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Abstract

Habitat selection is a hierarchical process that may involve different patterns depending on the
spatial and temporal scales of investigation. We studied habitat selection by European roe deer
(Capreolus capreolus) in a very diverse environment in the Italian eastern Alps, during summer.
We sampled both coarse-grained habitat variables (topographic variables, habitat types and cover)
and fine-grained habitat variables (forage components of habitat) in used and available locations
along the movement trajectories of 14 adult roe deer equipped with GPS telemetry collars. We
used conventional logistic regression to assess roe deer habitat selection at the seasonal home range
scale, and conditional logistic regression to take into account the temporal aspect of habitat selection
on a weekly basis. Our results indicate that topographic variables were not significant predictors
for summer roe deer habitat selection. Roe deer strongly selected dense canopy cover, probably to
avoid heat stress during warm summer days. In accordance with previous observations, roe deer
preferred young forest stands dominated by pioneer species such as ash (Fraxinus spp.) and hazel
(Corylus avellana) over climax environments. Roe deer positively selected shrubs (in particular
Fraxinus spp., Erica herbacea, Rhododendron spp. and Vaccinium spp.) throughout the study
period, whereas selection for grasses and sedges emerged only at the weekly scale. Habitat selec-
tion was clearly related to vegetation phenology, since roe deer selected plants in the most nutritive
phenological stages, i.e., shrubs with buds, new leaves and fruits, and newly emergent grasses and
sedges. Finally, we found stronger and more significant regression coefficients for forage compon-
ents of habitat and habitat types at the weekly scale, indicating that matching spatial and temporal
scales may improve our understanding of ecological patterns driving habitat selection. Conversely,
selection patterns for canopy cover did not change across scales, indicating that this variable likely
drives habitat selection in a similar way throughout the entire season.

Introduction
Within Hutchinson’s ecological theatre, where the evolutionary play is
performed (Hutchinson, 1965), the field of habitat ecology represents
one of the main acts. Considering its niche-based definition, habitat is
the ensemble of resources and conditions present in an area producing
occupancy and determining the survival and reproduction of organisms
(Hall et al., 1997; Hirzel and Le Lay, 2008). Habitat selection in partic-
ular is defined as the multi-scale process by which an animal chooses
resources (Johnson, 1980). Because habitat selection directly acts on
the survival and reproductive success of individuals, it indirectly affects
population dynamics and species distributions (Holt, 2003; Gaillard et
al., 2010). Habitat selection may be influenced by a variety of factors,
such as nutrition, behavior, competition, predation, but also the scale
of selection and can be recognized as a hierarchical process in space
and time (Johnson, 1980; Senft et al., 1987; Wiens, 1989; Manly et al.,
2002; Hirzel and Le Lay, 2008).

Scales in space and time have been long recognized as central themes
in ecology (e.g., Hutchinson, 1965; Gaillard et al., 2010). For example,
the activities animals undertake to meet their needs, such as feeding,
reproducing, moving, occur at different spatial scales. For the field
of habitat ecology, Johnson (1980) provided an intuitive framework in
which selection scales are nested. He defined the first order selection
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scale as the distribution range. At the second order animals should se-
lect home ranges. At the third order, resources within the home range
should be selected and finally, at the fourth order scale, small site spe-
cific resources such as nests or den sites or specific foraging items
should be selected. While these levels of selection are only broad cat-
egorizations along a continuum of spatial selection scales from very
coarse to very fine (Gaillard et al., 2010), they provide useful guidelines
for the study of habitat selection.

Next, Wiens (1989) pointed out that ecological processes are
bounded by the relationships between the spatial and temporal scale
of variation (i.e., processes taking place at small spatial scales will also
be defined by small temporal scales). Thus, as spatial scaling increases
in ecological systems, temporal scaling increases concurrently. Defin-
ing the spatial scale at which habitat selection is defined also leads to
defining the temporal scale along a continuum of spatio-temporal di-
mensions (Gaillard et al., 2010). For example, decisions animals make
at different temporal scales may include bites taken at very short time
intervals within seconds, minutes or hours (Senft et al., 1987; Nathan
et al., 2008). In contrast, at the spatial scale of home range occupancy
intervals between decisions may last hours, days, months and years.
At the broadest scale, spatio-temporal dynamics at the species level are
subject to processes over hundreds of square kilometers duringmillions
of years. While intuitive, the concept of temporal scaling has rarely
been recognized and incorporated into evaluating the role of scaling
in habitat selection studies, although habitat selection can be variable
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in time due to changes in resource quantity and quality. Mismatching
space-time scaling may mask ecological relationships and average out
fine-scale habitat selection patterns (Wiens, 1989).

The European roe deer (Capreolus capreolus) is one of the most
common ungulate species in Europe (Melis et al., 2009), where it can
occupy a diversity of habitat, including deciduous and coniferous con-
tinental forests, Mediterranean scrublands, agricultural plains, but also
high latitudes and altitudes, where harsh winters and a short growing
season limit population distribution and abundance (Jepsen and Top-
ping, 2004). At the latitudinal and altitudinal extremes of its distribu-
tion range, variable seasonal habitat selection patterns including sea-
sonal migration, allow roe deer to adapt to changes in habitat suitability
in space and time (Mysterud, 1999; Ramanzin et al., 2007; Cagnacci et
al., 2011). However, while being a generalist species with a large fun-
damental niche, roe deer favor heterogeneous or mixed habitat, provid-
ing a combination of concealment cover for protection from predators
and humans and high quality forage (Cederlund et al., 1998; Duncan et
al., 1998; Mysterud and Ostbye, 1999; Said and Servanty, 2005; Said et
al., 2005). Being a small concentrate selector, roe deer generally prefer
highly palatable browse vegetation, such as early phenological stages
of forbs and shrubs, with high nutritional protein and low fiber contents
(Demment and van Soest, 1985; Gill et al., 1996; Tufto et al., 1996).
At the same time, food habits of roe deer are plastic and may change
rapidly (Tixier and Duncan, 1996; Cornelis et al., 1999) in response to
changes in the spatial and temporal availability of food items, leading
to a strong seasonal diet specialization (Duncan et al., 1998).

