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Abstract

We study the moments of orthogonal polynomial sequences (OPS) arising from
tridiagonal matrices. We obtain combinatorial information about the sequence of mo-
ments of some OPS in terms of Motzkin and Dyck paths, and also in terms of the
binomial transform. We then introduce an equivalence relation on the set of Dyck
paths and some operations on them. We determine a formula for the cardinality of
those equivalence classes, and use this information to obtain a combinatorial formula
for the number of Dyck and Motzkin paths of a fixed length.

1 Introduction and preliminaries

In the papers [2] and [3] the first author studied certain combinatorial properties of orthog-
onal polynomial sequences arising from special matrices. Savo [10] used some results of [2].
Here we systematically study the sequence of moments arising from a generalization of the
matrices studied there.

We use a combinatorial interpretation of the action of the binomial transform on the
sequence of moments of orthogonal polynomials arising from a tridiagonal matrix to obtain
relations that tie together different well-known sequences of integers.

We also obtain a recursive formula for the moments.
The object of our study is also the set of Dyck paths. We introduce an equivalence

relation on the set of Dyck paths, we compute the cardinality of the equivalence classes and
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use this information to give a combinatorial formula for the number of Dyck and Motzkin
paths of a fixed length.

We recall the definition of orthogonal polynomial sequence (OPS) [5]. Let (µn)
∞
µ=0 be

a sequence of complex numbers and L the complex valued linear functional defined on the
vector space of polynomials C[x] by

L(xn) = µn, n = 0, 1, 2, . . . (1)

The functional L is called the moment functional, (µn) the moment sequence, and the num-
ber µn the moment of order n. A sequence (Pn(x))

∞
n=0 is called an orthogonal polynomial

sequence with respect to L if the following conditions hold for all nonnegative integers m

and n:

1. Pn(x) is a polynomial of degree n,

2. L(Pm(x)Pn(x)) = 0 for m 6= n,

3. L(P 2
n(x)) 6= 0.

The following is a well known result [5]:

Theorem 1. The sequence of monic polynomials (Pn(x))
∞
n=0 is an orthogonal polynomial

sequence if and only if there exist two sequences (hn)
∞
n=1 and (un)

∞
n=1 such that the following

recurrence holds:

Pn(x) = (x− hn)Pn−1(x)− unPn−2(x), n = 1, 2, 3, . . .

P−1(x) = 0, P0(x) = 1.
(2)

We will be interested in the moment sequence. One way to compute the moment sequence
of a monic OPS is the following, cf. [12, 11]. Consider the infinite matrix A whose n-th row is
formed by taking the coefficients of the n-th (monic) polynomial of the OPS so that the entry
ank is the coefficient of xk of the polynomial. Since ann = 1, this is an infinite matrix with 1
on the main diagonal. We then consider the sequence of the leading principal minors, namely
the submatrices obtained by taking the first n rows and the first n columns of this infinite
matrix. These are all invertible matrices. Consider the sequence of the inverse matrices:
these are the leading principal minors of the infinite matrix A−1. The sequence of the first
column in A−1 is the required moment sequence.

2 A recursive formula for moments

Definition 2. A Motzkin path of length n is a path on the integral lattice Z × Z starting
from (0, 0) and ending in (k, 0) using n steps according to the vectors (1, 1), (1, 0), (1,−1)
and never going below the x-axis, [1].
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Definition 3. A Motzkin path with no (1, 0) steps is called a Dyck path, [6].

There is a close relationship between the moment of order n and the number of Motzkin
paths suitably weighted (or “colored”). We will examine some special cases and draw some
interesting conclusions.

Given three sequences

(h0, h1, h2, . . .), (u0, u1, u2, . . .), (d0, d1, d2, . . .)

we may consider colored Motzkin paths where, for any index i, hi is the number of colors of
the horizontal step at level i, ui is the number of colors of the up step starting from level i,
di is the number of colors of the down step arriving at level i. For example,

h0 u0

h1 u1

h2

d1 h1

d0 h0 u0

h1

d0✡✡
✡✡ ❏❏

❏❏ ✡✡ ❏❏

On the other hand one may consider the infinite tridiagonal matrix









h0 u0 0 0 0 0 . . .

d0 h1 u1 0 0 0 . . .

0 d1 h2 u2 0 0 . . .

0 0 d2 h3 u3 0 . . .

. . . . . . . . . . . . . . . . . . . . .









(3)

and the sequence of the leading principal minors of order n = 1, 2, 3, . . .. For each such minor
we may compute the monic characteristic polynomial. It is well known that the sequence
of polynomials thus obtained is an OPS. Notice that the same sequence of polynomials is
obtained if we consider the matrix









h0 u0d0 0 0 0 0 . . .

1 h1 u1d1 0 0 0 . . .

0 1 h2 u2d2 0 0 . . .

0 0 1 h3 u3d3 0 . . .

. . . . . . . . . . . . . . . . . . . . .









(4)

hence in this section we may assume, without loss of generality, that di = 1 for all i.
Let µn be the moments of this sequence of orthogonal polynomials. As a consequence of

a theorem of Flajolet [7] (also see [12] and [11]), we have

Theorem 4. The element µn of the moment sequence (µ0, µ1, µ2, . . .) determined by the
matrix (3) counts the number of Motzkin paths of length n colored with hi, ui, di, i = 0, 1, 2, . . .
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We want to study the special case where hi = h, ui = u are constant sequences:

T =









h u 0 0 0 0 . . .

