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A CYCLIC EXTENSION
OF THE EARTHQUAKE FLOW II

 F BONSANTE, G MONDELLO
 J-M SCHLENKER

A. – The landslide flow, introduced in [5], is a smoother analog of the earthquake flow
on Teichmüller space which shares some of its key properties. We show here that further properties
of earthquakes apply to landslides. The landslide flow is the Hamiltonian flow of a convex function.
The smooth grafting map sgr taking values in Teichmüller space, which is to landslides as grafting
is to earthquakes, is proper and surjective with respect to either of its variables. The smooth grafting
map SGr taking values in the space of complex projective structures is symplectic (up to a multiplicative
constant). The composition of two landslides has a fixed point on Teichmüller space. As a consequence
we obtain new results on constant Gauss curvature surfaces in 3-dimensional hyperbolic or AdS
manifolds. We also show that the landslide flow has a satisfactory extension to the boundary of
Teichmüller space.

R. – Le flot des glissements de terrain, introduit dans [5], est un analogue régulier du flot des
tremblements de terre sur l’espace de Teichmüller, qui partage certaines de ses principales propriétés.
Nous montrons ici que d’autres propriétés des tremblements de terre s’appliquent aux glissements de
terrain. Le flot des glissements de terrain est le flot hamiltonien d’une fonction convexe. L’application de
greffage régulière sgr, à valeur dans l’espace de Teichmüller, qui est aux glissements de terrain ce que le
greffage est aux tremblements de terre, est propre et surjective par rapport à chacune de ses variables.
L’application de greffage régulière SGr, à valeur dans l’espace des structures projectives complexes,
est symplectique (à un facteur multiplicatif près). La composition de deux glissements de terrain a un
point fixe dans l’espace de Teichmüller. En conséquence, nous obtenons des résultats nouveaux sur les
surfaces à courbure de Gauss constantes dans des variétés de dimension 3 hyperboliques ou AdS. Nous
montrons aussi que le flot des glissements de terrain a une extension satisfaisante au bord de l’espace
de Teichmüller.
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Einstein, ANR-09-BLAN-0116-01, and by U.S. N.S.F. grants DMS 1107452, 1107263, 1107367 “RNMS: GEo-
metric structures And Representation varieties” (the GEAR Network). F.B. and G.M. were partially supported by
MIUR grant FIRB 2010 “Low-dimensional geometry and topology” (RBFR10GHHH 003).
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812 F. BONSANTE, G. MONDELLO AND J.-M. SCHLENKER

1. Introduction and results

In this paper we consider a closed surface S of genus at least 2. We denote by T the Teich-
müller space of S, considered either as the space of hyperbolic structures on S (considered
up to isotopy) or as the space of conformal structures on S (also up to isotopy). We denote
by M L the space of measured laminations on S.

1.1. Earthquakes and landslides

Let γ be a simple closed curve on S, with a weight w > 0, and let h be a hyperbolic
metric on S. The image of h by the (left) earthquake along the weighted curvewγ is obtained
by realizing γ as a closed geodesic in (S, h), cutting S open along this geodesic, rotating
the right-hand side by a length w in the positive direction, and gluing back. This defines
a map E(•, wγ) : T → T . Thurston [44] proved that this definition extends from weighted
curves to measured laminations, so that we obtain a map:

E : T × M L → T .

This earthquake map has a number of remarkable properties, of which we can single out,
at this stage, the following.

(i) For fixed λ ∈ M L, it defines a flow on T : for all t1, t2 ∈ R, E(h, (t1 + t2)λ) =

E( E(h, t1λ), t2λ).
(ii) Thurston’s Earthquake Theorem (see [23, Theorem 2],[31]): for any h, h′ ∈ T , there

exists a unique λ ∈ M L such that E(h, λ) = h′.
(iii) McMullen’s complex earthquakes [30, Theorem 1.1]: for fixed λ ∈ M L and h ∈ T , the

map t 7→ E(h,−tλ) extends as a holomorphic map from the upper half-plane to T , and
(iv) E(•, (t+ is)λ) = gr(•, sλ) ◦ E(•,−tλ), where gr(•, sλ) : T → T is the grafting map.
(v) The grafting map gr : T × M L → T can be written as the composition gr = Π ◦Gr,

where Gr : T × M L → C P is also called the grafting map but with values in the
space C P of complex projective structures on S, and Π : C P → T is the forgetful map
sending a complex projective structure to the underlying complex structure.

(vi) Thurston proved that the map Gr : T × M L → C P is a homeomorphism (see [21] for
a proof).

In [8] we introduced the notion of landslides, which can be considered as smooth version of
earthquakes. The landslide map L : S1× T × T → T × T can be defined in different ways,
see below. Still in [8] we showed that properties (i)-(vi) above extend from earthquakes to
landslides, with the grafting maps gr and Gr replaced by the corresponding smooth grafting
maps sgr′ and SGr′.

Here we further consider the analog for landslides of the other well-known properties of
the earthquake and grafting maps.

(vii) For a fixed measured lamination λ, the earthquake flow (t, h) 7→ E(h, tλ) is the
Hamiltonian flow of the length function of 1

2λ, considered as a function on T , with
respect to the Weil-Petersson symplectic structure (see [44], [52] and [23]).

(viii) The length of a measured lamination is a convex function on T with respect to the Weil-
Petersson metric, as proved by Wolpert [53] (see also [51]).
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A CYCLIC EXTENSION OF THE EARTHQUAKE FLOW II 813

(ix) Given two measured laminations λ, µ ∈ M L which fill S, the composition
E(•, λ) ◦ E(•, µ) : T → T has a fixed point (conjectured to be unique), see [9, Theo-
rem 1.1].

(x) For fixed λ ∈ M L, the map gr(•, λ) : T → T is a homeomorphism (see [36, Theo-
rem A]), and, for h ∈ T fixed, the map gr(h, •) : M L → T is a homeomorphism (see
[12, Theorem 1.1]).

(xi) The cotangent space T ∗ T can be identified with the product T × M L through the map
d` : T × M L → T ∗ T which sends (h, λ) to the differential at h of d`λ-–in particular
this map is one-to-one (see [27, Lemma 2.3]).

(xii) The grafting map Gr : T × M L → C P can be composed with (d`)−1 : T ∗ T →
T × M L to obtain a map from T ∗ T to C P. By [27, Lemma 1.1 and Theorem 1.2] this
map is actuallyC1 (although M L does not have a naturalC1-structure) and symplectic
(up to a constant factor), when one considers on C P the real symplectic structure equal
to the real part of the Goldman symplectic structure on the space of representations
of π1(S) to PSL(2,C).

We will prove that those properties extend to landslides, except for point (x) for which we only
prove here that the corresponding maps in the landslide setting are onto. (We also believe that
those maps are one-to-one, but could not prove it.)

We will see that points (ix) and (x) can be translated in terms of 3-dimensional hyperbolic
or anti-de Sitter geometry.

In addition we will show (see Section 1.7 for a more precise statement) that

(xiii) the landslide map has a satisfactory extension to the space F M L ⊂ M L × M L of
projective classes of filling pairs of measured laminations on S, whose projectivization
can be considered as a bordification of T × T ; this extension is Hamiltonian for the
symplectic structure equal to the sum of the Thurston symplectic forms on the two
factors of M L × M L.

1.2. The landslide flow is Hamiltonian

We will first define a function F on T × T that plays for landslides the role that the length
of a measured lamination plays for earthquakes. Recall that given two hyperbolic metrics h
and h? onS, there is a unique minimal Lagrangian mapm isotopic to the identity from (S, h)

to (S, h?) (see [29] and [39, Proposition 2.12]). This map can be characterized by the existence
of a bundle morphism b : TS → TS which has determinant 1, is self-adjoint for h and
satisfies the Codazzi equation d∇b = 0, and such that m∗h?(•, •) = h(b•, b•). We call b
the Labourie operator of the pair (h, h?) and c the center of (h, h?), namely the conformal
structure (up to isotopy) underlying the metric h+m∗h?.

D 1.1. – Let F : T × T → R be the function defined as

F (h, h?) =

∫
S

tr(b)dah ,

where b is the Labourie operator of the pair (h, h?) and dah is the area element associated
to h. Given a fixed h? ∈ T , we will also denote by Fh? : T → R the function defined as
Fh?(h) := F (h, h?).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



814 F. BONSANTE, G. MONDELLO AND J.-M. SCHLENKER

Note that F (h, h?) = F (h?, h): if b is the Labourie operator of the pair (h, h?), then
the Labourie operator of the pair (h?, h) is b? = b−1, and tr(b?) = tr(b) since b has
determinant 1.

P 1.2. – Let c be the center of (h, h?). The functionsE(•, h), F (•, h) : T → R
are proper and real-analytic, whereE(c, h) is the energy of the unique harmonic map from (S, c)

to (S, h). Moreover, F (h, h?) = 2E(c, h) = 2E(c, h?).

The proof of this proposition is in Section 2.2.2.

T 1.3. – For i = 1, 2, denote by ωWP,i the pull-back on T × T of the Weil-
Petersson symplectic form on T through the projection πi : T × T → T to the i-th factor.

The landslide flow on T × T is the Hamiltonian flow associated to 1
4F for the symplectic

form ωWP,1 + ωWP,2.

As a consequence we see that the landslide flow is certainly not the same as the Hamilto-
nian flow of the length of the Liouville cycle.

A possible way to look at the results (vii)–(xiii) above is that the landslide flow, and the
associated function F , provide a bridge between on the one hand harmonic maps between
hyperbolic surfaces, and on the other earthquakes, measured laminations, and related “geo-
metric” constructions on surfaces. While the definition of F shows a clear relation to the
energy of harmonic maps, the properties of the landslide flow are closely related to those of
earthquakes, which are actually limits when one of the parameters converges projectively to
a measured lamination on the boundary of Teichmüller space (see [8, Theorem 1.6]).

1.3. Convexity of the Hamiltonian

The following result is an extension to landslides of the convexity of the length function
of measured laminations.

T 1.4. – Let h ∈ T be fixed. The function Fh : T → R is strictly convex for the
Weil-Petersson metric on T . More precisely, for any point h? and any v, w ∈ Th? T

Hess(Fh)h?(v, w) ≥ 2(gWP )h?(v, w)

and equality holds for all v, w exactly when h = h?.

As the Weil-Petersson metric is Kähler [1] and F is proper, we also obtain the following
result, which is analogous what Tromba proved in [47] using the energy functional (Bers-
Ehrenpreis [7] had already shown that T is a Stein manifold using different methods).

C 1.5. – Let h ∈ T be fixed. Then F (h, •) is a real-analytic, plurisubharmonic
exhaustion function and so T is a Stein manifold.
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A CYCLIC EXTENSION OF THE EARTHQUAKE FLOW II 815

In Section 5.2 we also show that the convexity property in Theorem 1.4—like the convexity
of length functions—can be used to give a new proof of the Nielsen realization theorem:
any finite subgroup of the mapping-class group can be realized as the isometry group of
a hyperbolic surface. The first proof of this theorem was obtained by Kerckhoff [23] using
the convexity of length functions along earthquake paths. Other proofs where then given by
Wolpert [53] using the convexity of length functions along Weil-Petersson geodesics (see also
Wolf’s proof [51]) and by Tromba [48] using the convexity of the energy along those same
Weil-Petersson geodesics. Other proofs based on the equivalence between Fuchsian groups
and convergence groups were given by Gabai [16] and by Casson-Jungreis [10]. The proof
given here is quite close to the proof of both Wolpert, Wolf and Tromba. Its key point is the
convexity and properness of the function F proved in Proposition 1.2 and in Theorem 1.4.

1.4. Landslide symmetries

There is a simple notion of “symmetry” associated to the notion of landslides—it actually
also makes some sense for earthquakes, see below. Here L1 is the landslide map followed by
projection on the first factor, as in [8].

D 1.6. – Let θ ∈ (0, π), and let h0 ∈ T . For all h ∈ T , there is a unique
h?0 ∈ T such that L1

eiθ (h0, h
?
0) = h (see [8, Theorem 1.15]). We set Seiθ,h0

(h) = L1
e−iθ (h0, h

?
0).

We call Seiθ,h0
the symmetry of center h0 and angle θ.

Note that Seiθ,h0
is not an involution, however, by definition, Seiθ,h0

◦ Se−iθ,h0
= Id.

The following statement is an analog for landslides of the main statement in [9].

T 1.7. – Let θ+, θ− belonging to (0, π) and h+, h− ∈ T be fixed. The map
Seiθ+ ,h+

◦ Seiθ− ,h− : T → T has a fixed point. If θ+ + θ− = π then this fixed point is
unique.

It would be quite satisfactory to know whether uniqueness holds for other values
of θ+ + θ−.

This statement can also be translated in terms of 3-dimensional AdS geometry, see below.
The uniqueness question which remains open can then be translated as a natural statement
on the uniqueness of AdS3 manifolds with smooth, space-like boundary having a given pair
of constant curvature metrics as the induced metric on the boundary, and the analogy with
the corresponding hyperbolic situation suggests that it might be true.

In the limit case of earthquakes, one can define a similar notion of symmetry. Given a
fixed h0 ∈ T , we can define the (left) earthquake symmetry Sh0

as follows. For any h ∈ T ,
there is by Thurston’s Earthquake Theorem (see [23, 31]) a unique λ ∈ M L such that
E(h0, λ) = h, and we define Sh0

(h) = E(h0,−λ). One can then ask whether, for h+, h− ∈ T ,
the composition Sh+

◦ Sh− has a unique fixed point. A positive answer would be equivalent
to a proof of a conjecture of Mess [31] on the existence and uniqueness of an MGH AdS
manifold for which the induced metric on the boundary of the convex core is a prescribed
pair of hyperbolic metrics. We leave details on this to the reader.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



816 F. BONSANTE, G. MONDELLO AND J.-M. SCHLENKER

1.5. Smooth grafting

In Section 6 we turn to the smooth grafting map, defined in [8] and recalled in Sec-
tion 2.10, which is a smoother analog of the grafting map. We have the following partial
extension/analog of a result of Scannell and Wolf [36] and of a result of Dumas and Wolf [12].

T 1.8. – Let s > 0 and h, h? ∈ T . The maps sgr′s(h, •) : T → T and
sgr′s(•, h?) : T → T are proper surjective maps.

This result can be stated in terms of 3d hyperbolic or de Sitter geometry. Recall that any
hyperbolic end has a unique foliation by constant curvature surfaces [29]. The curvature of
those surfaces varies between −1 and 0.

T 1.9. – Let h, h′ ∈ T and let K ∈ (−1, 0). There is a hyperbolic end M with
conformal metric at infinity h′ and such that the surface S? inM with constant curvatureK has
an induced metric proportional to h.

It would be satisfactory to know whether M is unique.
Similarly, any 3-dimensional de Sitter domain of dependence (as defined in [31]) has a

unique foliation by constant curvature surfaces, which are actually dual to the constant
curvature surfaces in the foliation of the dual hyperbolic end (see [3]).

