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Abstract Recent evidence pointed out that the prevalence of
depression has reached epidemic proportions in last decades.
This increase has been linked to many environmental factors,
among these the influence of dietary factors has gained great
attention. In particular, it has been reported that low n-3 poly-
unsaturated fatty acid (n-3 PUFA) intake in diet is correlated to
the development of depressive and anxiety-like symptoms.
Furthermore, maternal malnutrition is a widely accepted risk
factor for developing mental illness in later adulthood; among
others, depression has been strongly associated to this event.
On the other hand, we have previously found that acute intra-
cerebral injection of the soluble beta amyloid 1–42 (Aβ1–42)
peptide induces a depressive-like behavior in rats, associated
to altered hypothalamic–pituitary-adrenal (HPA) axis activa-
tion and reduced cortical serotonin and neurotrophin levels.
The aim of the present work was to study the effect of pre- and
post-natal (5 weeks post-weaning) exposure to diets different-
ly enriched in n-3, n-6, as well as n-6/n-3 PUFA balanced, on
immobility time displayed on the forced swimming test (FST),
along with neuroendocrine quantification in offspring rats.
Results showed that n-6 PUFA-enriched diet increased
depressive- and anxiety-like behaviors, as shown by the ele-
vation in the immobility time in the FST test and self-

grooming in the open field test. Those effects were accompa-
nied by reduced cortical serotonin, high plasmatic corticoste-
rone and hypothalamic corticotropin-releasing factor levels.
Finally, enhanced plasmatic Aβ1–42 levels after n-6 PUFA diet
and reduced plasmatic Aβ1–42 levels after n-3 PUFA were
found. Taken together, our data indicate that Aβ1–42 might
be crucially involved in behavioral alterations found after n-
6 rich PUFA diet and strongly endorse the protective role of n-
3 and the detrimental effect of improper n-6 PUFA diet
consumption.
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Introduction

Modern western diets are characterized by deficiency in con-
tent of polyunsaturated fatty acids (PUFA), in particular low
consumption of fish in favor of baked and junk food has led to
altered n-6/n-3 PUFA ratio. Interestingly, it has been estimated
that from the dawn of the industrial revolution, the ratio n-6/n-
3 has dramatically increased. Indeed, such value moved from
1, typical of early twentieth century, up to 15 in industrialized
countries [1–3]. While n-3 PUFA are precursors of
neuroprotectins and resolvins holding anti-inflammatory
properties, n-6 PUFA are precursors, among others, of prosta-
glandins é, pro-inflammatory molecules responsible for mod-
ulating the activity of inflammatory cytokines. Biologically
important PUFA, such as docosahexaenoic acid (DHA,
22:6n-3) and arachidonic acid (AA, 20:4n-6), can be supplied
either directly from diet or by metabolic conversion of their
essential precursors α-linolenic acid (18:3n-3) and linoleic
acid (18:2n-6), respectively. While in mammals, the synthesis
of such precursors cannot be performed de novo, the
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enzymatic conversion relies on the action of two desaturases,
Δ5 and Δ6 present on the endoplasmic reticulum, and
retroconversion of DHA takes then place in peroxisomes.
Although in mammals such enzymatic elongation is possibly
occurring, some evidence has underlined that in humans this
conversionmay result inefficient, thus tissue concentrations of
these lipids are closely related to diet intake [4]. The n-6 de-
rivative, AA, plays a crucial physiological role being an im-
portant precursor of bioactive mediators. This molecule has
been shown to activate protein kinases and ion channels lead-
ing to enhanced synaptic transmission [5]. Moreover, AA-
derived mediators have been shown to act as retrograde mes-
sengers in hippocampal long-term potentiation [6, 7] and to be
involved in cortical neuron migration [8].

N-3 PUFA have been reported to regulate membrane flu-
idity and to exert their central action by modulating synapto-
genesis and neurotrophic factor expression [9]. Indeed, these
lipids are essential to assure proper brain functioning consid-
ering that DHA content is higher in cerebral rather than any
other tissue [10].

On the other hand, the high ratio n-6/n-3 is particularly
unfavorable for proper central nervous system (CNS) func-
tioning. Indeed, when diets are particularly poor in n-3
PUFA, endoreticulum, as well as peroxisomes, metabolically
produce n-6 derivatives, namely n-6 docosapentaenoic acid
(22:5n-6), whose insertion into biological membranes, in
place of DHA, is considered the main process responsible of
CNS dysfunction [11].

