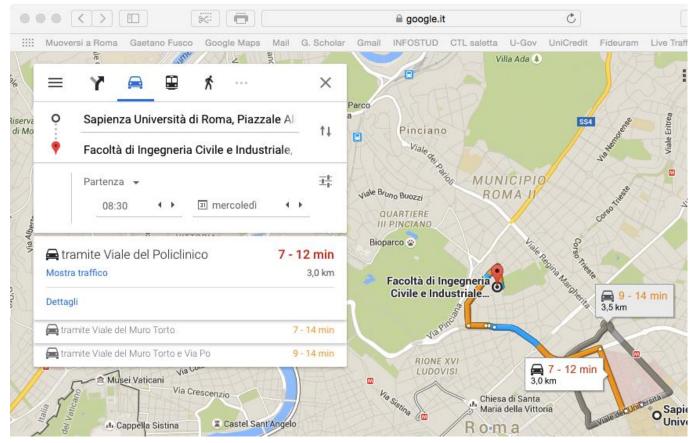
A comparative analysis of implicit models for real-time short-term traffic predictions

Authors:

Gaetano Fusco Chiara Colombaroni Natalia Isaenko


- Traffic maps are becoming familiar to most travelers.
- Tracking connected personal devices allows major web providers (Google, Apple) and specialized companies (TomTom, Inrix) supplying real-time traffic information.

- On-board and web traffic information services display both real-time and usual traffic conditions.
- They also supply users with route suggestions based on the desired departure time.
- However, methods for predicting future travel times are not known.

• Precision of prediction methods is not yet fully satisfactory.

A comparative analysis of implicit models for real-time short-term traffic predictions

- Since '70s, academics developed many prediction methods to allow Intelligent Transportation Systems proactive features.
- Explicit models simulate demand-supply interactions: they can estimate unobserved conditions and prevent overreaction.
- Implicit models extrapolate short-term predictions from observed trend (data-driven): they are often applied to short-term predictions on freeways, because of their simple physical structure.

- However, these models are not used in commercial applications.
- TomTom doesn't supply dynamic traffic predictions.

Minimise traffic delays

If you choose to leave now (or within 30 minutes), current traffic conditions are taken into account when planning your route.

Close

тоттот

Home	Products	Maps	Services	Live Traffic	w
Route Planner		😞 Link	Legend	D	
2				- 11	M
Plan a route			Find a location		
From: Piazzale Aldo Moro 5, Rome, IT e.g., '1 Bridge St, London'					
To: Facoltà di Ingegneria, Rome, IT					
Traff	ic: 🔵 Minim	nise dela	ys		
Leav Minimise traffic delays					?
Re	If you choose to leave now (or within 30 minutes), current traffic conditions are taken into account when planning your route.				
. 2	Leave Now Close				
Leave Monday from 5 Piazzale 08:30 am					
	3.2 <u>km</u> - 1	1 min.		×	
P 80	Arrive Monday at Via 08:41 am Eudossiana, Roma				

A comparative analysis of implicit models for real-time short-term traffic predictions

Leave Now

Object of the study

- We want to assess implicit models in short-term traffic predictions on urban networks.
- Advantages of implicit models:
 - Standard automatable calibration methods
 - Fast computation for real-time applications
 - Easy parallelization for dealing with large graphs
 - Independence from specific conditions for **easy generalization**
- Drawbacks of implicit models:
 - Lack of correspondence with the physics of vehicle traffic
- Specific goal:
 - Relate model structure to network topology

State of the art of implicit models

- Time-series models (AR, ARMA, ARIMA, SARIMA)
- Artificial Neural Networks (ANN): Feed-Forward, Kohonen Maps, Fuzzy NN, NAR, NARX)
- Bayesian networks
- Non-parametric estimates (clustering, nearest neighbor, fuzzy classifiers)
- Combination of different methods (Bayesian committee, Bayesian combination, ARIMA-NN)