In general, research seems to indicate that roe deer show a high de-
gree of ecological plasticity, but they are very selective at small micro-
habitat scales, such as foraging and seeking protective cover. However,
most studies on fine-scale habitat composition, including forage plants,
were conducted in optimal roe deer habitat, such as central Europe (e.g.,
Maillard et al., 1989; De Jong et al., 1995) and plains (e.g., Holisova
et al., 1982, 1984), or controlled conditions (Tixier et al., 1997). Un-
fortunately, in more extreme and highly seasonal environments at the
limits of their distribution range, such as alpine regions, studies that
investigate how topography, canopy and plant communities affect roe
deer habitat selection are rare. Indeed, alpine environments are char-
acterized by high heterogeneity, because habitat composition changes
frequently over short distances due to, e.g., extreme gradients in eleva-
tion, aspect and slope, which condition vegetation community diversity
and rapid changes in phenology. Because such heterogeneity is likely
to be reflected by roe deer home ranges, the alpine environment offers a
unique opportunity to study how covariates at different grain sizes may
affect third-order habitat selection in this small ruminant.

We aimed to study selection of habitat covariates with different grain
sizes, ranging from larger grained macro-habitat covariates, such as to-
pography or habitat type, to very fine grainedmicro-habitat observation
units, such as plants found within sampling quadrats. Moreover, we in-
vestigated these effects at two temporal scales, seasonal and weekly.
We outlined our objectives, hypotheses and predictions in Tab. 1. In
general, because of their overall high ecological plasticity, but also
very specialized feeding habits, we expected differing degrees of se-
lectivity for coarse and fine grained habitat covariates (H1). First, we
predicted little selectivity for coarse grained habitat variables, such as
topographic covariates (P1a). Next, there is general agreement that
the two major habitat requirements for roe deer are forage (Duncan et
al., 1998) and cover for concealment from predators (Cederlund et al.,
1998). One strategy by which roe deer may relieve heat stress and thus
lower energy expenditure during summer is to use dense canopy cover
for shade (e.g., Mysterud, 1996). Therefore, we expected that roe deer
would show positive selection for dense canopy cover (P1b). Next, be-
cause roe deer are considered concentrate selectors (Van Soest, 1994),
we expected their third-order habitat selection to be driven also by hab-
itat providing highly nutritious plants. Thus, we predicted early suc-
cessional habitats to be preferred, because they provide more browse
and hiding cover (P1c). As roe deer show high energy and nutrient re-
quirements and preference for the richest parts of the consumed plant
species (Tixier and Duncan, 1996), we expected to find a positive se-

lection for fine-grained microhabitat covariates indicating high-quality
food resources, such as shrubs and forbs in their earlier phenological
stages (P1d; Albon and Langvatn, 1992; Van der Wal et al., 2000; Mys-
terud et al., 2001; Hebblewhite et al., 2008).

To detect patterns of environmental heterogeneity at specific spa-
tial scales we must also match them with appropriate temporal scales
within the same domain (Wiens, 1989). Finding the appropriate units
for both space and time remains a fundamental challenge in habitat se-
lection studies (Gaillard et al., 2010). For our second objective, we
aimed to fill this gap by comparing used versus available animal loca-
tions in a matched-case design along a temporal continuum throughout
the summer season. Specifically, we hypothesized to improve our ana-
lysis for dynamic covariates when comparing used and available roe
deer locations matched for the same sampling time (H2; Compton et
al., 2002), rather than averaging covariates out throughout the entire
summer season. In particular, we predicted to find similar selection
patterns for covariates that remain fairly static throughout one summer
season (macro-habitat), since these covariates are supposed to drive
habitat selection in a similar way throughout the entire season (P2a).
Conversely, we predicted to find stronger or more significant regres-
sion coefficients for the fine grained covariates that change throughout
the summer season, e.g., forage components (P2b).

Materials and methods

Study area

The study area (approximately 40000 ha) is located in the Italian eastern
Alps and includes the north-western part of the Autonomous Province
of Trento (Val Rendena and Valli Giudicarie, Fig. 1). Elevation ranges
from 400 m in the main valleys to 3500 m at the highest peaks in
the Brenta and the Adamello-Presanella mountain ranges and the area
is characterized by a high environmental, morphological and geolo-
gical complexity. Along the valley bottoms agricultural grasslands
and crops as well as deciduous forests, mainly comprised by European
beech (Fagus sylvatica) and European ash (Fraxinus excelsior), pre-
dominate. Understory vegetation is patchily distributed and is domin-
ated by common hazel (Corylus avellana) and brambles (genus Rubus).
Higher elevations and the narrow lateral valleys are covered by conifer-
ous forest, mainly comprised of Norway spruce (Picea abies), silver
fir (Abies alba) and European larch (Larix decidua). Mountain pine
(Pinus mugo) as well as shrublands of rhododendron (genus Rhodo-
dendron) interspersed with alpine grasslands prevail above elevation
of 1600 m. Ungulate species inhabiting the region include (in order of
abundance): roe deer, chamois (Rupricapra rupricapra), red deer (Cer-
vus elaphus), and ibex (Capra ibex). The predator community is char-
acterized by red foxes (Vulpes vulpes) and reintroduced brown bears
(Ursus arctos arctos). The human population density of approximately
31/km2 is low in comparison to other parts of Italy.

Roe deer location data

We used data from 14 radio-collared roe deer (10 females, 9 adults
and 1 subadult, and 4 adult males), which were captured throughout
the study area during winter of 2012/2013 using individual box traps
(Schemnitz, 1994). All roe deer were fitted with Global Positioning
System (GPS) collars (Vectronic Aerospace, GSM GPS Plus, Berlin,
Germany). All collars were scheduled to collect one location every
three hours and equipped with a very high-frequency (VHF) beacon
and a drop-off mechanism programmed to release the collar after two
years. Collar data were downloadable via the Global System for Mo-
bile Communication (GSM) device (Tomkiewicz et al., 2010) that al-
lowed daily data transfer to a server using the cellular network. In case
of incomplete GSM coverage, data were transferred at successive con-
nections with the GSM network. All animal capture and handling pro-
cedures were approved by animal care protocols of the Trento Province
(Wildlife Committee of the Autonomous Province of Trento, Septem-
ber 11th 2011) and the University of Montana (AUP 060-12MHWB-
113012).
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Figure 1 – Study area of the summer habitat selection assessment of roe deer. The
area is comprised in the Val Rendena and Valli Giudicarie territory, Trentino (Autonomous
Province of Trento), Italian eastern Alps.

