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Abstract

The current literature on history of science reports that Levi-Civita’s parallel transport
was motivated by his attempt to provide the covariant derivative of absolute differential
calculus with a geometrical interpretation.1 Levi-Civita’s memoir on the subject was ex-
plicitly aimed at simplifying the geometrical computation of the curvature of a Riemannian
manifold. In the present paper we wish to point out the possible role implicitly played by
the principle of virtual work in Levi-Civita’s conceptual reasoning to formulate parallel
transport.

1 Introduction

Tullio Levi-Civita (1873-1941) was one of the leading Italian mathematicians of his time. He
showed his attitude towards mathematics and mathematical physics since his high-school days,
when he offered an ingenious attempt to prove Euclid’s fifth postulate on parallel lines under
the supervision of his teacher in mathematics, Paolo Gazzaniga (1853-1930), a scholar in num-
ber theory.2 Levi-Civita took a degree in mathematics from the university of Padua, where
among his teachers he had Giuseppe Veronese (1853-1917),3 Francesco Flores d’Arcais (1849-
1927),4 Gregorio Ricci-Curbastro (1853-1925),5 and Ernesto Padova (1845-1896).6 Both Ricci-
Curbastro and Padova provided Levi-Civita with a strong training in mathematical physics
and mechanics. Ricci-Curbastro, in particular, provided him with firsthand absolute differen-
tial calculus methods, which were the inheritance of Beltrami’s investigations on Riemannian
manifolds [16, 38]. Levi-Civita applied these methods to subjects other than differential geom-
etry, such as mechanics. In 1902, he took over the chair of higher mechanics in Padua, vacant
after Padova’s premature death. In the some twenty years he spent in Padua until he was ap-
pointed to Rome, Levi-Civita investigated a vast set of subjects in analytical mechanics. In the
mid-1910s Levi-Civita turned his attention to problems in both special and general relativity,
treated analytically with the new powerful tools of the absolute differential calculus to which
he had contributed.7 In particular, he studied the curvature of four-dimensional Riemannian
manifolds, modelling space-time through the parallel transport of vectors over these manifolds.

1For instance, see [36], sect. 4.
2Biographical notes are taken from Levi-Civita’s obituary by Ugo Amaldi (1875-1957), [29], vol. 1, IX–XXX.
3Veronese spent a period of time studying in Leipzig under the supervision of Felix Klein (1849-1825). He

provided contributions to projective hyper-spaces and non-Euclidean geometry.
4Flores d’Arcais graduated in Pisa, and had Enrico Betti (1823-1892) and Ulisse Dini (1845-1918) among

his teachers. He is well known in the Italian school of mathematics of the days for his excellent handbooks on
calculus.

5Ricci-Curbastro graduated in Pisa having Betti, Dini, and Eugenio Beltrami (1835-1900) among his teachers.
He perfected his studies with Klein and, jointly with Levi-Civita, is considered the father of absolute differential
calculus.

6A pupil of Beltrami, Padova investigated mathematical physics in non-Euclidean spaces.
7It is well known that Albert Einstein (1879-1955) claimed to feel indebted with him for absolute calculus.



He took into account the curvature of the manifold by varying some parameters along paths
lying on the manifold. Indeed, at every point of the manifold it is possible to consider a linear
structure, the tangent space, which can be linked to the tangent spaces at other points of the
manifold through a well-determined new mathematical notion, later called a connection, which,
thus, originates from parallel transport.8

In the mathematical literature we usually read that Levi-Civita’s parallel transport was mo-
tivated by his attempt to give a geometrical interpretation to the so-called covariant derivative

of absolute differential calculus. In addition, according to Nastasi and Tazzioli [33], Levi-Civita
defined parallelism on a Riemannian manifold through a new formulation of the law of inertia
for a point moving on a geodetic line.9 With respect to Levi-Civita’s original procedure in
[28], we believe that such an interpretation is possible only a posteriori, within the framework
of a global variational calculus. The same can be said for the consideration of Levi-Civita’s
parallelism as a local geometrical interpretation of covariant derivative, as in [34].10 On the
other hand, in this paper we point out a possible a priori interpretation of the intrinsic origin
of Levi-Civita’s parallelism based on the tacit use of schemes of analytical mechanics and the
principle of virtual work.