Definitions

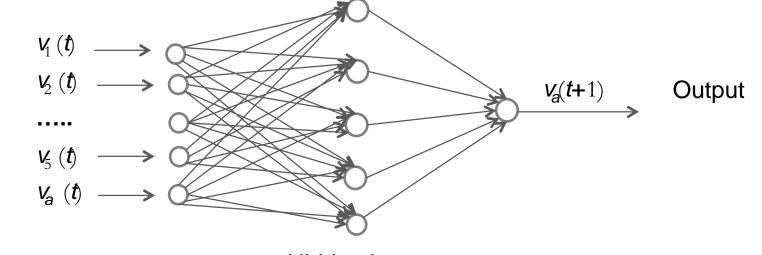
- Short-term implicit prediction model $\hat{V}_{t+1}^a = f\left(V_t^a, V_{t-s}^a, V_{t-2s}^a, ..., V_{t-hs}^a\right) - a$: prediction link; *t*. current time -h: rolling horizon; *s*: rolling step
- Multi-input model (data from different links)

$$V_{t+1}^{a} = f(\mathbf{V}_{t}, \mathbf{V}_{t-s}, \mathbf{V}_{t-2s}, ..., \mathbf{V}_{t-hs}); \mathbf{V}_{t} = \{v_{t}^{a}, v_{t}^{b}, ..., v_{t}^{m}\}; a, b, ..., m\hat{l} L$$

Multi-input with exogenous variables

$$\hat{\boldsymbol{V}}_{t+1}^{\boldsymbol{a}} = f\left(\boldsymbol{\mathsf{V}}_{t}, \boldsymbol{\mathsf{V}}_{t-s}, \boldsymbol{\mathsf{V}}_{t-2s}, \dots, \boldsymbol{\mathsf{V}}_{t-hs}; \boldsymbol{\mathsf{X}}_{t}, \boldsymbol{\mathsf{X}}_{t-s}, \boldsymbol{\mathsf{X}}_{t-2s}, \dots, \boldsymbol{\mathsf{X}}_{t-h's}\right)$$

$$\mathbf{X}_{t} = \left\{ \mathbf{X}_{t}^{a}, \mathbf{X}_{t}^{b}, ..., \mathbf{X}_{t}^{m}; \mathbf{Y}_{t}^{a}, \mathbf{Y}_{t}^{b}, ..., \mathbf{Y}_{t}^{m}; ...; \mathbf{Z}_{t}^{a}, \mathbf{Z}_{t}^{b}, ..., \mathbf{Z}_{t}^{m} \right\}$$

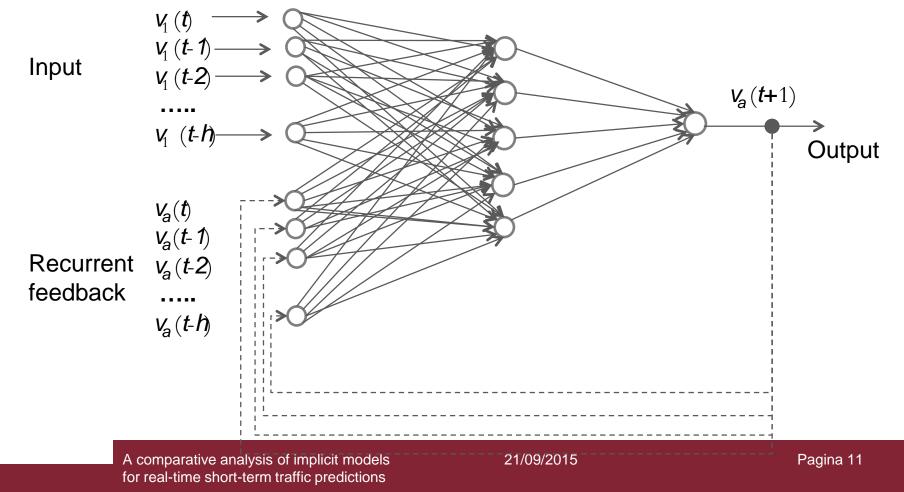

• Multi-step prediction

$$\left\{\hat{V}_{t+1}^{a}, \hat{V}_{t+2}^{a}, ..., \hat{V}_{t+p}^{a}\right\} = f\left(\mathbf{v}_{t}, \mathbf{v}_{t-s}, \mathbf{v}_{t-2s}, ..., \mathbf{v}_{t-hs}; \mathbf{X}_{t}, \mathbf{X}_{t-s}, \mathbf{X}_{t-2s}, ..., \mathbf{X}_{t-h's}\right)$$

Feed-Forward Neural Network

 Well known A.I. paradigm inspired by natural brain biology

$$\hat{V}_{a}(t+1) = f(\mathbf{C}\mathbf{Z} + \mathcal{J}_{C}) \qquad -f: \text{ nonlinear function} \\ \Box \quad \mathcal{G}_{C}, \mathcal{G}_{D}: \text{ thresholds} \\ \mathbf{Z} = f(\mathbf{B}\mathbf{v}(t, t-1, ..., t-h) + \mathcal{J}_{D}) - \mathbf{B}, \mathbf{C}: \text{ weight matrices} \end{cases}$$


Hidden layer

A comparative analysis of implicit models for real-time short-term traffic predictions

