
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. c© 2014 Society for Industrial and Applied Mathematics
Vol. 36, No. 2, pp. A570–A587

CAN LOCAL SINGLE-PASS METHODS SOLVE ANY STATIONARY
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Abstract. The use of local single-pass methods (like, e.g., the fast marching method) has become
popular in the solution of some Hamilton–Jacobi equations. The prototype of these equations is the
eikonal equation, for which the methods can be applied saving CPU time and possibly memory
allocation. Then some questions naturally arise: Can local single-pass methods solve any Hamilton–
Jacobi equation? If not, where should the limit be set? This paper tries to answer these questions.
In order to give a complete picture, we present an overview of some fast methods available in the
literature and briefly analyze their main features. We also introduce some numerical tools and provide
several numerical tests which are intended to exhibit the limitations of the methods. We show that
the construction of a local single-pass method for general Hamilton–Jacobi equations is very hard, if
not impossible. Nevertheless, some special classes of problems can actually be solved, making local
single-pass methods very useful from a practical point of view.
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1. Introduction. The study of Hamilton–Jacobi (HJ) equations arises in several
applied contexts, including classical mechanics, front propagation, control problems,
and differential games, and has had a great impact in many areas, such as robotics,
aeronautics, and electrical and aerospace engineering. In particular, for control/game
problems, an approximation of the value function allows for the synthesis of optimal
control laws in feedback form, and then for the computation of optimal trajectories.
The value function for a control problem (resp., differential game) can be character-
ized as the unique viscosity solution of the corresponding Hamilton–Jacobi–Bellman
(HJB) equation (resp., Hamilton–Jacobi–Isaacs (HJI) equation), and it is obtained by
passing to the limit in Bellman’s well-known dynamic programming (DP) principle.
The DP approach can be rather expensive from a computational point of view, but
in some situations it gives a real advantage over methods based on Pontryagin’s max-
imum principle, because the latter approach allows one to compute only open-loop
controls and locally optimal trajectories. Moreover, weak solutions to HJ equations
are nowadays well understood in the framework of viscosity solutions, which offers
the correct notion of solution for many applied problems.

The above remarks have motivated the research of efficient and accurate numer-
ical methods. Indeed, an increasing number of techniques have been proposed for
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Rome, Italy (falcone@mat.uniroma1.it).

A570

D
ow

nl
oa

de
d 

04
/1

7/
14

 to
 1

51
.1

00
.5

0.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/sisc/36-2/90770.html
mailto:cacace@mat.uniroma1.it
mailto:cacace@mat.uniroma1.it
mailto:e.cristiani@iac.cnr.it
mailto:falcone@mat.uniroma1.it


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CAN LSP METHODS SOLVE ANY STATIONARY HJB EQUATION? A571

the approximation of viscosity solutions. They range from finite difference to finite
volume, from discontinuous Galerkin to semi-Lagrangian schemes. In any case, for
optimal control problems and games, the DP approach suffers from the so-called
curse of dimensionality limitation; i.e., the size of nonlinear systems needed to solve
high-dimensional problems becomes huge, making the numerical solution unfeasible
in terms of both memory allocation and CPU time. The curse of dimensionality
can sometimes be overcome by exploiting the peculiarities of the problem, if any (e.g.,
symmetry, periodicity, linearity), or by adopting a linearization based on the so-called
“max-plus algebra” approach, which unfortunately presents other types of constraints;
see, e.g., the book by McEneaney [23]. It is rather clear that the DP approach needs
a big effort in the construction of numerical approximation schemes for two different
reasons. The first, which is valid even in low dimensions, is due to the low regularity
of viscosity solutions which are typically only Lipschitz continuous or even discon-
tinuous, as in the case of constrained control problems and pursuit-evasion games.
The second reason is related to the above-mentioned curse of dimensionality, which
pushes towards methods with low memory allocation and, possibly, the definition of
some rule to reduce the number of elementary operations and the CPU time.

Another motivation for efficient numerical methods is the approximation of front
propagation problems via the level-set method. The motivation there is to reduce or
eliminate the extra dimension which is added by the level-set method and obtain a
fast and reliable algorithm. Starting in the 1980s, many efforts have been made to
improve the efficiency of these numerical methods, a crucial step for the solution of
real-world problems.

In this paper we deal with numerical methods for solving first-order nonlinear
convex stationary HJB equations. In particular, we focus on the applicability of the
fast marching method (FMM), introduced in the pioneering works by Tsitsiklis [29],
Sethian [26], Helmsen et al. [18], and its generalizations; see, e.g., [1, 5, 6, 7, 8, 10, 11,
19, 21, 24, 27]. We analyze features and limitations of this kind of algorithm, aiming
at understanding whether it is possible to construct local single-pass methods (see
Definitions 1.1 and 1.2 below) to solve every HJB equation. Then we discuss whether
or not the research on this topic should look for new future directions still based on
the local single-pass idea and/or switch to other acceleration methods, such as fast
sweeping methods (FSMs); see, e.g., [3, 20, 28, 30, 31] (see also the pioneering work
[22, p. 168], where a sketch of the method is given, and [12], where a similar method
in a discrete setting is proposed).