If we read Levi-Civita’s paper [28] carefully, we see that Levi-Civita aimed at simplifying
the computation of the curvature of a Riemannian manifold by re-examining the covariant be-
haviour of the Riemann symbols.11 In pursuing this, he devoted the first fourteen sections of
his memoir to introducing and explaining parallelism on an arbitrary Riemannian manifold Vn

of dimension n ≥ 2. From examining these passages, we believe that Levi-Civita’s strong edu-
cation in mathematical physics had a remarkable role in his developments by tacitly influencing
his fashion of formal reasoning. This was also due to the fact that, at that time, geometry and
mechanics had evanescent boundaries, and a language with many common traits and analogies
of meaning.

To begin with, when Levi-Civita considered tangent spaces at the various points of the
manifold, it is apparent that he tacitly adopted equations formally analogous to those of virtual
displacements compatible with a set of constraints. The implicit mechanical interpretation of
a Riemannian manifold as the space of the configurations of a mechanical system with a finite
set of degrees of freedom, subjected to a set of holonomic constraints, is indeed possible and
conceivable. Even if nowadays this interpretation is standard, see Arnold [4] for instance, we
cannot take it for granted at the beginning of the 20th century. Levi-Civita himself remarked
that some of his conditions were those of admissible first-order constrained displacements.
Nevertheless, this is only one of the possible interpretations of how Levi-Civita could have
proceeded in setting up and solving his initial aim of simplifying the computation of Riemann’s
symbols.

Indeed, Levi-Civita’s condition of parallelism is expressed by the vanishing of a linear form
built on the tangent space at a point of the manifold: it is apparent that such a statement has
many a formal resemblance with the well-known principle of virtual work, deeply rooted in the
Italian school of mathematical physics since the pioneering works by Joseph Louis Lagrange
(1736-1813). Indeed, the use of various forms of the principle of virtual work may be found in
all scholars in Italian mathematical physics and engineering, such as Gabrio Piola (1794-1850),

8Parallel transport and linear (affine) connection were introduced almost simultaneously by Levi-Civita, Ger-
hard Hessenberg (1874-1925), Hermann Weyl (1885-1955) and Jan Arnoldus Schouten (1883-1971) in connection
with Einstein’s general theory of relativity. Levi-Civita used (local) embedding of a Riemannian manifold in
some n-dimensional space. Weyl introduced parallel transport (hence, linear connection) on arbitrary differen-
tial manifolds on a completely general basis, that is, with no reference to Riemann metrics, see [32], ch. 1, sect.
1.1.

9Sect. 1.3, p. 214.
10Sect. 3, p. 337.
11[28], Introduction.
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Betti, Beltrami, Luigi Federico Menabrea (1809-1906), Carlo Alberto Castigliano (1847-1884),
Valentino Cerruti (1850-1909) [12, 13, 14, 15, 35, 6, 40, 39]. We cannot but infer that such a
key idea had a strong influence on the writings of Levi-Civita, educated at the same school, and
this mechanical interpretation of Levi-Civita’s condition of parallelism is a possible, plausible
historical interpretation. Moreover, it was Levi-Civita himself who provided an additional
expression of his differential condition of parallelism in a form that it is exactly like Lagrange’s
general equation of analytical mechanics. Piola’s influence on the school that led to Levi-Civita
is put forth and suggested also in [3].

Thus, from our historical analysis it emerges that the principle of virtual work could have
been among one of the conceptual guides, or mental schemes, to build up Levi-Civita’s notion
of parallel transport. This is corroborated also by what we find in Bottazzini [10], where the
primary role played by the new results of general relativity is stressed among the motivations
of Levi-Civita’s memoir of 1917 [28]. In the following, we first sketch some hints of the origin
and the various formulation of the principle of virtual work in the history of mechanics. Then
we point out its possible conceptual role in the early origin of the formal notion of parallel
transport due to Levi-Civita, by examining its presentation in the original paper [28].