1 h u 0 0 0 . . .

0 1 h u 0 0 . . .

0 0 1 h u 0 . . .

. . . . . . . . . . . . . . . . . . . . .









(5)

A formula for the moment sequence in this case is well known:

µn =
∑

i≥0

Ci

(
n

2i

)

hn−2iui (6)

and Ci =
1

i+1

(
2i
i

)
is the i-th term of the Catalan sequence. We wish to obtain a recurrence

for this sequence.
We shall need the following general property of matrices:

Proposition 5. Let A = (aij), i, j = 0, . . . , n be a unipotent (n+1)×(n+1) lower triangular
matrix, and let B be the matrix obtained by erasing the first row and the last column of A:

B =










a10 1 0 · · · 0
a20 a21 1 · · · 0

· · · · · · · · ·
. . . · · ·

an−1,0 an−1,1 an−1,2 · · · 1
an0 an1 an2 · · · an,n−1










Let αij denote the cofactor in A of the element aij, and set P0 = 1, Pi, 1 ≤ i ≤ n − 1,
the determinant of the leading principal minor of B of order i. Then α00 = 1 = P0, α01 =
−P1, α02 = P2, α03 = −P3, . . . , α0n = (−1)nPn. Moreover,

detB = Pn =
n−1∑

i=0

ani(−1)n+i−1Pi (7)

Lemma 6. Consider the matrix A = (ast) formed by the coefficients of the characteristic
polynomials

pn(x) = an0 + an1x+ · · ·+ an,n−1x
n−1 + xn (8)

of the leading principal minor of order n of the tridiagonal matrix (5). Its entries are, for
s, t ∈ {0, 1, 2, . . .},

ast =
s∑

j=0

(−1)s−t−j

(
s− j

j + t

)(
j + t

t

)

hs−t−2juj (9)
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Proof. To prove this formula we recall that the characteristic polynomials form an OPS and
therefore satisfy the recurrence (2) with hn = h and un = u, for all n. Hence we may proceed
by induction as follows.

Define
pn(x) = an0 + an1x+ · · ·+ an,n−1x

n−1 + xn (10)

to be the monic characteristic polynomial of the n× n tridiagonal matrix (5). It is straight-
forward, using (2), to check that the coefficients of pn(x) are related to the coefficients of
pn−1(x) and pn−2(x) as follows:

an0 = −uan−2,0 − han−1,0

an1 = −uan−2,1 + an−1,0 − han−1,1

an2 = −uan−2,2 + an−1,1 − han−1,2

...

an,n−2 = −uan−2,n−2 + an−1,n−3 − han−1,n−2

an,n−1 = an−1,n−2 − h

ann = 1

(11)

Now assume that (9) holds for s up to n− 1.
For t = 0 we have

an,0 = −uan−2,0 − han−1,0

= −u
∑

j≥0

(−1)n−2−j

(
n− 2− j

j

)

hn−2−2juj − h
∑

j≥0

(−1)n−1−j

(
n− 1− j

j

)

hn−1−2juj

=
∑

j≥1

(−1)n−j

(
n− 1− j

j − 1

)

hn−2juj +
∑

j≥0

(−1)n−j

(
n− 1− j

j

)

hn−2juj

= (−1)n
(
n

0

)

hn +
∑

j≥1

(−1)n−j

(
n− j

j

)

hn−2juj

=
∑

j≥0

(−1)n−j

(
n− j

j

)

hn−2juj

(12)

For 1 ≤ t ≤ n− 2 we have

an,t = −uan−2,t + an−1,t−1 − han−1,t

= −u
∑

j≥0

(−1)n−2−t−j

(
n− 2− j

j + t

)(
j + t

t

)

hn−2−t−2juj

+
∑

j≥0

(−1)n−t−j

(
n− 1− j

j + t− 1

)(
j + t− 1

t− 1

)

hn−t−2juj

− h
∑

j≥0

(−1)n−1−t−j

(
n− 1− j

j + t

)(
j + t

t

)

hn−1−t−2juj
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=
∑

j≥1

(−1)n−t−j

(
n− 1− j

j + t− 1

)(
j + t− 1

t

)

hn−t−2juj

+
∑

j≥0

(−1)n−t−j

(
n− 1− j

j + t− 1

)(
j + t− 1

t− 1

)

hn−t−2juj

+
∑

j≥0

(−1)n−t−j

(
n− 1− j

j + t

)(
j + t

t

)

hn−t−2juj

The terms for j ≥ 1 in the first two summations can be added using the Stiefel formula

=
∑

j≥1

(−1)n−t−j

(
n− 1− j

j + t− 1

)(
j + t

t

)

hn−t−2juj

+
∑

j≥1

(−1)n−t−j

(
n− 1− j

j + t

)(
j + t

t

)

hn−t−2juj

+ (−1)n−t

(
n− 1

t− 1

)

hn−t + (−1)n−t

(
n− 1

t

)

hn−t

and applying Stiefel’s formula again we get

= (−1)n−t

(
n

t

)

hn−t +
∑

j≥1

(−1)n−t−j

(
n− j

j + t

)(
j + t

t

)

hn−t−2juj

=
∑

j≥0

(−1)n−t−j

(
n− j

j + t

)(
j + t

t

)

hn−t−2juj

as required.
Finally, case t = n− 1:

an,n−1 = −h+ an−1,n−2

= −h+
∑

j≥0

(−1)1−j

(
n− 1− j

n+ j − 2

)(
n+ j − 2

n− 2

)

h1−2juj (13)

In the summation the only nonzero term is the one with j = 0 and we have

−h−

(
n− 1

n− 2

)

h = −nh (14)

as required.