Sampling design
We studied fine-scale roe deer habitat selection by comparing used loc-
ations to random available locations between April and October 2013.
The study time frame is ecologically important for roe deer, since it
corresponds to the reproductive season, comprehending the establish-
ment and defense of territories, natal dispersal, births and the rutting
period (Linnell et al., 1998). Moreover, in our study area, where partial
migration was observed (Ramanzin et al., 2007), the time interval we
chose includes both the migration during spring from winter to sum-
mer ranges, as well as the start of the fall migration, from summer to
winter ranges (Cagnacci et al., 2011). Due to an incomplete GSM cov-
erage throughout the study area, we employed two different methods
to determine used and available locations. First, for animals for which
we received GPS locations via GSM network in the previous 8 days,
we projected a 50 m grid over the location data of animals and selec-
ted the grid cell with the highest number of animal locations. Within
this cell we selected the most recent GPS location as our used loca-

tion. We paired each used location with one random available loca-
tion in the closest cell without GPS locations. Although GPS collars
can collect large amounts of locations compared to previously existing
technologies such as VHF devices (Cagnacci et al., 2010), we aimed at
balancing our ground-based sampling effort across individuals. Thus,
we selected one pair of used-available locations/animal/week for all
collared roe deer (28 sampling locations/week). All spatial analyses
for the selection of sampling locations were conducted in QuantumGIS
(1.8.0). Next, for animals for which GSM coverage was not available
in the previous eight days, we determined used locations using VHF-
triangulation to maintain a consistent weekly sampling schedule for all
individuals. We recorded ≥ 3 bearings within approximately 30 min to
avoid larger movements by the animal (Millspaugh et al., 2012). To ac-
count for VHF triangulation error, and the only periodic assessment of
the animal position as compared to the GPS method, we validated roe
deer presence at triangulated roe deer used locations by searching for
recent signs of roe deer presence, such as fresh tracks, faeces and bed
sites. In this case, we determined available locations in a random dir-
ection at a distance of 150 m from the used locations. As a further val-
idation, we assessed how the presence of VHF data could have affected
our sampling design. Normally, GPS locations were eventually res-
cued from the collars, via later GSM transmission or from dropped-off
collars. We therefore calculated a VHF error, in terms of distance (m)
between a given VHF triangulation and the corresponding GPS used
location which we would have sampled in presence of GSM coverage
at the time of sampling. The average distance was found to be 386±302
m. Moreover, we tested for the effect of the method to determine the
sampling locations on our predictions (see Statistical analyses below).

In used and available locations we estimated several macro-habitat
covariates, including topography, habitat types, cover (Mysterud and
Ostbye, 1999) and micro-habitat components, i.e., vegetation compos-
ition and phenology (Hebblewhite et al., 2008). In particular, we recor-
ded the macro-habitat covariates at the point location or grid cell scale,
whereas we measured the micro-habitat covariates within sampling
subunits, i.e., 2 adjacent quadrats of 1 m2for vegetation. We decided to
sample shrubs, that we defined as dicotyledons with a woody stem < 7
cm diameter, both in the vegetation sampling quadrats, and in an addi-
tional larger area (7 m2 quarter circle centered on the quadrats) given
the predicted importance of this highly nutritious plants/vegetative
stage for roe deer (Duncan et al., 1998). For a detailed description

Table 1 – Objectives, hypotheses and predictions for summer habitat selection by roe deer, Capreolus capreolus, in Italian eastern Alps (Autonomous Province of Trento).

Objectives Hypotheses Predictions
1)Roe deer habitat selection at the seasonal home
range scale.

H1: Roe deer show a high ecological plasticity for
coarse grained habitat covariates, but selectivity
increases in response to specific requirements and
for finer grained micro-habitat covariates, such as
forage items.

P1a: Topographic variables (macro-habitat), such
as elevation, aspect and slope, will not be sig-
nificant predictors for roe deer habitat selection.
P1b: Roe deer will use habitat according to its
cover value (macro-habitat). In particular, roe
deer will select for increased canopy closure
and hiding cover (horizontal and vertical cover).
P1c: Roe deer will use habitat according to its
overall browsing value (macro-habitat). In par-
ticular, roe deer will use habitats with higher
browse availability (i.e., shrubs) and early suc-
cessional forest stages (such as shrub-habitats).
P1d: Finer grained (micro-habitat) variables will
be selected, according to their forage quality
value. Roe deer will select for areas rich in forbs
and shrubs in early phenological stages.

2) Roe deer habitat selection at the spatially and
temporally matched (weekly) scale.

H2: Matching the domain of spatial and temporal
scaling will improve our understanding of ecolo-
gical patterns.

P2a: Selection patterns for topographic covari-
ates, habitat classes and cover (macro-habitat)
will be similar to those observed at the sea-
sonal home range scale, since these covari-
ates are expected to drive habitat selection in
a similar way throughout the same season.
P2b: Regression coefficients for forage items
(micro-habitat) will be stronger and more signi-
ficant whenmatching used and available locations
on a temporally (i.e., on a weekly) scale.
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of all habitat covariates, and their sampling scale, please see Supple-
mental Table S1.

Statistical analyses
To address our research objectives, we classified our predictor vari-
ables into three datasets: “topography and cover” (macro-habitat), all
plant composition and phenology within sampling quadrats (“plants”,
micro-habitat) and shrub composition and phenology within sampling
quarter circles (“shrubs”, micro-habitat) present at the sampling sites.
We transformed proportional data included in the “plants” and “shrubs”
datasets by an arcsin square-root transformation. Finally, because we
found little evidence for sex-specific differences during data explora-
tions, we pooled data from females (n=10) and males (n=4). All statist-
ical analyses were conducted in R, version 3.2.0 (R Core Team, 2013).