2 Some hints on the principle of virtual work

Broadly speaking, in modern textbooks of mechanics we find that a system of bodies is balanced
if and only if the total power on any admissible (virtual) velocity field vanishes. Passing from
power to work means only a rescaling by a small time interval δt, and we get the principle of
virtual work. Since the second half of 18th century, the law of virtual work saw no appreciable
changes from the formulation by Lagrange, who in the first edition (1788) of his Mécanique

analytique put Johann Bernoulli’s principle of virtual velocities at the base of mechanics.
To be precise, in 1788 [23] Lagrange identified three main paradigms in the history of statics,

i.e. the lever, the composition of forces, and the principle of virtual work. The paradigm
of the lever would have been in force from antiquity until up the early 18th-century, when
Pierre Varignon (1654-1722) worked out the (de-)composition of forces [41] by the graphical
constructions known as polygon of forces and funicular polygon [15]. The principle of virtual
work would become dominant after Lagrange. However, Lagrange’s prediction was never fully
realized because the principle of virtual work did not replace the (de-)composition of forces, but
at most outflanked it [11]. Furthermore, Lagrange’s picture is too schematic: indeed, some form
of virtual work laws have always existed in mechanics, even though with limited applications.
Arabic and Latin mechanics of the Middle Ages called attention to such a law, while in the
Renaissance we begin to see different wordings of it, often proposed as unique principle of
statics. The process reached its apex with Johann Bernoulli and Lagrange, and the French
school adopted Lagrange’s principle of virtual work, and applied it to continuum mechanics.

A major difficulty in the formulations of virtual work laws is the status attributed to con-
straints and their reactions. Before the 18th century, constraints had been treated only as
passive elements; after accepting models of matter based on particles considered as centres of
forces, constraints began to be thought of as capable of providing forces.12 Lagrange stated
that “the use of these forces released [us] from [the need of] taking into account the constraints
among bodies, and allows one to make use of the laws of motion of free bodies”.13 In statics,
constraint reactions are less problematic, since they can be considered as the forces necessary
to maintain the constraint. The first to introduce them in calculations was probably Varignon

12According to Lagrange [23], in the period 1736–1742 the Bernoullis, Alexis Clairaut (1713-1765) and Leon-
hard Euler (1707-1783) were among the first to assimilate constraint reactions to active forces.

13In [23], 1st ed., p. 179; our translation. See also Capecchi [11], p. 15.
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[41]. It was the difficulty of incorporating reactive forces in a consistent mechanical theory
that led Johann Bernoulli to formulate a law of virtual work, known after Lagrange as the
principle of virtual velocities, which provides a balance criterion without the intervention of
these undesirable entities. Johann Bernoulli’s statement is “the sum of the powers each of them
multiplied by the distance traveled from the point where they are applied, in the direction of
this power, will always be zero”.14 Lagrange in his Mécanique analytique suitably reformulated
Bernoulli’s principle, shifting from his previous use of the principle of least action. Even today,
the principle of virtual work is considered more general than that of least action, because it
also allows non-conservative forces to be taken into account. However, as a result of the heated
discussions that followed the publication of [23], Lagrange changed his mind, and in the second
edition (1811) of the Mécanique analytique he remarked that the principle of virtual work is
not obvious enough in itself to be selected as a founding principle.15 There were also technical
difficulties such as the question of the admissible displacements to consider, and whether they
should be compatible with the constraints.

In order to formulate Lagrange’s expression of the principle of virtual work, following him
we must accept that inertia is another force, and add it to the active ones. Thus, the total
force on a particle vanishes, and all problems of dynamics are reduced to those of statics.16

In modern language, Lagrange’s principle of virtual work states that a system of particles is
balanced when the active forces (“puissances”, i.e., powers) ~Fi to which it is subjected satisfy 17

δL =
∑

i

~Fi · ~δP i = 0, (1)

where ~δP i is the first-order displacement of the point of application of ~Fi. Thus, if a system is
in equilibrium, the virtual work of all active forces ~Fi will vanish for any virtual displacement.

To keep into account constraint reactions ~Rj also, we must add their work to that of the
active forces in eq. (1). With this aim, we add the definition, implicitly assumed by Lagrange,
of smooth constraints. In modern terms, we assume that the work of the reactions due to

smooth constraints is non-negative for any irreversible virtual displacement, while is zero for any

reversible virtual displacement.18 In the special, yet fundamental, case of bilateral constraints,
expressed by equalities, all compatible virtual displacements are reversible. Hence, we assume
that the virtual work of constraint reactions is zero, then the principle of virtual work reads

δL = 0, (2)

also called symbolic equation of statics.19 In eq. (2), the virtual work is spent by active forces
plus inertia, since smooth constraints spend no work on admissible displacements.