Input

Time dependent Neural Network

$$\hat{V}_a(t+1) = f(\hat{v}_a(t), \hat{v}_a(t-1), ..., \hat{v}_a(t-h); \mathbf{v}(t), \mathbf{v}(t-1), ..., \mathbf{v}(t-h))$$

Non AutoRegressive eXogenous model (NARX)

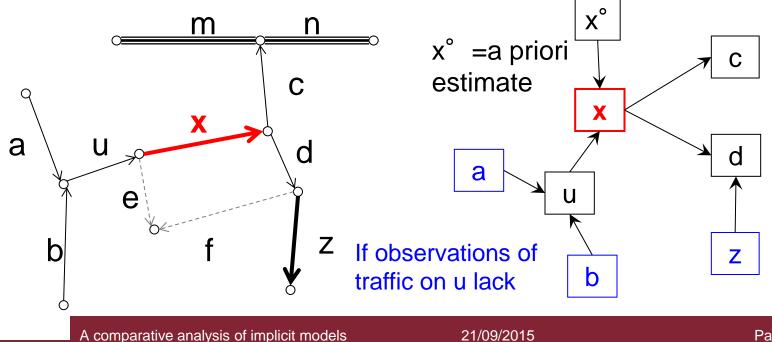
Bayesian Networks (BN)

- Bayesian Networks are graphical models whose nodes represent random variables and arcs represent conditional assumptions.
- Unlinked nodes are stochastically independent variables.
- Link direction indicate cause-effect relationship.
- Network structure provides a compact representation of joint probability:

$P(C, S, R, W) = P(C) \cdot P(S|C) \cdot P(R|C) \cdot P(W|S,R)$

Sprinkler

Cloudy


Wet

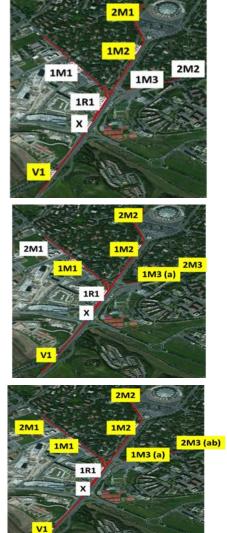
grass

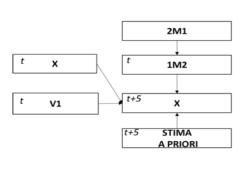
Rain

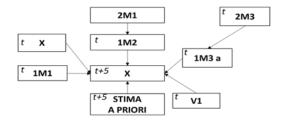
Application of BN to traffic prediction

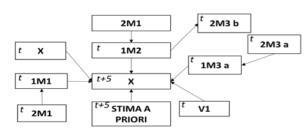
- Nodes of the Bayesian Network are traffic variables
- Bayesian Network architecture should reproduce traffic interaction on the road network
- Cause-effect mechanisms are hidden and stochastic independence prevails "z" affects "x" because it is parent of its children

Experimental application


- TomTom HD data (speed):
 - 6 sub-areas in the town of Rome
 - 3 months of observations (March 2014 May 2014)
 - 5-min. intervals speed aggregation
 - qData reliability expressed by "confidence factor"
- Forecasts for 5-15-30-45-60 minutes:
 - ANN NARX
 - ANN Feed Forward
 - Bayesian Network
 - Naïve method
 - Historical Average
- Research project with DUEL SpA (funded by FILAS)


Real case studies: TomTom Dataset



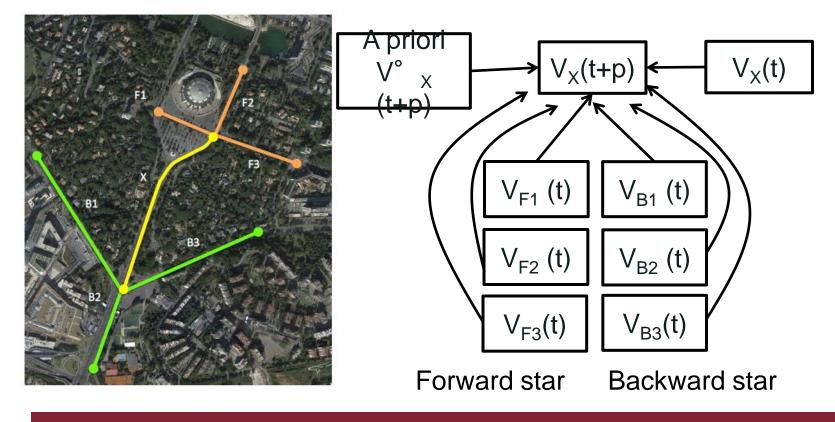

A comparative analysis of implicit models for real-time short-term traffic predictions

Bayesian Network Architecture

Different

 architectures were
 tested to reflect
 physical
 relationships
 between close links.