Proposition 7. The sequence of moments (µn) corresponding to the matrix (5) satisfies the
following recursive formula: µ0 = 1 and, for n ≥ 1,

µn =
n−1∑

i=0

ani(−1)n+iµi (15)
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where

ani =
n∑

j=0

(−1)n−i−j

(
n− j

j + i

)(
j + i

i

)

hn−i−2juj

Proof. Consider the matrix A formed by the coefficients of the characteristic polynomials of
the leading principal minors of the tridiagonal matrix (5). Lemma 6 implies that its entries
are, for s, t ∈ {0, 1, 2, . . .},

ast =
s∑

j=0

(−1)s−t−j

(
s− j

j + t

)(
j + t

t

)

hs−t−2juj.

The moments are computed by taking the first column of the inverse matrix of A. When
computing an inverse matrix one must compute the cofactors. We are interested, in partic-
ular, in the cofactors of the first row (those that give the first column of the inverse matrix).
Since A is lower triangular with 1 on the main diagonal we may use Proposition 5. We then
have

µn = α0n,

and by (7) we have the conclusion.

3 The binomial transform

We recall the definition of binomial transform [8]:

Definition 8. Given a sequence of integers (an)n≥0 one defines its binomial transform to be
the sequence (sn) = T ((an)) defined by

sn =
n∑

h=0

(
n

h

)

ah

Example 9. If an = 1 for all n, then sn = 2n.

The operator T is invertible. The inverse binomial transform is given by the formula

an =
n∑

h=0

(−1)n−h

(
n

h

)

sh

The following nice result is well known and easy to prove:

Proposition 10. The binomial transform of the moment sequence of (3) is the moment
sequence of 








h0 + 1 u0 0 0 . . .

d0 h1 + 1 u1 0 . . .

0 d1 h2 + 1 u2 . . .

0 0 d2 h3 + 1 . . .
...

...
...

...
. . .










(16)
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Proof. To compute sn, we choose k ≤ n horizontal steps to be colored with the new color.
This can be done in

(
n
k

)
ways. Once we remove these k horizontal steps, we get Motzkin

paths with the old colors. There are an−k such paths. Therefore

sn =
n∑

k=0

(
n

k

)

an−k =
n∑

k=0

(
n

n− k

)

ak =
n∑

k=0

(
n

k

)

ak

One may use this theorem to obtain a relation between different integer sequences.
Consider all the sequences of moments that can be obtained starting from two parameters

(h, u) as follows:
µ : R× R → R

N

defined by associating with every pair of real numbers (h, u) the sequence of moments of the
tridiagonal matrices (5), hence

(h, u) 7→ µ[h, u] = (µn = µn[h, u]) (17)

where µn =
∑

i≥0 Ci

(
n
2i

)
hn−2iui and Ci =

1
i+1

(
2i
i

)
is the i-th term of the Catalan sequence

(cf. (6)).
Define the multiplication of a scalar k ∈ R and a sequence (µn)n≥0 to mean the sequence

(k
n
2 µn)n≥0.

Proposition 11. For h, h′ ∈ N, u, u′ ∈ R+, the following formula holds

T h′

(
u′

u

)

T −hµ[h, u] = µ[h′, u′] (18)

Proof. By applying the inverse binomial transform T −1 h times to the sequence µ[h, u] one
gets the sequence µ[0, u] which counts Dyck paths. Then, by multiplying this sequence by
u′

u
, we suitably color the up steps, thus obtaining µ[0, u′]. Finally, by applying T h′

we obtain
the sequence µ[h′, u′].

This formula allows one to relate the sequence of numbers of Motzkin paths of length n

with weights h, u with the analogous sequence with weights h′, u′. For example, the sequence
µ[2, 2] = (1, 2, 6, 20, 72, 272, . . .) counts Motzkin paths where the up and horizontal steps have
two fixed colors. Computing T −2 we get the sequence µ[0, 2] = (1, 0, 2, 0, 8, 0, 40, 0, . . .) which
counts Dyck paths with two-colored up step. Divide the sequence by 2 thus obtaining the
sequence counting Dyck paths with a single color. Now multiply by 3 and finally apply
T . The result is the sequence T

(
3
2

)
T −2µ[2, 2] = µ[1, 3] = (1, 1, 4, 10, 37, 121, . . .) counting
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Motzkin paths whose up step has 3 colors and the horizontal steps a single color. Explicitly
we have the following formula

µn[1, 3] =
n∑

k=0

(
n

k

)(
3

2

) k
2

k∑

j=0

(−1)k−j

(
k

j

) j
∑

i=0

(−1)j−i

(
j

i

)

µi[2, 2] (19)

or

µn[1, 3] =
n∑

k=0

k∑

j=0

j
∑

i=0

(
n

k

)(
k

j

)(
j

i

)(
3

2

) k
2

(−1)k−iµi[2, 2] (20)

Remark 12. µ[1, 2] is the sequence A025235 in [9]. This is presented there, for example, with
the formula

n∑

h=0

(
n

h

)

2h/2Ch/2
1 + (−1)h

2
, (21)

where Cn is the n-th Catalan number. From our point of view, this formula is an example
of our proposition relating µ[1, 2] and µ[0, 2]. This last one is the sequence A151374 in [9].