T 1.10. – Let h?, h′ ∈ T and let K? ∈ (−∞, 0). There is a de Sitter domain of
dependence M? with conformal metric at infinity h′ and such that the surface S in M? with
constant curvature K? has an induced metric homothetic to h?.

The proof of those 3-dimensional theorems, from Theorem 1.8, is in Section 6.4.

1.6. The smooth grafting map is symplectic

Consider a measured laminationλ ∈ M L. Its length `λ is a smooth function on T and, for
each h ∈ T , we can consider its differential dh`λ ∈ T ∗h T . It is well-known that this defines
a one-to-one map between T × M L and T ∗ T . This has the following counterpart in the
context considered here, with M L replaced by another copy of T and the length function
replaced by the function F defined above.

P 1.11. – The map d1F : T × T → T ∗ T sending (h, h?) to the differential
at h of the function Fh? is a global diffeomorphism between T × T and T ∗ T .

Coming back to the familiar setting of measured lamination, we can consider the graft-
ing map Gr : T × M L → C P, which is known from Thurston’s work to be a homeomor-
phism (see [21]). Composing with the inverse of the map d` : T × M L → T ∗ T , we obtain a
map Gr ◦ (d`)−1 : T ∗ T → C P.

Given a complex projective structure Ξ on a surface, one can consider the underlying
complex structure, say c. Riemann uniformization produces another CP1-structure ΞF on S
which is Fuchsian with underlying complex structure c. We can then consider the Schwarzian
derivative of the identity map from (S,ΞF ) to (S,Ξ), it is a holomorphic quadratic differ-
ential ϕ for c. Its real part can therefore be considered as a vector in T ∗c T . This classical
construction defines a map Sch : C P → T ∗ T . It was proved by Kawai [22] that this map is
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A CYCLIC EXTENSION OF THE EARTHQUAKE FLOW II 817

symplectic (up to a factor), that is, the pull-back by Sch of the (real) cotangent symplectic
structure on T ∗ T is a multiple of the real part of the Goldman symplectic form ωG on C P.

We can now consider the map Sch ◦ Gr ◦ (d`)−1 : T ∗ T → T ∗ T . It is proved in [27] that
this map is C1, and that it is symplectic (up to a fixed factor) with respect to the cotangent
symplectic form on T ∗ T . Here we denote by ωcan the (real) cotangent symplectic form
on T ∗ T .

Now recall from [8] the definition of the smooth grafting map SGr′ : R× T × T → C P.
For s ≥ 0 and h, h? ∈ T , there is a unique equivariant convex immersion of the uni-
versal cover S̃ of S into H3 with induced metric cosh2(s/2)h̃ and third fundamental
form sinh2(s/2)h̃?. This equivariant immersion defines on S a complex projective struc-
ture, obtained by pulling back on the image surface the complex projective structure at
infinity by the “Gauss map” sending a point x of the image to the endpoint at infinity of
the geodesic ray from x orthogonal to the surface. This complex projective structure is the
image SGr′s(h, h

?).

T 1.12. – For all s ∈ R, the composition map Sch◦SGr′s◦(d1F )−1 : T ∗ T → T ∗ T
is symplectic up to a constant factor depending on s:

(Sch ◦ SGr′s ◦ (d1F )−1)∗ωcan = sinh(s)ωcan .

The proof uses a variant of the notion of renormalized volume, generalizing the definition
introduced for a similar purpose in [27].

1.7. Extension at the boundary

In order to understand how the landslide flow could be extended to some boundary, let
us recall the following result by Wolf [49].

P 1.13 (Wolf). – Let the center c stay fixed and suppose that θnhn → λ.
Then θnh?n → µ, with the property that the unique holomorphic quadratic differential ϕ with
horizontal and vertical laminations λ and µ has c as underlying complex structure.

If we consider the space DY = T × T ×R<0 of couples of metrics (h, h?) with the same
negative constant curvature K (up to isotopy), then this space can be bordified as DY by
adding the space F M L ⊂ M L × M L of filling couples of measured laminations corre-
spondingly to K = −∞. Viewing all spaces up to rescaling, PDY is a natural bordification
of PDY ∼= T × T obtained by adding P F M L.

P 1.14. – Identifying F M L with the space Q of holomorphic quadratic differ-
entials onS, the action on DY limits on F M L = Q to the action (θ, ϕ) 7→ eiθϕ. Being invariant
under rescaling it descends to an action on PDY.

Notice that the function F extends over DY as F (h, h?,K) := K−2F (h, h?). As the
Weil-Petersson symplectic form ωWP limits to Thurston’s symplectic form ωTh on M L,
Theorem 1.3 admits the following extension.

P 1.15. – The function F : DY → R+ extends over ∂ DY = F M L as
F (λ, µ) = i(λ, µ). Moreover, the extension of the landslide flow on ∂ DY = F M L is
Hamiltonian for the symplectic form ωTh,1 + ωTh,2 with respect to 1

4F .
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1.8. Constant curvature surfaces in globally hyperbolic AdS3 manifolds

Recall that given a globally hyperbolic AdS3 manifold N , the complement of its convex
core has a unique foliation by constant curvature surfaces [3]. The curvature of those surfaces
varies between −∞ and −1.

T 1.16. – Let h+, h− ∈ T , and let K+,K− ∈ (−∞,−1). There exists a globally
hyperbolic AdS3 manifold N such that the constant curvature K− surface in the past of the
convex core has induced metric homothetic to h−, while the constant curvature K+ metric in
the future of the convex core of constant curvature K+ has induced metric homothetic to h+.
If K+ = −K−/(K− + 1), then N is unique.

It is tempting to conjecture that N is unique for any value of K+ and K−. Actually the
analogy with quasifuchsian hyperbolic 3-manifolds indicates that Theorem 1.16 could well
extend to metrics of non-constant curvature, as follows (see [4, §3.4] for more on this).

C 1.17. – Let h+, h− be two smooth metrics on S with curvature K < −1.
There exists a unique globally hyperbolic AdS3 manifold homeomorphic to S× [−1, 1], with
smooth, space-like and strictly convex boundary, such that the induced metric on S × {−1}
is h− and the induced metric on S × {1} is h+.

Theorem 1.16 shows that the existence part of this statement holds when both h− and h+

have constant curvature. The analog of Conjecture 1.17 for quasifuchsian manifolds (and
more generally convex co-compact manifolds) holds, see [38].

As the limit case of either Conjecture 1.17 or Theorem 1.16 when the curvature of the
metrics h− and h+ goes to −1, we obtain the following conjecture of Mess.

C 1.18. – Let h−, h+ be two hyperbolic metrics on S. There is a unique
maximal globally hyperbolic AdS3 manifold N such that induced metric on the boundary
of the convex core of N is given by h− and h+.

The existence part of this conjecture was recently proved by B. Diallo [11], but the unique-
ness remains open.

There is a useful notion of duality inAdS3, recalled in Section 2. It can be used to translate
Theorem 1.16 in terms of the third fundamental form, rather than the induced metric, on
surfaces in AdS3 manifolds.

T 1.19. – Let h+, h− ∈ T , and letK+,K− ∈ (−∞,−1). There exists a maximal
globally hyperbolic AdS3 manifold N containing a surface S− with third fundamental form of
constant curvature K− homothetic to h− in the past of the convex core, and a surface S+ with
constant curvatureK+ and third fundamental form homothetic to h+ in the future of the convex
core. If K+ = −K−/(K− + 1), then N is unique.

As for Theorem 1.16, the analogy with quasifuchsian manifolds indicates that the state-
ment might hold also for metrics of variable curvature—this would actually follow from Con-
jecture 1.17 using the same notion of duality (see Section 3.2 of [4] where this conjecture is
discussed).
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1.9. Content of the paper

Section 2 contains notations and background material, including previous definitions and
results on the landslide flow considered here, on smooth grafting, and on their relationships
with 3d hyperbolic and AdS geometry.

In Sections 3 and 4 we will describe the Hamiltonian interpretation of the landslide
flow, Theorem 1.3, and relate its Hamiltonian to the energy of underlying harmonic maps.
In Section 5—probably the most technically involved part of the paper—we show that this
Hamiltonian function is convex for the Weil-Petersson metric on T , Theorem 1.4.

In Section 6 we turn to the smooth grafting, and prove Theorem 1.8 and then, as an
application, Theorem 1.9. The symplectic properties of the smooth grafting map are inves-
tigated in Section 7. In Section 8 we consider the extension of the landslide flow to the
boundary. Finally in Section 9 we prove Theorem 1.16 on 3-dimensional AdS geometry and
Theorem 1.7 on fixed points of compositions of landslides.

Acknowledgement

The paper was notably improved thanks to many helpful comments from an anonymous
referee.

2. Notations and background material

This section collects a number of definitions and results which are used below. It is
included here so as to make the paper as self-contained as possible.

2.1. The space of complex structures and Weil-Petersson product

We fix an oriented closed surface S of genus g(S) ≥ 2. The Teichmüller space T of S is
the quotient of the space of complex structures on S by the action of the group Diffeo0(S)

of isotopies of S.

R 2.1. – One can regard T as the space of S-marked Riemann surfaces up to
Teichmüller equivalence. In order to reduce the amount of maps we deal with, we will not
take this point of view.

We will denote by A the space of almost-complex structures on S: in other words, an
element of A is an operator J on TS such that

– J2 = −1.
– For every 0 6= Y ∈ TpS, the basis (Y, JY ) is positively oriented.

Since in dimension 2 every almost-complex structure is integrable, we have a natural map

A → T ,

which is a Diffeo0(S)-principal bundle, where Diffeo0(S) acts on A by pull-back ([15]).
Let M−1 be the infinite dimensional space of all hyperbolic metrics on our fixed sur-

face S. The map M−1 → A sending h to the complex structure compatible with h is a
Diffeo(S)-equivariant identification. In particular the elements of T can be also regarded
as hyperbolic metrics up to isotopies.
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Let h0 be a hyperbolic metric on S and denote by J0 the corresponding almost-complex
structure.

Following [15] we can identify the tangent space TJ0 A with the set of operators J̇ on TS
such that

J̇J0 + J0J̇ = 0 .

Notice that there are two simple characterizations of J̇ :

– it is a C-anti-linear operator,
– it is traceless and h0-self-adjoint.

The tangent space of T at [J0] turns out to be identified to the quotient of TJ0
A by the

vertical subspace. We want to relate this description of T[J0] T with the classical description
in terms of Beltrami differentials. We will give a description of quadratic differentials and
Beltrami differentials as tensors on the surface.

Let us fix a complex atlas {(Uj , zj)} on S compatible with J0. Namely, putting zj = xj + iyj
it results that

J0
∂

∂xj
=

∂

∂yj
, J0

∂

∂yj
= − ∂

∂xj
.

2.1.1. Holomorphic quadratic differentials. – A holomorphic quadratic differential ϕ on S
is a holomorphic section of the square of the canonical bundle (Ω1,0(S))⊗2: in local coordi-
nates ϕ|Uk = ϕj(zj)dz

2
j , where on the intersection Uj ∩ Uk we have

ϕj(zj) = ϕk(zk)

(
dzk
dzj

)2

.

Quadratic differentials can be regarded as complex bilinear tensors: indeed given p ∈ Uj
and Y, Y ′ ∈ TpS we can decompose

Y = u
∂

∂xj
+ v

∂

∂yj
, Y ′ = u′

∂

∂xj
+ v′

∂

∂yj
.

Then, setting

ϕ(Y, Y ′) = ϕj(zj(p))(u+ iv)(u′ + iv′)

one can directly check that this definition does not depend on the complex chart zj and
defines a complex bilinear form at TpS.

Holomorphic quadratic differentials form a complex vector space—denoted here
by Q(J0) —of complex dimension 3g(S)− 3.

There is a holomorphic vector bundle π : Q → T whose fiber on the point [J ] is
canonically identified with Q(J). This is called the fiber bundle of holomorphic quadratic
differentials.
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2.1.2. Beltrami differentials. – A Beltrami differential ν is a section of the differentiable
linear bundle Ω−1,1(S): locally it can be written as

ν|Uj = νj(zj)
dz̄j
dzj

,

and on Uj ∩ Uk we have

νj = νk

(
dzk
dzj

)(
dzk
dzj

)−1

.

Beltrami differentials can be regarded as anti-linear operators of TS. Indeed, given p ∈ Uj
and Y ∈ TpS with Y = u ∂

∂xj
+ v ∂

∂yj
we can put ν(Y ) = t ∂

∂xj
+ s ∂

∂yj
where t + is =

νj(zj(p))(u+ iv).
The matrix representative of ν with respect to the real basis { ∂

∂xj
, ∂
∂yj
} is

[ν]j =

(
<νj =νj
=νj −<νj

)
,

whereas |ν|2 = 1
2 tr(ν2). Finally notice that the multiplication by i of Beltrami differentials

corresponds to the composition with the complex structure on TS:

(iν)(Y ) = J0ν(Y ) .

There is a classical open embedding of A into the space of Beltrami differentials Belt(J0)

of the complex structure induced by J0. This can be described in the following way. Given a
complex structure J , the identity map

1 : (TpS, J0)→ (TpS, J)

decomposes into a C-linear part ∂1 and an anti-linear part ∂̄1: namely

∂1 =
1− JJ0

2
∂̄1 =

1+ JJ0

2
.

In particular, the operator
νJ = (∂1)−1 ◦ (∂̄1)

is an anti-linear operator of (S, J0) and is thus a Beltrami differential. Locally around p, if z is
a local complex coordinate for (S, J0) andw is a local complex coordinate for (S, J), we have

νJ =
∂w
∂z̄
∂w
∂z

dz̄

dz
.

A simple computation shows that the map

A 3 J 7→ νJ ∈ Belt(J0)

is an open embedding whose image is the space of Beltrami differential with L∞-norm less
than 1. Indeed one has that det(1 ± JJ0) = 2 ∓ 2trJJ0 and trJJ0 > 1 with the equality
iff J = J0, so |νJ | = |det νJ | < 1. On the other hand given ν ∈ Belt(J0) with |ν| < 1 the
almost-complex structure J = (1 + ν)−1J0(1 + ν) is the pre-image of ν.

In this way any Beltrami differential corresponds to an infinitesimal deformation of the
complex structure of J0. We say that a Beltrami differential is trivial if it corresponds to a
trivial deformation of the complex structure, i.e., a deformation of the complex structure
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induced by an infinitesimal isotopy. Trivial Beltrami differentials form a vector space which
we denote by Belttr(J0).

Classically the tangent space of Teichmüller space is identified to the quotient

T[J0] T = Belt(J0)/Belttr(J0) .

Notice that [ν̇] is a tangent vector to a curve [Jt] of complex structures (starting from J0) if
νJt = tν̇ + o(t).

In particular, differentiating the relation νJt = (1− JtJ0)−1(1+ JtJ0) at t = 0, we get

(1) ν̇ =
1

2
J̇J0 = −1

2
J0J̇ .

It turns out that the differential of the natural projection π : A → T at J0 is simply the map

dπ : TJ0
A 3 J̇ 7→ [−1

2
J0J̇ ] ∈ Belt(J0)/Belttr(J0) .

2.1.3. Pairing between quadratic differentials and Beltrami differentials. – Given a holomor-
phic quadratic differential ϕ and a Beltrami differential ν we can consider the complex-
bilinear form ϕ • ν which is defined on Uj as

ϕ • ν|Uj = ϕj(zj)νj(zj) dxj ∧ dyj .