In an initial phase we conducted exploratory analyses within each
dataset using principal component analysis (PCA) using the Facto-
MineR library in R (Husson et al., 2015). In the following modeling
phase of our analyses, we screened the positively or negatively associ-
ated covariates in the biplots, i.e., with similar vector components or
opposite vector directions, respectively. In general, we retained only
those covariates with the highest absolute PCA loading score (Zuur et
al., 2010), unless we found an ecological explanation for such associ-
ation (see below for example “shrubs” dataset). Moreover, we also used
an a priori criterion to select covariates relevant to test the working hy-
potheses, especially when the number of covariates was very high (e.g.,
“plants” dataset). We then derived an a-priori full additive model for
each dataset, combining all variables that we considered relevant on the
basis of the aforementioned exploratory criteria.

To estimate roe deer resource selection, we built Generalized Linear
Models (GLMs; Guisan et al., 1998; Hosmer and Lemeshow, 2000).
We used conventional logistic regression (Hosmer and Lemeshow,
2000) to model habitat selection by roe deer throughout the duration
of the summer (Objective 1; Tab. 1). Next, to address our second ob-
jective (Tab. 1), we modeled each spatially and temporally matched
pair of used and available locations (see above, Sampling design) by
means of conditional logistic regression (matched-case control design;
Compton et al., 2002). We thus accounted for the temporal variation
in habitat use, at a weekly scale (survival R package, Therneau, 2014).
We used a natural average method to obtain robust parameter estim-
ates (multi-model inference; Burnham and Anderson, 2002). This pro-
cedure implies calculating a weighted average of parameter estimates,
so that parameter estimates from models that provide little informa-
tion about the variation of the response variable are given little weight
(Arnold, 2010). We first performed a model selection on models with
all possible combinations of covariates included in the full model for
each dataset by means of Akaike Information Criterion (AIC; Burnham
and Anderson, 2002). We then decided to retain only the top models
(∆AIC≤2) for the model averaging approach (MuMIn R package, Bar-
ton, 2014). In addition, to provide a measure of the goodness-of-fit, we
computed the R2 of the corresponding GLM including the fixed effects
predictors with weight = 1 in the averaged model (Tab. 2 and Tab. 3).
Lastly, we added to such model (conventional logistics models only)
individual animal and method to identify used locations as random ef-
fects (GLMMs), to account for variation between individuals in habitat
selection patterns (Rabe-Hesketh et al., 2004) and test the influence of
different sampling procedures on data fitting (lme4 R package, Bates
et al., 2014).

Results
Roe deer sampling locations
During spring and summer 2013 we sampled a total of 583 roe deer
locations (Supplemental Table S2; Fig. 1). Of these locations, 251
(43.05%) were obtained from GPS collar data, whereas the remaining
332 (56.95%) were obtained through VHF telemetry. The proportion
of GPS and VHF data used in the analyses was not equally distributed
between animals. Indeed, some animals (n = 6) occupied areas without
GSM coverage during the entire study period. In contrast, some anim-

als were sampled based on GPS locations (n = 3) only. The majority of
roe deer were sampled based on amixture of VHF andGPS derived loc-
ations, because animals moved between areas with and without GSM
coverage. Despite this mixture of GPS and VHF derived locations, the
total number of sampling locations was balanced between animals, as
we succeeded to sample all animals weekly during most of the study
period. In few cases we did not sample plots at triangulated VHF loc-
ations, because we were not able to reliably validate them (i.e., we did
not find any recent signs of roe deer presence).

Exploratory phase and covariate selection

In the “topography and cover” dataset (Supplemental Table S1) we re-
corded the following dominant tree/shrub species during the survey:
Corylus avellana, Fagus sylvatica, Fraxinus spp., Picea abies, Pinus
sylvestris, plus open fields. As a final set of covariates for subsequent
resource selection function modeling, we selected aspect, elevation,
canopy cover, hiding cover at 20 m, Corylus avellana and Fraxinus
spp. based on the results of PCA analyses (Fig. 2a; for all PCA load-
ings see Supplemental Table S3). In particular, hiding cover at 20
m, and hiding cover at 5 m and slope showed similar vector direc-
tions, but we retained only the first covariate, which had the highest
absolute PCA loading. Moreover, Fagus sylvatica and canopy cover
showed similar vector directions, as well as Picea abies and elevation.
In the first case, we retained only canopy cover, based on PCA load-
ings (PCA loadingFagus sylvatica=0.33 vs. PCA loadingcanopy cover=0.77).
Conversely, as we considered elevation more relevant to test the work-
ing hypotheses, we decided to retain this covariate instead of Picea
abies, although the second covariate showed a higher PCA loading
(PCA loadingelevation=0.01 vs. PCA loadingPicea abies=0.18). Finally,
we found opposite directions for canopy cover and open fields, but
we retained only the first covariate, based on PCA loading (PCA
loadingcanopy cover=0.77 vs. PCA loadingopen fields=-0.74).

Next, we selected the covariates to formulate the full model for the
“plants” dataset. This dataset potentially included all possible com-
binations of plant classes and phenological stages (Supplemental Table
S1). Therefore, besides PCA, we also used a priori criteria based on
working hypotheses to reduce the number of predictors. First, we gen-
erally found similar vector direction, but in opposite quadrants, for new
plants and old alive plants, which is understandable, given that new
sprouts emerge on old alive plants (e.g., forbs and old alive forbs; new
shrubs and old alive shrubs; see Fig. 2b). We decided to select new
plants, for consistency with the working hypotheses, although old alive
plants had sometimes a stronger PCA loading (Supplemental Table S3).
For similar reason, i.e., coherence with the hypotheses, we decided to
exclude cured plants, old dead plants, and ferns. The full model for
plants therefore included: forbs, grasses/sedges and shrubs associated
with two phenological stages: newly emergent (or new/old alive with
new leaves for shrubs) and flowering/fruiting/mature.