4 Frames of Dyck paths

Here we want to study the structure of the set of Dyck paths. This will also allow us to give
a combinatorial formula that counts Dyck and Motzkin paths.

First, we wish to classify Dyck paths according to the number of feet at each level,
defining a foot at level k to be a point where the path touches level k. The well known
formula for the Catalan numbers:

C(n) =
n−1∑

k=0

C(n− 1− k)C(k). (22)

suggests that any length 2n Dyck path can be obtained by a combination of two operations.
The first operation consists in adding to each path of length 2(n− 1− k) an up step at the
beginning and a down step at the end. We call this operation lifting. The second operation
consists in gluing at the end of it any path of length 2k, k = 0, . . . , n− 1.

Next, we observe that every Dyck path is obtained by a sequence of up and down steps,
indicated by U and D, respectively, in such a way that the total number of U’s is equal to
the number of D’s and that at each step the number of U’s be not less than the number of
D’s. Let’s associate with each U the number 1 and to each D the number −1. Starting from
0, let’s sum at each step the numbers 1 and −1 up to that point. For a length 2n path,
the associated sequence thus obtained starts and ends with 0 and the maximum number
appearing is at most n. For each integer i ≥ 0, let p(i) denote the number of times that i
appears in the sequence; we shall say that the path is p(i)-ped at the level i. As an example,
the length 14 path UUDUUDDUUDUDDD has the associated sequence 012123212323210
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which is simply the sequence of the y coordinate of the points touched by the path. The
path is therefore biped at level 0, quadruped at level 1, 6-ped at level 2, 3-ped at level 3,
0-ped at higher levels. We may sometimes identify a path with its associated sequence.

For our purposes, we need to know the number of Dyck paths that have a fixed “frame”
(i0, i1, . . .), according to the definition we are about to give.

Given a Dyck path D, with ik feet at level k, k = 0, 1, . . ., we call the sequence (i0, i1, . . .),
which is zero from a certain index on, the frame of D. In other words, the sequence tells us
how many feet there are at each level. This sequence is zero from a certain index on, since,
if the length of D is 2n, one has in+j = 0, for j ≥ 1, namely, the maximum reachable level
for a Dyck path of length 2n is n.

Given an eventually zero sequence I = (i0, i1, . . .), we shall call the integer −1 +
∑∞

k=0 ik
the length of I .

We shall say that an eventually zero sequence is admissible if it is the frame of some Dyck
path. For an admissible frame I, its length is the same as the length of a path with that
frame and is necessarily even.

For example, frames of Dyck paths of length 0,2,4 are, respectively:

• (1, 0, 0, . . .),

• (2, 1, 0, . . .),

• (2, 2, 1, 0, . . .), (3, 2, 0, . . .).

Notice that two distinct paths with the same length may have the same frame. For
example, the two paths

have the same frame (3, 3, 1, 0, 0, . . .).

Obviously, “having the same frame” is an equivalence relation on the set of Dyck paths.
Notice that lifting two equivalent paths we still get two equivalent paths. This is true also
if we glue together two paths: if pi is equivalent to qi, i = 1, 2, then gluing p1 and p2 gives
a path that is equivalent to gluing q1 and q2. This observation allows us to speak of lifting
a frame and gluing two frames.

It is easy to construct recursively the frames associated with Dyck paths of various
lengths, using the same recursive law as for the paths.

Lifting the frame (i0, i1, i2, . . .) one gets the frame (2, i0, i1, i2, . . .). While gluing two
frames (j0, j1, j2, . . .) and (i0, i1, i2, . . .), we get a frame (i0 + j0 − 1, i1 + j1, i2 + j2, . . .).

For the lifting and gluing operations we shall use the following symbols:

s(i0, i1, i2, . . .) = (2, i0, i1, i2, . . .),

(i0, i1, i2, . . .) ∧ (j0, j1, j2, . . .) = (i0 + j0 − 1, i1 + j1, i2 + j2, . . .)

10



It is not difficult to check, for example, that the frames with length 4 can be obtained in
this fashion from those with shorter lengths.

The gluing operation on paths is associative but not commutative: in general, u ∧ v 6=
v∧u. The same operation on frames however is commutative, namely, u∧v and v∧u have
the same frame.