The form ϕ • ν can be described explicitly as an alternating 2-form on TpS in the following
way. Given Y, Y ′ ∈ TpS we have

(ϕ • ν)(Y, Y ′) =
ϕ(ν(Y ), Y ′)− ϕ(ν(Y ′), Y )

2i
.

It is a classical fact that a Beltrami differential ν is trivial iff∫
S

ϕ • ν = 0

for all holomorphic quadratic differentials ϕ.
As a consequence, the pairing Q(J0) × Belt(J0) → C induces on the quotient a non-

degenerate pairing
Q(J0)× T[J0] T → C

which allows to identify Q(J0) with the cotangent space of T at [J0].

2.1.4. Harmonic Beltrami differentials and Weil-Petersson metric. – Given a holomorphic
quadratic differential ϕ, its real part is a symmetric 2-form on S, so there exists an h0-self-
adjoint operator νϕ such that

<(ϕ)(Y, Y ′) = h0(νϕ(Y ), Y ′) .

Since ϕ(J0Y, J0Y
′) = −ϕ(Y, Y ′) we deduce that J0νϕJ0 = νϕ, that is νϕ is C-anti-

linear. This means that νϕ is a Beltrami operator. It is called the harmonic Beltrami operator
associated to ϕ.

If ϕ|Uj = ϕj(zj)dz
2
j and h|Uj = hj(zj)|dzj |2 we easily see that

(2) (νϕ)|Uj =
ϕj(zj)

hj(zj)

dzj
dzj

.

Since =(ϕ(Y, Y ′)) = −<(ϕ(J0Y, Y
′)) we get

ϕ(Y, Y ′) = h0(νϕ(Y ), Y ′)− ih0(J0νϕ(Y ), Y ′) .
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In particular the map

w̃p : Q(J0) 3 ϕ 7→ νϕ ∈ Belt(J0)

isC-anti-linear and injective. Its image can be characterized as the set of self-adjoint traceless
operators which satisfy the Codazzi equation d∇ν = 0, where ∇ is the Levi-Civita connec-
tion of the hyperbolic metric h0 ([25]). Let us recall that d∇ν is in general a 2-form with values
in the tangent bundle TS defined by

d∇ν(u, v) = ∇u(νv)−∇v(νu)− ν([u, v]) .

Regarding ν as a 1-form on S with values in TS, d∇ coincides with the exterior differential
with respect to∇ on the tangent bundle.

The map w̃p induces a sequilinear-form

〈ϕ,ϕ′〉WP =

∫
S

ϕ • νϕ′ .

By a local check using (2), one sees that 〈•, •〉WP is a positive Hermitian form. It is called
the Weil-Petersson metric on Q(J0).

We will denote by gWP the real part of 〈•, •〉WP — which is the Weil-Petersson product—
whereas ωWP denotes the imaginary part, which is the Weil-Petersson symplectic form.

We deduce:

– The harmonic Beltrami differential νϕ is trivial iff ϕ = 0. Indeed
∫
S
ϕ • νϕ = ‖ϕ‖2WP .

– The induced mapwp : Q(J0)→ T[J0] T is an anti-linear isomorphism. This means that
every element in T[J0] T admits a unique harmonic representative.

– Identifying T[J0] T with Q(J0)∗, the map ϕ 7→ 〈•, ϕ〉WP induced by the Weil-Petersson
metric coincides with wp.

– In particular we get that the Weil Petersson metric on the tangent space of T is simply:

〈[νϕ], [νϕ′ ]〉WP = 〈ϕ,ϕ′〉WP .

A local computation shows that in general

<(ϕ • ν) =
1

2

∫
S

tr(νϕν)dah0
,

where dah0 is the area form of h0. In particular we deduce that

〈[νϕ], [νϕ′ ]〉WP = 〈ϕ,ϕ′〉WP =
1

2

(∫
S

(tr(νϕνϕ′) + itr(J0νϕνϕ′))dah0

)
.

2.1.5. Fischer-Tromba product. – Given a holomorphic quadratic differential ϕ, we denote
by J̇ϕ = 2J0νϕ the infinitesimal deformation of J0 corresponding to the Beltrami differen-
tial νϕ.

We consider on TJ0
A the Hermitian product

(J̇ , J̇ ′)J0
=

∫
S

tr(J̇ J̇ ′)dah0

where dah0 is the area form of h0.

L 2.2 ([15]). – The image of the map Q(J0) 3 ϕ 7→ J̇ϕ ∈ TJ0 A is the orthogonal
complement of the vertical space.
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Proof. – Notice that J̇ is vertical iff νJ̇ = − 1
2J0J̇ is trivial, this being the case exactly iff

for all ϕ ∈ Q(J0) we have

0 = <
(∫

S

ϕ • νJ̇

)
=

1

2

∫
S

tr(νϕνJ̇) =
1

8

∫
S

tr(J̇ϕJ̇)dah0 .

In particular given two vectors J̇ and J̇ ′ in TJ0 A and denoting by J̇H and by J̇ ′H their
projection on the orthogonal complement of the vertical space, there exist two quadratic
differentials ϕ and ϕ′ such that J̇H = J̇ϕ and J̇ ′H = J̇ϕ′ . Since dπ(J̇) = dπ(J̇H) = [νϕ]

and dπ(J̇ ′) = dπ(J̇ ′H) = [νϕ′ ], we easily deduce that

(3) gWP (dπ(J̇), dπ(J̇ ′)) =
1

2

∫
S

tr(νϕνϕ′)dah0
=

1

8

∫
S

tr(J̇H J̇ ′H)dah0
=

1

8
(J̇H , J̇

′
H)J0

.

Analogously,

(4) ωWP (dπ(J̇), dπ(J̇ ′)) =
1

8
(J0J̇H , J̇

′
H)J0

.

2.2. Harmonic maps vs Minimal Lagrangian map

We collect here a number of basic facts on harmonic maps and minimal Lagrangian maps
between hyperbolic surfaces, and the relation between those two notions.

2.2.1. Harmonic maps. – Let h0 and h be two metrics on S. For every smooth map
f : (S, h0)→ (S, h), we have the following decomposition of f∗(h)

f∗(h) = ϕ+ eh0 + ϕ̄

where ϕ is a J0-complex bilinear form on S, called the Hopf differential of f , and e is a non-
negative function onS called the energy density of the map f . The total energy of the map f is
defined as

E(f) =

∫
S

e dah0
,

where dah0
is the area form associated with the metric h0.

We say that the map f is harmonic if f is a stationary point of the functional E. If f is a
diffeomorphism, this is equivalent to requiring that ϕ is a holomorphic quadratic differential
on (S, J0). Notice thatϕ andE(f) do not change by changing h0 in its conformal class (but e
does), so the harmonicity of the map f only depends on the complex structure on the source
surface.

Let us fix a complex structure J0 (or equivalently a hyperbolic metric h0). Given a holo-
morphic quadratic differential ϕ, Wolf [49] proved there exists a unique hyperbolic metric hϕ
on S such that the identity id : (S, J0) → (S, hϕ) is a harmonic map with Hopf differential
equal to ϕ. In other words, there is a unique hyperbolic metric on S of the form

(5) hϕ = ϕ+ eh0 + ϕ̄ .

This allows to construct a map

W J0 : Q(J0)→ T

ϕ 7→ [hϕ]

which has been proved to be a homeomorphism [49]. This is called the Wolf parameterization
centered at [J0].
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The differential of W J0
at 0 can be easily computed:

d0( W J0
)(ϕ) = [νϕ] .

2.2.2. Minimal Lagrangian maps. – Given two hyperbolic metrics h, h? on S, a map
m : (S, h)→ (S, h?) is minimal Lagrangian if it is area-preserving and its graph is a mini-
mal surface in (S × S, h⊕ h?).

A map m : (S, h) → (S, h?) is a minimal Lagrangian map iff there exists an operator
b : TS → TS such that

– b is positive and self-adjoint for h;
– det b = 1;
– b is solution of Codazzi equation d∇b = 0 for the Levi-Civita connection∇ of h;
– m∗(h?) = h(b•, b•).

Labourie [29] and Schoen [39] proved that there exists a unique such minimal Lagrangian
map m : (S, h) → (S, h?) isotopic to the identity. In particular the Labourie operator of
the pair (h, h?) is the operator b as above, such that the metric h(b•, b•) is isotopic to h?.
We will say that the pair is normalized if h? = h(b•, b•), or equivalently if the identity
id : (S, h)→ (S, h?) is a minimal Lagrangian map.

If (h, h?) is a pair of normalized hyperbolic metrics, then the metrics

hc = h((1+ b)•, (1+ b)•) , h′c = h(b•, •)

are conformal, because (1+ b)2 = (2 + tr(b))b since det(b) = 1.

So they determine a conformal structure, denoted here by c. The identity maps

(S, c)→ (S, h) , (S, c)→ (S, h?)

are harmonic maps with opposite Hopf differential.

The conformal structure c is called the center of the pair (h, h?).

Proof of Proposition 1.2. – Real-analyticity of the energy functional E(•, h) : T → R
follows mimicking the arguments of [13]. Properness was proven by Tromba [15].

If ĉ is a metric in the conformal class of c and h = ϕ + eĉ + ϕ, then h? = −ϕ + eĉ − ϕ.
Thus, h((1+ b2)•, •) = h+h? = 2eĉ, which implies 2e daĉ =

√
det(1+ b2)dah = tr(b)dah.

So

2E(c, h) =

∫
S

2e daĉ =

∫
S

√
det(1+ b2)dah =

∫
S

tr(b)dah = F (h, h?) .

Finally, fix h and let (cn) be a divergent sequence in T . This determines a sequence (h?n)

such that cn is the center of (h, h?n). This (h?n) is divergent too, for otherwise a subse-
quence of F (h, h?n) and so of E(cn, h) would remain bounded, contradicting the properness
of E(•, h). Again up to subsequences, we can then assume that θnh?n converge to a nonzero
measured lamination λ, where θn is a positive sequence that converges to zero. It follows
from Proposition 6.15 of [8] that θnF (h, h?n)→ `λ(h) > 0 and so F (h, h?n)→ +∞.
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2.3. The AdS3 space

The 3-dimensional anti-de Sitter space AdS3 can be defined much like the hyperbolic
space. LetR2,2 denoteR4 with the symmetric bilinear form 〈•, •〉(2,2)of signature (2, 2). Then

AdS3 := {x ∈ R2,2 | 〈x, x〉(2,2) = −1} ,

with the induced metric.
We refer the reader to [31, 2] for the main properties of AdS3, and only recall here a few

key properties, without proof. In many respects AdS3 is reminiscent of H3, while some of
its properties, in particular concerning its isometry group, also relates to the 3-dimensional
sphere S3.

We remark that often the anti-de Sitter space is defined as a projective model obtained
by projecting AdS3 to the projective space – is used. Opposite to the hyperbolic case, the
Klein model turns to be AdS3/{±1} so those models are not isometric. Nevertheless they
are equivalent as model of anti-de Sitter geometry.

The space AdS3 is Lorentzian, with constant curvature −1. It is not simply connected,
however, and its fundamental group is infinite cyclic. As a Lorentz space, it has three types
of geodesics: space-like and light-like geodesics are open lines, while time-like geodesics are
closed, of length 2π. When considering AdS3 as a quadric in R2,2 as above, the geodesics
in AdS3 are the intersections of AdS3 with the 2-dimensional planes containing 0 in R2,2.
The space-like totally geodesic planes in AdS3 are isometric to the hyperbolic plane.

The multiplication by±1 acts on every sphere in R2,2 and so on AdS3 and on the quadric
Q := {x ∈ R2,2 | 〈x, x〉(2,2) = 0}. The projective model of AdS3 identifies AdS3/{±1}
to one connected component of the complement in RP3 \ PQ. The space-like geodesics
in AdS3/{±1} then correspond to the projective lines intersecting the boundary quadric PQ
in two points, while light-like geodesics are tangent to PQ, and time-like geodesics do not
intersect PQ. Taking the double cover of RP3 (namely taking the quotient of R2,2 by R+)
yields a projective model of AdS3 inside S3. This projective model is one way to define the
boundary at infinity of AdS3. It is topologically a torus, with a Lorentz conformal structure.

The isometry group ofAdS3 is O(2, 2). However, up to finite quotient, this isometry group
splits as the product of two copies of PSL(2,R), more precisely its identity component is
isomorphic to (SL(2,R)× SL(2,R))/{±1}.

2.4. Space-like surfaces in AdS3

The local theory of space-like surfaces in AdS3 is very similar to that of surfaces in the
Euclidean or in the hyperbolic 3-dimensional space. Here again we only briefly recall without
proof some basic facts which will be useful below.

Let S̃ ⊂ AdS3 be a space-like surface, and let n be a unit normal vector field on S̃.
Given such a surface, we will call Ĩ its induced metric (or first fundamental form). The shape
operator of S̃ is an Ĩ-self-adjoint bundle morphism B̃ : T S̃ → T S̃ defined by

∀p̃ ∈ S̃ ∀v ∈ Tp̃S̃ B̃v = Dvn ,

where D is the restriction to S̃ of the Levi-Civita connection of AdS3.
The shape operator satisfies two basic equations.

– The Codazzi equation: if ∇̃ is the Levi-Civita connection of Ĩ,then d∇̃B̃ = 0.
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– The Gauss equation: the curvature of Ĩ on S̃ is equal to K = −1− det(B̃).

The second and third fundamental forms of S̃ are then defined by

∀p̃ ∈ S̃ ∀u, v ∈ Tp̃S̃ ĨI(u, v) = Ĩ(B̃u, v), ĨII(u, v) = Ĩ(B̃u, B̃v) .

2.5. Globally hyperbolic AdS3 manifolds

Let N be a Lorentz 3-dimensional manifold locally modeled on AdS3. We say that N is
maximal globally hyperbolic, or MGH, if:

– it contains a closed space-like surface (Cauchy surface),
– any inextensible time-like curve intersects the Cauchy surface exactly once,
– it is maximal (under inclusion) among AdS3 manifolds having those properties, that is,

if N ′ is another 3-dimensional AdS manifold having the previous two properties and
i : N → N ′ is an isometric embedding, then i is onto.

Mess realized that some properties of MGH AdS3 manifolds are remarkably close to
those of quasifuchsian hyperbolic manifolds. Among the analogies are the following points,
which will be useful below.

– The space of MGH AdS3 metrics on a fixed manifold S × R is parameterized by the
product of two copies of T , the Teichmüller space of S, as with the Bers double uni-
formization theorem for quasifuchsian manifolds. In the AdS3 case this parameteri-
zation comes from the holonomy representation ρ of an MGH AdS structure, which
takes values in Isom0(AdS3/{±1}) = PSL(2,R) × PSL(2,R), and therefore splits
as two representations ρl, ρr in PSL(2,R). Mess [31] proves that those two represen-
tations have maximal Euler class, so that they are holonomy representations of two
hyperbolic metrics hl, hr on S. Any pair (hl, hr) ∈ T × T can be obtained from a
unique MGH AdS3 structure.