If the constraints are holonomic, they are expressed as equalities in the intrinsic parameters
of the system, and the vanishing of the virtual work of constraint reactions assumes an inter-
esting expression. This will become apparent in the following, where we consider how such an
expression may have probably influenced Levi-Civita’s notion of parallel transport.

14[23], 1st ed., p. 11; our translation.
15[23], 3rd ed., p. 21.
16Lagrange claims such a thesis is D’Alembert’s, but D’Alembert’s actual principle is different [11].
17[23], 1st ed., p. 14.
18See [26], vol. 1, ch. XV; vol. 2, part 1, ch. V, sect. 3, n. 18-21; [27], part 1, ch. XIV, sect. 2, n. 4-8; part

2, ch. V, sect. 3, n. 17-19; [1], vol. 2, ch. V, sect. 1, n. 4; [2], ch. I, sects. 1-2; [20], vol. 1, ch. XIII, sect. 4.
19Also said to be D’Alembert-Lagrange principle as reformulated by Lagrange, [4], ch. IV, or general equation

of virtual work, [5], vol. I, ch. XV, sect. 318. See also the references in the previous footnote.
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3 Levi-Civita’s parallel transport

In [28], Levi-Civita introduced his contribution by claiming that the absolute differential calcu-
lus opened the way to Einstein’s theory of gravitation; and, since handling such technicalities
was so important, he found it necessary to simplify the calculation of intrinsic curvature. Thus,
he went on, it was fundamental to begin with the notion of parallelism in a Riemannian mani-
fold.20

Levi-Civita started by considering two directions ~α, ~α′ emerging from two infinitesimally
near points P, P ′ of the Riemannian manifold Vn, embedded in an N -dimensional Euclidean
space SN .

In SN , the two directions ~α, ~α′ are parallel if

angle

(
~̂α, ~f

)
= angle

(
~̂α′, ~f

)
(3)

for any auxiliary direction ~f emerging from P . Parallelism on Vn is defined by requiring that
the condition in eq. (3) holds for any direction ~f of the plane T SN

P (Vn) tangent to Vn at P .
This definition is intrinsic, since it depends on metrics in Vn, not in the embedding space SN .

Levi-Civita emphasized that this condition depends on the path joining P with P ′, being
independent only in Euclidean spaces. Along a geodetic line, the tangents keep their direction:
this is a generalization of an intuitive property of a straight line in a Euclidean space.21

The key idea underlying parallelism in a Riemannian manifold, according to Levi-Civita, is
therefore expressed by eq. (3) for two arbitrary concurrent unit vectors (germs of directions in
modern language), the origin of which moves along an arbitrary path on the manifold.

Levi-Civita considered generic metrics22 on an arbitrary finite-dimensional manifold23 Vn

ds2 =

n∑

i,k=1

aikdxidxk. (4)

and embedded Vn in a Euclidean space SN with sufficiently great dimension N ≤ n(n + 1)/2,
so that it may be described by the system 24

yν = yν(x1, . . . , xn), ν = 1, 2, . . . , N (5)

where the yν are coordinates in SN , while the xn are intrinsic coordinates on Vn. Remark that
eq. (5) describes also a discrete mechanical system with n degrees of freedom subjected to N
smooth holonomic bilateral constraints. This is a key point of our possible interpretation of
Levi-Civita’s parallelism notion: the shift from a point on Vn to one nearby is subjected to eq.
(5), hence its expression is analogous to the admissible velocity field (or, modulo a rescaling,
to the field of virtual displacements) of an analog constrained mechanical system. It seems to
us that Levi-Civita’s education in mathematical physics clearly emerges here.

Levi-Civita considered an arbitrary direction of SN by the unit vector ~f , with direction
cosines fν , and another arbitrary direction at a point P of Vn. This last is characterized by the
unit vector ~α with direction cosines αν with respect to SN (of course, since Vn is embedded in
the ambient space SN , each direction belonging to Vn also belongs to SN .).

