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Data from animal models and Alzheimer’s disease (AD) subjects provide clear evidence

for an activation of inflammatory pathways during the pathogenetic course of such

illness. Biochemical and neuropathological studies highlighted an important cause/effect

relationship between inflammation and AD progression, revealing a wide range of genetic,

cellular, and molecular changes associated with the pathology. In this context, glial

cells have been proved to exert a crucial role. These cells, in fact, undergo important

morphological and functional changes and are now considered to be involved in the

onset and progression of AD. In particular, astrocytes respond quickly to pathology

with changes that have been increasingly recognized as a continuum, with potentially

beneficial and/or negative consequences. Although it is now clear that activated

astrocytes trigger the neuroinflammatory process, however, the precise mechanisms

have not been completely elucidated. Neuroinflammation is certainly a multi-faceted and

complex phenomenon and, especially in the early stages, exerts a reparative intent.

However, for reasons not yet all well known, this process goes beyond the physiologic

control and contributes to the exacerbation of the damage. Here we scrutinize some

evidence supporting the role of astrocytes in the neuroinflammatory process and the

possibility that these cells could be considered a promising target for future AD therapies.
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Inflammation in Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by memory loss and
significant cognitive decline with impaired activities of daily living (Goedert and Spillantini, 2006).
Despite all scientific efforts, medications currently used provide only modest and transient benefits
to a subset of patients and effective pharmacotherapeutic options are lacking. Histopathologically,
the hallmarks of AD are extracellular deposits of beta amyloid (Aβ) fibrils in senile plaques
(SP) and intraneuronal neurofibrillary tangles (NFT). NFT are filamentous inclusions composed
of hyperphosphorylated forms of the microtubule-associated protein tau (Blennow et al., 2006).
Aβ results from the abnormal proteolytic cleavage of amyloid-precursor protein (APP) by the
sequential action of beta- and gamma-secretase. The widely accepted Aβ cascade hypothesis
suggests that this peptide is the direct cause of neurodegeneration, synaptic loss, and cognitive
decline in AD (Selkoe, 1996). Even if several biochemical mechanisms have been proposed,
including production of reactive oxygen species, disruption of calcium homeostasis, activation
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of Wnt pathway, excitotoxicity, activation of apoptotic pathways,
neuronal degeneration, and neurotransmitter deficits, the precise
role of abnormal protein aggregates in the pathogenesis of AD
remains to be clarified (Huang and Jiang, 2009; Welsh-Bohmer
and White, 2009; Querfurth and LaFerla, 2010). Interestingly,
data from animalmodels and human autopsies revealed that both
SP and NFT are co-localized with activated glial cells, suggesting
that reactive gliosis might exert a key pathogenetic role in AD
(Craft et al., 2006). Aβ peptides, probably through the main
involvement of non-neuronal cells, promote neuroinflammation,
accounting for the synthesis of different cytokines, and pro-
inflammatory mediators (Mrak and Griffin, 2001; Tuppo and
Arias, 2005). Recent evidence assigns to astrocyte dysfunctions
a critical role in aging and in several neurodegenerative diseases,
including AD. It is now clear that astrocytes are essential in the
control of cerebral homeostasis. However, several brain injuries,
including Aβ deposition, modify their physiological functioning
and astrocyte acquire a reactive phenotype (Verkhratsky et al.,
2014). Activation of these cells is fundamentally a protective
response aimed at removing injurious stimuli. However,
uncontrolled and prolonged activation goes beyond physiological
control and detrimental effects override the beneficial ones. In
this condition, astrocytes foster neuroinflammatory response,
accounting for the synthesis of different cytokines and pro-
inflammatory mediators. After their release, pro-inflammatory
signal molecules act, in an autocrine way, to self perpetuate
reactive gliosis and, in a paracrine way, to kill neighboring
neurons expanding the neuropathological damage (Mrak and
Griffin, 2001; Pekny et al., 2014).

In this context, it is important to highlight that inflammatory
process, once initiated, may contribute independently to neural
dysfunction and cell death, thereby establishing a self-fostering
vicious cycle, by which the inflammation represents a substantial
cause of further neurodegeneration (Block and Hong, 2005;
Glass et al., 2010). Therefore, it is reasonable to assume that
early combination of neuroprotective and anti-inflammatory
treatments aimed at restoring astrocyte functions may represent
an appropriate approach to treat AD, whereas the treatment
of only one pathological process might even worsen the others
(Scuderi et al., 2014a).

A growing body of evidence shows the remarkable complexity
of inflammatory mechanisms in AD and how these mechanisms
are often driven by alterations of glial cells functioning. Such
complexity encourages to perform additional investigations in
order to better clarify the mechanisms involved with the aim to
develop appropriate therapeutics.