– A MGH AdS3 manifold N contains a smallest closed non-empty convex subset,
called its convex core C(N). (A subset C of N is convex if any geodesic segment with
endpoints in C is contained in C.) The boundary of C(N) is the disjoint union of
two spacelike pleated surfaces, except in the “Fuchsian” case where C(N) is a totally
geodesic surface. Each of those pleated surfaces has an induced metric which is hyper-
bolic, and its pleating is encoded by a measured lamination, as in the quasifuchsian
setting.

– The complement of C(N) has a unique foliation by convex, space-like surfaces, with
constant curvature varying monotonically from−1 (near the convex core) to−∞ (near
the initial/final singularity) on each side of the convex core, see [3]. This is similar to
what happens for quasifuchsian manifolds or more generally hyperbolic ends, see [29].

2.6. The duality between convex surfaces in AdS3 manifolds

There is a well-known “projective” duality (or polarity) between points and hyperplanes in
the projective space, or in the sphere. This duality has a hyperbolic version, which associates
to a point in Hn a space-like hyperplane in the de Sitter space dSn, and to an oriented
hyperplane in Hn a point in dSn, see [19].

A similar duality exists between points and hyperplanes in AdS3 (or more generally
in AdSn). We recall here its definition and its main properties. Consider AdS3 as a quadric
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in R2,2 as in Section 2.4. Every point x ∈ AdS3 is the intersection in R2,2 of AdS3 with
a half-line d starting from 0 on which the bilinear form is negative definite. We call d⊥ the
oriented hyperplane orthogonal to d in R2,2 passing through 0, so that the induced metric
on d⊥ has signature (1, 2). The intersection between d⊥ and AdS3 is the disjoint union of
two totally geodesic space-like planes, one at distance π/2 in the future of x, the other at
distance π/2 in the past of x. We define the dual x? of x as the oriented space-like plane
which is the intersection of AdS3 with d⊥ at distance π/2 in the future of x.

Conversely, every totally geodesic space-like plane P in AdS3 is the intersection of AdS3

with a hyperplane H of signature (1, 2) in R2,2. The orthogonal H⊥ of H then intersects
AdS3 in two antipodal points, and we define the dual P ? of P as the intersection which is at
distance π/2 in the past of P .

This duality relation has a number of useful properties. It is an involution, and the planes
dual to the points of a plane P pass through the antipodal of the point dual to P .

Consider now a smooth, space-like, strictly convex surface S̃ in AdS3. Denote by S̃? the
set of points which are duals of the support planes of S̃. The relation between S̃ and S̃? is
based on the following lemma. We give a sketch of proof for completeness (see e.g., [37] for
the analogous statement concerning the duality between H3 and dS3, the proof is the same
in the AdS case).

L 2.3. – Let S̃ ⊂ AdS3 be a smooth, space-like, locally strictly convex surface of
constant curvature K ∈ (−∞,−1). Then:

1. The dual of S̃ is a smooth, locally strictly convex surface S̃?.
2. The pull-back of the induced metric on S̃? through the duality map is the third fundamental

form of S̃, and vice versa.
3. The dual S̃∗ of S̃ is a space-like surface of constant curvature K? = −K/(K + 1).

Proof. – Let us consider AdS3 as a subset of R2,2. Let σ : S̃ → AdS3 be standard
inclusion. Notice that the future pointing vector ν(p) at σ(p) can be regarded as a point
in R2,2 identifying TpAdS3 with a subspace of R2,2.

Under this identification notice that ν(p) still lies in AdS3 since it is unit time-like. Indeed
it corresponds precisely to expp((π/2)ν). So the dual map is simply the normal field consid-
ered as a map with value in R2,2.

Notice moreover that Tν(AdS3) is the subspace in R2,2 orthogonal to ν so we have
Tν(AdS3) = 〈σ(p)〉 ⊕ Tσ(p)S̃.

Now using that the second fundamental form in AdS3 is the opposite of the metric we
deduce that the differential of ν (regarded as a map in R2,2) is computed by

dν(v) = ∇vν − 〈dσ(v), ν〉σ(p) = dσ(B(v)) .

This shows that tangent space of the dual surface ν(S̃) at ν(p) coincides (as subspace
ofR2,2) with the tangent space of S̃ at p, and the differential of the dual map is the shape oper-
ator. From this descends that the pull-back of the first fundamental form of ν(S̃) through the
dual map is the third fundamental form of S̃.

Moreover the past-pointing normal vector at ν(p) is simply σ(p). So the shape operator
of the dual embedding ν corresponds to the map σ. Repeating the argument above, we get
that the third fundamental form of the dual immersion ν at a point ν(p) coincides with the
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first fundamental form of σ at p. This shows that the shape operator of the dual immersion
is (up to the sign) the inverse of the shape operator of σ.

Notice that this implies that second fundamental form of S̃? is a definite product, so S̃?

is a strictly convex surface. The relation between the curvature of S̃ and the curvature of S̃?

is then a simple consequence of the Gauss formula for the curvature of immersed surfaces
in AdS3.

Consider now a smooth, space-like strictly convex surface S in an MGH AdS3 mani-
fold N . The lift of S to the universal cover of N can be identified with a surface S̃ in AdS3,
invariant under an action ρ : π1S → Isom(AdS3). The dual surface S̃? is then also invariant
under ρ so that it corresponds to a surface S? in N .

L 2.4. – If N is an MGH AdS3 manifold and S is a space-like, past-convex surface
in the future of the convex core of N , then its dual S? is a space-like, future-convex surface in
the past of the convex core.

Proof. – We can prove the statement on the universal covering of N . This is isometric to
a convex subset of AdS3 and S lifts to a convex surface S̃ on AdS3 contained in the future
of the convex core of Ñ .

Using the same notation as in the proof of Lemma 2.3, let ν be the unit time-like normal
field past directed (so pointing to the convex side bounded by S̃). Since the normal evolution
of S into the convex side bounded by S in N gives an embedding of S × [0, π/2] to N , it
turns out that the universal covering S̃? of S? is obtained by moving S̃ in its past along rays
of length π/2.

By [6] the distance from S̃ to the past boundary of the convex core is less than π/2, so
S̃? is contained in the past of the convex core. This forces S̃? (and, as a consequence, S?) to
be future convex.

2.7. Constant curvature foliations in MGH AdS3 manifolds

An important fact used below is the existence of a foliation of the complement of the
convex core of an MGH AdS3 manifold by surfaces of constant curvature. This is described
in the following result obtained by Barbot, Béguin and Zeghib.

T 2.5 (Barbot, Béguin, Zeghib [3]). – Let N be an MGH AdS3 manifold, and
let K ∈ (−∞,−1). There is a unique past-convex (resp. future-convex) closed space-like
surface in the future (resp. past) of the convex core, with constant curvatureK. Those surfaces
form a foliation of the complement in N of the convex core.

Similar statements hold in the de Sitter and the Minkowski case, see [3].
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2.8. The landslide flow

The landslide flow can be defined in at least three related ways, each of which can be
convenient in some cases:

– in terms of harmonic maps and holomorphic quadratic differentials,
– using minimal Lagrangian maps,
– in terms of 3-dimensional globally hyperbolic AdS manifolds.

We briefly recall here two definitions, one in terms of minimal Lagrangian maps, the other
in terms of 3-dimensional AdS manifolds. More details can be found in [8].

Let h, h? be two hyperbolic metrics on S. We have recalled above that there is a unique
minimal Lagrangian map m : (S, h) → (S, h?) isotopic to the identity. This map can be
decomposed as m = f? ◦ f−1, where f : (S, c) → (S, h) and f? : (S, c) → (S, h?)

are harmonic maps isotopic to the identity, for the conformal structure c on S, and f and
f? have opposite Hopf differentials ϕf and ϕf? = −ϕf . For each eiθ ∈ S1, there is a
unique hyperbolic metric hθ on S such that eiθϕf is the Hopf differential of the harmonic
map isotopic to the identity from (S, c) to (S, hθ), and a unique hyperbolic metric h?θ such
that−eiθϕf is the Hopf differential of the harmonic map isotopic to the identity from (S, c)

to (S, h?θ). Then (hθ, h
?
θ) = Leiθ (h, h?) is the image of (h, h?) by the landslide flow with

parameter eiθ.
In terms of anti-de Sitter geometry, the definition is the following. Let again h, h? be

hyperbolic metrics on S and let eiθ ∈ S1. There is a unique equivariant embedding of S̃
in AdS3 with induced metric cos2(θ/2)h̃ and third fundamental form sin2(θ/2)h̃?. The
corresponding representation ρ : π1S → Isom(AdS3) is the holonomy representation of an
MGH AdS3 manifold N (so that N contains a space-like surface isometric to cos2(θ/2)h

with third fundamental form equal to sin2(θ/2)h?). Then (hθ, h
?
θ) are the left and right

hyperbolic metrics of N .

2.9. Hyperbolic ends

An example of a hyperbolic end is an end of a quasifuchsian hyperbolic manifold, that is,
a connected component of the complement of the convex core in a quasifuchsian manifold.
More generally, a hyperbolic endM is a 3-dimensional manifold homeomorphic to S×R>0,
with a non-complete hyperbolic metric g such that:

– g is complete on the end of S × R>0 corresponding to infinity,
– (M, g) has a metric completion for which the boundary corresponding to S ×{0} is a

concave pleated surface.

Hyperbolic ends will appear in relation to the smooth grafting map, which is to landslides
as the grafting map is to earthquakes.

A key result that we will use is that any hyperbolic end has a unique foliation by constant
curvature surfaces, with the curvature varying between −1 (close to the pleated surface
boundary) to 0 (near the complete boundary), see [29].

Given a hyperbolic end M , its boundary at infinity is the connected component of its
boundary corresponding to S × {∞}. This boundary at infinity ∂∞M is the quotient of a
domain in CP1 = ∂∞H3 by an action of π1S by complex projective transformations, so that
∂∞M is endowed with a complex projective structure.
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2.10. The smooth grafting maps

We will consider two versions of smooth grafting:

– the map SGr′ : R>0 × T × T → C P sending two hyperbolic metrics and a real
parameter to a complex projective structure on S,

– the map sgr′ : R>0 × T × T → T which is the composition of SGr′ with the
projection from C P to T sending a complex projective structure to the underlying
complex structure.

The map SGr′ can be defined using 3-dimensional geometry as follows. Let again
h, h? ∈ T be two hyperbolic metrics on S, and let s > 0. Up to global isometry there
is a unique equivariant convex embedding of S̃ in H3 such that the induced metric is
cosh2(s/2)h̃ and the third fundamental form is sinh2(s/2)h̃?. The corresponding represen-
tation is the holonomy representation of a hyperbolic end M (so that M contains a convex
surface with induced metric cosh2(s/2)h and third fundamental form sinh2(s/2)h?). We
define SGr′s(h, h

?) as the complex projective structure on ∂∞M .

3. First order computations

Let us fix a normalized pair of hyperbolic metrics (h, h?) and denote by J , J? the corre-
sponding complex structures. Let us fix also a holomorphic quadratic differential ϕ ∈ Q(J)

and let us consider the family of hyperbolic metrics

(6) ht = tϕ+ e(t)h+ tϕ̄

given by (5).

We will denote by αt the positive self-adjoint operator such that

ht = h(αt•, αt•) .

Notice that

(7) α2
t = e(t)1+ 2tνϕ .

Moreover we will denote by bt the Labourie operator of the pair (ht, h
?). Let us stress that

in general (ht, h
?) is not a normalized pair of hyperbolic metrics, so h?t = ht(bt•, bt•) does

not coincide with h?, but there is a continuous family of diffeomorphisms mt : S → S such
that

(8) h?t = m∗t (h
?) .

In this section we will point out some relations between the first variation αt and the first
variation of bt. This technical computation will be the key tool to prove Theorems 1.3 and 1.4.
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3.1. First order variation of αt

Denote by α̇ the derivative of αt at t = 0. By (7) we simply see that

(9) α̇ = νϕ .

In particular we deduce that α̇ is a self-adjoint operator such that

(10) trα̇ = 0 , d∇α̇ = 0 .

R 3.1. – The computation we will make in this section only depends on the
properties above of α̇. That is, the results of this section are valid for any family of hyper-
bolic metrics ht = h(α′t•, α′t•) supposing that α̇′ verifies (10).

On the other hand, in order to compute the Hessian of F with respect to the Weil-
Petersson metric, it will be necessary to use the deformation given by (6).

3.2. First order variation of the area form of ht

Let dat = daht denote the area form of ht and let d
dt (dat) be its time-derivative. Since we

have
dat = det(αt)dah ,

we easily deduce that

L 3.2. – We have d
dt (dat) = tr(α−1

t α̇t)dat.

Notice in particular that d
dt (dat)|t=0 = 0.

3.3. First order variation of b

In order to get information about ḃ at t = 0 we will differentiate the identities satisfied
by bt. In particular we have

– det bt = 1,
– bt is ht-self-adjoint,
– d∇

t

bt = 0, where ∇t is the Levi-Civita connection for ht,
– ht(bt•, bt•) = m∗t (h

?), wheremt is a smooth family of diffeomorphisms of S such that
m0 = 1.

Differentiating the first identity, we get

(11) tr(b−1ḃ) = 0 .

About the second property, notice that the fact that bt is ht-self-adjoint is equivalent
to requiring that tr(Jtbt) = 0, where Jt is the complex structure compatible with ht.
Differentiating this identity and using that Jt = α−1

t Jαt, and that Jα̇ = −α̇J one finds:

L 3.3. – We have tr(Jḃ) = −2tr(Jα̇b).

In order to get the infinitesimal information by the last properties it is convenient to
introduce the operator ψt = αtbt. Notice that we have

(12) h?t = h(ψt, ψt) ,

and the infinitesimal deformation of ψ at t = 0 is simply ψ̇ = α̇b+ ḃ.
By the fact thath?t is a trivial family of hyperbolic metrics we deduce the following relation.
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L 3.4. – There exist a family of vector fieldsZt on S and a family of functions rt on S
such that

(13) ∇?,tZt + rtJ
?
t = ψ−1

t ψ̇t

where J?t is the complex structure for h?t and∇?,t is the Levi-Civita connection of h?t .

Proof. – By (12),

ḣ?t = h(ψ̇t•, ψt•) + h(ψt•, ψ̇t) = h?(ψ−1
t ψ̇t•, •) + h?(•, ψ−1

t ψ̇t•) .

On the other hand, let us consider the field

Zt(p) = dp(m
−1
t )

(
∂mt(p)

∂t

)
.

By (8), we have
ḣ?t = h?t (∇?,tZt, •) + h?t (•,∇?,tZt)

from which we obtain that the difference ∇?,tZt − ψ−1
t ψ̇t is h?t -skew-symmetric, and the

conclusion follows.