20See also [34], sect. 3.
21[28], p. 3.
22In doing so, Levi-Civita dealt with first forms of pseudo-Riemannian structures, see Bottazzini [10], pp.

305-306.
23[9], ch. XXV.
24[28], eq. (1), p. 4.
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The point P may be thought of as varying on a smooth curve C lying on Vn, parameterized
by the abscissa s in eq. (4), thus αν = αν(s). Let xi = xi(s), i = 1, 2, . . . , n be the intrinsic
parametric equations of C. Then, C may also be represented by the parametric equations
yν = yν(s), ν = 1, . . . , N when it is thought of as embedded in SN via eq. (5). Indeed, since
xi = xi(s), i = 1, . . . , n, it is possible to write

C ≡ yν(s) = yν(x1(s), . . . , xn(s)), ν = 1, . . . , N. (6)

It is apparent that, in the analog constrained system, s is an evolution parameter that may be
thought to coincide with time, and C is a trajectory in the manifold of admissible configurations.

To find the unit direction emerging from a point P of C, Levi-Civita derived its parametric
representation, given by eq. (6), with respect to the natural abscissa s25

y′

ν =

n∑

i=1

∂yν

∂xi

x′

i ν = 1, 2, ..., N, (7)

where a prime indicates a derivative with respect to s. Thus, Levi-Civita obtained the direction
cosines with respect to SN , while x′

i are the direction cosines of the same unit direction with
respect to Vn.

Levi-Civita supposed that at each point P of C there is a direction ~α of Vn, the direction
cosines of which are ξ(i), i = 1, 2, . . . , n with respect to Vn, and αν , ν = 1, . . . , N with respect
to SN . Then, eq. (7) yields 26

αν =
n∑

l=1

∂yν

∂xl

ξ(l) ν = 1, 2, . . . , N. (8)

which is a linear form on the direction cosines of the direction ~α of Vn.
When P varies along C, ordinary parallelism in SN implies the equality of the angle between

~α and a direction ~f arbitrarily chosen. Levi-Civita introduced an intrinsic notion of parallelism
in Vn by considering two nearby points. He considered an arbitrarily fixed direction ~f of SN ,
the direction cosines of which are fν , and the cosine of the angle between ~f and ~α

cos

(
~̂f , ~α

)
=

N∑

ν=1

ανfν . (9)

Then, he considered an infinitesimal variation ds of the natural abscissa s on Vn, which implies
that the cosine provided by eq. (9) undergoes the variation

d cos

(
~̂f , ~α

)
= ds

N∑

ν=1

α′

ν(s)fν . (10)

The ordinary parallelism between ~α and ~f would require eq. (10) to vanish when ~f varies in
SN , implying αν to be uniform. Levi-Civita, however, imposed, as an intrinsic condition of
parallelism, the weaker condition that the angle between ~α and ~f be constant when ~f varies
on Vn. That is, he supposed the variation in eq. (10) to be zero only for the directions that are
tangent to Vn as P varies along C.

Levi-Civita claimed27 that these directions are exactly those compatible with the constraints
(5). According to us, once again this is a hint that he had clearly in mind the mechanical analogy

25[28], eq. (4), p. 5.
26[28], eq. (7), p. 6.
27[28], p. 7.
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with his geometrical investigation. Thus, by replacing the fν with quantities proportional to
them, Levi-Civita’s intrinsic definition of parallelism implies 28

N∑

ν=1

α′

ν(s)δyν = 0 (11)

for any variation δyν , that is, in the analog holonomic discrete mechanical system, for any
admissible displacement compatible with the constraints in eq. (5). With a suitable mechanical
interpretation of the α′

ν(s), for instance by considering them as a kind of mechanical action in
SN , eq. (11) is a formulation of the virtual work principle in SN related to the smooth bilateral
holonomic system defined by eq. (5), hence related to a Riemannian manifold.29 As already
said, in this paper we wish to emphasize this formal analogy, which might conceptually have
led Levi-Civita to work out his intrinsic geometrical notion of parallelism.