It is worth to note that, during embryonic life and lactation,
PUFA intake exclusively depends on maternal diet, as the met-
abolic conversion of essential precursors cannot be accom-
plished [12]. Interestingly, evidence from human studies indi-
cates that maternal metabolic state and malnutrition influence
dramatically the risk for developing psychiatric complications
in later adulthood [13]. Unfortunately, it is quite reasonable to
assume that this nutritional-poor diet will be later perpetuated,
considering that it represents part of a lifestyle acquired during
early childhood. Accordingly, epidemiological evidences have
established a negative correlation between n-3 PUFA consump-
tion and development of anxiety, depression, as well as physi-
ological distress [14–16]. These findings were supported by
clinical studies indicating that low content of n-3 PUFA in diet
is linked to an increased susceptibility to psychiatric disorders
like depression [17, 18]. In addition, n-3 supplementation alone
or in adjunctive therapies showed positive results in the treat-
ment of this mental disorder [19]. Such beneficial effects were
also endorsed in a recent updated meta-analysis of randomized
controlled trials investigating the efficacy of n-3 PUFA treat-
ment in depressive disorders [20], as indicated by recent guide-
lines from British Association for Psychopharmacology [21].

Recently, great importance has been given to soluble beta
amyloid1–42 (Aβ1–42) peptide in the development of depres-
sion [22, 23]. Indeed, it is known that some forms of

depression, particularly in elderly, may represent prodromal
manifestations of Alzheimer’s Disease (AD), or alternatively a
subtype of a mood disorder associated to amyloid burden,
featured by cognitive impairment and risk of dementia [24].

In this context, chronic stress is another environmental risk
factor for the development of depressive symptoms. In this
regard, dysregulation of hypothalamic–pituitary-adrenal
(HPA) axis in response to chronic or repeated stressful events
has been reported as a crucial mechanism [25]. Low cerebral
DHA content, secondary to poor diet, has been associated to
increased anxiety-like behavior induced by chronic mild stress
paradigm in animals [26]. Accordingly, it has been reported
that a diet enriched in n-6 fatty acids increased aggressive
behavior in rodents, while high n-3 PUFA diet was able to
reduce the stress response [27, 28], indicating that also n-6
PUFA content plays a central role.

Therefore, in the present study we evaluated the effects of
pre- and post-natal exposure to diet enriched in either n-3 or n-
6 PUFA, as well as to n-6/n-3 balanced diet, as controls, in
male rat offspring. In particular, we evaluated the develop-
ment of depressive and anxiety-like behaviors in rats, corrob-
orating behavioral outcomes with measures of plasmatic Aβ
levels, HPA axis parameters, and monoamine concentrations
in prefrontal cortex (PFC), a brain region crucial in depression
and where DHA plays a major role in neural maturation [29].

Materials and Methods

Animals

Adult (250–300 g) Wistar rats (Harlan, S. Pietro al Natisone,
Udine) were used in this study. They were housed at constant
room temperature (22±1 °C) and relative humidity (55±5 %)
under a 12-h light/dark cycle with ad libitum access to food
and water. Procedures involving animals and their care were
conducted in conformity with the institutional guidelines of
the Italian Ministry of Health (D.L. 26/2014), the Guide for
the Care and Use of Mammals in Neuroscience and
Behavioral Research (National Research Council 2004), the
Directive 2010/63/EU of the European Parliament and of the
Council of 22 September 2010 on the protection of animals
used for scientific purposes. All procedures involving animals
were conducted in accordance to ARRIVE guidelines. Animal
welfare was daily monitored through the entire period of ex-
perimental procedures. No signs of distress were evidenced,
anyway all efforts were made to minimize the number of an-
imals used and their suffering.

Diets

One male and two female rats were housed together for mat-
ing. Animals were exposed to specific diets mimicking
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lifelong n-6/n-3 imbalance of PUFA as previously described
[12, 30]. In particular, after mating dams were randomly
assigned to the group fed with either a diet containing 6 %
total fat in the form of only rapeseed oil (n-3 enriched, rich in
linolenic acid 18:3n-3) or peanut oil (n-6 enriched, rich in
linoleic acid 18:2n-6) throughout gestation and lactation. As
control group, dams were fed with a diet containing 6 % total
fat in the form of 3 % of peanut oil plus 3 % of rapeseed oil,
called n-6/n-3 diet. After weaning, offsprings continued to be
subjected to the same diet throughout life. All experiments
were then performed in male 8-week-old rats.

