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Abstract

We propose a wearable wireless sensing system for the home monitoring of specific symptoms of the Parkinson’s disease. The
system is composed of inertial sensors, a station for the real time processing (smartphone/PC/tablet) and dedicated algorithms. The
recognition algorithms use fusion of raw signals from accelerometers and gyroscopes. The system provides a robust and reliable
detection of the involuntary freezing of gait, which is a common and dangerous symptom of the Parkinson’s disease causing falls.
The proposed system provides an early detection of the freezing of gate at its outset with excellent performance in terms of
sensitivity and precision, and timely provides an audio feedback to the patient for releasing the involuntary block state.
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1. Introduction

Motion symptoms of the PD include a wide variety of movement disorders [1]. In particular, the freezing of gait
(FOGQG) is a paroxysmal block of movement which takes place in advanced stage of the PD, when the patient is not
properly covered by the therapy. It typically starts with a progressive step shortening (pre-fieezing state) [2] and a
stop, during which patients refer that their feet are “stuck to the ground” (FOG state) [3]. During the FOG patients
make attempts to complete the step, oscillating and thrusting forward the trunk, which can cause catastrophic events
as falls [4]. It has been demonstrated that rhythmic auditory stimulation can bring patients out of the FOG state [5].
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In the last few years, a number of systems for the FOG detection have been proposed, all based on the use of inertial
sensors positioned on the patient body [6-11]. In this paper, we propose the realization of a wearable wireless sensing
system based on MEMS inertial sensors able to recognize in real time specific kinetic features associated to motion
disorders typical of (but not limited to) the PD and eventually give an auditory stimulation to the patient to release the
block. Two different solutions are proposed here, one of which has the sensor in a headset (SHESS), while the other
has two sensor on the shins (S3). They both were designed to be used at home or outdoor, during the normal activity
of the patient. Respect to the other systems proposed in literature, SHESS has the advantage to be a single package
(the headset), very easy to wear. This makes the system compact and energy efficient since no wired/wireless
connection is required to give the audio-feedback. On the contrary, S3 requires an additional device in the ear for the
audio-feedback, but guarantees the best performance presented in literature to date in terms of sensitivity, specificity,
precision and accuracy. The board used for the two solutions is a prototype called neMEMSi [12]. It integrates an
ultralow-power 32 bit microcontroller by STMicroelectronics (STM32L1) with 33.3 DMIPS peak computation
capability and very low power consumption (down to 233 uA/MHz). The Cortex™ M3 architecture and the 32 MHz
clock frequency make this microcontroller suitable for advanced and low-power embedded computations. The sensor
unit LSM9DSO0 integrates a £16 g (g-force) 3D accelerometer, a =12 Gauss 3D magnetometer and a £2000 dps 3D
gyroscope. Bluetooth communication is supported. The device size (with battery) is 25x30x4 mm? (see Fig. 1a).

2. The Smart Headset Sensing System (SHESS)

The headset contains the board and the audio feedback device. The framework is sketched in Fig.1b. The recognition
algorithm uses raw data of the vertical acceleration (Ay) which has an oscillatory behaviour during a regular walk, as
displayed in Fig.1c (upper curve, where peaks are steps) and an artificial neural network (ANN) with two layers (the
hidden and the output ones) [13]. The ANN algorithm was chosen because is extremely light and fast. The ANN
training starts with a known signal, in which specific reference patterns with a known size are identified. In Fig.1d
there are shown the reference patterns of a regular step (top), a short step (mid) and a trunk oscillation (bottom). The
known signal is partitioned in subsequences having the same size of the reference pattern. A cost function is calculated
with a warping function [14], which represents the cumulative distance between the two time series. Sequences having
a cost function below an optimized threshold are positive inputs to the ANN (1). An example of the ANN output in
the case of successful recognition of regular steps is shown in Fig.1c (lower curve).
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Fig. 1. (a) picture of the NeMEMSi board; (b) reference framework in SHESS; (c) SHESS: the upper curve is Ay during a regular walk, the lower
curve is the ANN output after training with the reference pattern of a regular step; (d) reference patterns of a regular (top) and short (mid) step
and a trunk oscillation (bottom); (¢) S3: angle between the vertical axis and the shin.

Once the training of the ANN was complete, its capabilities were tested with unknown signals relative to states of
particular interest for the PD: the stop state, short and irregular steps, trunk fluctuations. First test: Fig.2a shows the
signals associated to the vertical acceleration (upper curve) during a voluntary stop state (region I), a regular gait
(regions II and IV), while turning (region IIT). The ANN Output (ANN_O) is reported in the same figure, after training
with the pattern of regular steps (lower curve). Second test: the Ay signal corresponding to an irregular gait is sketched
in Fig.2b, with short steps in region III and regular steps in region II (upper curve). The short steps are typical of a
pre-post-freezing state [2]. The ANN was trained with the reference pattern corresponding to short steps.
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Fig. 2. (a) First test: recognition of the stop state (ANN_O=1 in region I and III, lower curve); (b) Second test: recognition of short steps
(ANN_O=1 in region III, lower curve); (c) Third test: recognition of trunk oscillations (ANN_O=1 in region III, lower curve).