It is well known that FMM is an efficient numerical technique for solving the
eikonal equation. This explains why we have decided to use as a guideline the following
equations, which generalize the eikonal equation and are associated to some minimum
time problems with target:

sup
a∈B(0,1)

{−a · ∇T (x)} = 1 (homogeneous eikonal),(1.1)

sup
a∈B(0,1)

{−c1(x)a · ∇T (x)} = 1 (nonhomogeneous eikonal),(1.2)

sup
a∈B(0,1)

{−c2(a)a · ∇T (x)} = 1 (homogeneous anisotropic eikonal),(1.3)

sup
a∈B(0,1)

{−c3(x, a)a · ∇T (x)} = 1 (nonhomogeneous anisotropic eikonal),(1.4)

sup
a∈B(0,1)

{−f(x, a) · ∇T (x)} = 1 (minimum time HJB),(1.5)
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A572 S. CACACE, E. CRISTIANI, AND M. FALCONE

where x ∈ R
d\T , T is a closed nonempty target set in R

d, c1, c2, c3 are given
strictly positive and Lipschitz continuous scalar functions, f is a given vector-valued
Lipschitz continuous function, and B(0, 1) is the unit ball in R

d, representing the set
of the admissible controls. To simplify the presentation we will always consider the
homogeneous Dirichlet condition T = 0 on T , but also other boundary conditions can
be applied, provided some compatibility conditions between the vectorfield f and ∂T
hold true. Let us also note, for readers not familiar with control applications, that
(1.1) and (1.2) can be written in a more standard form as

|∇T (x)| = 1 and c1(x)|∇T (x)| = 1,

respectively. Moreover, the above relation shows the equivalence between the front
propagation problem described by the level-set method and the minimum time prob-
lem, as one can find in [15]. To simplify the notation, we restrict the discussion to
the case d = 2, but the results of the paper are valid in any dimension.

It is interesting to note that the single-pass idea has also been applied to non-
convex Hamiltonians, e.g., the HJI equation corresponding to pursuit-evasion games
[4, 9]. In pursuit-evasion games the structure of the solution is similar to the minimum
time problem because the characteristic information propagates from a given target
to the rest of the space. Clearly for games the structure of optimal trajectories (which
coincide with the characteristics of the problem) is much more complicated due to the
presence of two independent players. However, a complete theory for fast-marching-
like methods in this framework is still missing and, as we will see later, it will be hard
to develop it since these methods can fail even in the convex case (see the examples
in section 5).

As mentioned above, in the last decades many numerical schemes and algorithms
were proposed to solve the above equations. Some of these schemes are listed in the
next section, together with their main properties. As is well known, one important
feature held by fast-marching-like methods is that the solution to the HJ equation is
computed in a finite number of steps. More precisely, these methods are single-pass
in the sense of the following definition.

Definition 1.1 (single-pass algorithm). An algorithm is said to be single-pass if
each mesh point is recomputed at most r times, where r depends only on the equation
and the mesh structure, not on the number of mesh points.

Single-pass algorithms usually divide the numerical grid into at least three subsets:
accepted (ACC ) region, considered (CONS ) region, and far (FAR) region. Nodes in
ACC are definitively computed, nodes in CONS are computed but their values are
not yet final, and nodes in FAR are not yet computed.

We also introduce the following definition.
Definition 1.2 (local single-pass algorithm). A single-pass algorithm is said

to be local if the computation at any mesh point involves only the values of first
neighboring nodes, the region CONS is one-cell thick, and no information coming
from the FAR region is used.

The paper is organized as follows: In section 2 we summarize some of the exist-
ing methods to solve HJB equations and introduce two semi-Lagrangian numerical
schemes. In section 3, we present new numerical tools which will be useful in investi-
gating the applicability of local single-pass methods. In section 4, which is the core of
the paper, we discuss the main features and limitations of the methods presented in
sections 2 and 3, and we address the problem of extending local single-pass methods
to general HJB equations. Finally, in section 5 we present several experiments and
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numerical tests in order to compare the two schemes described in section 2 and to
confirm the scenario depicted in section 4.

2. Background and general approximation schemes. Fast methods for
HJB equations are usually designed to work with different local schemes, including fi-
nite difference and semi-Lagrangian (SL) schemes. Several results show that, in many
cases on structured grids and at a reasonable cost, SL schemes provide better accu-
racy than other schemes (see, e.g., [11, 16]), due to their ability to follow directions
which are oblique with respect to the coordinate axes. In this section we recall, for
the reader’s convenience, two SL schemes for HJB equations, which will be compared
in section 5. Then we list and discuss some of the iterative and fast-marching-like
methods available in the literature.

2.1. Two SL schemes. Let us introduce a structured grid G and denote its
nodes by xi, i = 1, . . . , N . The space step is assumed to be uniform and equal to
Δx > 0. HJ equations can be discretized by means of the discrete version of the
DP principle. In this way the relationship with the optimal control framework is
never lost. Standard arguments [2] lead to the following discrete version of the HJB
equation (1.5):

(2.1) T (xi) ≈ T̂ (xi) = min
a∈B(0,1)

{
T̂ (x̃i,a) +

|xi − x̃i,a|
|f(xi, a)|

}
, xi ∈ G,

where x̃i,a is a nonmesh point, obtained by integrating, until a certain final time τ ,
the ordinary differential equation

(2.2)

{
ẏ(t) = f(y, a), t ∈ [0, τ ],
y(0) = xi

and then setting x̃i,a = y(τ). To make the scheme fully discrete, the set of admissible
controls B(0, 1) is discretized in Nc points, and we denote by a∗ the optimal control
achieving the minimum in (2.1). Note that we can get different versions of the SL
scheme (2.1) varying τ , the method used to solve (2.2), and the interpolation method

used to compute T̂ (x̃i,a). Moreover, we remark that, in any single-pass method,

the computation of T̂ (xi) cannot involve the value T̂ (xi) itself, because this self-
dependency would make the method iterative.