Open Field Spontaneous Locomotor Activity

The open field (OF) apparatus consisted of a circular arena,
75 cm diameter, made of dark plastic under dim lighting, as
previously described by Monteggia et al. [31]. The experi-
mental sessions were videotaped by a camera fixed above
the arena. Animals were acclimatized to the test room for
1 h before each test. Motor activity was measured by placing
the rat into the center of the arena before a 20-min session. The
scoring was performed using a video-trackingmotion analysis
system (ANY-MAZE, San Diego Instrument, San Diego,
CA). To assess general locomotor activity, the following be-
havioral parameters (expressed as frequency on 5 min counts)
were scored: number of square limit crossings with both fore-
paws, rearing (standing with the body inclined vertically, fore-
quarters raised), and wall rearing (standing on the hind limbs
and touching the walls of the apparatus with the forelimbs). To
investigate anxiety-related behavior, we measured time spent
performing general grooming activity consisting of the fol-
lowing: face grooming (strokes along the snout), head wash-
ing (semicircular movements over the top of the head and
behind the ears), and body grooming (body fur licking) [32].
Time spent in center and periphery was quantified as measure
of anxiety-like behavior.

Forced Swimming Test

The forced swimming test (FST) is a reliable task for discrim-
inating depressive state in animals and is widely used for
predicting antidepressant properties of drugs [33]. On the first
of the two test days, animals were placed individually in in-
escapable Perspex cylinders (diameter 23 cm; height 70 cm)
filled with water at constant temperature of 25±1 °C at 30 cm
of height [34].

During the preconditioning period, animals were
videotaped for 15 min. Then, rats were removed and dried
before being returned to their home cages. Twenty-four hours
later, each rat was positioned in the water-filled cylinder for
5 min. This session was video-recorded and subsequently
scored by an observer blind to the treatment groups. During
the test sessions, the frequency that the rats spent performing

the following behaviors was measured: struggling (time spent
in tentative of escaping), swimming (time spent moving
around the cylinder), and immobility (time spent remaining
afloat making only the necessary movements to keep its head
above the water). Data were expressed as frequency on 5 s
counts.

Post-Mortem Tissue Analysis

Rats were euthanized and brains were immediately removed
and cooled on ice for dissection of target regions (PFC, hypo-
thalamus) according to the atlas of Paxinos and Watson
(1998). Tissues were frozen and stored at −80 °C until analysis
was performed.

Monoamine Quantifications

Serotonin (5-HT) and noradrenaline (NA) concentrations
were determined by high performance liquid chromatography
(HPLC) coupled with an electrochemical detector (Ultimate
ECD, Dionex Scientific, Milan, Italy). Separation was per-
formed by a LC18 reverse phase column (Kinetex,
150×4.2 mm, ODS 5 μm; Phenomenex, Castel Maggiore-
Bologna, Italy). The detection was accomplished by a thin-
layer amperometric cell (Dionex, ThermoScientifics, Milan,
Italy) with a 5-mm diameter glassy carbon electrode at a work-
ing potential of 0.400 V vs. Pd. The mobile phase used was
75 mM NaH2PO4, 1.7 mM octane sulfonic acid, 0.3 mM
EDTA, acetonitrile 10 %, in distilled water, buffered at pH
3.0. The flow rate was maintained by an isocratic pump
(Shimadzu LC-10 AD, Kyoto, Japan) at 1 ml/min. Data were
acquired and integrated using Chromeleon software (version
6.80, Dionex, San Donato Milanese, Italy).

ELISA Quantifications

Plasma samples were analyzed for corticosterone and Aβ by
using ELISA kits provided by Tebu-bio (Magenta, Milan,
Italy) and Cloud-Clone Corporation (Houston, Texas, USA),
respectively. Corticotropin-releasing factor (CRF) quantifica-
tion was performed in hypothalamic area by using ELISA kits
provided by Tebu-bio (Magenta, Milan, Italy). Assays were
performed according to the manufacturer’s instructions. Each
sample analysis was carried out in duplicate to avoid intra-
assay variations.

