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Abstract: Carcinogenesis is a multistep process triggered by genetic alterations that  

activate different signal transduction pathways and cause the progressive transformation  

of a normal cell into a cancer cell. Polyphenols, compounds ubiquitously expressed in  

plants, have anti-inflammatory, antimicrobial, antiviral, anticancer, and immunomodulatory 

properties, all of which are beneficial to human health. Due to their ability to modulate the 

activity of multiple targets involved in carcinogenesis through direct interaction or modulation 

of gene expression, polyphenols can be employed to inhibit the growth of cancer cells. 

However, the main problem related to the use of polyphenols as anticancer agents is their 

poor bioavailability, which might hinder the in vivo effects of the single compound. In fact, 

polyphenols have a poor absorption and biodistribution, but also a fast metabolism and 

excretion in the human body. The poor bioavailability of a polyphenol will affect the 

effective dose delivered to cancer cells. One way to counteract this drawback could be 

combination treatment with different polyphenols or with polyphenols and other anti-cancer 

drugs, which can lead to more effective antitumor effects than treatment using only one  
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of the compounds. This report reviews current knowledge on the anticancer effects of 

combinations of polyphenols or polyphenols and anticancer drugs, with a focus on their 

ability to modulate multiple signaling transduction pathways involved in cancer. 
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1. Introduction 

Polyphenols, a large group of compounds ubiquitously expressed in plants, are secondary  

metabolites that play various roles in host defense against pathogens, ultraviolet radiation, and signal 

transduction [1]. Polyphenols are present in foods and beverages of plant origin (fruits, vegetables, 

cereals, herbs, spices, legumes, nuts, olives, chocolate, tea, coffee, and wine) and are the most 

abundant antioxidants in the human diet [2]. Epidemiological studies have shown that a diet rich in 

polyphenols can prevent a wide variety of human diseases. Polyphenols show many beneficial effects on 

human health including antimicrobial, anti-inflammatory, antiviral, anticancer, and immunomodulatory 

activities [3–8]. 

Carcinogenesis is a multistep process that causes the progressive transformation of a normal cell 

into a cancer cell [9]. Malignant transformation is due to the overexpression or hyperactivation of 

genes that promote cell survival and proliferation (oncogenes) or to the loss of expression or functional 

inactivation of genes that control cell growth (tumor suppressor genes). As a result, while normal cells 

are responsive to exogenous stimuli that control their growth and survival, cancer cells can grow in the 

absence of exogenous signals and become unresponsive to negative regulators of growth and survival. 

In addition, overexpression of growth factors and/or their receptors leads to constant activation of 

downstream signaling pathways, promoting the growth and survival of cancer cells [9–12]. 

Signal transduction pathways involved in carcinogenesis often interact with each other, enhancing 

oncogenic signals that trigger the malignant phenotype of cells [3,10]. For example, cross-talk  

between the signaling pathways mediated by avian erythroblastosis oncogene B (ErbB) receptors, 

nuclear factor-kappaB (NF-κB), and the Hedgehog (Hh)/glioma-associated (GLI) oncogene cascade 

(HH/GLI) plays an important role in neoplastic transformation [3]. Because they are able to modulate 

the signal transduction pathways involved in carcinogenesis, plant derivatives have promising potential 

for counteracting tumor growth [3,13,14]. 

The main drawback to using polyphenols as anticancer agents is their poor bioavailability in the 

human body, which may hinder their in vivo effects, especially when used singly [15,16]. One 

approach to counteracting this effect may be combination treatment with several polyphenols or with 

polyphenols and anticancer drugs. This report reviews current knowledge on the anticancer effects of 

combinations of polyphenols or polyphenols and anticancer drugs, with a focus on their ability to 

modulate multiple signaling transduction pathways involved in carcinogenesis. 
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2. Classification of Polyphenols 

Polyphenols are widely distributed in plant-derived foods. They comprise a large variety of 

compounds that have a characteristic structure of at least one aromatic ring bearing one or more 

hydroxyl groups. Polyphenols are classified according to the number of phenol rings that they contain 

and by the structural elements that bind these rings to one another. The main classes of polyphenols are 

flavonoids, phenolic acids, stilbenes, and lignans [1,15] (Figure 1). 

 

Figure 1. Structure of the major classes of polyphenols. Panel A: Flavonoids; Panel B: 

Phenolic acids; Panel C: Stilbenes. The figure shows the main member, resveratrol;  

Panel D: Other polyphenols. The figure shows curcumin. 

2.1. Flavonoids 

Flavonoids, the most abundant polyphenols in our diet, are formed from phenylalanine through a 

biosynthetic process involving the shikimic acid and acylpolymalonate pathways [17]. Flavonoids 

consist of 15 carbon atoms with 2 aromatic rings (A- and B-rings) connected by a 3-carbon bridge that 

binds with 1 oxygen and 2 carbons of the A-ring, forming a third 6-carbon ring (C-ring) [18]. Flavonoids 

are further classified into subclasses defined by different functional groups and levels of oxidation in 

the C-ring, and by different connections between the B- and C-rings. Variations between compounds 

within a subclass consist of different substituents on the A- and B-rings [4] (Figure 1, Panel A). 

As well as the different subclasses of flavonoids, worldwide, dietary intake of flavonoids is highly 

variable. From a dietary standpoint, the most important food-based subclasses of flavonoids are flavonols, 
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flavones, flavan-3-ols, anthocyanins, flavanones, and isoflavones. The flavonoid subclasses dihydroflavonols, 

flavan-3,4-diols, chalcones, dihydrochalcones, and aurones are minor components of our diet [4]. 

2.1.1. Flavonols 

Flavonols are present in plants in glycosylated form. The sugar component, most commonly 

glucose or rhamnose, is on the 3-position of the C-ring (Figure 1, Panel A). The main flavonols are 

quercetin, kaempferol, and myricetin, found mostly in fruits, edible plants, wine, and tea [1]. Although 

flavonols represent the most abundant flavonoids found in foods, their daily intake is generally low. 

Several studies have estimated a mean daily intake of 21.4 mg/day (the Netherlands), 22.4 mg/day 

(Italy), 16.8 mg/day (Denmark), 18.7 mg/day (Spain), 5.4 mg/day (Finland), 19.4 mg/day (Greece), 

27.4 mg/day (UK), 16.4 mg/day (Japan), and 12.9 mg/day (USA) [4]. 

2.1.2. Flavones 

The chemical structure of flavones may have a wide range of substitutions, including hydroxylation, 

methylation, O- and C-alkylation, and glycosylation. Flavones are present in plants mainly as  

7-O-glycosides [15] (Figure 1, Panel A). Their most abundant representatives in foods are apigenin 

(parsley, celery, onion, garlic, pepper, chamomile tea) and luteolin (thai chili, onion leaves, celery).  

Less abundant flavones include tangeretin and nobiletin (Citrus fruits), baicalein and wogonin  

(Scutellaria), and chrysin (Passiflora). Estimated daily intake of flavones is very low (0.3–1.6 mg/day) [4]. 

2.1.3. Flavan-3-Ols 

Flavan-3-ols, the most chemically complex subclass of flavonoids, contain a hydroxyl group in the  

3-position of the C-ring (Figure 1, Panel A). They exist in monomeric, oligomeric, and polymeric forms 

and are not glycosylated in foods. The simplest monomers are (+)-catechin and its isomer (−)-epicatechin, 

whose hydroxylation generates (+)-gallocatechin and (−)-epigallocatechin. (−)-epicatechin-3-O-gallate 

and (−)-epigallocatechin-3-O-gallate (EGCG) are formed through an additional esterification with 

gallic acid in the 3-position of the C-ring. Proanthocyanidins are dimers, oligomers, and polymers of 

catechins and are subdivided into types A, B, and C. The most common proanthocyanidins found in 

plants are procyanidins B1, B2, B3, and B4 [1,15]. Flavan-3-ols are found mainly in fruits, berries, 

cereals, nuts, chocolate, red wine, and tea. Estimated daily intake is very high (12–189.2 mg/day) [4]. 

2.1.4. Anthocyanins 

Anthocyanins are water-soluble pigments mainly present as glycosides of their aglycone form 

(anthocyanidin) [19] (Figure 1, Panel A). There are more than 550 anthocyanins in nature. They vary 

according to the number of hydroxyl groups and degree of methylation in the aglycone molecule, the 

number and position of sugars linked to the aglycone molecule, and the number and nature of aliphatic 

or aromatic acids linked to these sugars [4]. The most abundant anthocyanins are cyanidin, pelargonidin, 

delphinidin, peonidin, petunidin, and malvidin. Their main food sources are berries, cherries, red grapes 

and currants, red wines, blood oranges, the black varieties of soybeans, rice, beans, and the red varieties 
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of onions, potatoes, and cabbage [11]. In the U.S., estimated daily intake of anthocyanins is high 

compared to other flavonoids (180–215 mg/day) [11]. 

2.1.5. Flavanones 

Flavanones are non-planar flavonoids found mainly in citrus fruits, where they occur mainly as  

mono- and diglycosides or, less frequently, in aglycone form (Figure 1, Panel A). The most  

important aglycone flavanones are naringenin and hesperetin. The correspondent glycated forms  

are neohesperidosides such as naringin (naringenin-7-O-neohesperidoside) and neohesperidin  

(hesperetin-7-O-neohesperidoside), and rutinosides, such as narirutin (naringenin-7-O-rutinoside) and 

hesperidin (hesperetin-7-O-rutinoside) [15,20]. Hesperetin, naringenin, neohesperidin and naringin are 

abundant in oranges, grapefruit and tomatoes. The main food sources of hesperidin and narirutin are 

sweet orange, lemon, mandarin and grapefruit [20]. The estimated mean dietary intake of flavanones is 

highest in Europe (20.4–50.6 mg/day) and relatively lower in the U.S. (14.4 mg/day) [4]. 

2.1.6. Isoflavones 

Isoflavones are classified as phytoestrogens due to structural similarities with estrogens, particularly 

17-ß-estradiol, that confer pseudohormonal activity [18,21] (Figure 1, Panel A). Daidzein, genistein, 

and glyciten are the most common members of this subclass. They are found mainly in soybeans and 

soy products, which have the highest levels of isoflavones, and in leguminous plants [22]. In soy 

products, isoflavones occur as aglycones (genistein and daidzein) or glycosides (genistin and daidzin), 

depending on how the soy products are processed [22]. Estimated mean dietary intake of isoflavones is 

very low in Europe and the U.S. (0.1–1.2 mg/day) and higher in Japan and China, where consumption 

of soy products is more common [4]. 

2.1.7. Minor Subclass of Flavonoids 

Chalcones, dihydrochalcones, aurones, dihydroflavonols, and flavan-3,4-diols make up a minor subclass 

of flavonoids. The main food sources of chalcones are tomatoes, licorice, shallots, and bean sprouts. 

Dihydrochalcones (phloretin) occur exclusively in apples and apple products. Aurones (aureusidin) are 

isomers of flavones that have a limited presence in vegetables and fruits. Dihydroflavonols and  

flavan-3,4-diols are biosynthetic intermediates of the flavonols and anthocyanins [4]. 

2.2. Phenolic Acids 

Phenolic acids are derivatives of benzoic acid and cinnamic acid [1]. Hydroxybenzoic acids have  

a C6-C1 structure, are found in few edible plants, and do not have high nutritional value (Figure 1,  

Panel B). Members of this subclass are protocatechuic acid and gallic acid, the commonest phenolic 

acid. In its non-sugar galloyl ester form, its main dietary sources are grapes, wine, green and black 

teas, and mangoes. Gallic acid is also the biosynthetic precursor of hydrolysable tannins (gallotannins 

and ellagitannins), where it occurs as complex sugar esters. Gallotannins are found in mangoes; 

ellagitannins occur in red fruits such as strawberries, raspberries, and blackberries [1,15]. 
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Hydroxycinnamic acids have a C6-C3 structure and are mainly found in glycosylated forms or esters 

of quinic, shikimic, and tartaric acid (Figure 1, Panel B). The most common hydroxycinnamic acids 

are caffeic acid, ferulic acid, p-coumaric acid, and sinapic acid. When combined, caffeic acid and 

quinic acid form chlorogenic acid, found in fruits (blueberries, kiwis, plums, cherries, apples) and in 

high concentrations in coffee (70–350 mg in a single cup) [1]. Caffeic acid, the most abundant 

phenolic acid, comprises 75%–100% of the total hydroxycinnamic acid content of most fruits. Ferulic 

acid is the most abundant phenolic acid in cereal grains and comprises up to 90% of the total 

polyphenol content of wheat grain. Dietary intake of hydroxycinnamic acids is highly variable, 

depending on coffee consumption [1]. 