 Serial links are
 useful when some

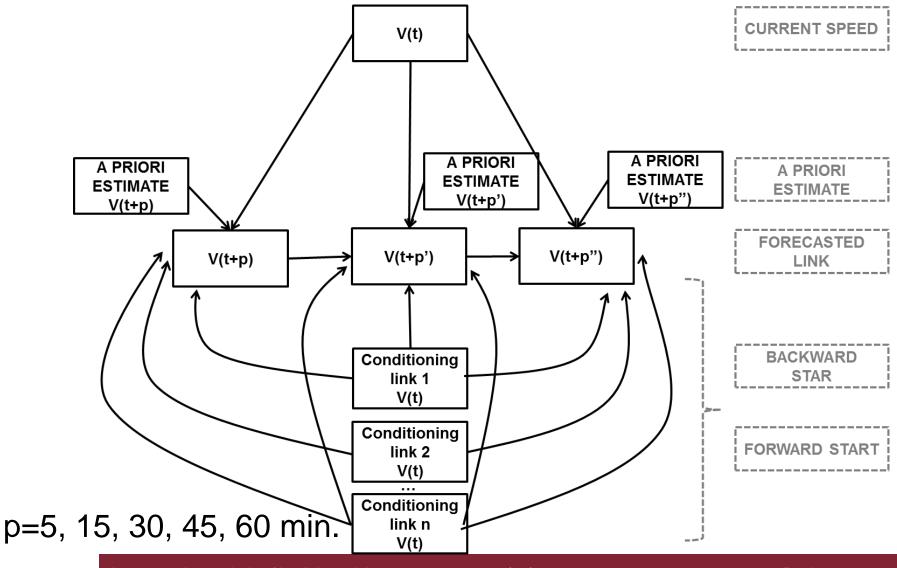

 data of a parent

node are missing

A comparative analysis of implicit models for real-time short-term traffic predictions

Model test

- Different model network architecture related to road network topology
- Different number of parameters and training algorithms

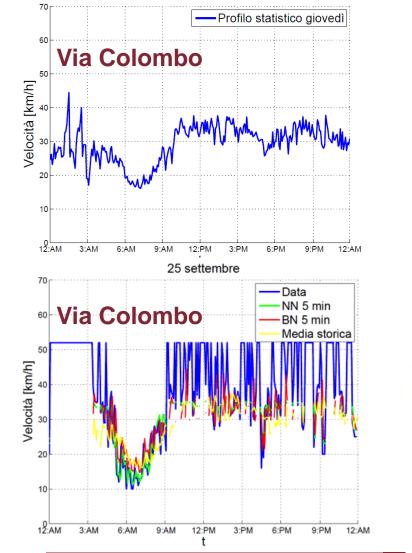


A comparative analysis of implicit models for real-time short-term traffic predictions

21/09/2015

Pagina 17

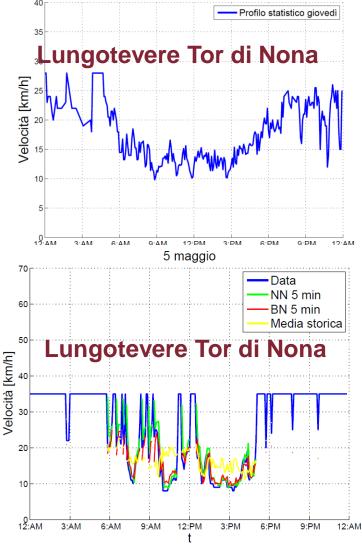
Multistep BN prediction horizon



A comparative analysis of implicit models for real-time short-term traffic predictions