As one can see, short steps are clearly identified and distinguished from the regular ones (ANN_O curve of Fig.2b).
No false positive/negative are present and the recognition is totally successful. We can affirm that SHESS can identify
the pre-FOG state, which is an excellent result because an audio-feedback timely provided to the PD patient in that
state would prevent the FOG onset. Anyway, in the case that FOG occurs, it is important to prevent falls, caused
mainly by back and forth trunk oscillations. Therefore, the third test regards the recognition of trunk oscillations in
the XY plane. The Ay signal in is reported in Fig.2c (reference pattern in Fig.1d). Of course, the position of the sensor
emphasizes the sensitivity of the system to this symptom, in fact the ANN_O is really excellent (lower curve in Fig.2c).

3. The Sensing System on the Shins (S3)

In this solution, a sensor is positioned on each shin. The recognition algorithm is based on a time domain analysis of
the sensor signals. The raw signals of accelerometer and gyroscope are fused together through the attitude and heading
reference system (AHRS) and the Madgwick's algorithm ($ =0.15) [15]. The data reading frequency from the sensor
is 60Hz, which allows a correct sampling of the signal during FOG events since the relevant spectrum of FOG is 3 —
10 Hz. A quaternion based representation of the limb orientation and position is calculated. The angles oiigne and oues
between the vertical axis and the right/left shin are sketched in Fig.1d. The angular velocities rign, @it Obtained after
angle derivation are used as the input for the FOG detection. The algorithm calculates the low-pass of the angular
velocities: Kegn=lowpass(|®rigni|) and kier=lowpass(|oier|), and introduces an index K = Kright + Kief.

A group of ten patients of different age and sex, and at different stages of the disease was asked to wear the two
sensors and make an exercise several times. The exercise was always the same: walking some steps, passing through
an open door, turning and going back. FOG events occurred frequently during the exercises. In order to classify
properly the states, a preliminary calibration of the system was performed. To this aim, the whole exercise was filmed
with a camera and the sensor signals were recorded. The films were studied by doctors, who indicated the exact timing
of the freezing events. Then, the calculated K curves were compared with the clinical observation by the doctors. This
allowed to define three threshold values of K (Ti.3) which classify the four states: regular gait (K>Ts), pre-post
freezing-state (T3>K>T>), involuntary freezing state (T>>K>T)) and voluntary rest state (K<T)). It is worth noticing
that the values of T).3 are the same for all the patients. From a clinical side, distinguishing the involuntary freezing
state from the rest state is crucial, but fortunately using inertial sensors it relatively simple, since in the involuntary
freezing state the muscle activity is always present and gives rise to lots of small movements which are clearly detected
by the sensors. Typical behaviors of o, ® and K are shown in the three top diagrams of Fig.3. Clinical report by doctors
about the exact FOG timing is sketched in the bottom diagram. The comparison between the K curve and the clinical
reports allowed to define the T thresholds and the four classified states. In the example of Fig.3, a few FOG and pre-
FOG events were identified by both doctors and S3. In one case (time=23-28 s), S3 distinguished between pre-FOG
and FOG states, whereas doctors reported just a FOG in the whole time interval. Values of Ti_; remained the same
along all the measurements. Subsequent cross-checks outlined an excellent agreement between the doctors reports and
the automatic recognition of FOG performed by S3. An extremely low number of errors (false positive or false
negative) were found. This leads to the best performance published to date in terms of sensitivity, precision, accuracy
and specificity. The average results on more than two hours recording time and ten patients are shown in Table 1.
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Table 1. Recognition performances of the system.

Sensitivity Specificity Precision Accuracy

94.5% 96.7% 93.8% 95.6%

angular
velocity

Fig.3 An example of angle and angular velocity measured by the sensor
on the shin during the exercise. The calculate K index is also displayed.
The bottom diagram reports the clinical observation of the FOG events

timing. The comparison between the K curve and clinical report allows
definition of the T3 threshold values and, definitely, the four states.
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4. Conclusions

Wearable wireless sensing of specific symptoms of the Parkinson’s disease (PD) for the home monitoring has been
proposed. The hardware is composed of inertial sensors and a station for real time processing (smartphone/PC/tablet).
Two different solutions are proposed both operating in real time, one of which has the sensor in a headset, while the
other one fixes two sensors on the shins. The recognition algorithms use fusion of raw signals from accelerometers
and gyroscopes. The systems are extremely versatile and provide robust and reliable detection of the gait freezing
state. The proposed systems provide an early detection of the freezing of gate with excellent sensitivity, precision,
accuracy and specificity. An audio feedback can be timely given to the patient at the block onset.
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