2.3. Stilbenes 

Stilbenes are phytoalexins (C6-C2-C6 structure) produced by plants as a defense against pathogens, 

disease, injury, and stress conditions. They have a limited presence in our diet and the main member is 

resveratrol (3,5,4'-trihydroxystilbene) (RES) [15] (Figure 1, Panel C). RES is present as cis and trans 

isomers as well as conjugated derivatives (trans-resveratrol-3-O-glucoside) in grapes, berries, plums, 

peanuts, and pine nuts. RES has valuable biological properties, including antioxidant, anti-inflammatory, 

anticancer, and antiaging activities [23–25]. 

2.4. Lignans 

Lignans are plant-derived compounds whose structural similarities with estrogens classify them as 

phytoestrogens, similar to isoflavones [26]. They are formed by oxidation of 2 phenylpropane units 

and mainly occur prevalently as free form in nature. Lignans are present in high concentration in 

linseed and in minor concentration in algae, leguminous plants, cereals, vegetables, and fruits [1]. 

Lignans include ecoisolariciresinol, matairesinol, medioresinol, pinoresinol, and lariciresinol. Human 

gut microflora metabolize lignans into enterodiol and enterolactone [27]. 

2.5. Other Polyphenols 

Among the other polyphenols, Curcumin represents the main compound. Curcumin (CUR)  

(1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a member of the curcuminoid 

family, is a polyphenol compound found in turmeric, a spice produced from the rhizome of Curcuma 

longa [28] (Figure 1, Panel D). CUR has been studied extensively in recent years as a pleiotropic 

molecule able to interact with a variety of molecular targets and signal transduction pathways. It has 

been found to have antitumor, anti-inflammatory, antioxidant, immunomodulatory, and antimicrobial 

activities in both rodents and humans. CUR is considered a “multifunctional drug” due to its ability to 

modulate the activity of multiple targets involved in carcinogenesis through direct interaction with 

gene expression [13,29]. 

3. Polyphenols Target Signal Transduction Pathways Involved in Carcinogenesis 

As stated earlier, signal transduction pathways involved in carcinogenesis often interact with each 

other, enhancing oncogenic signals that trigger the malignant phenotype of cells [3,10]. For example, 
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cross-talk between the signaling pathways mediated by ErbB receptors, NF-κB, and the HH/GLI 

cascade plays an important role in neoplastic transformation [3]. 

Polyphenols can inhibit cancer cell growth by interacting with multiple signaling pathways. In this 

regard, different studies reported the ability of polyphenols to modulate ErbB receptors, HH/GLI and 

NF-κB signaling pathways in cancer cells both in vitro and in vivo. 

3.1. Modulation of ErbB Receptors Signaling Pathway by Polyphenols in Cancer Cells 

ErbB family receptors include epidermal growth factor receptor (EGFR), ErbB2 (Neu, HER2), ErbB3, 

and ErbB4, each of which is involved in carcinogenesis. It has been demonstrated that, after binding 

with specific ligands, dimerization and receptor trans-phosphorylation of ErbB receptors occur [30]. 

This phenomenon activates several downstream molecules that in turn activate the mitogen-activated 

protein kinase (MAPK) pathway, leading to increased cell proliferation and differentiation [3,31]. 

Polyphenols such as CUR, EGCG, RES, quercetin and apigenin have demonstrated a potent activity 

in affecting ErbB receptors downstream signaling in several types of cancer cells. 

Squires et al. found that, in the MDA-MB-468 breast cancer cell line, CUR suppressed EGFR 

phosphorylation, inhibited c-fos expression and ERK activity in vitro [32]. CUR has also been shown 

to (a) decrease the expression of phosphorylated forms of EGFR and ERK1/2; (b) induce apoptosis 

and cell cycle arrest; and (c) inhibit cell proliferation in the aggressive MDA-MB-231 breast cancer 

cell line in vitro [33,34]. 

It also been demonstrated that CUR induced apoptosis in several breast cancer cell lines and 

delayed the growth of mammary tumors in BALB-neuT transgenic mice. In vitro experiments showed 

that CUR inhibited the growth of breast cancer cell lines in a dose-dependent manner by enhancing the 

activation of apoptosis and down-regulating the activity of ERK1/2 MAPKs. In addition, the cytotoxic 

effects of CUR were observed in breast cancer cells expressing either high or low levels of ErbB2/neu. 

These results were confirmed by in vivo experiments. BALB-neuT transgenic mice were treated with 

CUR starting at the age at which they displayed atypical breast hyperplasia (6 weeks) or invasive 

breast carcinoma (16 weeks). CUR administration resulted in a significant reduction of tumor 

multiplicity in both early and in an advanced stage of mammary carcinogenesis, and did not modify 

hematological and clinical chemistry parameters in all treated mice [29]. 

Similar effects were also reported in gastrointestinal, prostate, pancreatic, lung, and ovarian cancer 

cells. Cai et al. showed that CUR demonstrated a block of proliferation and invasion of gastric cancer  

cells by inhibiting the expression of ErbB2 and cyclin D1 and suppressing the activity of p21-activated  

kinase 1 (PAK1), a downstream protein of EGFR [35]. 

Furthermore, in androgen responsive and refractory prostate cancer cells in vitro, CUR inhibited cell 

proliferation by down-regulating EGFR and ErbB2 expression [36]. CUR has also proved to be effective 

in inhibiting proliferation and inducing apoptosis of pancreatic and lung adenocarcinoma cells, through 

the modulation of cyclooxygenase-2 (COX-2), EGFR and phospho-ERK1/2 expression [37]. 

In HEY ovarian cancer cell line, CUR induced apoptosis in a p53-indipendent manner through the 

activation of p38 kinase, the down-regulation of Bcl-2 and surviving expression and the modulation of 

Akt signaling [38]. 
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Pan et al. evaluated the ability of EGCG to counteract the growth of ErbB2- or/and  

ErbB3-overexpressing breast cancer cells. They reported that the anticancer activity of this polyphenol 

should be due to its peculiarity to interfere with heterodimerization and tyrosine phosphorylation of 

ErbB2-ErbB3, leading to an inhibition of the MAPK cascade pathway [39]. In an in vitro study on 

ErbB2/neu-overexpressing mouse mammary tumor NF639 and SMF cells, Pianetti et al. showed  

that EGCG decreased the phosphorylation and constitutive activation of ErbB2/neu, and suppressed 

the MAPK and NF-κB pathways, determining a sensible reduction of tumor growth [40]. Moreover, 

EGCG has been proved to have inhibitory properties on cell proliferation of breast and head and neck  

squamous cell carcinomas (HNSCC) by suppressing the activity of EGFR, signal transducer and 

activator of transcription 3 (STAT3), Akt and c-fos [41,42]. Similar effects have been observed in 

human colon and non-small cell lung cancer (NSCLC) cells. EGCG has demonstrated a potent ability 

in modulating EGFR signaling in several colon cancer cell lines [43–46]. In particular, it has been 

observed that EGCG was able to reduce the cellular levels of EGFR, ErbB2 and ErbB3 in the SW837 

colon carcinoma cell line [43]. 

RES has been shown to be effective in inducing growth inhibition and apoptosis through the 

modulation of MAPK signaling in different cancer cell lines. In liver HepG2 cancer cell line, RES 

induced a suppression of cell proliferation and enhanced apoptosis by down-regulating cyclin D1, Akt, 

p38 kinase and Pak 1 expression, and increasing phospho-ERK1/2 protein levels [47]. Similar effects 

were also observed in epidermoid carcinoma and colon cancer cells [48,49]. 

The modulatory activity of quercetin on ErbB receptors signaling was investigated in several cancer 

cell lines. Jeong et al. reported that the plant polyphenol quercetin inhibited ErbB2 signaling pathway 

in breast cancer cells. In particular, in SKBR3 breast cancer cell line, quercetin treatment resulted in  

a suppression of tyrosine kinase activity and in a reduction of ErbB2/neu protein level as well as in  

a dephosphorylation of phosphatidylinositol-3-kinase (PI3K) and Akt [50]. 

Quercetin exerted its modulatory activity also on hepatoma and lung cancer cells. In the human 

hepatoma HepG2 cell line quercetin led to cell death by inducing suppression of Akt and ERK1/2 

phosphorylation and modulating the NF-κB pathway [51]. Similarly, in A549 lung cancer cells, 

quercetin induced growth inhibition and apoptosis, in a dose-dependent manner, through the 

inactivation of Akt-1 and the increase of ERK-MEK1/2 phosphorylation [52]. 

The anticancer effects of the flavonoid apigenin have been evaluated in different types of cancer 

cells. In PC-3 and LNCaP prostate cancer cell lines, apigenin suppressed cell proliferation, induced  

an arrest of the cell cycle in G0/G1 phase and reduced the phosphorylation of Rb, p38 kinase and c-fos  

protein [53]. Moreover, in breast cancer cells, at high doses, apigenin resulted in an arrest of cell 

growth by inhibiting the activity of several kinases involved in the downstream signaling following 

EGFR activation [54]. In another study performed on HNSCC cells in vitro, apigenin treatment 

inhibited survival and induced apotosis by reducing ligand-induced phosphorylation of EGFR and 

ErbB2 and modulating their downstream signaling [55]. 

Finally, Lee et al. evaluated the capacity of polyphenols extracted from Allium cepa Linn (PEAL) 

to modulate the MAPK pathway in AGS human gastric carcinoma cell line. They found that PEAL 

arrested tumor growth and induced apoptosis in a dose-dependent manner. This feature was associated 

with their ability to up-regulate p53 expression, increase Bax/Bcl-2 ratio and block Akt activity [56]. 

Effects of polyphenols on ErbB receptors signaling pathway in cancer cells are summarized in Table 1. 
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Table 1. Modulation of ErbB receptors, NF-κB and HH/GLI signaling pathways by polyphenols in cancer cells. 
Signaling 

Pathway 
Treatment In Vitro Model In Vivo Model Antitumoral Effects Reference 

ErbB 

receptors 
CUR 

MDA-MB-468 breast cancer cells 

(40 µM) 
 

↓ EGFR phosphorylation  

↓ c-fos expression  

↓ ERK, MKK4, JNK activity 

[32] 

MDA-MB-231 breast cancer cells 

(30–50 µM) 
 

↓ Cell proliferation  

↓ EGFR, ERK1/2, Akt, MAPK phosphorylation 
[33,34] 

Breast cancer  

cells (6–50 µM) 

BALB-neuT transgenic mice  

(2 mg in 50 µL corn oil  

p.o. thrice weekly) 

↓ Tumor growth  

↓ ERK1/2 activity  

↑ Bax/Bcl-2 ratio  

↑ PARP cleavage  

↓ Tumor multiplicity 

[29] 

Gastric cancer  

cells (1–100 µM) 
 

↓ Cell proliferation  

↓ ErbB2, cyclin D1 expression  

↓ PAK1 activity 

[35] 

LNCaP, C4-2B prostate cancer cells 

(0–100 µM) 
 

↓ Cell proliferation  

↓ EGFR, ErbB2 expression 
[36] 

Pancreatic and lung  

cancer cells (0–50 µM) 
 

↓ Cell proliferation  

↓ COX-2, EGFR, phospho- ERK1/2 expression 
[37] 

HEY ovarian cancer  

cells (2.5–160 µM) 
 

↓ Bcl-2, Akt expression  

↑ p38 activity 
[38] 
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Table 1. Cont. 

Signaling 

Pathway 
Treatment In Vitro Model In Vivo Model Antitumoral Effects Reference 

ErbB 

receptors 

EGCG 

MCF-7 breast cancer cells  

(5–20 µM) 
 

↓ ErbB2, ErbB3 phosphorylation  

↓ MAPK pathway 
[39] 

mammary tumor NF639 and SMF cells 

(0–80 µg/mL) 
 

↓ Cell proliferation  

↓ ErbB2/neu phosphorylation  

↓ NF-κB, MAPK pathways 

[40] 

HNSCC (10 µg/mL), breast cancer 

cells (30 µg/mL) 
 

↓ Cell proliferation  

↓ EGFR, STAT3, Akt, c-fos activity 
[41,42] 

SW837 colon carcinoma cells  

(30 µg/mL) 
 ↓ EGFR, ErbB2 and ErbB3 cellular levels [43] 

RES 

HepG2 liver cancer  

cells (50–300 µM) 
 

↓ Cell proliferation  

↓ Cyclin D1, Akt, p38 kinase expression  

↑ Phospho-ERK1/2 protein levels 

[47] 

A431 epidermoid carcinoma cells  

(0–100 µM) 
 ↓ Cyclin D1, MEK1, ERK1/2 expression [48] 

HT-29 colon cancer  

cells (25 µM) 
 

↓ JACK-STAT pathway  

↓ iNOS, COX-2 expression 
[49] 

Quercetin 

SKBR3 breast cancer cells  

(100–200 µM) 
 

↓ ErbB2 tyrosin kinase activity  

↓ PI3K, Akt phosphorylation 
[50] 

HepG2 liver cancer  

cells (50 µM) 
 

↓ ERK1/2, Akt phosphorylation  

↓ NF-κB pathway 
[51] 

A549 lung cancer  

cells (0–58 µM) 
 

↓ Cell proliferation  

↓ Akt-1 activation  

↑ ERK-MEK1/2 phosphorylation 

[52] 

Apigenin 

PC-3, LNCaP prostate cancer cells 

(5–40 µM) 
 

↓ Cell proliferation  

↑ Proportion of cells in G0/G1–phase  

↓ Rb, p38 kinase and c-fos phosphorylation 

[53] 

HNSCC cells (6–100 µM)  
↓ Cell proliferation  

↓ EGFR, ErbB2 phosphorylation 
[55] 
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Table 1. Cont. 