A two-point SL scheme. This scheme is used, for example, in [27] and [29].
Equation (2.2) is solved by an explicit forward Euler scheme until the solution inter-
cepts the line connecting two neighboring points xi,1 and xi,2 (see Figure 1a). The

value T̂ (xi) is computed by a one-dimensional linear interpolation of the values T̂ (xi,1)

and T̂ (xi,2) with weights λi,1 and λi,2, respectively (λi,1 + λi,2 = 1).

A three-point SL scheme. This scheme is used, for example, in [11]. Equation
(2.2) is solved by an explicit forward Euler scheme until the solution is at distance
Δx from xi, where it falls inside the triangle of vertices xi,1, xi,2, and xi,3 (see Figure

1b). The value T̂ (xi) is computed by a two-dimensional linear interpolation of the

values T̂ (xi,1), T̂ (xi,2), and T̂ (xi,3) with weights λi,1, λi,2, and λi,3, respectively
(λi,1 + λi,2 + λi,3 = 1).

Remark 2.1. It is important to note that when the algorithm employs the single-
pass technique (with ACC -CONS -FAR sets), the nodes in CONS can be either in-

cluded in or excluded from the computation of T̂ (xi). Indeed, we can decide to force
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(a) (b)

f(xi, a)

xi xi,1

xi,2

f(xi, a)

xi xi,1

xi,3 xi,2

Fig. 1. (a) Two-point SL scheme. (b) Three-point SL scheme.

the scheme to employ only nodes in ACC, temporarily assuming that nodes in CONS
have very large values, so that they are automatically rejected by the minimum search
in (2.1). Otherwise, we can employ nodes in ACC and CONS, although the values
at nodes in CONS are not in general correct since they can still vary in the following
iterations.

2.2. Some algorithms for HJB equations. Here we list and briefly describe
some iterative and single-pass methods for solving HJB equations.

Iterative method (ITM). This method naturally exploits the fixed-point form
of the discrete DP principle. It has been applied in [22] to stochastic control prob-
lems, where the deterministic case can be obtained vanishing the coefficient in front
of the diffusion term. Later, a similar operator has been used in [17] to construct
an approximation of the value function in a deterministic control problem. In the
framework of viscosity solutions, the fully discrete DP scheme was first studied in
[14]. The interested reader can also find a detailed description of the algorithm and
some acceleration methods in [16]. A finite difference version for a specific application
to the shape-from-shading problem can be found in [25].

Starting from some initial guess T̂ (0) defined on the whole grid (compatible with
the Dirichlet conditions imposed on T ), the nodes are visited in some unique and
predefined order. At each visit, the numerical scheme is applied and a new value for
the node is computed. This leads to a fixed-point algorithm of the form

T̂ (n) = Ĥ(T̂ (n−1)) , n = 1, 2, 3, . . . ,

where Ĥ denotes a discrete Hamiltonian associated to the corresponding HJ equation.
Gauss–Seidel-type or Jacobi–type iterations are possible. For a practical implemen-
tation, a criterion of the form

(2.3) max
xi∈G

|T̂ (n)(xi)− T̂ (n−1)(xi)| < tol

is needed in order to stop the computation at a desired precision tol. Clearly this
method is not single-pass, since the number of iterations needed to reach convergence
depends both on the grid size Δx and the dynamics underlying the equation. ITM
was proved to be convergent, provided a suitable numerical scheme is employed.
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Fast sweeping method (FSM) [3, 20, 28, 30, 31]. This method is similar
to ITM, but the grid is visited in a multiple-direction predefined order. Usually,
a rectangular grid is iteratively swept along four directions: N → S, E → W , S → N ,
and W → E, where N,S,E,W stand for North, South, East, and West, respectively.
This method has been shown to be much faster than ITM, but, as ITM, it not single-
pass. A well-known exception is given by the eikonal equation, for which it is proved
that only one sweep (i.e., four visits of the whole grid) is enough to reach convergence
(see [30] for details). FSM computes the same solution of ITM, provided the same
scheme and the same stopping rule are employed.

Fast marching method (FMM) [18, 26, 29]. This method has been intro-
duced as a fast solver for the eikonal equation. It differs from the previous ones, since
the nodes are visited in a solution-dependent order, producing a single-pass method:
the algorithm itself finds a correct order for processing the grid nodes. The order
which is determined satisfies the causality principle; i.e., the computation of a node is
declared completed only if its value cannot be affected by the future computation. As
recalled in section 1, at each step the grid is divided into three regions: ACC, where
computation is definitively done, CONS, where computation is going on, and FAR,
where computation is not done yet. Then the node in CONS with the minimal value
enters ACC, its first neighbors enter CONS (if not yet in) and are (re)computed.