Notice that at t = 0 we have ψ0 = b so we deduce that ∇?Z0 + r0J
? = b−1ψ̇. It can be

shown that∇? = b−1∇b (see [8, Lemma 3.3] in the case θ = π), whereas J? = b−1Jb. So we
can rewrite the identity above in the form

(14) ψ̇ = ∇Y + rJb ,

where we have put Y = bZ0 and r = r0.
Finally differentiating the identity d∇

t

bt = 0 at t = 0, we get:

L 3.5. – We have d∇(ψ̇) = 0.

The proof of Lemma 3.5 given below is based on the computation of d∇
t

, which relies on
the following two results.

L 3.6. – There exists a family of vector fields Vt on S such that for v, w ∈ TS, we
have (d∇αt)(v, w) = dah(v, w)Vt with V0 = V̇0 = 0.

Proof. – On a point p ∈ S take any h-orthonormal basis e1, e2 of TpS. Then putting
Vt(p) = (d∇αt)(e1, e2), it follows that

(d∇αt)(v, w) = dah(v, w)Vt(p)

for every v, w ∈ TpS. Clearly Vt smoothly depends on p and t. Since α0 = 1, V0 vanishes
everywhere. On the other hand, by the linearity of d∇ we have

d∇α̇ = dah ⊗ V̇0 ,

and by (10) we deduce that V̇0 vanishes everywhere.

L 3.7. – Let∇t be the Levi-Civita connection of the metricht. If v, w are vector fields
on S we have

∇tvw = α−1
t ∇tv(αw) + ht(Wt, v)Jt(w)

where Jt is the complex structure compatible with ht,Wt = det(α−1
t )α−1

t Vt, and Vt is the field
defined in Lemma 3.6.
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Proof. – Notice that the connection α−1
t ∇(αt•) is compatible with the metric ht but is

not symmetric (since we are not assuming thatαt is a solution of the Codazzi equation for h).

In particular, the difference

T (v, w) = ∇tvw − α−1
t ∇v(αtw)

is a vector-valued 2-form such that T (v, •) is ht-skew-symmetric. That is, there exists a
1-form ζ such that T (v, w) = ζ(v)Jtw. On the other hand an explicit computation shows
that

T (v, w)− T (w, v) = −α−1
t (d∇αt)(v, w) = −dah(v, w)α−1

t Vt .

If (e1, e2) is a positive ht-orthonormal basis, we have ζ(e1)Jt(e2) − ζ(e2)Jt(e1) =

−dah(e1, e2)α−1
t Vt, that is

ζ(e1)e1 + ζ(e2)e2 = Wt ,

so ζ(ei) = ht(ei,Wt) and the result follows.

Proof of Lemma 3.5. – Take two vector fields v, w on S, and consider the identity

∇tvbt(w)−∇twbt(v)− bt([v, w]) = 0.

By Lemma 3.7, we can rewrite this identity as

0 = α−1
t (∇v(αtbt(w))−∇w(αtbt(v))− αtbt([v, w])) + ht(Wt, v)Jt(w)− ht(Wt, w)Jt(v)

= α−1
t d∇(αtbt)(v, w) + ht(Wt, v)Jt(w)− ht(Wt, w)Jt(v).

Since V0 = V̇0 = d∇ψ0 = 0 we haveW0 = Ẇ0 = 0, so differentiating the last identity at t = 0

we have

d∇(ψ̇) = 0 .

Lemma 3.5 implies the following interesting relation between the field Y and the func-
tion r appearing in (14).

L 3.8. – We have

JY = b−1 grad r .

Proof. – Take a positive h-orthonormal basis (e1, e2) of TpS. By Lemma 3.5 we have that
d∇(∇Y + rJb) = 0. It follows that

d∇(∇Y )(e1, e2) + d∇(rJb)(e1, e2) = 0 .

We have (d∇∇Y )(e1, e2) = R(e1, e2)Y = JY . On the other hand, since d∇(Jb) =

Jd∇b = 0,

d∇(rJb)(e1, e2) = dr(e1)Jbe2 − dr(e2)Jbe1 = JbJ(dr(e1)e1 + dr(e2)e2) = JbJ grad r = −b−1 grad r ,

and the conclusion follows.
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3.4. The function F and its variation

We consider on M−1 × M−1 the function

F̃ (h, h?) =

∫
tr(b)dah ,

where b is the Labourie operator of the pair (h, h?). Clearly F̃ is invariant by the action
of Diffeo0 ×Diffeo0, so it induces a smooth function

F : T × T → R .

In this section we will compute the derivative of the function Ft := F ([ht], [h
?]) with respect

to t.

P 3.9. – The first-order derivative of Ft is

(15) Ḟt =

∫
S

[
tr(bt)tr(α−1

t α̇t)− tr(α−1
t α̇tbt)

]
dat .

In particular, at t = 0,

Ḟ = −
∫
S

tr(α̇b)dah .

Proof of Proposition 3.9. – We want to compute

(16) Ḟt =

∫
S

tr(ḃt)dat + tr(bt) ddt (dat) .

Since ψt = αtbt, Equation (13) can be rearranged as

ψ̇t = αt∇t(btZt) + rtαtJtbt .

In particular,

ḃt = −α−1
t α̇tbt +∇t(btZt) + rtJtbt.

Since bt is ht-self-adjoint tr(Jtbt) = 0, and so tr(rtJtbt) = 0.

Moreover, tr(∇t(btZt)) = divt(btZt) and so∫
S

tr(∇t(btZt))dat =

∫
S

divt(btZt)dat = 0 .

But d
dt (dat) = tr(α−1

t α̇t)dat by Lemma 3.2, so we obtain that

(17) Ḟt =

∫
S

[
tr(bt)tr(α−1

t α̇t)− tr(α−1
t α̇tbt)

]
dat .

By (10), at time t = 0 we obtain

(18) Ḟ = −
∫
S

tr(α̇b)dah .

R 3.10. – Formula (15) holds for any family of deformations ht of the metric h,
even without assuming (10). Notice indeed that both the proofs of Proposition 3.9 and
Lemma 3.4 do not make use of this hypothesis.
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4. The landslide flow is Hamiltonian

Let F be the function on T × T defined in Section 3. The goal of this section is to show
that 1

4F is the Hamiltonian of the landslide flow with respect to the product symplectic form
ωWP,1 + ωWP,2 introduced in Theorem 1.3 .

If (X,X?) ∈ Th T ⊕ Th? T is the generator of the landslide flow at the point (h, h?), we
need to prove that it coincides with the symplectic gradient of F/4 at ([h], [h?]).

This is equivalent to showing thatX coincides with the symplectic gradient ofF (•, [h?])/4
at the point h for ωWP , and analogously that X? is the symplectic gradient of F ([h], •)/4
at h?.

By a simple symmetry argument, it is sufficient to check the first point. In particular, given
any tangent vector v ∈ T[h] T we need to show that

(19) ωWP (X, v) =
1

4
d(F (•, [h?]))(v) .

Now, there exists a holomorphic quadratic differential ϕ such that v = [νϕ]. Let J̇ϕ be
the first order variation associated with this Beltrami differential νϕ, and let J̇X ∈ TJ A be
the first order variation of the complex structure corresponding to the landslide deformation
of the metric ht = h(βt•, βt•) with βt = cos(t/2)1 + sin(t/2)Jb. Notice that dπ(J̇ϕ) = v

and dπ(J̇X) = X so by (4) we have that

ωWP (X, v) =
1

8

∫
S

tr(JJ̇HX J̇
H
ϕ )dah .

Now by (1), J̇ϕ = 2Jνϕ = −2νϕJ , whereas J̇X = 1
2 (JJb − JbJ). In particular, since J̇ϕ is

horizontal, we get

(20) ωWP (X, v) =
1

8

∫
S

tr(JJ̇X J̇ϕ)dah = −1

4

∫
S

tr(bνϕ)dah .

To compute the right-hand side of (19), we can consider the path of metrics
ht = tϕ+ e(t)h+ tϕ̄ as in (6). Then we have

d(F (•, [h?]))(v) =
dF ([ht], [h

?])

dt
(0) .

With the notations of Section 3, Proposition 3.9 implies that

d(F (•, [h?]))(v) = −
∫
S

tr(α̇b)dah .

By (9), comparing this identity with (20), we get (19).

Because the vector fieldX only vanishes at h?, we also obtain the following result (already
proven by Tromba [46] using the energy function).

C 4.1. – F (•, [h?]) is a proper real-analytic function with a unique critical point
at [h?] ∈ T , which is actually the absolute minimum. Hence, T is diffeomorphic to an open ball.
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5. Convexity of F

The main aim of this section is to show that the function F : T × T → R is convex on
each factor with respect to the Weil-Petersson metric. We then briefly explain an application
to a new proof of the Nielsen realization theorem.

5.1. Convexity

In [49], it has been shown that the family of metrics ht introduced in (6) determines a path
in T which isWP -geodesic at t = 0. So fixingh?, the Hessian of the functionF (•, h?) at [h] is
determined by

Hess(F (•, [h?]))([νϕ], [νϕ]) =
d2Ft
dt2

(0) ,

where Ft = F ([ht], [h
?]).

Using the notations of Section 3, by differentiating Equation (17), we have

F̈t =

∫
S

[
tr(ḃt)tr(α−1

t α̇t) + tr(bt)tr[α−1
t α̈t − (α−1

t α̇t)
2] + tr[(α−1

t α̇t)
2 − α−1

t α̈t)bt]− tr(α−1
t α̇tḃt)

]
dat

+

∫
S

(tr(bt)tr(α−1
t α̇t)− tr(α−1

t α̇tbt))
d
dt (dat) .

We have already seen that d
dt (dat) = 0 at time t = 0. So, at time t = 0, we obtain

(21) F̈ =

∫
S

[
tr(b)tr(ξ)− tr(ξb)− tr(α̇ḃ)

]
dah ,

where ξ := α̈− α̇2.
Since α̇ is self-adjoint and traceless we deduce that α̇2 is a non-negative multiple of the

identity. On the other hand, by comparing the relation ht = h(αt, αt) with (6) we get

ë(0)h = ḧ = 2h((α̇2 + α̈)•, •),

so we deduce that

(22) α̇2 + α̈ =
1

2
ë(0)1 .

In [49], the function e(t) has been computed up to the second order. More precisely, if in
local conformal coordinates ϕ = ϕ(z)dz2 and h = h(z)|dz|2, then we have

(23) e(t) = 1 + t2
(
|ϕ(z)|2

h(z)2
+ 2(2−∆)−1 |ϕ(z)|2

h(z)2

)
+O(t3) .

With the real notation,
|ϕ(z)|2

h(z)2
= |νϕ|2 = tr(α̇2)/2. So we can rewrite (23) as

(24)
1

2
ë(0) = |νϕ|2 + 2(2−∆)−1(|νϕ|2) .

Using (24) in (22) we have

α̈ = 2(2−∆)−1(|νϕ|2)1 .

In particular the operator ξ in (21) is equal to ξ = [2(2−∆)−1(|νϕ|2)− |νϕ|2]1. Since ξ is a
multiple of the identity, we have that

(25) tr(b)tr(ξ)− tr(bξ) = tr(bξ) = tr(b(α̈− α̇2)) .
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In order to conclude the computation we need to estimate the integral of the term tr(α̇ḃ)
appearing in (21).

P 5.1. – We have

(26)
∫
S

tr(α̇ḃ)dah = −
∫
S

tr(α̇2b)dah −
∫
S

h(grad r, b−1 grad r)dah −
∫
S

r2tr(b)dah .

In particular

(27)
∫
S

tr(α̇ḃ)dah ≤ −
∫
S

tr(α̇2b)dah .

Proof. – Multiplying the identity (14) by α̇ and taking the trace, we get

(28) tr(α̇ḃ) = −tr(α̇2b) + tr(α̇∇Y ) + tr(rα̇Jb) .

Since α̇ solves the Codazzi equation d∇α̇ = 0 we have α̇∇Y = ∇(α̇Y ) −∇Y α̇. Taking the
trace and considering that trα̇ = 0, it results that

tr(α̇∇Y ) = div(α̇Y ) .

On the other hand, multiplying the identity (14) by J we get

Jḃ+ Jα̇b = ∇(JY )− rb .

Taking the trace and using Lemma 3.3 we have tr(Jα̇b) = −div(JY ) + rtr(b). Using again
that α̇J = −Jα̇ we get

tr(α̇Jb) = div(JY )− rtr(b) .

In particular replacing this identity in (28) we obtain that

tr(α̇ḃ) = −tr(α̇2b) + div(α̇Y ) + rdiv(JY )− r2trb .

Integrating, it results that∫
S

tr(α̇ḃ)dah = −
∫
S

tr(α̇2b)dah −
∫
S

h(grad r, JY )dah −
∫
S

r2tr(b)dah .

By Lemma 3.8, h(grad r, JY ) = h(grad r, b−1 grad r) > 0, so the result easily follows.

Proof of Theorem 1.4. – Using (26) in (21) and taking into account (25) we get

F̈ =

∫
S

[tr(b(α̈− α̇2)) + tr(bα̇2)]dah +

∫
S

h(grad r, b−1 grad r)dah +

∫
S

r2tr(b)dah

=

∫
S

tr(bα̈)dah +

∫
S

h(grad r, b−1 grad r)dah +

∫
S

r2tr(b)dah .

In particular, we deduce that

F̈ ≥
∫
S

tr(bα̈)dah =

∫
S

2(2−∆)−1(|νϕ|2)tr(b)dah .

Now, let ϕ 6= 0 and put u := (2−∆)−1(|νϕ|2). We have that 2u−∆u = |νϕ|2 and, by the
maximum principle, u > 0 (since |νϕ|2 is positive). Hence, F̈ is positive.

A simple case is where h = h?. In this case it is not difficult to check that r = 0 and b = 1.
Then we simply get

F̈ =

∫
S

4u dah =

∫
S

2(|νϕ|2 + ∆u)dah =

∫
S

|νϕ|2dah = 2gWP (ϕ,ϕ) .
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5.2. An application to the Nielsen realization problem

As a direct consequence of the convexity and properness of the function F (h, •), we give
here a new proof of the Nielsen realization theorem (proved first by Kerckhoff [23]): any finite
subgroup Γ of the mapping class group can be realized as the isometry group of a hyperbolic
surface.

Consider h ∈ T , and let

FΓ =
∑
γ∈Γ

F (γ.h, •) ,

where Γ acts on T in the usual way (by composition). According to Proposition 1.2, FΓ is a
sum of proper functions, so it is proper. Therefore it has a minimum.

We now show that by contradiction this minimum is unique. Suppose that x, y are two
distinct minima of FΓ. There would then exist a Weil-Petersson geodesic segment c from x

to y, see [53]. The restriction ofFΓ to cwould be strictly convex by Theorem 1.4, with minima
at x and y, a contradiction. So Fγ has a unique fixed point x0.

Now by construction FΓ is invariant under the action of Γ, so x0 is also invariant under
the action of Γ. The result follows.