Can astrocytes become the target for new drugs? In the last
decade, the neuron-centric vision of neuropsychiatric diseases
has undergone considerable changes. Indeed, it is now clear that
the non-neuronal cells could be involved in the pathogenesis
and progression of many diseases due to their important and
active roles exerted in the brain physiological and pathological
conditions. Therefore, these cells could not be considered simple
co-stars in the drama of neuropsychiatric disorders, including
neurodegeneration.

Glial cells are non-excitable cells of the central nervous
system (CNS). These cells are a highly heterogeneous population,

responsible for many important brain functions (Doens and
Fernández, 2014; Öngür et al., 2014; Hol and Pekny, 2015;
Rodríguez-Arellano et al., 2015). The oligodendrocytes, for
example, envelop axons with myelin and provide neurons
with homeostatic support, and progenitor cells expressing
proteoglycan NG2 most likely represent a reservoir of
myelinating cells (Fröhlich et al., 2011; Walhovd et al.,
2014). The microglial cells are regarded to be the innate
immune cells in the CNS. They get activated in response
to any type of brain injury, producing a wide range of pro-
or anti-inflammatory mediators (Gundersen et al., 2015).
Astrocytes are definitely the most abundant and heterogeneous
type of glial cells in the CNS. Indeed, their morphology differs
largely depending on their development stage, subtype, and
localization. For example, the most abundant astrocytes of the
gray matter are the protoplasmic ones, which exhibit short
branches, whereas the fibrous astrocytes are present in the white
matter and exhibit long unbranched processes (Verkhratsky
and Parpura, 2015). It is well-proved that astrocytes control
the brain homeostasis and allow neurons to functioning;
they are an essential neuro-supportive cell type in brain,
responsible for a massive number of homeostatic tasks in the
CNS (Verkhratsky and Butt, 2013). Indeed, astrocytes finely
control the environment by regulating pH, ion homeostasis,
blood flow, and modulate oxidative stress (Deitmer and Rose,
1996; Wilson, 1997; Iadecola and Nedergaard, 2007; Obara
et al., 2008). In addition, these cells importantly contribute
to synaptogenesis and dynamically modulate information
processing and signal transmission, regulate neural and synaptic
plasticity, and provide trophic and metabolic support to neurons
(Perea et al., 2009; Sofroniew, 2014). On the basis of all these
considerations, it is reasonable to assume that alterations in some
of these important neuro-supportive functions can result in
injurious consequences for the brain (Bélanger and Magistretti,
2009).

It has been well established that brain insults trigger a specific
astroglial reaction represented by a complex morphofunctional
remodeling (Sun and Jakobs, 2012). Astrocytes, together with
microglia, are the cellular component of the resident innate
immune system in the CNS. They act as crucial effectors
of the neuroinflammatory response (Ransohoff and Brown,
2012). Indeed, astrocytes rapidly act in response to pathology
undergoing important changes in their morphology and
functioning (Sofroniew and Vinters, 2010; Scuderi et al., 2013;
Rossi, 2015). This reactive state starts with the intention to
control and remove the brain damage, however it has deleterious
consequences. In fact, reactive gliosis is a self-perpetuating
process which, at the end, exacerbates the injury and, on another
hand it represents a non-physiologic state in which astrocytes
lose their helpful properties. These events are particularly patent
in AD brain and Alzheimer himself was able to recognize, in
autopsied specimens, a marked activation of astroglial cells and
described a manifest inflammatory status (Alzheimer, 1907).
Data from both humans and animal models of AD have
demonstrated that reactive astrocytes co-localize with SP and
NFT (Lukiw and Bazan, 2000; Armstrong, 2009; Rodríguez et al.,
2009) suggesting that the primary aim of this peculiar localization
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is probably the creation of a barrier between healthy and injured
tissue.

Additionally, accumulating data shows the relevant role of
astrocytes in Aβ pathogenesis of AD. Numerous debates have
discussed whether astrocytes uptake Aβ from the extracellular
space or they could synthesize Aβ de novo.

Astrocytes possess tools to internalize and metabolize Aβ

in vivo. They express the receptor for advanced glycation
end product (RAGE) which binds Aβ, and possess a complex
apparatus able to take up Aβ (Wyss-Coray et al., 2003). So, the
notion that astrocytes phagocytose Aβ from the extracellular
space is reinforced by a number of investigations, which proved
that Aβ was taken up by astrocytes for lysosomal degradation in
order to maintain Aβ homeostasis (Funato et al., 1998). It has
been postulated that this complex machinery makes astrocytes
the preferential type of glial cells liable to remove Aβ (Nagele
et al., 2003; Wyss-Coray et al., 2003; Koistinaho et al., 2004). In
other studies, a lower responsiveness to Aβ in human astrocytes
from AD cases was reported, suggesting that SP formation
in the extracellular space might be subsequent to insufficient
clearance of Aβ by astrocytes (Mulder et al., 2012). APP and
BACE1 overexpression in astrocytes may result in Aβ synthesis
de novo (Zhao et al., 2011). It was reported an enhanced BACE1
production in reactive astrocytes, supporting the notion that Aβ

accumulation in the extracellular space could be secondary to its
production and release by activated astrocytes. Therefore, based
upon this evidence it is possible to assert that astrocytes may have
a dual role in either clearing and producing Aβ.