Following [27], we remark that thisminimum-value rule corresponds to computing
the value function T step by step in ascending order (i.e., from the simplex containing
−∇T ). It follows that CONS expands under the gradient flow of the solution itself,
which is exactly equivalent to saying that CONS is, at each step, an approximation
of a level set of the value function. In the case of isotropic eikonal equation (1.2),
the gradient of the solution coincides with the characteristic field, and hence FMM
computes the correct solution. Moreover, FMM still works for problems with mild
anisotropy, where gradient lines and characteristics define small angles and lie, at each
point, in the same simplex of the underlying grid. On the other hand, when a strong
anisotropy comes into play, as for a general anisotropic eikonal equation (1.3), FMM
fails and there is no way to compute the viscosity solution following its level sets.
Finally, we remark that FMM is also a local method, since each node is computed
by means of first neighbors nodes only, and CONS is one cell thick. Moreover, FMM
computes the same solution of ITM, provided the same scheme is employed.

Characteristic fast marching method (CFMM) [10]. This method is in-
spired by FMM, it is local and single-pass, and it can be used to solve some eikonal
equations. It replaces the search for the minimum value in CONS with the search of
the node where the characteristic line passes with maximal speed. The acceptance
rule is also modified: a node xi in CONS enters ACC if the point xi + f(xi, a

∗) falls
in ACC. As the group marching method [21], more than one node can enter ACC at
the same time, making the method in general faster than FMM. Note that CFMM
does not always work if the solution of the equation is not differentiable.

Ordered upwind method (OUM) [27]. This method is inspired by FMM,
but it is able to solve more general equations than the eikonal one, including nonho-
mogeneous anisotropic eikonal equations (1.4). This can be obtained by enlarging the
stencil of the scheme, so that a value at a node xi can be computed by using values
at some nodes xj that are far from the node xi. This makes the method nonlocal.
The maximal allowed distance |xi − xj | depends on the degree of anisotropy of the
equation. OUM is a single-pass method which computes the same solution of ITM
(employing the same numerical scheme) only in the limit Δx → 0.
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A generalization of OUM was recently proposed in [1] to solve static convex
HJ equations on highly nonuniform grids. The new method MAOUM (monotone
acceptance OUM) computes the solution in a fast-marching fashion, but employs
large stencils (even larger than OUM) that are precomputed for each grid node. This
makes MAOUM two-pass and nonlocal.

Buffered fast marching method (BFMM) [8]. This method is inspired by
FMM and can be used to solve any HJ equations modeling monotone front propaga-
tion. Although only first neighbors are involved in the computation, BFMM cannot
be considered a local method, since CONS can increase its thickness. More precisely,
the CONS region is extended by a buffer region, whose size depends on the dynam-
ics of the equation and, in the worst case, it can cover the whole grid, thus making
BFMM comparable to ITM. BFMM is not single-pass and computes the same solution
of ITM, provided the same scheme is employed.

Progressive fast marching method (PFMM) [4]. This method can be con-
sidered a localization of BFMM. It is indeed a local method, but not single-pass.
Some experimental results have shown that it can solve quite general problems, in-
cluding pursuit-evasion games with state and control constraints. PFMM has been
introduced for theoretical purposes only, since it is very slow (slower than ITM) and
thus not usable in practice. It proposes a completely new rule for accepting nodes in
CONS : in the FAR region, next to the CONS region, a layer of “tempting” values
is placed and progressively increased, acting as an external boundary condition. For
each tempting value, the solution is recomputed in CONS, recording the correspond-
ing variations. The first node in CONS which is not affected by this external layer
enters ACC. The “tempting” values can be considered as a guess on the outcome of
the future computation, and the new rule of acceptance allows one to find the node
in CONS that cannot be affected by it.

3. New tools and verification methods. In this section we consider four
additional fast-marching-like methods. The first two are acceleration techniques which
are expected to provide the same solution of ITM whenever they are applicable. The
last two, labeled dumb, are not new methods for solving HJ equations; rather they
are verification tools. They will be used to analyze features and limitations of the
methods already presented, with the aim of giving a comprehensive classification of
the equations that can be solved by local single-pass algorithms. Our ultimate goal
is to discuss the possibility that local single-pass methods for solving general HJ
equations may not exist. We give two preliminary definitions.

Definition 3.1 (safe node). Let xi ∈ CONS and let x∗
i,1, . . . , x

∗
i,p be the neigh-

boring interpolation points of xi achieving the minimum in (2.1) (p = 2 or p = 3,
depending on the employed SL scheme). Denote by λ∗

i,1, . . . , λ
∗
i,p the corresponding

interpolation weights, and define, for j = 1, . . . , p,

bi,j =

{
1 if x∗

i,j ∈ ACC,
0 otherwise.

The node xi is said to be safe if
∑p

j=1 λ
∗
i,jbi,j = 1.

The previous definition (see Figure 2 in the case p = 3), means that the compu-
tation at xi involves values of nodes in ACC only. By Remark 2.1, it is clear that the
notion of safeness makes sense only if the scheme in use can employ nodes in CONS.
Otherwise, all the nodes are safe by construction. Then we always allow the scheme to
use nodes in CONS. From a practical point of view, we remark that round-off errors
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(a) (b)

xi

x∗
i,1 x∗

i,2

x∗
i,3 xi

x∗
i,1 x∗

i,2

x∗
i,3

Fig. 2. Black nodes belong to ACC, gray nodes belong to CONS, and white nodes belong to
FAR. The arrow denotes the optimal velocity field f(xi, a

∗), and x∗
i,1, x

∗
i,2, x

∗
i,3 are the corresponding

neighboring interpolation points involved in the computation of T (xi). (a) xi is safe: its value
depends on nodes in ACC only. (b) xi is not safe: its value depends on nodes in ACC and CONS.

can prevent the safeness to be satisfied. Then we can relax this condition by requiring
that

∑p
j=1 λi,jbi,j ≥ 1− σ for some tolerance σ > 0.