From eq. (5) it follows that 30

δyν =

n∑

k=1

∂yν

∂xk

δxk ν = 1, 2, . . . , N, (12)

with δxk arbitrary, so that eq. (11) reduces to 31

N∑

ν=1

α′

ν(s)
∂yν

∂xk

= 0 (k = 1, 2, . . . , n), (13)

which are the formal conditions for the parallelism of the directions ~α moving along C. Nev-
ertheless, in eq. (13) there are also parameters regarding SN , so that, in order to have an
intrinsic definition, it is necessary to involve only parameters regarding Vn. To this aim, one
has to replace the direction cosines αν with their expression given by eq. (8), so to involve the
intrinsic direction cosines ξ(i), and to deduce 32

dξ(i)

ds
+

n∑

j,l=1

Γjl
i x′

jξ
(l) = 0 (i = 1, 2, . . . , n), (14)

where Γjl
i are Christoffel symbols of second kind, defined as follows33

Γjl
i =

n∑

k=1

aik
(∂akl

∂xj

+
∂ajk

∂xl

−
∂ajl

∂xk

)
(i, j, l = 1, 2, . . . , n), (15)

where the aik are the components of the reciprocal form of (4). Levi-Civita showed that eq.
(14) may be expressed by the covariant quantities associated with the ξ(i),34 so that the intrinsic
condition of parallelism has the same form of Lagrange equations of motion on a Riemannian
manifold.35

28[28], eq. (I), p. 7.
29[21], ch. 3, sect. 2, n. 2.6.
30[28], unnumbered equation before eq. eq. (8), p. 7.
31[28], eq. (8), p. 7.
32[28], eq. (Ia), p. 8.
33[29], vol. IV, p. 8, [8], ch. II.
34Levi-Civita used the term ‘moment’, which was traditional in the Italian school of mathematical physics of

his time and denoted a mechanical action dual to a Lagrangian parameter of admissible (virtual) displacements.
35[28], eq. (Ic), p. 12. The same comment on eq. (14) may be found in later textbooks of the Italian school

of mathematical physics, e.g. [19], ch. X.
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Thus, the intrinsic conditions characterizing Levi-Civita’s notion of parallel transport of the
direction ~α along C as a function of its directional parameters ξ1, . . . , ξn with respect to Vn

lies only within the framework of absolute differential calculus. Furthermore, in the following
sections of [28], Levi-Civita did not make any explicit mention to covariant derivatives, except
for a hint to Ricci-Curbastro’s rotation coefficients.36 Then, Levi-Civita applied parallel trans-
port to a Riemannian manifold by making it possible to compute its curvature. So, it seems
apparent to us that, at least up to the definition of intrinsic parallelism, one possible key guide
to Levi-Civita was mathematical physics, not only pure geometry, and, in particular, the prin-
ciple of virtual work for a mechanical system subject to smooth holonomic bilateral constraints,
which may be considered as a formal guide-scheme in deducing geometrical features.

4 Final remarks

From a historical standpoint, we claim that the virtual work principle played a possibly remark-
able conceptual role in the origin of Levi-Civita’s notion of parallel transport in a Riemannian
manifold as expressed by eq. (11) and its consequences. Coherently with his mathematical-
physical education, Levi-Civita used a language which clearly referred to this principle and its
formal schemata, for example when he used the term ‘constraint’ and the expression ‘displace-
ments compatible with constraint’. Furthermore, he specified that eq. (11) was obtained “for all
the displacements δyν compatible with the constraints (5)” (our translation), and emphasized
this sentence in italics (see [28]). This is, according to us, a sign of a clear wish to refer to the
so-called symbolic equation of statics for an ideal mechanical system moving along a line C of
a Riemannian manifold. Such an equation is a nullity condition expressing constitutive prop-
erties of smooth constraint reactions.37 Indeed, for the analog constrained mechanical system,
the unit directions emerging from the points of V − n assume the role of admissible displace-
ments, and the dual forms on them are reactions provided by the geometrical links between the
elements of the mechanical system.38