Statistical Analysis

Results were expressed as mean±S.E.M. Statistical analyses
were performed using Graph Pad 5.0 (GraphPad Software,
San Diego, CA) for Windows. Behavioral and neurochemical
data were tested for normality and then analyzed by using
two-way analysis of variance (ANOVA) for repeated
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measures or one-way ANOVA followed by Bonferroni’s or
Tukey’s multiple comparisons test, as required. Differences
were considered statistically significant when P value was less
than 0.05.

Results

Effects of N-3 and N-6 PUFA-Enriched Diets on Body
Weight Gain

Offspring rats fed with n-3, n-6 PUFA, and n-6/n-3 (control)
diets were weekly weighted in order to monitor general health
status. Analysis of data evidenced no differences in total body
weight gain among groups (210.2±5.0 g, 200.0±3.3 g, 195.8
±5.0 g, for animals fed with n-6/n-3, n-3, and n-6 PUFA diet,
respectively; one-way ANOVA followed by Tukey’s multiple
comparison test, n.s.). Moreover, we estimated the total food
intake and no statistically significant differences were individ-
uated (439.9±74.2 g, 385.4±61.8 g, 296.9±74.8 g, for ani-
mals fed with n-6/n-3, n-3, and n-6 PUFA diets, respectively;
one-way ANOVA followed by Tukey’s multiple comparison
test, n.s.)

Effects of N-3 and N-6 PUFA-Enriched Diets on FST

In order to determine if pre- and post-natal exposure to either
n-3 or n-6 PUFA-enriched diet was able to influence emotion-
al behavior, we performed the FST on experimental groups.
N-6 PUFA-enriched diet significantly increased the immobil-
ity frequency compared to control and n-3 PUFA rich diet
(Fig. 1a, one-way ANOVA followed by Bonferroni’s multiple
comparison test, P<0.01 n-3 versus n-6 PUFA, and P<0.001
n-6 PUFA versus n-6/n-3 balanced diet). Moreover, swim-
ming and struggling frequencies were significantly decreased
in n-6 PUFA diet-exposed animals (Fig. 1b, c, one-way
ANOVA followed by Bonferroni’s multiple comparison test,
swimming P<0.01 n-3 versus n-6 PUFA, and P<0.001 n-6

PUFA versus n-6/n-3 balanced diet; struggling P<0.01 n-6
PUFA versus n-6/n-3 balanced diet).

Effects of N-3 and N-6 PUFA-Enriched Diets on OF

In order to verify whether the effects observed in the FSTcould
not be related to an alteration in locomotion, we accomplished
the OF test. These experiments were carried out in another set
of rats to avoid inter-assay interference. Statistical analyses re-
vealed a significant effect only on time in crossing and wall
rearing frequencies (Fig. 2a, c, two-way ANOVA for repeated
measures, crossing P < 0.001 F3,21 = 53.62; wall rearing
P<0.001 F3,21=38.19). Moreover, no impairment associated
to diet exposure was evidenced in either vertical or horizontal
activity, as revealed by crossing, rearing, and wall rearing fre-
quency measurements (Fig. 2a–c, two-wayANOVA for repeat-
ed measures followed by Bonferroni’s multiple comparison
test, n.s.). In the same test, self-grooming behavior was quanti-
fied as index of anxiety-like state. We found that n-6 PUFA diet
significantly increased the time that rats spent performing self-
grooming (Fig. 3a, one-way ANOVA followed by Bonferroni’s
multiple comparison test, P<0.05 n-6 versus n-3 PUFA and n-
6/n-3 balanced diet). No differences were observed in the time
spent in periphery or center area of the arena (Fig. 3b, c, one-
way ANOVA followed by Bonferroni’s multiple comparison
test, n.s.).