Definition 3.2 (exact node). Let T exact be the solution computed by ITM,
setting tol equal to machine precision in (2.3). A node xi ∈ CONS is said to be exact
if its value T (xi) coincides with T exact(xi) up to machine precision.

The two new fast-marching-like tools are as follows.

Safe fast marching method (SFMM). This method is identical to FMM but
for the rule of acceptance: at each step, the safe node with minimal value in CONS
enters ACC. This method is local and single-pass.

Safe method (SM). This method is identical to FMM but for the rule of ac-
ceptance: at each step, whichever safe node in CONS enters ACC. This method is
local and single-pass.

Note that the existence of safe nodes in CONS is not in general guaranteed; then
SFMM and SM could stop prematurely before ACC covers the whole domain. In the
next section we will discuss when these method can be successfully employed.

The two verification methods are as follows.

Safe dumb method (SDM). This method is identical to FMM but for the rule
of acceptance: at each step, whichever safe and exact node in CONS enters ACC.

This method is not usable in practice, since it assumes that one already knows
the solution of ITM (or any other equivalent method). It clearly computes the same
solution of ITM and it is nonlocal, because it employs the information contained in the
final solution of ITM, defined everywhere. SDM is introduced for theoretical purposes
since it represents a limit for the applicability of any local single-pass method. Indeed,
if there are no nodes in CONS which are both safe and exact, we can conclude that
the numerical domain of dependence of every exact node in CONS includes nodes in
CONS. Since one cannot say if values at nodes in CONS are exact or not, we face a
loop dependency that cannot be resolved keeping the method local and single-pass.
As a consequence, if SDM fails, then any local single-pass method will fail.
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Dumb method (DM). This method is identical to FMM but for the rule of
acceptance: at each step, whichever exact node in CONS enters ACC. Similar con-
siderations made for SDM apply.

This method is also introduced for theoretical purposes. Unexpectedly, DM does
not always work. For some pathological dynamics and choice of the mesh, it can
happen that CONS does not contain any exact node, and the algorithm stops (see
section 5 for an example). In such cases it seems that enlarging CONS or breaking
the single-pass property is the only way to make the algorithm process all the nodes.

Remark 3.1. Every fast-marching-like method requires a selection rule to move
nodes from CONS to ACC. It is possible that more than one node in CONS satisfies
that rule at the same step of the algorithm. In this case we can either move one node
at random among the correct ones or move all the nodes at once. In the latter case
we often get an additional speed-up of the algorithm. For example, in FMM one can
find two or more nodes in CONS with the minimum value, while in SM one can find
two or more safe nodes. Investigating the difference of the two implementations is
beyond the scope of the paper, since we are mainly interested in the applicability of
the methods rather than in their performance. Then we always move in ACC one
node at a time.

4. Applicability of local single-pass methods. In this section we address the
problem of extending the range of applicability of local single-pass methods to general
HJ equations. To this end, we focus on three algorithms discussed in the previous
sections which are local and single-pass, namely, FMM, SFMM, and SM. In order
to point out their features and limitations, we will also employ the two verification
methods SDM and DM.

From the numerical point of view, it is meaningful to divide HJB equations into
two classes. Given a mesh, we have the following:
(ISO) Equations whose characteristic lines coincide or lie in the same simplex of

the gradient lines of their solutions. The prototype equation is the eikonal
isotropic (1.2).

(¬ISO) Equations for which there exists at least a grid node where the characteristic
line and the gradient of the solution do not lie in the same simplex.

FMM works for equations of type ISO and fails for equations of type ¬ISO (see [27]
for further details and explanations). Let us introduce two other classes for HJB
equations of type (1.5):
(REG) Equations with noncrossing (regular) characteristic lines. Characteristics

spread from the target T to the rest of the domain without intersecting.
(¬REG) Equations with crossing characteristic lines. Characteristics start from the

target T and then meet in finite time, creating shocks. As a result, the
solution T is not differentiable at shocks.

Let us comment on the applicability of the local single-pass methods by making use
of the classifications introduced above.

(1) SM solves REG. SM can be applied in the case REG, provided SDM works.
Let us denote by xi one safe node in CONS (xi exists because we assume SDM can
be applied). By definition of safeness, the value at xi depends only on values at nodes
in ACC, which can be assumed to be exact by induction. Then the exactness of the
value at xi is guaranteed by the property REG, which implies that no characteristics
will reach xi in the future from another direction, possibly changing its value. In
other words, the information passes through xi one and only one time. Then once xi

is reached by the region ACC, it is ready to enter ACC.
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(2) Is the minimum-value rule really needed?. Having in mind the FMM
(and its ancestor, Dijkstra’s algorithm [13]), one can be convinced that giving priority
to the smallest value among nodes in CONS is an essential request to making the
method work. On the contrary, by the above comment (1), we know that a method
like SM, which makes no distinction among nodes with respect to their values, works
in the case REG (both ISO and ¬ISO), provided SDM works. The choice of the
minimum value becomes essential only in the ¬REG case, where characteristics reach
some point from two or more different directions. We discuss this point in the next
comment.