In a series of Spanish conferences held by Levi-Civita in 1921 the reference to analyti-
cal mechanics is more explicit.39 Indeed, in discussing parallelism and curvature in a general
Riemannian manifold, Levi-Civita stated40 that the geometric notion of parallelism resembles
the physical notion of work. This is to say that geometric parallelism, in its analytical sub-
stratum, is similar to the integral of the differential form X1dx1 + X2dx2. Starting from this
initial physical framework, Levi-Civita provided a purely analytical treatment of his notion of
vectorial equipollence upon a surface. Then, he discussed infinitesimal parallelism and its an-
alytical expression by arguing in terms of vector analysis, and reached a simple, characteristic
formal condition of parallelism on surfaces, given by the scalar product τ × du = 0,41 where
τ is a generic unit vector of the tangent plane to the given surface, and du is the first-order
infinitesimal variation of a generic vector u belonging to the same tangent plane.

Afterwards, in [30], sect. IV, p. 103, Levi-Civita started to speak explicitly of “virtual
displacements” and “symbolic equation” (we believe that he understood “of statics”), and the
virtual displacements were called into question many times in his formal arguments, until he
reached an equivalent formal expression of τ × du = 0, that is to say, δP × du = 0,42 which

36[28], sect. 13.
37[7], ch. XII, [22], part 1, ch. IV, sect. 3.
38[37], ch. II, sect. 8.
39See [30], pp. 97-143.
40[30], sect. II, p. 99.
41[30], eq. (1), p. 102. Note that in the Italian school of mathematical physics of the time the symbol for the

scalar product was ×.
42[30], eq. (1′), p. 104.
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recalls – Levi-Civita stated – the principle of virtual work ([30], sect. IV, p. 104). From
this point onwards, Levi-Civita used arguments of analytical mechanics, following a method
similar to one that applied the virtual work law to build up Lagrange’s equations ([30], sect.
IV, p. 109). Thus, he deduced equations (14) for a two-dimensional surface. In [30], sect.
VIII, Levi-Civita generalized his results to an arbitrary Riemannian manifold with a simple
dimensional extension of the formal model just worked out in a two-dimensional environment,
until he had generalized the notion of parallelism to an arbitrary manifold in [30], sect. IX.
Then, he deduced equation (11), which now he stated to be “valid for all virtual displacements”
([30], sect. IX, p. 122).

In Levi-Civita’s monograph devoted to absolute differential calculus,43 we find further ex-

post confirmation to our possible historical interpretation. Indeed, in this monograph there are
many references to the possible kinematical characterization of parallelism in a Riemannian
manifold. Levi-Civita also quoted works from the early 1920s by Giuseppe Corbellini44 and
Enrico Persico (1900-1969)45 on other possible kinematical interpretations of his own intrinsic
parallelism making use of the geometry of developable surfaces.46 Levi-Civita further empha-
sized the possible role of analytical mechanics in developing notions of differential geometry
such as that of parallelism, reaching as far as a formal equation characterizing his notion of
parallelism, equivalent to (and called by him) the symbolic equation of parallelism. Further-
more, and this is very important for our argument, Levi-Civita himself stated that this equation
formally recalls the principle of virtual work. In addition, Levi-Civita used the same princi-
ple in deducing another formal property of Riemannian geometry applied to Einstein’s general
relativity, for instance when discussing the geodetic principle for the dynamics of a material
particle moving in a four-dimensional space-time manifold.47

Thus, we have shown that the great tradition of the Italian school of mathematical physics
of the second half of the 19th century continued in the early decades of the 20th century to
produce important results also in the field of ‘pure’ mathematics that were strongly connected
with the most advanced physical issues of the time, i.e., Einstein’s theory of general relativity
([10], ch. XVI, sect. 3).

We have stressed what possible formal schemata Levi-Civita followed in deducing his in-
trinsic, geometric notion of parallelism in an arbitrary Riemannian manifold, starting from the
two-dimensional model provided by a material point moving along a smooth surface according
to analytical mechanics. Our historical reconstruction of the possible mental route followed by
Levi-Civita in working out this primary notion of differential geometry is corroborated by both
the formal analysis of the content of his original 1917 memoir (in which our interpretation is
supported by the identification of an implicit use of a formalism analogous to that of analytical
mechanics) and by the analysis of two main texts of Levi-Civita drawn up soon after: his 1921
contribution to a Spanish conference (included in [30]) and his 1923 lectures recollected in [24].
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