On the other side, exposure to Aβ causes deleterious
consequences on astrocyte functioning. Indeed, these cells alter
their morphology with a marked increase in the expression
of the glial fibrillary acidic protein (GFAP), a recognized
marker of astrocyte reactivity (Chow et al., 2010; Scuderi et al.,
2014a). In parallel, Aβ challenge provokes alterations of calcium
homeostasis, energetic modification, and degeneration of co-
cultured neurons (Malchiodi-Albedi et al., 2001; Abramov et al.,
2004; Chow et al., 2010; Scuderi et al., 2011, 2012). Lastly, Aβ

insult also results in increased oxidative and nitrosative stress
(Frank-Cannon et al., 2009). It has been demonstrated that
Aβ accumulation in SP causes over-expression of a number
of inflammation-related factors, such as nitric oxide (NO)
interleukin (IL)-1α, IL-1β, and tumor necrosis factor (TNF)-α (Li
et al., 2003; Esposito et al., 2006). An increasing body of evidence
demonstrates that NO represents one of the major effectors
of neuronal cell death through mitochondrial depolarization
(Solenski et al., 2003), while IL-1β enhances activation of caspase-
3, an enzyme implicated in hippocampal neuron apoptotic death
in aged rats (Lynch and Lynch, 2002). Similarly, TNF-α has been
demonstrated to be involved in neuronal apoptosis induced by
Aβ, activating the caspase-cascade, through the interaction with
its specific type 1 receptor (Li et al., 2004a).

Transgenic APP(SWE) (Tg2576) mice, which over-express the
human APP gene, show high levels of interferon-γ and IL-12
mRNA, as well as their protein production, and such an increase
was found in the reactive astrocytes surrounding Aβ deposits
(Abbas et al., 2002). Some authors demonstrated that some of
these effects may be due to alterations in astrocyte transcription

factors. For example, the CCAAT-enhancer binding protein
(C/EBP) family of transcription factors, which regulates or co-
regulates a wide range of inflammatorymediators, is considerably
higher in reactive astrocytes surrounding Aβ deposits of AD
cortex in comparison with non-AD age matched controls (Li
et al., 2004b).

In addition it was demonstrated that astrocytic NF-κB is
activated after Aβ exposure, causing an increased expression and
release of a variety of inflammatory molecules including IL-1β
and IL-6 (Bales et al., 1998). Moreover, the activation of NF-κB
in astrocytes is also responsible in mediating the inflammatory
process through the expression of adhesion molecules and
chemokines which allow the invasion by peripheral leukocytes
(Moynagh, 2005). Although the impact of astroglial inactivation
of NF-κB has not been established in AD mouse models, recent
evidence demonstrates that blockage of NF-κB transcriptional
activity in astrocytes can extensively reduce inflammation and
improve recovery, thus suggesting that inhibition of NF-κB
in astrocytes may be regarded as a potential therapy for AD
(Medeiros and LaFerla, 2013).

Among the many released mediators, S100B represents a key
factor during neuroinflammation. This small peptide is almost
exclusively produced by astrocytes and, under physiological
conditions, it is a neurotrophin responsible for survival,
development, and function of neurons (Donato, 2003). In AD,
but also in Down’s syndrome (whose subjects often develop a
precocious AD-like dementia), in Parkinson’s disease, and in
subjects with severe brain trauma, S100B is over-expressed and its
levels correlate with the progression of the pathology (Mrak et al.,
1996; Sheng et al., 2000). A similar correlation is detectable in the
brain of APPV717F, transgenic mice which over-express a human
APP minigene encoding a familial AD mutation. In APPV717F
is evident an age-related increase in tissue levels of both APP
and S100B mRNA and such an increase precedes the appearance
of neuritic plaques (Sheng et al., 2000). Lastly, by using
S100B-overexpressing transgenic and S100B knockout mice
intracerebroventricular injected with human oligomeric Aβ1−42,
it was established a relationship between S100B levels and
susceptibility to AD-relevant neuroinflammation and neuronal
dysfunction. Indeed, after Aβ infusion inflammatory reaction in
S100B-overexpressing transgenic mice was markedly higher than
in knock-out or wild-type mice (Craft et al., 2005).