(3) Handling shocks in the ¬REG case. Let us consider the ¬REG case,
and let x be a point belonging to a shock, i.e., where the solution is not differentiable.
By definition, the value T (x) is carried by two or more characteristic lines reaching x
at the same time. Similarly, let xi be a grid node Δx-close to the shock. In order to
mimic the continuous case, xi has to be approached by the ACC region approximately
at the same time from the directions corresponding to the characteristic lines. In this
case, the value T (xi) is correct (no matter which upwind direction is chosen) and, more
important, the characteristic information stops at xi and it is no longer propagated,
getting stuck by the ACC region. As a consequence, the shock is localized properly.

We remark that FMM is able to handle shocks when applied to ISO & ¬REG
equations. Indeed, thanks to the minimum-value rule, the evolving region CONS is,
every time, a good approximation of the level sets of the final solution, and shocks
are reached by the ACC region approximately at the same step of the algorithm.

(4) ¬ISO case requires CONS not to be an approximation of the level
sets of the solution. In order to solve correctly ¬ISO equations, CONS cannot be
at any time an approximation of the level sets of the solution. This is due to the fact
that the anisotropy shifts the characteristic directions, so that they no longer coincide
with the gradient directions. CONS, to be correctly enlarged, should not follow the
gradient direction, and then it no longer coincides with the level sets. In section 5 we
show an example for (1.3). See also [27] for a more detailed explanation.

(5) Can local single-pass methods solve general HJB equations?. Let us
consider the ¬ISO & ¬REG case. By comments (3)–(4), in order to solve ¬ISO equa-
tions, the CONS region cannot be an approximation of a level set of the solution. But,
doing so, a node xi close to a shock can be reached by ACC at different times. When
ACC reaches xi for the first time, it is impossible to detect the presence of the shock
by using only local information. Indeed, only a global view of the solution allows one
to know that another characteristic line will reach xi at a later time. As a conse-
quence, the algorithm continues the enlargement of CONS and ACC, thus making an
error that cannot be redressed in the future. Test 4 in section 5 shows an example
in which a shock crosses a region with strong anisotropy. In this situation, it seems
impossible to get the correct solution without the addition of nonlocal information
regarding the location of the shock, or going back to nodes in ACC at a later time.

Table 1 summarizes the comments above. Note that the word “no” in the table
should be read as “not in general,” since some exceptions are possible. It is plain that
SFMM is the most versatile of all the methods (whenever it can be applied), since it
joins advantages of both SM and FMM.

5. Numerical tests. The first aim of this section is comparing the two SL
schemes described in section 2.1, in order to understand which one has to be preferred
for practical implementations of the fast methods described above. In the following
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Table 1

A bird’s-eye view on the applicability of local single-pass methods.

ISO & REG ISO & ¬REG ¬ISO & REG ¬ISO & ¬REG

FMM yes yes no no

SM yes no yes (if SDM works) no

SFMM yes yes yes (if SDM works) no

we will denote the two schemes by SL-2p and SL-3p, respectively. The second aim is
confirming the theoretical observations in section 4 and investigating the theoretical
bounds given by SDM and DM in order to understand how close SFMM is to that
limit. This will give an idea about how much room is still present for further improve-
ments in the field of local single-pass methods. In all the tests the solution computed
by ITM on an 8012 grid (with tol = 10−16) will be referred to as the “exact” solution
and will be denoted by T exact.

In Table 2 we list five reference HJB equations, together with the class they
belong to. In all the cases we set d = 2, a = (a1, a2) ∈ B(0, 1), and T = {(0, 0)}.
Moreover, λ, μ, and ε denote generic positive parameters. Finally we definemλ,μ(a) =

(1 + (λa1 + μa2)
2)−

1
2 and denote by χS the characteristic function of a set S.

Table 2

Equations considered for numerical tests and the class they belong to.

Equation Dynamics Class

HJB-A f(x, y, a) = a ISO & REG

HJB-B f(x, y, a) = (1 + χ{x>1}) a ISO & ¬REG

HJB-C f(x, y, a) = mλ,μ(a) a ¬ISO & REG

HJB-D f(x, y, a) = (mλ,μ(a) + ε(x− 1)χ{x>1}) a ¬ISO & ¬REG

HJB-E f(x, y, a) = (1 + |x+ y|)mλ,μ(a) a ¬ISO & ¬REG

Test 0 (SL-2p vs. SL-3p). In this test we compare the schemes described in
section 2.1 by means of FSM in terms of accuracy and number of iterations. We
consider equations HJB-A and HJB-D (for ε = 0.02). Relative errors in norms L1

and L∞ with respect to the “exact” solution T exact are defined as

E1 :=
1

N

N∑
i=1

|T exact(xi)− T̂ (xi)|
|T exact(xi)|

and E∞ := max
i=1,...,N

|T exact(xi)− T̂ (xi)|
|T exact(xi)|

.

By “sweep” we mean four iterations executed in four different directions. When
reporting the number of sweeps of FSM, we include the final “stopping” sweep, needed
to realize that convergence is reached, namely, the stopping rule (2.3) is satisfied. We
choose tol = 10−16 (machine precision). Results are reported in Table 3.

We recall that, as discussed in section 2.2, the convergence of FSM is ensured in
1 sweep for equation HJB-A; see [30]. Nevertheless, real algorithms involving double
precision computations can require 2 sweeps to reach machine precision. The third
sweep reported in Table 3 is the “stopping” sweep.