Actually, any frame can be obtained by the combination of two elementary operations:
lifting of frame (i0, i1, i2, . . .), which turns (i0, i1, i2, . . .) into s(i0, i1, i2, . . .) = (2, i0, i1, i2, . . .)
and the gluing (i0, i1, i2, . . .) to the frame of length 2, which we call extension, that turns
(i0, i1, i2, . . .) into a(i0, i1, i2, . . .) = (i0, i1, i2, . . .)∧(2, 1, 0, . . .) = (i0+1, i1+1, i2, . . .). Indeed,
we have:

Theorem 13. Every frame can be obtained by a combination of a lifting and a suitable
number of extensions.

Proof. Consider any path U · · ·D that is not a lifting, i.e., with a frame starting with i0 ≥ 3.
It follows that its sequence is of the form 01 · · · 101 · · · 10, with at least one subsequence 101
inside. The first triple 101 inside comes from an ordered pair DU. If we eliminate such a
pair inside and add instead the pair UD at the end of the frame, we get a new path with
the same frame as the previous one. Iterating such a procedure we get a Dyck path with the
same frame as the starting path obtained by gluing a lifting of a suitable path and a finite
number, possibly zero, of length 2 paths.

Theorem 14. The number of frames of length 2n, with n > 0, is 2n−1.

Proof. The frames of length 2n are obtained from those of length 2(n − 1) by constructing
for each of them, say I, the lifting s(I) or the extension a(I). The frame s(I) is different
from a(I) if n > 1. It follows that the number of frames with length 2n is twice the number
of the frames of length 2(n− 1).

Natural generalizations of the extension a and lifting s operations can be defined on
any sequence of integers eventually zero. The operation a is a bijection on the set of such
sequences. Its inverse operation b is defined by:

b(i0, i1, i2, . . .) = (i0 − 1, i1 − 1, i2, . . .).

The operation s is injective and can be inverted on its image, via an operation r defined by:

r(2, i1, i2, . . .) = (i1, i2, . . .).

It is easy to see if a given sequence, which is eventually zero, is admissible. Indeed, we
can, starting from it, trace back the elementary steps that generated it from the basic frame
(1, 0, 0, . . .). The rules can be summed up as follows: every time there is a 2 we erase it by
using r, otherwise we subtract 1 from the first two elements, by applying b.
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Example 15. Consider the sequence (3, 6, 6, 3, 1, 0, . . .). We wish to see if it is admissible
for a path of length 18 = 3+6+6+3+1−1. Tracing backwards we have : (2, 5, 6, 3, 1, 0, . . .),
(5, 6, 3, 1, 0, . . .), (4, 5, 3, 1, 0, . . .), (3, 4, 3, 1, 0, . . .), (2, 3, 3, 1, 0, . . .), (3, 3, 1, 0, . . .), (2, 2, 1, 0, . . .),
(2, 1, 0, . . .), finally (1, 0, . . .). So the given sequence is admissible.

Example 16. If we take (4, 5, 2, 3, 1, 0, . . .), and we trace backwards, we get:

(3, 4, 2, 3, 1, 0, . . .), (2, 3, 2, 3, 1, 0, . . .), (3, 2, 3, 1, 0, . . .), (2, 1, 3, 1, 0, . . .), (1, 3, 1, 0, . . .),

and finally (0, 2, 1, 0, . . .), which is clearly not admissible since there are no Dyck paths of
length 2 without feet at the zero level.

In the preceding arguments, we have implicitly used the following two lemmas whose
proof is straightforward:

Lemma 17. Given an eventually zero integer sequence I, with i0 = 2, r(I) is admissible if
and only if I is.

Lemma 18. Given an eventually zero integer sequence I, with i0 6= 2, b(I) is admissible if
and only if I is.

Given an eventually zero integer sequence (i0, i1, i2, . . .), let if denote the last nonzero
element and call f the degree of the frame.

Theorem 19. An eventually zero sequence of nonnegative integers

I = (i0, i1, . . . , if , 0, . . .),

with length 2n, is admissible if and only if the following conditions are satisfied:

• i0 = 1, if f = 0 and i0 ≥ 2 if f > 0;

• i1 − i0 ≥ 0 provided f > 1;

• i2 − i1 + i0 ≥ 2;

• i3 − i2 + i1 − i0 ≥ 0;

• i4 − i3 + i2 − i1 + i0 ≥ 2;

• · · ·

• if − if−1 + if−2 + · · · = −1 when f is odd;

• if − if−1 + if−2 + · · · = 1 when f is even.

Proof. The proof uses induction and it is a straightforward, though somewhat lengthy, com-
putation, cf. [4].
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The following proposition is an immediate consequence of the previous theorem.

Proposition 20. If a frame I = (i0, i1, i2, . . . , if , . . .) with length 2n is admissible, then:

1. if−1 > if ;

2. i0 = i1 + 1 ⇐⇒ i1 = if ;

3. 2 ≤ ij ≤ ij−1 + ij+1 − 2 (0 < j < f − 1)

5 Cardinality of a frame

Recall the two operations defined on the set of Dyck paths:

• the lifting s(u) of a path u;

• the gluing u ∧ v of two paths u and v.

With these two operations one may construct any Dyck path starting from shorter Dyck
paths.