Effects of N-3 and N-6 PUFA-Enriched Diets on 5-HT
and NA Levels in PFC

In order to corroborate behavioral with neurochemical data,
we quantified 5-HTandNA content in PFC of PUFA-enriched
diet fed animals. We found that cortical 5-HT concentrations
were significantly lower in animals pre- and post-natal fed
with n-6 PUFA-enriched diet compared to controls (Fig. 4a,
one-way ANOVA followed by Bonferroni’s multiple compar-
ison test, P<0.05). On the other hand, NA was significantly
increased in n-3 PUFA-treated rats compared to either n-6

Fig. 1 Effects of n-3, n-6, and n-6/n-3 balanced PUFA diet on FST.
Frequency measure of immobility (a), swimming (b), and struggling (c)
behaviors in rats fed from conception until 5 weeks post-weaning with n-
6/n-3 balanced diet (white bar), n-3 PUFA diet (dark bar), and n-6 PUFA

diet (gray bar). Data are expressed as mean± SEM. One-way ANOVA
followed by Bonferroni’s multiple comparison test *P< 0.05, **P< 0.01
versus n-3 PUFA and #P< 0.05, ##P< 0.01 versus n-6/n-3 balanced diet
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PUFA or controls animals (Fig. 4b, one-way ANOVA follow-
ed by Bonferroni’s multiple comparison test, P<0.05).

Effects of N-3 and N-6 PUFA-Enriched Diets on HPA Axis

We quantified hypothalamic CRF and plasmatic corticoste-
rone levels. We found that CRF content was significantly in-
creased after n-6 PUFA in respect to control diet (Fig. 5a, one-
way ANOVA followed by Bonferroni’s multiple comparison
test, P<0.05 n-6 PUFA fed rats versus balanced diet controls).
Accordingly, n-6 PUFA diet was also able to enhance cortico-
sterone levels compared to n-3 PUFA-treated and controls
animals (Fig. 5b, one-way ANOVA followed by
Bonferroni’s multiple comparison test, P<0.05).

Effects of N-3 and N-6 PUFA-Enriched Diets on Plasmatic
Aβ Levels

We quantified plasmatic soluble Aβ peptide in offspring of
rats differently exposed to n-3, n-6 PUFA, and n-6/n-3 bal-
anced diets. We found that, while animals exposed throughout
their life to n-6 PUFA-enriched diet had a significant increase
in plasmatic Aβ levels compared to controls, high n-3 PUFA
diet significantly decreased such levels (Fig. 6, one-way
ANOVA followed by Bonferroni’s multiple comparison test,

P<0.001 n-6 PUFA versus n-6/n-3 and P<0.05 n-3 and n-6
PUFA versus n-6/n-3, respectively).

Discussion

In the present study, we evaluated the effects of pre- and post-
natal rat exposure to n-3 and n-6 PUFA-enriched diets on
behavioral outcomes resembling human depressive- and
anxiety-like symptoms. Our findings clearly indicated that
exposure during entire life to a diet enriched in n-6 PUFA
induced a depressive- and anxiety-like state in adult offspring.
In these animals, behavioral outcomes were accompanied by
hyperactivation of HPA axis, alteration of cortical monoamine
content and increased plasmatic Aβ1–42 levels.

In our model, rats were fed with PUFA-enriched diets from
conception until experimental day. This paradigm simulates
human conditions where children are fed with poor n-3 PUFA
diet during gestation, nursing, up to young adulthood. Here,
we found that n-6 PUFA-enriched diet that should correspond
to a depauperation of central n-3 fatty acids [35] increased
immobility frequency in the FST. This behavioral test relies
on the learned helplessness paradigm that ultimately results in
symptoms resembling depression. This behavioral paradigm
is widely considered reliable for discriminating depressive-

Fig. 2 Effects of n-3, n-6, and n-6/n-3 balanced PUFA diet on
locomotive index in OF. Frequency measure of crossing (a), rearing
(b), and wall rearing (c) in rats fed from conception until 5 weeks post-
weaning with n-6/n-3 balanced diet (empty triangle), n-3 PUFA diet

(empty circle), and n-6 PUFA diet (empty square). Two-way ANOVA
for repeated measures followed by Bonferroni’s multiple comparison test
Data are expressed as mean ± SEM

Fig. 3 Effects of n-3, n-6, and n-6/n-3 balanced PUFA diet on anxiety-
like index in OF. Measure of time spent performing grooming (a), time in
center (b), and in periphery (c) in rats fed from conception until 5 weeks
post-weaningwith n-6/n-3 balanced diet (white bar), n-3 PUFA diet (dark

bar), and n-6 PUFA diet (gray bar). Data are expressed as mean ± SEM.
One-way ANOVA followed by Bonferroni’s multiple comparison test
*P< 0.05 versus n-3 PUFA and #P< 0.05 versus n-6/n-3 balanced diet
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like state, as well as predicting antidepressant properties of
drugs [33]. We can rule out the possibility that such increased
immobility could have been due to alteration in locomotion,
since no impairment in vertical and horizontal activities was
found in the OF test. On the other hand, the OF revealed that
n-6 PUFA fed rats spent more time in performing self-
grooming, an index of anxiety-like behavior in rodents [36].