In the “shrubs” dataset, we recorded the following species during the
survey: Corylus avellana, Erica herbacea, Fagus sylvatica, Fraxinus
spp., Picea abies, Rhododendron spp., Rubus spp. and Vaccinium spp.
(Supplemental Table S1). With respect to shrubs species presence, we
found associations that we considered ecologically meaningful, and
specifically: 1) Corylus avellana and Rubus spp.; 2) Rhododendron
spp. and Erica herbacea and 3) Rhododendron spp. and Vaccinium
spp., as shown in Fig. 2c. Thus, we decided to add these shrub species
in two groups: group 1 (Corylus avellana/Rubus spp.; G1) and group
2 (Rhododendron spp./Erica herbacea/ Vaccinium spp.; G2). When
referring to shrub phenology, new/old alive with new leaves, flower-
ing/fruiting/mature and cured phenological stages showed similar vec-
tor directions, as well as old alive/old alive with buds and old dead
stages (Fig. 2d). In both cases, we retained only the covariate with
the highest PCA loading, i.e., new/old alive with new leaves and old
alive/old alive with buds (see Table A3 for PCA loadings). Thus, the
full model for this dataset included Fraxinus spp., group 1 and group 2
associated with two phenological stages: new/old alive with new leaves
and old alive/old alive with buds.
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Figure 2 – a) PCA biplot for all covariates of the “topography and cover” dataset; Ca =
Corylus avellana, Cc = canopy cover, E = east, Elev = elevation, Fs = Fagus sylvatica, Fi
= field, Frs = Fraxinus spp., Hc5 = hiding cover at 5 m, Hc20 = hiding cover at 20 m, N
= north, Pa = Picea abies, Ps = Pinus sylvestris, S = south, Sl = slope, W = west; b) PCA
biplot for all covariates of the “plants” dataset; BR = bare and rocks, c = cured, �m =
flowering/fruiting/mature, L = litter, ML = mosses and lichens, n = newly emergent, nln
= newly emergent/old alive with new leaves, ol = old alive, olb = old alive/old alive with
buds, od = old dead, WD = woody debris; c) PCA biplot for shrub species covariates of
the “shrubs” dataset; Ca = Corylus avellana, Eh = Erica herbacea, Fs = Fagus sylvatica,
Frs = Fraxinus spp., Pa= Picea abies, Rs = Rubus spp., Rhs = Rhododendron spp., Vs =
Vaccinium spp.; d) PCA biplot for phenological stage covariates of the “shrubs” dataset; c
= cured, �m = flowering/fruiting/mature, nln = new/old alive with new leaves, olb = old
alive/old alive with buds, od = old dead. In all cases, the proportion of variance explained
by the first (horizontal) and second (vertical) canonical dimension is reported.

Roe deer habitat selection at the seasonal home-range
scale
For “topography and cover”, themodel selection according to AIC yiel-
ded three top models with ∆AIC ≤ 2 (Supplemental Table S4a). The
averaged model obtained with multi-model inference included three
main predictors: canopy cover, Corylus avellana and Fraxinus spp.
(Tab. 2: predictor weight = 1). When we fitted a GLM to these main
predictors, we obtained R2=0.24. The addition of random effects, i.e.,
individual roe deer and method used to define used locations, did not
improve the fit to the data of such model (proportion of variance ex-
plained = 1.427 × 10−11, and 1.0 × 10−12, respectively). According to
these results, our first prediction (P1a) was confirmed: neither aspect
nor elevationweremain factors of the roe deer summer selectionmodel.
Our results also partially confirmed our second prediction (P1b), in-
dicating that roe deer positively selected dense canopy cover, whereas
hiding cover only marginally contributed to habitat selection (β=0.012,
p=0.077). As expected, roe deer preferred young forest stands with
abundant understory (P1c), as shown by the strong selection for the
two shrub habitat types dominated by Corylus avellana and Fraxinus
spp.

With respect to the “plants” dataset, we obtained eight top mod-
els with ∆AIC ≤ 2 (Supplemental Table S5a), that when averaged
included only one top predictor (weight = 1), i.e., shrubs with emer-
ging new leaves. The GLM including this predictor alone reached R2

= 0.50. The addition of random effects to such model, i.e., individual
roe deer and method used to define used locations, did not improve the
fit to the data (proportion of variance explained = 1.0 × 10−12 for both
random effects). Therefore, we partly confirmed our prediction (P1d),
since roe deer positively selected shrubs in the most nutritive phenolo-
gical stages throughout summer, especially with new emerging leaves.
Shrubs with flowers and fruits only marginally contributed to habitat
selection (β=0.200, p=0.072). All other averaged coefficients were not

Table 2 – Coe�cients and standard errors obtained by averaging the top logistic regres-
sion models for seasonal habitat selection by roe deer (see Supplemental Tables S4a,
S5a, S6a; averaged models: ∆AIC≤2). The predictor’s weight and p-value of each term
are provided. Legend: n = new, nln = new/old alive with new leaves, �m = flower-
ing/fruiting/mature, olb = old alive/old alive with buds, G1 = Corylus avellana/Rubus spp.,
G2 = Erica herbacea/Rhododendron spp./Vaccinium spp..

Covariate
Averaged
Coefficient Std. Error p-value

Pred.
weight

Topography and cover
Canopy cover 0.041 0.011 <0.001 1
Corylus avellana 1.069 0.357 0.003 1
Fraxinus spp. 1.205 0.393 0.002 1
Hiding cover at 20 m 0.012 0.007 0.077 0.75
Elevation 3 × 10−4 2 × 10−4 0.284 0.29

Plants
Shrub_nln 0.091 0.036 0.013 1
Shrub_ffm 0.200 0.111 0.072 0.80
Grass_n 0.055 0.044 0.210 0.38
Grass_ffm 0.029 0.080 0.712 0.09
Forb_n 0.003 0.051 0.950 0.08
Forb_ffm -0.068 0.067 0.313 0.24

Shrubs
Fraxinus_nln 0.255 0.063 <0.001 1
Fraxinus_olb 0.194 0.251 0.441 0.21
G1_nln 0.037 0.052 0.476 0.19
G1_olb 0.091 0.134 0.490 0.19
G2_nln 1.101 0.040 0.011 1
G2_olb 0.277 0.121 0.023 1

significant, and especially we did not find a selection for forbs in any
phenological stage, contrary to what expected (P1d).