Therefore, every Dyck path may be expressed as

sj1(x1) ∧ sj2(x2) ∧ · · · ∧ sjt(xt)

where each xi is again expressible in the same way, with the condition that after a finite
number of steps one arrives at expressions of the form

sk1(0) ∧ sk2(0) ∧ · · · ∧ skr(0),

where 0 is the unique Dyck path of length 0. For example, let’s consider the path

UUDUUDDDUDUUUDUDDDUUDD

with length 22:

The corresponding sequence is

01212321010123232101210

and it may be expressed as

s(x1) ∧ s(x2) ∧ s(x3) ∧ s(x4),

13



where s(x1) = 012123210, s(x2) = 010, s(x3) = 012323210, s(x4) = 01210, with x1 =
0101210, x2 = 0, x3 = 0121210, x4 = 010. One has therefore:

x1 = s(y1) ∧ s(y2), x3 = s(y3), x4 = s(0), with y1 = 0, y2 = 010, y3 = 01010 and so
y2 = s(0), y3 = s(z1) ∧ s(z2), with z1 = 0, z2 = 0.

Finally, the assigned path can be expressed as

s(s(0) ∧ s2(0)) ∧ s(0) ∧ s2(s(0) ∧ s(0)) ∧ s2(0).

Since a frame is an eventually zero integer sequence, we may think of it as a polynomial.
The constant polynomial 1 corresponds to the null frame. Thus s(1) is the frame of the
unique path with length 2, while s2(1) and s(1) ∧ s(1) are the frames of the length 4 paths,
and so on. It is easy to check that, denoting by p(x) a frame, one has:

Proposition 21. s(p(x)) = 2 + xp(x), p(x) ∧ q(x) = p(x) + q(x)− 1.

The procedure to determine the admissibility of a sequence, see Examples 15, 16, can be
used to determine a “canonical” representative of a frame.

Example 22. Consider the frame (3, 4, 3, 1, 0, . . .) and apply to it the functions r and b. We
obtain the sequence of frames

(2, 3, 3, 1, 0, . . .), (3, 3, 1, 0, . . .), (2, 2, 1, 0, . . .), (2, 1, 0, . . .), (1, 0, . . .),

thus getting to the null frame. There is, of course, only one path corresponding to the null
frame: the null path.

We may now trace this procedure backwards with the operations s and a on the paths,
eventually getting the desired canonical representative of the frame (3, 4, 3, 1, 0, . . .).

We start form the null path

this lifted gives:
with frame s(1) = (2, 1, 0, . . .),

lifted gives:

with frame s2(1) = (2, 2, 1, 0, . . .),

extended gives:

with frame s2(1) ∧ s(1) = (3, 3, 1, 0, . . .),

lifted gives:

with frame s(s2(1) ∧ s(1)) = (2, 3, 3, 1, 0, . . .),

extended gives:

with frame s(s2(1) ∧ s(1)) ∧ s(1) = (3, 4, 3, 1, 0, . . .).

14



Applying this procedure to any frame (i0, i1, . . . , if , 0, . . .), we reach a particular path
belonging to this frame. This path is called the canonical representative of the frame
(i0, i1, . . . , if , 0, . . .). In the preceding example the canonical representative is therefore
s(s2(0) ∧ s(0)) ∧ s(0).

The procedure is such that any time in a canonical representative there is a product of
the form sj1(x1) ∧ sj2(x2) ∧ · · · ∧ sjt(xt), then sj2(x2) = · · · = sjt(xt) = s(0).

In other words, a canonical path is of the form

sj1(sj2(· · · (sjt−1(sjt(0) ∧ s(0) ∧ · · · ∧ s(0)
︸ ︷︷ ︸

kt

) ∧ s(0) ∧ · · · ∧ s(0)
︸ ︷︷ ︸

kt−1

) · · · ) ∧ s(0) ∧ · · · ∧ s(0)
︸ ︷︷ ︸

k1

.

Another way to describe the canonical path is to observe that in the corresponding sequence
of U and D, after any sequence of one or more D there is at most one U.

Example 23. Assume the frame (3, 6, 6, 3, 1, 0, . . .) is given. By the preceding remarks to
reach level 4 one must necessarily begin with a sequence of 4 U. Since there is a single foot
at level 4 we must go down with at least 2 D. If we go down with 3 D, we could not go
back to level 3, where there should be 3 feet. Hence we go down exactly two steps D and
go back up with one U. So far the sequence is UUUUDDU. Since we do not need to go back
to level 3 any longer, we go down with at least 2 more D’s. Again in this case, considering
that at level 2 we have 6 feet, we must go down exactly with 2 D, then go up with one U,
then go down with one D and climb back up with one U two more times. We thus obtain
UUUUDDUDDUDUDU so far. Having exhausted the level 2 feet, we must go down with 2
D to level 0. Having obtained so far only 5 feet at level 1, we must still go up with U and
the concluding with a D. The sequence is therefore UUUUDDUDDUDUDUDDUD.

The following property is often useful in computations.

Proposition 24. s(p(x) ∧ q(x)) ∧ s(1) = s(p(x)) ∧ s(q(x)).

Proof. Use Proposition 21: s(p(x)∧q(x))∧s(1) = s(p(x)+q(x)−1)∧(2+x) = (2+x(p(x)+
q(x) − 1)) ∧ (2 + x) = 2 + x(p(x) + q(x) − 1) + (2 + x) − 1 = 2 + xp(x) + 2 + xq(x) − 1 =
s(p(x)) ∧ s(q(x)).