Our findings are in line with previous studies, in humans
and animals, linking poor n-3 PUFA diet with depression and
anxiety [29, 37–39]. Many mechanisms have been proposed
in order to explain such effects. Essential fatty acids play a
central role in CNS, taking into account that long chain fatty
acids, as DHA, are integrant part of neuronal membrane. They
control membrane fluidity, as well as neuronal plasticity.
Imbalance in maternal micronutrients has been found to re-
duce cortical DHA, and brain-derived neurothrophic factor
(BDNF), while n-3 PUFA supplementation was shown to pro-
tect such neurotrophin. Furthermore, deficiency in n-3 PUFA
intake, especially in perinatal period, is linked to decreased
BDNF [35] and low BDNF levels have been described after

prenatal stress [40]. Glucocorticoids have been related to such
an effect, since corticosterone is able to down-regulate both
mRNA and protein BDNF [41, 42]. In this light, mice over-
expressing glucocorticoids showed an increased anxiety-like
behavior [43] and Larrieu and Colleagues have demonstrated
that n-3 PUFA deficiency can influence neuronal cortical mor-
phology and depressive-like behavior through corticosterone
secretion [39]. Furthermore, they showed that a condition of
poor n-3 diet intake induces a phenotype comparable to one
induced by chronic social defeat stress and high corticosterone
levels were also described [39]. Accordingly, in our model we
found increased hypothalamic CRF release as well as in-
creased plasmatic corticosterone levels in n-6 PUFA fed ani-
mals, further demonstrating a hyperactivity of HPA axis. High
cortisol levels, and thus HPA-axis hyperactivity, have been
indicated as the most frequent alteration in patients affected
by major depression disorder [44]. Supplementation of n-3
PUFA may thus result beneficial given the described prophy-
lactic role in depression [45]. On the other hand, another neu-
rotrophic factor that has been implicated in the neurobiology

Fig. 4 Effects of n-3, n-6, and n-3/n-6 balanced PUFA diet on cortical
monoamine levels. Measure of 5-HT (a) and NA content (b) in PFC of
rats fed from conception until 5 weeks post-weaning with n-6/n-3
balanced diet (white bar), n-3 PUFA diet (dark bar), and n-6 PUFA diet

(gray bar). One-way ANOVA followed by Tukey’s multiple comparison
test data are expressed as mean ± SEM. *P< 0.05 versus n-3 PUFA and
#P< 0.05 versus n-6/n-3 balanced diet

Fig. 5 Effects of n-3, n-6, and n-6/n-3 balanced PUFA diet on
hypothalamic CRF and plasmatic corticosterone quantification.
Measure of hypothalamic CRF content (a) and plasmatic corticosterone
levels (b) in rats fed from conception until 5 weeks post-weaning with n-

6/n-3 balanced diet (white bar), n-3 PUFA diet (dark bar), and n-6 PUFA
diet (gray bar). Data are expressed as mean± SEM. One-way ANOVA
followed byTukey’s multiple comparison test *P< 0.05 versus n-3 PUFA
and #P< 0.05 versus n-6/n-3 balanced diet
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of depression and chronic stress exposure is transforming-
growth factor-β1 (TGF-β1) [46]. TGF-β1 has a constitutive
role in inflammation suppression and protects neuron from
toxic insults in the CNS acting as neurotrophic factor [46].
Furthermore, TGF-β1 may enhance synaptic plasticity via
increased BDNF and its receptor, trkB, expression [47]. In
particular, reduced levels of this factor have been reported in
major depressed patients and antidepressant treatments have
been reported to increase TGF-β1 levels [48]. Moreover, n-3
PUFA supplementation has been shown to increase TGF-β1
levels, both in vivo and in vitro [49, 50]. Thus, future studies
are warranted in order to elucidate whether, in our experimen-
tal conditions, n-3 PUFA deficiency could lead to depressive
state also by altering TGF-β1 signaling.