Lastly, for the “shrubs” dataset, we obtained four top models (Sup-
plemental Table S6a), that when averaged included three top predictors
(weight = 1): Fraxinus spp. with emerging new leaves, and the three
associated species G2 (Erica herbacea, Rhododendron spp. and Vac-
cinium spp.) in both new/old alive with new leaves and old alive/old
alive with buds phenological stages. The GLM included such predict-
ors yielded a goodness-of-fit with R2=0.24. The addition of random
effects to the same model, i.e., individual roe deer and method used to
define used locations, did not improve the model fit to the data (propor-
tion of variance explained = 1.427 × 10−11, and 1.0 × 10−12, respect-
ively). These results further highlighted that the most nutritive pheno-
logical stages (i.e., buds and new leaves) of shrubs are strongly selected
by roe deer during summer (prediction P1d), at all altitudes. Typically,
Fraxinus spp. can be mainly found in the valley bottoms, whereas the
species in G2 represent a vegetation community characteristic of high
altitudes. Other phenological stages did not present significant coeffi-
cients.

Roe deer habitat selection at the spatially and temporally
matched scale

The conditional logistics model selection for “topography and cover”
provided the same top models obtained in the conventional logistic re-
gression analysis (Supplemental Table S4b), that when averaged yiel-
ded the same top predictors, i.e., canopy cover, Corylus avellana and
Fraxinus spp. (Tab. 3). The GLM including such variables led to
R2=0.30. For canopy cover, we observed a similar selection pattern
at the weekly scale than at the seasonal scale (Tab. 2 and Tab. 3:
βlog=0.041, p<0.001; βc−log=0.050, p<0.001), indicating that this
variable likely drive habitat selection by roe deer in a similar way
throughout the season (P2a). Conversely, we found a relatively stronger
selection for the coarse-grained habitat variables (Corylus avellana and
Fraxinus spp.) at the weekly scale than at the seasonal scale (Tab. 2
and Tab. 3: Corylus avellana: βlog=1.069, p=0.003 vs. βc−log=1.800,
p=0.001; Fraxinus spp.: βlog=1.205, p=0.002 vs. βc−log=1.550,
p=0.007), in contrast to our prediction (P2a).
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Table 3 – Coe�cients and standard errors obtained by averaging the top conditional
logistic regression models for weekly habitat selection of roe deer (see Supplemental
Tables S4b, S5b, S6b; averaged models: ∆AIC≤2). The predictor’s weight and p-value of
each term are provided. Legend: n = new, nln = new/old alive with new leaves, �m =
flowering/fruiting/mature, olb = old alive/old alive with buds, G1 = Corylus avellana/Rubus
spp., G2 = Erica herbacea/Rhododendron spp./Vaccinium spp..

Covariate
Averaged
Coefficient Std. Error p-value

Pred.
weight

Topography and cover
Canopy cover 0.050 0.015 <0.001 1
Corylus avellana 1.800 0.560 0.001 1
Fraxinus spp. 1.550 0.568 0.006 1
Hiding cover at 20 m 0.013 0.007 0.065 0.76
Elevation -0.003 0.003 0.374 0.27

Plants
Shrub_nln 0.124 0.042 0.003 1
Shrub_ffm 0.211 0.112 0.060 0.80
Grass_n 0.105 0.052 0.044 1
Forb_ffm -0.090 0.072 0.214 0.35

Shrubs
Fraxinus_nln 0.283 0.074 <0.001 1
Fraxinus_olb 0.148 0.251 0.556 0.19
G1_nln 0.017 0.052 0.743 0.17
G1_olb 0.093 0.140 0.505 0.20
G2_nln 0.128 0.049 0.009 1
G2_olb 0.321 0.147 0.031 1

The conditional logistics model selection for “plants” provided three
topmodels (Supplemental Table S5b), that when averaged included two
top predictors (Tab. 3): new/new leaves shrubs (also a top predictor at
the seasonal scale), and newly emergent grasses/sedges (not included
in the seasonal model). The GLM fitted with these fixed effect showed
a similar goodness-of-fit than the seasonal model (R2=0.48). Thus, we
confirmed our prediction that the selection for forage items would be
stronger at a weekly scale (P2b).

Lastly, the top models for selection of “shrubs” at the weekly scale
(Supplemental Table S6b) provided the same results than those ob-
tained with conventional logistic regression at the seasonal scale, with
Fraxinus spp. with new emergent leaves and the associates species
of G2 in both new/old alive with new leaves and old alive/old alive
with buds phenological stages as top predictors when averaged (Tab. 3).
When fitted alone in a GLM, these covariates led to an R2=0.31. Sup-
porting our prediction (P2b), the averaged coefficients suggested a
stronger selection at the weekly scale than at the seasonal scale, for
all classes.

Discussion
Six main results emerged from our study: 1) as expected, topographic
variables (elevation, aspect and slope) did not emerge as significant pre-
dictors for habitat selection by roe deer (P1a); 2) as predicted, roe deer
strongly selected dense canopy closure, probably to avoid heat stress
during warm summer days, but contrary to our prediction, hiding cover
had only a marginal effect on habitat selection (P1b); 3) as expected,
roe deer preferred young forest stands with abundant understory rather
than climax environments (P1c); 4) in agreement with our prediction,
roe deer positively selected shrubs in the most nutritive phenological
stages (especially buds and new leaves) throughout summer (P1d); con-
versely, we did not find a selection for forbs in any phenological stage;
5) when looking at the weekly scale, we observed similar selection
patterns (i.e., regression coefficients and their significance) for can-
opy cover, indicating that this variable likely drive habitat selection by
roe deer in a similar way throughout the entire season; conversely, re-
gression coefficients were higher for the two preferred habitat types,
Corylus avellana and Fraxinus spp., indicating a relatively stronger se-
lection for this coarse-grained habitat variables at a weekly scale (P2a);
6) we generally found stronger regression coefficients for forage items,
when matching used and available locations on a weekly scale; in par-

ticular, we observed a positive selection for newly emergent grasses and
sedges at a weekly scale (P2b).