Signaling 

Pathway 
Treatment In Vitro Model In Vivo Model Antitumoral Effects Reference 

NF-κB 

EGCG 
A431 epidermoid carcinoma cells  

(10–40 µg/mL) 
 

↓ Cell proliferation  

↓ NF-κB/p65 nuclear translocation 
[57] 

Delphinidin 
PC-3 prostate cancer  

cells (30–180 µM) 

Athymic (nu/nu) nude mice 

bearing prostate cancer tumors 

(2 mg i.p. thrice weekly) 

↓ Tumor growth  

↓ IκB kinase γ , IκB-α phosphorylation  

↓ NF-κB DNA binding activity 

[58,59] 

 
HCT-116 colon cancer cells  

(30–240 µM) 
 

↓ Cell proliferation  

↓ IκB-α phosphorylation  

↓ NF-κB activation 

[60] 

Anthocyanin 

 
rats with esophagus tumor  

(3.8 μmol/g/day p.o.) 

↓ Tumor development  

↓ NF-κB, COX-2 expression 
[61] 

CAL-27 oral cancer  

cells (0–500 µg/mL) 
 

↓ Cell proliferation, metastasis  

↓ NF-κB, MMPs expression  

↓ MAPK pathway 

[62] 

CA, CAPE 
HepG2 liver cancer cells  

(CA 100 µg/mL; CAPE 5 µg/mL) 

nude mice injected with HepG2 

cells (CA + CAPE 5 mg/kg s.c 

thrice weekly; CA + CAPE  

20 mg/kg/day p.o. for 5 weeks) 

↓ Tumor growth  

↓ NF-κB, MMP-9 activity  

↓ Liver metastasis 

[63] 

CUR 

Cervical cancer  

cells (5–60 µM) 
 

↓ IκB-α phosphorylation  

↓ NF-κB activation 
[64] 

 ICR mice (1–25 µM) 

↓ COX-2 expression  

↓ NF-κB activation  

↓ NF-κB nuclear translocation  

↓ ERK1/2 activity 

[65] 
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Table 1. Cont. 

Signaling 

Pathway 
Treatment In Vitro Model In Vivo Model Antitumoral Effects Reference 

NF-κB RES 

MCF-7 breast cancer  

cells (50–150 µM) 
 

↓ Cell proliferation  

↓ NF-κB activation  

↓ Bcl-2 expression 

[66] 

OCIM2, OCI/AML3 myeloid 

leukemia cells (5–75 µM) 
 

↓ Cell proliferation  

↓ NF-κB activation  

↑ PARP cleavage  

↑ Proportion of cells in S-phase 

[67] 

HH/GLI 

CUR 
medulloblastoma  

cancer cells (40 µM) 
 

↓ SHH, GLI1, PTCH1 expression  

↑ Proportion of cells in G2/M-phase 
[68] 

EGCG 
SW1353, CRL-7891 chondrosarcoma 

cells (0–4 µM) 
 

↓ Cell proliferation  

↓ GLI1, PTCH1 expression 
[69] 

 
pancreatic cancer stem cells  

(20–60 µM) 
 

↓ Cell proliferation, invasion  

↓ SMO, PTCH1, PTCH2, GLI1, GLI2 

expression 

[70] 

Apigein, baicalein, 

CUR, RES EGCG, 

genistein, quercetin 

Pancreatic cancer stem cells, prostate 

cancer cells (20–30 µM) 
 ↓ GLI1 expression [71,72] 

Abbreviations: p.o., per os; i.p., intraperitoneally; i.t., intratumorally; i.v., intravenously; s.c., subcutaneously. 
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3.2. Modulation of the NF-κB Pathway by Polyphenols in Cancer Cells 

Constant activation of the NF-κB-mediated pathway is another feature of tumor cells. NF-κB is a 

transcription factor retained in an active state in the cytoplasm by its inhibitors, the IκB proteins 

(IκBs). The IκB proteins bind to NF-κB, masking its nuclear localization signals and preventing its 

nuclear translocation [73]. Activation of the IκB kinase (IKK) complex promotes phosphorylation  

of the IκBs and their consequent proteasomal degradation. Degradation of IκBs promotes NF-κB  

nuclear translocation. Once in the nucleus, NF-κB activates the transcription of several genes  

involved in inflammation, cell growth, and invasivity [74]. Constant activation of NF-κB in cancer  

cells is linked to high production of inflammatory mediators such as tumor necrosis factor (TNF), 

interleukin-1 (IL-1), IL-6, prostaglandin E2 (PGE2), and reactive oxygen species (ROS) within the 

tumor microenvironment [3,75,76]. Up-regulation of NF-κB activity is also involved in the 

development of chemoresistance in tumor cells, which leads to inhibition of apoptosis, increased 

angiogenesis, and metastatic capability [77]. 

Gupta et al. demonstrated that EGCG inhibited cell proliferation and induced apoptosis in a  

dose-dependent manner by reducing nuclear translocation of NF-κB/p65 in human epidermoid 

carcinoma A431 cells [57]. Similar effects on tumor growth of different cancer cells were achieved  

in vitro and in vivo, using anthocyanins. 

Hafeez et al. observed that delphinidin induced cell growth arrest and caspase-dependent apoptosis 

in a dose-dependent manner in prostate cancer cells in vitro, by reducing phosphorylation of IκB  

kinase γ and of NF-κB inhibitory protein IκB-α, and inhibiting NF-κB DNA binding activity.  

Moreover, in vivo, administration of delphinidin resulted in a significant decrease of tumor growth and 

NF-κB protein levels in mice bearing prostate cancer tumors [58,59]. 

Delphinidin exerted similar effects also in human colon cancer cells. Indeed, HCT-116 colon cancer 

cells treated with delphinidin showed a strong reduction of proliferation and induction of apoptosis.  

This phenomenon was due to the ability of this flavonoid to inhibit the activation of IKKα and IκB-α 

phosphorylation and the constitutive activation of NF-κB [60]. 

In addition, Wang et al. concluded that a diet containing anthocyanins from black raspberries 

inhibited the development of nitosomethylbenzylamine (NMBA)-induced rat esophagus tumors by 

reducing expression of NF-κB and COX-2 at tumor level [61]. 

In another study, Fan et al. observed that anthocyanins from black rice blocked oral cancer CAL-27 

cells metastasis in vitro by decreasing metalloproteinases (MMPs) and NF-κB expression, and 

suppressing the MAPK pathway [62]. 

Caffeic acid (CA) and its derivative caffeic acid phenethyl ester (CAPE) were found to possess 

anticancer and antimetastatic activities on HepG2 hepatocarcinoma cells. These two compounds 

suppressed tumor growth both in vitro and in vivo by inhibiting NF-κB and metalloproteinase-9  

(MMP-9) activity. In addition, in vivo, the subcutaneous and oral administrations of CA and CAPE led 

to a significant reduction of the liver metastasis of HepG2 tumor xenografts in nude mice [63]. CUR 

and RES were shown to modulate the NF-κB pathway as well. 

CUR was able to induce apoptosis, suppress IκB-α phosphorylation and enhance the inhibition of 

NF-κB activation in cervical cancer cells [64]. 
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In an in vivo study, employing a mouse skin tumor model, Chun et al. reported that CUR exerted its 

antitumor effects by suppression of COX-2 protein expression, activation of NF-κB and its nuclear 

translocation, and inhibition of the catalytic activity of ERK1/2 in mouse skin [65]. 

RES has been shown to counteract tumor growth of MCF-7 breast cancer cell line in vitro, by  

down-regulating Bcl-2 expression and suppressing NF-κB activity [66]. 

Furthermore, the inhibition of IL-1β-induced activation of NF-κB by RES determined suppression 

of cell growth, enhancement of apoptosis and induction of cell cycle arrest in S-phase in acute myeloid 

leukemia cells [67]. 

Effects of polyphenols on the NF-κB signaling pathway in cancer cells are summarized in Table 1. 

3.3. Modulation of HH/GLI Pathway by Polyphenols in Cancer Cells 

The HH/GLI cascade is a complex signaling transduction pathway that controls cell proliferation, 

survival, and differentiation in vertebrate embryogenesis. Activation of HH signaling promotes 

translocation of the trans-membrane protein, called smoothened (SMO), in the “primary cilium”, a  

non-motile structure protruding from the cell surface. Once SMO enters the cilium, it promotes the 

activation of cytoplasmic GLI proteins and their translocation to the nucleus, leading to the 

transcription of HH target gene products. Aberrant HH signaling has been implicated in the 

development and/or progression of several cancer types, including basal cell carcinoma (BCC), 

rhabdomyosarcoma, and gastrointestinal, lung, breast, and brain tumors [3,78–80]. 

Among polyphenols, CUR, EGCG and genistein exerted a potent modulatory activity on HH/GLI 

pathway in cancer cells. In medulloblastoma cells, CUR was able to arrest cells at the G2/M phase of 

the cell cycle and induce apoptosis by down-regulating the expression of the sonic hedgehog homolog 

(SHH) protein and its downstream molecules GLI1 and protein patched homolog 1 (PTCH1) [68].  

A recent study by Tang et al. showed that EGCG affected proliferation and promoted apoptosis of 

SW1353 and CRL-7891 human chondrosarcoma cells in a dose-dependent manner by inhibiting 

PTCH1 and GLI protein expression [69]. 

EGCG treatment resulted in a suppression of cell proliferation and invasion of pancreatic cancer 

stem cells. This polyphenol exerted its anticancer activity by suppressing SMO, PTCH1, PTCH2, 

GLI1 and GLI2 expression [70]. In the same cells, a modulatory activity on HH/GLI pathway was also 

displayed by genistein [71]. 

Finally, Slusarz et al. reported that, when administered individually, apigein, baicalein, CUR, 

EGCG, genistein, quercetin, and RES inhibited the growth of prostate cancer cells in vitro and in vivo, 

through modulation of the HH signaling pathway [72]. 

Effects of polyphenols on the HH/GLI signaling pathway in cancer cells are summarized in Table 1. 

3.4. Cross-Talk between ErbB Receptors and the HH/GLI and NF-κB Signaling Pathways in  

Cancer Cells 

Cross-talk between ErbB receptors and the HH/GLI and NF-κB signaling pathways has been  

shown to promote the transformation and proliferation of cancer cells. For example, the EGFR and 

MAPK signaling pathways promote the nuclear localization and transcriptional activity of GLI1  

protein in melanoma and other cancer cells [81–85]. It was also reported that IKKα induces ErbB2 to 
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activate NF-κB through the canonical pathway by enhancing the invasive capacity of ErbB2+ breast 

cancer cells [86]. In addition, studies have shown that NF-κB promotes ErbB2-mediated tumorigenesis 

in vivo by enhancing tumor neo-angiogenesis, and that IKKα plays an important role in providing  

stimuli that maintain mammary tumor-initiating cells [87,88]. Makino et al. reported that up-regulation 

of IKKα and IKKß by the integrin-linked kinase/Akt pathway promotes the ErbB2-mediated NF-κB 

anti-apoptotic pathway [89]. 

3.5. Other Signal Transduction Pathways Involved in Carcinogenesis 

As described in the following sections, in addition to signal transduction pathways mentioned  

above, polyphenols are able to modulate other signals involved in carcinogenesis, such as cell cycle,  

apoptosis, and angiogenesis. 

Two events strictly associated with carcinogenesis are the loss of function of cell cycle checkpoint 

genes and the inhibition of the apoptotic process. 

Cell cycle checkpoints genes control cell cycle progression and ensure a high regulation of crucial 

events such as DNA replication and chromosome segregation. In normal cells, when damage to DNA 

occurs, checkpoints genes respond to damage by temporarily arresting the cell cycle by enhancing 

transcription of genes that facilitate repair, in order to avoid that the DNA lesion is transmitted to 

daughter cells during the mitosis. If the DNA damage is not repaired, cell cycle is completely arrested 

and the apoptotic process is activated. Loss of function of checkpoint genes results in genomic 

instability and has been related in the transformation of normal cells into cancer cells [9,90]. 