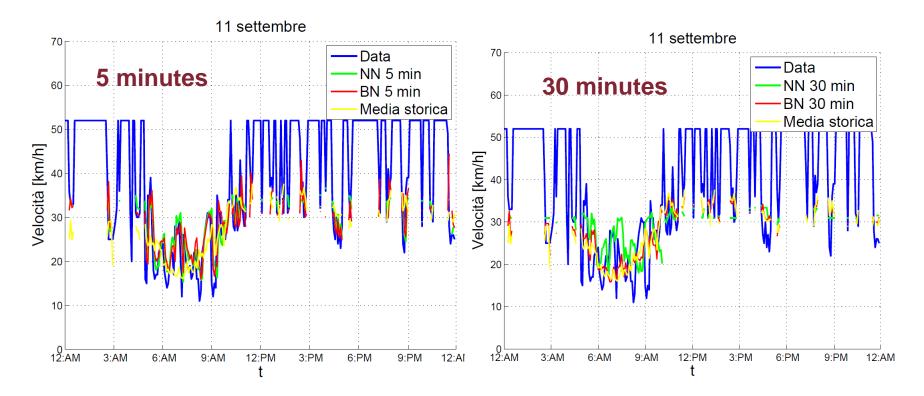
Application of Neural Networks

- Neural Network architecture:
 - One hidden layer;
 - 2-40 hidden neurons;
 - 4 different architectures considered;
 - Training algorithms: classical Levenberg-Marquardt and Levenberg-Marquardt with Bayesian regularization;
 - Input-output correlation, convergence and autocorrelation examined.
- The final structure: 12 hidden neurons; input data collected in 6 previous time intervals on forward and backward star links


From a priori to a posteriori

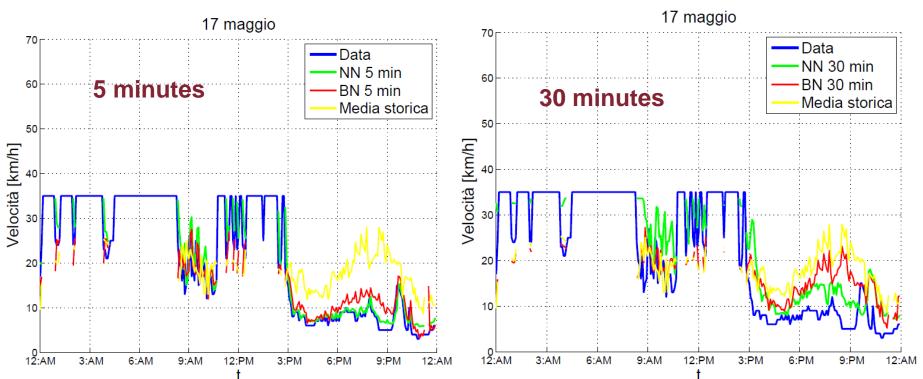
A priori estimate

A posteriori estimate

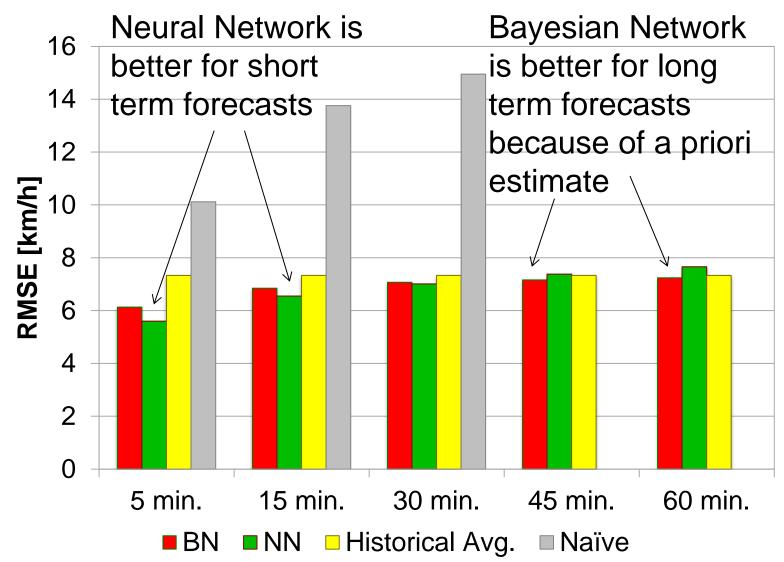

A comparative analysis of implicit models for real-time short-term traffic predictions

21/09/2015

Pagina 20


Results: recurrent noisy congestion

- for 5 min. interval both models provide good estimates
- for 30 min. noisy data lead to overestimate by Neural Network.


Results: non-recurrent congestion

Lungotevere Tor di Nona

- for 5 minutes interval both models provide good estimates;
- for 30 minutes only Neural Network follows the actual speed trend.

Error evaluation (via C.Colombo)

Conclusions

- Application of Neural and Bayesian Networks shows that an appropriate graph structure of models can improve forecast performances with respect to historical average or naïve predictions
- Accuracy worsens as prediction horizon increases:
- FFW Neural networks can be applied up to 15-minute predictions
- Bayesian Network with statistical a priori forecast is better in standard conditions for longer predictions
- Time-dependent Neural Network outperforms BN in anomalous conditions
- A supervisor can be introduced to choose the best model depending on observed data pattern