Roe deer habitat selection at the seasonal home-range
scale
Using an individual-based approach, we assessed habitat selection by
roe deer in a very diverse environment in the Italian Alps during sum-
mer. The environmental heterogeneity that characterizes the study area
allowed us to match coarse grained habitat variables, such as topo-
graphy and cover, and fine grained habitat variables, such as food items,
in a comprehensive analysis of third-order habitat selection in this small
ungulate. The presence of a high ecological plasticity was expected
from previous research (e.g., Jepsen and Topping, 2004) and was fur-
ther confirmed by our results. Indeed, roe deer in our study area occu-
pied a wide altitudinal range from 457 m to 1916 m a.s.l. Moreover,
roe deer were found not to select habitat with respect to aspect but pre-
ferred habitat diversity. Aspect is generally regarded as a topographic
covariate involved in habitat selection by temperate ungulates given its
effect on food resources availability and quality. For example, Albon
and Langvatn (1992) reported that the protein content of grasses and
herbs was higher on north-facing slopes compared with south-facing
slopes during spring in Norway. However, Mysterud et al. (2001) found
that body weight of migratory red deer (Cervus elaphus) was positively
correlated with access to diversity of aspects and variable topography
rather than with the availability of a particular aspect or altitudinal class
in Norway. Our results are consistent to these findings and may be re-
lated to the rapid changing in aspect gradients that characterizes our
study area.

Canopy cover emerged as a strong driver of summer habitat selection
by roe deer amongst macro-habitat covariates. Numerous studies have
documented how cervids selectively use canopy cover to avoid adverse
weather conditions, including studies on white-tailed deer (Odocoileus
virginianus; Gates and Harmann, 1980), mule deer (Odocoileus he-
mionus; e.g., Wood, 1988), red deer (Cervus elaphus; Staines, 1976),
moose (Alces alces; e.g., Demarchi and Bunnell, 1995) and roe deer
(Capreolus capreolus; e.g., Mysterud and Ostbye, 1995; Mysterud,
1998). Use of canopy cover relates to extreme temperatures, radiation
and wind speed (Mysterud and Ostbye, 1999). As our study was con-
ducted during spring and summer, roe deer probably selected dense
canopy cover to lower energy expenditures due to heat stress. Simil-
arly, Mysterud (1996) observed that roe deer prefer to bed down below
dense canopy cover during warm summer days in southern Norway.
While the use of canopy cover mainly relates to thermoregulation, hid-
ing cover is usually connected to predation risk, which is low in our
study area. Indeed, the predator community is characterized by red
foxes (Vulpes vulpes), that have been reported to prey mainly on roe
deer fawns during the first twomonths of life (Aanes et al., 1998) and re-
introduced brown bears (Ursus arctos arctos) at low densities, that have
been shown to rarely prey on roe deer, also in the study area (Frassoni,
2002). Even if Tufto et al. (1996) observed that roe deer continue to
prefer habitat with high concealment cover also in the absence of pred-
ators, our results show that hiding cover marginally contributed to roe
deer habitat selection in our study. One hypothesis to explain such ob-
servation is that forest habitat characteristic of our study area provide a
lower perception of risk per se than open habitat, due to lower visibil-
ity, and the possibility to quickly escape for an agile species such as roe
deer (Mysterud and Ostbye, 1999). Further, other research showed that
roe deer in open areas have a very high vigilance, and compensate the
high visibility with specific tactics, such as grouping behavior (Mrlik,
1991; Gerard et al., 1995; Bonnot et al., 2015).

Structural components of habitats, such as canopy and the habitat
type, are likely to affect both food quality and cover availability (Said
et al., 2005). Being an ecotonal species generally related to early suc-
cessional habitats, roe deer in our study population strongly preferred
two habitat types, which were dominated by two understory species,
hazel (Corylus avellana) and ash (Fraxinus spp.). These species are
generally found in young forest stands in the alpine environment, be-
fore being replaced by beech (Fagus sylvatica) or spruce (Picea abies)
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forests (Bernetti, 1995) and can develop dense patches of woodland
thanks to their high vegetative regeneration rate. These thick habitats
provide an optimal combination of high quality forage and conceal-
ment cover, and can therefore optimize the food and cover trade-off in
this small concentrate selector.

Since roe deer are herbivores, the selection for a particular habitat
type is expected to reflect foraging strategies and thus to overlap with
the selection of feeding sites (e.g., Andersen et al., 1998; Pettorelli et
al., 2001). Indeed, our results of shrub-habitat selection may be sug-
gestive for the selection of shrubs as potentially major foraging items
throughout summer. In particular, roe deer selected for habitat patches
rich in Fraxinus spp., Erica herbacea, Rhododendron spp. and Vac-
cinium spp. The selection for Rhododendron spp. is remarkable, since
it is generally considered a toxic plant (Caloni et al., 2013) due to the
presence of terpenes in all plant parts. However, Mussa et al. (2003)
already found this shrub species in the summer diet of roe deer in an
Alpine environment, by means of faecal analysis method. Interestingly,
roe deer are able to ingest plants which are protected by chemical de-
fenses (Duncan et al., 1998), which might be the case for rhododen-
dron, too. Alternatively, the selection for rhododendronmight be a con-
sequence of its association with other forage species, such as bilberry
(Vaccinium myrtillus), which has been reported to be one of the main
food resources selected by roe deer in Norway during winter (Mys-
terud et al., 1997). As expected, shrubs were selected in the most nu-
tritive phenological stages, i.e., buds and new leaves. We did not find
a selection for forbs, although roe deer are generally known to feed
on them, especially during spring and summer (e.g., Mysterud, 1996).
The strong selection for shrubs and absence of selection for forbs are in
contrast with what reported by Mussa et al. (2003), who found that the
summer diet of roe in the western Alps was mainly composed by herb-
aceous species (dicotyledons) and to a lesser extent by tree or shrub
leaves. In general, reviews of studies of roe deer feeding habits (Tixier
and Duncan, 1996; Cornelis et al., 1999; Gebert and Verheyden-Tixier,
2001) revealed that its diet composition is mainly explained by the en-
vironments in which they forage (Duncan et al., 1998). Thus, conclu-
sions about food selection drawn in a particular study area will rarely
be relevant to other areas (Storms et al., 2008). Furthermore, while
we did not assess diet composition through direct observations or fecal
analysis, i.e., fourth-order habitat selection, our findings further sup-
port roe deer dependence on specific plant typology and phenology
stages, which can be explained by the comparatively high nutritional
requirements of this small browser with low fat storages (Duncan et
al., 1998).