One of the most important genes involved in the regulation of the cell cycle is p53, because it plays 

a central role in eliminating the genomic damage and in inducing the apoptotic process. It is not 

surprising that over 70% of human cancers have mutations that lead to a loss of function of this gene 

or an inhibition of its downstream signal transduction pathway [91]. In addition, the frequent loss of 

p53 function seems to be related to the acquisition of cross-resistance to anticancer agents in human 

tumors [92–94]. 

It has been also reported that in addition to inhibiting p53 function by mutation, other p53 

independent mechanisms are utilized by many cancers to alter the apoptotic process. For example, the 

overexpression of the anti-apoptotic bcl-2 family members (Bcl-2, Bcl-xL, MCL1, Bcl-W, A1, and Bcl-B), 

the suppression of activation of pro-apoptotic members (Bax, BaK, and Bok), the aberrant expression 

of inhibitors of apoptosis (IAP) proteins and cellular FLICE-like inhibitory protein (C-FLIP) have 

been found to be related to cancer cells resistance to apoptotic stimuli and have been associated to the 

progression of several types of tumors [95]. 

Angiogenesis is a crucial process required to maintain the growth and persistence of primary tumors 

and to enhance the metastatic dissemination. Indeed, increased vascularization seems to be involved 

with the invasive properties of tumors, leading to a more aggressive malignant tumor phenotype [96]. 

Tumor cells induce neo-angiogenesis and enhance expression of pro-angiogenic factors such as 

vascular endothelial growth factor (VEGF) and fibroblast growth factors (FGF-1 and -2) [97]. 

PGE2 can also stimulate production of pro-angiogenic factors, activate the MAPK pathway, and 

increase the transcriptional activity of NF-κB [3]. 
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In summary, the capacity of polyphenols to interact with different pathways involved in carcinogenesis 

makes them multi-targeting agents with the potential for clinical benefit when employed in cancer 

treatment [3,6,7,13,14,29,98–100]. 

4. Bioavailability of Polyphenols 

An important topic of recent research is the analysis of the bioavailability of polyphenols. 

Epidemiological studies have shown an association between a diet rich in polyphenols and the 

prevention of human diseases. However, such beneficial effects are dependent on the proportion of 

active substances that are absorbed from the gastrointestinal tract [15,16]. Indeed, some of the most 

abundant polyphenols in our diet have little or no beneficial effect because of the low bioavailability of 

their bioactive metabolites [1]. In order to produce effects in vivo a compound must enter the 

circulation and reach the tissues, in its native or metabolized form, in a sufficient quantity to exert 

biological activity. Bioavailability is the quantity of a compound that is absorbed and metabolized in 

the human body after it is ingested, and is commonly measured in terms of maximum plasma 

concentration (Cmax) [4]. Polyphenols with the best bioavailability are gallic acid and isoflavones, 

followed by caffeic acid, flavanones, catechin, and quercetin glucosides. Anthocyanins and 

proanthocyanidins have the lowest bioavailability [101]. 

Polyphenols occur in various chemical structures that influence their intestinal absorption and the 

kinds of metabolites circulating in plasma [102]. In their native forms, aglycone polyphenols can be 

absorbed by the small intestine through passive diffusion, reaching immediately the Cmax. In contrast, 

polyphenols in the form of esters, glycosides, or polymers undergo an intense metabolism in the small 

intestine before being absorbed. Glycosilated polyphenols, such as flavonols, isoflavones, flavones and 

anthocyanins have to be first hydrolyzed by intestinal enzymes (glucosidases and lactase-phlorizin 

hydrolase) or colon microflora prior to absorption. Glycosylation influences chemical and biological 

properties of the polyphenols, because removal of the hydrophilic moiety is usually necessary to these 

polyphenols to pass the intestine membrane by passive diffusion. Glycosylated polyphenols are usually 

absorbed more slowly than aglycone polyphenols in the intestine [1,102]. 

Moreover, after hydrolyzation, these polyphenols derivatives are then further metabolized in  

both the small intestine and the liver. They undergo a conjugation by methylation, sulfation, or 

glucuronidation before entering circulating plasma and target tissues. In this regard, metabolites  

that reach plasma are chemically different from polyphenols present in edible foods and this fact  

could dramatically alter their biological properties [102]. Finally, polyphenols are secreted in bile or 

eliminated in urine [1]. 

In summary, several mechanisms limit the bioavailability of polyphenols, including their 

metabolism in the gastrointestinal tract and liver, their binding on the surfaces of blood cells and 

microbial flora in the oral cavity and gut, and regulatory mechanisms that prevent the toxic effects of 

high flavonoid levels on mitochondria or other organelles [103]. 

The presence of certain types of metabolites in the plasma could depend on the interaction of 

polyphenols with colonic microflora. Changes in the composition of the colonic microflora could be 

on the basis of the inter-individual variations in bioavailability of several polyphenols. A better 

knowledge of the proportions of the plasma phenolic metabolites absorbed by the small intestine or by 
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the colon after transformation by microflora is necessary to well elucidate mechanisms that influence 

the bioavailability of polyphenols [102]. 

In addition to endogenous factors, dietary factors can affect the bioavailability of polyphenols.  

A particular food matrix can affect the release of polyphenols, and food preparation techniques can 

alter the composition and structure of polyphenols [104]. For all these reasons, only nano- or 

micromolar concentrations of polyphenols and polyphenol metabolites are found in plasma (0–4 µM 

after an intake of 50 mg of aglycone equivalents) [101]. Even long-term consumption of flavonoid-rich 

foods appears insufficient to overcome this problem [103]. Thus, the main drawbacks to the use  

of polyphenols as single therapy are inadequacies of absorption, biodistribution, metabolism, and 

bioavailability in the human body. 

Compositions and methods for enhancing flavonoids bioavailability, solubility and stability in  

the human body have been patented, creating new flavonoids derivatives with a better biological 

activity and stability [4]. In addition, a promising strategy for improving the anticancer effects of 

polyphenols in vivo is the combined use of several polyphenols, or the combination of polyphenols and 

conventional cancer treatments such as chemotherapy, radiotherapy, and biopharmaceuticals. 

5. Combinations of Polyphenols: In Vitro and in Vivo Antitumoral Effects 

Several in vitro and in vivo studies have shown that treatment with polyphenols in combination is 

more effective in inhibiting cancer growth than treatment with a single polyphenol. 

The association between pterostilbene and quercetin, two structurally related small polyphenols, has 

been investigated in a preclinical study, using the highly malignant B16 melanoma F10 cell line  

(B16M-F10). In vitro experiments showed that these two polyphenols worked synergistically to 

accumulate cancer cells in the G0/G1 phase and to inhibit metastasis. These findings were confirmed 

by in vivo experiments. Mice injected in the spleen with B16M-F10 cells, and then treated with an 

intravenous infusion of 20 mg/kg/day of quercetin and pterostilbene, showed a strong inhibition of the 

metastasis of melanoma cells to the liver and a better host survival compared to treatment with a single 

polyphenol [105]. 

Sakamoto demonstrated that the combined use of the isoflavone genistein and the polyphenol 

thearubigin, found in black tea, inhibited prostate cancer cell growth in vitro. Thearubigin, that alone  

did not inhibit growth in the human prostate tumor cell line PC-3, when combined with genistein at a 

1:40 ratio, synergistically inhibited cell proliferation and induced a G2/M phase cycle arrest in a  

dose-dependent manner [106]. 

In another in vivo experiment, the combination of genistein and RES acted as chemoprevention 

against prostate cancer in SV-40 Tag rats. Rats fed a diet with high levels of genistein and RES  

(250 mg/kg) showed an 11.5-fold decrease in prostate cancer incidence compared to controls.  

These effects were due to the capacity of genistein and RES to inhibit cell proliferation, decrease 

expression of insulin-like growth factor-1 (IGF-1) protein, and modulate sex steroid receptor and 

growth factor signaling in the prostate [107]. 

Wang et al. showed that the combination of quercetin and the flavonoid EGCG, found in green tea, 

decreased proliferation of human prostate cancer cells in vitro and in vivo. Quercetin enhanced the 

antiproliferative activity of EGCG in androgen-independent PC-3 cells and in androgen-dependent 
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LNCaP prostate cancer cells in vitro by increasing the intracellular concentration of EGCG.  

The combined treatment caused cell cycle arrest and induced apoptosis in PC-3 cells. Quercetin also 

had an additive effect in LNCaP cells when administered in combination with EGCG [108]. 

Similarly, combined treatment with quercetin and EGCG reduced the growth of androgen-sensitive 

LAPC-4 prostate cancer cells more efficiently than treatment with either compound alone when 

injected subcutaneously in severe combined immunodeficiency (SCID) mice. Moreover, the combined 

treatment significantly inhibited tumor-cell proliferation, androgen-receptor expression, and PIK3/Akt 

signaling, and induced apoptosis in vivo. These results support the possibility to use these nontoxic 

compounds in combination as chemoprevention for cancer patients [109]. 

Another combination of polyphenols, that of EGCG and CUR, strongly suppressed the growth of 

NSCLC cells and breast cancer cells both in vitro and in vivo [110,111]. Zhou et al. found that, at low 

concentrations, the combination of EGCG and CUR synergistically enhanced cell cycle arrest of  

the NSCLC cell lines A549 and NCI-460 by blocking cells in the G1 and S/G2 phases. In vivo, the 

combination of EGCG and CUR strongly suppressed tumor growth, with no toxicity, in a lung cancer 

xenograft nude mouse model, suggesting that the combination of these two polyphenols may prevent 

NSCLC in humans [110]. 

Similarly, Somers-Edgar et al. demonstrated that the combination of EGCG and CUR suppressed 

breast cancer cell growth in vitro and in vivo. EGCG plus CUR had a synergic cytotoxic effect on the 

human breast cancer cell line MDA-MB-231, an effect that correlated with G2/M-phase cell cycle 

arrest. In addition, female athymic nude mice, implanted with MDA-MB-231 cells and treated with 

CUR (200 mg/kg/day) and EGCG (25 mg/kg/day) for 10 weeks, showed greater reduction of tumor 

volume compared to EGCG-, CUR- and vehicle control-treated mice. Moreover, this study also 

indicated that the combined treatment allowed for a reduced dose of CUR to achieve tumor 

suppression, suggesting the potential use of these two polyphenols in combination to treat breast 

cancer in humans [111]. 

Wang et al. reported that adding arctigenin (Arc), a novel anti-inflammatory lignan obtained from 

Arctium lappa seeds, to CUR and EGCG, synergistically increased the chemopreventive effect in the 

LNCaP prostate cancer cell line and the MCF-7 breast cancer cell line, compared to treatment with 

CUR, EGCG, or Arc alone. In particular, both Arc and EGCG enhanced CUR’s ability to induce 

apoptosis in LNCaP cells; in MCF-7 cells, this effect was induced only by the combination of Arc and 

CUR. In both cell lines, the combined treatment reduced NF-κB, PI3K/Akt, and STAT3 expression 

and inhibited cell migration compared to any of the compounds used alone, suggesting a promising 

potential for the use of these three compounds in combination in clinical practice [112]. 

Amin et al. evaluated the anticancer effect of EGCG plus luteolin on head and neck, and lung 

cancer cell lines. At low doses, the combination synergistically increased apoptosis in both cell lines 

by activating mitochondrial-dependent and -independent processes. This combination also had an 

inhibiting effect on tumor growth in experiments with mice implanted with head and neck and lung 

cancers. In particular, a significant decrease in Ki-67 expression and an increase in TUNEL+ cells were 

observed in tissue from xenograft models [113]. 

Polyphenol combinations have also shown promising effects in the treatment of leukemia.  

Working with MOLT-4 human leukemia cells, Mertens-Talcott et al. demonstrated that ellagic acid 

significantly and synergistically enhanced the ability of low-concentration quercetin to reduce cell 
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proliferation, alter the cell cycle, and induce apoptosis [114]. In addition, ellagic acid and quercetin 

worked synergistically with RES to induce apoptosis and inhibit the growth of MOLT-4 cells.  

Finally, the combinations of ellagic acid plus RES and quercetin plus RES worked synergistically to 

induce caspase-3 activity, demonstrating again that the combination of several polyphenols has greater 

anticancer activity than a single polyphenol used alone [115]. 

The combined use of polyphenols has shown promise as a strategy against malignancies with  

poor prognoses, such as neuroblastoma, rhabdomyosarcoma, osteosarcoma, and head and neck 

carcinomas [116–119]. Liontas et al. investigated the ability of CUR and RES combined to induce 

apoptosis and nuclear translocation, and to activate p53 in human neuroblastoma, an aggressive 

childhood cancer of the peripheral nervous system that has a poor prognosis. The combination of CUR 

and RES decreased cell proliferation in a dose- and time-dependent manner, and induced cell cycle 

arrest and apotosis in several neuroblastoma cell lines in vitro. The combination also produced a 

transient up-regulation of p53 expression and induced nuclear translocation as well as p21 and Bax 

expression. The potential anticancer effect of these two polyphenols in combination may represent a 

new strategy for treating advanced-stage or chemo-resistant neuroblastoma [116]. 