In addition, other mediators beyond neurotrophins could be
rather implicated. Activation of endocannabinoid system,
whose endogen ligands are derived from AA, seems to play
a significant role in attenuating stress response and HPA axis
stimulation [51, 52]. In addition, alterations in this system
have been reported after poor maternal n-3 PUFA intake
[12]. Endocannabinoids control mood and emotional pheno-
type and depressive and anxiety-like behaviors have been
shown to be improved by increasing their levels [53, 54].

In keeping with this hypothesis, prefrontal cortical
endocannabinoids require functional serotonergic tone in or-
der to promote active stress coping response [55]. In our ex-
perimental conditions, we found that cortical 5-HT concentra-
tions were significantly decreased in animals fed with n-6
PUFA diet. The PFC is the most enriched area in DHA and
it has been shown that, after poor diet intake, this brain region
is the most sensitive to DHA depauperation [17]. Such low
levels of 5-HT support behavioral outcomes. Indeed, immo-
bility and swimming frequency in FST are regulated by sero-
tonergic transmission. In particular, high 5-HT levels, conse-
quent to selective re-uptake inhibitors, are commonly

associated to increased swimming and reduced immobility be-
havior [34, 56]. In a recent publication, Patrick and Ames pro-
posed a possible mechanism underlying the modulatory role of
micronutrients, such as n-3 PUFA and vitamin D, on 5-HT
synthesis [57]. According to Authors, EPA enhances 5-HT re-
lease pre-synaptically through reduction of central prostaglan-
dins of E2 series, responsible of inhibiting its release.
Furthermore, DHA, by increasing cell membrane fluidity, fa-
cilitates 5-HT interaction with its receptors in postsynaptic neu-
rons [57]. Based on these data, it could be hypothesized that
inflammation negatively affects central serotonergic system. In
this regard, the anti-inflammatory effects of n-3 PUFA have
been reported, since DHA was shown to reduce eicosanoid
synthesis along with AA production [58, 59] and to decrease
inflammatory cytokine levels [60]. Furthermore, Madore and
Colleagues have elegantly shown that n-3 deficiency during
gestation and lactation leads to altered microglia motility, as
well as altered microglia phenotype [35], prompting these
Authors to hypothesize that such deficiency induced a state that
resembles the so-called pseudoinflammation or sterile inflam-
mation, described in absence of pathogens [61]. Reduction in 5-
HT levels has also been linked to anxiety-like behavior, since
genetic manipulations that lead to drastic 5-HT depauperation
result in higher susceptibility to stress, while treatments that
increase 5-HT result in a highly anxiolytic phenotype [62,
63]. Despite 5-HT role in anxiety is well established, NAergic
role remains less defined. In particular, we found that after n-6
PUFA-enriched diet, no alterations were found in cortical NA
content, although increased CRF and corticosterone levels.
Thus, these data can be considered as an impairment of stress
response axis. However, we found that n-3 PUFA rich diet
increased NA concentration in PFC. In this regard, it has been
reported that genetic enhancement of NA tone protects animals
from stress-induced depressive behavior [64].

Although NAergic transmission in the context of nutrition-
al n-3 deficiency has received little attention, in vitro studies
have demonstrated that incorporation of DHA or short expo-
sure to this molecule in SH-SY5Y cultured cells result in
increased basal NA release through enhanced exocytosis
[65]. In addition, we can speculate that the effect of n-3
PUFA on noradrenergic system could reflect a neuroprotective
phenomenon. Indeed, NA has been shown to regulate glial
activation and strategies that lead to increased NA levels have
been proposed as a valid approach to cure several neurode-
generative diseases [66]. In this regard, in vitro studies have
evidenced a protective effect of NA toward toxicity induced
by Aβ1–42 via activation of neurotrophic pathways [67, 68].
Moreover, reduced NA concentrations in locus coeruleus
projecting areas facilitate the inflammatory reaction of
microglial cells after Aβ1–42 exposure, thus impairing
microglial migration and phagocytosis, thereby decreasing
Aβ clearance [69]. Interestingly, it has been reported that n-
3 PUFA supply enhances microglial phagocytosis of Aβ1–42