Roe deer habitat selection at the spatially and temporally
matched scale
By analyzing the same datasets with two different statistical ap-
proaches, i.e., conventional and conditional logistic regression, we as-
sessed the presence of temporal variation in third-order habitat selec-
tion by roe deer during summer. The choice to use a multiple-scale ap-
proach in habitat selection studies is a central issue, since habitat selec-
tion patterns are not necessarily congruent across spatial and temporal
scales (Morin et al., 2005). The positive selection for newly emergent
grasses and sedges we observed at the weekly scale, but not at the sea-
sonal home range scale, is an example of how mismatching space-time
relationships may mask fine-scale habitat selection patterns. Our res-
ult is consistent with what observed by Cornelis et al. (1999), which
found that during spring and summer roe deer can double their exploit-
ation of the graminoids typical of open pastures compared to the annual
average.

Spatio-temporal heterogeneity of trade-offs between different limit-
ing factors will shape habitat selection decision by individual animals
and populations (Gaillard et al., 2010). According to classical theories
of foraging (e.g., optimal foraging theory; Charnov, 1976) and hab-
itat selection (Rosenzweig, 1981), animals are supposed to spend most
time in those habitats richest in food, and habitat selection is expec-
ted to reflect food availability (Mysterud et al., 1999). However, it is
then implicitly assumed that there is no trade-off between feeding sites

selection and other ecological processes, such as predator avoidance
and intra- and inter-specific competition that instead may be important
determinants of habitat selection. In particular, the effect of some of
these additional elements might emerge at a one specific scale of ana-
lysis, thus originating differential habitat selection patterns at different
temporal and spatial scales (DeCesare et al., 2013). For large herb-
ivores, selection is commonly driven by the balance between forage
quantity and quality and the presence of cover that decreases predation
risk and offers protection from adverse weather conditions (Fryxell et
al., 1988; Mysterud and Ostbye, 1999; Rettie and Messier, 2000). It
is generally hypothesized that ungulates respond to “risk-forage” trade-
offs in a hierarchical fashion (Senft et al., 1987), andmay select habitats
that reduce risk of predation at coarser scales and maximize forage in-
take at smaller scales (Rettie and Messier, 2000; Johnson et al., 2001;
Hebblewhite and Merrill, 2009). Therefore, these trade-offs should be
assessed at different spatio-temporal scales. In our study area, where
the predation risk is low, intra- and inter-specific competition likely rep-
resent themost limiting factors for roe deer habitat selection. The posit-
ive selection for newly emergent grasses and sedges we observed only
at a weekly scale might be the result of micro-site selection to avoid
competition with sympatric competing species, e.g., red deer (Cervus
elaphus). Besides inter-specific competition, intra-specific competi-
tion and population density represent other factors affecting habitat se-
lection (Fretwell and Lucas, 1970; Fretwell, 1972). For example, Kie
and Bowyer (1999) found that in white-tailed deer females with young
made a greater use than males of chaparral-mixed grass habitats with
dense canopy cover at moderate densities, whereas at high densities
males that otherwise used more open habitats increased their use of the
chaparral-mixed grass as levels of intra-specific competition increased.
According to preliminary results of an extensive survey carried out in
the area in the same years, the roe deer density was very low (indirect
distance sampling with pellet group count: less than 3 deer/km2; Cag-
nacci, personal communication). However, the population density of
other sympatric species, like red deer, is unknown. Thus, this remains
a future line of research.

Another expected consequence of the analysis based on a “paired
design” are stronger covariate effects. Indeed, regression coefficients
for food items in our models were higher when using conditional lo-
gistic regression. On the one side, a matched analysis does not “aver-
age out” effects across a wide temporal scale. In particular, though, the
increased coefficients for dynamic micro-habitat variables we observed
may reflect the temporal variation in availability of those components.
This may be particularly evident during spring and summer, when tem-
perate ungulates are supposed to follow the “green wave” of the veget-
ation phenological cycle (Bischof et al., 2012). For example, flower-
ing/fruiting/mature shrubs only marginally affected roe deer habitat se-
lection in the matched-paired design. The marginal significance of this
covariate, that refers to phenological stages with highly nutritious por-
tions of the plants (flowers and fruits), might be due to the fact that
the flowering and fruiting phases of vegetation phenology are shorter
compared to the longer leaf-growth stage. Lastly, the temporal vari-
ation in habitat selection patterns we observed for some micro-habitat
variables did not emerge when referring to certain macro-habitat vari-
ables, such as canopy cover, but it did for specific habitat types, such as
forest with dominant ash and hazel, also providing browsing availab-
ility. Overall, our findings highlighted the importance of considering
the spatio-temporal resolution in habitat selection studies to define dy-
namic habitat selection drivers (e.g., plant phenology), especially when
habitat covariates are collected at fine spatial scales. Roe deer rep-
resented a perfect case study for such approach, thanks to their well-
established ‘picky’ nature when selecting micro-habitat components
(e.g., food items).

Conclusions

Our results partially confirmed early observations on roe deer habitat
selection, by using state-of-the-art habitat selection techniques. In par-
ticular, we highlighted the dependence on specific plant typology and
phenology stages, which can be explained by the comparatively high
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nutritional requirements of this small browser with low fat storages
(Duncan et al., 1998).

Despite its high ecological plasticity with respect to coarse-grained
habitat variables, roe deer might be directly affected by the alteration
of fine-grained habitat characteristics, such as the availability of high-
quality forage. Land use practices (esp. forest management of ma-
ture forests) and the variation of the vegetation growing season due to
climate change are therefore potential factors affecting future distribu-
tion and abundance of roe deer throughout Europe. For example, a
range contraction could be expected at the southern end of the distribu-
tion due to the increasing frequency of prolonged drought periods. In
contrast, an expansion might be possible at northern latitudes or at in-
termediate altitudes in the alpine range due to lower snow depths and
shorter duration of snow cover, and therefore earlier and prolonged ve-
getation growing season (e.g., Mysterud and Sæther, 2011). Future
studies might for example assess the effect of likely future changes in
vegetation communities in mountainous areas, which are already con-
sidered sub-optimal environments for this species.
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