The anticancer activity of the combination of diallyldisulfide (DADS), RES, and CUR has also been 

evaluated in malignant tumors of mesenchimal origin, such as rhabdomyosarcoma and osteosarcoma, 

both of which are highly aggressive pediatric malignancies with poor prognoses. The combination 

treatments of DADS plus RES, DADS plus CUR, and RES plus CUR were compared to treatment 

with single compounds. Results showed that, compared to single compounds, the combination 

treatments had greater in vitro anticancer activity on malignant rhabdoid (SJ-RH4, RD/18) or 

osteosarcoma (Saos-2) cell lines. In particular, RES and DADS potentiated the apoptotic effects of 

CUR on SJ-RH4 and RD/18 cell lines, suggesting that CUR-based combinations may have relevance 

for the treatment of p53-deficient tumor cells, which are often unaffected by conventional 

chemotherapies or radiotherapy [117]. 

RES also potentiated the in vitro and in vivo anticancer effects of CUR in HNSCC. A study reported 

that, compared to CUR alone, the combination of RES plus CUR increased PARP-1 cleavage, the 

Bax/Bcl-2 ratio, inhibition of ERK1 and ERK2 phosphorylation, and expression of the autophagic 

marker LC3 II in HNSCC cell lines. The model of compounds interaction indicated the onset of an 

additive effect of the two compounds compared to the single treatment after decrease of their 

concentrations. In addition, treatment with RES plus CUR reduced the growth of transplanted salivary 

gland cancer cells in BALB/c mice more efficiently than either CUR or RES alone [118]. Similar 

effects were seen in a study by Elattar et al., who found that RES combined with quercetin 

significantly increased inhibition of cell growth and DNA synthesis compared to quercetin alone in the 

SCC-25 oral squamous carcinoma cell line [119]. 

Finally, the combination of CUR and RES inhibited the growth of p53+ (wild type) and  

p53−HCT-116 colon cancer cells in vitro and in vivo more effectively than either of the compounds 

used alone. Furthermore, compared to single compounds, CUR plus RES synergistically inhibited cell 

proliferation, stimulated apoptosis, attenuated NF-κB activity, and inhibited activation of EGFR and its 

family members. These results suggest that the combination of CUR and RES could be a promising 

preventive and/or therapeutic strategy for the treatment of colon cancer [120]. The effects of 

polyphenol combinations on cancer cells are summarized in Table 2. 
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Table 2. In vitro and in vivo antitumoral effects of combinations of polyphenols. 

Treatment In Vitro Model In Vivo Model Antitumoral Effects Reference 

Pterostilbene + quercetin 

(s) 

B16M-F10 melanoma cells (40 µM 

pterostilbene + 20 µM quercetin) 

C57BL/6J mice bearing B16M-F10 cells  

(20 mg/kg/day of each polyphenol i.v.) 

↓ Tumor growth  

↓ Metastatic activity  

↓ Bcl-2 expression  

↑  Mice survival 

[105] 

Thearubigin +  

genistein (s) 

PC-3 prostate cancer cells  

(0.125–0.5 µg/mL thearubricin +  

5–20 µg/mL genistein)  

 
↓ Cell proliferation  

↑ Proportion of cells in G2/M-phase 
[106] 

Genistein + RES  
SV40 rats bearing prostate cancer  

(83–250 mg/kg/day of each polyphenols p.o) 

↓ Tumor growth  

↓ IGF-1 expression 
[107] 

Quercetin + EGCG (a) 
PC-3, LNCaP prostate cancer cells  

(10–20 µM of each polyphenol) 

SCID mice bearing LAPC-4 prostate cancer cells  

(0.2%–0.4% of each polyphenol/day p.o) 

↓ Tumor growth  

↓ AR expression  

↓ PI3K/Akt pathway  

↑ Bax/Bcl-2 ratio 

[108,109] 

CUR + EGCG (s) 

A549, NCI-460NSCLC cells  

(10–20 µM of each polyphenol) 

Lung cancer xenograft node mouse model  

(20 mg/kg/day of each polyphenol i.p.) 

↓ Tumor growth  

↓ Cyclin D1 and B1 levels 
[110] 

MDA-MB-231 breast cancer cells  

(2–3 µM CUR + 20–25 µM EGCG) 

Athymic nude mice implanted with MDA-MB-231 cells 

(200 mg/kg/day CUR p.o. + 25 mg/kg/day EGCG i.p.) 

↓ Tumor volume  

↑ Proportion of cells in G2/M-phase 
[111] 

Arc + CUR + EGCG (s) 

LNCaP prostate cancer cells, MCF-7  

breast cancer cells (1 μM Arc +  

5–10 μM CUR + 40 μM EGCG) 

 

↓ Cell proliferation  

↑ Proportion of cells inG0/G1-phase  

↑ Bax/Bcl-2 ratio  

↓ NF-κB, PI3K/Akt, STAT3 

expression 

[112] 

Luteolin + EGCG (s) 
HNSCC and lung cancer cells  

(10 μM luteolin + 30 μM EGCG) 

Athymic nude mice implanted with HNSCC  

and lung cancer cells (125 mg/kg luteolin + 10 mg/kg 

EGCG p.o. 5 days a week) 

↓ Tumor growth  

↑ PARP, caspase-3 cleavage  

↑ p53 phosphorylation  

↓ Ki-67 expression 

[113] 
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Table 2. Cont. 

Treatment In Vitro Model In Vivo Model Antitumoral Effects Reference 

Ellagic acid + quercetin; 

Ellagic acid + RES; 

quercetin + RES (s) 

MOLT-4 leukemia cells (ellagic acid + 

quercetin 0–40 μM; Ellagic acid + 

RES, quercetin + RES 0–140 mM) 

 
↓ Cell proliferation  

↑ Caspase-3 activity 
[114,115] 

RES + CUR 

NUB-7, LAN-5, IMR-32, SK-N-BE 

neuroblastoma cells (0–100 μM  

CUR + 0–200 μM RES) 

 
↓ Cell proliferation  

↑ p53, Bax, p21 expression  
[116] 

SJ-RH4, RD/18 rhabdomyosarcoma 

cells, Saos-2 osteosarcoma cells  

(6–50 μM of each polyphenol) 

 

↓ Cell proliferation  

↑ Bax/Bcl-2 ratio  

↓ ERK phosphorylation 

[117] 

CAL-27, SCC-15, FaDu, SALTO 

HNSCCcells (6–50 μM of each 

polyphenol) (a) 

BALB/c mice implanted with SALTO cells (2 mg of each 

polyphenol in 50 μL of corn oil p.o. thrice weekly) 

↓ Tumor growth  

↑ PARP cleavage  

↑ Bax/Bcl-2 ratio  

↓ ERK1/2 phosphorylation  

↑ LC3 II expression  

[118] 

HCT-116 colon cancer cells  

(0–50 μM of each polyphenol) (s) 

SCID mice implanted with HCT-116 cells (150 mg/kg/day 

RES + 500 mg/kg/day CUR p.o. for 3 weeks) 

↓ Tumor growth  

↓ NF-κB, EGFR, IGF-1R activity 
[120] 

Abbreviations: (s), synergic effect; (a), additive effect; p.o., per os; i.p., intraperitoneally; i.t., intratumorally; i.v., intravenously; s.c., subcutaneously. 
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6. Combinations of Polyphenols and Anticancer Drugs: In Vitro and in Vivo Antitumoral Effects 

Conventional therapies such as chemotherapy and radiotherapy are the gold standard in cancer 

treatment. Unfortunately, tumor cells can become resistant to these therapies, allowing them to efflux 

chemotherapeutic agents, modify drug targets by altering expression of genes and proteins involved in 

carcinogenesis, and increase production of anti-apoptotic proteins such as Bcl-2 and Bcl-Xl [121]. 

Multiple factors argue for the use of natural polyphenols to enhance the anticancer effects of 

conventional therapies, including: their ability to modulate different signal transduction pathways 

involved in carcinogenesis; increasing evidence that combinations of polyphenols significantly 

counteract tumor growth; and the development of novel polyphenol derivatives with improved 

bioavailability. Combining polyphenols with conventional therapies may help to overcome drug 

resistance and reduce the side effects of standard anticancer treatments. 

In particular, CUR has demonstrated a potent ability to increase the efficacy of conventional  

cancer therapies and to chemosensitize cells of colorectal, HNSCC, pancreatic, bladder, and breast 

tumors [122–130]. Shakibadei et al. demonstrated that CUR increased the effect of 5-fluorouracil  

(5-FU) against the colorectal cancer cell lines HCT116 and HCT116+ch3 (complemented with 

chromosome 3). Notably, pretreatment with CUR reduced IC50 values for 5-FU in both cells lines.  

CUR achieved this result (a) by sensitizing colon cancer cells to treatment with 5-FU, especially by 

augmenting the induction of apoptosis by 5-FU (favoring mitochondrial degeneration and cytochrome 

c release, and modulating the expression/cleavage of the pro-apoptotic proteins caspase-8, -9, -3, Bax, 

and PARP); (b) by down-regulating expression of survival proteins such as cyclin D1; and (c) by 

modulating NF-κB and PI-3K/Src signaling in both cell lines. It is important to note that the best  

effect was achieved in HCT116+ch3 cells, suggesting that introduction of chromosome 3 played  

a crucial role in enhancing sensitivity of HCT116 cell line to treatment with 5-FU and/or CUR. The 

combination of CUR with conventional chemotherapeutic agents could be a promising strategy for 

increasing the efficacy of treatments for chemoresistant colon cancer cells [122]. 

Abuzeid et al. studied the effect of a novel CUR analog on cisplatin-sensitive (UM-SCC-74B) and 

cisplatin-resistant (UM-SCC-29) HNSCC cell lines in vitro. FLLL32, a novel small inhibitor derived 

from CUR, down-regulated the phosphorylated form of STAT3 protein and increased the number of 

apoptotic cells in both cell lines when used either alone or in combination with cisplatin. In particular, 

FLLL32 sensitized UM-SCC-29 cells to cisplatin treatment, allowing for a 4-fold reduction in the dose 

of cisplatin compared to the dose required for cisplatin as monotherapy [123]. CUR also potentiated 

the anticancer activity of gemcitabine in pancreatic cancer in vitro and in vivo in an additive manner.  

In vitro, CUR suppressed the growth of tumor cells, enhanced gemcitabine-induced apoptosis, and 

inhibited the constitutive NF-κB activation of several pancreatic cancer cell lines [124,125]. 

Lev-Ari et al. produced similar results in vitro by combining CUR and celecoxib. In this case, CUR 

synergistically potentiated the pro-apoptotic and antiproliferative effects of celecoxib in pancreatic 

adenocarcinoma cells [126]. In vivo, CUR enhanced the antiproliferative and antiangiogenic effects of 

gemcitabine in mice bearing orthotopic pancreatic tumors. Mice treated with CUR plus gemcitabine  

had a significant decrease in tumor volume and significant down-regulation of NF-κB-regulated  

genes (cyclin D1, c-myc, Bcl-2, Bcl-xL, cellular inhibitor of apoptosis protein-1, COX-2, matrix 

metalloproteinase, and VEGF) compared to control- and gemcitabine-treated mice [125]. In another 
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study, combination treatment with CUR, raspberry extract (RSE), and neem leaf extract (NLE) effectively 

induced death/radiosensitization in several human pancreatic cancer cell lines. This three-compound 

treatment significantly reduced cell viability and increased apoptosis by: (a) enhancing the activity of 

caspase-3 and -7; (b) modulating the transcription of genes involved in the NF-κB pathway; and  

(c) inhibiting the NF-κB-DNA-binding activity induced by radiotherapy [127]. These results suggest 

the potential for these phytochemicals to enhance the effects of chemotherapy and radiotherapy, 

especially in the treatment of pancreatic cancer with an apoptosis-resistant phenotype [124–127]. 

Kamat et al. evaluated the capacity of CUR to enhance the anticancer effects of intravesical 

Bacillus Calmette-Guerin (BCG) in the treatment of bladder cancer. CUR potentiated the apoptotic and 

antiproliferative effects of BCG on different human bladder cancer cell lines in vitro by inhibiting  

NF-κB activation and up-regulating TNF-related apoptosis-inducing ligand (TRAIL) receptors; these 

latter are proteins involved in the induction of apoptosis. CUR also potentiated the anticancer effects of 

BCG in syngeneic CH3 mice implanted with MBT-2 bladder cancer cells. Mice treated with CUR plus 

BCG showed a significant reduction of tumor growth compared to mice treated with either CUR or  

BCG alone. This effect was due to the ability of CUR to: (a) inhibit expression of biomarkers of 

proliferation (Ki-67) and angiogenesis (CD31); (b) enhance BCG-induced apoptosis; (c) reduce cyclin 

D1, COX-2, c-myc, Bcl-2, and VEGF expression; and (d) suppress the NF-κB pathway in tumor 

tissue. These promising results suggest that CUR may improve treatments for bladder cancer [128]. 