6. Smooth grafting

We now turn to the smooth grafting map, and to the proof of Theorem 1.8.

6.1. Notation and hypotheses

Fix a point [h] in Teichmüller space, where h is a hyperbolic metric on S. Fix also s > 0

and consider a one-parameter family t 7→ bt of h-Labourie operators, that gives a family of
hyperbolic metrics h?t = h(bt•, bt•).

The smooth grafting sgr′s(h, h
?
t ) is represented by the metric h#

t = h(βt, βt), where

βt = cosh(s/2)1+ sinh(s/2)bt .

We will show that the map

sgr′s(h, •) : T −→ T

is surjective.

More precisely we will show the following results:

(a) sgr′s(h, •) is proper;
(b) the degree of the map sgr′s(h, •) : T → T is 1.

Surjectivity is an immediate consequence of (b). Notice that (a) is needed to define the
degree of the map sgr′s(h, •).
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6.2. The map sgr′s(h, •) is proper

Let [h?n] be a divergent sequence in T and let J#
n be the complex structure associated

to h#
n . We want to show that J#

n is a diverging sequence in T . The proof is based on the
following lemma.

N. – Let f : S → S be any smooth map. For any two metrics g, g′ on S, denote
by E(f ; g, g′) the energy of f regarded as a map f : (S, g) → (S, g′). Since E(f ; g, g′) is
invariant by conformal deformations of g, we sometimes replace g by its underlying confor-
mal structure.

L 6.1. – Let h be a hyperbolic metric and let s > 0. Given a h-Labourie operator b,
call βc = 1+ b and β = cosh(s/2)1+ sinh(s/2)b, and consider the metrics hc = h(βc•, βc•)
and h# = h(β•, β•). Then

E(f ;hc, h) < τ−1E(f ;h#, h)

where τ = tanh(s/2), for any smooth map f : S → S.

Proof. – Notice that h = hc(γ, γ) with γ = β−1
c β and that

(29) dahc ≤ τ−1 cosh−2(s/2)dah#

as τ det(βc) = τ(2 + tr(b)) ≤ 1 + τ2 + tr(b) = cosh−2(s/2) det(β).

Now if α is the h#-self-adjoint operator such that

f∗(h) = h#(α•, α•)

we have that f∗(h) = hc(γα•, γα•), and so

e(f ;h#, h) =
1

2
tr(α2) , e(f ;hc, h) =

1

2
tr((γα)†γα)

where † denotes the adjoint with respect to hc. Notice that the eigenvalues of γ are less
than cosh(s/2) everywhere and so hc(γv, γv) < cosh2(s/2)hc(v, v) for every nonzero
tangent vector v. Indeed if k is the biggest eigenvalue of b, then the eigenvalues of γ are
cosh(s/2) 1+τk

1+k and cosh(s/2) τ+k
1+k . It easily follows that

e(f ;hc, h) < e(f ;h#, h) .

This inequality with (29) implies the statement.

Now, let βcn = 1 + bn and hcn = h(βcn•, βcn•), and consider the smoothly grafted
metric h(β#

n •, β#
n •), where β#

n = cosh(s/2)1 + sinh(s/2)bn, defining the conformal
class J#

n .

By Lemma 6.1 applied to the unique harmonic map fn : (S, J#
n )→ (S, h) isotopic to the

identity, we have

E(id; cn, h) ≤ E(fn; cn, h) ≤ τ−1E(fn;h#
n , h) .

So, as h?n is diverging, cn is diverging too and E(id; cn, h) → ∞. As a consequence,
E(fn;h#

n , h) → ∞, which implies that the isotopy class of the underlying complex struc-
ture [J#

n ] is diverging in T (see [49]).
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6.3. The degree of sgr′s(h, •)

In this section we will compute the topological degree of the map

G := sgr′s(h, •) : T → T

and we will prove that it is equal to 1.

In fact we will prove that G−1(h) = {h} and that the map G is locally invertible around h.

L 6.2. – If h# = sgr′s(h, h
?) represents the same point in T as h, then h? = h.

This lemma is a simple consequence of the following statement.

P 6.3. – Let ĥ be the unique hyperbolic metric in the conformal class of h#.
Then F ([ĥ], [h?]) ≤ F ([h], [h?]) and the equality holds iff h = h?.

Proof. – By [8] we have that

F ([ĥ], [h?]) = inf
[h′]∈ T

E([h′], [ĥ]) + E([h′], [h?]) ≤ E([c], [ĥ]) + E([c], [h?])

so we only need to show that E([c], [ĥ]) ≤ E([c], [h]) = E([c], [h?]) and that the equality
holds only if h = h?.

Let us set ĥ = e2uh# for some function u on S. Since the operator βτ = 1+ τb is a self-
adjoint solution of the Codazzi equation, the curvature of h# is K# = −det(βτ )−1. Notice
that detβτ = 1 + τ2 + τ trb ≥ (1 + τ)2 so K# ≥ −(1 + τ)−2 and the equality holds only at
points where b = 1.

The Liouville equation reads

∆h#u = e2u +K# ≥ e2u − (1 + τ)−2 .

By the maximum principle we deduce that

(30) e2u ≤ (1 + τ)−2 ,

and if the equality holds at some points, then b = 1 everywhere.

Now we have ĥ = e2uhc((1+ b)−2(1+ τb)2•, •), so

E(id; c, ĥ) =
1

2

∫
S

e2utr[(1+ τb)2(1+ b)−2] det(1+ b)dah .

On the other hand

det(1+ b)tr[(1+ τb)2(1+ b)−2] = det(1+ b)−1tr[(1+ τb)2(1+ b−1)2]

where the last equality holds since det b = 1. But we have

(1+ τb)2(1+ b−1)2 = [(1 + τ)1+ τb+ b−1]2

= (1 + τ)21+ (τb)2 + b−2 + 2(1 + τ)τb+ 2(1 + τ)b−1 + 2τ1 .

Taking the trace we deduce that

tr[(1+ τb)2(1+ b−1)2] = (1 + τ)2[2 + 2tr(b) + tr(b2)]− τ [tr(b2)− 2] .
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Using (30) in this identity, we obtain

E([c], [ĥ]) ≤ E(id, c, ĥ) =
1

2

∫
S

e2utr[(1+ τb)2(1+ b)−2] det(1+ b)dah

(31)

≤ 1

2

∫
S

{
[2 + 2tr(b) + tr(b2)]− 2τ(1 + τ)−2[tr(b2)− 2]

}
det(1+ b)−1dah .

On the other hand,

E([c], [h]) = E(id; c, h) =
1

2

∫
S

tr[(1+ b)−2] det(1+ b)dah

=
1

2

∫
S

tr[(1+ b−1)2] det(1+ b)−1dah =
1

2

∫
S

tr[1+ 2b−1 + b−2] det(1+ b)−1dah

=
1

2

∫
S

[2 + 2tr(b) + tr(b2)] det(1+ b)−1dah .

Comparing this identity with (31), we get that

E([c], [ĥ]) ≤ E([c], [h])− τ(1 + τ)−2

∫
[tr(b2)− 2] det(1+ b)−1dah ,

and this completes the proof.

In order to conclude that the topological degree of G = sgr′s(h, •) is 1, it is sufficient to
prove that d G at [h] is non-degenerate.

Consider a one-parameter family of Labourie operators t 7→ bt such that b0 = 1 and
ḃ is non-zero. Notice that ḃ is a traceless self-adjoint solution of the Codazzi equation.
Now consider the path of complex structure J̃t compatible with h̃#

t = h(βt, βt) and
βt = cosh(s/2)1+ sinh(s/2)bt.

Since J̃t = β−1
t Jβt, the derivative of J̃t at t = 0 is the traceless h-self-adjoint operator

˙̃
J = [J̃ , β̇] = 2Jḃ.

The derivative of the path [J̃t] ∈ T at t = 0 is the projection of ˙̃
J to T[J] T , through the

natural map A → T . By [15], Codazzi solutions in TJ A form a complement of the kernel

of the projection TJ A → T[J] T . Since ˙̃
J lies in this subspace, then it projects to a non-zero

vector.

6.4. Hyperbolic ends

In this section we use the parameterization of landslide and smooth grafting by the upper
half-plane, so that we use the notations SGr′ and sgr′ as in [8]. Recall from [8, Section 5] that
two smooth grafting maps can be considered. One, SGr′, takes its values in C P, the space of
complex projective structures on S, while the other, sgr′, goes to the Teichmüller space of S.

Given two hyperbolic metrics h, h? ∈ T and s > 0, there is a unique equivariant
embedding σ of the universal cover S̃ of S inside H3 with induced metric cosh2(s/2)h̃ and
third fundamental form sinh2(s/2)h̃?. Then SGr′s(h, h

?) is the complex projective structure
induced on S from the complex projective structure on ∂∞H3 by the hyperbolic Gauss map.
The complex structure sgr′s(h, h

?) is the complex structure underlying SGr′s(h, h
?).

The equivariant embedding σ is locally convex by the Gauss formula (the Gaussian
curvature of the induced metric is −1/ cosh2(s/2) > −1) so that the quotient of the
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image of σ by the image of its associated representation of π1S is a convex surface in
a hyperbolic end M . This hyperbolic end is uniquely determined by h, h? and s, and its
conformal structure at infinity is equal to sgr′s(h, h

?).

Proof of Theorem 1.9. – According to Theorem 1.8, the map sgr′s(h, •) : T → T is
surjective. This means precisely that, given h and c ∈ T , there is a h? ∈ T such that
sgr′s(h, h

?) = c, so that there is a hyperbolic end with complex structure at infinity c

containing a surface of constant curvature −1/ cosh2(s/2) with induced metric homothetic
to h.

We now recall briefly some key points concerning de Sitter domains of dependence, so
as to be able to prove Theorem 1.10. A de Sitter domain of dependence is a (non-complete)
3-dimensional manifold locally modeled on the de Sitter space, which is future-complete and
globally hyperbolic.

De Sitter domains of dependence are in one-to-one correspondence with hyperbolic ends.
One way to see this correspondence is that, given a hyperbolic end, there is a unique de Sitter
domain of dependence with the same fundamental group and the same representation of the
fundamental group into PSL(2,C).

However it is perhaps simpler here to characterize this correspondence in terms of convex
embedded surfaces. Let M be a hyperbolic end, and let S be a locally strictly convex surface
in M which bounds a convex domain. The universal cover S̃ of S is then a complete, locally
convex surface in H3 invariant under the action of the fundamental group of M . The dual
surface S̃? is then a strictly future-convex, space-like surface in the de Sitter space dS3, also
invariant under the action of the fundamental group of M but now considered as acting
on the de Sitter space. The action of π1S is free and properly discontinuous on a convex
domain C̃ in dS3 containing S̃?, and the quotient is the de Sitter domain of dependence C
corresponding to M .

The conformal structure at infinity of C is the same as the conformal structure at infinity
ofM . It can be defined in terms of the conformal structure at future infinity ofC, or in terms
of the quotient by π1S of the boundary at infinity of C̃ ⊂ dS3.

Proof of Theorem 1.10. – Let h?, h′ ∈ T , and letK? ∈ (−∞, 0). LetK := K?/(1−K?),
so that K ∈ (−1, 0) — thus, K is the curvature of a surface in H3 dual to a surface of
curvature K? in dS3. The second part of Theorem 1.8 implies that there exists h ∈ T such
that sgr′s(h, h

?) = h′, where s is chosen so that −1/ cosh2(s/2) = K.

This means precisely that there exists a hyperbolic end M containing a surface S with
constant curvature K, with induced metric homothetic to h, third fundamental form
homothetic to h?, and conformal structure at infinity equal to h′.

But then the de Sitter domain of dependence corresponding to M contains a sur-
face S?—dual to S—with constant curvature K?, induced metric proportional to h? and
third fundamental form proportional to h. This proves the theorem.
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7. The smooth grafting map is symplectic

In this section we consider symplectic properties of the smooth grafting map, and prove
Proposition 1.11 and Theorem 1.12. A key point in the proof of Proposition 1.11 will actually
be a consequence of the symplectic arguments occurring in the proof of Theorem 1.12.

7.1. The renormalized volume beyond a K-surface

A Poincaré-Einstein manifold is a manifoldM diffeomorphic to the interior of a compact
manifold with boundaryM , with a Riemannian metric gwhich is Einstein and can be written
near the boundary as

g =
g

ρ2
,

where g is a smooth metric onM and ρ is a smooth function onM vanishing on the boundary
and with ‖dρ‖g = 1 on ∂M . In dimension 3, Poincaré-Einstein manifolds are the same as
convex co-compact hyperbolic manifolds.

The volume of a Poincaré-Einstein manifold is always infinite. However it is possible to
define a “renormalized volume” which is finite and has interesting properties, see [18]. In even
total dimension, this renormalized volume is well-defined, while in odd total dimension it
depends on the choice of a metric in the conformal class at infinity.

For quasifuchsian manifolds, in total dimension 3, it makes sense to choose as the metric
at infinity the (unique) hyperbolic metric in the conformal class at infinity. The renormalized
volume which is then obtained is intimately related to the Liouville functional introduced by
Takhtajan and Zograf [54, 43] for the Schottky uniformization and for the punctured sphere,
later extended to higher genus surfaces [42].

Here we follow the analysis of the renormalized volume of hyperbolic 3-manifolds devel-
oped in [26, 28]. The argument we use is strongly related to that used in [27], so we only sketch
the main points. We consider a hyperbolic end M containing a convex surface S of constant
curvature, isotopic to the boundary at infinity.

Consider a foliation of a neighborhood of infinity in M by equidistant surfaces (Σt)t≥t0 ,
with all leaves between S and the boundary at infinity of M . Let It, IIt, IIIt and dat, respec-
tively, be the induced metric, second fundamental form, third fundamental form, and area
form of Σt, and by I, II, III and da the corresponding quantities on S. For both S and Σt we
use the unit normal pointing towards infinity inM when defining II. We also callH (resp.Ht)
the mean curvature of S (resp. Σt), that is, H = trIII.

D 7.1. – For all t ≥ t0 we denote by Vt the volume of the domain of M
bounded by S and Σt, and set

Wt = Vt −
1

4

∫
Σt

Htdat +
1

2

∫
S

Hda .

The following proposition is a direct consequence of the main result of [34].

P 7.2. – In a first-order deformation of M , the first-order variation of Wt is
given by:

(32)
dWt

dt
=

1

4

∫
Σt

(
dHt

dt
+ 〈dIt

dt
, IIt −

Ht

2
It〉
)
dat −

1

2

∫
S

〈dI
dt
, II −HI〉da .
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Proof. – According to [34, Theorem 1], in any first-order deformation of M ,

dVt
dt

=
1

2

∫
Σt

(
dHt

dt
+

1

2
〈dIt
dt
, IIt〉

)
dat −

1

2

∫
S

(
dH

dt
+

1

2
〈dI
dt
, II〉

)
da .

However an elementary computation shows that

d

dt

∫
S

Hda =

∫
S

(
dH

dt
+
H

2
〈dI
dt
, I〉
)
da ,

and similarly for Σt. The result follows by a simple computation.