From this, it immediately follows:

Corollary 25. Given two Dyck paths x1, x2, the two paths s(x1) ∧ s(x2), s(x1 ∧ x2) ∧ s(0)
have the same frame.

Theorem 26. It is possible to obtain the canonical representative of a frame (i0, i1, . . . , if , 0, . . .)
in a finite number of steps starting from any representative path x using the commutativity
property of the gluing operation and Corollary 25.

Proof. If x is a representative of the frame, suppose that x contains a product s(0) ∧ si(y),
then this can be transformed into si(y) ∧ s(0). If it contains a product si(y) ∧ sj(z), with
si(y) 6= s(0), sj(z) 6= s(0), this can be transformed into s(si−1(y) ∧ sj−1(z)) ∧ s(0). After a
finite number of steps of these two types, one gets to the canonical path when none of these
two steps is any longer possible.
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Using Theorem 26, we are now able to count the number of paths in a given frame.

Example 27. Consider the frame (3, 4, 3, 1, 0, . . .) as before. We already saw that its canon-
ical representative is u = s(s2(0) ∧ s(0)) ∧ s(0). From this canonical representative, using
commutativity of the wedge operation, we have a total of 4 paths, including u, precisely:

s(s2(0)∧s(0))∧s(0), s(s(0)∧s2(0))∧s(0), s(0)∧s(s2(0)∧s(0)), s(0)∧s(s(0)∧s2(0)):

Using Corollary 25 we have also v = s3(0)∧s2(0), which gives rise, by the commutativity
of ∧, to a total of 2 paths, including v:

s3(0) ∧ s2(0), s2(0) ∧ s3(0).

We have therefore a total of 6 paths belonging to the frame (3, 4, 3, 1, 0, . . .).

We wish to compute an explicit formula for the number p2n
I

of paths having frame I =
(i0, i1, . . .) with length 2n.

Definition 28. We define a right frame to be a frame of the form

(2, i1, i2, i3, . . .)

and a left frame any other frame.

Definition 29. Given a frame (i0, i1, i2, . . .), with i0 ≥ 2, we define its right progenitor to
be the frame (2, i1 − i0 + 2, i2, . . .). If the frame has i0 = i1 = . . . = it−1 = 2 and it 6= 2 we
define its left progenitor to be (it, it+1, . . .). If i0 6= 2 its left progenitor is itself.

Remark 30. Every frame has a right and left progenitor except for the null frame which has
only itself as a left progenitor and no right progenitor.

We can prove two propositions describing how the cardinality of a frame I is related to
the one of its progenitors.

Proposition 31. The cardinality of a frame I is the same as that of its left progenitor.

Proof. It is easy to see that there is a bijection between the set of paths realizing the frame
I and those realizing the frame s(I). Indeed, if p is a path of the frame I then s(p) is a
path of the frame s(I), moreover s is an invertible operation. By repeatedly applying this
argument we reach its left progenitor.
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Obviously,

Lemma 32. The cardinality of the frame (u+ 1, u, 0, . . .), ∀u ∈ N, is 1.

Proposition 33. Given a frame of the form X = (2 + n, a, b . . .) with n ≥ 0, let Y =
(2, a− n, b, . . .) be its right progenitor and k the cardinality of Y. Then the cardinality of X
is k

(
a−1

a−n−1

)
.

Proof. If b = 0, the frame X is of the form (u + 1, u, 0, . . .) by Theorem 20. The right
progenitor is (2, 1, 0, . . .) with cardinality k = 1 and the formula holds by Lemma 32. If
b > 0 then a ≥ 2+n, by Theorem 19. There is a bijection between the set of paths realizing
the frame X and the weak compositions of n into a − n parts. Hence the formula. In fact,
there are a − n positions in Y, (a − n − 2 feet at level 1 of the path plus the two end-
points at level 0) in which one can distribute the n paths s(0), using Proposition 24 or the
commutativity property. This means that each of the n “hats” must be located in a − n

positions.
In other words, any path in Y gives rise to a path in the frame X by inserting n pairs

01. These pairs may be distributed either at the beginning, in the order 01, or at the end as
10, or in the interior for every possible pair 12 as 1012. We are left to prove that if we take
two different paths p and p′ in the frame Y they give rise to different paths in X. Notice
that there are no 0’s in the middle of the associated sequences with p and p′. In the first
position where they differ, one has the pair a, a+ 1 and the other has a, a− 1 where a ≥ 2.
If a > 2, a pair 01 or 10 cannot be inserted after a so the paths remain different. If a = 2
then we have the sequence · · · abc21 · · · and · · · abc23 · · · . The insertion of pairs 1, 0 or 0, 1
cannot turn these two sequences into equal ones.

With these propositions it is easy to prove (cf. [4]):

Theorem 34. Given the frame I = (i0, i1, . . . , if , 0 . . .), setting:
j1 = i0−2, j2 = i1− i0, j3 = i2− i1+ i0−2, j4 = i3− i2+ i1− i0, and so on, the cardinality

of I is

(
i1 − 1

i1 − j1 − 1

)(
i2 − 1

i2 − j2 − 1

)

· · ·

(
if − 1

if − jf − 1

)

.