Fig. 6 Effects of n-3, n-6, and n-6/n-3 balanced PUFA diet on plasmatic
Aβ1–42 quantification. Measure of plasmatic Aβ1–42 in rats fed from
conception until 5 weeks post-weaning with n-6/n-3 balanced diet
(white bar), n-3 PUFA diet (dark bar), and n-6 PUFA diet (gray bar).
Data are expressed as mean ± SEM. One-way ANOVA followed by
Tukey’s multiple comparison test *P< 0.05 and ***P< 0.001 versus n-
3 PUFA and #P< 0.05 versus n-6/n-3 balanced diet
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[70]. On the other hand, in our unpublished observation, cen-
tral Aβ1–42 administration leads to enhanced cytokine levels,
in particular we found high cortical interleukin-1β (IL-1β)
content. Accordingly, we previously described increased hip-
pocampal IL-1β release following local Aβ1–42 injection [71].
Enhanced IL-1β levels have also been linked to late-life de-
pression [72], as well as Aβ1–42 [73], and central IL-1β is
considered crucial for chronic stress-induced depression
[74]. Moreover, high n-3 PUFA diet can reduce IL-1β pro-
duction [75] and, in rats, can attenuate IL-1β-induced stress/
anxiety response [76]. In keeping with these data, our in vivo
results strongly support such hypothesis, since n-3 PUFA fed
animals had decreased plasmatic Aβ1–42 levels. Although in
humans, plasmatic Aβ1–42 is not used as markers of AD diag-
nosis or progression yet, in rodents it has been finely demon-
strated that plasmatic levels reflects cerebrospinal levels in a
dose-dependent fashion [77]. In addition, increased consump-
tion of n-3 PUFA in healthy elderly was associated to lower
Aβ1–42 plasma levels [78]. However, this was a cross-
sectional study connoted by the fact that nutritional informa-
tion were taken with a questionnaire and not all nutrients or
daily habits were considered. Conversely, in our experimental
protocol, many variables were controlled. Animals were sub-
jected to same external conditions, food and bodyweight were
weekly monitored, indicating no differences. Moreover, our
animals were fed with these modified diets throughout their
life, from conception until adulthood.

Accordingly enough, we found that n-6 PUFA fed rats
presented increased Aβ1–42 levels. This result may allow sev-
eral considerations since we have previously demonstrated
that a single intracerebroventricular administration of soluble
Aβ1–42 induces a depressive-like state in rats that is accompa-
nied by reduced cortical 5-HTand BDNF [22]. In addition, we
found an altered HPA axis response after Aβ1–42 central ad-
ministration [79]. These findings strongly argue in favor of a
central role of Aβ1–42 in the development of depressive symp-
toms and our data indicate that this peptide might be crucially
involved in behavioral alterations found consequently to high
n-6 PUFA intake. Importantly, depression has been associated
with prodromal stages of AD [80] and significantly higher
levels of CSFAβ1–42 in humans with major depressive disor-
der have been reported [81].

Ultimately, we cannot completely rule out the possibility
that such alteration in plasmatic Aβ levels could reflect a
peripheral phenomenon considering that platelets have been
indicated as a major source of amyloid peptide precursor
(APP) [82] and they possess the enzymatic machinery for
APP metabolite production [83]. However, the central effects
found in the present manuscript endorse the hypothesis that
high plasmatic Aβ levels can mirror central levels. In this
regard, it has been reported that Aβ CSF reflects plasmatic
levels in healthy subjects, while in AD patients such equilib-
rium is disrupted [84].

To the best of our knowledge, this is the first study linking
together the insurgence of depressive and anxiety-like state
following lifelong high n-6 PUFA and n-3 deficient diets with
increased plasmatic Aβ1–42 levels. Important consideration
may be drawn. Depressive disorders are very common in
western countries and depression during childhood is positive-
ly associated with BMI and overweight in later life [85, 86].
On the other hand, a dramatic increase in AD has been report-
ed in developing countries as consequence of westernization
of national diets either in industrialized countries, such as
Japan, or developing countries [87]. In addition, the negative
role of n-6 PUFA has been reported in conditions of supple-
mentation of n-3 PUFA. In particular, while supplementing n-
3 PUFA is a valid strategy for reversing learning deficit in-
duced by their deficiency, concomitant high n-6 consumption
can limit such beneficial effect [27].

Conclusions

In conclusion, our results encourage questioning the negative
impact that changes in modern lifestyle occurring through
years could have in health in western countries, and strongly
endorse the protective role of n-3 and the detrimental effect of
improper n-6 PUFA consumption.
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