C 7.3. – The derivative of Wt with respect to t is given by

dWt

dt
= −πχ(S) .

Proof. – Since the surfaces Σt are equidistant, we have

dIt
dt

= 2IIt ,
dBt
dt

= 1−B2
t ,

dHt

dt
= 2− tr(B2

t ) .

Replacing this in Equation (32) leads to

dWt

dt
=

1

4

(∫
Σt

2− tr(B2
t ) + 2tr(B2

t )−H2
t

)
dat =

1

2

∫
Σt

(1− det(Bt)) dat

=
1

2

∫
Σt

(−Kt)dat ,

where Kt is the curvature of It. The result follows by the Gauss-Bonnet formula.

D 7.4. – We define the renormalized volume above S by

W := Wt + πχ(S)t ,

which is clearly independent of the choice of t ≥ t0.

Note that W can be defined simply as W0 if t0 ≤ 0, however this is not always the case.
This quantity W depends only on the hyperbolic end M , on S, and on the equidistant

foliation of M near infinity. Below we defined another quantity W , depending only on M
and on S, obtained by taking a special, canonically defined foliation near infinity.

7.2. The data at infinity of a hyperbolic end

Recall that if Σ is a surface in hyperbolic 3-space, and if Σt is a surface at constant
distance t from Σ, the induced metric on Σt can be expressed in terms of the induced metric I
and the shape operator B of Σ as:

It(x, y) = I
(
(cosh(t)1+ sinh(t)B)x, (cosh(t)1+ sinh(t)B)y

)
.

It follows directly that the induced metrics It have a simple asymptotic development
as t→∞, which can be written as:

It = e2tI∞ + 2II∞ + e−2tIII∞ ,

where I∞, II∞ and III∞ are bilinear symmetric forms on S which can be expressed quite
simply in terms of It andBt for any given value of t. We call∇∞ the Levi-Civita connection
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of I∞, K∞ its curvature, B∞ : TS → TS the linear map which is self-adjoint for I∞ and
such that

II∞(x, y) = I∞(B∞x, y) ∀p ∈ S, ∀x, y ∈ TpS
and H∞ = tr(B∞).

The following lemma recalls some properties of this asymptotic expansion, details can be
found in [26, 28].

L 7.5. – 1. I∞ is in the conformal class at infinity of M .
2. I∞ and B∞ satisfy the Codazzi equation, d∇

∞
B∞ = 0, and a modified version of the

Gauss equation, K∞ = −H∞.
3. I∞ and II∞ together determine uniquely M .
4. Any metric I∞ in the conformal class at infinity of M is obtained from a unique foliation

of a neighborhood of infinity in M by equidistant surfaces.

A key point is that there are simple formulas relating the data It, Bt, IIt, IIIt on a surface Σt
to the corresponding data at infinity, see [26, Section 5] or [28]. This leads in particular to the
following analog of Proposition 7.2, see [26, Lemma 6.1].

P 7.6. – In a first-order deformation of M and of the foliation (Σt)t≥t0 , the
first-order variation of W is given by:

(33)
dW

dt
= −1

4

∫
∂∞S

(
dH∞
dt

+ 〈dI∞
dt

, II∞ −
H∞

2
I∞〉

)
da∞ −

1

2

∫
S

〈dI
dt
, II −HI〉da .

7.3. Smooth grafting is symplectic

Point (4) of Lemma 7.5 in particular is used in the next definition.

D 7.7. – We let W be the value ofW when the foliation (Σt)t≥t0 is the unique
foliation such that I∞ is the hyperbolic metric at infinity.

With this definition, Proposition 7.6 has a direct consequence. Let (II∞)0 be the traceless
part of II∞ (with respect to I∞).

P 7.8. – In a first-order deformation of M , the first-order variation of W is
given by

(34)
dW
dt

= −1

4

∫
∂∞S

〈dI∞
dt

, (II∞)0〉I∞da∞ −
1

2

∫
S

〈dI
dt
, II −HI〉IdaI .

Proof. – This follows directly from Proposition 7.6 using the fact that H∞ = −K∞ = 1,
that trI∞II∞ = H∞, and that trIII = H.

Both terms occurring in (34) can be interpreted in an interesting way.
We need to identify the image by d1F of a point (h, h?) ∈ T × T .

L 7.9. – Let (h, h?) ∈ T × T , and let b be the Labourie operator of (h, h?). Then
d1F (h, h?) = (h, β) ∈ T ∗ T , where β ∈ T ∗h T is defined, for any first-order variation ḣ of h, by

(35) β(ḣ) = −1

2

∫
S

〈ḣ, h(b•, •)− tr(b)h〉hdah .
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Proof. – If we put ht = h(αt, αt) with αt positive self-adjoint, then ḣ = 2h(α̇•, •).

In particular we have

1

2
〈ḣ, h(b•, •)− tr(b)h〉h = tr(α̇b)− tr(α̇)tr(b) .

The result then follows from (15) and Remark 3.10.

To give a geometric interpretation of this fact, we note that the smooth grafting map
SGr′s : T h × T h? → C P can be decomposed as follows. Let E be the space of hyperbolic
ends. There is a natural homeomorphism ∂∞ : E → C P sending a hyperbolic end to its
complex projective structure at infinity. Moreover, each hyperbolic end M ∈ E contains a
unique convex surface SM with constant curvature−1/ cosh2(s/2), and we can consider the
map κs : E → T h × T h? sending M to (h, h?), where h and h? are the hyperbolic metrics
homothetic respectively to the induced metric and to the third fundamental form of SM . By
construction, the following diagram commutes

E

∂∞
((

κs // T h × T h?

SGr′s
��

d1F // T ∗ T h

C P Sch // T ∗ T ∞

where Sch is the Schwarzian derivative with respect to the Fuchsian section.

D 7.10. – We denote by λ the Liouville form on T ∗ T .

We can now identify the second integral in (34).

C 7.11. – The pull-back of the Liouville form on T ∗ T h through
d1F ◦ κs : E→ T ∗ T h is given by

(d1F ◦ κs)∗λ =
1

sinh(s)

∫
S

〈δI, II −HI〉IdaI .

Proof. – This follows directly from Lemma 7.9, taking into account the homothetic
factors: I = cosh2(s/2)h, II = cosh(s/2) sinh(s/2)h(b•, •) and III = sinh2(s/2)h(b•, b•).

Finally we can identify the first integral in (34). The following lemma is another way to
state Lemma 8.3 in [26].

L 7.12. – The pull-back of the Liouville form of T ∗ T ∞ through the map
Sch ◦ ∂∞ : E→ T ∗ T ∞ is the 1-form given by

(Sch ◦ ∂∞)∗λ = −
∫
∂∞S

〈δI∞, (II∞)0〉I∞da∞ .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



848 F. BONSANTE, G. MONDELLO AND J.-M. SCHLENKER

Proof of Theorem 1.12. – Consider the two 1-forms defined on E by

η(M) =

∫
S

〈δI, II −HI〉IdaI , η∞(M) =

∫
∂∞M

〈δI∞, (II∞)0〉I∞daI∞ .

According to Proposition 7.8, we have on E

dW = −1

4
η∞ −

1

2
η ,

so that

dη∞ + 2dη = 0 .

However Corollary 7.11 shows that

2η = 2 sinh(s)(d1F ◦ κs)∗λ ,

while Lemma 7.12 indicates that

η∞ = −(Sch ◦ ∂∞)∗λ .

So

2 sinh(s)(d1F ◦ κs)∗λ = (Sch ◦ ∂∞)∗λ ,

and, calling ωcan = dλ the cotangent symplectic form on T ∗ T , we have

2 sinh(s)(d1F ◦ κs)∗ωcan = (Sch ◦ ∂∞)∗ωcan .

This proves the result.

7.4. Proof of Proposition 1.11

The proof of Proposition 1.11 is based on the following two lemmas.

L 7.13. – The differential of the map d1F : T × T → T ∗ T is an isomorphism at
each point.

L 7.14. – The map d1F : T × T → T ∗ T is proper.

It follows from Lemma 7.13 that d1F is a local homeomorphism. Since it is proper, it is a
covering. ButT ∗ T is simply connected and T × T is connected, so d1F is a homeomorphism.
This concludes the proof of the proposition.

We now turn to the proofs of those lemmas.

Proof of Lemma 7.13. – We have seen above that

dη∞ = −(Sch ◦ ∂∞)∗ωcan .

Since both Sch and ∂∞ are diffeomorphisms, it follows that dη∞ is non-degenerate.

However we have also seen that dη∞ + 2dη = 0, so that dη is also non-degenerate. Since

2dη = 2 sinh(s)(d1F ◦ κs)∗ωcan ,

and κs is onto, both d1F and κs have differentials of maximal rank at each point.
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Proof of Lemma 7.14. – Let (hn, h
?
n)n∈N be a diverging sequence in T × T . If hn

diverges, so does (d1F )(hn,h?n). Hence, up to extracting a subsequence, we can assume
that hn → h ∈ T and that θn`h?n → ι(λ, •), where θn → 0 and λ is a nonzero measured
lamination.

Now, the functions Fn = Fh?n : T → R determine a sequence (θnFn)n∈N that converges
to `λ, uniformly on the compact subsets of T . As the functions Fn and `λ are real-analytic,
the convergence is also C∞ on the compact subsets of T . Hence, θndhnFn → dh`λ and
so (d1F )(hn,h?n) = dhnFn diverges.

8. Extension to the boundary

Fix c ∈ T and let Qc be the space of holomorphic quadratic differentials on (S, c). Then
consider the Sampson-Wolf map

SWc : Qc −→ T

that assigns to q the class of the unique hyperbolic metric h = SWc(ϕ) such that the identity
id : (S, c)→ (S, h) is harmonic with Hopf differential equal to 1

4ϕ.

T 8.1 (Sampson [35], Wolf [49]). – The map SWc is a real-analytic diffeomor-
phism.

It is well-known since Thurston [14] that it is possible to produce a compactification T
of T by adding the space of projectively measured laminations PM L at infinity.

Here we recall that to every nonzero holomorphic quadratic differential ϕ on a Riemann
surface S we can attach a horizontal foliation F +(ϕ) (resp. vertical foliation F −(ϕ)) along
which ϕ restricts as a positive-definite (resp. negative-definite) real quadratic form, which is
singular at the points where ϕ vanishes. Moreover, F +(ϕ) (resp. F −(ϕ)) comes endowed
with a measure |Im√ϕ| (resp. |Re

√
ϕ|) transverse to its leaves. (A more extensive discussion

can be found in [41].)
To every measured foliation F one can associate a measured lamination, intuitively by

“straightening” the leaves of F to geodesics with respect to some hyperbolic metric. We
notice that the measured laminations λ±(ϕ) associated to F ±(ϕ) fill the surface in the
following sense.

D 8.2. – A couple (λ+, λ−) of measured laminations on S is filling
if i(λ+, µ) + i(λ−, µ) > 0 for every lamination µ 6= 0. We denote by F M L ⊂ M L × M L
the open locus of filling laminations.

The exact correspondence between holomorphic quadratic differentials and filling mea-
sured laminations relies on the following result.

T 8.3 (Hubbard-Masur [20]). – The map Q → F M L ∪ {0} defined as
ϕ 7→ (λ+(ϕ), λ−(ϕ)) is a homeomorphism.

In order to extend our construction to some boundary at infinity, the following result will
play a key role.
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T 8.4 (Wolf [49] [50]). – Let Qc be the compactification of Qc obtained by adding
the sphere at infinity ∂ Qc = ( Qc \ {0})/R+. Then SWc extends as a homeomorphism

SW c : Qc −→ T

by defining SW c([q]) = [ F −(q)] for every [q] ∈ ∂ Qc.

It will be more practical to work with a de-homogenized version of the above result.
Indeed, in Thurston’s picture the space Y = T × R<0 of metrics of constant negative
curvature on S (up to isotopy) can be completed as Y = ( M L × {−∞}) ∪ Y by adding
a copy of M L.

C 8.5. – The map ŜW c : Qc × [−∞, 0) −→ Y defined by

ŜW c(ϕ,K) =

{
(SWc(|K|ϕ),K) if K ∈ (−∞, 0),

( F −(ϕ),−∞) if K = −∞.

is a homeomorphism.

In order to study the behavior of the landslide flow as the metrics degenerate, we consider
the space DY = T × T ×R<0 of couple of metrics with the same constant negative curvature
on S (up to isotopy) and the partial completion DY = DY ∪ ( F M L × {−∞}).

Now consider the map ŜW : Q × [−∞, 0) −→ Y defined by

ŜW (c, ϕ,K) =

{
(SWc(|K|ϕ), SWc(−|K|ϕ),K) if K ∈ (−∞, 0),

( F −(ϕ), F +(ϕ),−∞) if K = −∞.

P 8.6. – The map ŜW is a homeomorphism.

We recall that the extremal length of cwith respect to λ depends real-analytically on c ∈ T
and it satisfies Extλ(c) = ‖ϕ‖ = 2E(c, λ), where E(c, λ) is the energy of the harmonic
map f from c to the R-tree dual to λ, and 1

4ϕ is the Hopf differential of f and also the unique
holomorphic quadratic differential on c with F −(ϕ) = λ (see for instance [50]).

L 8.7. – Given h′, h ∈ T , let E(h′, h) be the energy of the unique har-
monic map (S, h′)→ (S, h) isotopic to the identity. For every h, h? ∈ T , the function
E(•, h) + E(•, h?) : T → R+ is proper and achieves a unique minimum at the center c of
the couple (h, h?). Similarly, if (λ, µ) ∈ F M L, then the function Extλ + Extµ : T → R+ is
proper and achieves a unique minimum at c, where c is the conformal structure underlying the
Hubbard-Masur quadratic differential ϕ associated to (λ, µ).

Proof. – Properness of the energy function is proven in Proposition 1.2 and the remaining
part of the first claim can be found in Theorem 1.10(iv) of [8].

For the second statement, we have Extλ ≥ `2λ/(2π|χ(S)|) by the definition of extremal
length. As `λ + `µ is proper [24], the same holds for Extλ + Extµ. Moreover, Gardiner’s
formula [17] gives

dExtλ|•=c = −ϕ
2

where 1
4ϕ is the Hopf differential of the harmonic map from c to the R-tree dual to λ; in other

words, ϕ is also the unique holomorphic quadratic differential on c whose vertical foliation
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corresponds to λ. Thus, if dExtµ|•=c = − 1
2ψ, then c is a minimum if and only if ϕ = −ψ

and so µ corresponds to the horizontal foliation of ϕ. We conclude by Theorem 8.3.

R 8.8. – The previous argument also shows that the functionsE(•, h)+E(•, h?)
and Extλ + Extµ have a unique local minimum.

Proof of Proposition 8.6. – By the above corollary, ŜW is continuous. Moreover, ŜW is
bijective and its inverse can be described as follows.

Given (h, h?,K) with K ∈ (−∞, 0), we can assume that (h, h?) are normalized repre-
sentatives. Then we let c be the conformal structure underlying the metric h + h?, so that
id : (S, c) → (S, h) and id : (S, c) → (S, h?) have Hopf differentials 1

4ϕ and − 1
4ϕ. Finally,

ŜW
−1

(h, h?,K) = (c, |K|−1ϕ,K).

