levitt:11 pairs of replicas are exchanged every 2000 Monte
Carlo steps. Replicas are ordered according to their energy
before applying the exchange algorithm, and exchanges are only
attempted between the ith and the (i + 1)th replica for i ϵ (1, 2,
3, ..., N − 1) where N is the number of parallel simulations. The
exchanges are accepted or rejected according to the Metropolis
Criterion. It is to be noted that the HREM protocol does not
precisely follow the ROSETTA fragment insertion stages
described before since all the low-resolution energy functions
are used at each fragment insertion stage; it performs
nonetheless an equal number of overall steps.
All the protocols are implemented using PyRosetta,32 an

interactive Python-based interface to the Rosetta modeling
suite.
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