Example 35. The cardinality of the frame I = (5, 8, 7, 3) is

(
7

4

)(
6

3

)(
2

0

)

= 700.
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6 Colored Dyck paths

For any fixed frame (i0, . . . , if , . . .) with length 2n, let vk denote the number of U steps
joining the levels k, k + 1 (k = 0, . . . , f − 1). This number is clearly equal to the number of
the D steps joining the same two levels.

Theorem 36. Using the notation above, we have

vk = ik − ik−1 + · · ·+ (−1)ki0 + (−1)k+1, k = 0, . . . , f − 1.

Proof. Since at level 0 from the first node we have a U step, and we also have a D step in
the final node, while in all the others we certainly have a U and a D, we have a total of
2(i0 − 1) steps joining level 0 and level 1. Since there are as many U as D we must have:
v0 = i0− 1. Assume we proved the formula up to vk−1, we prove it for vk. From the ik nodes
at level k we have 2ik steps, half of which are U and half are D. Of these, 2vk−1 come from
the lower level. It follows that vk = ik − vk−1 = ik − (ik−1 − · · ·+ (−1)k−1i0 + (−1)k), hence
the result.

Notice that the number vk depends only on the given frame and not on the particular
path in that frame.

Let I2n denote the set of frames with length 2n. Suppose that we can color with uk

colors the U steps joining level k and level k + 1 and with dk colors the D steps joining the
same levels (k = 0, . . . , n− 1). The number of colored paths of a given frame I = (i0, i1, . . .)
with length 2n, is clearly p2n

I
uv0
0 · · · u

vn−1

n−1 d
v0
0 · · · d

vn−1

n−1 , recalling that p2n
I

denotes the number
of elements in the frame I = (i0, i1, . . .) with length 2n. We immediately have

Theorem 37. The number of Dyck paths with length 2n, that can be colored with uk and dk
colors from level k to level k + 1 (k = 0, . . . , n− 1) is

∑

I∈I2n

p2n
I
uv0
0 · · · u

vn−1

n−1 d
v0
0 · · · d

vn−1

n−1 .

Notice that, the number vk depends also on the frame I. However, to explicitly indicate
such a relation in the notation would make for a quite cumbersome symbol such as vk(p

2n
I
).

7 Colored Motzkin paths

Proposition 38. If m(n) is the number of Motzkin paths with length n, and we set ν = ⌊n
2
⌋,

then

m(n) =
ν∑

j=0

∑

I∈I2j

p
2j
I

(
n

n− 2j

)

. (23)
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Proof. A Motzkin path with length n may be obtained from a Dyck path p with length 2j,
0 ≤ 2j ≤ n, by adding n − 2j horizontal steps at the feet at various levels of p. If p has
frame I = (i0, . . .), we may distribute the n− 2j horizontal steps at each of the 2j +1 nodes
of p. So this can be done in as many ways as the possibility to express n − 2j as a sum of
2j+1 integers between 0 and n−2j, that is, in

(
n−2j+(2j+1)−1

n−2j

)
=

(
n

n−2j

)
ways. The statement

follows.

The n − 2j horizontal steps can be distributed as follows: k0 steps at each of the i0
nodes of level 0, k1 steps at the i1 nodes of level 1, and so on. The number of such possible
arrangements are counted by weak compositions of suitable integers. If at each level r one
uses hr colors on the horizontal steps and sets H = (h0, . . . , hν), the formula becomes

Proposition 39.

m
(n)
H =

ν∑

j=0

∑

I∈I2j

p
2j
I

∑

k0+···+kν=n−2j

(
k0 + i0 − 1

k0

)

· · ·

(
kν + iν − 1

kν

)

hk0
0 · · ·hkν

ν .

It may happen that in the summation corresponding to a frame, the frame is too “low” to
allow adding horizontal steps, for example at level ν. In this case the corresponding binomial
coefficient

(
kν+iν−1

kν

)
has iν = 0 and is therefore zero.

If we add to this the possibility of coloring the U and D steps with uk and dk colors from
level k to level k + 1 (k = 0, . . . , ν − 1), and we set U = (u0, . . . , uν−1),D = (d0, . . . , dν−1),
we get

Theorem 40. Let m
(n)
H,U ,D denote the number of Motzkin paths colored with colors determined

by H,U ,D. Then we have

m
(n)
H,U,D

=
ν

∑

j=0

∑

I∈I2j

p2j
I
uv0
0 · · ·u

vj−1

j−1 dv00 · · · d
vj−1

j−1

∑

k0+···+kν
=n−2j

(k0 + i0 − 1

k0

)

· · ·

(kν + iν − 1

kν

)

hk0

0 · · ·hkν
ν . (24)

Notice that such formula makes sense if we set hk = 0 for all those levels k where there
are no horizontal steps provided we attribute value 1 to the expression h

kj
j , if hj = 0 and

kj = 0.

Remark 41. Comparing formula (23) with (24) written in the case of all hk = uk = dk = 1
yields the following identity for binomial coefficients, where we made obvious changes of
symbols:

(
m+ i0 + · · ·+ iν − 1

m

)

=
∑

k0+···+kν=m

(
k0 + i0 − 1

k0

)

· · ·

(
kν + iν − 1

kν

)

.
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