CUR also has proven effects in combination with conventional therapies for breast cancer. Kang et al. 

investigated ability of CUR to modulate the effects of paclitaxel on breast cancer in vitro or in vivo.  

In the MDA-MB-231 breast cancer cell line in vitro, CUR inhibited paclitaxel-induced NF-κB activation 

by blocking degradation of IκBα, and potentiated the antiproliferative effect of paclitaxel by enhancing 

induction of apoptosis. Moreover, in athymic NCr-nu/nu mice implanted with MDA-MB-231 cells, 

combined treatment with 100 mg/kg of CUR plus 7 mg/kg of paclitaxel (a) significantly suppressed tumor 

growth; (b) markedly reduced tumor cell proliferation rate; (c) improved inhibition of MMP-9 expression; 

and (d) enhanced apoptosis compared to treatment with CUR or paclitaxel alone. These findings suggest 

that CUR plus paclitaxel combination may represent a new strategy against breast cancer [129]. 

In another breast cancer study, Singh et al. showed that CUR and RES enhanced the susceptibility of 

human MCF-7 and MDA-MB-231 breast cancer cell lines to the anti-neoplastic agent Centchroman (CC). 

Pre-treating breast cancer cells with low-dose RES or CUR potentiated the anticancer activity of CC in 

both cell lines, thus increasing the number of cells in the sub-G0/G1 phase, disrupting mitochondrial 

membrane potential, and favoring ROS generation. RES/CUR treatment also enhanced the pro-apoptotic 

activity of CC by modulating the ROS-mediated JNK/p38 pathway and the mitochondrial pathway in 

MCF-7 cells. Specifically, the combined treatment promoted phosphorylation of p53, alteration of the 

Bax/Bcl-2 ratio, and up-regulation of caspase-9 expression. Conversely, RES/CUR treatment induced 

only caspase-9 expression in MDA-MB-231 cells, suggesting that RES/CUR treatment could increase 

apoptosis without involving the ROS-mediated JNK/p38 pathway in these cells. The capacity of these 

two polyphenols to increase the pro-apoptotic activity of CC offers novel opportunities to design new 

therapies for hormone-dependent breast cancer [130]. 

RES has been shown to be a multi-targeting compound capable of enhancing the anticancer activity 

of conventional therapies for several types of cancers. Harikumar et al. reported that RES synergized 

the effect of gemcitabine on human pancreatic cancer cells in vitro and in vivo by: (a) inhibiting the 
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NF-κB pathway; (b) inhibiting Bcl-2, Bcl-xL, COX-2, cyclin D1, MMP-9, and VEGF expression; and 

(c) down-regulating the production of markers for angiogenesis (CD31) and cellular proliferation (Ki-67). 

In vivo, the combination of RES and gemcitabine significantly suppressed the proliferation of MIA 

PaCa-2 pancreatic cancer cells [131]. RES also potentiated the efficacy of the mTOR inhibitor 

rapamycin in several breast cancer cell lines in an additive manner, mainly by modulating the Akt 

signaling transduction pathway. RES inhibited the phosphorylation and activation of the PI3K/Akt 

pathway, enhancing the sensitivity of breast cancer cells to rapamycin in vitro [132]. 

RES and its metabolites have also been shown to work synergistically with chemotherapeutic  

agents to inhibit metastasis of human colon cancer cells. Aires et al. observed that, among various 

metabolites tested, RES-3-O-sulfate (R3S) most effectively inhibited growth in the human colon 

carcinoma cell line SW480 and its derived metastatic cell line SW620 in a time- and dose-dependent 

manner. Moreover, treatment with RES metabolites in combination resulted in a stronger synergic,  

time-, and dose-dependent anticancer effect than treatment with RES or R3S alone. RES metabolites 

blocked colon cancer cells in the S phase of the cell cycle, modulated cyclin and cyclin-dependent  

kinase expression, and induced apoptosis in a p53-dependent manner. Finally, RES metabolites 

demonstrated synergic effects with SN38 (irinotecan’s active metabolites used in the treatment of 

metastatic colon cancer) and oxaliplatin in SW620 cells [133]. Overall these studies support the  

use of RES and RES metabolites as adjuvants to enhance the anticancer effects of conventional  

therapies [131–133]. 

Polyphenols present in extra virgin olive oil (EVOO) have shown strong anticancer activity that 

improves the efficacy of conventional treatments for several types of cancers. Menendez et al. reported 

that the polyphenols in EVOO can reverse acquired resistance to trastuzumab in HER2-overexpressing 

breast cancer cell lines. Among the polyphenols isolated in EVOO, oleuropein aglycone showed the 

most potent ability to inhibit breast cancer cell proliferation. SKBR3 cells, which hamper HER2 gene 

amplification, were about five times more sensitive to the antiproliferative activity of oleuropein 

aglycone than MCF-7 cells, which are HER2−. In addition, when oleuropein aglycone was used in 

combination with trastuzumab in SKBR3 cells, it enhanced the inhibitory effects of trastuzumab  

in a dose-dependent manner. This effect was due to its ability to decrease the proteolytic cleavage  

of the HER2 extracellular domain and suppress HER2 overexpression. Oleuropein aglycone also 

synergistically enhanced down-regulation of HER2 expression mediated by trastuzumab and reversed 

acquired resistance to trastuzumab in SKBR3 cells, suggesting its potential use in the treatment of 

trastuzumab-resistant breast cancer [134]. 

Suganuma et al. conducted two studies evaluating the ability of green tea polyphenols (GTPs) to 

synergize with chemotherapeutic agents in the treatment of lung cancer [135,136]. The first study 

showed that (−) epicatechin enhanced: (a) EGCG incorporation into the human lung cancer cell line 

PC-9; (b) inhibition of cell growth; (c) induction of apoptosis; and (d) EGCG-mediated suppression of 

TNF-α release. In addition, the combination oftamoxifen and sulindac, which cause apoptosis in 

human cancer cells, and EGCG synergistically induced apoptosis in PC-9 cells in vitro [135].  

The same authors also examined the effects of EGCG plus celecoxib, a COX-2 selective inhibitor, on 

cancer-cell proliferation. These two compounds acted synergistically to induce apoptosis by up-regulating 

growth arrest and expression of DNA damage-inducible gene 153 (GADD153), as well as activating 

the MAPK signaling pathway (phosphorylation of ERK1/2 and p38) in human lung cancer cell lines. 
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These findings suggest that the selective inhibition of GADD153 expression by EGCG may be a novel 

strategy for improving treatments for lung cancer [136]. 

Similar effects on tumor growth of prostate cancer cells were achieved in vitro and in vivo, 

combining green tea polyphenols (GTPs) and other selective inhibitors of COX-2. EGCG worked 

synergistically with the COX-2 inhibitor NS398 to: (a) arrest cell growth; (b) induce apoptosis by 

altering the Bax/Bcl-2 ratio and increasing pro-caspase-6 and -9 expression and PARP cleavage;  

(c) suppress expression of peroxisome proliferator activated receptor-γ (PPAR-γ); and (d) suppress 

activation of NF-κB in multiple human prostate cancer cell lines in vitro. These results were confirmed 

by in vivo experiments. Androgen-sensitive human prostate carcinoma cells (CWR22Rv1) were 

implanted in athymic nude mice, which were then treated with GTPs (0.1% dissolved in drinking 

water) and celecoxib (5 mg/kg), a COX-2 inhibitor, alone and in combination. As expected, the 

combined treatment resulted in a significant suppression of tumor growth compared to treatment with 

either agent alone. In addition, mice treated with GTPs plus celecoxib had a significant reduction in 

PSA and IGF-1 levels and a significant increase in serum levels of insulin-like growth factor binding 

protein-3 (IGFBP-3) levels compared to mice treated with either agent alone [137]. 

Stearns and Wang reported the additive effects of EGCG and taxanes (paclitaxel and docetaxel) in 

arresting the growth of human PC-3ML prostate cancer cells in vitro. EGCG plus a taxane also had an 

additive effect on cell death by increasing expression of the pro-apoptotic genes p53, p73, p21, and 

caspase-3. Moreover, combined treatment with EGCG (228 mg/kg) and paclitaxel (20 mg/kg), injected 

intraperitoneally, more effectively reduced tumor growth and increased survival rates in CB17 SCID 

mice implanted with PC-3ML cells than EGCG or paclitaxel alone. Importantly, the combination treatment 

also suppressed bone metastasis resulting from intravenous injection of PC-3ML cells, suggesting  

that EGCG may enhance the efficacy of taxanes in the treatment of advanced prostate cancer [138].  

Similar results were achieved with the combination of EGCG and doxorubicin (DOX) [139]. 

The combination of EGCG and DOX has also proven effective in lysing synergistically liver cancer 

cells. Chen et al. observed that EGCG suppressed autophagic activity and blocked proliferation of 

hepatoma Hep3B cells in vitro and in vivo in a dose- and time-dependent manner [140]. Moreover, 

green tea catechins such as ECG and EGCG improved the anticancer activity of DOX in mice 

transplanted with human chemoresistant liver cancer cells (BEL-7404/DOX) in a dose-dependent manner. 

When given in combination with DOX, green tea catechins markedly reduced tumor volume, with the 

best effect seen at the highest dose of EGCG. Green tea catechins significantly raised intracellular 

accumulation of DOX in BEL-7404/DOX cells in vitro and in vivo, inhibiting the activity of the  

P-glycoprotein efflux pump, suggesting that catechins could be employed as adjuvants to subvert 

resistance to DOX in liver cancer [141]. 

Luo et al. demonstrated that EGCG synergistically sensitized breast cancer cell to paclitaxel in vitro 

and in vivo. A dramatic reduction of proliferation and an increase of taxol-induced apoptosis was 

observed in different breast cancer cell lines in vitro, where EGCG potentiated activation of c-Jun  

N-terminal kinases (JNKs) mediated by paclitaxel. EGCG also sensitized breast cancer cells to taxol  

in vivo, significantly inhibiting the growth of transplanted breast cancer cells (4T1) in BALB/c mice [142]. 

Remarkably, EGCG even potentiated the anticancer activity of chemotherapeutic agents in ovarian  

and pancreatic cancer [143,144]. Chan et al. reported that EGCG enhanced susceptibility to cisplatin 

and inhibited the growth of ovarian cancer cells through the delivery of hydrogen peroxide (H2O2).  



Int. J. Mol. Sci. 2015, 16 9261 

 

 

EGCG enhanced the efficacy of cisplatin up to six-fold in the ovarian cancer cell lines SKOV3 and 

CAOV3, and in the C200, acisplatin-resistant cell line. EGCG also has the unusual ability to kill 

ovarian cancer cells by increasing levels of intracellular H2O2, suggesting that increasing oxidative 

stress may improve the efficacy of chemotherapy in ovarian cancer [143]. 

Tang et al. reported that EGCG potentiated the therapeutic efficacy of gemcitabine and CP690550 

(tasocitinib), a STAT3 inhibitor, by modulating the STAT3 pathway in human pancreatic cancer cells. 

By inhibiting the STAT3-mediated pathway, EGCG blocked the migration and invasive capacity of the 

pancreatic cancer cell lines AsPC-1 and PANC-1 in vitro. In both cell lines, EGCG induced apoptosis 

by up-regulating caspase-3 activity and enhancing gemcitabine-induced cleavage of caspase-3 and 

PARP. The synergism of EGCG and CP690550 in inducing apoptosis suggests that EGCG may be a 

promising candidate for new clinical trials for the treatment of pancreatic cancer [144]. 

The flavonoids quercetin and genistein have also shown anticancer activity when combined with 

conventional therapies. Quercetin has proven very effective in enhancing the anticancer activity of 

chemotherapeutic agents in various types of cancers. Staedler et al. investigated the capacity of quercetin 

to increase the effects of DOX in human breast cancer cell lines in vitro. Quercetin potentiated the 

toxicity of DOX, mainly by reducing cell viability, DNA and protein synthesis, and the invasive 

capacity of cancer cells. These effects were more pronounced in the highly metastatic MDA-MB-231 

cell line than in the less aggressive MCF-7 cell line. In addition, quercetin decreased toxic effects of 

DOX on non-cancer cells, suggesting a useful role in the treatment of breast cancer [145]. Quercetin 

has also been shown to enhance the effects of cisplatin. Kuhar et al. reported that NSCLC H-520 cells 

pre-treated with quercetin were more susceptible to cell killing by cisplatin than cells treated with 

cisplatin alone. Cells treated with quercetin plus cisplatin had an increased rate of apoptosis compared 

to cells treated with cisplatin alone. This effect was mediated by the ability of quercentin to suppress 

Bcl-xL expression and increase the Bax/Bcl-2 ratio, caspase-3 activity, and cytochrome c release in 

mitochondria [146]. Similar effects were reported by Sharma et al. on human laryngeal HeP2 cells, 

where quercetin enhanced cisplatin-mediated apoptosis in a synergic manner, modulated MAPK signaling, 

and induced pro-apoptotic protein expression while increasing oxidative stress and reducing HSP70 

activity [147]. 