On the other hand, ŜW
−1

(λ, µ,−∞) = (c, ϕ,−∞), where ϕ is the Hubbard-Masur
c-holomorphic quadratic differential with F −(ϕ) = λ and F +(ϕ) = µ.

In order to show that ŜW is closed, we consider a sequence {(cn, ϕn,Kn)} in Q × [−∞, 0)

such that (hn, h
?
n,Kn) = ŜW (cn, ϕn,Kn) converges and we want to show that {(cn, ϕn,Kn)}

has an accumulation point. Let K = limn→∞Kn ∈ [−∞, 0).

Suppose thatK ∈ (−∞, 0) and (hn, h
?
n)→ (h, h?) ∈ T × T . Because harmonic maps and

minimal Lagrangian maps depend regularly on the metrics, cn = [hn + h?n]→ c = [h+ h?]

and ϕn → ϕ, where ϕ
4|K| is the Hopf differential of the harmonic map (S, c)→ (S, h).

Suppose now that K = −∞ and that |Kn|−1(hn, h
?
n) → (λ, µ) ∈ F M L. It follows

from [50] that the function E(•, |Kn|−1hn) converges C∞ on the compact subsets of T
to 1

2Extλ(•). By Lemma 8.7, the function Extλ(•) + Extµ(•) achieves a unique minimum
at the conformal structure c underlying the quadratic differential ϕ with foliations (λ, µ). By
the above remark, the minima cn of E(•, |Kn|−1hn) + E(•, |Kn|−1h?n) converge to c and
by [50] we conclude that ϕn → ϕ.

Proof of Proposition 1.14. – The landslide flow on T × T can be extended to DY as
Leiθ (h, h?,K) = (hθ, h

?
θ,K). It is immediate to see that ŜW conjugates this landslide flow

on DY with the flow eiθ · (cn, ϕn,K) = (cn, e
iθϕn,K) on Q × (−∞, 0) and so it extends

to Q × {−∞} ∼= F M L × {−∞}.

Proof of Proposition 1.15. – The function F on ∂ DY is given by F (λ, µ) = 2E(c, λ) =

2E(c, µ) = ‖ϕ‖, where 1
4ϕ is the Hopf differential of the harmonic map from c to the R-tree

dual to λ and ϕ is the quadratic differential corresponding to (λ, µ) and c is a conformal
structure underlying ϕ, and so F (λ, µ) = i(λ, µ).

Using charts of F M L given by couples of maximal recurrent (and transversely recurrent)
train tracks transverse to each other, the symplectic form ωTh,1 + ωTh,2 and the 1-form dF

have constant coefficients and so define a local Hamiltonian flow (in charts). We want to show
that this local flow is exactly the limit of the landslide flow.

Notice that F is real-analytic on T × T and so it extends as a C1 function to those
points F M Lmax of F M L that have a tangent space, namely to couples (λ, µ) of maximal
measured laminations, which represent a dense subset of full measure.
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From [32] and [40] it follows that K−2ωWP on Y = T × (−∞, 0) continuously extends
as Thurston’s symplectic form ωTh at those points of M L × {−∞} that represent maximal
measured laminations.

Thus, the vector field ω−1
WP ( 1

4dF,−) that generates the landslide flow converges almost
everywhere to ω−1

Th( 1
4dF,−). This implies that the landslide flow converges locally uniformly

to the flow locally determined by (ωTh,1 + ωTh,2)−1( 1
4dF,−) on F M L.

9. AdS geometry and composition of earthquakes

9.1. Dual constant curvature surfaces in AdS manifolds

D 9.1. – For any K < −1, set K? = −K/(K + 1).

Our first goal is to prove the special case of Theorem 1.16 when the curvatures of the future
and past surfaces satisfy the relation K+ = K?

−.

L 9.2. – Let N be an MGH AdS manifold, and let S+ and S− be the surfaces in N
with curvature K+ and K−, respectively, in the future and in the past of the convex core of N .
If K+ = −K?

− then S− is dual to S+ (and conversely). If we identify S+ to S− by the natural
duality map, then the third fundamental form of S+ is equal to the induced metric on S−, and
conversely.

Proof. – It follows from Lemma 2.4 that the surface dual to S+ is a future convex sur-
face S?+ in the past of the convex core of N . Point (3) of Lemma 2.3 then shows that S?+ has
constant curvatureK− = K?

+. But according to the main result of [3], there is a unique such
space-like surface of constant curvatureK− in the past of the convex core ofN , so S− = S?+.
Lemma 2.3 then shows that, under the identification of S+ with S− by the duality map, the
induced metric on S+ corresponds to the third fundamental form of S−, and conversely.

The special case of Theorem 1.16 directly follows.

L 9.3. – Let h+, h− ∈ T , and let K+,K− < −1 with K+ = K?
−. There exists a

unique MGH AdS manifoldN such that the past-convex surface of constant curvatureK+ inN
is homothetic toh+ while the future-convex surface of constant curvatureK− inN is homothetic
to h−.

Proof. – Given two hyperbolic metrics h+, h− ∈ T and two constants K−,K+ < −1

such that K− = K?
+, let I = (−1/K+)h+, III = (−1/K−)h−. Consider the identification

between (S, h−) and (S, h+) by the unique minimal Lagrangian map isotopic to the identity,
and let b be the Labourie operator such that h− = h+(b•, b•).

Let k =
√
−1−K+, and setB = kb. ThenB is self-adjoint for I, solution of the Codazzi

equation for I, and of the AdS Gauss equation det(B) = −1 − K+. So there exists an
equivariant embedding of the universal cover of (S, I) as a space-like, locally strictly convex
surface in AdS3 with shape operator equal to the lift of B to S̃. This implies that there is an
isometric embedding of (S, I) in an MGH AdS manifold N , with shape operator equal also
to B.
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The properties of the duality map in AdS3 then imply that the surface S? dual to S in N
has induced metric equal to III, in particular it has constant curvatureK− and is homothetic
to h−. This already shows the existence of N containing the required surfaces.

The uniqueness of N follows from the same arguments, and from the fact that any MGH
AdS manifolds contains a unique past-convex and a unique future-convex surface of any
given curvature in (−∞,−1), see [3], so that for anyK ∈ (−∞,−1), the past-convex surface
of constant curvatureK? is always dual to the future-convex surface of constant curvatureK.

9.2. AdS manifolds with constant curvature boundary

The more general part of Theorem 1.16 will follow from a compactness argument. We will
need the following elementary statement on the Teichmüller distance. Given a hyperbolic
metric h and a closed curve γ on S, we denote by `γ(h) the length of the geodesic for h
homotopic to γ.

L 9.4. – Let R > 1 and h ∈ T .

1. The set of hyperbolic metrics h′ on S such that, for all closed curve γ on S,
`γ(h′) ≤ R`γ(h), is compact.

2. Similarly, the set of metrics h′ on S such that, for all closed curves γ, `γ(h) ≤ R`γ(h′),
is compact.

Proof. – Recall that Thurston’s asymetric distance dTh(h, h′) between h and h′ is defined
as the log of the infimum of the Lipschitz constants over all smooth maps from (S, h)

to (S, h′) isotopic to the identity (see [45]). It can also be defined as the supremum of the
ratio of length for h and for h′ of closed curves on S, see [45]. It is known (see [33]) that,
if h is fixed, then dTh(h, h′n) → ∞ as h′n → ∞. This proves the first point. Similarly, if h′ is
fixed and hn →∞, then dTh(hn, h

′)→∞, and this proves the second point.

C 9.5. – Let R > 1 and C ⊂ T be compact. Let C ′ be the set of all
metrics h′ ∈ T such that `γ(h′) ≤ R`γ(h) (resp. `γ(h) ≤ R`γ(h′)) for some h ∈ C and
for all closed curve γ on S. Then C ′ is compact.

This corollary will be useful in conjunction which the following basic estimate from AdS
geometry.

L 9.6. – Let N be an MGH AdS manifold, let K < K ′ < −1, and let S, S′ be the
future-convex surfaces of constant curvatures K and K ′, respectively, in N . Let γ be a closed
geodesic in S. Then the length of γ is smaller than the length of the closed geodesic γ′ in S′

homotopic to γ.

Proof. – This follows from the elementary fact that, in a foliation of an AdS manifold by
future-convex surfaces (identified by the flow generated by the normal field), the metric is
decreasing when moving towards the past, see e.g., [5].
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C 9.7. – Let K−,K+ < −1 with K− < K?
+. Let N be an MGH AdS manifold

containing a past-convex surface S+ with induced metric (−1/K+)h+ and third fundamental
form (−1/K?

+)h?+, so that h+ and h?+ are hyperbolic metrics. Let h− (resp. h?−) be the
hyperbolic metric homothetic to the induced metric (resp. third fundamental form) of the future-
convex surface S− of constant curvature K−. Then

h− ≤
(
K−
K?

+

)
h?+ , h+ ≤

(
K+

K?
−

)
h?− ,

where the inequalities are understood in the sense of the length spectrum. Similarly ifK+ < K?
−

then

h+ ≤
(
K+

K?
−

)
h?− , h− ≤

(
K−
K?

+

)
h?+ .

D 9.8. – Let K−,K+ < −1. We denote by ΦK−,K+ : T × T → T × T the
map sending (hl, hr) to the hyperbolic metrics h−, h+ such that the MGH AdS manifold N
with left and right metrics hl and hr contains a past-convex surface of constant curvatureK+

with induced metric (−1/K+)h+, and a future-convex surface of constant curvature K−
with induced metric (−1/K−)h−.

It follows from Lemma 9.3 that ΦK−,K?
−

is a homeomorphism for allK− < −1. To prove
Theorem 1.16, we will show that ΦK−,K+ is “bounded” in a suitable sense by ΦK−,K?

−

or ΦK?
+,K+ .

C 9.9. – For all K−,K+ < −1, ΦK−,K+ is proper.

Proof. – We consider two cases, depending on whether K− is smaller or larger than K?
+.

Assume first thatK− < K?
+. Let DC ⊂ T × T be compact, and let C−, C+ be two compact

subsets of T such that DC ⊂ C− × C+. Suppose that ΦK−,K+(hl, hr) = (h−, h+) ∈ DC .
Then ΦK−,K?

−
(hl, hr) = (h−, h

?
−) with h+ ≤

(
K+/K

?
−
)
h?− by Corollary 9.7. It follows that

h?− is in a compact set C?− which depends only on C+ and on K+/K
?
− by Corollary 9.5.

Since ΦK−,K?
−

is a homeomorphism, Φ−1
K−,K?

−
( C− × C?−) is a compact subset DC ′

of T × T . By construction, (hl, hr) ∈ DC ′ whenever (h−, h+) ∈ DC . This shows that
ΦK−,K+

is proper.

The same argument proves the same result when K− > K?
+, except that in this case

h+ ≤
(
K+/K

?
−
)
h?− and the other inequality has to be used in Corollary 9.5.

Proof of Theorem 1.16. – As ΦK−,K+
is proper, its degree is well-defined for all

K−,K+ < −1. Moreover, it easily follows from the above corollary that, for every
Kmin < Kmax < −1, the map Φ : [Kmin,Kmax]2 × T × T → T × T defined as
Φ(K−,K+, hl, hr) := ΦK−,K+

(hl, hr) is proper. Hence, the degree of ΦK−,K+
does not

depend on the chosen (K−,K+), and in particular it coincides with the degree of ΦK−,K?
−

.
But we already know that ΦK−,K?

−
is a homeomorphism. Hence, for all K−,K+ < −1 the

map ΦK−,K+
has degree 1, and so it is onto. This proves the theorem.
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9.3. Prescribed third fundamental forms

Theorem 1.19 follows from Theorem 1.16 through the duality between constant curvature
surfaces in MGH AdS manifolds (see Lemma 2.4). In particular, if N is an MGH AdS
manifold containing a past-convex surface S+ of constant curvatureK+ with induced metric
homothetic to h+ and a future-convex surface S− of constant curvature K− and induced
metric homothetic to h−, then the surface S?+ dual to S+ is future-convex, has constant
curvature K?

+ and third fundamental form homothetic to h+, while the surface S?− dual
to S− has constant curvature K?

− and third fundamental form homothetic to h−.

9.4. Fixed points of compositions of landslides

We now turn to the proof of Theorem 1.7.
The relationship between constant curvature surfaces in MGH AdS manifolds and land-

slides is captured in the following statement, strongly analoguous to a well-known statement
for earthquakes, see [31, 2, 9].

L 9.10. – Let N be an MGH AdS manifold, with left and right hyperbolic
metrics hl, hr. Let K−,K+ < −1, and let S−, S+ be the future-convex and past-convex
surfaces with constant curvatures K− and K+, respectively. Let h−, h+ (resp. h?−, h

?
+) be the

hyperbolic metrics homothetic to the induced metrics (resp. third fundamental forms) on S−
and S+, respectively. Then

hl = L1
eit+ (h+, h

?
+) , hr = L1

e−it+ (h+, h
?
+) ,(36)

hl = L1
e−it− (h−, h

?
−) , hr = L1

eit− (h−, h
?
−) ,(37)

where K+ = −1/ cos2(t+/2),K− = −1/ cos2(t−/2).
Conversely, if (36) and (37) are satisfied then there exists an MGH AdS manifold N with

left and right hyperbolic metrics hl, hr, containing a past-convex surface S+ with constant
curvature K+ and induced metric and third fundamental form homothetic to h+ and h?+, and a
future convex surface S− with constant curvatureK− and induced metric and third fundamental
form homothetic to h− and h?−.

Proof. – The first point follows directly from [8, Lemma 1.9]. The converse also follows
from the same lemma, because an MGH AdS manifold is uniquely determined by its left
and right hyperbolic metrics (see [31]) so that the MGH AdS manifold containing a past-
convex space-like surface of curvature K+ with I and III respectively homothetic to h+ and
h?+ is the same as the MGH AdS manifold containing a future-convex space-like surface of
curvature K− with I and III respectively homothetic to h− and h?−.

Proof of Theorem 1.7. – Let θ−, θ+∈ (0, π), and let h−, h+∈ T . Set K+ = −1/ cos2(θ+/2)

and K− = −1/ cos2(θ−/2). Theorem 1.16 indicates that there exists an MGH AdS mani-
fold N containing a past-convex space-like surface of constant curvature K+ proportional
to h+, and a future-convex space-like surface of constant curvature K− proportional to h−.
Moreover, if θ− + θ+ = π, then N is unique.

Let hl, hr be the left and right hyperbolic metrics of N . Lemma 9.10 then shows that
hr = Seiθ+ ,h+

(hl), while hl = Seiθ− ,h−(hr). Thus hr is a fixed point of Seiθ+ ,h+
◦ Seiθ− ,h− .

This proves the existence part of the statement.
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The uniqueness part when θ− + θ+ = π follows from the uniqueness of N in this case,
together with the converse part of Lemma 9.10.
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