It is rather clear that SL-3p overcomes SL-2p in terms of both accuracy and num-
ber of sweeps. This is likely due to the fact that SL-3p can propagate the characteristic
information of the HJB equation along diagonal directions easier than SL-2p.

Dealing instead with fast-marching-like methods, the two schemes show a differ-
ence in the order of acceptance of the nodes in CONS. In particular, we note that
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Table 3

Test 0: SL-2p and SL-3p schemes comparison.

Equation Grid Scheme E∞ E1 # sweeps

HJB-A 1012 SL-2p 0.130 0.016 3

HJB-A 1012 SL-3p 0.079 0.009 3

HJB-A 2012 SL-2p 0.094 0.008 3

HJB-A 2012 SL-3p 0.058 0.004 3

HJB-A 4012 SL-2p 0.050 0.003 3

HJB-A 4012 SL-3p 0.030 0.002 3

HJB-D 1012 SL-2p 0.888 0.053 8

HJB-D 1012 SL-3p 0.635 0.029 4

HJB-D 2012 SL-2p 0.535 0.027 7

HJB-D 2012 SL-3p 0.405 0.014 4

HJB-D 4012 SL-2p 0.245 0.010 7

HJB-D 4012 SL-3p 0.189 0.005 3

Table 4

Test 1: ISO & REG.

Grid Method E∞ E1

1012 FSM 0.079 0.009

1012 FMM 0.079 0.009

1012 SM 0.079 0.009

2012 FSM 0.057 0.004

2012 FMM 0.057 0.004

2012 SM 0.057 0.004

4012 FSM 0.029 0.001

4012 FMM 0.029 0.001

4012 SM 0.029 0.001

algorithms based on SL-3p provide a larger number of safe nodes in CONS, thus
extending the applicability of SM, SFMM, and SDM.

From now on, only the scheme SL-3p will be employed for all the following tests.

Test 1 (ISO & REG). In this test we compare FSM, FMM, and SM against
HJB-A. Errors with respect to the “exact” solution T exact are reported in Table 4.
The three methods lead to the same error because they compute exactly the same
solution. A fortiori, SFMM does as well. This confirms that SM can be applied in
ISO & REG cases and that picking the minimum value in CONS, as the acceptance
rule, is not strictly needed here to compute the correct solution.

Test 2 (ISO & ¬REG). In this test we compare FSM, FMM, SFMM, and
SM against HJB-B. Errors with respect to the “exact” solution T exact are reported
in Table 5. FSM, FMM, and SFMM lead to the same error because they compute
exactly the same solution. Conversely, SM cannot be used here, since it is not able
to properly locate the shocks (see Figure 3).

Test 3 (¬ISO & REG). In this test we compare FSM, FMM, and SM against
HJB-C. Errors with respect to the “exact” solution T exact are reported in Table 6.
FSM and SM lead to the same error because they compute exactly the same solution.
A fortiori, SFMM does as well. Conversely, FMM fails (although it is quite robust),
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Table 5

Test 2: ISO & ¬REG.

Grid Method E∞ E1

1012 FSM 0.079 0.011

1012 FMM 0.079 0.011

1012 SFMM 0.079 0.011

1012 SM 0.583 0.019

2012 FSM 0.057 0.006

2012 FMM 0.057 0.006

2012 SFMM 0.057 0.006

2012 SM 0.606 0.014

4012 FSM 0.029 0.002

4012 FMM 0.029 0.002

4012 SFMM 0.029 0.002

4012 SM 0.603 0.011

FSM SM

Fig. 3. Test 2: level sets of the solutions computed by FSM and SM.

Table 6

Test 3: ¬ISO & REG.

Grid Method E∞ E1

1012 FSM 0.635 0.029

1012 FMM 0.635 0.058

1012 SM 0.635 0.029

2012 FSM 0.404 0.014

2012 FMM 0.408 0.049

2012 SM 0.404 0.014

4012 FSM 0.189 0.005

4012 FMM 0.290 0.044

4012 SM 0.189 0.005

since it does not compute the same solution as FSM. This comes from the fact that
FMM is not able to deal with substantial anisotropies, as discussed in section 2.2 (see
also [27] for more details).
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Fig. 4. Test 4: optimal vector field f∗
FSM computed by FSM (zoom around the origin).

Table 7

Test 4: ¬ISO & ¬REG.

Grid/method FSM FMM SFMM SM DM SDM

1012 0.114 0.170 0.115 0.124 0.114 0.114

2012 0.061 0.132 0.062 0.072 0.061 0.061

4012 0.024 0.109 0.025 0.036 0.024 0.024

Test 4 (¬ISO & ¬REG). In this test we compare FSM, FMM, SFMM, SM,
DM, and SDM against HJB-E (for λ = 6 and μ = 5). Figure 4 shows some optimal
directions (characteristic lines) computed by means of FSM. Both the strong inho-
mogeneity (characteristic lines hardly bend in the I and III quadrants) and the shock
(the cubic-like curve in the II and IV quadrants) are visible. Table 7 reports the error
E1 with respect to the “exact” solution T exact. In this case only “dumb” methods
(DM and SDM) are able to compute the same solution of FSM, although SFMM is
very close to FSM. The differences among the methods are much more evident looking
at the level sets of the corresponding solutions, as reported in Figure 5. FSM is able
to respect the anisotropy; indeed the level sets of its solution around the origin are
ellipses, as expected. Moreover, it properly catches the shock. FMM tries catching
the shock, but fails to respect the anisotropy. SM tries respecting the anisotropy, but
fails to catch the shock. Finally, SFMM is a kind of mix between FMM and SM.