Different studies proved that the soy isoflavone genistein is able to potentiate the anticancer activity 

of cisplatin and gemcitabine. Compared to cisplatin or gemcitabine alone, the combination of genistein 

plus cisplatin or genistein plus gemcitabine more effectively reduced proliferation and increased 

apoptosis in human pancreatic carcinoma cell lines in vitro and in vivo. Genistein also suppressed 

cisplatin- and gemcitabine-induced activation of NF-κB in pancreatic carcinoma-bearing mice, 

suggesting the potential use of this isoflavone as an adjuvant to enhance the effects of chemotherapy in 

pancreatic cancer [148–150]. In a prostate cancer study, Raffoul et al. found that pre-treatment with 

the soy isoflavones genistein, daidzein, and glycitein enhanced cell killing by radiation of PC-3 cells  

in vitro. The soy isoflavones achieved this result by activating apoptosis through up-regulation of  

Bax expression and PARP cleavage and down-regulation of Bcl-xL and survivin expression. In vivo, 

treatment with soy isoflavones potentiated the inhibition of tumor growth by radiation and stabilized 

metastasis to para-aortic lymph nodes in a PC-3 orthotopic metastatic mouse model, suggesting a 

potential role for these compounds in new treatments for prostate cancer [151]. The anticancer effects 

of polyphenols in combination with anticancer agents are summarized in Table 3. 
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Table 3. In vitro and in vivo antitumoral effects of polyphenols in combination with anticancer drugs. 

Treatment In Vitro Model In Vivo Model Antitumoral Effects Reference 

CUR + 5-FU 
HCT-116 colon cancer cells  

(5 µM CUR + 0–5 µM 5-FU) 
 

↓ IC50 of 5-FU  

↑ Cytocrome c release  

↑ PARP, caspase-3,-8,-9 cleavage  

↓ Cyclin D1 expression  

↓ NF-κB, PI-3K/Src activity 

[122] 

CUR + cisplatin 

UM-SCC-74B, UM-SCC-29 HNSCC 

cells (0.3–5 µM CUR +  

3–50 µM cisplatin) 

 
↓ Cell proliferation  

↓ STAT3 phosphorylation 
[123] 

CUR + gemcitabine (a) 

P34, Panc-1 pancreatic cancer cells. 

(10–15 µM CUR +  

0.1–0.5 µM gemcitabine) 

 
↓ Cell proliferation  

↓ COX-2 and p-ERK1/2expression 
[124] 

BxPC-3, MIA PaCa-2, Panc-1 

pancreatic cancer cells (10 µM CUR 

+ 50 nM gemcitabine) 

Mice bearing pancreatic tumors  

(1 g/kg/day CUR p.o. + 25 mg/kg 

gemcitabine i.p. twice weekly) 

↓ Tumor growth  

↓ NF-κB activity  

↓ Cyclin D1, c-myc, Bcl-2,Bcl-xL, COX-2, MMP, 

VEGF expression 

[125] 

CUR + celecoxib (s) 

P-34, MIA PaCa, Panc-1  

pancreatic cancer cells (15 µM CUR 

+ 25 µM celecoxib) 

 
↓ Cell proliferation  

↓ COX-2 expression 
[126] 

CUR + RSE +  

NLE + radiotherapy 

BxPC-3, MIA PaCa-2, Panc-1 

pancreatic cancer cells (100 nM CUR 

+ 1 µg RSE+ 0.01% NLE +  

10 Gy radiotherapy) 

 

↓ Cell proliferation  

↑ Caspase-3,-7 activity  

↓ NF-κB activity 

[127] 

CUR + BCG 

MBT-2, 253J-BV, KU-7, RT4V6 

bladder cancer cells (0–25 µM CUR 

+ 106 CFU BCG) 

Syngeneic mice implanted with MBT-2 

cells (1 g/kg/day CUR p.o. + 106 CFU 

BCG i.t. once weekly) 

↓ Tumor growth  

↓ NF-κB activity  

↑ TRIAL receptors  

↓ Ki-67, CD31, cyclin D1, COX-2, c-myc, Bcl-2, 

VEGF expression 

[128] 
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Table 3. Cont. 

Treatment In Vitro Model In Vivo Model Antitumoral Effects Reference 

CUR + paclitaxel 

MDA-MB-231breast  

cancer cells (0.01–10 µM CUR + 

0.2–100 µM paclitaxel) 

Athymic nude mice implanted with 

MDA-MB-231 cells (100 mg/kg/day 

CUR p.o. + 7 mg/kg paclitaxel  

i.p. weekly) 

↓ Tumor growth  

↓ NF-κB activity  

↓ MMP-9 expression 

[129] 

RES + CUR + CC 

MCF-7, MDA-MB-231 breast cancer 

cells (10–100 µM RES +  

10–30 µM CUR + 10 µM CC) 

 

↑ Proportion of cells in G0/G1-phase  

↑ ROS generation  

↑ p53 phosphorylation  

↑ Bax/Bcl-2 ratio  

↑ Caspase-9 expression 

[130] 

RES + gemcitabine (s) 

ASPC-1, MIA PaCa-2, Panc-1 

pancreatic cancer cells  

(10 µM RES + 100 nM gemcitabine) 

Athymic nude mice implanted with 

MIA PaCa-2 cells (40 mg/kg /day  

RES p.o. + 25 mg/kg gemcitabine i.p. 

twice weekly) 

↓ Tumor growth  

↓ NF-κB activity  

↓ Cyclin D1, Bcl-2, Bcl-xL, COX-2, MMP-9, VEGF, 

Ki-67, CD31 expression 

[131] 

RES + rapamycin (a) 

MCF-7, MDA-MB-231, BT-549 

breast cancer cells (10–50 µM RES + 

0–10,000 nM rapamycin) 

 
↓ Cell proliferation  

↓ PI3K/Akt pathway 
[132] 

RES metabolites + SN38 

or oxaliplatin (s) 

SW480, SW620 colon cancercells 

(0–60 µM RES + 50 nM SN38 or 

500 nM oxaliplatin) 

 

↓ Cell proliferation  

↑ Proportion of cells in S-phase  

↑ p53 phosphorylation 

[133] 

EVOO + trastuzumab (s) 

MCF-7, SKBR3 breast cancer  

cells (50 µM EVOO +  

100 µg/mL trastuzumab) 

 
↓ Cell proliferation  

↓ HER-2 expression 
[134] 

EGCG + tamoxifen or 

sulindac (s) 

PC-9 lung cancer cells (75 µM 

EGCG + 0–20 µM tamoxifen or  

0–200 µM sulindac) 

 
↓ Cell proliferation  

↓ TNF-α release 
[135] 
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Table 3. Cont. 

Treatment In Vitro Model In Vivo Model Antitumoral Effects Reference 

EGCG+ celecoxib (s) 

PC-9, A549, ChaGo K-1 lung  

cancer cells (100 µM EGCG +  

1–50 µM celecoxib) 

 

↓ Cell proliferation  

↑ GADD153 expression  

↑ ERK1/2, p38 phosphorylation 

[136] 

EGCG + NS38 or 

celecoxib (s) 

LNCaP, PC-3, CWR22Rv1  

prostate cancer cells (10–40 µM 

EGCG + 10 µMNS38) 

Athymic nude mice implanted with 

CWR22Rv1 cells (0.1% EGCG in 

drinking water/day + 5 mg/kg/day 

celecoxib i.p. 5 days per week) 

↓ Tumor growth  

↑ Bax/Bcl-2 ratio  

↑ PARP cleavage  

↑ Caspase-3, -9 expression  

↓ NF-κB activity  

↓ PPAR-γ expression  

↓ PSA, IGF-1 serum levels 

[137] 

EGCG + paclitaxel or 

docetaxel (a) 

PC-3ML prostate cancer cells  

(30 µM EGCG+ 6.25 nM paclitaxel 

or 3.12 nM docetaxel) 

CB17 SCID mice implanted with  

PC-3ML cells (228 mg/kg/day EGCG + 

20 mg/kg paclitaxel i.p.weekly) 

↓ Tumor growth  

↑ p53, p73, p21, caspase-3 expression  

↑ Mice survival rate  

↓ Bone metastasis 

[138] 

EGCG + DOX 

IBC-10a, PCa-20a, PC-3ML  

prostate cancer cells (0–60 µM 

EGCG + 2 nM or 1–6 µM DOX) 

NOD-SCID mice implanted  

with PC-3ML cells (200 µM EGCG + 

2 µM DOX) 

↓ Tumor growth  

↑ PARP cleavage  

↑ Mice survival rate 

[139] 

ECG + EGCG + DOX 

BEL-7404/DOX liver cancer cells 

(60 mg/mL ECG or 14 mg/mL 

EGCG + 0.8–2.0 mg/mL DOX) 

BALB/c nu/nu mice implanted with 

BEL-7404/DOX cells  

(40–160 mg/kg EGCG +  

2 mg/kg DOX i.p.) 

↓ Tumor growth  

↓ IC50 of DOX  

↓ P-glycoprotein expression 

[141] 

EGCG + paclitaxel (s) 

4T1, MCF-7, MDA-MB-231  

breast cancer cells (20 µM EGCG + 

2 µM paclitaxel) 

BALB/c mice implanted with  

4T1 cells (30 mg/kg/day EGCG i.p. + 

10 mg/kg paclitaxel i.p. thrice weekly) 

↓ Tumor growth  

↑ JNK phosphorylation 
[142] 

EGCG + cisplatin 

SKOV3, CAOV3, C200 ovarian 

cancer cells (0–20 µM EGCG +  

1–350 µg/mL cisplatin) 

 
↓ Cell proliferation  

↑ H202 levels 
[143] 
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Table 3. Cont. 

Treatment In Vitro Model In Vivo Model Antitumoral Effects Reference 

EGCG+ gemcitabine or 

tasocitinib (s) 

AsPC-1, PANC-1 pancreatic cancer 

cells (0–60 µM EGCG + 0.5 µM 

gemcitabine or tasocitinib) 

 

↓ Cell proliferation  

↓ STAT3 pathway  

↓ Cell migration  

↑ PARP and caspase-3 cleavage 

[144] 

Quercetin + DOX 

MCF-7, MDA-231 breast  

cancer cells (5–10 µM quercetin + 

10–100 nM DOX) 

 

↓ Cell proliferation  

↓ DNA and protein synthesis  

↓ Cell invasivity 

[145] 

Quercetin + cisplatin 

H520 NSCLC cells (40 µM quercetin 

+ 5 µg/mL cisplatin) 
 

↑ Apoptotic rate  

↑ Bax/Bcl-2 ratio  

↑ Caspase-3 activity  

↑ Cytochrome c release  

↓ Bcl-xL expression 

[146] 

HeP2 laryngeal cancer cells (40 µM 

quercetin + 2.5 µg/mL cisplatin) (s) 
 

↓ Akt phosphorylation  

↑ JNK phosphorylation  

↑ c-fos expression  

↑ Bax/Bcl-2 ratio  

↓ Bcl-xL, Ki-67 expression  

↑ Cytochrome c release  

↑ Caspase-8 ,-9 activity  

↑ ROS production  

↓ HSP70 activity 

[147] 
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Table 3. Cont. 

Treatment In Vitro Model In Vivo Model Antitumoral Effects Reference 

Genistein + cisplatin 

BxPC-3 pancreatic cancer cells  

(25 µM genistein +  

0.5 µM cisplatin) 

SCID mice implanted with BxPC-3 

cells (800 µg/kg/day genistein p.o. +  

9 mg/kg cisplatin/day i.p.) 

↓ Tumor growth  

↓ NF-κB activity 
[148] 

Panc-28, COLO-357, L3.6pl 

pancreatic cancer cells (30 µM 

genistein + 1–2 µM cisplatin) 

SCID mice implanted with  

COLO-357 cells (1 mg/day genistein p.o. 

+ 9 mg/kg cisplatin i.p.) 