In addition, electrophysiological and behavioral investigations
demonstrated that S100B affects long-term synaptic plasticity
and impairs cognitive tasks (Gerlai, 1998; Nishiyama et al.,
2002). All these considerations emphasize the assumption that
S100B up-regulation may result in deleterious consequences
and that early targeting of this protein could be beneficial
in preventing or slowing AD progression. Finally, to further
support the assumption that a protracted reactive gliosis is
importantly implicated in the pathobiology of AD, proton
resonance spectroscopy consistently provided evidence of a
significant increase of myoinositol (an astroglial marker) in brain
areas of both mild cognitive impairment (MCI) and AD patients.
Such an increase, according to some studies, have been reported
to correlate with the progression of pathology (Kantarci et al.,
2008; Tumati et al., 2013).
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Given the complex heterogeneity of pathological changes
occurring in AD, scientists have to increase their efforts in
preclinical and clinical research to identify new therapeutics.

In the last 15 years, growing data highlighted the important
genetic, epigenetic, and molecular changes occurring in AD.
These studies provided the evidence for another important
actor in the drama of this neurological disorder: the marked
neuroinflammation. This process is really more complex than
it could appear at first glance. Indeed, neuroinflammation
is generated and orchestrated by glial cells. In particular,
microglia and astrocytes actively participate in mediating the
so-called reactive gliosis and, by interacting with neurons,
they take part in the onset and progression of the disease.
Despite its recognized crucial role in AD, the precise molecular
pathways of neuroinflammation remain unclear. It is mandatory
to characterize these fine mechanisms, as well as to define
time, brain regions, and cell type involved in mediating this
multifaceted process. Although epidemiological studies shed
light on a possible benefit of long-term use of nonsteroidal anti-
inflammatory drugs (NSAIDs), however it could be wrongful and
simplistic to suggest these drugs as the AD treatment, because
it is erroneous to regard AD as a mere neuroinflammatory
disease. In addition, many randomized clinical trials, designed
to test the efficacy of a long-term use of NSAIDs in AD, failed
to demonstrate that these drugs slow down the progression
of disease or improve the symptoms in patients with early or
moderate AD (Thal et al., 2005; Breitner et al., 2009; Szekely and
Zandi, 2010). The reasons of these failures could be numerous;
for example, the peculiar nature of the inflammatory process, the
advanced state of the disease, and the dosing regimens of the
trials. In this context it is also important to mention as a study
demonstrated that autopsied specimens from very old humans
with cognitively normal functions showed higher expression
of complement factors and several immune molecules than
brains from age-matched AD patients or younger people (Katsel
et al., 2009). This evidence seems to suggest that molecules,
typically seen as deleterious, exert simultaneously multiple
roles. For example, Cyclooxygenase(COX)-2 is implicated in
both physiological and pathological processes. This renders
the understanding of the role of this enzyme in the brain
somewhat tricky (Hoozemans et al., 2001). Unlike COX-1, which
is primarily localized in human microglial cells, COX-2 is mainly
expressed in pyramidal neurons where it may be involved in
learning and memory functions. The importance to attenuate
astroglial inflammation in AD has been also demonstrated
by adeno-associated virus-driven suppression of the astrocyte
reaction in APP/PS1 mice, which revealed improved cognition,
reduced astrogliosis, and decreased Aβ concentrations (Furman
et al., 2012).

A further important aspect that requires to be clarified
concerns the temporal relationships between Aβ accumulation

and glial activation. Human studies have revealed a parallel
increase in activation of both astrocyte and microglia and AD
progression. This occurs independently from the Aβ deposition,
suggesting that gliosis could per se induce neurodegeneration
(Serrano-Pozo et al., 2011). Likewise, using a multitracer PET
investigation in patients with MCI and AD, astrocytosis was
proved to be an early phenomenon in AD progression (Carter
et al., 2012).

Therefore, the dominant view that astrocytes respond
secondarily to neuronal damage could be contradicted by
growing evidence supporting an active role of these cells
as primary players in several mechanisms related to the
pathophysiology of AD.

The interplay between dysfunctional astroglial cells and
adjacent neurons can start a sequence of events that results in
neuronal damage and the appearance of the characteristic AD
hallmarks. Moreover, since astrocytes exert an important role in
maintaining synaptic homeostasis, astrocyte malfunctioning may
negatively influence the efficiency of neuronal circuits.

Conclusion

It is widely accepted that protracted astrogliosis is a prominent
component of AD pathology and might represent an attractive
therapeutic target. However, since reactive gliosis is now
identified as a complex process with both helpful and detrimental
aspects, it will be crucial an understanding that is not limited
to phenomenological descriptions but also able to clarify the
relevant disease-modifying pathways. The challenge for future
studies, therefore, will be to identify tools capable of selectively
prevent the over-activation of these cells and pathways without
interfering with their physiological and beneficial properties.
Currently a fair number of compounds seems to be able to restore
a normal astrocyte functioning in AD models, serving as novel
potential tools in the treatment of AD pathology (Scuderi et al.,
2014a,b).
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