Test 5 (¬ISO & ¬REG: easy case). In this test we compare FSM and SFMM
against HJB-E (for λ = 5 and μ = 5). Due to the fact that λ = μ, the shock
has a particular symmetry with respect to the axes. This symmetry makes SFMM
work, since CONS “luckily” reaches the shock at the same time from both sides (see
Figure 6). This example shows that local single-pass schemes can solve ¬ISO & ¬REG
equations in some special cases.

Test 6 (¬ISO & ¬REG: hard case). In this test we show that even SDM and
DM can fail to compute the correct solution; i.e., it can happen that either there is no
safe node in CONS and/or there is no exact node in CONS. Therefore, the methods
stop abruptly before ACC covers the whole domain. We consider again the equation
HJB-E (for λ = 10 and μ = 5). This case is even more pathological than that depicted
in Figure 4: characteristic lines bend too much compared to the mesh size; i.e., they
can significantly change direction within a single cell. We caught the precise moment
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FSM FMM

SM SFMM

Fig. 5. Test 4: level sets of the solutions computed by FSM, FMM, SM, and SFMM.

FSM SFMM

Fig. 6. Test 5: level sets of the solutions computed by FSM and SFMM.

in which both SDM and DM stop working, due to the lack of safe and exact nodes
in CONS. In Figure 7 the black central node is the target, gray nodes represent the
ACC region, while white nodes are in CONS. For each node in CONS we plot the
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Fig. 7. Test 6: SDM fails because no safe nodes are found in CONS. Note the loop dependency
following the optimal vector field f∗

SDM.

Fig. 8. Test 6: DM fails because no exact nodes are found in CONS. Exact information flows
back from the FAR region, breaking locality and the single-pass property.

optimal vector field f∗
SDM computed by means of the current solution of SDM. It is

evident that every node in CONS depends on other nodes in CONS, so that a loop
is created and no safe node is present.

In Figure 8 we show a detail of Figure 7 and plot the optimal vector fields f∗
DM

(small arrows) and f∗
ITM (large arrows), computed by means of the solution of DM

and ITM, respectively (if the two optimal vector fields coincide, only one is plotted).
It can be seen that f∗

ITM points either toward the FAR region or toward nodes
in CONS, whose f∗

ITM also points toward the FAR region (recursively). This means
that the values at nodes in ACC and CONS are not enough to compute exact values
in CONS, even if we perform an additional stabilization by iterating the scheme on
CONS up to convergence. We infer that we are facing a large loop in the numerical
domain of dependence of the nodes in CONS, which includes also nodes currently
in FAR. This particular behavior of the characteristic flow is also confirmed by the
fact that ITM requires in this case a huge number of iterations to reach convergence
compared to that of the previous tests. The thickness of CONS must be increased
(as in BFMM) in order to resolve the dependency.
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6. Conclusions. The above tests and considerations allow us to sketch some
final comments and suggest new directions for a future analysis of acceleration meth-
ods. First, we want to stress that all the considerations debated in the paper have a
theoretical value. Indeed, from the practical point of view, it is not always possible
to know in advance if an equation falls in the class ISO or REG, and thus it is not
evident how to choose a method which is able to solve it. Only ITM and FSM can be
safely used if no a priori knowledge of the solution is available.

1. SM is one of the simplest methods one can imagine; nevertheless it is able
to solve a large class of equations, including the homogeneous anisotropic eikonal
equation (1.3). Therefore, methods such as OUM and PFMM are in some sense
“more complicated” than necessary. In our opinion, the reason the minimum-value
rule has been given a crucial role so far is simply that the Dijkstra method uses it.
Nevertheless, on graphs, the distinction between REG and ¬REG is not visible, nor is
the condition of safeness. The importance of the latter condition was missed because
the different possibilities in which CONS nodes can be used have been completely
underestimated (see Remark 2.1). In this respect, we point out that SM is very
similar to CFMM since the acceptance rule used in CFMM actually coincides with
that of SM (see Definition 3.1). In [10] it was already noted that, running CFMM,
CONS does not coincide with the level set of the solution, but this fact was not as
fully exploited as in this paper.

2. The reliability of the SFMM to solve ¬ISO & ¬REG equations cannot be
known in advance. Even if the method computes a solution, i.e., ACC covers the
whole grid, we do not know if that solution is correct or not. On the contrary, if the
method stops, due to the lack of safe nodes in CONS, the user can eventually conclude
that this method cannot be used for the equation under consideration.

3. Our experience suggests that there is not much room between SFMM and
SDM, meaning that it is quite difficult to define precisely a class of equations that
can be solved by SDM and not by SFMM. Since we have seen that SDM is a sort
of limit of applicability for local single-pass schemes, we conclude that it is relatively
fruitless to investigate new local single-pass schemes. In order to solve more general
equations one should look for new methods based on larger and dynamic stencils that
will likely produce more complicated implementations.

Acknowledgments. The authors are grateful to Alexander Vladimirsky and
Michael Breuß for the interesting and motivating discussions they had with them
during the preparation of this paper.
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