↓ Tumor growth  

↓ NF-κB activity  

↓ Bcl-2 , Bcl-xL, MMP-9 expression  

↑ PARP and caspase-3 cleavage  

↓ Akt phosphorylation  

↑ Cytochrome c release 

[149] 

Genistein + gemcitabine 

COLO-357, L3.6pl pancreatic cancer 

cells (25 µM genistein +  

25 nM gemcitabine) 

SCID mice implanted with  

COLO-357 and L3.6pl cells  

(1 mg/day genistein p.o. +  

80 mg/kg/day gemcitabine i.v.) 

↓ Tumor growth  

↓ NF-κB activity  

↑ PARP and caspase-3 cleavage  

↑ Cytochrome c release  

↓ Bcl-2 , Bcl-xL expression  

↓ Akt phosphorylation 

[150] 

Isoflavones + 

radiotherapy 

PC-3 prostate cancer cells (0–15 µM 

isoflavones + 3 Gy radiotherapy) 

Nude mice implanted with PC-3 cells (1 

mg/day isoflavones p.o. +  

5 Gy radiotherapy) 

↓ Tumor growth  

↑ Bax expression  

↑ PARP cleavage  

↓ Bcl-xL, survivin expression  

↓ Metastasis to para-aorticlymph nodes 

[151] 

Cur-NPs 
CAL-27-cisplatin-resistent HNSCC 

cells (0–80 µM) 
 

↓ Cell proliferation  

↑ Bax expression  

↑ Caspase-3 ,-9 synthesis  

↓ Bcl-2 , MDR1 expression  

↑ ROS production 

[152] 
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Table 3. Cont. 

Treatment In Vitro Model In Vivo Model Antitumoral Effects Reference 

GLUT1-PEG-PE  

micelles co-loaded with 

CUR and DOX 

HCT-116 colon cancer cells  

(7.5–20 µM CUR +  

0.1–0.4 µM DOX) 

NU/NU nude mice implanted  

with HCT-116 cells (4 mg/kg/day CUR 

+ 0.4 mg/kg/day DOX i.v.) 

↓ Cell viability  

↓ Tumor growth  

↑ Mice survival 

[153] 

MPEG-PCL  

micelles loaded with CUR 

and DOX (s) 

LL/2, MS1 lung cancer cells  

(0–3 µg/mL CUR and DOX) 

C57 mice implanted with LL/2 cells 

(5mg/kg CUR + 5 mg/kg DOX i.v. 

every five days) 

↓ Tumor growth  

↑ Apoptosis  

↓ Angiogenesis 

[154] 

Liposomal  

CUR + cisplatin 

CAL-27, UM-SCC1 HNSCC  

cells (100 µM CUR +  

10–20 µM cisplatin) 

Athymic nude mice implanted with 

HNSCC cells (50 mg/kg CUR i.v. 

thrice weekly for three weeks +  

0.75 µg/mL cisplatin i.p. after 4 weeks) 

↓ Tumor growth  

↓ Cyclin D1expression  

↓ NF-κB pathway  

↑ p53 activity 

[155] 

PLGA-Nano-CUR 

particles + cisplatin or 

radiotherapy 

cisplatin-resistant A2780CP  

ovarian cancer cells (2–20 µM CUR 

+ 2.5–40 µM cisplatin; 2–8 µM CUR 

+ 0–4 Gy radiotherapy) 

 

↓ Cell proliferation  

↓ Bcl-xL, Mcl-1 expression  

↑ PARP, caspase-3, -7, -9 cleavage  

↓ β-Catenin activity 

[156] 

Abbreviations: (s), synergic effect; (a), additive effect; p.o., per os; i.p., intraperitoneally; i.t., intratumorally; i.v., intravenously; s.c., subcutaneously. 
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7. Combinations of Polyphenols in Clinical Trials 

Promising preclinical data on the use of combinations of polyphenols or polyphenols and anticancer 

drugs have spurred interest in using these natural compounds in the clinical setting. Several ongoing 

and completed clinical trials have reported the safety and efficacy of polyphenols as anticancer  

agents [157–160]. However, few clinical trials have evaluated polyphenols in combination with 

conventional cancer treatments. In a phase I dose-escalation trial combining CUR and docetaxel in 

advanced and metastatic breast cancer, Bayet-Robert et al. demonstrated that the best-tolerated dose of 

CUR was 6000 mg/day given orally for seven days every three weeks in combination with a standard 

dose (100 mg/m2) of docetaxel given every three weeks for six cycles. This therapeutic protocol 

proved more effective than treatment with docetaxel alone in reducing tumor marker levels and tumor 

burden. In addition, concurrent administration of CUR did not increase the side effects of docetaxel, 

demonstrating the feasibility, safety, and tolerability of this combined treatment. A phase II randomized 

clinical trial is ongoing to elucidate the mechanism of action by which CUR enhances the efficacy of 

docetaxel in the treatment of advanced and metastatic breast cancer [161]. 

Another clinical trial is evaluating the anticancer effects of EGCG in breast cancer patients 

receiving radiotherapy. Data from this ongoing trial reveal that EGCG in capsule (400 mg three times 

a day) reduced serum VEGF and HGF levels and suppressed MMP-9/MMP-2 activation, factors 

associated with the progression and metastasis of breast cancer. When added to a culture medium 

containing highly aggressive human MDA-MD-231 breast cancer cells, sera from patients treated with 

EGCG plus radiotherapy strongly suppressed cell viability, arrested the cell cycle at the G0/G1 phase, 

and induced apoptosis [162]. 

8. Nanotechnology and Polyphenols 

There have been few clinical trials of polyphenols in combination with conventional cancer 

therapies, possibly because the metabolism, stability, drug interactions, side effects, and mechanisms 

of action of these plant derivatives have not been fully elucidated in humans. In fact, it has been shown 

that incorrect dosage or route of administration of these phytochemicals may interfere with the activity 

of conventional therapies and result in harmful effects in humans [14,163]. 

Nanotechnology may offer a promising solution to these problems. Encapsulating polyphenols in 

nanoparticles could enhance their biodistribution, solubility, and stability in the human body, while 

reducing their intense metabolism. Moreover, conjugating nanoparticles containing a specific polyphenol 

with an appropriate anticancer drug may improve internalization of these natural compounds into 

cancer cells, leading to improved anticancer activity [164]. Several studies have reported that 

nanotechnology enhanced ability of CUR to counteract the growth of various tumors. Chang et al. 

found that CUR-loaded nanoparticles (Cur-NPs) selectively reduced the viability of cisplatin-resistant 

CAL-27 human oral cancer cells (CAR cells) in a dose- and time-dependent manner. Cur-NPs induced 

intrinsic apoptotic processes (up-regulating Bax, capsase-3, and caspase-9 synthesis and down-regulating 

expression of multiple drug resistance protein 1 (MDR1) and Bcl-2) and enhanced ROS production in 

CAR cells [152]. 
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Abouzeid et al. used a different combination to counteract the proliferation of HCT-116 cells.  

They investigated the therapeutic efficacy in vitro and in vivo of polymeric micelles targeted with an 

anti-GLUT1 (Glucose Transporter Type 1) antibody (GLUT1-PEG-PE micelles) and co-loaded with 

CUR and DOX. These micelles showed improved toxicity against HCT116 cells in vitro, even at low 

doses of DOX, compared to non-targeted micelles. Moreover, nude mice injected with HCT116 tumor 

cells, then treated with GLUT-1-PEG-PE micelles co-loaded with 4 mg/kg of CUR plus 0.4 mg/kg of 

DOX, displayed greater inhibition of tumor growth and improved survival compared to untreated  

mice and mice treated with targeted micelles co-loaded with CUR or DOX alone. These promising 

results suggest a role for these formulations in decreasing glucose uptake, suppressing GLUT1 protein 

activity, or enhancing delivery of CUR and DOX into colon cancer cells in vivo [153]. 

Similarly, methoxypoly(ethylene glycol)-poly(caprolactone) (MPEG-PCL) micelles loaded with 

CUR and DOX (Cur-Dox/MPEG-PCL) showed promising anticancer effects and few side effects in 

the treatment of lung cancer in vitro and in vivo. These micelles released CUR and DOX slowly into 

LL/2 and MS1 lung cancer cell lines. In addition, CUR potentiated the anticancer activity of DOX in a 

synergic manner, indicating a probable synergistic interaction between the two compounds. The ability 

of CUR-DOX/MPEG-PCL to suppress proliferation of LL/2 cells in vivo was investigated using  

C57 mice bearing LL/2 lung carcinomas. Mice intravenously injected with CUR-DOX/MPEG-PCL 

micelles containing 5 mg/kg of CUR and 5mg/kg of DOX showed improved inhibition of tumor 

growth compared to mice treated with micelles containing CUR or DOX alone, indicating in vivo 

synergy between the two compounds. In summary, CUR plus DOX inhibited tumor growth by 

enhancing apoptosis and suppressing angiogenesis in lung cancer cells, suggesting the potential use of 

CUR-DOX/MPEG-PCL micelles to improve the treatment of lung cancer in humans [154]. 

Treatment with liposomal CUR plus cisplatin resulted in greater suppression of tumor growth 

compared to treatment with cisplatin alone in a murine model of HNSCC. This effect was due to the 

capacity of CUR and cisplatin to decrease cyclin D1 expression and modulate the NF-κB pathway 

through reduction of IκBα, phospho-IκBα, and IKKβ expression in HNSCC cells. Cisplatin caused 

cellular senescence by promoting the activation of p53 protein. These promising in vivo results suggest 

that, in clinical practice, CUR plus cisplatin could potentially reduce the side effects of cisplatin as 

well as the dose required to inhibit the growth of HNSCC [155]. 

Yallapu et al. investigated the effect CUR nanoparticles on cisplatin-resistant A2780CP ovarian 

cancer cells. To improve the pharmacokinetics of CUR in vivo, a nanoparticle formulation of CUR, 

conjugated with a monoclonal antibody specific for tumor cells (PLGA-Nano-Cur), was synthesized. 

PLGA-Nano-Cur particles showed potent antiproliferative activity in A2780CP ovarian cancer cells, 

supporting the hypothesis that these nanoparticles may enhance delivery of CUR to the tumor site and 

specifically sensitize chemo- and/or radioresistant cancer cells [156]. 

The anticancer effects of these polyphenols in combination with anticancer agents are summarized  

in Table 3. 

9. Perspective and Conclusions 

Polyphenols, compounds ubiquitously expressed in plants, have beneficial effects on human health, 

including anti-inflammatory, antimicrobial, antiviral, anticancer, and immunomodulatory activities [3–5]. 
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Carcinogenesis is a multistep process triggered by genetic alterations that activate multiple signal 

transduction pathways and cause the progressive transformation of a normal cell into a cancer cell [9]. 

Signal transduction pathways involved in carcinogenesis often interact with each other, enhancing the 

oncogenic signals needed to acquire a malignant phenotype [3,10]. Cross-talk between the signaling 

pathways mediated by ErbB receptors, NF-κB, and the HH/GLI cascade may be the key factor in 

neoplastic transformation [3]. 

Due to their ability to modulate the activity of multiple targets involved in carcinogenesis, 

polyphenols can inhibit the growth of cancer cells [3,90–93,95–97]. Yet despite promising results from 

in vitro studies, in clinical practice, the use of polyphenols as single anticancer agents is limited. This 

fact is mainly due to their poor bioavailability in the human body. In fact, polyphenols have a poor 

absorption and biodistribution, but a high metabolism and excretion in the human body, which might 

hinder the in vivo effects of single compounds and affect the effective dose delivered to cancer cells. 

Although methods for improving the bioavailability of polyphenols have advanced in the last  

20 years [4], new strategies are needed to increase the efficacy of polyphenols as anticancer drugs. 

One strategy may be to combine different polyphenols with each other, or to use polyphenols in 

combination with anticancer drugs. Multiple in vitro and in vivo studies have shown that combinations 

of polyphenols more effectively inhibit tumor growth than the compounds employed singly. In addition, 

numerous in vitro and in vivo studies have shown that polyphenols potentiate the effects of conventional 

therapies and may help to reduce the effective dose of chemotherapy drugs, overcome drug resistance, 

and reduce toxicities. 

However, there are still only a few clinical trials regarding the use of polyphenols in combination 

with conventional therapies for cancer treatment. One probable reason could be the fact that 

metabolism, stability, interaction with other drugs, side effects and mechanisms of action of these plant 

derivatives have not been fully elucidated in humans. An incorrect administration of these 

phytochemicals may interfere with the activity of conventional therapies leading to harmful effects in 

humans [14,163]. 

A promising solution to overcome these problems could be represented by nanotechnology.  

In this regard, several preclinical studies reported that the encapsulation of polyphenols in small 

nanoparticles enhanced their bioavailability and antitumor activity [152–156,164]. 

The development of nanotechnology to increase bioavailability and antitumoral activities of 

polyphenols and their synergistic and/or additive effects with conventional anticancer therapies may 

provide the starting point to improve the rationale for designing new clinical trials to be employed in 

cancer treatment. 
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